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Abstract
The cognitive-linguistic theory of conceptual blending was introduced by Fauconnier and
Turner in the late 90s to provide a descriptive model and foundational approach for the
(almost uniquely) human ability to invent new concepts. Whilst blending is often described
as ‘fluid’ and ‘effortless’ when ascribed to humans, it becomes a highly complex, multi-
paradigm problem in Artificial Intelligence. This paper aims at presenting a coherent
computational narrative, focusing on how one may derive a formal reconstruction of concep-
tual blending from a deconstruction of the human ability of concept invention into some of
its core components. It thus focuses on presenting the key facets that a computational frame-
work for concept invention should possess. A central theme in our narrative is the notion
of refinement, understood as ways of specialising or generalising concepts, an idea that can
be seen as providing conceptual uniformity to a number of theoretical constructs as well as
implementation efforts underlying computational versions of conceptual blending. Partic-
ular elements underlying our reconstruction effort include ontologies and ontology-based
reasoning, image schema theory, spatio-temporal reasoning, abstract specification, social
choice theory, and axiom pinpointing. We overview and analyse adopted solutions and then
focus on open perspectives that address two core problems in computational approaches to
conceptual blending: searching for the shared semantic structure between concepts—the so-
called generic space in conceptual blending—and concept evaluation, i.e., to determine the
value of newly found blends.
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1 Introduction

How do you take a piece of raw fish, spaghetti, and some herbs, and turn it into a dish? How
should you fill that empty canvas with colour? What makes a piano an instrument to play
music on, and not a tool for cooking? What makes a question a part of a scientific inquiry?
These, and many similar questions, have to do with the imaginative mind of humans, their
ability to invent new concepts, and more broadly, the human potential for creativity.

Computational creativity is a multidisciplinary endeavour. Although the field started as
part of research in Artificial Intelligence, it more recently also strongly overlaps and inter-
acts with topics in cognitive linguistics and psychology, philosophy and the arts. Colton and
Wiggins [16] give the following definition of the field: “The philosophy, science and engi-
neering of computational systems which, by taking on particular responsibilities, exhibit
behaviours that unbiased observers would deem to be creative.” In practice, the goal of com-
putational creativity is to model, simulate or replicate creativity using a computer, in order
to achieve one of several ends: either to construct a program or computer capable of human-
level creativity, or to better understand human creativity and to formulate an algorithmic
perspective on creative behaviour in humans, or to design programs that can enhance human
creativity without necessarily being creative themselves. As a field, computational creativ-
ity concerns itself with theoretical and practical issues in the study of creativity. Theoretical
work on the nature and proper definition of creativity is performed in parallel with practi-
cal work on the implementation of systems that exhibit creativity, with one strand of work
informing the other.

Computational creativity as an academic field in its own right has enjoyed growing pop-
ularity over the last decade since the First Joint Workshop on Computational Creativity in
2004.1 Scientifically, papers reporting on work in computational creativity are by now part
of the standard repertoire of major AI conferences and journals. With respect to the achieved
results, much work was dedicated to the development of artificial systems that are capable
of creating artistic artefacts in different domains: music, poetry, and paintings. These sys-
tems are the result of combining different AI techniques, both symbolic (e.g., automated
theorem proving, ontologies), sub-symbolic (e.g., machine learning and deep learning), or
in-between (e.g., case-based reasoning). Still, on the more cognitive system and problem-
solving oriented side, progress has been slower and many questions concerning the cognitive
nature and computational modelling of creativity, for instance in concept invention, idea
generation, or inventive problem-solving, remain unanswered.

In the light of these recent achievements, in this paper, we study in what ways ontologies,
and standard and non-standard reasoning tasks, support the realisation of a concept inven-
tion framework in a precise, formal and machine-computable way. In particular, we present

1The International Conference on Computational Creativity (ICCC) is now organised yearly, several
FP7 FET-Open research projects were explicitly dedicated to questions in computational creativity (e.g.,
COINVENT [85], see also https://www.coinvent.uni-osnabrueck.de/en/home.html, dedicated to the topic of
concept invention) and scientific symposia on creativity science were organised (e.g., the Symposium on
Creativity Science at the ZiF Centre for Interdisciplinary Research, see https://www.uni-bielefeld.de/(en)/
ZIf/AG/2016/09-19-Kuehnberger.html). Also, the FP7 3-year coordination action “Promoting the Scientific
Exploration of Computational Creativity (PROSECCO)” was actively promoting computational creativity to
the general public since 2013.

https://www.coinvent.uni-osnabrueck.de/en/home.html
https://www.uni-bielefeld.de/(en)/ZIf/AG/2016/09-19-Kuehnberger.html
https://www.uni-bielefeld.de/(en)/ZIf/AG/2016/09-19-Kuehnberger.html
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adopted solutions and open perspectives that address two open problems in computational
approaches to conceptual blending: searching for the shared semantic structure between
concepts—the so-called generic space in conceptual blending— and concept evaluation,
namely how new blends can be evaluated.

An important approach contributing to an understanding of concept invention is the the-
ory of conceptual blending, introduced by Fauconnier and Turner [27] which developed
further the idea of bisociation introduced by the psychologist Koestler [52]. According to
Fauconnier and Turner [27], conceptual blending is a cognitive process that serves a variety
of cognitive purposes, including creativity. In this way of thinking, human creativity can be
modelled as a blending process that takes different mental spaces as input and blends them
into a new mental space called a blend. This is a form of combinational creativity, one of
the three forms of creativity identified by Boden [13] (the other two being ‘explanatory’
and ‘transformational’). A blend is constructed by taking the existing commonalities among
the input mental spaces into account—known as the generic space—and by projecting the
structure of the input spaces in a selective way (see Fig. 1). In general, the outcome can have
an emergent structure arising from a non-trivial combination of the projected parts. Differ-
ent projections lead to a large number of different blends and optimality principles are used
to steer possible combinations that generate the blends. Conceptual blending has been suc-
cessfully applied for describing existing blends of ideas and concepts in a varied number
of fields, such as interface design, narrative style, poetry generation, mathematics, visual
patterns, music theory, etc. [15, 27, 73, 77, 94, 95].

To illustrate the main idea behind conceptual blending, let us consider the following
scenario:

Maria is a chef in an Italian restaurant. One day her boss tells her that she needs to
innovate the menu with something more exotic. She decides to invent a new cuisine
style by blending the Italian and Peruvian cuisines. To this end, she explores the
combinations of seafood-spaghetti with ceviche. After many attempts, she comes
up with blended meals such as spaghetti-with-ceviche, ceviche-with-spaghetti, but
also sweet potatoes with spicy seafood.2

The above scenario illustrates that, typically, the blended space inherits some features
from either space and combines them to something novel. The blending of the input spaces
involves a generic space, which contains the shared semantic structure between both input
spaces. In the case of seafood spaghetti and ceviche, for instance, their generic space could
be a meal containing seafood. The structure in the generic space is preserved in the blended
space and specifics from the input spaces are projected into the blend in a meaningful way.
This is not trivial because the naive combination of input spaces can lead to inconsistencies
(and, more generally, to nonsense). For example, in the above blends, the seafood cannot
be raw and cooked at the same time. Hence, before combining the input spaces into the
spaghetti-with-ceviche concept, a generalisation is necessary, for instance, by generalising
the seafood assignment of cooked seafood in the seafood-spaghetti concept.

Blending as a holistic human ability is effortless. We are able to create new blends
spontaneously and have no difficulty to understand new conceptual blends when we
encounter them. In contrast, the transposition of this cognitive theory into an automated
system provides significant challenges and it requires a modular computation of different

2Ceviche is a dish made from fresh raw fish cured in lime juice with chili peppers and accompanied usually
by sweet potatoes. The spaghetti-ceviche blend can be spaghetti with fresh raw fish, while the ceviche-with-
spaghetti blend can be ceviche accompanied by spaghetti instead of sweet potatoes.
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Fig. 1 The blending process as described by Fauconnier and Turner [26]

concept-invention tasks. These include the representation of the input spaces, the identifi-
cation of a relevant generic space, the computation of the blend, and the evaluation of the
usefulness of the blend. In the following, we will refer to these techniques as computational
techniques for concept invention, and to any executable orchestration of them as a concept
invention workflow. This paper focuses on the concept of refinement as a key approach to
designing one complete workflow for conceptual blending. Here, refinements come in the
form of syntactic operators that can both specialise and generalise the formal description of
a concept, and they play a central role in almost all parts of the blending workflow.

The paper is structured as follows: Section 2 discusses in detail the computational
approaches to blending followed in this paper, namely (i) Goguen’s abstract model for
blending, (ii) its computational interpretation in a workflow, (iii) the Amalgam-based inter-
pretation of the Goguen model, and finally (iv) a summary of a number of techniques
needed to make such a workflow work. Next, in Section 3, we first (v) briefly intro-
duce the Description Logics EL++ and ALC, followed by (vi) a detailed introduction and
study of refinement operators (generalisation/specialisation) for these logics. Section 4 then
addresses the crucial problem of finding the generic space for two different input concepts
from two different perspectives, first by (vii) using the primarily syntactic generalisation
operation within the amalgam-based workflow, and then (viii) refining the approach to work
in orchestration with the cognitive theory of image schemas. Finally, Section 5 discusses
the evaluation problem for blending from the specific point of view to employ axiom weak-
ening for the purpose of ‘repairing’ a concept. This is studied (ix) in isolation as well as
(x) in a variant build on social choice theory. The paper closes with a discussion and future
perspectives.

2 Computational framework for concept invention

For Fauconnier and Turner, conceptual blending is a cognitive ability, and not a symbolic
process. Nevertheless, it inspired researchers to search for computational representations of
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conceptual blending. For a detailed overview of these frameworks we refer to [14, 21, 24].
In this paper, we focus on a blending framework built around knowledge representation
techniques and corresponding enabling techniques.

2.1 Goguen’s abstract model for conceptual blending

Goguen defines the approach of algebraic semiotics in which certain structural aspects of
semiotic systems are logically formalised in terms of algebraic theories, sign systems, and
their mappings [33]. Its main insight was that semiotic systems and conceptual spaces may
be represented as logical theories, consisting of constants, relations, sorts, and axioms. If
two such theories are related via morphisms to a third space (the generic space), then the
blending of the input spaces is comparable to a colimit computation. This construction is
comparable to a disjoint union modulo the identification of certain parts. In particular, the
blending of two concepts is often a pushout [33].

In [35], algebraic semiotics has been applied to user interface design and conceptual
blending. The approach of algebraic semiotics does not claim to provide a comprehensive
formal theory of blending. Indeed, Goguen and Harrell admit that many aspects of blending
cannot be captured formally. However, the structural aspects can be formalised and provide
insights into the space of possible blends. The formalisation of these blends has been formu-
lated using the algebraic specification language OBJ3 [37]. Since OBJ3 has been invented
as a language for algebraic specification and programming, it is not best-suited for knowl-
edge representation due to the lack of predicates, full Boolean connectives and existential
quantifiers. Furthermore, conceptual blending is a process that is applicable to a wide range
of domains and even across domains. However, the languages that are used to represent
knowledge vary often significantly across domains; e.g., mathematical knowledge is usually
represented using first- or higher-order formulas, abstract or taxonomic bio-medical knowl-
edge is often represented in the Web Ontology Language (OWL) or in OBO [66], and music
is often represented as notes on staves. Hence, one challenge is to develop a knowledge
representation framework that enables the representation of the blending processes and that
supports knowledge sources that are provided in a diverse set of knowledge representation
languages.

2.2 Towards a computational framework for concept invention

Techniques for concept invention build on (and further develop) ontologies, used as a central
tool in formalising a computational framework for conceptual blending [56–58]. Ontologies
provide a shared and common understanding of a domain, and thus facilitate knowledge
sharing and reuse. By making the conceptualisation of a domain explicit, ontologies allow
one to overcome the problem of implicit and hidden knowledge. More recently, ontologies
have also figured prominently in AI systems for computational creativity, in particular for
implementations of conceptual blending [20, 57].

An ontological blending model, which follows the research direction of algebraic
semiotics established by Goguen [33], has been proposed in [56–58]. In this model,
Goguen’s semiotic systems are replaced with modern ontology languages such as OWL
(the Web Ontology Language) and Common Logic. In particular, conceptual spaces
are represented as OWL ontologies, interlinked by the Distributed Ontology Language
(DOL) [68]. Conceptual blends are modeled as blending diagrams that record the rela-
tionships between the generic space, the input conceptual spaces, and the blend. An
extension of this ontological blending model, which also extends Goguen and Harrell [35]’s
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Fig. 2 The core model of computational conceptual blending

model, has been proposed in [85] as a core model of computational conceptual blending
(see Fig. 2).3

To remove any doubt about our terminology, let us briefly discuss the way we, through-
out this paper, use the terminology of ‘theory’, ‘concept’, and ‘ontology’: the formal objects
that we associate with input (conceptual) spaces, base ontologies (generic spaces), and
blends (or blended concepts, or blended theories, or sometimes ‘blendoid’ in the Goguen
tradition), are logical theories specified according to some particular logical language L.
In the literature, ontologies are typically described as documents or artefacts that are logi-
cal theories together with some additional annotations, most notably specific vocabularies
and ontological commitments [32, 41, 69]. Since we here focus on the elements needed for
a computational workflow for blending, these additional aspects will be, for now, of little
significance (they do, or course, play a greater role in the evaluation problem for blends).4

Moreover, when we say that we ‘blend a concept’, say the concept of house, what this
means is that we operate with some ontology Ohouse in which the concept name house has
been axiomatically defined, using a variety of other non-logical terms and the logical means
available in L.

The core model differs from the ontological and Goguen and Harrell [35]’s models by
introducing an extra step: the input ontologies I1 and I2 can also be generalised to two

3Notice that the blending diagram in Fig. 2 is an upside-down version of conceptual blending as visualised
in Fig. 1, where the generic space is placed at the top identifying commonalities. The upside-down version
follows Goguen and Harrell [35] with the generic space, or base ontology, at the bottom. This kind of diagram
is, on the one hand, an upside-down version of the first illustration, following a tradition in mathematical
diagrams where simpler concepts are often placed at the bottom. On the other hand, the term generic space
is replaced with base ontology.
4A discussion of the impact of this distinction between theory and ontology on the practice of ontology
engineering can be found in [69]. Note that, even in an expressive language L and given a rich axiomatisation
O of a concept C, ontology O is thought to only approximately describe the intended models of C [41].
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ontologies I ∗
1 and I ∗

2 (see Fig. 2).5 There are several reasons why such a step might be nec-
essary. First, when blending a concept from a given ontology, typically large parts of the
ontology are in fact off-topic. Logically speaking, when extracting a module for the con-
cept in question, large parts of the ontology turn out to be logically irrelevant. Second, when
running the blend it may become obvious that the blend theory preserved too many proper-
ties from the input spaces — it may even become inconsistent. In this case, generalising the
input spaces will lead to a better result.

The base ontology identifies some structure that is shared across I1 and I2, or, to put it
differently, the generic space contains some theory, which can be found in both input spaces,
but which abstracts from the peculiarities of the input spaces and generalises the theory in
some domain-independent way.

The base ontology is a more general theory generated from the input ontologies, further
restricted by the ways in which the input ontologies can be generalised into I ∗

1 and I ∗
2 . From

a logical point of view, there exist two theory morphisms (interpretations of theories) which
embed the base ontology into I ∗

1 and I ∗
2 . These interpretations are a key element to make

the automatic blending process work.
The ontologies I ∗

1 and I ∗
2 , together with the base ontology and the two theory morphisms

(interpretations) that connect the generic space to I ∗
1 and I ∗

2 , determine the blend. Infor-
mally, what happens is that the blend is a disjoint union of I ∗

1 and I ∗
2 , where the shared

structure from the base is identified. Technically, this is a colimit computation, a construc-
tion that abstracts the operation of disjoint unions modulo the identification of certain parts
specified by the base and the theory morphisms, as discussed in detail in [34, 55, 56]. There-
fore, while the visualisation of the core model for blending as shown in Fig. 2 does not show
any arrows pointing from the Base Ontology to the blend, the impact of the Base Ontol-
ogy on possible blends is realised by the respective mappings from the base to the inputs,
together with the semantics of the colimit operation, along the composition of the arrows.
For a formal definition, see [14, 55].

The model provides a formal setting according to which blends are characterised, and
it guarantees that for any input ontologies I1 and I2, there are many blends. In general
there exists a plethora of options for generalising the input ontologies, for possible base
ontologies and for the morphisms between the generic space ontology and the gener-
alised input ontologies. However, most of these combinations lead to undesirable blends.
The blend may be inconsistent, because it includes conflicting information from the input
ontologies. Alternatively, the blend may contain too little information to be considered
a coherent concept or just combine the wrong ideas to be of any use in a particular
context.

Therefore, the major challenges for the implementation of a framework for conceptual
blending are:

– Generic space: one of the key problems in conceptual blending is how to find the
generic space between several input spaces. Usually, the generic space needed for the
blend creation is provided manually. This relates to the problem of finding general-
isations of the input spaces. Note that, following the cognitive theory of conceptual
blending, the generic space comprises a common abstraction of the input concepts guid-
ing the specifics of the blending. This abstraction need not be ‘maximal’ and there is

5Note that Goguen and Harrell achieved a similar effect by considering morphisms that do not preserve all
axioms.
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typically not a unique choice.6 Studying the formal settings and enabling computational
approaches to find generic spaces in an automatic or semi-automatic way is required in
order to implement conceptual blending in a computational system exhibiting creativity.

– Blend evaluation: having established a generic space, and a set of generalisations, there
typically remains a considerable number of combinations for the blend creation, and
techniques for evaluating blended concepts need to be explored. Moreover, in the case
of modeling blends as a logical theory, the blends generated can be logically inconsis-
tent, but can still be interesting from a creative point of view. A mechanism to ‘repair’
them is needed.

At this point it should be clear that transposing conceptual blending into a computational
setting for implementing a creative system is a complex task. One needs to try different
combinations of generalised input theories, evaluation functions and criteria. Orchestrating
all this requires a sophisticated concept invention workflow.

2.3 Concept invention workflow and techniques

A number of proposals for an implementation of concept invention workflows can already
be found in the literature on (computational) conceptual blending [20, 24, 70, 79, 96, 97,
100]. Here, we describe the amalgam-based workflow implemented in [20, 22–24], which is
a possible instantiation of the core model of conceptual blending presented in the previous
section.

Figure 3 represents a dynamic view of how two input spaces are blended, in particular it
shows how blend creation is an iterative process of blend generation and blend evaluation.

6This is why the generic space does not need to be a least general generalisation, as we shall see later in
Section 3.2.
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Blends are generated as amalgams [75], a notion developed in case-based reasoning as
an approach to create a solution to a new case by combining multiple solutions of previous
cases. According to this approach, input spaces are generalised until a generic space is
found, and pairs of generalised versions of the input spaces are ‘combined’ to create blends.

Different strategies can be used to generate the generalised versions of the input spaces,
namely, approaches based on anti-unification of theories such HDTP [89], refinement
operators [20], or more cognitive-oriented approaches such as image schemas. Refine-
ment operators allow one for the creation of weaker versions of certain concepts and/or
axioms [20]. Image schemas, on the other hand, are representations of cognitive patterns
that people learn in early childhood to structure their interpretations of perceptions, and
which proved to be an important element in theories of embodied cognition and related
computational approaches [46, 47].

The blend creation is achieved, as described in the previous sections, as a combination
of a generalisation of the input spaces, and a projection of some of their specifics into a
blended space. The way in which this combination is computed depends on the setting. In
the case when formalising those elements in DOL, this is supported by means of the HETS
tool [67].

Once a blend has been generated it needs to be evaluated. Blend evaluation is an impor-
tant part of the blending itself, since not all the blends can be ‘good’ blends. What ‘good’
meas can depend on different aspects, being these cognitive optimality principles for blend
creation or logically properties that a blend needs to satisfy when transposing conceptual
blending in a (onto)logical setting.

To this end, it is assumed the existence of a rich background that contains background
knowledge over the blending domain (or cross-domain), over which desirable properties,
constraints and consequence requirements can be formulated. Constraints and consequence
requirements are logical meta-statements that are supposed to be satisfied by the blended
concepts. The former are statements that restrict the possible blends by requiring e.g., cer-
tain propositions not to hold, whilst the latter are statements that require the blend to entail
certain properties (a detailed discussion can be found in [70]).7

A blend can be evaluated against logical consistency considering background knowl-
edge. If the consistency check fails, the blend is repaired by analysing its internal structure
and by looking for those axioms that are involved in the creation of the inconsistency.
One or more axioms can be removed or, as we shall see, can be replaced by logically
weaker versions, with the goal of preventing the inconsistency [93]. If the consistency test is
successful, then it is evaluated whether the invented concept meets the consequence require-
ments for the blending process. Other options to evaluate blends are based on computational
argumentation and conceptual coherence [17, 18, 86].

As it can be appreciated in Fig. 3, different seed techniques and computational frame-
works can be adopted to implement the concept invention workflow.

– The Distributed Ontology, Modeling and Specification Language: The processes
in Fig. 3 involve operations on documents that contain logical theories. This raises the
question about the appropriate representation of these operations, and their semantics.
To this end, the Distributed Ontology, Modeling and Specification Language (DOL)
can be employed. DOL is an international ontology interoperability standard [74] that
provides a unified metalanguage for handling heterogeneous knowledge [68]. It allows

7Such evaluation techniques for concepts are closely related to the technique of competency questions
popular in ontology engineering [40, 83].
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for a flexible modelling approach employing an open-ended number of formal logics.
In particular, DOL provides constructs for (1) ‘as-is’ use of Ontologies, Models and
Specifications (OMS) formulated in a specific ontology, modelling or specification lan-
guage, (2) OMS formalised in heterogeneous logics, (3) modular OMS, (4) mappings
between OMS, and (5) networks of OMS, including networks that specify blending
diagrams. The DOL specification has been adopted as an international ontology inter-
operability standard. Among the languages supported by DOL are the Web Ontology
Language OWL and the CASL logic [4], an extension of classical first-order logic.

– Refinement Operators: Refinement operators comprise a technique used to refine
concepts and axioms into more general or more specific descriptions. Introduced in the
Inductive Logic Programming literature to learn concepts from examples [61], refine-
ment operators have been adapted in concept invention as a mechanism to compute
blends as amalgams [20], refine image schemas [47], and implement ontology repair
based on axiom weakening [81, 93].

– Image schemas: Image schemas are identified as fundamental pattern of cognition,
that are perceived, conceptualised and manipulated spatially and temporally [65]. The
main idea is that after an image schema has been formed, it can be generalised and
the structure can be transferred through analogical reasoning to other domains with
similar characteristics [65]. The relation of image schemas and conceptual blending—
and, particularly, their role in computational concept invention—have been explored
in [45, 47]. In this setting, image schemas are conceived as a set of theories ordered
by logical entailment that can be used to guide the search for a generic space and as
heuristics for the creation of new concepts.

– Heuristic-Driven Theory Projection: The Heuristic-Driven Theory Projection
(HDTP) approach [89] comprises a reasoner that provides an implementation of ana-
logical reasoning, strongly influenced by the earlier Structure Mapping Theory of
Gentner [31]. According to this theory, analogical reasoning is characterised as the
search for structural commonalities between a source and a target conceptualisation.
These commonalities are associated with (mapped to) each other. HDTP is based on
a restricted form of higher-order anti-unification and is able to compute the structural
commonalities between two input domains represented in a variant of first-order logic.

– HEterogeneous Tool Set: The HEterogeneous Tool Set (HETS) system [67] is a
parsing, static analysis and proof management tool incorporating various provers and
different specification languages, thus providing a tool for heterogeneous specifications.
It supports the colimit computation of CASL and OWL theories (the blend) and can check
logical consistency using theorem provers such as Eprover [88] and Darwin [11].

– Axiom weakening: Axiom weakening is a novel technique for ontology repair accord-
ing to which axioms that participate in causing an inconsistency are rewritten to a
logically weaker version, instead of being removed [93]. The advantage is that whilst
the technique can resolve inconsistencies, at the same time as much of the original
knowledge resp. information content as possible is preserved.

– Arguments, values and audiences: Blend evaluation can be modeled using the notion
of value-based argumentation framework [12]. Values represent qualities or proper-
ties that a blend should possess (e.g. following aesthetical considerations) and, given a
blend, arguments promoting or demoting these values can be automatically generated
and evaluated [18]. E.g., in the case of blending musical theories, values can be related
to the tone and rhythm. Then, based on correspondingly generated arguments, decision
making criteria can be specified to decide which blends to accept or to reject.
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– Conceptual coherence: Blend evaluation can also be formulated as the problem of
how newly invented concepts cohere w.r.t. the input spaces, generic space, and the rich
background. The computational framework adopted here is the coherence theory by
Thagard [92], in particular his notion of conceptual coherence. The basic intuition is
that a blend is accepted or rejected depending on how much it contributes to maximising
the constraints imposed by situational context and other relevant pieces of information
modeled as axioms in an ontology [86].

Against the above mentioned background, it is clear that understanding, formalis-
ing, and implementing conceptual blending in computational creative systems is a major
and challenging task. Different tools and frameworks are needed to realise the concept
invention-related tasks in a computational way.

In the following, we will focus on two specific aspects of computational concept inven-
tion, namely, the search for a generic space, and the blend evaluation. We will do this from
the perspective of refinement operators, and how these can be employed to define blends
as amalgams, generalise input concepts and image schemas, and repair inconsistent blends.
Without loss of generality, we frame these problems—and present their solutions—in the
context of the description logics EL++ and ALC, blending concepts specified in these
logical formalisms.

3 The role of refinement operators in concept invention

3.1 Ontologies and the description logicsALC and EL++

From a formal point of view, an ontology is a set of formulas in an appropriate logical
language with the purpose of describing a particular domain of interest, as previously dis-
cussed in Section 2.2. The precise logic used is in fact not crucial for our approach as most
techniques presented here apply to a variety of logics; however, for the sake of clarity we
use description logics (DLs) as well-known examples of ontology languages. We briefly
introduce the basics for DL such as ALC and EL++; for full details see [6, 7]. The syn-
tax of ALC is based on two disjoint sets NC and NR of concept names and role names,
respectively. The set of ALC concepts is generated by the grammar

C ::= A | ¬C | C � C | C � C | ∀R.C | ∃R.C ,

where A ∈ NC and R ∈ NR .
A TBox is a finite set of concept inclusions (GCIs) of the form C � D where C and D are

concepts. It is used to store terminological knowledge regarding the relationships between
concepts. An ABox is a finite set of formulas of the form C(a) and R(a, b), which express
knowledge about objects in the knowledge domain.

The semantics of ALC is defined through interpretations I = (�I , ·I ), where �I is
a non-empty domain, and ·I is a function mapping every individual name to an element
of �I , each concept name to a subset of the domain, and each role name to a binary
relation on the domain. The interpretation I is a model of the TBox T if it satisfies all
axioms in T . Given two concepts C and D, we say that C is subsumed by D w.r.t. the
TBox T (C �T D) if CI ⊆ DI for every model I of T . We write C ≡T D when
C �T D and D �T C. C is strictly subsumed by D w.r.t. T (C �T D) if C �T D and
C �≡T D.
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EL++ is a DL that allows conjunctions, existential restrictions, and role inclusion axioms
(RIs) of the form r � s, where r and s are roles [7]. The bottom concept ⊥, in combination
with GCIs, allows one to express disjointness of concept descriptions, e.g., C �D � ⊥ tells
that C and D are disjoint. Given two roles r, s ∈ NR , we say that r is subsumed by s w.r.t.
T , denoted as r �T s if rI ⊆ sI for every model I of T . A role r is strictly subsumed by s

w.r.t. T if r �T s and r �≡T s.
EL++ is widely used in biomedical ontologies for describing large terminologies since

subsumption (and thus classification) can be computed in polynomial time. In the follow-
ing, DL denotes either ALC or EL++, and L(DL, NC,NR) denotes the set of (complex)
concepts that can be built over NC and NR in a given DL.

3.2 Refinement operators

The refinement of formulas or concept descriptions has been studied both in the Description
Logic and in the Inductive Logic Programming (ILP) literature, although from different
perspectives. Whilst approaches in DL focus on the so-called ‘non-standard reasoning tasks’
of finding concept descriptions that are least general or most specific w.r.t. to a number of
other concepts [9], approaches in ILP are concerned with learning DL descriptions from
examples [63].

The general idea behind refinement is that given a set of formulas, specified according to
a language L for which a subsumption relation (�) is available, it is possible to modify them
into expressions that are more general or more specific. Intuitively, the notions of generality
and specificity can be introduced among any pair of formulas �1 and �2 by taking into
account the subsumption relation. Therefore, also in L(DL, NC, NR) with the subsumption
relation �T for a given TBox T .

The subsumption relation induces a partial order on the set of all formulas that can be
formed using L(DL, NC,NR), i.e., the pair 〈L(DL, NC, NR), �〉 is a quasi-ordered set. In
what follows, we say that a concept C2 is more general than C1 (resp. C1 is more specific
than C2) if C1 � C2.

Given the subsumption relation, for any two concepts C1 and C2, one can define the
least general generalisation and most general specialisation. These have been relevant
for defining semantic similarity measures between concepts [19, 76], and blends as an
amalgam [20].

Definition 1 (Least General Generalisation) The least general generalisation of two con-
cepts C1 and C2, denoted as C1�C2, is defined as the most specific concept that subsumes
both:

C1�C2 = {C | C1 �T C ∧ C2 �T C and � ∃C′ : C′ �T C ∧ C1 �T C′ ∧ C2 �T C′}

The least general generalisation is a description that encapsulates all the information that
is common to both C1 and C2, and that is the most specific among those that subsume
C1 and C2. The ‘complementary’ operation to the least general generalisation is the most
general specialisation of two descriptions.

Definition 2 (Most General Specialisation) The most general specialisation of two con-
cepts C1 and C2, denoted as C1�C2, is defined as the most general concept that is subsumed
by both:

C1�C2 = {C | C �T C1 ∧ C �T C2 and � ∃C′ : C � C′ ∧ C′ �T C1 ∧ C′ �T C2}
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If two descriptions have contradictory information, then they do not have a most general
specialisation. The least general generalisation and the most general specification can be
characterised by means of refinement operators.

Refinement operators are used to structure a search process for learning concepts from
examples in Inductive Logic Programming [61]. In this setting, generalisation and speciali-
sation refinement operators have been defined and used to build a refinement space (a lattice
with � the most general element, and ⊥ the more specific). Studying this notion in terms of
generalisation and specialisation refinement operators has been done, for instance, for order
sorted-feature terms clauses [76] and DL concepts [20, 63].

A refinement operator is a set-valued function that, given a certain concept, returns a set
of concepts that are more general or more specific. Formally:

Definition 3 A generalisation refinement operator γ over 〈L(DL, NC, NR), �〉 is a set-
valued function such that ∀C ∈ L(DL, NC,NR) : γ (C) ⊆ {C′ ∈ L(DL, NC, NR) | C �T
C′}.

Generalisation refinement operators take a concept C as input and return a set of descrip-
tions that are more general than C by taking an ontology T into account. A specialisation
operator, instead, returns a set of descriptions that are more specific.

Definition 4 A specialisation refinement operator ρ over 〈L(DL, NC,NR), �〉 is a set-
valued function such that ∀C ∈ L(DL, NC,NR) : ρ(C) ⊆ {C′ ∈ L(DL, NC, NR) |
C′ �T C}.

Refinement operators can be characterised according to some desirable properties, such
as local finiteness, properness, and completeness [61, 63]. For instance, local finiteness
requires that the set of refinements generated for any given element by the operator is finite;
properness requires that none of the refinements generated by the operator is equivalent to
the element being generalised or specialised, and, completeness requires that the refinement
space contains all the formulas that can be constructed using the language L(DL, NC,NR).
Clearly, designing refinement operators that fulfil all these properties is not possible in
general. One usually has to sacrifice completeness for finiteness to let the computation of
the operator terminate, as we shall see in Section 4.1.

Refinement operators play an important role in computational approaches for conceptual
blending. In particular:

Blends as amalgams and search for a generic space A key problem in computational
conceptual blending is that the combination of two concepts may generate an unsatis-
fiable one due to contradiction, or the blended space may not satisfy certain properties
and or constraints. The process according to which input concepts are blended is charac-
terised using amalgams [75], a notion developed in case-based reasoning as an approach
to combine solutions coming from multiple cases. The idea of amalgams is that, by refin-
ing input concepts, one can remove inconsistencies to find a novel and useful combination
of the input concepts. For instance, a ‘red French sedan’ and a ‘blue German minivan’ can
be blended to a ‘red German sedan’ by generalising the first concept to a ‘red European
sedan’ and the second one to a ‘coloured German car’. The least general generalisation
of the input concepts—a ‘coloured European car’—serves as an upper bound of the gen-
eralisation space to be explored, and plays the role of the so-called generic space in
conceptual blending, which states the shared structure of both concepts. Nonetheless, the
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least general generalisation might not always exist (see [20]), and for conceptual blend-
ing finding a common generalisation which is a least general generalisation is not required
(and sometimes even not desirable). In fact, following the cognitive theory of conceptual
blending, the generic space comprises a common abstraction of the input concepts guid-
ing the blending, which, however, has to be in no way ‘least general’: an example are
image schemas, which typically strip away far more information than would be logically
necessary.

Refining image schemas In cognitive science, image schemas are identified as fundamen-
tal pattern of cognition, that are perceived, conceptualised and manipulated spatially and
temporally [65]. The core idea is that after an image schema has been formed, it can be gen-
eralised and the structure can be transferred through analogical reasoning to other domains
with similar characteristics [65]. The relation of image schemas and conceptual blending—
and, particularly, their role in computational concept invention—has been explored in [45,
47]. In this setting, image schemas are conceived as a set of theories ordered by logical
entailment that can be used to guide the search for a generic space and as heuristics for
the creation of new concepts. Image schemas can offer high-level semantic constructs to
identify the important parts of input concepts and ontologies, and they can be an effec-
tive way to reduce the search space of possible generic spaces. However, in some cases
input concepts might not instantiate the same image schema, and image schemas need to
be generalised into a more universal schema or need to be further specialised by adding
new spatial primitives and axioms. Such relationships can be formally established seman-
tically by interpretations of theories, and syntactically by building a refinement path. The
mechanics of generalisation and specialisation for image schemas are discussed in detail
in Section 4.2.2.

Blend evaluation and debugging In the context of using ontologies as formal backbones
to represent blended concepts, a key problem is how to deal with the resulting formal
inconsistencies, requiring an evaluation and debugging workflow. Handling inconsistency
in concept invention is a complex issue, since an inconsistent concept can be still interest-
ing if it can be ‘repaired’. In this respect, a number of ontology debugging techniques have
been developed, in particular in the Semantic Web community. They are typically based on
computing (all or a subset of all) minimally inconsistent subsets for finding explanations,
or on axiom pinpointing to remove a few axioms to expel the errors [8, 50, 51, 84]. While
these methods are effective, and have been used in practice, they have the side effect of
removing also many potentially wanted implicit consequences, and potentially interesting
characteristics of the blend. Refinement operators were used to define a more fine-grained
method for ontology repair based on axiom weakening [93], thus generalising earlier
methods.

In the following sections, we will consider each of these roles in a more detailed way,
presenting their application in concept invention.

4 Finding the semantic pathway for concept invention

There are different approaches in the AI and cognitive science literature that relate to the
problem of finding the structural commonalities between two input domains, concepts or
ontologies. Here, we describe approaches based on amalgams and refinement operators, and
on image schemas.
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4.1 Finding a generic space using generalisation operators

In this section we describe how blends can be characterised via amalgams and how a generic
space between concepts can be found by means of a generalisation refinement operator in
the DL EL++.

4.1.1 Blend as amalgams

The process of conceptual blending can be characterised via amalgams [75]. According to
this approach, input concepts are generalised until a generic space is found, and pairs of
generalised versions of the input concepts are ‘combined’ to create blends.

Formally, the notion of amalgams can be defined in any representation language L
for which a subsumption relation � between formulas (or descriptions) of L can be
defined, together with a least general generalisation operation, and a most general speciali-
sation operation (see Definitions 1 and 2). Here, the least general generalisation is used to
determine the generic space.

An amalgam of two descriptions is a new description that contains parts from these two
descriptions. Formally, an amalgam is defined as follows.

Definition 5 (Blend as an Amalgam) Let T be an EL++ TBox. A description Cb ∈
L(EL++, NC,NR) is an amalgam of two descriptions C1 and C2 if there exist two
generalisations C1 and C2 such that:

1. C1 �T C1 �T C1�C2,
2. C2 �T C2 �T C1�C2, and
3. Cb = C1�C2.

The above definition relies on the least general generalisation C1�C2 (Definition 1) that
is a lower bound on the space of generalisations that can be explored for C1 and C2. At this
point we should notice that finding a least general generalisation is usually complicated. Its
computation (and existence) depends on the type of logic adopted and on the assumptions
made over the TBox. Thus, in practice, finding a generic space between two concepts that is
also a least general generalisation is not always possible. In conceptual blending, although
one needs to be aware of properties shared by the concepts in order to blend them, it is
not necessary to find a generic space that is also a least general generalisation. Namely,
this choice would guarantee to preserve all common structure between the input concepts.
Rather, a common subsumer w.r.t. the subconcepts that can be built using the axioms in
a TBox, and sufficiently specific, will suffice. This can be achieved, as we shall see, by
restricting the space of generalisations (Fig. 4).

Fig. 4 An ontology for the concept Horse and Bird
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Fig. 5 A diagram of an (asymmetric) amalgam Pegasus from descriptions Horse and Bird

Returning to Definition 5, the notions of amalgam and generic space are illustrated in
Fig. 5 by means of a typical blend example: Pegasus, the winged divine stallion. From a
conceptual blending point of view, Pegasus is a blend between a horse and a bird, preserv-
ing most of the horse’s physical characteristics but adding bird-like features such as the
wings and the ability to fly. A horse and a bird can be formalised by concepts describing
different subtypes of clade, and involving some specific body-parts and abilities. For
instance, a horse is a mammal, with a torso and legs, and with the ability to walk and to
trot. This ontology is shown in Fig. 4. A stereotypical characterisation of a horse and a
bird is:

Horse � Mammal � ∃hasBodyPart.Torso � ∃hasBodyPart.Legs �
∃hasAbility.Walk � ∃hasAbility.Trot

Bird � Avialae � ∃hasBodyPart.Torso � ∃hasBodyPart.Legs �
∃hasBodyPart.Wings � ∃hasAbility.LayEggs � ∃hasAbility.Fly

The combination of these concepts violates the common sense knowledge that mammals
do not generally lay eggs and that avialae do not trot.8 Therefore, these abilities need to
be generalised before these concepts can be blended. The common descriptions between a
horse and a bird—a clade with body-parts torso and legs and some abilities—defines a lower
bound in the space of generalisations that can be explored in order to generalise the input
concepts. These generalised concepts, in turn, can be used to find the blend of Pegasus. A
generic space for the concepts Horse and Bird is:

Clade� ∃hasBodyPart.Torso � ∃hasBodyPart.Legs �
∃hasAbility.Ability � ∃hasAbility.Ability

8This common sense knowledge can be modeled by disjointness axioms, such as
Mammals � ∃hasAbility.LayEggs � ⊥ and Avialae � ∃hasAbility.Trot � ⊥. This axioms will ‘invalidate’ the
blend theory when one checks for acceptability of concept blends based on their consistency. For the sake of
this example, we do not consider the case of the platypus, an egg-laying mammal.
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and it can be obtained as follows. In the Horse concept, Mammal is generalised to Clade,
∃hasAbility.Walk to ∃hasAbility.Ability, and ∃hasAbility.Trot to ∃hasAbility.Ability. In the
Bird concept, Avialae is generalised to Clade, ∃hasAbility.LayEggs to ∃hasAbility.Ability,
∃hasAbility.Fly to ∃hasAbility.Ability, wheras the relation ∃hasBodyPart.Wings will be
‘removed’. A generalised version of the bird concepts is:

Bird � Clade � ∃hasBodyPart.Torso � ∃hasBodyPart.Legs �
∃hasBodyPart.Wings � ∃hasAbility.Fly

When we blend Bird with Horse, we obtain a concept describing Pegasus. Please notice
that in this case we can use a special case of amalgam (called asymmetric amalgam), in
which Horse and Horse coincide.

Mammal � ∃hasBodyPart.Torso � ∃hasBodyPart.Legs �
∃hasBodyPart.Wings � ∃hasAbility.Walk �
∃hasAbility.Trot � ∃hasAbility.Fly

The generalisations above can be formally obtained by the application of a generalisation
operator that is defined on the structure of concept definitions in an inductive way. There-
fore, the definition of these operators depends on the description logic adopted. For the case
of the DL EL++ [7], for instance, the generalisation operator was defined in [20].

4.1.2 Generalisation operator

A generalisation refinement operator for EL++ was defined in [20] by specifying three
things: i) the (finite) set of subconcepts that can be formed from a TBox T ; ii) the upward
cover set of a concept C and a role r , and iii) a set of transformation rules defined over the
structure of concept descriptions.

The finite set of subconcepts that can be built from the axioms of a TBox T is obtained
by structural induction over the concept descriptions. The set is denoted by sub(T ).

Definition 6 Let T be an EL++ TBox. The set of subconcepts of T is given as

sub(T ) = {�,⊥} ∪
⋃

C�D∈T
sub(C) ∪ sub(D) (1)

where sub is inductively defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(⊥) = {⊥}
sub(�) = {�}

sub(C � D) = {C � D} ∪ sub(C) ∪ sub(D)

sub(∃r .C) = {∃r .C} ∪ sub(C)

Based on sub(T ), we define the upward cover set of atomic concepts and roles. sub(T )

guarantees the following upward cover set to be finite.9 The upward cover sets of a concept
C and a role r (UpCovT ) contain the most specific subconcepts and roles found in sub(T )

that are more general than (subsume) C and r respectively.

9We assume that T is finite.
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Definition 7 (Upcover sets) Let T be an EL++ TBox, C a concept, and r a role. The
upward cover sets of C and r w.r.t. T are:

UpCovT (C) := {D ∈ sub(T ) | C �T D and

�. D′ ∈ sub(T ) with C �T D′ �T D},
UpCovT (r) := {s ∈ Nr | r �T s and

�. s′ ∈ Nr with r �T s′ �T s}.

Based on the previous definitions a generalisation operator for EL++ concepts can be
defined as follows.

Definition 8 (Generalisation operator) Let T be an EL++ TBox. A generalisation
refinement operator γ is defined inductively over the structure of concept descriptions as
follows:

γ (A) = UpCovT (A)

γ (�) = UpCovT (�)

γ (⊥) = UpCovT (⊥)

γ (C � D) = {C′ � D | C′ ∈ γ (C)} ∪ {C � D′ | D′ ∈ γ (D)} ∪ UpCovT (C � D)

γ (∃r .C) = {∃r .C′ | C′ ∈ γ (C)} ∪ {∃r ′.C | r ′ ∈ UpCovT (r)} ∪ UpCovT (∃r .C)

Notice that by the repetitive application of γ , an EL++ concept C can be eventually
generalised to �. The idea behind computing the generic space between two concepts is to
generalise both of them until a certain common concept is found.

To introduce the notion of generic space we define the set of all concepts that can be
reached from C by applying γ a finite number of times.

Definition 9 For every concept C, we note γ i(C) the i-th iteration of its generalisation. It
is inductively defined as follows:

– γ 0(C) = {C};
– γ j+1(C) = γ j (C) ∪ ⋃

C′∈γ j (C) γ (C′) , j ≥ 0.

Definition 10 The set of all concepts that can be reached from C by means of γ in a finite
number of steps is:

γ ∗(C) =
⋃

i≥0

γ i(C) .

Every concept C can be generalised at most until the � concept. Thus, in the above
formula, the finite number of steps corresponds to the number of generalisations needed
to reach �, and this number depends on the ontology and on the structures of the axioms
contained in the ontology.

Having a way to generalise concepts in a finite way, we can now define the notion of
generic space of the concepts. The generic space between two concepts is the most specific
concept among the set of generalisations that can be obtained. It can be characterised as
follows.

Definition 11 Let C and D be concept descriptions, the generic space of C and D is a
concept description G such that the following conditions hold:
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1. G ∈ γ ∗(C) ∩ γ ∗(D), and
2. � ∃.G′ ∈ γ ∗(C) ∩ γ ∗(D) such that G′ �T G

Finding the generic space between concepts was implemented in [20] for the EL++
description logic using Answer Set Programming (ASP) [30], a well-known declarative
programming paradigm to solve non-monotonic search problems. A domain-independent
ASP program generalises EL++ concepts in a step-wise transition process. To this end,
each step of the generalisation refinement operator in Definition 8 was implemented as an
action by means of precondition, inertia, and effect rules. Following the ASP incremental
approach to planning problems [29], a domain-independent ASP program was specified to
search for applicable generalisation steps. Then, this program is instantiated with domain
knowledge, that is obtained by translating the EL++ TBox into ASP facts and predicates.
EL++ concepts are generalised until their descriptions are equal. The stable models of the
ASP program contain the generalisation steps to be applied in order to generalise the EL++
concepts until a generic space is reached. Further details about the implementation can be
found in [20].

Although using refinement operators is an interesting approach to find the generic space
between two (or more) input concepts, at this point we should note that computing the space
of generalisations can be costly (in terms of computation), especially, in the case of more
expressive description logics where the subsumption reasoning task is not polynomial as
in the case of EL++. Furthermore, when implementing the operators, other considerations
must be made regarding their finiteness. It can happen indeed that, although each general-
isation step is finite (the so-called locally finite property), the set of all generalisations is
infinite. For instance, this is the case for cyclic TBoxes where some axioms can lead to infi-
nite generalisation paths. Preventing this amounts to putting a limit on the number of nested
generalisations allowed to be made. This is typically done by counting the depth-level of
generalisations [20]. It is unclear, however, how an optimal level for this upper bound can
be determined in general. On the one hand, with a low value, interesting generalisations can
be missed; conversely, a high value can lead to a generalisation blow-up making conceptual
blending computationally much harder.

Furthermore, apart from finiteness, typically, for any two input concepts there exists a
large number of potential generalisations. Therefore, the search space for potential generic
spaces (and, consequently, for potential conceptual blends) is vast. As a result, an increase of
the size of the ontology leads to an explosion of possibilities for generalisations. Although
some heuristics can be defined, as discussed above in connection with ‘optimality princi-
ples’ for blending, there is no purely formal way to distinguish cognitively relevant from
irrelevant information.

In purely formal, logical approaches, the idea of relevant implication can be used to
determine which information is relevantly entailed by other information, for instance, by
requiring the sharing of information via sharing of symbols between antecedent and con-
sequent, or by modalising to strict implication, see e.g., [1, 64]. Such considerations give
rise to interesting directions for a further development of refinement operators, namely to
relevant refinements. However, even a formal theory of relevant refinement in such a setup
does not solve the problem of cognitive relevance.

Although we here refrain from trying to give a formal account of the notion of ‘cognitive
relevance’, some of its basic elements will include ‘human comprehensibility’, ‘informa-
tiveness’, or ‘inferential usefulness’, following in the footsteps of the Gricean maxims [38]
or more generally Sperber and Wilson’s relevance theory [99].

In the following, we want to outline such a more cognitively-driven approach, namely
using the idea of image schemas as a guide to find generic spaces.
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4.2 Finding a generic space using image schemas

We have discussed an approach to finding the generic space based on amalgams and gen-
eralisations. The core underlying idea was that to identify non-trivial shared information
content between two concepts, a careful generalisation process can be used, which we based
on the above introduced generalisation operators.

The approach in this section can be seen as a variation or refinement of these ideas,
namely that by trying to steer this generalisation process not to identify arbitrary ‘shared
information content or structure’, but towards identifying shared semantically and cogni-
tively crucial aspects of the input concepts, more informative and surprising blends become
possible.

4.2.1 Image schemas and concept invention

In cognitive science, image schemas are identified as fundamental pattern of cognition that
are perceived, conceptualised and manipulated spatially and temporally [65]. Prominent
examples of image schemas introduced in the literature include SOURCE PATH GOAL (dis-
cussed in more detail below) CONTAINMENT, and SUPPORT. The core idea is that after an
image schema has been formed, it can be generalised and the structure can be transferred
through analogical reasoning to other domains with similar characteristics [65]. From a for-
mal perspective, previous research on image schemas (e.g., [53, 91, 98]) has provided a
valuable portfolio of approaches that can be build on further. The relation of image schemas
and conceptual blending—and, particularly, their role in computational concept invention—
have been explored in [45, 47]. In this setting, image schemas are conceived as a set of
theories ordered by logical entailment that can be used to guide the search for a generic
space and as heuristics for the creation of new concepts.

Although there is generally an increasing interest in the area of cognitively motivated
Artificial Intelligence, where image schemas are suggested to be a core piece in the puz-
zle to model human-level conceptualisation and reasoning, so far rather few formal logical
approaches can be found in the literature, in particular regarding attention to the dynamic
aspects of image schemas. A fundamental problem here is that the typical mainstream
approaches in contemporary KR do not map well to various scenarios found in image
schema modelling. Therefore, a fine-tuned logic for image schemas was developed in [48],
called ISL, essentially being a spatio-temporal logic for ‘directed movement of objects’, with
the aim to model formally image schematic events such as ‘Blockage’, ‘Caused Movement’ and
‘Bouncing’. It combines the Region Connection Calculus (RCC-8), Qualitative Trajectory
Calculus (QTC), Cardinal Directions (CD) and Linear Temporal Logic over the reals (RTL).
A further extension adding a notion of agency based on STIT logic was proposed in [60].

Hedblom et al. [45] provided an extensive motivation for treating image schemas not in
isolation but as families of theories, organised in a lattice-like fashion. We here illustrate this
by looking at some examples for concepts which involve members of the PATH-following
family.

The most straightforward examples of concepts that involve PATH-following are concepts
that are about the spatial relationship of movement between different points. Prepositions
such as from, to, across and through all indicate a kind of PATH-following.10

10Some prepositions include other image schemas at the same time. E.g., ‘through’ involves apart from PATH

also some notion of CONTAINMENT.



Blending under deconstruction

Fig. 6 Selected image schemas of path and cyclic movement as a graph. The coloured arrows described as
“extending an image schema axiomatically” respectively “extending by new spatial primitives and axioms”
illustrate by which means the PATH family is formally extended

This also includes key verbs that describe movement, e.g., coming and going. Another
example, here for the image schema SOURCE PATH GOAL, is ‘going from Berlin to
Prague’. Note that many cases do not provide information about START PATH and
END PATH of a movement; e.g., ‘leaving Berlin’ and ‘travelling to Berlin’ are exam-
ples for the image schemas SOURCE PATH and PATH GOAL, respectively. ‘Meandering’
is an example of a concept that realises MOVEMENT ALONG PATH, which involves a
PATH but no START PATH or END PATH. In contrast, no discernible PATH is involved in
‘roaming the city’, which is an example for MOVEMENT OF OBJECT. These examples
illustrate that image schemas may be ordered hierarchically with respect to their con-
tent: SOURCE PATH GOAL contains more spatial primitives and more information than, for
example, MOVEMENT ALONG PATH (the root of the PATH-following family), and MOVE-
MENT ALONG PATH, in turn, is more specific than MOVEMENT OF OBJECT, which in
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fact lacks the spatial primitive ‘path’. Figure 6 depicts the members and their connections
involved in the PATH family. Beyond concepts that involve movement, PATH-following
plays an important role in many abstract concepts and conceptual metaphors. For instance,
the concept of ‘going for a joy ride’ realises the image schema SOURCE PATH, since it
has a START PATH and a PATH but no END PATH. Similarly, the expression ‘running for
president’ describes the process of trying to get elected as president metaphorically as
a PATH GOAL. In this metaphor the PATH consists of the various stages of the process
(e.g., announcing a candidacy and being nominated by a party) with the inauguration as
END PATH.

To implement computationally the idea of using image schemas as generic spaces, we
need to deal with two independent algorithmic problems. First, we will have to identify an
image schematic theory within the inputs. Then, if needed, we will have to find the least
general (or, most specific) image schema common to both inputs, outlined in more detail in
the next section.

Figure 7 shows a simple example of the underlying reasoning, using the well-known
blend of the concepts house and boat into houseboat (or boathouse, or indeed many
alternative combinations, see [36]). First, recognising image schemas in the axiomatisa-
tion of the concepts of house and boat comes down to identifying a few axioms in the
input ontologies. Namely, boats host passengers or cargo, and travel from harbours to har-
bours. Thus there will be some axioms that axiomatise at least partly CONTAINMENT and
SOURCE PATH GOAL. Further, houses are build on solid ground and host their inhabi-
tants, so again we should be able to find axioms related to CONTAINMENT at least. To find
such axioms a number of techniques have been used or can be further explored, including
alingment techniques (axiomatisations will use different vocabularies for talking about con-
tainment) and machine learning techniques applied to text corpuses, see e.g., [21, 39]. Now,
a common version of containment can be used as a base ontology, which will be inherited

Fig. 7 Image schemas of SOURCE PATH GOAL and CONTAINMENT in the houseboat blend
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to the blend. Such a base ontology for containment can be found, for instance, by refining
both versions of containment to a common generalisation. Further, the particular blend of
houseboat may inherit the SOURCE PATH GOAL of the boat to be a travelling houseboat,
or it might be solidly grounded on water, further inheriting and mixing aspects of boats and
houses, turning the created blend into a water-based residence. These choices are not deter-
mined by choosing the base ontology alone. Moreover, as the canonical house sits on solid
ground, for the blend theory to be consistent, selection/forgetting, respectively debugging,
will be necessary.

4.2.2 Recognising and generalising image schemas

We discussed above the idea that image schemas should be formally approached as inter-
connected families of theories, partially ordered by generality. This section demonstrates
some of the benefits of using such a ‘family structure’ to represent image schemas,
and how this added structure contributes to workflows for computational conceptual
blending.

Figure 8 and the corresponding example given in Fig. 9 show the basic approach of
using image schemas within the conceptual blending workflow. The central idea is that,
when searching for ways to blend concepts, the image-schematic content that can be iden-
tified in the input ontologies takes priority in the definition of the base ontology over other
information the input concepts might contain.

In Fig. 8, following the core model of blending described in Section 2.2, different
image-schematic structures are first identified within the same image schema family in
the two input concepts. They are then generalised to the most specific, common version
within the image schema family to identify a generic space, using the pre-determined graph
of image schemas (i.e., the least upper bound for two nodes in the family hierarchy is
computed).

Fig. 8 Blending using common image schemas through theory generalisation
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Fig. 9 The satellite as blended from moon and spaceship, and some of the involved image schemas

A slightly more complex situation is encountered in cases where we first specialise or
complete the (description of) image schemas ‘found’ in the input concepts, before perform-
ing a generalisation step and finally identifying the generic space (below we will elaborate
more on what it means to ‘find’ an image schema in an input space). This means moving down
in the graph of the image schema family and choosing a member specified with more speci-
ficity. Of course, also a mix of these two basic approaches is reasonable, in other words, where
the image schema of one input concept is specialised within a family whilst the other is
generalised in order to identify a generic space based on joint image-schematic
content.

To see these ideas at work, let us briefly discuss a more concrete example, taken from
[44] where it is analysed in detail. The shown blend is an example of an iterative blend,
taking as one of the input concepts the ‘mothership’ concept (itself a blend, i.e. the ontol-
ogy defining the concept of a spaceship hosting smaller spaceships), and as the other input
the concept of an orbiting moon. Clearly, both the generic spaceship as well as the orbiting
moon have path-following image schemas build into their semantic setup, however arguably
incompatible ones: whilst the orbit has no target but a ‘circular’ revolving movement (i.e.
image schema REVOLVING MOVEMENT), the SOURCE PATH GOAL of a spaceship has a
target but no orbiting. To find the common core image schema, both need to be generalised,
namely to the image schema SOURCE PATH. This then allows, in the blend, to combine
the movement patterns of the orbiting moon with aspects of the spaceship, to obtain a
description of a satellite.

To implement computationally the idea of using image schemas as generic spaces, two
independent algorithmic problems have to be solved. Namely:

(1) Recognition Problem: to identify an image-schematic theory within an input theory,
and

(2) Refinement Problem: to find an appropriate image schema common to both inputs.
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These tasks can be described in more detail as follows. To address the recognition problem,
suppose a theory graph F encoding an image schema family is fixed, like the example given
in Fig. 6. For simplicity, it is assumed that elements of F will be logical theories in a fixed
formal logic, say description logic [49], image schema logic ISL [48], or standard first-order
logic.11

Given an input theory I1 and F, solving the recognition problem means finding a member
f ∈ F that can be interpreted in I1, that is, such that a renaming σ of the symbols in
f (called a signature morphism) is found and such that I1 |= σ(f ) (also written I1 |=σ

f ).12 Note that this is a more general statement than claiming the inclusion of the axioms
of f (modulo renaming) in I1 (the trivial inclusion interpretation) since establishing the
entailment of the sentences in σ(f ) from I1 might in fact be non-trivial, and the axioms
needed for this quite different from the ones in f . In this context, notice that when iteratively
applying generalisation refinement operators to a theory T , at each step, a generalisation T ∗
will be interpretable in the original theory T , and indeed, each theory S on the generalisation
path between T ∗ and T will be thus interpretable.

Computational support for automatic theory-interpretation search in first-order logic is
investigated in [71], and a prototypical system was developed and tested as an add-on to
the Heterogeneous Tool Set (HETS) [67]. Experiments carried out in [54, 72] showed that
this works particularly well with more complex axiomatisations in first-order logic, rather
than with simple taxonomies expressed in, for instance, OWL. This is because, in the latter
case too little syntactic structure is available to control the combinatorial explosion of the
search task. From the point of view of interpreting image schemas into non-trivial axioma-
tised concepts, this can be seen as an encouraging fact, as image schemas are, despite their
foundational nature, complex objects to axiomatise.

Once the recognition problem has been solved in principle, the given theory graph struc-
ture of the image schema family F provides a simple handle on the generalisation problem.
Namely, given two input spaces I1, I2, and two image schemas f1, f2 from the same family
F (say, ‘CONTAINMENT’) such that I1 |=σ1 f1 and I2 |=σ2 f2, compute the most specific
generalisation G ∈ F of f1 and f2, that is their least upper bound in F. Since the signa-
ture of G will be included in both signatures of f1 and f2, one obtains that I1 |=σ1 G and
I2 |=σ2 G. G ∈ F is, therefore, an image schema common to both input spaces and can be
used as generic space.

To address the generalisation and specialisation of image schema theories more gener-
ally, we can employ the notion of refinement operators introduced above. More specifically,
the theories that are interpreted into the image schema theory graph can be upwards or
downwards refined, in order to achieve an alternative image-schematic agreement between
the two input spaces.

In order to implement these ideas more fully, a sufficiently comprehensive library of
formalised image schemas, like the one presented above formalising the Path-related image
schemas, needs to be made available for access by a blending engine.

In this line of thinking, a challenging research program would involve not to uniformly
represent different kinds of image schemas in one expressive logic, such as first- or higher-
order logic, but instead to construct a mapping between the cognitive levels of image schema

11Note that none of the ideas presented here depend on a particular fixed logic. Indeed, heterogeneous logical
specification is central to formal blending approaches, see Kutz et al. [57].
12In more detail: a theory interpretation σ is a signature morphism renaming the symbols of the image schema
theory f and induces a corresponding sentence translation map, also written σ , such that the translated
sentences of f , written σ(f ), are logically entailed by I1.
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development and correspondingly adequate logical representations on different layers of
abstraction. For instance, the gradual construction of an explicit representation of a timeline
over which humans might meaningfully be able to quantify could be bootstrapped from the
most basic path following image schema where a progression of time is completely implicit
in the notion of movement along the path understood as a basic event. This line of work has
been initiated in [44, 48].

5 Blend evaluation via axiomweakening

When using ontologies to formally represent concepts for blending, blended concepts can
turn out to be logically inconsistent. A simple approach would consist in rejecting these
blends, and to continue with the amalgam-based workflow to generate alternative, newly
blended, and hopefully consistent, concepts [20, 24]. However, handling inconsistency in
concept invention deserves attention and is often worthwhile since an inconsistent concept
can be still a good blend once it is ‘repaired’. The ontology engineering lifecycle, in general,
includes a step for revision and debugging, just like a piece of software. Several ontology
debugging techniques have been developed [8, 50, 51, 84], in particular in the Semantic
Web community, and they could directly be adopted to repair inconsistent blends. The main
drawback of these techniques is that, once they identified the problematic axioms, they
remove them. Thus, they have the side effect of removing also many potentially wanted
implicit consequences, and, from the concept invention point of view, potentially interesting
characteristics of the blend.

Using alternative techniques, which allow for a more fine-grained method to ontol-
ogy repair, is desirable. Refinement operators can be used to define axiom weakening, a
technique that resolves inconsistencies by modifying axioms according to a background
ontology [93], which we discuss next in greater detail.

5.1 Axiomweakening

Axiom weakening is a novel technique that can be employed to repair inconsistencies in
logical theories, and in particular, the technique was developed for resolving inconsistencies
in ontologies in the context of the DL ALC [93]. Compared to the more classical approach
for repairing a description logic ontology, which amounts in deleting axioms, axiom weak-
ening is a more gentle approach in which axioms are not deleted, but only weakened. A
derivative line of work on the notion of axiom weakening established in [93] can be found
in [10].

The general idea behind axiom weakening is that instead of removing axioms they are
made more general. Intuitively, making an axiom of the form C � D more general amounts
to enlarge the set of interpretations that satisfy the axiom. This can be achieved in different
ways: either by substituting C � D with C � D′, where D′ is a more general concept than
D; or, by modifying the axiom C � D to C′ � D, where C′ is a more specific concept than
C; or even by generalising and specialising simultaneously to obtain C′ � D′.

Axiom weakening is defined by means of generalisation and specialisation refinement
operators. In the following, we note nnf the function that for every concept C, returns its
negation normal form nnf(C). The negation normal form of an ALC concept or formula is
a formula in which negation appears only in the front of atomic concepts. It is possible to
transform any ALC formula into an equivalent one in negation normal form.
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Definition 12 Let T be an ALC TBox. We define γT , the generalisation refinement
operator w.r.t. T , inductively over the structure of concept descriptions as:

γT (A) = UpCovT (A)

γT (¬A) = {nnf(¬C) | C ∈ DownCovT (A)} ∪ UpCovT (¬A)

γT (�) = UpCovT (�)

γT (⊥) = UpCovT (⊥)

γT (C � D) = {C′ � D | C′ ∈ γT (C)}∪{C � D′ | D′ ∈ γT (D)}∪UpCovT (C � D)

γT (C � D) = {C′ � D | C′ ∈ γT (C)} ∪ {C � D′ | D′ ∈ γT (D)}∪UpCovT (C � D)

γT (∀R.C) = {∀R.C′ | C′ ∈ γT (C)} ∪ UpCovT (∀R.C)

γT (∃R.C) = {∃R.C′ | C′ ∈ γT (C)} ∪ UpCovT (∃R.C)

Definition 13 Let T be an ALC TBox. We define ρT , the specialisation refinement
operator w.r.t. T , inductively over the structure of concept descriptions as:

ρT (A) = DownCovT (A)

ρT (¬A) = {nnf(¬C) | C ∈ UpCovT (A)} ∪ DownCovT (¬A)

ρT (�) = DownCovT (�)

ρT (⊥) = DownCovT (⊥)

ρT (C � D) = {C′ � D | C′ ∈ ρT (C)}∪{C � D′ | D′ ∈ ρT (D)}∪DownCovT (C � D)

ρT (C � D) = {C′ � D | C′ ∈ ρT (C)} ∪ {C � D′ | D′ ∈ ρT (D)}∪DownCovT (C � D)

ρT (∀R.C) = {∀R.C′ | C′ ∈ ρT (C)} ∪ DownCovT (∀R.C)

γT (∃R.C) = {∃R.C′ | C′ ∈ ρT (C)} ∪ DownCovT (∃R.C)

The DownCovT set of a concept C is the set of most general descriptions that are
subsumed by C (a similar definition to the one already provided for UpCovT in Section 4.1).

The refinement operators can be used as components of a method for repairing inconsis-
tent ontologies by weakening, instead of removing, problematic axioms. However, given an
inconsistent ontology O, the upcover and downcover are trivially defined. To this end, we
first need to find a consistent subontology Ô of O to serve as reference ontology.

Different options can be explored: one can pick a random maximally consistent subset
of O as a reference ontology Ô (brave approach). On the contrary, one can take as Ô

the intersection of all maximally consistent subsets (cautious approach). While the brave
approach is faster to compute and still guarantees to find solutions, the cautious approach
has the advantage of not excluding certain repairs a priori.13

Given a reference ontology Ô, axiom weakening is defined as follows:

Definition 14 (Axiom weakening) Given a subsumption axiom C � D in an ontology O,
the set of (least) weakenings of C � D w.r.t. Ô, denoted by g

Ô
(C � D) is the set of all

axioms C′ � D′ such that:

C′ ∈ ρ
Ô

(C) and D = D′ or

D′ ∈ γ
Ô

(D) and C′ = C .

13For a further discussion about how to choose a reference ontology and its implication to axiom weakening
we refer to [80, 81].
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Algorithm 1 Repairing blends through weakening.

Procedure FIX-BLEND(B, Ô) � B inconsistent blend, Ô reference ontology

1: while B is inconsistent do
2: ψ ← FindBadAxiom(B) � find bad axiom occurring often in MCSs of B

3: choose ψ ′ ∈ g
Ô

(ψ)

4: B ← (B \ {ψ}) ∪ {ψ ′}
5: return B

Given an assertional axiom C(a) of O, the set of (least) weakenings of C(a), denoted
g

Ô
(C(a)) is the set of all axioms C′(a) such that

C′ ∈ γ
Ô

(C) .

It is important to point out that given a consistent reference ontology Ô, the weakening
of an axiom is always satisfied by a superset of the interpretations that satisfy the axiom.
Therefore for every subsumption or assertional axiom φ, the axioms in the set g

Ô
(φ) are

indeed weaker than φ. Technical details can be found in [93].

5.2 Repairing blends

Any inconsistent set of axioms Y can in principle be repaired by means of a sequence of
weakenings of the axioms in Y with respect to Ô. Thus, inconsistent blends can also be
repaired. In the context of blend evaluation, minimal inconsistent subsets (MCSs) are very
interesting since they represent alternatives of how a blend can be repaired, and they can
suggest how to revise it in a minimal way. This information is useful for deciding which
axioms to weaken whilst to keep as much information as possible in the blend description.

When a blend B (an ontology) is inconsistent, we can adopt the strategy described in
Algorithm 1 to repair it w.r.t. a given (fixed) reference ontology Ô. The algorithm finds
the minimally inconsistent subsets of B (e.g., using the methods from [5, 84]) and finds
the most problematic axioms, namely, axioms that appear more often in the MCSs of B

(FindBaxAxiom). Then, one of these axioms is repaired by adding a weakened version to
the ontology. The process is repeated until a consistent ontology is found.

Fig. 10 The ontology of the houseboat concept: the left of the table contains the common knowledge (axioms
1-10) used by the input concept House (axioms 11-12) and Boat (axioms 13-14). The right side of the table
contains the blended concept, which in this example is defined as the conjunction of the House and the Boat
concepts. The ontology is inconsistent due to the disjointness axiom 7 and the assertional axiom 16
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To illustrate an example of blend repairing, we use the classical conceptual blending
example of the houseboat [27, 33]. In Fig. 10, we depict the set of axioms, describing the
houseboat blend. The precise formalisation is not critical at this point, different ones exist
[35, 79], but all provide similar distinctions.

The axioms in the blend denote that a house is an object that is only used by residents
and is located only on land. Similarly, boat is an object that is only used by passengers and
is located only on water; and, a house-boat is a combination of a house and a boat.

The HouseBoat theory is inconsistent since we can infer that Blend is an object
located both on land and water, but this is ‘disallowed’ due to the disjointness axiom-7
(Water � Land � ⊥). Since the Blend concept is unsatisfiable and it is instantiated by the
assertion axiom-16, the ontology B is inconsistent. The blend, however, is still to be con-
sidered an interesting option from a creative point of view. For instance, by repairing the
HouseBoat ontology it would be possible to ‘create’ the concept of a ‘floating house’ (thus
a house on water), or the concept of a ‘movable house on land’, among others.

Algorithm 1 can be applied as follow:

– We select the maximally consistent subset B \ {7} as a reference ontology Ô.
– Out of the axioms in B, the algorithm then could randomly choose between the axioms-

7, 11, 12, 13, 14 and 15, which are the “bad” axioms responsible for the inconsistency.
Let us say it picks axiom-12 House � ∀on.Land.

– Among the weakenings of axiom-12, there is House � ∀on.Medium which is used to
replace axiom 12.

– B now is consistent (Fig. 11), and the repairing mechanism is over. The consistent blend
theory obtained captures the idea of a ‘floating house’.

Clearly, there exist different possible repairs that depend both on the reference ontology
selected and on the weakenings that are used to solve the inconsistency. E.g., alternative
reference ontologies that could be adopted are: B \{16}, B \{12}, or B \{14}; other possible
blend repairs could be obtained by weakening axiom-14 into ⊥ � ∀on.Water, or axiom-15
into Blend � Boat � ∀usedBy.Resident, or axiom-12 into Boat � House � ∀on.Land and
then into Boat � House � ∀on.Medium, etc.

From a conceptual blending point of view, not all the repaired blends are interesting,
and the mechanism of ontology repair should be combined with other selection criteria
or heuristics. This could be done, for instance, by considering (ontological) consequence
requirements, i.e., a collection of conjectures that represent desired properties that a blend

Fig. 11 The repaired ontology of the HouseBoat Blend obtained by weakening House � ∀on.Land (axiom
12) into House � ∀on.Medium (axiom 12w)
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should have. Satisfaction of these requirements can then be used as a criterion to decide
whether to accept or reject a repaired blend. If the repaired blend is ‘rejected’ according to
this criterion, then different weakenings can be used. Ideally, the results of the evaluation
are also supposed to guide the changes in the next cycle of the blend workflow, namely, to
choose the generalisations and the generic space to be used in the amalgams.

Besides, concept invention can be naturally conceived as a collaborative creative pro-
cess. In particular, the role of inconsistency in concept discovery and invention was explored
by Lakatos [62]. Lakatos was a philosopher of mathematics who developed a model of argu-
mentation of ‘proofs’ and ‘refutations’ to describe ways in which mathematicians explore
and develop new concepts. In particular, he looked at the role that conflict plays in such
explorations, presenting a rational reconstruction of a dialogue in which claims are made
and counterexamples are presented and responded to in various different ways. Lakatosian
reasoning is an ideal example of how a concept can be repaired, by pinpointing axioms, cre-
ating and exchanging arguments over the axioms, and deciding how these cohere with other
axioms [78].

Therefore, the Lakatosian way of conceiving concept evaluation, perhaps best described
as a form of concept evolution, is a very useful guiding paradigm for collective blend repair.
Providing a full computational account for such a concept evolution framework driven by
argumentation remains a desirable goal for future research.

Towards this, an approach inspired by previous work in computational social choice for
collective blend repair was conceived in [80, 81]. This is covered in the next section.

5.3 Repairing blends collectively

The idea behind repairing a blend in a collective way is that different experts having dif-
ferent preferences and opinions over the specifics of an (inconsistent) blend engage in a
turn-based repairing mechanism to decide i) which characteristics the repaired blend should
have, and ii) how to repair the blend [81]. This collective mechanism is of particular impor-
tance when one wants to incorporate social aspects into the creation process, such as for
instance the selection of certain blends’ specifics depending on personal tastes or different
socio-demographic contexts. Other examples in which ‘collectivity’ (in concept invention)
is important are the re-construction of the intended meaning of a blend (see e.g. [25]), or
the refinement of the intended meaning in the sense of ‘running of the blend’ as discussed
in the orignal formulation of conceptual blending [26], i.e. where missing information is
added by a human ‘interpreter’ (see e.g. [17]).

In this setting, experts can be modeled as agents who share an inconsistent set of state-
ments about a blended theory (expressed as axioms in a description logic). Each expert i

submits a (consistent) subset of axioms Oi of the blend, and a preference profile <i over
these axioms, which is a total ordering that reflects the agents’ view of the importance of
the statements for the description of the blend.

Then, the experts arbitrarily take turns adding their ‘favorite’ axiom to a set of previously
selected axioms. When their favorite axiom cannot be added without causing an inconsis-
tency, this axiom is weakened using a reference ontology Ô. The reference ontology can
be obtained according to brave or cautious criteria (Section 5.1), or even according to cri-
teria based on the preferences profiles of the agents [81]. The procedure ends when all the
axioms of the blend that are supported by at least one expert have been considered (and so
added as such or in a weakened form).

This procedure, described in Algorithm 2, works as follows:
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Algorithm 2 CollectiveBlendRepair(B, Ô, (<i)i , (Oi)i)

B̂ ← ∅
TreatedAxioms ← ∅
Agent ← 1
while not all agents have finished do

if every axiom in OAgent is treated then
Agent has finished

else
Ax ← FavoriteUntreatedAxiom(<Agent,OAgent)
SetToTreated(Ax)
while B̂ ∪ {Ax} is inconsistent do

Ax ← WeakenAxiom(Ax, Ô)
B̂ ← B̂ ∪ {Ax}

Agent ← (Agent mod |A|) + 1

Return B̂

1. Compute a reference ontology Ô of the inconsistent blend B. Set the repaired blend B̂

to empty.
2. By turn, each agent i considers their next preferred axiom in their set Oi of chosen

axioms.
3. If an agent i does not have any more axioms to propose (when TreatedAxiom∩Oi = ∅),

then it skips. Agent i has finished.
4. Otherwise, agent i picks FavoriteUntreatedAxiom(<i,Oi), which is its favorite axiom

Ax in the set (B \ TreatedAxioms) ∩ Oi . Then, as long as B̂ ∪ {Ax} is inconsistent, it
weakens it w.r.t. the reference ontology: Ax is set to one of its weakenings. B̂ is then
set to B̂ ∪ {Ax}.

5. Agents repeat steps 2–4 until they have processed all their chosen axioms.

Returning to the ontology B for the HouseBoat blend from Fig. 10, suppose that three
experts submit their opinions on B as shown next:

Expert 1 <1= 6<2<3<4<15<8<10<13<9<14<7<1<16<5<12<11
O1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16}

Expert 2 <2= 6<10<11<12<16<13<4<15<9<5<8<2<14<3<1<7
O2 = {2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16}

Expert 3 <3= 16<9<7<13<10<15<6<4<2<11<14<3<8<5<1<12
O3 = {2, 4, 6, 7, 9, 10, 11, 13, 15, 16}

Observe that the opinions of Experts 1, 2, and 3 reflect different points of view about
the blend. They all agree on the assertion and on the blend concept, but not on some of its
specifics. For instance, Expert-1 does not select the specific that a boat should be used by a
passenger, whereas for Experts 2 and 3 this specific matters. Furthermore, Experts 1 and 2
consider the specific of a house being on land relevant.

The turn-based mechanism proceeds as follows. As reference ontology Ô the experts
consider B \ {16}, that is, the blend ontology minus the assertion axiom axiom 16 (which
causes the ontology to be inconsistent). We initialize B̂ = ∅.
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1. Round

– Expert 1 chooses axiom 6. B̂ = {6}.
– Expert 2 chooses axiom 10. The favorite choice, axiom 6, has already been treated.

B̂ = {6, 10}.
– Expert 3 chooses axiom 16. B̂ = {6, 10, 16}.

2. Round

– Expert 1 chooses axiom 2. B̂ = {2, 6, 10, 16}.
– Expert 2 chooses axiom 11. The favorite choice, axiom 10, has already been

treated. B̂ = {2, 6, 10, 11, 16}.
– Expert 3 chooses axiom 9. B̂ = {2, 6, 9, 10, 11, 16}.

3. Round

– Expert 1 chooses axiom 3. B̂ = {2, 3, 6, 9, 10, 11, 16}.
– Expert 2 chooses axiom 12. B̂ = {2, 3, 6, 9, 10, 11, 12, 16}.
– Expert 3 chooses axiom 7. B̂ = {2, 3, 6, 7, 9, 10, 11, 12, 16}.

4. Round

– Expert 1 chooses axiom 4. B̂ = {2, 3, 4, 6, 7, 9, 10, 11, 12, 16}.
– Expert 2 chooses axiom 13. The favorite choice, axiom 16, has already been

treated. B̂ = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 16}.
– Expert 3 chooses axiom 15. The favorite choices, axioms 13 and 10, have already

been treated. B̂ = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16}.
5. Round

– Expert 1 chooses axiom 8. The favorite choice, axiom 15, has already been treated.
B̂ = {2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16}.

– Expert 2 chooses axiom 5. The favorite choices, axioms 4, 15 and 9, have already
been treated. B̂ = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16}.

– Expert 3 does not have any other axioms to propose.

6. Round

– Expert 1 chooses axiom 14 (Boat � ∀on.Water). The favorite choices, axioms 10
and 9, have already been treated. However, axiom 14 is inconsistent with the
axioms that are already present in B̂. It is then weakened into

(Boat � ∀on.Medium),

that we denote as axiom 14w. B̂ ={2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14w,15, 16}.
– Expert 2 does not have any other axioms to propose.
– Expert 3 skips.

7. Round

– Expert 1 chooses axiom 1. B̂ ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14w, 15, 16}.
– Expert 2 skips.
– Expert 3 skips.
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The ontology B̂ resulting from this mechanism is very similar to the blend ontology B, but
axiom 14w was weakened. The resulting ontology, which is consistent, captures the idea of
the boat-house blend, which is a ‘movable house’.

The termination of CollectiveBlendRepair is easy to see: at each step, an agent finishes,
or an axiom from B is set as treated. Clearly, substituting an axiom ψ with an element from
g

Ô
(ψ) cannot diminish the set of models of an ontology, and any axiom is a finite number

of refinement steps away from the trivial axiom ⊥ � � [81]. Any assertion C(a) is also
a finite number of generalisations away from the trivial assertion �(a). It follows that by
repeatedly replacing an axiom with one of its weakenings, the weakening procedure will
eventually obtain an ontology with some interpretations. Hence, the algorithm terminates.

6 Discussion, conclusion and future perspectives

In this paper we presented a core model of computational conceptual blending and sev-
eral techniques, tools and frameworks, that support its realisation. We discussed two open
problems in the implementation of a computational framework for conceptual blending: the
search for a generic space, and the (logical) evaluation of the blends. We presented different
solutions for these problems from the perspective of refinement operators.

Refinement operators are used to specify a refinement space according to which concept
descriptions can be made more general or more specific. We showed how refinement oper-
ators play an important role in the search for a generic space, and in the blend evaluation.
Indeed, they support the generalisation of input concepts, the refinement of image schemas,
and the definition of axiom weakening for repairing inconsistent blends.

As far as the generic space search is concerned, although refinement operators are an
effective way to look for the commonalities between input spaces, typically for any input
concepts the space of generalisations is quite large and exploring this space can be quite
costly in terms of computation time. A mechanism to ‘restrict’ the search space is desirable.
To this end, image schemas can provide a means to distinguish cognitively relevant from
irrelevant information.

Image schemas are cognitive structures that define knowledge patterns encapsulating
objects’ properties and affordances. Identifying image schemas in the input spaces to be
blended can improve the focus of the blending, thus limiting the space of the generalisa-
tions to be explored. Whilst from a formal perspective some advances have already been
made, more attention still needs to be paid to building a more unified terminology inte-
grating the formal and cognitive-linguistic approaches found in the literature [43]. Similar
studies have been carried out in the area of music cognition [2, 3, 15]. Besides, image
schemas should be systematically formalised as families of logical theories, before being
able to effectively use them to steer the generic space search. A closely related approach for
steering the computation of a generic space is to consider shared (resp. non-shared) ontol-
ogy patterns and anti-patterns [28, 42, 59, 90]. Here, libraries of ontology patterns can play
a similar role to image schemas, as they capture schematically common ontological struc-
ture, and part of the generic space computation can be turned into an ontology-patterns
matching problem. Similarly, anti-patterns, understood as schematically captured mod-
elling situations that should typically be avoided, can serve an important role in blend
evaluation.

From the blend evaluation point of view more generally, we showed how inconsistent
blends can be repaired by weakening some axioms. However, by using ontology debugging
in order to detect and solve inconsistencies, the number of different repairs may be huge
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(exponential) and therefore difficult to navigate. In the context of an AI application as for
instance conceptual blending, this challenge is amplified by the fact that in the search for
new ‘ideas’, the terms, concepts, or ontologies to be combined or blended are selected based
on rich semantic clashes, following the intuition of conceptual blending. This means that
one needs, in principle, to explore many repairs to identify those that can be interesting.

In this respect, an ontology debugging technique, such as axiom weakening, should be
combined with other techniques to foster better blend evaluation abilities in a computational
framework of concept invention. Previous research in this direction was initiated in [19,
87], where a first formal account for the conceptual coherence theory of Thagard [92] was
proposed and its relationship w.r.t. semantic similarity was explored. Conceptual coherence
can provide a mechanism to find the degree of relatedness between elements in an ontol-
ogy, to identify the most coherent, although perhaps still inconsistent, axioms to weaken.
A closely related approach is that of weighted concept definitions, motivated by prototype
theory, where the individual contributions of facets of a concept’s definition are accumu-
lated in oder to be classified under a concept [82]. Adopting a more holistic approach based
on axiom weakening, coherence and similarity, and more generally cognitively inspired
models of concept formation, should provide a more effective means to implement blend
evaluation, and it is an interesting approach to be explored.
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55. Kutz, O., Mossakowski, T., Lücke, D.: Carnap, Goguen, and the Hyperontologies: Logical pluralism
and heterogeneous structuring in ontology design, vol. 4. special Issue on ‘Is Logic Universal? (2010)

56. Kutz, O., Mossakowski, T., Hois, J., Bhatt, M., Bateman, J.: Ontological blending in DOL. In: Besold,
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