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GENERALIZED HEEGNER CYCLES ON MUMFORD CURVES

MATTEO LONGO AND MARIA ROSARIA PATI

Abstract. We study generalised Heegner cycles, originally introduced by Bertolini-Darmon-
Prasanna for modular curves in [BDP13], in the context of Mumford curves. The main result
of this paper relates generalized Heegner cycles with the two variable anticyclotomic p-adic
L-function attached to a Coleman family f∞ and an imaginary quadratic field K, constructed
in [BD07] and [Sev14]. While in [BD07] and [Sev14] only the restriction to the central critical
line of this 2 variable p-adic L-function is considered, our generalised Heegner cycles allow us
to study the restriction of this function to non-central critical lines. The main result expresses
the derivative along the weight variable of this anticyclotomic p-adic L-function restricted to
non necesserely central critical lines as a combination of the image of generalized Heegner
cycles under a p-adic Abel-Jacobi map. In studying generalised Heegner cycles in the context
of Mumford curves, we also obtain an extension of a result of Masdeu [Mas12] for the (one
variable) anticyclotomic p-adic L-function of a modular form f and K at non-central critical
integers.
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1. Introduction

Generalized Heegner cycles have been introduced by Bertolini-Darmon-Prasanna in [BDP13]
with the aim of studying certain anticyclotomic p-adic L-functions of modular forms of level
Γ1(N), where p ∤ N is a prime number, twisted by Hecke characters of an imaginary quadratic
field K/Q in which all primes dividing N are split. These cycles are defined by means of the
cohomology of the motive (En × En, ǫ), where En is a smooth compactification of the n-fold
product of the universal elliptic curve E → X1(N), E is an auxiliary elliptic curve with CM
by OK and ǫ is a suitable projector in the ring of rational correspondences on En × En. The
work [BDP13] has been generalised by Brooks [HB15] to the case when X1(N) is replaced
by a Shimura curve, and therefore E and E are replaced by a universal false elliptic curve A
and a false elliptic curve A with CM by OK ; in [HB15], N is assumed to be prime to p as
in [BDP13], and one allows factorisations of N into coprime integers N = N+ · N− where
all primes dividing N+ are split in K, all primes dividing N− are inert in K, and N− is the
square-free product of an even number of distinct prime factors.

Along a different direction Masdeu in [Mas12] has defined generalized Heegner cycles for
Mumford curves; in this setting we fix a modular form f of weight k and level Γ0(N), an
imaginary quadratic field K and a factorisation N = p ·N+ ·N− into coprime factors so that
p is a prime number, all primes dividing N+ are split in K, all primes dividing pN− are inert
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in K, and N− is the square-free product of an odd number of distinct prime factors. The
fiber at p of Shimura curves attached to quaternion algebras B of discriminant pN− can be
described by means of Mumford curves, i.e. quotients Γ\Hp of the p-adic upper half plane
Hp = Cp − Qp by an arithmetic group Γ ⊆ B×, where B is the definite quaternion algebra
of discriminant N− obtained from B by interchanging the invariants ∞ and p. In this case,
generalized Heegner cycles are constructed by means of the cohomology of (An

2 × En, ǫM ),
where A is the universal false elliptic curve as in [HB15], E is a fixed elliptic curve with CM

by OK as in [BDP13], n := k− 2 and ǫM is a suitable projector on An
2 ×En. The main result

of [Mas12] expresses the derivative of the anticyclotomic p-adic L-function attached to f and
K at integers j in the critical strip 1 ≤ j ≤ k − 1 as linear combinations of the images of
generalised Heegner cycles via the p-adic Abel-Jacobi map, evaluated at suitable differential
forms. The main tools used in [Mas12] is the analysis by Iovita-Spiess [IS03] of the realisations

(étale and de Rham) of the motive (An
2 , ǫA).

This paper continues the work initiated by [Mas12] in the context of Mumford curves, but

instead of the motive (An
2 ×En, ǫM ) considered in [Mas12] we study the motive (An

2 ×A
n
2 , ǫ)

with A a universal false elliptic curve over a Shimura curve, A a fixed false elliptic curve with
CM by OK and ǫ a projector in CorrX(An

2 ×A
n
2 ). Here the setting is the same as in [Mas12]:

we fix a modular form f of level Γ0(N), an imaginary quadratic field K and a factorisation
N = p · N+ · N− into coprime factors so that p is a prime number, all primes dividing N+

are split in K, all primes dividing pN− are inert in K, and N− is the square-free product
of an odd number of distinct prime factors. It turns out that our motive seems to be more
flexible than the motive considered in [Mas12], and more natural because both the universal
abelian variety and the fixed abelian variety with CM are false elliptic curves. In this context
we define generalised Heegner cycles, and we study them using techniques from [IS03] and
[BDP13].

Our main results investigate the relation between generalised Heegner cycles and anticy-
clotomic p-adic L-functions, especially in the context of p-adic variation of modular forms.
Fix an imaginary quadratic field K and a modular form f of weight k0 and level Γ0(N), with
N = pN+N− as above, having finite slope at p. Let f∞ be the Coleman family of modular
forms passing through f . In the ordinary case with k0 = 2, Bertolini and Darmon introduced
in [BD07] a p-adic L-function in the weight-variable k interpolating special values at central

critical points of anticyclotomic L-functions of newforms f ♯
k whose p-stabilisations are the

classical specialisations fk of f∞. In particular, this p-adic L-function is non-zero and van-
ishes at k = 2. When f corresponds to an elliptic curve, the main result of [BD07] expresses
the first derivative along the weight variable k of this anticyclotomic p-adic L-function valued
at the point k = 2 as linear combination of Heegner points. This results has been extended
by Seveso [Sev14] in the finite slope case and k0 ≥ 2 by expressing the first derivative along
the weight variable k of this anticyclotomic p-adic L-function at k = k0 as linear combination
of Heegner cycles.

The p-adic L-functions studied in [BD07] and [Sev14] are restriction to the central critical
line s = k/2 of a p-adic L-function Lp(s, k) in two p-adic variables s and k; in light of the

results of [Mas12], it is then natural to investigate the restriction L(j)p (k) = Lp(k, k + j) of
these p-adic L-functions along directions s = k/2 + j, with −k/2 < j < k/2 an integer in

the critical strip. In the spirit of [BD07] and [Sev14], for each j such that L(j)p (k0) = 0, we

show that the derivative d
dkL

(j)
p (k) at k = k0 can be expressed as linear combinations of our

generalised Heegner cycles.
We now state our main result in a more precise form. Let f ∈ Sk0(Γ0(N)) be a newform of

weight k0 and level Γ0(N), K an imaginary quadratic field, N = p ·N+ ·N− a factorisation
of N into coprime integers such that p is a prime, all prime factors dividing N+ (respectively,



3

pN−) are split (respectively, inert) in K, and N− is a square-free product of an odd number
of primes. Let B/Q be the indefinite quaternion algebra of discriminant pN−, and Γ ⊆ B×

the arithmetic subgroup corresponding to the choice of an Eichler order of level N+ in the
definite quaternion algebra B/Q of discriminant N−. Let X be the Shimura curve of level
Γ. After choosing an auxiliary prime integer M ≥ 5 prime to N and a Γ1(M)-level structure
ΓM ⊆ Γ, consider the Shimura curve XM → X of level ΓM and the universal false elliptic
curve A→ XM . Fix a false elliptic curve A0 with CM by OK . For any isogeny ϕ : A0 → A we
construct a generalised Heegner cycle ∆ϕ in the Chow group CHn0+1(D) of the Chow motive

D := (A
n0
2 × A

n0
2
0 , ǫ), where n0 = k0 − 2. For any positive even integer k, let Mk(Γ) be the

Cp-vector space of rigid analytic quaternionic modular forms of weight k and level Γ; elements
of Mk(Γ) are functions from Hp = Cp−Qp to Cp which transform under the action of Γ by the
automorphic factor of weight k. In particular, the Jacquet-Langlands correspondence allows
us to see f as an element of Mk0(Γ). Let Vn0 denote the dual of the Cp-vector space Pn0 of
polynomials in one variable of degree at most n0. We construct a p-adic Abel-Jacobi map

AJp : CH
n0+1(D) −→ (Mk0(Γ)⊗ Vn0)

∨

where the target denotes the Cp-linear dual of Mk0(Γ)⊗ Vn0 . On the other hand, denote

W = Homcont(Z
×
p ,Q

×
p )

the weight space, and view Z ⊆ W by the map k 7→ [x 7→ xk−2]. For any integer j with

−k0/2 < j < k0/2, we construct a function k 7→ L(j)p (k) defined in a sufficiently small

connected neighborhood of U of k0 ∈ W. When j ≡ 0 (mod p+1), L(j)p (k) coincides with the
restriction to the line s = k/2 + j of the two variable p-adic L-function of [BD07], [Sev14];
thus in particular the value of this function at j = 0 correspond to the one variable p-adic L-
function studied in [BD07], [Sev14]. The notation used below to denote this function is more
involved, but in the introduction we prefer to keep the notational complexity at minimum
stating our main result, Theorem 1.1, in the case when the class number of K is equal to 1:
see Definitions 6.6 and 6.8 for the complete notation, keeping in mind that if the class number
of K is 1 then the two functions in Definitions 6.6 and 6.8 are the same, and χ in loc. cit. is
trivial. Thus, our main result, for which as remarked above we assume that the class number
of K is one to simplify the statement, is the following:

Theorem 1.1. For integers −k0/2 < j < k0/2 with j ≡ 0 (mod p+ 1) we have

L(j)p (k0) = 0

and there exists an isogeny ϕ : A0 → A and are elements v
(j)
ϕ and v̄

(j)
ϕ in Vn0 such that we

have
(

d

dk
L(j)p (k)

)

|k=k0

= cϕ

(

AJp(∆ϕ)(f ⊗ v(j)ϕ ) + ωpAJp(∆ϕ̄)(f ⊗ v̄(j)ϕ )
)

.

In the theorem above, cϕ ∈ Q̄×
p is an explicit constant which only depends on ϕ, ωp ∈ {±1}

is the eigenvalue of the Atkin-Lehner involution acting on f , and if ϕ : A0 → A is an isogeny,
we denote by ϕ̄ : A0 → Ā the isogeny obtained by ϕ composing with the generator of Gal(K/Q)
(recall that A is defined over K by the theory of complex multiplication, under the assumption
that K has class number one). This result is a special case of Theorem 6.9 below, which
also considers twists by certain anticyclotomic characters of K, and holds for arbitrary class
number of K.

In studying our generalized Heegner cycles, we also obtain a second result similar in spirit
to that of [Mas12], expressing the first derivative of the anticyclotomic p-adic L-function
attached to f and K at integers j in the critical strip 1 ≤ j ≤ k0 − 1 as linear combinations
of our generalized Heegner cycles, valued at suitable differential forms; although the result is
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similar in spirit to that of [Mas12], it has a different shape, due to the different motives used,
and furthermore generalises that of [Mas12] to certain anticyclotomic characters. We state a
simplified version (again for trivial characters and class number of K equal to 1) of this result,
referring to Theorem 6.13 and the comments following it for the notation.

Theorem 1.2. Let Lp(f/K, s) be the anticyclotomic p-adic L-function attached to f and

K and −k0/2 < j < k0/2 an integer with j ≡ 0 (mod p + 1). For each such j we have

Lp(f/K, k0/2 + j) = 0 and there exists an isogeny ϕ : A0 → A such that

L′
p (f/K, k/2 + j) = dϕ ·

(

AJp(∆ϕ)(f ⊗ v(j)ϕ )− ωp ·AJp(∆ϕ̄)(f ⊗ v̄(j)ϕ )
)

.

Here dϕ ∈ Q̄×
p is an explicit constant which only depends on ϕ. This result is a special

case of Theorem 6.13 below, which, as for Theorem 1.1, also considers twists by certain
anticyclotomic characters of K, and holds for arbitrary class number of K.

2. Shimura curves

In this section we collect come preliminaries on Shimura curves which will be needed in this
paper. We fix an integer N with a coprime factorization N = pN+N− such that p ∤ N+N−

is a prime number, and N− is a square free product of an odd number of primes factors.

2.1. Shimura curves. Let B be the indefinite quaternion algebra over Q of discriminant
pN−. Fix a maximal order Rmax in B and an Eichler order R of level N+ contained in
Rmax. The Shimura curve X = XN+,pN−/Q is the coarse moduli scheme representing the
functor which takes a Q-scheme S to isomorphism classes of abelian surfaces with quaternonic
multiplication by Rmax and level N+-structure, i.e. triples (A, ι, C) where

(1) A is an abelian surface over a Q-scheme S;
(2) ι : Rmax → EndS(A) is an inclusion defining an Rmax-module structure on A/S;
(3) C ⊂ A is a subsgroup scheme locally isomorphic to Z/N+Z, stable and locally cyclic

under the action of R.
The scheme X is a smooth, projective and geometrically connected curve over Q. A triple
(A, ι, C) is called a false elliptic curve with level N+-structure, and the abelian surface A is
called a false elliptic curve. An isogeny ϕ : A→ A′ of false elliptic curves is said to be a false

isogeny if it commutes with the action of Rmax.
The fiber at p of X is a Mumford curve, as we will review now. Let Hp denote the rigid

analytic space over Qp whose points over field extensions L/Qp are given by Hp(L) = L−Qp

(see for example [Dar04, Chapter 5] or [DT08, Section 1], where the rigid analytic structure
of Hp is also carefully described). Let B/Q be the definite quaternion algebra over Q of

discriminantN− and let R be an Eichler Z[1p ]-order of levelN
+ inB. By fixing an isomorphism

ιp : Bp → M2(Qp) the group Γ of elements of reduced norm 1 in R can be identified with a
discrete subgroup of SL2(Qp). We let SL2(Qp) act on Hp(L), for each field extension L/Qp,

by fractional linear transformations z 7→ az+b
cz+d for

(

a b
c d

)

∈ SL2(Qp) and z ∈ Hp(L). We may

then form the quotient XΓ,Qp = Γ\Hp and for any field extension F/Qp, its base change
XΓ,F = XΓ,Qp ⊗Qp F , which, when F contains Qp2 , is a Mumford curve defined over F (in
general, it is a twist of a Mumford curve by a quadratic character). The Cerednik-Drinfeld
theorem states the existence of an isomorphism

(1) XQp2
≃ XΓ,Qp2

of algebraic curves defined over Qp2 . See [JL85, Section 4], [BD96, Theorem 1.3] or [BC91,

Chapitre III] for details. We put XΓ = XΓ,Q̂unr
p

to simplify the notation, where Q̂unr
p is the

completion of the maximal unramified extension Qunr
p of Qp.
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2.2. An auxiliary fine moduli problem. Fix M ≥ 3 an integer relatively prime to N . Let
XM be the fine moduli scheme representing abelian surfaces with quaternionic multiplication
by Rmax, level N+-structure and full level M -structure over Q-schemes, i.e. quadruples
(A, ι, C, ν) where

(1) (A, ι, C) is an abelian surface with quaternionic multiplication by Rmax and level
N+-structure over a Q-scheme S;

(2) ν : (Rmax/MRmax)S → A[M ] is a Rmax-equivariant isomorphism from the constant
group scheme (Rmax/MRmax) to the group scheme of M -division points of A.

Quadruplets (A, ι, C, ν) are called false elliptic curves with level (N+, ν)-structure. The scheme
XM is a smooth projective curve over Q which is not geometrically connected. The morphism
XM → X given by forgetting the level M -structure is a Galois covering with Galois group
isomorphic to GM/{±1}, where

GM := (Rmax/MRmax)×.

We denote A → XM the universal abelian surface.
Over Q̂unr

p , the curve XM decomposes as a disjoint union of Mumford curves

(2) XM,Q̂unr
p

= XM ⊗Q Q̂unr
p ≃

∐

(Z/MZ)×

ΓM\Hunr
p ,

for a suitable congruence subgroup ΓM ⊂ SL2(Qp), where we write Hunr
p = Hp⊗Qp Q̂

unr
p (this

isomorphism can be realised over any extension of Qp2 containing all ϕ(M)-roots of unity,

where ϕ(M) = ♯(Z/MZ)×). See [IS03, Section 5] for more details.

2.3. Modular forms. We introduce in this subsection two definitions of modular forms on
quaternion algebras.

Definition 2.1. Let F be a field of characteristic zero and k ≥ 2 an even integer. A F -valued

modular form of weight k on X is a global section of the sheaf (Ω1
XF /F )

⊗ k
2 . We denote the

space of these modular forms by Mk(X,F ).

The Jacquet-Langlands correspondence implies the existence of an isomorphism ofK-vector
spaces

Mk(X,F ) ≃ Sk(Γ0(N), F )pN
−-new

where the right hand side denotes the F -vector space of F -valued cusp forms of weight k and
level Γ0(N) which are new at the primes dividing pN−. This isomorphism is compatible with
the action of the Hecke operators and Atkin-Lehner involutions, defined on both sides. For
details, see [BD96, Theorem 1.2].

Definition 2.2. Let F be a field of characteristic zero and k ≥ 2 an even integer. A p-adic
modular form of weight k for Γ defined over F is a rigid analytic function f on Hp defined
over F satisfying the rule

f(γz) = (cz + d)kf(z) for all γ =

(

a b
c d

)

∈ Γ and z ∈ Hp(Cp) = Cp −Qp.

The space of these p-adic modular forms will be denoted by Mk(Γ, F ) and for F = Q̂unr
p we

set Mk(Γ) = Mk(Γ, Q̂
unr
p ).

Using the Cerednik-Drinfeld isomorphism (1), one easily shows that the map f 7→ f(z)dz⊗
k
2

establishes and isomorphism between Mk(Γ, F ) and Mk(X,F ) for all fields F containing Qp2 .
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3. The generalised Kuga-Sato motive

Let N = pN+N− be fixed as in §2. Let k ≥ 4 be an even integer and put n = k − 2 and
m = n/2. Fix a quadratic imaginary field K satisfying the following assumption: all primes
dividing N+ (respectively, pN−) are split (respectively, inert) in K.

3.1. Definition. We begin by recalling some generalities on Chow motives, following mainly
[IS03, §5]. Let F be a field of characteristic zero, and S a smooth quasi-projective connected
variety over F . We denoteM(S) the category of effective relative Chow motives over S with
respect to graded correspondences ([DM91, §1.3], [Sch94, Sec. 1]). We will only use motives of
the form (X, ǫ) = (X, ǫ, 0) where X is a smooth projective S-scheme and ǫ ∈ Corr0S(X,X) is a
projector (i.e. ǫ◦ǫ = ǫ) in the ring of correspondences on X of degree 0 (see [Sch94, §1.2, §1.3]
for details). If S = Spec(F ), write M(F ) =M (Spec(F )). Denote Rp :M(S) → Db(S,Qp)

the p-adic realisation functor to the bounded derived category Db(S,Qp) of Qp-sheaves over S
([DM91, §1.8]), thus forM = (X, ǫ) ∈ M(S), Rp(M) denotes the p-adic realization ofM as
a motive over S. We can also considerM as a Chow motive over F by applying the canonical
functor M(S) → M(F ), and if M = (X, ǫ) for an abelian scheme π : X → S, the p-adic
realization Hp(M) ofM as a motive over F is given by

Hr
p(M) = Hr(S̄, Rp(M)) = ǫ∗ ·

⊕

i+j=r

H i(S̄, Rjπ∗Qp),

where S̄ = S ⊗F F̄ (see [Bes95, Proposition 5.9] for the argument).
We denote

(3) cℓ
(i)
M : CHi(M) −→ H2i

p (M)

the cycle class map ([IS03, (40)]), whose kernel is denoted CH(M)0 (this map will not be used
until Section 4, but we prefer to introduce it here to collect all notations concerning Chow
motives; the same applies to (4) and (5) below).

Let F be an unramified field extension of Qp. For a semistable representation of GF =
Gal(F̄ /F ), let Dst,F denote the semistable Dieudonné functor over F (see [IS03, §2]); so if V
is a semistable representation of GF , then Dst,F (V ) is a filtered Frobenius monodromy module

over F (see [IS03, §2]); the category of such objects is denoted MFφ,N
F , and for an object D

in this category we denote F •(D) its filtration. For an object D in MFφ,N
F , define

(4) Γ(D) = Hom
MFφ,N

F
(F,D) = Ext0

MFφ,N
F

(F,D) = F 0(D) ∩Dφ=id,N=0.

Here Hom
MFφ,N

F
(·, ·) denotes homomorphisms in the category MFφ,N

F , φ is the Frobenius mor-

phism, id is the identity morphism, and N is the monodromy operator of the object D. In

particular, if the p-adic realization Hp(M) ofM is semistable, then the cycle class map cℓ
(i)
M

takes the form ([IS03, (47)])

(5) cℓ
(i)
M : CHi(M) −→ Γ

(

Dst,F (H
2i
p (M)(F ))

)

.

Let A0 be a fixed abelian surface with quaternionic multiplication and full level-M structure,
defined over H (the Hilbert class field of K) and with complex multiplication by OK ; the
action of OK is required to commute with the quaternionic action, and this implies that A0 is
isogenous to E × E for an elliptic curve E with CM by OK . Fix a field F ⊃ H and consider
the (2n + 1)-dimensional variety Ym over F given by

Ym := Am ×Am
0 .

Here Am is the m-fold fiber product of A over XM . The variety Ym is equipped with a proper
morphism π : Ym → XM with 2n-dimensional fibers: the fibers above points x of XM are
products of the form Am

x ×Am
0 , where Ax is the fiber of A→ XM at x.
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Denote ǫA the projector in [IS03, Appendix 10.1]; this is an idempotent in the ring of
correspondences CorrXM

(Am,Am). The projector ǫA defines then a projector ǫA0 . One can
then define the motive

DM := (Ym, ǫM )

defined over F , where ǫM = (ǫA, ǫA0). In the previous notation, DM ∈ M(XM ).
We now descent DM to a motive over the Shimura curve X. Observe that the group

GM := (Rmax/MRmax)× ≃ GL2(Z/MZ)

acts as X-automorphism on XM and Am. It follows that the element pG := 1
|GM |

∑

g∈GM
g

can be seen as a projector in CorrX(Ym, Ym), which acts trivially on Am
0 . Since it commutes

with ǫM (viewed as projector in CorrX(Ym, Ym)), their product ǫ = pG · ǫM is a projector, and
we can define a new motive D over X, the generalised Kuga-Sato motive, as

D := (Ym, ǫ).

In the previous notation, D ∈M(X). We also denoteMM = (Am, ǫA) the motive inM(XM )
considered in [IS03], and we writeMA0 = (Am

0 , ǫA0), also inM(XM ); then DM =MM⊗MA0 .
Moreover, if we writeM = (Am, pG · ǫA) then we have

(6) D =M⊗MA0

viewing MA0 as a motive over X (recall that the tensor product on the category of Chow
motives is induced by the fiber product [DM91, page 203]). Finally, note that H2n+1

p (D) is

equipped with a structure of GF = Gal(F̄ /F )-representation.

3.2. The étale realization. We consider now the sheaf Ln over XM introduced in [IS03,
Section 5], which is defined as follows. First, define L2 as the intersection of the kernels of the
maps b−Nr(b) : R2π∗Qp → R2π∗Qp, as b varies in B, where Nr denote the reduced norm map;
next, for any integer n > 2, consider the non-degenerate pairing R2π∗Qp⊗R2π∗Qp → Qp(−2)
given by cup product and the Laplace operator ∆m : Symm(L2) →

(

Symm−2(L2)
)

(−2)
associated with this pairing, and define Ln to be the kernel of ∆m.

Let xA0 be the closed point of XM corresponding to the abelian surface A0 and x̄A0 =
xA0 ⊗F Q̄.

Proposition 3.1. The p-adic realization Hp(D) of D is different from zero in degree 2n + 1
only, and we have

H2n+1
p (D) = H1(XM ,Ln)

GM ⊗ (Ln)x̄A0
.

Proof. The p-adic realization Rp(MM ) of the motiveMM over XM is Ln[−n] ([IS03, (71)]);
by [IS03, Lemma 10.1] the p-adic realization Hp(M) of M is concentrated in degree n + 1
and we have

Hn+1
p (M) ≃ H1(XM ,Ln)

GM .

On the other hand, the p-adic realization Rp(MA0) of the motiveMA0 over XM is the fiber

at xA0 of Rp(MM ) = Ln[−n] ([IS03, (71)]); therefore, Hp(MA0) = H∗
(

XM , (Ln[−n])xA0

)

.

Since H i
(

XM , (Ln)xA0

)

= 0 for i 6= 0, we see that Hn
p (MA0) = (Ln)x̄A0

and H i
p(MA0) = 0

for i 6= n. The Kunneth formula ([DM91, §1.8]) implies the result. �

Remark 3.2. Considered as a GQ̂unr
p

-representation Hp(D) is semistable since the category of

semistable representations is an abelian tensor category.
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3.3. The de Rham realisation. Let Vn := P∨
n be the dual of the vector space of polynomials

of degree ≤ n with coefficients in Qp equipped with the left GL2-action given by

(A ·R)(P (X)) = R(P (X) ·A)
for all A =

(

a b
c d

)

, where the right action of A on a polynomial P (X) ∈ Pn is via the formula

P (X) · A = (cX + d)nP
(

aX+b
cX+d

)

. The Qp-vector space Vn is equipped with a symmetric

bilinear form

(7) 〈, 〉Vn : Vn ⊗ Vn −→ det⊗n

in RepQp
(GL2), the category of Qp-representations of GL2, defined as follows. First, we define

〈, 〉V2 for n = 2. Let ad0 = {U ∈ M2 |trace(U) = 0}, where trace : M2(Qp) → Qp is the trace

map; ad0 is equipped with a right GL2-action by U ·A = A · U ·A for U ∈ ad0 and A ∈ GL2,
where for A =

(

a b
c d

)

, we put A =
(

d −b
−c a

)

. The map ad0 → P2 which takes U to

(8) PU (X) = trace

(

U ·
(

X −X2

1 −X

))

is an isomorphism of right GL2-modules. For PU1 , PU2 ∈ P2, we define a pairing on P2 by
〈PU1 , PU2〉P2 = 〈U1, U2〉V2 = −trace(U1 · U2). This defines the pairing on V2 by duality. More

generally, we define a pairing 〈, 〉Vn on Symn/2(ad0) by the formula

〈u1 · · · un/2, v1 · · · vn/2〉Vn =
1

(n/2)!

∑

σ∈Σn/2

〈u1, vσ(1)〉V2 · 〈un, vσ(n/2)〉V2 .

The map Symn/2(ad0)→ Pn induced by U 7→ PU (X) gives by duality a map Vn → Symn/2(ad0),

and we obtain a pairing on Vn, which we also denote 〈, 〉Vn , from that on Symn/2(ad0).
We consider the GL2×GL2-representation Vn{m} = Vn ⊙ det⊗m (see [IS03, page 345] for

the notation) and let Vn = E(Vn{m}) denote the filtered F -isocrystal on Ĥunr
p associated with

Vn{m}; here Ĥp is the formal model of Hp over Zp, and Ĥunr
p its base change to Ẑunr

p , the

valuation ring of Q̂unr
p . See [IS03, page 346] and [Mas12, page 1024] for more details on this

definition. Define the sheaf of OXΓ
-modules Vn,n = Vn ⊗ (Vn)zA0

where zA0 is a point in

Hp(Qp2) such that ΓzA0 corresponds to the abelian surface A0. Then

(9) H1
dR(XΓ,Vn,n) = H1

dR(XΓ,Vn)⊗Q̂unr
p

(Vn)zA0
.

The vector space H1
dR(XΓ,Vn,n) has a stucture of filtered Frobenius monodromy module in

MFφ,N

Q̂unr
p

.

Proposition 3.3. Dst,Q̂unr
p

(

H2n+1
p (D)

)

≃ H1
dR(XΓ,Vn,n) as filtered Frobenius monodromy

modules in MFφ,N

Q̂unr
p

.

Proof. By [IS03, Theorem 5.9] we have

Dst,Q̂unr
p

(

Hn+1
p (M)

)

≃ Dst,Q̂unr
p

(

H1(XM ,Ln)
GM
)

≃ H1
dR(XΓ,Vn)

and, by [IS03, Remark 5.14] we have Dst,Q̂unr
p

(

(Ln)x̄A0

)

≃ (Vn)zA0
. The result follows from

Proposition 3.1, equation (9) and the compatibility of the functor Dst with tensor products
(see [BC, pg. 145]). �

We now describe of Dst,Q̂unr
p

(

H2n+1
p (D)

)

as filtered Frobenius monodromy module.
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We begin with the filtration. For i = 0, . . . , n and z ∈ Hp(Q̂
unr
p ), define ∂i ∈ (Vn)z ≃ Vn by

∂i(P (X)) =

(

di

dXi
P (X)

)

X=z

for P (X) ∈ Pn. Let Qp · ∂i be the Qp-subspace of Vn generated by ∂i. The i-th step of the
filtration of Vn is given by

F i(Vn) =











Vn if i ≤ 0
∑n−i

j=0Qp · ∂j for 0 ≤ i ≤ n

0 if i ≥ n+ 1.

The i-th step of the filtration of H1
dR(XΓ,Vn) is

(10) F i
(

H1
dR(XΓ,Vn)

)

=











H1
dR(XΓ,Vn) if i ≤ 0

Mk(Γ) if 1 ≤ i ≤ n+ 1

0 is i ≥ n+ 2

See [IS03, Proposition 6.1] for proofs. In particular, the isomorphismMk(Γ)→ Fn+1(H1
dR(XΓ,Vn))

is given by

(11) f 7−→ ωf := f(z)∂0 ⊗ dz.

From (10) and Proposition 3.3 we see that the (n+1)-step of the filtration ofDst,Q̂unr
p

(

H2n+1
p (D)

)

is

(12) Fn+1
(

Dst,Q̂unr
p

(

H2n+1
p (D)

)

)

= Mk(Γ)⊗ (Vn)zA0
.

We also need an explicit description of the monodromy operator on Dst,Q̂unr
p

(

H2n+1
p (D)

)

.

We first describe the monodromy operator on H1
dR(XΓ,Vn). Let T denote the Bruhat-Tits

tree of PGL2(Qp), and denote
−→E and V the set of oriented edges and vertices of T , respectively.

If e = (v1, v2) ∈
−→E , we denote by e the oriented edge (v2, v1). Let C0

(

(Vn)Q̂unr
p

)

be the set

of maps V → (Vn)Q̂unr
p

and C1
(

(Vn)Q̂unr
p

)

be the set of maps
−→E → (Vn)Q̂unr

p
such that f(e) =

−f(e) for all e ∈ −→E , where (Vn)Q̂unr
p

= Vn ⊗Qp Q̂
unr
p . The group Γ acts on f ∈ Ci

(

(Vn)Q̂unr
p

)

by γ(f) = γ ◦ f ◦ γ−1. Let

ǫ : C1
(

(Vn)Q̂unr
p

)Γ
−→ H1

(

Γ, (Vn)Q̂unr
p

)

be the connecting homomorphism arising from the short exact sequence

0 −→ (Vn)Q̂unr
p
−→ C0

(

(Vn)Q̂unr
p

)

δ−→ C1
(

(Vn)Q̂unr
p

)
)

−→ 0,

where δ is the homomorphism defined by δ(f)(e) = f(v1)− f(v2) for e = (v1, v2). The map ǫ
induces the following isomorphism that we also denote by ǫ

ǫ : C1
(

(Vn)Q̂unr
p

)Γ
/

C0
(

(Vn)Q̂unr
p

)Γ
−→ H1

(

Γ, (Vn)Q̂unr
p

)

.

Let Ae ⊂ Hp be the oriented annulus in Hp corresponding to e and Uv ⊂ Hp be the affinoid
corresponding to v ∈ V, which are obtained as inverse images of the reduction map (see [IS03,

page 342]). Recall that H1
dR(XΓ,Vn) can be identified with the Q̂unr

p -vector space of Vn-valued,
Γ-invariant differential forms of the second kind on Hp modulo exact forms ([IS03, page 348]).
Let ω be a Vn-valued Γ-invariant differential of the second kind on Hp. We define I(ω) to be

the map which assigns to an oriented edge e ∈ −→E the value I(ω)(e) = Rese(ω), where Rese
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denotes the annular residue along Ae. If ω is exact, I(ω) = 0. Thus I gives a well-defined
map

(13) I : H1
dR (XΓ,Vn) −→ C1

(

(Vn)Q̂unr
p

)Γ
.

The Q̂unr
p -vector space

⊕

v∈V H0
dR(Uv,Vn) can be identified with C0

(

(Vn)Q̂unr
p

)

, and the sub-

space of
⊕

e∈
−→
E
H0

dR(Ae,Vn) consisting of elements {fe}e∈−→E such that fe = −fe can be iden-

tified with C1
(

(Vn)Q̂unr
p

)

. Since the set {Uv}v∈V is an admissible covering of Hp, the Mayer-

Vietoris sequence yields an embedding

C1
(

(Vn)Q̂unr
p

)Γ
/

C0
(

(Vn)Q̂unr
p

)Γ
−֒→H1

dR(XΓ,Vn).

Precomposing with ǫ, we obtain an embedding

(14) ι : H1
(

Γ, (Vn)Q̂unr
p

)

−֒→H1
dR(XΓ,Vn)

This map admits a natural left inverse

(15) P : H1
dR(XΓ,Vn) −→ H1

(

Γ, (Vn)Q̂unr
p

)

,

which takes ω to the class of the cocycle γ 7→ γ(Fω)− Fω. Here Fω is a primitive of ω in the
sense of Coleman, i.e. dFω = ω (see [Col82, Lemma 4.4]).

Define now the monodromy operator Nn on H1
dR(XΓ,Vn) as the composite ι ◦ (−ǫ) ◦ I. On

the other hand, the monodromy operator N(Vn)zA0
on the filtered (φ,N)-module (Vn)zA0

is

trivial. Therefore, since Dst,Q̂unr
p

(H2n+1
p (D)) is isomorphic to H1

dR(XΓ,Vn) ⊗ (Vn)zA0
in the

category of filtered Frobenius monodromy modules, its monodromy operator is given by

(16) N = idn ⊗N(Vn)zA0
+Nn ⊗ id(Vn)zA0

= Nn ⊗ id(Vn)zA0
,

where id• denote identity operators.

We now describe the Frobenius operator on Dst,Q̂unr
p

(H2n+1
p (D)). First, H1

(

Γ, (Vn)Q̂unr
p

)

has a Frobenius endomorphism induced by the map p
n
2 ⊗σ on (Vn)Q̂unr

p
= Vn⊗Qp Q̂

unr
p , where

σ denotes the absolute Frobenius automorphism on Q̂unr
p . As defined in [IS03, Section 4], Φn

is the unique operator on H1
dR(XΓ,Vn) satisying NnΦn = pΦnNn and which is compatible

(with respect to ι and P ) with the Frobenius on H1
(

Γ, (Vn)Q̂unr
p

)

. On the other hand, the

Frobenius on the filtered (φ,N)-module (Vn)zA0
is given by Φ(Vn)zA0

= p
n
2 ⊗ σ acting on the

underlying vector space Vn⊗Qp Q̂
unr
p . The Frobenius operator on Dst,Q̂unr

p
(H2n+1

p (D)) is given
by

Φ = Φn ⊗ Φ(Vn)zA0
.

Note that N and Φ satisfy the relation NΦ = pΦN .
Recall that H1

dR(XΓ,Vn) is equipped with a non-degenerate pairing

〈, 〉Vn : H1
dR(XΓ,Vn)⊗H1

dR(XΓ,Vn) −→ Q̂unr
p [n+ 1]

in MFφ,N

Q̂unr
p

, which is induced from 〈, 〉Vn ; see [IS03, §5], especially [IS03, Remark 5.12], for

definitions and details. Let

(17) 〈, 〉Vn,n : H1
dR(XΓ,Vn,n)⊗H1

dR(XΓ,Vn,n) −→ Q̂unr
p [n + 1]⊗ det⊗n

be the induced symmetric non-degenerate pairing defined by 〈, 〉Vn,n = 〈, 〉Vn ⊗ 〈, 〉Vn (where
we also use the isomorphisms (Vn)zA0

≃ Vn to define a pairing on (Vn)zA0
via that on Vn). If
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we denote V ∨ the F -linear dual of a F -vector space V , from (12) and the non-degeneracy of

〈, 〉Vn,n we obtain an isomorphism of Q̂unr
p -vector spaces:

(18)
Dst,Q̂unr

p

(

H2n+1
p (D)

)

Fn+1
(

Dst,Q̂unr
p

(

H2n+1
p (D)

)

) ≃
(

Fn+1
(

Dst,Q̂unr
p

(

H2n+1
p (D)

)

))∨
≃
(

Mk(Γ)⊗ (Vn)zA0

)∨
.

4. p-adic Abel-Jacobi maps

Let the notation be as in Section 3: N = pN+N− is a factorisation of the integer N ≥ 1
into coprime integers p,N+, N− with p ∤ N+N− a prime number, and N− be a square-free
product of an odd number of factors; k ≥ 4 is an even integer and put n = k−2 and m = n/2;
K is a quadratic imaginary field such that all primes dividing N+ (respectively, pN−) are
split (respectively, inert) in K.

4.1. Definition of the Abel-Jacobi map. Let [∆] be the class of a null-homologous cycle
∆ of codimension n+ 1 in CHn+1(D)(F ), where F ⊆ Q̄ is a field containing the Hilbert class
field of K; here

CHn+1(D)(F ) = ǫ · CHn+1(Ym)(F )

and null-homologous means that [∆] belongs to CHn+1
0 (D), the kernel of the cycle class map

cℓ
(n+1)
D in (3). Let Ext1GF

(·, ·) be the first Ext functor in the category of continuous GF -
representations. For a GF -representation M , let M(i) denote its i-th Tate twist. One may
associate to [∆] the isomorphism class in

Ext1GF

(

Qp, ǫ∗ ·H2n+1
ét (Y m,Qp(n+ 1))

)

= H1
(

F,H2n+1
p (D)(n+ 1)

)

of the extension

(19) 0 −→ ǫ∗ ·H2n+1
ét

(

Y m,Qp(n + 1)
)

−→ E −→ Qp −→ 0

given by the pull-back of the exact sequence (which comes from the Gysin exact sequence
[Mil80, Remark 5.4(b)])

(20) 0 −→ ǫ∗ ·H2n+1
ét

(

Y m,Qp(n+ 1)
)

−→ ǫ∗ ·H2n+1
ét

(

Ū ,Qp(n+ 1)
)

−→ ǫ∗ ·H2n+2

∆

(

Y m,Qp(n+ 1)
)

−→ 0

(where U = Ym−∆, U = U⊗F F̄ , ∆̄ = ∆⊗F F̄ ) via the map Qp → ǫ∗ ·H2n+2
∆

(

Y m,Qp(n+ 1)
)

sending 1 to the cycle class of ∆; see [Jan90, Remark 9.1] for the definition of the Abel-Jacobi
map, and use Proposition 3.1 to obtain the above recipe (see also a similar argument using
projectors as in [BDP13, §3.3]). This association defines a map, called p-adic étale Abel-Jacobi

map

(21)

cℓ
(n+1)
D,0 : CHn+1

0 (D)(F ) −→ Ext1GF

(

Qp,H
2n+1
p (D)(n + 1)

)

= H1
(

F,H2n+1
p (D)(n + 1)

)

.

4.2. Semistability. We now use p-adic Hodge theory to describe the restriction of AJp to

CHn+1(D)(Fv), where v is the place of F above p induced by the inclusion F ⊆ Q →֒ Cp,
which for simplicity we assume to be unramified over p; here Fv is the completion of F at v,
which we also assume to contain Qp2 . The motive D is then defined over Fv, because the prime
p, being inert in K, splits completely in its Hilbert class field H. Consider the base change of
Ym to Fv that we also denote by Ym by a slight abuse of notation, and the Abel-Jacobi map

cℓ
(n+1)
D,0 : CHn+1

0 (D)(Fv) −→ Ext1GFv

(

Qp,H
2n+1
p (D)(n+ 1)

)

= H1
(

Fv ,H
2n+1
p (D)(n + 1)

)

obtained by restriction. For a GFv = Gal(F̄v/Fv)-representation V , let H1
st(GFv , V ) be the

semistable Bloch-Kato Selmer group ([BK90, §3], or [IS03, page 361]). By a result of Nekovář
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[Nek00, Theorem 3.6] (see also [IS03, Lemma 7.1] and the remarks following it), we know that
the image of AJp is contained in H1

st

(

Fv ,H
2n+1
p (D)(n + 1)

)

. We have

H1
st

(

Fv ,H
2n+1
p (D)(n + 1)

)

≃ Ext1Repst(GFv )

(

Fv(n+ 1),H2n+1
p (D)

)

where Repst(GFv ) denotes the category of semistable p-adic representations of GFv , and
Ext1Repst(GFv )

(·, ·) is the first Ext functor in this category. The functor Dst,Fv gives an isomor-

phism

Ext1Repst(GFv )

(

Fv(n+ 1),H2n+1
p (D)

)

≃ Ext1
MFφ,N

Fv

(

Fv [n+ 1],Dst,Fv(H
2n+1
p (D))

)

where now Ext1
MFφ,N

Fv

(·, ·) denotes the first Ext functor in the category MFφ,N
Fv

([IS03, (44)]),

and for an object M in this category, M [i] is its i-th fold twist described in [IS03, §2]. By
[IS03, Lemma 2.1],

Ext1
MFφ,N

Fv

(

Fv[n+ 1],Dst,Fv(H
2n+1
p (D))

)

≃
Dst,Fv(H

2n+1
p (D))

Fn+1
(

Dst,Fv(H
2n+1
p (D))

) .

Therefore we conclude that

H1
st

(

Fv,H
2n+1
p (D)(n + 1)

)

≃
Dst,Fv(H

2n+1
p (D))

Fn+1
(

Dst,Fv(H
2n+1
p (D))

) .

Finally, using the canonical map Dst,Fv

(

H2n+1
p (D)

)

→֒ Dst,Q̂unr
p

(

H2n+1
p (D)

)

(which respects

the filtrations on both sides) and (18), we obtain from cℓ
(n+1)
D,0 a map AJp still called p-adic

Abel-Jacobi map,

(22) AJp : CHn+1(D)(Fv) −→
(

Mk(Γ)⊗ (Vn)zA0

)∨
.

4.3. The de Rham realization. We now introduce, following [IS03], a more concrete de-
scription of the map (22). Fix a point xA ∈ XM (F ) (as above, F ⊆ Q̄) which reduces to a
non-singular point in the special fiber of XM , and let Am×Am

0 be the fiber of Am×Am
0 → XM

at xA. Define
H1(XM ,Ln,n) = H1(XM ,Ln)⊗ (Ln)x̄A0

.

Let x̄A = xA ⊗F F̄ , UxA
= XM − {xA} and UxA

= UxA
⊗F F̄ . The Gysin sequence gives rise

to an exact sequence

0 −→ H1(XM ,Ln,n)(n + 1) −→ H1(UxA
,Ln,n)(n+ 1) −→

(

(Ln)x̄A
⊗ (Ln)x̄A0

)

(n) −→ 0

whose surjectivity follows from the analogous exact sequence in [IS03, (51)] tensoring with
the constant sheaf (Ln)x̄A0

. Applying the projector (pG)∗ we obtain an exact sequence

(23) 0 −→ Hp(D)(n+ 1) −→ E −→
(

(Ln)x̄A
⊗ (Ln)x̄A0

)

(n) −→ 0.

Suppose F ⊆ Q̂unr
p . Let zA and zA0 be the points in Hp(Q̂

unr
p ) lying over xA and xA0 ,

respectively (using (2)). Define UzA = XΓ − {zA} and put

(24) H1
dR(UzA ,Vn,n) = H1

dR(UzA ,Vn)⊗ (Vn)zA0
.

Let Resz : H1
dR(U,Vn) → (Vn)z be the residue map at a point z ∈ XΓ(Q̂

unr
p ). The Gysin

sequence of [IS03, Theorem 5.13] gives rise, after tensoring with (Vn)zA0
and using (9), (24),

to an exact sequence in MFφ,N

Q̂unr
p

:

(25) 0 −→ H1
dR(XΓ,Vn,n)[−(n+ 1)] −→ H1

dR(UzA ,Vn,n)[−(n+ 1)]
ReszA
−→

(

(Vn)zA ⊗ (Vn)zA0

)

[−n] −→ 0.

This exact sequence is obtained by applying Dst,Q̂unr
p

to (23).
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Remark 4.1. The shift in (25) is due to the definition of Tate twists adopted in [IS03, page
337]; see [FO, §7.1.3] or [BC, §8.3] for a different convention.

We have the cycle class map

cℓ = cℓ
(n)
(Am×Am

0
,ǫM ) : CH

n((Am
× Am

0 , ǫM )) −→Γ
(

Dst,Q̂unr
p

(H2n
p ((Am

×Am
0 , ǫM )(n)))

)

≃ Γ
(

Dst,Q̂unr
p

(H2n(XM , (Ln)xA ⊗ (Ln)xA0
)(n))

)

≃ Γ
(

Dst,Q̂unr
p

(((Ln)x̄A ⊗ (Ln)x̄A0
)(n)))

)

≃ Γ
(

((Vn)zA ⊗ (Vn)zA0
)[−n]

)

.

Next, from (25) we obtain a connecting homomorphism in the sequence of Ext groups

Γ
(

((Vn)zA ⊗ (Vn)zA0
)[−n]

)

∂−→Ext1
MFφ,N

Q̂unr
p

(

Q̂unr
p ,H1

dR(XΓ,Vn,n)[−(n + 1)]
)

≃ Ext1
MFφ,N

Q̂unr
p

(

Q̂unr
p [n+ 1],H1

dR(XΓ,Vn,n)
)

≃
(

Mk(Γ)⊗ (Vn)zA0

)∨

where the last isomorphism comes, as before, from (18) and [IS03, Lemma 2.1]. On the other
hand, we have a canonical map

i : CHn((Am ×Am
0 , ǫM )) −→ CHn+1(D).

The definition of the Abel-Jacobi map ([Jan90, §9]) shows that the following diagram is
commutative:

(26) i−1
(

CHn+1
0 (D)

) cℓ //

i

��

Γ
(

((Vn)zA ⊗ (Vn)zA0
)[−n]

)

∂
��

CHn+1
0 (D) AJp //

(

Mk(Γ)⊗ (Vn)zA0

)∨
.

Suppose that ∆ is supported in the fiber of D above xA ∈ XM (F ), then AJp(∆) is the
extension class determined by the following diagram (in which the right square is cartesian)

(27) 0 // H1
dR(XΓ,Vn,n)

j∗ // H1
dR(UzA ,Vn,n)

ReszA //
(

(Vn)zA ⊗ (Vn)zA0

)

[1] // 0

0 // H1
dR(XΓ,Vn,n) // E

OO

// Q̂unr
p [n+ 1]

OO

// 0

where the vertical left map sends 1 7−→ cℓ(∆)[n+ 1].

5. Generalized Heegner cycles

5.1. Definition of the cycles. We fix a field F containing the Hilbert class field H of K.
Recall the fixed abelian surface A0 with QM and complex multiplication by OK . Consider
the set of pairs (ϕ,A), where A is an abelian surface with QM and ϕ : A0 → A is a false
isogeny (defined over K̄) of false elliptic curves, of degree prime to N+M , i.e. whose kernel
intersects the level structures of A0 trivially. Let xA be the point on XM corresponding to A
with level structure given by composing ϕ with the level structure of A0. We associate to any
pair (ϕ,A) a codimension n+ 1 cycle Υϕ on Ym by defining

Υϕ := (Γϕ)
m ⊂ (A0 ×A)m ≃ Am ×Am

0 ⊂ Am ×Am
0 ,
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where Γϕ ⊂ A0 ×A is the graph of ϕ and the inclusion Am ×Am
0 ⊂ Am ×Am

0 is idmA0
on the

second component. We then set
∆ϕ := ǫΥϕ.

The cycle ∆ϕ of D is supported on the fiber above xA and has codimension n+1 in Am×Am
0 ,

thus ∆ϕ ∈ CHn+1(D). Since the cycle class map sends ∆ϕ to the p-adic realization H2n+2
p (D)

and H2n+2
p (D) = 0, the cycle ∆ϕ is homologous to zero.

5.2. The image of ∆ϕ under the p-adic Abel-Jacobi map. For any D ∈ MFφ,N

Q̂unr
p

, write

D = ⊕λDλ for its slope decomposition, where λ ∈ Q ([IS03, (2)]). Recall the monodromy
operator N introduced in (16).

Lemma 5.1. N induces an isomorphism H1
dR(XΓ,Vn,n)n+1 ≃ H1

dR(XΓ,Vn,n)n.
Proof. Since the monodromy operator N and the Frobenius Φ on H1

dR(XΓ,Vn,n) satisfy the
relation NΦ = pΦN , we have N

(

H1
dR(XΓ,Vn,n)n+1

)

⊆ H1
dR(XΓ,Vn,n)n. Since (Vn)zA0

is

isotypical of slope n/2, we have

H1
dR(XΓ,Vn,n)n+1 = H1

dR(XΓ,Vn)n
2
+1 ⊗ (Vn)zA0

and
H1

dR(XΓ,Vn,n)n = H1
dR(XΓ,Vn)n

2
⊗ (Vn)zA0

.

By [IS03], we know that Nn : H
1
dR(XΓ,Vn)n

2
+1 → H1

dR(XΓ,Vn)n
2
is an isomorphism, thus the

restriction of N to H1
dR(XΓ,Vn,n)n+1 is an isomorphism by the definition of the monodromy

operator N given in (16). �

Fix f ∈ Mk(Γ) and v ∈ (Vn)zA0
. Thanks to Lemma 5.1, we can apply [IS03, Lemma 2.1]

(see also [Mas12, Lemma 3.3]) to compute AJp(∆ϕ)(f ⊗ v). With the notation as in (27), and
following loc. cit, choose α ∈ H1

dR(UzA ,Vn,n)n+1 such that

ReszA(α) = cℓA(∆ϕ)

and N(α) = 0. Choose β in H1
dR(XΓ,Vn,n) such that

j∗(β) ≡ α mod Fn+1
(

H1
dR(UzA ,Vn,n)

)

.

Then the image of the extension cℓ
(n+1)
D,0 (∆ϕ) in

H1
dR(XΓ,Vn,n)/Fn+1

(

H1
dR(XΓ,Vn,n)

)

≃ (Mk(Γ)⊗ (Vn)zA0
)∨

is the class of β (which we denote by the same symbol β) in this quotient. Let ωf be the class

in Fn+1
(

H1
dR(XΓ,Vn)

)

corresponding to f ∈Mk(Γ) under the isomorphism (10). Recall the
pairing 〈, 〉Vn,n defined in (17). Then by definition

(28) AJp(∆ϕ)(f ⊗ v) = 〈ωf ⊗ v, β〉Vn,n .

From the proof of [IS03, Theorem 6.4] we know that H1
dR(XΓ,Vn) decomposes as the direct

sum of H1
dR(XΓ,Vn)n

2
and F

n
2
+1
(

H1
dR(XΓ,Vn)

)

. Since

F
n
2
+1
(

H1
dR(XΓ,Vn)

)

= Fn+1
(

H1
dR(XΓ,Vn)

)

and Fn+1((Vn)zA0
) = 0, using the previous decomposition, and the fact that, as above, (Vn)zA0

is isotypical of slope n/2, we obtain a decomposition

H1
dR(XΓ,Vn,n) ≃ H1

dR(XΓ,Vn,n)n ⊕ Fn+1
(

H1
dR(XΓ,Vn,n)

)

.

We may therefore assume that the element β considered above belongs to H1
dR(XΓ,Vn,n)n.

Moreover, again from the proof of [IS03, Theorem 6.4] we know that

(29) ker(Nn) = ι
(

H1(Γ, (Vn)Qunr
p

)
)

= H1
dR(XΓ,Vn)n

2
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where ι is the map considered in (14). To simplify the notation we put

H1(Γ, Vn,n) = H1
(

Γ, (Vn)Q̂unr
p

)

⊗ (Vn)zA0
.

We now extend ι to a map, still denoted by the same symbol,

ι = ι⊗ id(Vn)zA0
: H1(Γ, Vn,n)−֒→H1

dR(XΓ,Vn,n)

and (29) shows that there exists an isomorphisms

ker(N) = ι
(

H1(Γ, Vn,n)
)

= H1
dR(XΓ,Vn,n)n.

Therefore we may assume β = ι(c) for some c ∈ H1(Γ, Vn,n).
We now introduce still an other pairing 〈, 〉Γ. Let Char(Vn)

Γ denote the Qp-vector space
of Γ-invariant Vn-valued harmonic cocycles (see for example [DT08, Definition 2.2.9]). We
denote

〈, 〉′Γ : Char(Vn)
Γ ⊗H1(Γ, Vn) −→ Qp

the pairing introduced in [IS03, (75)]. To simplify the notation, we set

Char(Vn,n)
Γ = Char(Vn)

Γ ⊗ (Vn)zA0
.

We then define the pairing

〈, 〉Γ : Char(Vn,n)
Γ ⊗H1(Γ, Vn,n) −→ Qp

by 〈, 〉Γ = 〈, 〉′Γ ⊗ 〈, 〉Vn (where as above we identify (Vn)zA0
and Vn). Recall the map I is

defined in (13).

Lemma 5.2. 〈ωf ⊗ v, β〉Vn,n = −〈I(ωf )⊗ v, c〉Γ.

Proof. Write β =
∑

i βi ⊗ vi and c =
∑

j cj ⊗ wj . The assumption ι(c) = β shows that i = j,

vi = wi and ι(ci) = βi where here ι is the map in (14). By [IS03, Theorem 10.2] we know that
for each i we have 〈ωf , βi〉Vn = −〈I(ωf ), ci〉′Γ. The definitions of 〈, 〉Vn,n and 〈, 〉Γ imply the
result. �

Recall the open set UzA = XΓ − {zA}. Write α− j∗(β) =
∑

i γi ⊗ vi. For each i, let χi be
a Γ-invariant Vn-valued meromorphic differential form on Hp which is holomorphic outside

π−1(UzA), with a simple pole at zA, and whose class [χi] in F
n
2
+1
(

H1
dR(UzA ,Vn)

)

represents
γi. Then the class of χ =

∑

i χi ⊗ vi represents α− j∗(β).

Having identified H1
dR(XΓ,Vn) with the Q̂unr

p -vector space of Γ-invariant Vn-valued differ-

ential forms of the second kind on Hp modulo exact forms, denote Fωf
∈ H0(XΓ,Vn) the

Coleman primitive of ωf ([dS89, §2.3]). Having fixed n, we write 〈, 〉z,zA0
for the restriction of

〈, 〉Vn,n to the stalk of Vn,n at z. Then 〈, 〉z,zA0
is a pairing on (Vn)z ⊗ (Vn)zA0

.

Lemma 5.3. −〈I(ωf )⊗ v, c〉Γ = 〈Fωf
(zA)⊗ v,ReszA(χ)〉zA,zA0

.

Proof. As in the proof of Lemma 5.2 write c =
∑

j cj ⊗ wj. By definition,

〈I(ωf )⊗ v, c〉Γ =
∑

j

〈I(ωf ), cj〉′Γ · 〈v,wj〉Vn .

By [IS03, Corollary 10.7],

〈I(ωf ), cj〉′Γ = 〈Fωf
(zA),ReszA(χj)〉Vn

where in the last pairing we identify (Vn)zA with Vn. The result follows now from the definition
of the pairing 〈, 〉Vn,n in (17). �
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For a smooth projective variety X defined over F , denote

∪ : Hp
dR(X)⊗Hq

dR(X) −→ Hp+q
dR (X)

the cup product pairing on the de Rham cohomology of X. If d is the dimension of X, we
also denote ηX : H2d(X)→ F the trace isomorphism.

Let Az be the fiber at z of A → XM . The projector ǫ defines a projector ǫz on Am
z and we

have ([Bes95, Theorem 5.8 (iii)])

(30) (ǫz)∗H
n
dR(A

m
z ) ≃ (Vn)z.

We also have a canonical map

(31) (ǫzA)∗H
n
dR(A

m)⊗ (ǫzA0
)∗H

n
dR(A

m
0 )−֒→Hn

dR(A
m)⊗Hn

dR(A
m
0 )−֒→H2n

dR(A
m ×Am

0 )

arising from the Kunneth decomposition; explicitly, this is the map which takes α ⊗ β to
p∗A(α)∪p∗A0

(β), where pA : Am×Am
0 → Am and pA0 : A

m×Am
0 → Am

0 are the two projections.
Composing (30) with (31) we obtain a map

Θ : (Vn)zA ⊗ (Vn)zA0
−֒→H2n

dR(A
m ×Am

0 ).

Recall that, given a false isogeny ϕ : A0 → A, we have pull-back an push-forward maps
ϕ∗ : H i

dR(A)→ H i
dR(A0) and ϕ∗ : H

i
dR(A0)→ H i

dR(A). Applying the projectors ǫzA0
and ǫzA

and using (30) we thus obtain maps ϕ∗ : (Vn)zA → (Vn)zA0
and ϕ∗ : (Vn)zA0

→ (Vn)zA .

Lemma 5.4. Fix vA ⊗ vA0 ∈ (Vn)zA ⊗ (Vn)zA0
and an isogeny ϕ : A0 → A. Then

〈vA ⊗ vA0 , cℓ(∆ϕ)〉zA,zA0
= 〈vA, ϕ∗(vA0)〉zA .

Proof. For each z, the pairing 〈, 〉z on (Vn)z is induced by the pairing on Vn and the isomor-
phism (Vn)z ≃ Vn corresponds under the above map to the cup product pairing ∪ on the de
Rham cohomology of Am

z (see [IS03, Remark 5.12]). Let ̺ = (ϕm, idm) : Am
0 → Am × Am

0 .
Then we have ̺(Am

0 ) = Υϕ and ̺∗(1Am
0
) = cℓAm×Am

0
(Υϕ), where 1Am

0
∈ H0

dR(A
m
0 ) is the

identity element. Thus

〈vA ⊗ vA0 , cℓ(∆ϕ)〉zA,zA0
= ηAm×Am

0

(

Θ(vA ⊗ vA0) ∪
(

cℓAm×Am
0
(Υϕ)

))

= ηAm×Am
0

(

Θ(vA ⊗ vA0) ∪ ̺∗(1Am
0
)
)

= ηAm×Am
0

((

p∗A(vA) ∪ p∗A0
(vA0)

)

∪ ̺∗(1Am
0
)
)

.

It turns out that

η(A×A0)m
((

p∗A(vA) ∪ p∗A0
(vA0)

)

∪ ̺∗(1Am
0
)
)

= ηAm
0
(̺∗(p∗A(vA) ∪ p∗A0

(vA0)) ∪ 1Am
0
)

= ηAm
0
(ϕ∗(vA) ∪ vA0)

Therefore

〈vA ⊗ vA0 , cℓ(∆ϕ)〉zA,zA0
= ηAm

0
(ϕ∗(vA) ∪ vA0) = ηAm (vA ∪ ϕ∗(vA0)) .

Now the term on the right of the last displayed equation coincides with 〈vA, ϕ∗(vA0)〉zA , and
the result follows. �

Theorem 5.5. Let ϕ : A0 → A and v ∈ (Vn)zA0
. Then

AJp(∆ϕ)(f ⊗ v) = 〈Fωf
(zA), ϕ∗(v)〉zA .

Proof. Recall that ReszA(χ) = ReszA(α) = cℓ(∆ϕ), where the first equality follows because
ReszA (j∗(β)) = 0. Combining this with (28), Lemma 5.2 and Lemma 5.3 we obtain

AJp(∆ϕ)(f ⊗ v) = 〈Fωf
(zA)⊗ v, cℓ(∆ϕ)〉zA,zA0

.

The result follows then from Lemma 5.4. �
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Corollary 5.6. Let ϕ : A0 → A, ϕ∨ : A → A0 the dual isogeny, and v ∈ (Vn)zA. Denote

deg(ϕ) the degree of ϕ. Then

AJp(∆ϕ)(f ⊗ ϕ∨
∗ (v)) = deg(ϕ) · 〈Fωf

(zA), v〉zA .
Proof. Let deg(ϕ) denote multiplication by deg(ϕ) map on A and A0. The result follows from
Theorem 5.5 observing that deg(ϕ)∗ = (ϕ ◦ ϕ∨)∗ = ϕ∗ ◦ ϕ∨

∗ . �

6. Anticyclotomic p-adic L-functions

This section contains the main result of this paper, in which we connect our generalised
Heegner cycles to certain semidefinite integrals and anticyclotomic p-adic L-functions exten-
sively studied in the literature, especially in [BD96], [BD98], [BD07], [BDIS02], [IS03], [Sev14].
The setting is as before: N = pN+N− is a factorisation of the integer N ≥ 1 into coprime
integers p,N+, N− with p ∤ N+N− a prime number, and N− be a square-free product of an
odd number of factors; K is a quadratic imaginary field such that all primes dividing N+

(respectively, pN−) are split (respectively, inert) in K. We also fix an integer k0 ≥ 4, and a
modular form f of level Γ0(N) and weight k0. We put n0 = k0 − 2 and m0 = n0/2.

6.1. Measure valued modular forms. We begin by recalling some results from [BD07]
and [Sev14], to which the reader is referred to for details. Let D(Z×

p ) the Qp-algebra of locally

analytic distributions on Z×
p . For each Zp-lattice L ⊆ Q2

p, denote L
′ the subset of L consisting

of primitive vectors (if L = Zpv1 ⊕ Zpv2, then L′ consists of those v = av1 + bv2 such that at
least one of a and b is not divisible by p). For each lattice L, denote by D(L′) the Qp-vector
space of locally analytic distributions on L′, i.e. D(L′) = HomQp-cont(A(L′),Qp), where A(L′)

is the Qp-vector space of Qp-valued locally analytic functions on L′. Since L′ is Z×
p -stable,

there is a natural D(Z×
p )-module structure on D(L′), defined by the formula

∫

L′

F (x, y)d(rµ)(x, y) :=

∫

Z×

p

(
∫

L′

F (tx, ty)dµ(x, y)

)

dr(t).

Let A(U) be the Qp-affinoid algebra of an open affinoid disk U ⊂ W, where

W := Homcont(Z
×
p ,Q

×
p ).

We view Z ⊆ W via the map which takes k to the homomorphism x 7→ xk−2. The Qp-affinoid
algebra A(U) has a D(Z×

p )-module structure given by the map D(Z×
p ) → A(U) defined by

r 7→
[

κ 7→
∫

Z×

p
κ(t)dr(t)

]

. Let

D(L′, U) := A(U)⊗̂D(Z×

p )D(L′).

Let B be the definite quaternion algebra over Q with discriminant N−, and let R be a fixed
Eichler Z[1/p]-order of level N+ in B. Fix an Eichler Z-order R of B of level N+ in such a

way that R[1/p] = R, and let OB be a maximal Z-order of B containing R. We will write R̂

for the adelisation R⊗ Ẑ of R. For each prime number ℓ ∤ N− fix a Qℓ-algebra isomorphisms

ιℓ : B ⊗ Qℓ
∼→ M2(Ql) sending OB ⊗ Zℓ isomorphically onto M2(Zℓ). Write Q̂ for the ring of

finite adéles of Q and B̂ for B ⊗ Q̂. Define the level structures Σ = Σ(N+p,N−) =
∏

ℓΣℓ for

Σℓ =

{

(OB ⊗ Zℓ)
× if ℓ ∤ N+p

ι−1
ℓ (Γ0(N

+pZℓ)) if ℓ | N+p

where Γ0(N
+pZℓ) denotes the subgroup of GL2(Zℓ) consisting of matrices which are upper

triangular modulo N+p. Write Σ∞ to denote the open compact subroup obtained from the
group Σ by replacing the local condition at p with the local condition ιp(Σ∞,p) = GL2(Zp).
Let S be any commutative ring, and A be any S-module with an S-linear left action of the
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semigroup M2(Zp) of matrices with entries in Zp and non-zero determinant. We define the
S-module S(Σ, A) as the space of A-valued automorphic forms on B× of level Σ, i.e.

S(Σ, A) = {φ : B̂× → A : φ(gbσ) = ιp(σ
−1
p )φ(b)},

where g ∈ B× (embedded diagonally in B̂×), b ∈ B̂× and σ ∈ Σ. Observe that, by the strong

approximation theorem for B, B̂× = B×B×
p Σ and a modular form φ in S(Σ, A) can be viewed

as a function on R×\B×
p /ι

−1
p (Γ0(pZp)) or, equivalently, as a function on GL2(Qp) satisfying

φ(γbσ) = σ−1φ(b), for all γ ∈ ιp(R
×), b ∈ GL2(Qp) and σ ∈ Γ0(pZp).

For any integer n ≥ 0, we still use the symbol Pn for the Qp-vector space of homogeneous
polynomials in two variables of degree n, and the same for the dual space Vn. If k = n − 2,
the space S(Σ, Vn) is referred to as the space of weight k automorphic forms on B of level Σ,
and it is denoted by Sk(Σ). Fix U ⊆ W a neighborhood of k0. Set L∗ = Z2

p. For every integer
k ≥ 2 in U , there exists a specialization map

ρk : S
(

Σ∞,D(L′
∗, U)

)

−→ Sk(Σ)

defined by

(ρk(Φ)(g))(P ) :=

∫

Z×

p ×pZp

P (x, y)dΦ(g),

for all g ∈ GL2(Qp) and P ∈ Pn, where n = k − 2.
Let ϕf ∈ Sk0(Σ(N

+p,N−)) be the modular form corresponding to f via the Jacquet-
Langlands correspondence, normalised as in [Sev14, §3.2]. By [Sev14, Theorem 3.7] (see also
[LV12]) there exists a connected neighborhood U ⊆ W of k0 and

(32) Φ ∈ S
(

Σ∞,D(L′
∗, U)

)

such that ρk0(Φ) = ϕf .

6.2. Semidefinite integrals and generalised Heegner cycles. Choose the branch of the
p-adic logarithm logf as in [Sev14, §5.2]. Recall the element Φ in (32). Out of Φ, one constructs
as explained in [Sev14, Proposition 3.5], a collection of measure {µL}L with µL ∈ D(L′, U)
indexed by lattices L of Q2

p.
For the next definition of semidefinite integral, which can be found in [Sev14, Section 5.2],

we use the following notation: for any point z ∈ Hp(Qp2) whose reduction to the special fiber
is non-singular, we denote Lz the lattice associated with the reduction of z and |Lz| its p-adic
size; see [Sev14, page 115], to which the reader is referred to for details.

Definition 6.1. The semidefinite integral is the function

(33) (z,Q) 7−→
∫ z

Qωf :=
1

|Lz|m0

d

dk

(

∫

L′
z

Q(x, y)〈x− zy〉k−k0dµLz(x, y)

)

|k=k0

defined for Q ∈ Pn0 and z ∈ Hp(Qp2) whose reduction to the special fiber is non-singular.

We now connect semidefinite integrals and generalised Heegner cycles. For each Q ∈ Pn0 ,
denote Q∨ the element in Vn0 defined by Q∨(P ) = 〈Q,P 〉Pn0

for P ∈ Pn0 . For a fixed

z ∈ Hp(Q
unr
p ) define the following element of Vn0 :

Q 7−→ 〈Fωf
(z), Q∨〉Vn0

where we identify as above (Vn0)z with Vn0 ; recall that Fωf
is the Coleman primitive of ωf .

Lemma 6.2. One has

(1) 〈Fωf
(γ(z)), Q∨〉Vn0

= 〈Fωf
(z), (Q · γ)∨〉Vn0

, for every γ ∈ Γ;

(2) 〈Fωf
(z2), Q

∨〉Vn0
− 〈Fωf

(z1), Q
∨〉Vn0

=
∫ z2
z1

f(z)Q(z)dz.
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Proof. The second statement is a consequence of (11) and the definition of Coleman primitive,
since

d〈Fωf
(z), Q∨〉 = f(z)〈∂0, Q∨〉dz = f(z)Q(z)dz.

We need to prove (1). Since f has level Γ, its Coleman primitive Fωf
is Γ-invariant, i.e.

γFωf
= Fωf

for every γ ∈ Γ, where (γFωf
)(z) := γFωf

(γ−1z) (note that the action on the
right hand side is the one on Vn). This means that Fωf

(γ(z)) = γFωf
(z) for every γ ∈ Γ.

Recall that 〈Av1, v2〉Vn = 〈v1, Āv2〉Vn ; thus, for every γ ∈ Γ we have

〈γFωf
(z), Q∨〉Vn0

= 〈Fωf
(z), γ−1Q∨〉Vn0

= 〈Fωf
(z), (Q · γ)∨〉Vn0

which proves (1). �

Theorem 6.3. Let ϕ : A0 → A be an isogeny and Q∨ = v for some v ∈ (Vn0)zA. Then

deg(ϕ) ·
∫ zA

Qωf = AJp(∆ϕ)(f ⊗ ϕ∨
∗ (v)).

Proof. By [Sev14, Lemma 5.6], there is a unique function (z,Q) 7→ F (z,Q) for z ∈ H(Qp2),
Q ∈ Pn0 satisfying the following properties:

(1) F (γ(z), Q) = F (z,Q · γ),
(2) F (z1, Q)− F (z2, Q) =

∫ z1
z2

f(z)Q(z)dz,

for all z, z1, z2 and all Q. By Lemma 6.2 we have

(34)

∫ zA

Qωf = 〈Fωf
(zA), Q

∨〉Vn0
.

The result follows then from Corollary 5.6. �

6.3. Heegner points, optimal embeddings and false isogenies. A Heegner point (of
conductor 1) on the Shimura curve X = XN+,pN− is a point on X corresponding to an

abelian surface A with quaternionic multiplication and level N+ structure, such that the ring
of endomorphisms of A (over an algebraic closure of Q) which commute with the quaternionic
action and respect the level N+ structure is isomorphic to OK . The theory of complex
multiplication implies that they are all defined over the Hilbert class field H of K. We denote
Heeg(OK) denotes the set of Heegner points of conductor 1 on X.

We now recall Shimura reciprocity law, referring to [HB15, §2.5] for details. Fix an ideal
a ⊆ OK and an Heegner point z. We have then an embedding ιz : K →֒ B, and since
the class number of the indefinite quaternion algebra B is equal to 1, there is α ∈ B such
that ιz(a)Rmax = αRmax. Right multiplication by α gives a false isogeny ϕα : Az → Aα(z),
where for any point x ∈ X we let Ax denote the false elliptic curve corresponding to x. If
(a, N+M) = 1 then this is a false isogeny of degree prime to N+M . Since α(z) only depends
on a and not on the choice of α, we may write α(z) = a ⋆ z, Aa⋆z = Aα(z) and ϕa = ϕα. If
we denote σa the element in Gal(H/K) corresponding to a via the arithmetically normalized
Artin reciprocity map, Shimura reciprocity law shows that σa(z) = a ⋆ z. Moreover, if we
denote W the group of Atkin-Lehner involutions acting on X, the action of W ×Gal(H/K)
on the set Heeg(OK) is simply transitive (see [BD07, §2.3] or [IS03, page 366]). Fixed a
point z0 corresponding to the false elliptic curve A0, the correspondences a 7→ a ⋆ z0 and
a 7→ ϕa : A0 = Az0 → Aa⋆z0 set up a bijection

(35) Heeg(OK)←→ Isog(A0)

where Isog(A0) denotes the set of false isogenies ϕ : A0 → A of degree prime to N+M .
An embedding of Q-algebras Ψ: K → B is called optimal of level N+ if Ψ−1(R) = OK [1/p].

The group Γ acts by conjugation on the set of optimal embeddings. Let Emb(OK) be the set
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of Γ-conjugacy classes of optimal embeddings, which is non-empty under our assumption (see
[BD96, Lemma 2.1]). By [BD98, Theorem 5.3] there exists a bijection

(36) Heeg(OK)←→ Emb(OK).

We briefly describe how this bijection is obtained. Let zA be an Heegner point corresponding
to the abelian surface A. Let End(A) denote the endomorphism rings of A and End(Ā)
the endomorphism rings of the reduction Ā of the abelian varietiy A modulo p. Define
End0(A) = End(A)⊗ZQ and End0(Ā) = End(Ā)⊗ZQ and let End0B(A) and End0B(Ā) denote
the endomorphisms which commute with the action of the quaternion algebra B. We then
have End0B(A) ≃ K and End0B(Ā) ≃ B, and the map Ψ associated with zA as in (36) is the
reduction of endomorphisms:

ΨA : K = End0B(A) −→ End0B(Ā) = B.

On the other hand, let Ψ: K −→ B be an optimal embedding of level N+. It determines a
local embedding Ψ: Kp −→ Bp which we denote in the same way by an abuse of notation.
The local embedding Ψ defines an action of K×

p on Hp(Kp) which has two fixed points, zΨ
and z̄Ψ. The Heegner point associated to Ψ by (36) is the point on X corresponding via
the Cerednik-Drinfeld uniformization to the class modulo Γ of zΨ. Abusing notation, in the
following we will use the symbol zΨ to denote both the fixed point in Hp(Kp) and its class in
Γ\Hp(Kp) = X(Kp).

In light of the previous paragraphs, given ϕ : A0 → A ∈ Isog(A0), we denote zϕ the Heegner
points corresponding to ϕ by (35) and Ψϕ the optimal embedding corresponding to zϕ by (36).
For ϕ the identity map, we denote zϕ by z0 and Ψϕ by Ψ0. Moreover, if we start with an
optimal embedding Ψ, we denote zΨ the Heegner point corresponding to Ψ by (36) and ϕΨ

the false isogeny corresponding to zΨ by (35). Finally, if we start with an Heegner point z,
we denote Ψz the optimal embedding corresponding to z via (36) and ϕz : A0 → Az the false
isogeny corresponding to z via (35). We also introduce a convention for the Galois action: for
any σ = σa ∈ Gal(H/K), we denote zσA = a ⋆ zA, A

σ = Aσ(zA) and Ψσ = ΨzσA
.

Denote z 7→ z̄ the action of the non-trivial automorphism c ∈ Gal(Qp2/Qp) on Hp(Qp2).
For each optimal embedding Ψ, denote

PΨ(x, y) = cx2 + (d− a)xy − by2 = AΨ(x− zΨy)(x− z̄Ψy)

the polynomial associated to Ψ, where ιp(Ψ(
√
D)) =

(

a b
c d

)

and D is the discriminant of K
(cf. as in [BD07, (84)]). Define the the polynomials

Q
(j)
Ψ (x, y) = (x− zΨy)

m0+j(x− z̄Ψy)
m0−j

for any positive integer k and any integer j = −n0/2, . . . , n0/2. Put v
(j)
Ψ = (Q

(j)
Ψ )∨ and define

v(j)ϕ = ϕ∨
∗ (v

(j)
Ψϕ

).

Proposition 6.4. Let ϕ : A0 → A be a false isogeny. Then

deg(ϕ) ·
∫ zϕ

Q
(j)
Ψϕ

ωf = AJp(∆ϕ)
(

f ⊗ v(j)ϕ

)

.

Proof. Since ϕ∗(v
(j)
ϕ ) = deg(ϕ) · v(j)Ψϕ

, the proposition follows from Theorem 6.3. �

Let ϕ : A0 → A be a false isogeny. The abelian variety A is defined over H, and therefore
it is also defined over Qp2 , because p is inert in K and therefore splits completely in H. Let

Ā denote the abelian variety obtained by applying to A the non-trivial automorphism c of
Gal(Qp2/Qp), and still denote c : A → Ā the map induced by c. If ϕ : A0 → A is a false

isogeny, then we denote ϕ̄ = c ◦ ϕ : A0 → Ā the isogeny obtained by composition ϕ with
c : A → Ā. Let Wp : X → X denote the Atkin-Lehner involution at p. If we denote wp any
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element of R× such that the p-adic valuation of its norm is equal to 1, which we fix from now
on, then we have Wp(z) = wp(z). We have (see e.g. [BD98, Theorem 4.7])

(37) zĀ = wp(z̄A).

For the next result, define

v̄(j)ϕ = ϕ̄∨
∗

(

(

Q
(j)
Ψϕ
|wp

)∨
)

.

Proposition 6.5. Let ϕ : A0 → A be an isogeny. Then

deg(ϕ) ·
∫ z̄ϕ

Q
(j)
Ψϕ

ωf = ωp · AJp(∆ϕ̄)(f ⊗ v̄(j)ϕ ),

where ωp ∈ {±1} is the eigenvalue of the Atkin-Lehner involution at p acting on f .

Proof. By (37), and the fact that Wp is an involution, we have
∫ z̄ϕ

Q
(j)
Ψϕ

ωf =

∫ wp(zϕ̄)

Q
(j)
Ψϕ

ωf .

Since Wp acts on Fωf
as multiplication by ωp ∈ {±1}, one easily checks (using the same

calculations as in Lemma 6.2) that
∫ wp(zϕ̄)

Q
(j)
Ψϕ

ωf = ωp ·
∫ zϕ̄ (

Q
(j)
Ψϕ
|wp

)

ωf .

The result follows then from Theorem 6.3. �

6.4. Two variables anticyclotomic p-adic L-functions. For each optimal embedding Ψ,
we consider the lattice LΨ = LzΨ; recall that this lattice is characterised up to homothety
by the condition that LΨ is stable by the action of Ψ(K×

p ), where Kp = K ⊗Q Qp ≃ Qp2

(cf. [BD07, §3.2]). Recall that the function (x, y) 7→ ordp (PΨ(x, y)) is constant on L′
Ψ, and

its constant value is equal to ordp(|LΨ|) (see [BD07, Lemma 3.7]). Therefore, by eventually
translating (Ψ, LΨ) by an appropriate element of R× in such a way that |LΨ| = 1, we have
〈PΨ(x, y)〉 = PΨ(x, y) for all (x, y) ∈ L′

Ψ. Moreover, note that

Q
(j)
Ψ (x, y) =

PΨ(x, y)
m0

Am0
Ψ

(

x− zΨy

x− z̄Ψy

)j

.

If j ≡ 0 (mod p+ 1), then we have
(

x− zΨy

x− z̄Ψy

)j

=

〈

x− zΨy

x− z̄Ψy

〉j

for all (x, y) ∈ L′
Ψ. In fact, the p-adic valuation of x − zΨy and x − z̄Ψy are equal and, if

x− zΨy = ζ〈x− zΨy〉 then x− z̄Ψy = ζ̄〈x− z̄Ψy〉, where ζ is a (p2− 1)-th root of unity. Since
ζ
ζ̄
= ζ

ζp = ζp
2−p, if j ≡ 0 (mod p+ 1) then ζj(p

2−p) = 1.

Definition 6.6. The partial two-variable anticyclotomic p-adic L-function associated to Φ
and [Ψ] ∈ Emb(OK) is the function defined for (k, s) ∈ U × Zp as

Lp(Φ/K,Ψ, k, s) =
A

k−k0
2

Ψ

|LΨ|m0

∫

L′

Ψ

Pm0
Ψ (x, y)〈x − zΨy〉s−k0/2〈x− z̄Ψy〉k−s−k0/2dµLΨ

.

The restriction of Lp(Φ/K,Ψ, k, s) to the line s = k/2 + j, for −n/2 ≤ j ≤ n/2 an integer,
is then the function

L(j)p (Φ/K,Ψ, k) =
A

k−k0
2

Ψ

|LΨ|m0

∫

L′

Ψ

Pm0
Ψ (x, y)

〈

x− zΨy

x− z̄Ψy

〉j

〈x− zΨy〉
k−k0

2 〈x− z̄Ψy〉
k−k0

2 dµLΨ
.
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Proposition 6.7. Let ϕ : A0 → A be a false isogeny. Suppose that j ≡ 0 (mod p+1). Then

we have L(j)p (Φ/K,Ψϕ, k0) = 0 and

d

dk

(

L(j)p (Φ/K,Ψϕ, k)
)

|k=k0

=
Am0

Ψϕ

2 deg(ϕ)

(

AJp(∆ϕ)(f ⊗ v(j)ϕ ) + ωp · AJp(∆ϕ̄)(f ⊗ v̄(j)ϕ )
)

.

Proof. The congruence conditions imposed to j combined with the observations before Defi-
nition 6.6 imply that

L(j)p (Φ/K,Ψϕ, k) =
A

k−k0
2

Ψϕ

|LΨϕ |m0

∫

L′

Ψϕ

Am0
Ψϕ

Q
(j)
Ψϕ

(x, y)〈x− zϕy〉
k−k0

2 〈x− z̄ϕy〉
k−k0

2 dµLΨϕ
.

The value at k0 is then

L(j)p (Φ/K,Ψϕ, k0) =
Am0

Ψϕ

|LΨϕ |m0

∫

L′

Ψϕ

Q
(j)
Ψϕ

(x, y)dµLΨϕ

which is equal to 0 by [Sev14, Propositions 3.8 and 6.2]. By [Sev14, Proposition 3.1], for any
Q ∈ Pn0 , any lattice L and any z1, z2 ∈ Hp(Qp2) we have

d

dk

(
∫

L′

Q(x, y)〈x− z1y〉
k−k0

2 〈x− z2y〉
k−k0

2 dµL

)

|k=k0

is the sum

1

2

d

dk

(
∫

L′

Q(x, y)〈x− z1y〉k−k0dµL

)

|k=k0

+
1

2

d

dk

(
∫

L′

Q(x, y)〈x− z2y〉k−k0dµL

)

|k=k0

.

If we take L = Lzϕ = LΨϕ , z1 = zϕ and z2 = z̄ϕ, the first summand in the above formula is
1
2 |LΨϕ |m0

∫ zϕ Qωf , while the second summand is

1

2

d

dk

(

∫

Lzϕ

Q(x, y)〈x− z̄ϕy〉k−k0dµLzϕ

)

|k=k0

.

We now observe that Lzϕ = Lz̄ϕ and therefore the second summand is 1
2 |LΨϕ |m0

∫ z̄ϕ Qωf :
this is because, as recalled above, lattice LΨ attached to an optimal embedding Ψ : K → B
is characterised up to homothety by the condition that LΨ is stable by the action of Ψ(Qp2).
The result then follows from Proposition 6.4 and Proposition 6.5. �

Let K∞ be the maximal anticyclotomic extension of K which is unramified outside p. Write
G̃ for Gal(K∞/K) and ∆ for Gal(H/K). As recalled above, the group W×∆ acts freely and
transitively on Emb(OK), and, by the Shimura Reciprocity Law, this action corresponds to
the natural action of W ×∆ on the set of Heegner points under the bijection (36). Denote

by Ξ the set of ∆-orbits in Emb(OK) and fix ξ ∈ Ξ. If ∆ = {δ̄1, . . . , δ̄h} then Ψi = Ψ
δ̄−1
i
0

are representatives for the elements of Ξ, for a fixed Ψ0 ∈ Emb(OK). Let χ : G̃ → Q
×
p be

a character factoring through ∆. The optimal embeddings Ψi correspond to Heegner points

zi = z
δ̄−1
i

0 , and these come from isogenies ϕi = ϕ
δ̄−1
i
0 : A0 → Ai = Azi .

Definition 6.8. The two-variable anticyclotomic p-adic L-function associated to Φ and the
character χ is the function defined for (k, s) ∈ U × Zp as

Lp(Φ/K, k, s, χ) =

h
∑

i=1

χ(δi) · Lp(Φ/K,Ψi, k, s),

where δi ∈ G̃ is a lift of δ̄i ∈ ∆.
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The restriction of Lp(Φ/K,Ψ, k, s) to the line s = k/2 + j, for −n/2 ≤ j ≤ n/2 an integer,
is then the function

L(j)p (Φ/K, k, χ) =
h
∑

i=1

χ(δi) · L(j)p (Φ/K,Ψi, k).

Theorem 6.9. Suppose that j ≡ 0 (mod p+ 1). Then we have L(j)p (Φ/K, k, χ) = 0 and

d

dk

(

L(j)p (Φ/K, k, χ)
)

|k=k0
=

h
∑

i=1

Am0
Ψi
· χ(δi)

2 · deg(ϕi)

(

AJp(∆ϕi)(f ⊗ v(j)ϕi
) + ωpAJp(∆ϕ̄i)(f ⊗ v̄(j)ϕi

)
)

.

Proof. The result follows from Proposition 6.7 and the definitions. �

Remark 6.10. The function Lp(Φ/K, k, χ) = L(0)p (Φ/K, k, χ) is a square-root p-adic L-function,
in the sense that the value of

Lp(Φ/K, k, χ) = Lp(Φ/K, k, χ) · Lp(Φ/K, k, χ−1)

at integers k ≥ 2, k ≡ k0 (mod p − 1), k 6= k0, satisfies an interpolation formula of the
following shape:

Lp(Φ/K, k, χ)
·
= Lalg

K (f ♯
k, χ, k/2).

In the formula above we adopt the following notation. First, for each even integer k as above,
let fk be the classical modular form of Γ0(N) and weight k which correspond under the
Jacquet-Langlands correspondence to the specialization ρk(Φ) ∈ Sk(Σ) of Φ in weight k, it
is well defined up to scalars; a version for families of the Jacquet-Langlands correspondence
allows us to see these forms as classical specialisations of a Coleman family f∞ of modular

forms. Denote f ♯
k the newform of level N/p whose p-stabilisation is fk if k 6= k0 or f is

old at p, and f ♯
k0

= f otherwise; Lalg
K (f ♯

k, χ, k/2) denote the algebraic part of the value at

s = k/2 of the complex L-function LK(f ♯
k, χ, s), which is obtained by dividing LK(f ♯

k, χ, k/2)

by a suitable complex period; the symbol
·
= means that the equality is up to explicit algebraic

factors. See [Sev14, Theorem 9.1] for details. It is a very interesting task to investigate similar

interpolation properties of L(j)p (Φ/K, k, χ): the natural question is if L(j)p (Φ/K, k, χ) is related

to Lalg
K (fk, χ, k/2 + j) in a way similar to what happens in the case j = 0.

6.5. One variable anticyclotomic p-adic L-functions. In this section we use the results
collected in the previous sections to give an extension of the results in [Mas12] on the first
derivative of the 1-variable anticyclotomic p-adic L-function.

Denote by Lp(f/K,Ψ, ⋆, s) the partial anticyclotomic p-adic L-function of f andK attached
to the pair (Ψ, ⋆), where Ψ is an optimal embedding as in §6.3 and ⋆ ∈ P1(Qp) a base point
([BDIS02]); this is a function of the p-adic variable s ∈ Zp defined by

Lp(f/K,Ψ, ⋆, s) =

∫

G
〈α〉s−

k0
2 dµf,Ψ,⋆(α),

where 〈α〉t = exp(t logf (〈α〉)) for all t ∈ Zp and µf,Ψ,⋆ is the local analytic distribution on

G = K×
p,1, the compact subgroup of K×

p of elements of norm 1, defined in [BDIS02, Section

2.4].

Proposition 6.11. Let ϕ : A0 → A be a false isogeny. For integer −n0/2 ≤ j ≤ n0/2 with

j ≡ 0 (mod p+ 1) we have Lp(f/K,Ψϕ,∞, k0/2 + j) = 0 and

L′
p(f/K,Ψϕ,∞, s)

|s=
k0
2
+j

=
Am0

Ψϕ

deg(ϕ)

(

AJp(∆ϕ)(f ⊗ v(j)ϕ )− ωp · AJp(∆ϕ̄)(f ⊗ v̄(j)ϕ )
)

.
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Proof. We sketch the proof, following closely [Mas12, Theorem 5.3] (but see Remark 6.12).
Thanks to the congruence conditions imposed to j, have

Lp(f/K,Ψϕ,∞, k0/2 + j) =

∫

G
αjdµf,Ψϕ,∞(α),

where now αj is the usual j-fold product of α by itself, and therefore the above integral vanishes
thanks to [Mas12, Lemma 5.1]. For the value of the derivative, we begin by observing that,
thanks to the congruence conditions imposed to j, we have 〈α〉j = αj , and therefore

L′
p(f/K,Ψϕ,∞, s)

|s=
k0
2
+j

=

∫

G
logf (〈α〉)〈α〉jdµf,Ψϕ,∞(α).

Let now µf the measure on P1(Qp) attached to f in [Tei90, Proposition 9] using the harmonic
cocycle attached to f . Then we have

∫

G
logf (〈α〉)〈α〉jdµf,Ψϕ,∞(α) =

∫

P1(Qp)
logf

(

x− zϕ
x− z̄ϕ

)

·
(

x− zϕ
x− z̄ϕ

)j

Pm0
Ψϕ

(x)dµf (x)

=

∫

P1(Qp)

(

∫ zϕ

z̄ϕ

dz

z − x

)

·
(

x− zϕ
x− z̄ϕ

)j

Pm0
Ψϕ

(x)dµf (x)

=

∫ zϕ

z̄ϕ

(

∫

P1(Qp)

1

z − x
·
(

x− zϕ
x− z̄ϕ

)j

Pm0
Ψϕ

(x)dµf (x)

)

dz

=

∫ zϕ

z̄ϕ

(

∫

P1(Qp)

dµf (x)

z − x

)

·
(

z − zϕ
z − z̄ϕ

)j

Pm0
Ψϕ

(z)dz

=

∫ zϕ

z̄ϕ

f(z)

(

z − zϕ
z − z̄ϕ

)j

Pm0
Ψϕ

(z)dz

where the first equality follows from the definition of the p-adic L-function in [BDIS02, §2.4],
the second equality follows from the definition of Coleman integral, the third follows from the
fact that we can reverse the order of integration by applying the reasoning in the proof of
Theorem 4 of [Tei90], the fourth from the fact that

∫

P1(Qp)

1

z − x
·
(

x− zΨ
x− z̄Ψ

)j

Pm0
Ψ (x)dµf (x) =

∫

P1(Qp)

1

z − x
·
(

z − zΨ
z − z̄Ψ

)j

Pm0
Ψ (z)dµf (x),

since the two functions inside the integral differ by a polynomial of degree at most n0 in x,
and the last equality follows from Teitelbaum’s p-adic Poisson inversion formula (we refer to
the proof of [Mas12, Theorem 5.3] and [BDIS02, Theorem 3.5] for details). Combining the
above equations we find:

L′
p(f/K,Ψϕ,∞, s)

|s=
k0
2
+j

=

∫ zϕ

z̄ϕ

f(z)

(

z − zϕ
z − z̄ϕ

)j

Pm0
Ψϕ

(z)dz

= Am0
Ψϕ

∫ zϕ

z̄ϕ

f(z)(z − zϕ)
m0+j(z − z̄ϕ)

m0−jdz

= Am0
Ψϕ

∫ zϕ

z̄ϕ

f(z)Q
(j)
Ψϕ

dz

= Am0
Ψϕ

(
∫ zϕ

Q
(j)
Ψϕ

ωf −
∫ z̄ϕ

Q
(j)
Ψϕ

ωf

)

.

The result follows then from Propositions 6.4 and Proposition 6.5. �
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Remark 6.12. It seem to the authors that [Mas12, Theorem 5.3] only works under the con-
gruence condition, j ≡ 0 (mod p+ 1). In the general case we have the equality

Lp(f/K,Ψϕ,∞, k0/2 + j) =

∫

G
〈α〉jdµf,Ψϕ,∞(α),

where now the function α 7→ 〈α〉j is locally analytic, and is a polynomial only under the
congruence conditions on j considered above. Therefore, if j does not satisfy the congruence
conditions j ≡ 0 (mod p+1) then one can not directly apply [Mas12, Lemma 5.1] to conclude
that the value of the p-adic L-function at k0/2 + j vanishes.

Recall that we denoted by K∞ the maximal anticyclotomic extension of K which is unram-
ified outside p, by G̃ the Galois group Gal(K∞/K) and by ∆ the Galois group Gal(H/K).
Class field theory implies that the group G can be identified with Gal(K∞/H). Let Emb0(OK)
be the set of Γ-conjugacy classes of pairs (Ψ, ⋆) where Ψ is an optimal embedding and
⋆ ∈ P1(Qp) a base point. The action of W × ∆ on Emb(OK) lifts to a simply transitive

action of W × G̃ on Emb0(OK) such that G acts trivially on Emb(OK). Using this action

the distribution µf,Ψ,⋆ on G can be canonically extended to a distribution on G̃ denoted
µf,K,ξ where ξ = (Ψ, ⋆) ∈ Emb0(OK) (see [BDIS02, Section 2.5]). This distribution depends

on the choice of (Ψ, ⋆) only up to translation by an element of G̃, and up to multiplication
by −ωp = ±1, the negative of the sign of the Atkin-Lehner involution Wp acting on f (see
[BDIS02, Lemma 2.15]).

Let {δ1, . . . , δh} be a set of representatives of the elements of ∆ in G̃, and write

(Ψi, ⋆i) := δi(Ψ, ⋆).

Let χ : G̃ → Q
×
p be a continuous character of finite order. We can define the anti-cyclotomic

p-adic L-function attached to f and K twisted by χ as

Lp(f/K, ξ, χ, s) =

∫

G̃
χ(α)〈α〉s−

k0
2 dµf,K,ξ(α).

If χ factors through ∆, Lp(f/K, ξ, χ, s) can be written as a twisted sum of partial L-functions

Lp(f/K, ξ, χ, s) =
h
∑

i=1

χ(δi)Lp(f/K,Ψi, ⋆i, s).

Since W × G̃ acts simply transitively on Emb0(OK), for every pair (Ψi, ⋆i) in the previous

sum, there exists a unique αi ∈ W×G ⊆ W× G̃ such that (Ψi, ⋆i) = αi(Ψi,∞). If we assume

that αi ∈ G = K×
p,1, then we have Lp(f/K,Ψi, ⋆i, s) = (αi)

s−
k0
2 Lp(f/K,Ψi,∞, s). We can

always do this since the Ψi’s are in the same W-orbit and, for w ∈ W

Lp(f/K,wξ, χ, s) = ±Lp(f/K, ξ, χ, s).

Thus, up to sign, we can express the first derivative of the anticyclotomic p-adic L-function
as an explicit combination of values of the Abel-Jacobi images of the cycles ∆ϕi . Here ϕi

denotes the isogeny A0 → AΨi associated to Ψi.

Theorem 6.13. Let χ : G̃→ Q̄×
p be a character factoring through ∆. Then for every integer

j such that −n0/2 ≤ j ≤ n0/2 and j ≡ 0 (mod p+ 1), we have

L′

p (f/K, ξ, χ, k0/2 + j) =
h
∑

i=1

χ(δi)α
j
i

Am0

Ψϕi

deg(ϕi)

(

AJp(∆ϕi)(f ⊗ v(j)ϕi
)− ωp ·AJp(∆ϕ̄i)(f ⊗ v̄(j)ϕi

)
)

.

Proof. This follows directly from the definitions and Proposition 6.11. �
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Remark 6.14. The interpolation properties satisfied by the p-adic L-function Lp(f/K, ξ, χ, s)
and the value of the complex L-function LK(f, χ, s) at the central critical point s = k0/2 are
well-known and carefully discussed in [BDIS02], to which the reader is referred to for details.
In particular, in our setting both the p-adic L-function and the complex L-function vanish
at s = k0/2. It is an interesting task to investigate similar interpolation properties satisfied
by the p-adic L-function Lp(f/K, ξ, χ, s) and the complex L-function LK(fk, χ, s) at integers
s = k0/2 + j with n0/2 ≤ j ≤ n0/2.
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