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Abstract. We investigate regularity and a priori estimates for Fokker–Planck and Hamilton–Jacobi equa-
tions with unbounded ingredients driven by the fractional Laplacian of order s ∈ (1/2, 1). As for Fokker–
Planck equations, we establish integrability estimates under a fractional version of the Aronson–Serrin
interpolated condition on the velocity field and Bessel regularity when the drift has low Lebesgue integra-
bility with respect to the solution itself. Using these estimates, through the Evans’ nonlinear adjoint method
we prove new integral, sup-norm andHölder estimates for weak and strong solutions to fractional Hamilton–
Jacobi equations with unbounded right-hand side and polynomial growth in the gradient. Finally, by means
of these latter results, exploiting Calderón–Zygmund-type regularity for linear nonlocal PDEs and frac-
tional Gagliardo–Nirenberg inequalities, we deduce optimal Lq -regularity for fractional Hamilton–Jacobi
equations.
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1. Introduction

In this paper, we analyze the regularity properties of transport equations of Fokker–
Planck-type and Hamilton–Jacobi equations with fractional diffusion driven by a frac-
tional power of the Laplacian, (−�)s , with subcritical order s ∈ ( 12 , 1). In particular,
we address well-posedness, parabolic Bessel regularity, and integrability estimates for
solutions to (backward) fractional Fokker–Planck equations of the form{

−∂tρ(x, t) + (−�)sρ(x, t) + div(b(x, t) ρ(x, t)) = 0 in Qτ := T
d × (0, τ ),

ρ(x, τ ) = ρτ (x) in Td ,

(1)
where the nonlocal diffusion operator is defined on the flat torus Td ≡ R

d\Zd [83],
under “rough” integrability conditions on the velocity field, mainly when either b ∈
LQ
t (LP

x ) (cf (3) below) or b ∈ Lk(ρ dxdt), k > 1, without requiring a control on its
divergence.
Our second aim is to apply the results for the above transport-diffusion equation

to obtain a priori gradient estimates for strong solutions and regularization effects for
weak solutions of fractional Hamilton–Jacobi equations with subcritical diffusion of
the form {

∂t u(x, t) + (−�)su(x, t) + H(x, Du(x, t)) = f (x, t) in QT ,

u(x, 0) = u0(x) inTd ,
(2)

where f ∈ Lq(QT ) for some q > 1 and H(x, Du) ∼ |Du|γ , γ > 1, i.e., H has
superlinear gradient growth.
Following the approach in [37,38], we first obtain Sobolev-type regularity for so-

lutions to (1). This level of regularity is crucial to derive new integral, sup-norm
and Hölder estimates for solutions to (2) by means of the nonlinear adjoint method
introduced by L.C. Evans [45,46]. These results are then combined with Gagliardo–
Nirenberg interpolation inequalities and maximal regularity in Lebesgue spaces for
fractional heat equations to obtain optimal regularity in Lebesgue spaces for (2). This
approach to deduce a priori estimates for nonlinear problems has been inspired by
[7] (see also [16,17] for later contributions), where semilinear equations with qua-
dratic growth in the gradient have been studied. These interpolation methods have
been also employed in, e.g., [76] (see also the references therein) and recently revived
in [38,50,51] in the context of Mean Field Games [65,66]. In particular, our results
extend those obtained in [37,38] to the fractional framework for s ∈ (1/2, 1), both for
(1) and (2).
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As announced, to study the regularity properties of (1)weneed to extendwell-known
properties for linear viscous equations with unbounded coefficients to the fractional
framework. In the viscous case, the first works date back to [9,10,62] for linear and
quasi-linear problems, see also [20] for the case of measurable ingredients. Within
this framework, well-posedness and integrability estimates were established when
b ∈ LQ

t (LP
x ) with Q , P satisfying

d

2P
+ 1

Q
≤ 1

2
, P ∈ [d,∞] ,Q ∈ [2,∞],

the so-called Aronson–Serrin interpolated condition. We emphasize that this assump-
tion on the drift has been shown to be sharp to get integrability estimates in Lebesgue
classes, at least in the viscous case, cf [19].
As far as we know, nonlocal heat equations with unbounded coefficients have been

treated in [68], see also [56] for gradient perturbations of the fractional Laplacian
and the nonlinear analysis carried out in [2,3] in the context of (fractional) Kardar–
Parisi–Zhangmodels. The well-posedness and integrability results we present here are
new when the velocity field satisfies a fractional version of the above Aronson–Serrin
condition, i.e., b ∈ LQ

t (LP
x ) with Q , P fulfilling

d

2sP
+ 1

Q
<

2s − 1

2s
. (3)

In particular, we mention that in this setting we are not able to cover the equality in
(3) neither for the well-posedness nor for integrability estimates of solutions of (1),
and this remains at this stage an open problem.
The second step in the analysis of (1) concerns fractional Bessel regularity estimates

of solutions to (1) when b ∈ Lk(ρ dxdt) for some k > 1, i.e., in terms of the crossed
term ¨

Qτ

|b|kρ dxdt, k > 1, (4)

which is widely analyzed for the classical viscous Fokker–Planck equations in [77,81].
In particular, we prove that for some suitable k > 1 one has the estimate

‖(−�)s−
1
2 ρ‖σ ′ �

¨
Qτ

|b|kρ + ‖ρτ‖p′

for σ ′ in some range determined in terms of the regularity p′ of the terminal data. This
bound is obtained by duality, following [37,38,77], via a maximal regularity estimate
for nonlocal equations with divergence-type terms of the form

‖(−�)s−
1
2 ρ‖σ ′ � ‖bρ‖σ ′ + ‖ρτ‖p′ .

These estimates are fundamental to study the regularity properties for PDEs arising in
Mean Field Games, cf [37,41,81,82], see also [23] for the time-fractional framework.
We remark that when b = −DpH(x, Du), (1) becomes the adjoint equation to (2)
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and bounds on the quantity (4) are natural for the mean field equations by duality
[36,37,81].
Owing to these results for (1), we deduce sup-norm, integral and Hölder estimates

for solutions to (2) with f ∈ Lq . These bounds are obtained by duality and exploit the
aforementioned Bessel regularity properties of solutions to Fokker–Planck equations.
To our knowledge, these estimates for fractional Hamilton–Jacobi equations have

not yet been investigated in the literature, especially in the context of unbounded
coefficients in L p scales. Furthermore, with respect to Hölder estimates, we provide
a Hölder’s regularization effect when γ ≥ 2s.

Finally, we are able to partially provemaximal Lq -regularity as addressed in [38,39]
for elliptic and evolutive equations, respectively, driven by the Laplacian. This means,
within our context, a control on ∂t u, (−�)su, |Du|γ ∈ Lq in terms of f ∈ Lq for
an appropriate range of the integrability exponent q > q̄ , see Sect. 5.5.1 for details
on the threshold q̄ . As a result, we find that (2) behaves in terms of regularity as
the fractional heat equation for appropriate values of q, despite the presence of the
nonlinear coercive term H = H(x, p) ∼ |p|γ . By letting s → 1, we recover the same
results of the viscous case [38], but we produce only partial a priori estimates in the
supercritical regime γ > 2s.

In the viscous stationary case, the proof in [39] has been given refining the integral
Bernsteinmethod, which, however, does not seem the right path to treat both fractional
and time-dependent problems like (2).

We recall that maximal Lq -regularity properties of Calderón–Zygmund-type are
well known for general abstract linear evolution equations, see, e.g., [53,64,73], and
are recalled in Lemma 5.16 below, while in the case s = 1

2 a result for nonlocal
equations with drift terms can be found in [96].
More precisely, following [38] our strategy consists in regarding (2) as a perturbation

of a fractional heat equation

∂t u(x, t) + (−�)su(x, t) = f (x, t) − H(x, Du)

where H(x, Du) ∼ |Du|γ . Then, maximal regularity for linear nonlocal problems, cf
[53], applied to the above equation yields

‖∂t u‖q + ‖(−�)su‖q � ‖|Du|γ ‖q + ‖ f ‖q .
The second step relies on applying fractional Gagliardo–Nirenberg inequalities in-
volving integral norms of the form

‖Du‖γ

Lγ q
x,t

� ‖u‖γ θ

Lq (H2s
q )

‖u‖γ (1−θ)

L∞
t (Lrx )

for some r ∈ (1,∞], θ ∈ (0, 1) such that θγ < 1 when γ < 2s, and those involving
Hölder norms

‖Du‖γ

Lγ q
x,t

� ‖u‖γ θ

Lq (H2s
q )

‖u‖γ (1−θ)

L∞
t (Cα

x )
, θ <

1

γ
,
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for γ ≥ 2s, cf Lemmas 3.5 and 3.6 and [78,80]. This scheme allows to show that
maximal Lq -regularity for (2) occurs for strong solutions when f ∈ Lq(QT ), q >
d+2s

(2s−1)γ ′ , d+6s−2
d+2s < γ < s

1−s , i.e., we have

‖∂t u‖Lq (QT ) + ‖(−�)su‖Lq (QT ) + ‖|Du|γ ‖Lq (QT )

≤ C
(
‖ f ‖Lq (QT ), ‖u(0)‖

B2s−2s/q
qq (Td )

, q, d, T, s, H
)

.

We refer to Remark 5.4 and Remark 5.17 for further comments on the restrictions on
γ . At this stage, we do not know neither if our restrictions when γ > 2s are sharp nor
counterexamples to themaximal regularity below the threshold d+2s

(2s−1)γ ′ when γ ≤ 2s.
Nonetheless, by letting s → 1 our results agree with those obtained in the local case
[37,38].

We believe that our duality approach to obtain integral and Hölder bounds, together
with the maximal regularity results, can be adapted to the stationary counterpart of (1)
and (2), leading to new a priori estimates. This will be the matter of future research.

Finally, we remark in passing that, in the classical viscous case, the purely quadratic
regime γ = 2 can be addressed using the Hopf–Cole transform, cf [28, Lemma 4.2].
Here, however, when γ = 2s, it is not knownwhether there exists a fractional analogue
of that transformation which allows to reduce (2) into a simpler fractional PDE. Thus,
even the natural (critical) growth case becomes not straightforward to analyze.

We now recall some related results for (1) and (2). As for fractional Fokker–Planck
equations, when b ∈ L∞ or some control on the divergence is assumed, we refer to
[32] for stationary problems and to [36] for the evolutive case. Instead, the viscous
case is well known, even under weaker assumptions on the velocity field [19,20,37,
38,41,62,77,81].

As for Hamilton–Jacobi equations, Hölder’s regularity results have been largely
investigated for parabolic problems in the borderline cases s = 0 and s = 1. For
first-order and second-order degenerate problems, we refer to [24,26,29,33], while
we mention [62,63] for the uniformly parabolic case. Recently, Hölder estimates for
second-order degenerate problemswith unbounded right-hand side have been analyzed
in [31], see also [93] for PDEs driven by the Laplacian, via De Giorgi’s techniques.
Hölder, integral and sup-norm estimates for the parabolic problem have been already
addressed in the paper [38] for the viscous case s = 1, and we recover those results
by letting s → 1. As for integrability estimates, we refer to [27] for the degenerate
case and [38] for the viscous problem.

Hölder’s regularity of fully nonlinear nonlocal equations with super-quadratic first-
order terms has been treated in [30], where the regularity stems from the coercivity of
H rather than the ellipticity. Hölder’s regularization effect of solutions to fractional
Hamilton–Jacobi equations with first-order terms having at most critical growth γ =
2s has been observed by L. Silvestre in [86]. In this case, the author has also obtained
Hölder bounds in the fractional supercritical regime 2s < γ < 2s + ε imposing some
smallness conditions on the data. More recently, a regularization effect when s = 1/2
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has been investigated in [55] under a smallness condition on the initial datum in Besov
scales.
Instead, the literature on Lipschitz regularity is considerable. The conservation of

Lipschitz regularity (i.e., with u(0) ∈ W 1,∞) for every s ∈ (0, 1) and a smoothing
effect when s ∈ (1/2, 1) go back to [44] (see also [54,57]). Besides, Lipschitz and
further regularity for nonlocal Hamilton–Jacobi equations has been investigated in
the case of critical diffusion s = 1/2 by L. Silvestre in [87]. Gradient regularity for
viscosity solutions of coercive fractional Hamilton–Jacobi equations has been widely
analyzed using viscosity solutions’ techniques. In [13], the authors have analyzed
Lipschitz regularity of solutions via the Ishii–Lionsmethodwhen f is bounded (which
requires the restriction γ < 2s, as for the classical viscous case s = 1) and via
a weak version of the Bernstein method in the periodic setting [14], where f ∈
W 1,∞ in the space variable and γ > 1, even for more general integro-differential
operators than fractional powers of the Laplacian. We finally mention that fractional
Hamilton–Jacobi-type PDEs and regularity issues have been recently investigated in
the framework of periodic homogenization problems [11].
As for the stationary counterpart of (2) with unbounded terms in Lebesgue scales,

we mention [1,2]. Related results for Hamilton–Jacobi equations, even degenerate,
can be found in [12,15,39,70] and the references therein. Other regularity estimates
for space-fractional Fokker–Planck equations, also combined with Hamilton–Jacobi
equations in the context of Mean Field Games, can be found in [32,36], while for
advection equations with fractional diffusion we refer the reader to [88,89].
Outline. Section 2 presents a list of the main results and assumptions used through-

out the paper. Section 3 is devoted to introduce the main functional spaces and related
embedding properties. Section 4 concerns the analysis of the well-posedness, Bessel
regularity, and integrability estimates for fractional Fokker–Planck equations, while
Sect. 5 comprises the applications to regularity issues for equations of Hamilton–
Jacobi-type with nonlocal diffusion. Appendix A collects some properties for advec-
tion equations with fractional diffusion.

2. Assumptions and main results

Throughout the manuscript, we will assume s ∈ (1/2, 1) unless otherwise stated.
Our first main results concern the fractional Fokker–Planck equation (1): in the first
one, b is assumed to belong to mixed Lebesgue classes in the fractional Aronson–
Serrin zone, while in the second result the parabolic Bessel regularity is studied in
terms of the crossed quantity (4). More precisely, in this section for μ ∈ R we deal
with anisotropic spaces of the form

Hμ
p (QT ) :=

{
u ∈ L p(0, T ; Hμ

p (Td)); ∂t u ∈ L p
(
0, T ; Hμ−2s

p (Td)
)}

,

where Hμ
p (Td) is the space of Bessel potentials on the torus. We refer to Sect. 3.2 for

additional properties of these spaces.
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We will assume the following additional assumption, referring to Appendix A for
further discussions on its validity.

(I) There exists a unique weak solution to the dual problem of (1){
∂tv(x, t)+(−�)sv(x, t) − b(x, t) · Dv(x, t)= f (x, t) in Qω,τ :=T

d × (ω, τ),

v(x, ω) = vω(x) in Td .

(5)
with ω ∈ [0, τ ), where b satisfies (3). In addition, if v(ω) ≥ 0, then v ≥ 0 a.e.
on Qω.

Theorem 2.1. Let b∈LQ (0, τ ; LP (Td))with P∈(d/(2s−1),∞) and Q ∈ (2s/(2s−
1),∞] satisfying

d

2sP
+ 1

Q
<

2s − 1

2s
,

and ρτ ∈ Hs−1(Td) with ρτ ∈ L1(Td). Then, there exists a weak solution ρ ∈
H2s−1

2 (Qτ ) to (1). If, in addition, ρτ ∈ L p(Td), p ∈ (1,∞], then ρ ∈ L∞(0, τ ;
L p(Td)). Finally, if (I) holds and ρτ ≥ 0, the solution is unique and ρ ≥ 0 a.e. on
Qτ .

Theorem 2.2. Let ρ be a (nonnegative) weak solution to (1) and 1 < σ ′ < d+2s
2s−1 .

(i) There exists C > 0, depending on T, σ ′, d, s such that

‖ρ‖H2s−1
σ ′ (Qτ )

≤ C

(¨
Qτ

|b(x, t)|m′
ρ(x, t) dxdt + ‖ρτ‖L1(Td )

)
,

where

1 < σ ′ <
d + 2s

d + 2s − 1

and

m′ = 1 + d + 2s

σ(2s − 1)
.

(ii) There exists C > 0, depending on T, σ ′, d, s such that

‖ρ‖H2s−1
σ ′ (Qτ )

≤ C

(¨
Qτ

|b(x, t)|m′
ρ(x, t) dxdt + ‖ρτ‖L p′ (Td )

)
,

where either

σ ′ = d + 2s

d + 2s − 1
with any finite p > 1,

or

d + 2s

d + 2s − 1
< σ ′ <

2s

2s − 1
with p = dσ

d + 2s − σ

and

m′ = 1 + d + 2s

σ(2s − 1)
.
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As for (2), we suppose that H(x, p) isC1(Td×R
d), convex in p and has polynomial

growth in the gradient entry, i.e.,

there exist constants γ > 1 andCH > 0 such that

C−1
H |p|γ − CH ≤ H(x, p) ≤ CH (|p|γ + 1) ,

DpH(x, p) · p − H(x, p) ≥ C−1
H |p|γ − CH , (H)

C−1
H |p|γ−1 − CH ≤ |DpH(x, p)| ≤ CH |p|γ−1 + CH ,

for every x ∈ T
d , p ∈ R

d . Moreover, we suppose without loss of generality that
H ≥ 0. Recall that the Lagrangian L : Td × R

d → R, L(x, ν) := supp{p · ν −
H(x, p)}, namely the Legendre transform of H in the p-variable, is well defined by
the superlinear behavior of H(x, ·). Moreover, by convexity of H(x, ·),

H(x, p) = sup
ν∈Rd

{ν · p − L(x, ν)} ,

and
H(x, p) = ν · p − L(x, ν) if and only if ν = DpH(x, p). (6)

The following properties of L are standard (see, e.g., [25]): for some CL > 0,

C−1
L |ν|γ ′ − CL ≤ L(x, ν) ≤ CL |ν|γ ′

(L1) (7)

for all ν ∈ R
d .

Concerning the case γ ≥ 2s and when dealing with Hölder regularity, we will
impose some additional space regularity, i.e., for α ∈ (0, 1) to be determined,

H(x, p) − H(x + ξ, p) ≤ CH |ξ |α
(
|DpH(x, p)|γ ′ + 1

)
(Hα)

for all x, ξ ∈ T
d and p ∈ R

d . A prototype example of H satisfying (H) is

H(x, p) = h(x)|p|γ + b(x) · p, 0 < h0 ≤ h(x), h, b ∈ C(Td).

Note that whenever h ∈ Cα(Td), this model Hamiltonian satisfies also (Hα). Unless
otherwise stated, in the next results, we will always assume that (I) holds to have the
full well-posedness of the adjoint problem. However, our approach via duality makes
use only of the existence of positive solutions to (1). Then, our first results for (2)
concern the sup-norm and integral estimates for strong solutions as in Definition 5.3
when f ∈ Lq , obtained via the nonlinear adjoint method through the strategy already
implemented in [37,38].

Theorem 2.3. Let (H) be in force and γ > 1, q > d+2s
2s . Then, there exists a constant

C > 0 depending on T, d, s, q, ‖ f ‖Lq (QT ), ‖u0‖C(Td ) such that any global weak
solution to (2) satisfies

‖u(·, τ )‖C(Td ) ≤ C for all τ ∈ [0, τ ].
The estimate holds even for strong solutions to (2).
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Theorem 2.4. Let (H) be in force and γ ∈
(
d+6s−2
d+2s , 2s

)
. Let also u ∈ H2s

q (QT ) be

a strong solution to (2) with q > d+2s
(2s−1)γ ′ . The following assertions hold:

(A) There exists a constant C1 > 0, depending on T, d, s,CH , ‖ f ‖Lq (Qτ ),

‖u0‖B2s−2s/q
qq (Td )

, q = d+2s
2s , such that any strong solution to (2) satisfies

‖u‖L∞(0,τ ;L p(Td )) ≤ C1

for 1 ≤ p < ∞.
(B) There exists a constant C2 > 0, depending on T, d, s,CH‖ f ‖Lq (Qτ ),

‖u0‖B2s−2s/q
qq (Td )

, such that any strong solution to (2) satisfies

‖u‖L∞(0,τ ;L p(Td )) ≤ C2

with p = dq
d+2s−2sq if q < d+2s

2s .

Owing to a similar approach and following the scheme of [38], spatial Hölder’s
regularity estimates forweak energy solutions to fractionalHamilton–Jacobi equations
with unbounded right-hand side are provided.

Theorem 2.5. Assume (H), (Hα) and γ ≥ 2s.

(C) Let f ∈ Lq(QT ) with q > d+2s
(2s−1)γ ′ . Let u be a local weak solution to (2). Then,

there exists C1 > 0 depending on t1,CH , ‖u‖C(QT ), ‖ f ‖Lq (QT ), q, d, T, s such
that

supt∈(t1,T )[u(·, t)]Cα(Td ) ≤ C1

with α, q, γ as follows:
– For γ = 2s we get α = 2s− d+2s

q such that α ∈ (0, 2s−1) when q < d+2s,

α < 1 when d + 2s ≤ q < d+2s
2s−1 , while we have any α ∈ (0, 1) when

q ≥ d+2s
2s−1 ;

– For 2s ≤ γ < 1
2−2s (i.e., γ ′(2s − 1) > 1), we get α = γ ′(2s − 1) − d+2s

q

such that α ∈ (0, 2s−1) if q < d+2s
(2s−1)(γ ′−1) , α ∈ (2s−1, 1) if d+2s

(2s−1)(γ ′−1) ≤
q <

(d+2s)(γ−1)
1−(2−2s)γ , while we have any α ∈ (0, 1) if q ≥ (d+2s)(γ−1)

1−(2−2s)γ ;

– For γ ≥ 1
2−2s (i.e., γ

′(2s − 1) ≤ 1), we get α = γ ′(2s − 1) − d+2s
q ∈ (0, 1)

whenever q > d+2s
γ ′(2s−1) .

(D) If u is a strong solution in H2s
q (QT ) with q > d+2s

(2s−1)γ ′ to (2), then u ∈
L∞(0, T ;Cα(Td)). In particular, there exists a positive constant C2 depend-
ing on CH , ‖u0‖Cα(Td ), ‖ f ‖Lq (QT ), q, d, T, s such that

supt∈(0,T )[u(·, t)]Cα(Td ) ≤ C2.

with α, γ as in (C).
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We remark that

α = γ ′(2s − 1) − d + 2s

q
→ α = γ ′ − d + 2

q
and

q = (d + 2s)(γ − 1)

1 − (2 − 2s)γ
→ d + 2

γ ′ − 1
as s → 1−,

so that we find the same thresholds in [38].
In the last part of the paper, we address maximal Lq -regularity in the form of a

priori estimates for strong solutions, that is stated in the next

Theorem 2.6. Assume (H), (Hα). Let u ∈ H2s
q (QT ) be a strong solution to (2) with

q > d+2s
(2s−1)γ ′ , and assume that there exists K̃1 > 0 such that

‖ f ‖Lq (QT ) + ‖u0‖
B
2s− 2s

q
qq (Td )

≤ K̃1.

If

q >

⎧⎪⎪⎨
⎪⎪⎩

(d+2s)(γ−1)
(2s−1)γ if γ ∈

(
d+6s−2
d+2s , 2s

)
d+2s
2s if γ = 2s

(d+2s)(γ−1)
(2s−2)γ+2s if γ ∈

(
2s, s

1−s

)
,

then there exists a constant C1 > 0 depending on K̃1, q, d, T, s,CH such that

‖∂t u‖Lq (QT ) + ‖u‖Lq (0,T ;H2s
q (Td )) + ‖|Du|γ ‖Lq (QT )) ≤ C1.

Note that

(d + 2s)(γ − 1)

(2s − 2)γ + 2s
→ (d + 2)(γ − 1)

2
and

1

1 − s
→ ∞ as s → 1−

so that we recover the same thresholds found in [38].
We finally point out that our results, and in particular the Hölder bounds, apply to

the so-called fractional Kardar–Parisi–Zhang equations, see [3,57], of the form

∂t z + (−�)s z = G(x, Dz(x, t)) − f (x, t) in QT

where G satisfies (H). In other terms, the sign in front of H is not important since
u = −z solves (2) with H(x, p) = G(x,−p).

3. Functional spaces

3.1. Stationary spaces: definitions and useful results

We denote by L p(Td) the space of all measurable and periodic functions belonging
to L p

loc(R
d) endowed with the norm ‖ · ‖p = ‖ · ‖L p((0,1)d ). Let k be a nonnegative



Vol. 21 (2021) Transport equations with nonlocal diffusion and applications 4271

integer. We denote by Wk,p(Td) the space of L p(Td) functions with distributional
derivatives in L p(Td) up to order k. For μ ∈ R and p ∈ (1,∞), the space of Bessel
potentials Hμ

p (Td) comprises those distributions verifying the integrability condition

(I − �)
μ
2 u ∈ L p(Td), where (I − �)

μ
2 is the operator defined in terms of Fourier

series as

(I − �)
μ
2 u =

∑
k∈Zd

(
1 + 4π2k2

)μ
2
û(k)e2π ik·x ,

with

û(k) =
ˆ

Td
u(x)e−2π ik·x .

We denote the norm in Hμ
p (Td) as

‖u‖μ,p := ‖(I − �)
μ
2 u‖p � ‖u‖p + ‖(−�)

μ
2 u‖p.

The proof of the latter equivalence is given in [36, Remark 2.3]. Let us also remark
that when μ = k is a nonnegative integer, Wk,p is isomorphic to Hk

p , see, e.g., [36,

Remark 2.3]. Moreover, it can be seen that the operator (I − �)
μ
2 maps isometrically

Hη+μ
p into Hη

p for any η,μ ∈ R, see again [36, Remark 2.3] for the proof. We further
recall that another characterization of spaces of Bessel potentials can be given via
complex interpolation methods, namely,

Hμ
p (Td) � [L p(Td),Wk,p(Td)]θ , μ = kθ,

where [X,Y ]θ stands for the complex interpolation space among the Banach spaces
(X,Y ), see, e.g., [18,73] for a complete account.
Let now μ ∈ (0, 1) and 1 ≤ p, q ≤ ∞. The Besov space Bμ

pq(T
d) consists of all

functions u ∈ L p(Td) such that the norm

‖u‖Bμ
pq (Td ) := ‖u‖L p(Td ) +

(ˆ
Td

‖ f (x + h) − f (x)‖q
L p(Td )

|h|d+μq
dh

) 1
q

is finite. When p = q = ∞ and μ ∈ (0, 1), we have Bμ∞∞(Td) � Cμ(Td) (cf [84,
Section 3.5.4 p. 168-169]), i.e., the classical Hölder space, which is endowed with the
equivalent norm

‖u‖Cμ(Td ) := ‖u‖∞ + sup
x �=y∈Td

|u(x) − u(y)|
dist(x, y)μ

,

where dist(x, y) is the geodesic distance among x, y ∈ T
d . When p = q and μ

is not an integer, one has Bμ
pp(T

d) � Wμ,p(Td), where Wμ,p(Td) is the classical
Sobolev–Slobodeckii scale in the periodic setting, see [73, p.13]. When q = ∞ and p
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is finite, the space Bμ
p∞(Td) � Nμ,p(Td) is known as Nikol’skii space [79] and the

aforementioned norm is interpreted in the usual sense via

‖u‖Nμ,p(Td ) := ‖u‖L p(Td ) + sup
|h|>0

|h|−μ‖u(x + h) − u(x)‖L p(Td ) ,

see [67, Chapter 17] for the whole space case and [94, p. 460], [84, Section 3.5.4]
for the definition in the periodic case. Yet another characterization of Besov classes
can be given by means of real interpolation methods. For m ∈ N, p, q ∈ [1,∞] and
θ ∈ (0, 1) we have

Bθm
pq (Td) �

(
L p(Td),Wm,p(Td)

)
θ,q

,

where (X,Y )θ,q stands for the real interpolation space of the interpolation couple
of Banach spaces (X,Y ), with equivalence of the respective norms, see, e.g., [73,
Example 1.10], [67, Theorem 17.24].We also denote by Fμ

pq(T
d) the periodic Triebel–

Lizorkin scale and refer to [84, Section 3.5.2] for its definition.
We recall some standard embeddings we will use in the sequel among the afore-

mentioned spaces.

Lemma 3.1. (i) Let ν, μ ∈ R with ν ≤ μ, then Hμ
p (Td) ↪→ H ν

p (T
d).

(ii) If pμ > d and μ − d/p is not an integer, then Hμ
p (Td) ↪→ Cμ−d/p(Td).

(iii) Let ν, μ ∈ R with ν ≤ μ, p, q ∈ (1,∞) and

μ − d

p
= ν − d

q
,

then Hμ
p (Td) ↪→ H ν

q (Td).

(iv) If pμ = d, then Hμ
p (Td) ↪→ Lq(Td) for all 1 ≤ q < ∞.

Proof. For (i)–(iii) see [36, Lemma 2.5], [84] and the references therein, while for (iv)
see [4]. �

Lemma 3.2. (i) Let ν, μ ∈ R with ν ≤ μ, then Wμ,p(Td) ⊂ W ν,p(Td).
(ii) If pμ > d and μ − d/p is not an integer, then Wμ,p(Td) ⊂ Cμ−d/p(Td).
(iii) Let ν, μ ∈ R with ν ≤ μ, p, q ∈ (1,∞) and

μ − d

p
= ν − d

q
,

then Wμ,p(Td) ⊂ W ν,q(Td).
(iv) If pμ = d, then Wμ,p(Td) ⊂ Lq(Td) for all 1 ≤ q < ∞.

Proof. For (i)–(iii) we refer to [84, Section 3.5.5] and [84], while for (iv) see [43,
Theorem 6.9]. �

Lemma 3.3. We have the following inclusions for μ ∈ R.

(i) Bμ
pp(T

d) ⊆ Hμ
p (Td) ⊆ Bμ

p,2(T
d) for 1 < p ≤ 2.
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(ii) Bμ
p,2(T

d) ⊆ Hμ
p (Td) ⊆ Bμ

pp(T
d) for 2 ≤ p < ∞.

(iii) Bμ
p1(T

d) ⊆ Hμ
p (Td) ⊆ Bμ

p∞(Td) for 1 ≤ p ≤ ∞.

Proof. The result onRd is proved in [95, Section 2.3.3] (see also [18, Theorem 6.4.4].
Recalling that Hμ

p is isomorphic to a Triebel–Lizorkin scale (see [84, Theorem 3.5.4-
(v)] and the same chapter for the definition of this space), one uses [84, Remark
3.5.1.4-(20)] to show (i) and (ii). Property (iii) is proved in [18, Theorem 6.2.4] and
[94, Theorem 20]. �

We now recall the following compactness result.

Lemma 3.4. For μ > 0 such that μp < d and 1 < q <
dp

d−μp the embedding of

Hμ
p (Td) onto Lq(Td) is compact.

Proof. When μ = k ∈ N this is the classical Rellich–Kondrachov theorem [67]. We
restrict to consider μ ∈ (0, 1). When p = 2 the result can be deduced by the fact that
Hμ
2 (Td) � Wμ,2(Td), and by classical compactness properties of real interpolation

spaces, cf [95, Section 1.16.4] applied with A = (L2(Td),W 1,2(Td))θ,2, A0 = B =
L2(Td), A1 = W 1,2(Td), using the compactness ofW 1,2(Td) onto L2(Td) that gives
the compact embedding of Hμ

2 onto L2. Then, the compact embedding of Hμ
2 onto

Lq , 1 < q < 2d/(d − 2μ) follows by interpolation as we will show in the case
p �= 2 below. The general case can be handled as follows. It is well-known that
W 1,p(Td) is compactly embedded onto Lr (Td) for all r such that 1 < r <

dp
d−p by the

Rellich–Kondrachov theorem, and hence the identity map T : W 1,p(Td) → L p(Td),
T (u) = u is compact. Moreover, T is also continuous from L p(Td) onto itself. Thus,
one first recalls that Besov spaces can be defined via real interpolation as follows
Bσ
pq(T

d) = (L p(Td),W 1,p(Td))σ,q . Then, onemay compose continuous embeddings
from Lemma 3.3-(i) and (ii) with compact embeddings for fractional Sobolev spaces
Wμ,p(Td) onto L p(Td) as obtained in [6]. The latter can be deduced in turn via
compactness results for real interpolation spaces [95, Section 1.16.4] as in the case
p = 2. Therefore, we have the compact embedding of Hμ

p (Td) onto L p(Td). We now
take a bounded sequence un in Hμ

p (Td). Therefore, one can extract a subsequence

unk converging strongly in L p(Td). By interpolation, for every p < q <
dp

d−μp , there
exists θ ∈ (0, 1) such that

‖unk − un j ‖q ≤ ‖unk − un j ‖1−θ
p ‖unk − un j ‖θ

dp
d−μp

→ 0

as j, k → ∞ since unk is bounded in H
μ
p (Td), which is in turn continuously embedded

onto L
dp

d−μp (Td) by Lemma 3.1-(iii). Then, we have the strong convergence in Lq with
q as above, as desired. �

We first recall the following Gagliardo–Nirenberg inequality

Lemma 3.5. Let 1 < q, r < ∞, 1 < z ≤ ∞ and s ∈ (1/2, 1). Let u ∈ H2s
q (Td) ∩

Lz(Td). Then, there exists a constant C depending on d, q, z, s, r and θ ∈ (0, 1) such
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that
‖u‖W 1,r (Td ) ≤ C‖u‖θ

H2s
q (Td )

‖u‖1−θ

Lz(Td )
. (8)

where

1

r
= 1

d
+ θ

(
1

q
− 2s

d

)
+ 1 − θ

z
, 1 ≤ 2sθ.

Proof. Inequality (8) has been obtained in [52, Corollary 1.5] and [68, Theorem 6]
on the whole space for r, z ∈ (1,∞), the periodic case being obtained via extension
arguments, see, e.g., [38, Lemma A.3] or [36, Lemma 2.5]. When, e.g., q ≥ 2, the
endpoint case z = ∞ can be deduced from the results in [22, Corollary 3.2-(c)] owing
to the inclusion H2s

q ↪→ W 2s,q . �

We now provide a Gagliardo–Nirenberg interpolation inequality involving Hölder
and Bessel potential scales.

Lemma 3.6. Let u ∈ H2s
q (Td)∩Cα(Td), q ∈ (1,∞), α ∈ (0, 1), s ∈ (1/2, 1). There

exists a constant c > 0 depending on d, β, α, q, s, p such that

‖u‖W 1,p(Td ) ≤ c‖u‖β

H2s
q (Td )

‖u‖1−β

Cα(Td )
,

when the following compatibility conditions hold

1

p
= 1

d
+ (1 − β)

(
1

q
− 2s

d

)
− β

α

d
,

with

β ∈
[
1 − α

2s − α
, 1

)
, α �= 2s − d

q
.

Proof. Wefirst prove the inequality onRd , the periodic case being again a consequence
of an extension argument. We use [52, Theorem 4.1] saying that

‖u‖Bν
pq (Rd ) ≤ C‖u‖1−β

B
ν0
p0∞(Rd )

‖u‖β

B
ν1
p1∞(Rd )

holds if

d

p
− ν = (1 − β)

(
d

p0
− ν0

)
+ β

(
d

p1
− ν1

)
;

ν0 − d

p0
�= ν1 − d

p1
;

ν ≤ (1 − β)ν0 + βν1.

We take p0 = ∞, q = 1, ν1 = 2s, ν = 1, p1 = q to get

‖u‖B1
p1(R

d) ≤ C1‖u‖1−β

Bα∞∞(Rd)
‖u‖β

B2s
q∞(Rd)
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On the one hand, we use the embedding H2s
q ↪→ B2s

q∞ from Lemma 3.3-(iii) and
conclude

‖u‖B1
p1(R

d) ≤ C2‖u‖1−β

Bα∞∞(Rd)
‖u‖β

H2s
q (Rd)

.

On the other hand, owing to the embedding B1
p1 ↪→ H1

p , together with the fact that
Bα∞∞ � Cα , we conclude

‖u‖H1
p(Rd) ≤ C3‖u‖1−β

Cα(Rd)
‖u‖β

H2s
q (Rd)

for

1

p
= 1

d
− (1 − β)

α

d
+ β

(
1

q
− 2s

d

)

with β ∈ (0, 1),

1 ≤ (1 − β)α + β2s (9)

and

α �= 2s − d

q
.

From (9), we deduce β ≥ 1−α
2s−α

. �

Remark 3.7. The above inequality has been obtained in [78,80] when s = 1, see also
[75].

We conclude this section with a fractional Poincaré–Wirtinger inequality.

Lemma 3.8. Let U ⊂ R
d be a cube. There exists C = C(d, p, μ,U ) such that for

μ ∈ (0, 1] and p ∈ (1,∞)

‖u − uU‖L p(U ) ≤ C1[u]Wμ,p(U ),

where uU = fflU u dx and [·]Wμ,p(U ) stands for the Gagliardo seminorm. As a conse-
quence, when U = T

d , for s ∈ (1/2, 1) there exists C2 > 0 such that

‖u − uU‖L p(Td ) ≤ C2‖(−�)s−
1
2 u‖L p(Td ).

Proof. The first inequality can be found in [8, Proposition B.11], [67, Chapter 17].
The second one follows from the first and the inclusions between Bessel and Sobolev–
Slobodeckii spaces Hμ+ε

p (Td) ⊆ Wμ,p(Td) ⊆ Hμ−ε
p (Td), ε > 0, μ ∈ R, cf [36,

Lemma 2.14]. �
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3.2. Parabolic spaces: definitions and embeddings

In this section, we introduce some functional spaces involving time and space
weak derivatives. Let again μ ∈ R and p ∈ (1,∞). We denote by H

μ
p(Q) :=

L p(0, T ; Hμ
p (Td)), Q := T

d × I , the space of measurable functions u : (0, T ) →
Hμ

p (Td) endowed with the norm

‖u‖
H

μ
p (Q) :=

(ˆ T

0
‖u(·, t)‖p

Hμ
p (Td )

dt

) 1
p

.

We define the space Hμ
p (Q) as the space of functions u ∈ H

μ
p(Q) with ∂t u ∈

(H
2s−μ

p′ (Q))′ equipped with the norm

‖u‖Hμ
p (Q) := ‖u‖

H
μ
p (Q) + ‖∂t u‖

(H
2s−μ

p′ (Q))′ .

Werefer the reader to [34,36]. These are natural spaces in the standard parabolic setting
s = 1: when s = 1 and μ = 2 we haveH2

p � W 2,1
p , cf [62], see also [41,59,61], [21,

Chapter 6] for further properties in the case s = 1. Note that (H
2s−μ

p′ (Q))′ coincides
withHμ−2s

p (Q). In the sequel,wedenote byQτ = T
d×(0, τ ) andQω,τ = T

d×(ω, τ).
We now recall the following trace result of functions inHμ

p on the hyperplane t = 0,
which extends [62, Lemma II.3.4] for classical spaces associated with heat PDEs to
the fractional framework.

Lemma 3.9. If u ∈ Hμ
p (QT ), μ ∈ R and p > 1, then u(0) ∈ Bμ−2s/p

pp (Td). In

addition, the space Hμ
p is continuously embedded into C([0, T ]; Bμ−2s/p

pp (Td)).

Proof. The first statement is a consequence of [73, Corollary 1.14] since (L p(Td),

H2s
p (Td))1−1/p,p � B2−2/p

pp (Td), the embedding properties for the domain of the
fractional Laplacian D(−(−�)s) and the reiteration theorem in interpolation theory.
The second fact can be deduced again by [73, Corollary 1.14], see also [5, Theorem
III.4.10.2] and [38] for the case s = 1. �

We now recall some fractional parabolic embedding theorems partially proved in
[36] and in [49]. We adapt the interpolation approach proposed in [59,61].

Lemma 3.10. (i) If 1 < p < d+2s
μ

, then Hμ
p (QT ) is continuously embedded into

Lq(QT ) for 1 ≤ q ≤ (d+2s)p
d+2s−μp .

(ii) For p ≥ 2 the parabolic space H2s−1
p (QT ) is continuously embedded into

Lδ(0, T ; Bα
δδ(T

d)), where δ > p and

α = 2s − 1 + d + 2s

δ
− d + 2s

p
,

while for p∈(1, 2]we have the embedding ofH2s−1
p (QT ) into Lδ(0, T ;Hα

δ (Td))

with δ > p and α as above.
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(iii) If p > d+2s
μ

, then H2s−1
p (QT ) is continuously embedded into Cα,α/2s for some

α ∈ (0, 1). Moreover, the spaceH2s
p (QT ) for p ∈

(
d+2s
2s , d+2s

2s−1

)
is continuously

embedded onto C([0, T ];C2s− d+2s
p (Td)).

Proof. (i) is proved in [36, Proposition 2.11] for 1 ≤ q <
(d+2s)p
d+2s−μp . A slight mod-

ification of that proof allows even to prove the endpoint case q = (d+2s)p
d+2s−μp , which

we provide below. Here, we distinguish the cases 1 < p ≤ 2 and 2 < p < ∞ in
view of the inclusions stated in Lemma 3.3. To prove the first case 1 < p ≤ 2, we
note that for any θ ∈ (0, 1), if ν = ν(θ) = (μ − 2s/p)(1 − θ) + μθ , then H ν

p

can be obtained by complex interpolation between Hμ
p and Hμ−2s/p

p (see, e.g., [18,

Theorem 6.4.5]). Moreover, H ν
p is continuously embedded in H ν+d/q−d/p

q in view of
Lemma 3.1. Hence, for a.e. t ,

c(d, p, s, q) ‖u(t)‖
ν− d

p + d
q ,q ≤ ‖u(t)‖ν,p ≤ ‖u(t)‖1−θ

μ−2s/p,p ‖u(t)‖θ
μ,p .

Therefore, for all α ≤ ν − d
p + d

q = μ + d
q − d+2s(1−θ)

p ,

(ˆ T

0
‖u(t)‖

p
θ
α,q dt

)θ

≤ C1

(ˆ T

0
‖u(t)‖(1−θ)

p
θ

μ−2s/p,p ‖u(t)‖p
μ,p dt

)θ

≤ C2

(ˆ T

0
‖u(t)‖(1−θ)

p
θ

Bμ−2s/p
pp (Td )

‖u(t)‖p
μ,p dt

)θ

,

where we used that for 1 < p ≤ 2, Bμ−2s/p
pp (Td) is embedded onto Hμ−2s/p

p (cf
Lemma 3.3-(i)). Then, the last inequality is less than or equal to

C sup
t∈[0,T ]

‖u(t)‖(1−θ)p

Bμ−2s/p
pp (Td )

(ˆ T

0
‖u(t)‖p

μ,p dt

)θ

≤ C ‖u‖(1−θ)p
Hμ

p (QT )
‖u(t)‖θp

H
μ
p (QT )

≤ C ‖u‖p
Hμ

p (QT )
,

where in the second inequality we used the embedding in Lemma 3.9

Hμ
p (QT ) ↪→ C

(
[0, T ]; Bμ−2s/p

pp (Td)
)

while, in the last one, Young’s inequality.
As for the case p ≥ 2, we may interpolate in the Sobolev–Slobodeckii or the

Besov scale depending on the differentiability order: we only outline the proof in the
scale W when μ and μ − 2s/p are noninteger, the other being equivalent using the
appropriate embeddings and interpolations inBesov spaces from [67,84]. In particular,
one uses thatW ν,p can be obtained by real interpolation amongWμ,p andWμ−2s/p,p .
Moreover, W ν,p is continuously embedded in W ν+d/q−d/p,q in view of Lemma 3.2-
(iii). Hence, for a.e. t ,

c(d, p, s, q) ‖u(t)‖
W

ν− d
p + d

q ,q
(Td )

≤ ‖u(t)‖W ν,p(Td ) ≤ ‖u(t)‖1−θ

Wμ−2s/p,p(Td )
‖u(t)‖θ

Wμ,p(Td )
.
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Then, for all α verifying α ≤ ν − d
p + d

q ≤ μ + d
q − d+2s(1−θ)

p we have

(ˆ T

0
‖u(t)‖

p
θ

Wα,q (Td )
dt

)θ

≤ C1

(ˆ T

0
‖u(t)‖

p
θ

W
ν− d

p + d
q ,q

(Td )

dt

)θ

≤ C2

(ˆ T

0
‖u(t)‖(1−θ)

p
θ

Wμ−2s/p,p(Td )
‖u(t)‖p

Wμ,p(Td )
dt

)θ

≤ C3 sup
t∈[0,T ]

‖u(t)‖(1−θ)p
Wμ−2s/p,p(Td )

(ˆ T

0
‖u(t)‖p

μ,p dt

)θ

where we used that Hμ
p is embedded intoWμ,p when p ≥ 2 (see Lemma 3.3). At this

stage, one has to use the maximal regularity embedding in Lemma 3.9 to get

Hμ
p (QT ) ↪→ C

(
[0, T ];Wμ−2s/p,p(Td)

)
and finally conclude the assertion setting α = 0 to get

(ˆ T

0
‖u(t)‖qq dt

) p
q

≤ C ‖u‖p
Hμ

p (QT )
.

Item (ii) is then a consequence of the above computations setting q = δ, μ = 2s − 1,
θ = p/q = p/δ.

The assertion (iii) is a consequence of [36, Theorem 2.6], while the last assertion is
a byproduct of the embedding in Lemma 3.9 and [67, Theorem 17.52] or Lemma 3.2,
since

H2s
p (QT ) ↪→ C

(
[0, T ]; B2s− 2s

p
pp (Td)

)
↪→ C

(
[0, T ];C2s− d+2s

p (Td)
)

�

Lemma 3.11. Let 1 < p < d+2s
μ

, μ ∈ R, μ > 0. Then, the space Hμ
p (QT ) is

compactly embedded onto Lq(QT ) for 1 ≤ q <
(d+2s)p
d+2s−μp .

Proof. To show the compactness, we restrict to consider the case μ ∈ (0, 2s], the
general case being consequence of the isometry property of the operator (I − �)

μ
2

on the spaces of Bessel potentials. The idea is to exploit the so-called Aubin–Lions–
Simon lemma. Letμ ∈ R and 0 < μ ≤ 2s with p satisfying 1 < p < d+2s

μ
. Note first

that Hμ

p′(Td) is reflexive and separable. Therefore, the space L p(0, T ; (Hμ

p′(Td))′)
is isomorphic to (L p′

(0, T ; Hμ

p′(Td)))′ ≡ (H
μ

p′(QT ))′. One can easily see that, by

definition, Hμ
p (QT ) is isomorphic to

E :=
{
u ∈ L p

(
0, T ; Hμ

p (Td)
)

, ∂t u ∈ L p
(
0, T ;

(
H2s−μ

p′ (Td)
)′)}

.
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Note also that Hμ
p (Td) is compactly embedded into L p(Td) by Lemma 3.1-(iv) and

L p(Td) is continuously embedded in (H2s−μ

p′ (Td))′ since μ ≤ 2s. Then, Aubin–
Lions–Simon lemma (see [90] and [85, Proposition III.1.3]) implies that E is com-
pactly embedded into L p(QT ). Hence Hμ

p (QT ) is compactly embedded in Lq(QT )

for any 1 ≤ q ≤ p. Let un be a bounded sequence in Hμ
p (QT ). By the previous

discussion, we may extract a subsequence unk converging to u strongly in L p(QT ).
For any p < q <

(d+2s)p
d+2s−μp , arguing by interpolation, we may assert the existence of

0 < θ < 1 such that∥∥unk − un j

∥∥
Lq (QT )

≤ ∥∥unk − un j

∥∥θ

L p(QT )

∥∥unk − un j

∥∥1−θ

L
(d+2s)p
d+2s−μp

→ 0

as j, k → +∞, since unk belongs toH
μ
p (QT ), which is in turn continuously embedded

into L
(d+2s)p
d+2s−μp in view of Lemma 3.10, so unk converges strongly also in Lq(QT ). �

We now recall a maximal regularity theorem for fractional heat equations. Consider
the problem {

∂t u + (−�)su = f (x, t) in QT ,

u(x, 0) = u0(x) in Td .
(10)

We have the following result for strong solutions to (10), i.e., u ∈ H2s
q , the equation

is solved a.e. and u(0) is meant in the sense of traces.

Theorem 3.12. Let p > 1. Suppose that u ∈ Hμ
p (QT ) solves (10). Then, every strong

solution to (10) verifies

‖u‖Hμ
p (QT ) ≤ C

(
‖ f ‖

H
μ−2s
p (QT )

+ ‖u0‖Bμ−2s/p
pp (Td )

)
,

where C > 0 depends on d, T, p, s (but remains bounded for bounded values of T ).

Proof. The proof is a consequence of well-known results for abstract evolution equa-
tions whenμ = 2s, see, e.g., [53]. The general case can be handled using the isometry
of the Bessel operator as in [60], and it is proved in [34]. In particular, in [34] the
proof is provided for stochastic PDEs, which makes necessary the restriction p > 2.
However, for standard PDEs one simply requires p > 1, as it can be seen in [34,
Lemma 3.2 and Lemma 3.4]. �

The last part of the section is devoted to present a Sobolev embedding theorem
for the parabolic Bessel potential class H2s−1

p with traces on the hyperplane t = 0
belonging to L1. This can be regarded as a nonlocal counterpart of [37, Proposition
A.2]. The result is given via the above interpolation theory arguments, although a
different proof can be done as in [37, Appendix A] via duality.

Lemma 3.13. Let s ∈ ( 12 , 1). If 1 < σ ′ < (d + 2s)/(d + 2s − 1), then H2s−1
σ ′ (QT )

is continuously embedded into L p(QT ) for

1

p
= 1

σ ′ − 2s − 1

d + 2s
.
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Moreover, if u ∈ H2s−1
σ ′ (QT ) and u(·, 0) ∈ L1(Td), we have

‖u‖L p(QT ) ≤ C
(
‖u‖H2s−1

σ ′ (QT )
+ ‖u(0)‖L1(Td )

)
, (11)

where the constant C depends on d, p, σ ′, T , but remains bounded for bounded values
of T .

Proof. The result is a consequence of Lemma 3.10-(i) with p = σ ′, μ = 2s − 1 and
the fact that

‖u(0)‖W 2s−1−2s/σ ′,σ ′
(Td )

≤ C̃‖u(0)‖L1(Td )

for some positive constant C̃ > 0 provided that σ > d + 2s, i.e., σ ′ < d+2s
d+2s−1 (< 2).

�
Lemma 3.14. Let μ > 0 and 1 ≤ p < ∞. Then Wμ,p(Td) ⊆ Nμ,p(Td) with con-
tinuous embedding. In particular, the space L p(I ;Wμ,p(Td)) ⊆ L p(I ; Nμ,p(Td))

with continuous inclusion, where I ⊂ R. Similarly, we have Hμ
p (Td) ⊆ Nμ,p(Td)

and hence L p(I ; Hμ
p (Td)) ⊆ L p(I ; Nμ,p(Td)).

Proof. The embedding Wμ,p(Td) ⊆ Nμ,p(Td) is proved in [94], [92], see also [38,
Lemma A.3] for the periodic setting. As for Hμ

p (Td) ⊆ Nμ,p(Td), we use the chain
of inclusions Hμ

p (Td) � Fμ
p2(T

d) ⊆ Bμ
p2(T

d) ⊆ Bμ
p∞(Td) � Nμ,p(Td), Fμ

pq(T
d)

being the periodic Triebel–Lizorkin space, cf [84]. Here, the first inclusion follows
by the embedding Fs

p1q(T
d) ⊆ Bs

p0q(T
d) valid for p0 ≤ p1, q0 ≤ ∞ and s ∈ R,

cf [84, Section 3.5.1, Remark 4], applied with s = μ, p0 = p1 = p and q = 2,
while the second embedding is a consequence of the inclusion Bs

pq0(T
d) ⊆ Bs

pq1(T
d)

for p ≤ ∞, q0 ≤ q1 ≤ ∞, s ∈ R, see [84, Section 3.5.1, Remark 4], applied with
s = μ and q0 = 2, q1 = ∞. The proof of the equivalences Hμ

p (Td) � Fμ
p2(T

d) and

Bμ
p∞(Td) � Nμ,p(Td) can be found in [84, Theorem 3.5.4-(iv) and (v)]. �

4. Fractional Fokker–Planck equations

4.1. Weak solutions for the fractional Fokker–Planck equation

This part is devoted to study the following Fokker–Planck equation with fractional
diffusion{

−∂tρ(x, t) + (−�)sρ(x, t) + div(b(x, t) ρ(x, t)) = 0 in Qτ ,

ρ(x, τ ) = ρτ (x) in Td .
(12)

Note that when the vector field b(x, t) = −DpH(x, Du(x, t)), where H is the nonlin-
ear term appearing in (2), then (12) becomes the adjoint equation of the linearization
of (2). Here, τ ∈ (0, T ] and Qτ := T

d × (0, τ ). From now on, unless otherwise
specified, we will focus on d > 2. We will consider the following notion of weak
solution
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Definition 4.1. Let b ∈ LQ (0, T ; LP (Td)) with P ∈ (d/(2s − 1),∞) and Q ∈
(2s/(2s − 1),∞] be such that

d

2sP
+ 1

Q
<

2s − 1

2s
, (13)

and ρτ ∈ Hs−1(Td). A (weak) solution ρ to (12) belongs toH2s−1
2 (Qτ ) and satisfies

ˆ τ

0

ˆ
Td

∂tρϕ dxdt+
¨

Qτ

(−�)s−
1
2 ρ (−�)

1
2 ϕ−bρ·Dϕ dxdt =

ˆ
Td

ρτ (x)ϕ(x, τ ) dx

(14)
for all ϕ ∈ H1

2(T
d × (0, τ ]).

In particular, the above formulation holds even when test functions are chosen to be-
long to the class H1

2(Qτ ) := {ϕ ∈ L2(0, τ ; H1(Td)), ∂tϕ ∈ L2(0, τ ; H−2s+1(Td))}.
We stress that when s = 1 the above setting falls within the classical matter described
in [19,20,62] . We remark in passing that ρ ∈ H2s−1

2 (Qτ ) ↪→ C([0, T ]; (H2s−1(Td),

H−1(Td))1/2,2) � C([0, T ]; Hs−1(Td)) in view of the classical abstract trace result
[42, Section XVIII.3 eq. (1.61)].

Remark 4.2. We point out that time integration by parts
¨

Qτ

ϕ∂tρ +
¨

Qτ

∂tϕρ dxdt =
ˆ

Td
ϕ(x, τ )ρ(x, τ ) dx −

ˆ
Td

ϕ(x, ω)ρ(x, ω) dx

(15)
holds, where duality pairings are hidden here. To prove this fact, one represents
H2s−1

2 (Qτ ) as

H2s−1
2 (Qτ ) =

{
u ∈ L2

(
0, τ ; H2s−1(Td)

)
, ∂t u ∈ L2

(
0, τ ; H−1(Td)

)}

which coincideswith the spaceW (0, τ, H2s−1(Td), H−1(Td))defined in [42,Chapter
XVIII, Section 3]. Then, one uses thatC∞

0 ([0, τ ]; H2s−1(Td)) is dense inH2s−1
2 (Td),

the embedding H2s−1
2 (Qτ ) ↪→ C([0, T ]; (H2s−1(Td), H−1(Td))1/2,2) � C([0, T ];

Hs−1(Td)) to give sense to the traces and the fact that (15) is true for ϕ, ρ ∈
C∞
0 ([0, τ ]; H2s−1(Td)) by the theory of integration and derivation in Banach spaces.

In this setting, it is sufficient to have H2s−1(Td) ↪→ H−1(Td), with H2s−1(Td) dense
in H−1(Td), cf [69, Proposition 3.3], as described in [42].

Throughout this section, we will assume that

ρτ ∈ Hs−1(Td), ρτ ≥ 0, and
ˆ

Td
ρτ (x) dx = 1. (16)

We further observe that since s > 1/2 we have ρ ∈ H2s−1
2 andH2s−1

2 ↪→ L
2(d+2s)
d+2−2s ↪→

L2 ↪→ L1 and hence ρ(t) ∈ L1(Td) for a.e. t . Therefore, by using ϕ ≡ 1 as a test
function one obtains

´
Tdρ(t) = 1 for t ∈ (0, T ).
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Remark 4.3. Note that on R
d × (0, T ) it is easy to check that the equation

∂tρ + (−�)sρ + div(b(x, t)ρ) = 0

is invariant under the scaling

ρλ(x, t) := ρ
(
λx, λ2s t

)
and bλ(x, t) := λ2s−1b

(
λx, λ2s t

)
.

Therefore, when looking the equation at small scales, for s ∈ (1/2, 1) one has to
check the effect of the scaling on the Lebesgue norm of the velocity filed. In such
case, the subcritical space turns out to be the mixed space LQ (LP )when the exponents
P ≥ d/(2s − 1) and Q ≥ 2s/(2s − 1) fulfill the condition

d

2sP
+ 1

Q
≤ 2s − 1

2s
,

which can be seen as the fractional counterpart of the classical Aronson–Serrin in-
terpolated condition for viscous problems with unbounded coefficients [19,20,62]
mentioned in the introduction. This condition allows to give a distributional sense to
the transport term. Indeed, for ϕ ∈ H1

2, ρ ∈ H2s−1
2 and P = Q , we have by Hölder’s

inequality
¨

div(b(x, t)ρ)ϕ = −
¨

b(x, t)ρ · Dϕ ≤ ‖b‖
L

d+2s
2s−1

‖ρ‖
L

2(d+2s)
d+2−2s

‖Dϕ‖L2

� ‖b‖
L

d+2s
2s−1

‖ρ‖H2s−1
2

‖Dϕ‖L2 .

Classical Fokker–Planck equations with low regularity assumptions on the drift
have been studied in [21,37,77,81] and references therein.

4.2. Existence and integrability estimates

We premise the following auxiliary result that allows to deduce the positivity and
uniqueness for the solution ρ to (12).

Lemma 4.4. Any weak solution to (12) satisfies
¨

Qτ

ρ f dxdt =
ˆ

Td
ρ(τ)v(τ ) dx (17)

for any v ∈ H1
2 solution to (5).

Proof. Let v be a weak solution to the problem{
∂tv + (−�)sv + b(x, t) · Dv = f (x, t) in Qτ

v(x, 0) = 0 in Td

Then, by duality we immediately get (17). �



Vol. 21 (2021) Transport equations with nonlocal diffusion and applications 4283

We now present the main result of this section. Note that our approach is based on
maximal regularity arguments, which is a different strategy compared to [20].

Proof of Theorem 2.1. Step 1. Existence in the energy space H2s−1
2 (Qτ ). We apply

Leray–Schauder fixed point theorem for the existence (see [48, Theorem 11.6]) on the
space H2s−1

2 (Qτ ). Consider the map M : H2s−1
2 × [0, 1] → H2s−1

2 (Qτ ) defined by
m �−→ ρ = M[m; σ ] given by solving the following parametrized PDE

−∂tρ + (−�)sρ = σdiv(b(x, t)m) in Qτ , ρ(x, τ ) = σρτ (x) in T
d .

Note thatM[m; 0] = 0 by standard results for fractional heat equations.We first show
that it is well defined. We start with the case P = Q (whence condition (13) becomes
P > d+2s

2s−1 ). By parabolic Calderón–Zygmund regularity theory (cf Theorem 3.12),
we have

‖ρ‖H2s−1
2 (Qτ )

≤ C
(
σ‖bm‖L2(Qτ ) + σ‖ρτ‖Hs−1(Td )

)
≤ C

(
‖b‖LP (Qτ )‖m‖

L
2P
P−2 (Qτ )

+ ‖ρτ‖Hs−1(Td )

)
. (18)

Now, note that

1 <
2P

P − 2
<

2(d + 2s)

d + 2 − 2s
.

We then argue by interpolation, exploit the embedding ofH2s−1
2 (Qτ ) ↪→ L

2(d+2s)
d+2−2s (Qτ )

in Lemma 3.10 and the fact thatm ∈ L1(Qτ ) to show, applying also Young’s inequal-
ity,

‖m‖
L

2P
P−2 (Qτ )

≤ C1‖m‖θ
L1(Qτ )

‖m‖1−θ

L
2(d+2s)
d+2−2s (Qτ )

= C1τ
θ‖m‖1−θ

L
2(d+2s)
d+2−2s (Qτ )

≤ C2 + ε‖m‖H2s−1
2 (Qτ )

for some θ ∈ (0, 1), ε > 0. Then, for ε = 1/2 we have

‖ρ‖H2s−1
2 (Qτ )

≤ C2
(‖b‖LP (Qτ ) + ‖ρτ‖Hs−1(Td )

) + 1

2
‖m‖H2s−1

2 (Qτ )
.

This shows thatM is well defined fromH2s−1
2 (Qτ ) into itself, sincem ∈ H2s−1

2 (Qτ ).
Moreover, if ρ ∈ H2s−1

2 (Qτ ) and σ ∈ [0, 1] is a fixed point of the map ρ = M[ρ; σ ]
we have that ρ ∈ H2s−1

2 (Qτ ) is a solution of (12) and the a priori estimate (18) carry
through uniformly on σ ∈ [0, 1]. Thus, we obtain the existence of a constant M > 0
depending only on the data (namely ‖b‖LP (Qτ ), ρτ , T, s) such that

‖ρ‖H2s−1
2 (Qτ )

≤ M.

We finally show that the map M is compact. Let mn be a bounded sequence in
H2s−1

2 (Qτ ) and let ρn = M[mn; σ ] with ρn(τ ) = σρτ . Since |b|mn ∈ L2(Qτ ),
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we have that div(bmn) ∈ H
−1
2 (Qτ ), and hence by Theorem 3.12 we deduce ρn ∈

H2s−1
2 (Qτ ). By the compactness of H2s−1

2 onto L2(Qτ ) (cf Lemma 3.11), which
is ensured by the restriction s > 1/2, we have that, along a subsequence, ρn con-
verges strongly in L2(Qτ ) to ρ and (−�)s−1/2ρn converges weakly to (−�)s−1/2ρ

in L2(Qτ ). Moreover, ρ solves the same problem as ρn given the couple (m, σ ). We
use (−�)s−1(ρn − ρ) ∈ H1

2(Qτ ) as admissible test function in the weak formulation
of the equation satisfied by ρn , together with the fact that

−
¨

Qt

∂t (ρn − ρ)(−�)s−1(ρn − ρ) dxdt

= −1

2

ˆ τ

t

ˆ
Td

∂t

[
(−�)

s−1
2 (ρn − ρ)

]2
dxdt

= −1

2

ˆ
Td

[
(−�)

s−1
2 (ρn − ρ)

]2
(τ ) dx + 1

2

ˆ
Td

[
(−�)

s−1
2 (ρn − ρ)

]2
(t) dx,

to conclude¨
Qτ

|(−�)s−
1
2 (ρn − ρ)|2 dxdt

≤ C
¨

Qτ

|b|mn||(−�)s−
1
2 (ρn − ρ)| dxdt −

¨
Qτ

(−�)sρ(−�)s−1(ρn − ρ) dxdt

+
¨

Qτ

∂tρ(−�)s−1(ρn − ρ) dxdt.

Since |b|mn ∈ L2(Qτ ) and (−�)s−1/2ρn convergesweakly to (−�)s−1/2ρ in L2(Qτ ),
the first term on the right-hand side of the above inequality converges to 0. Similarly,
since ∂tρ ∈ H

−1
2 (Qτ ) and exploiting again the weak convergence of (−�)s−1/2ρn

in L2(Qτ ), the third term goes to 0. Similar motivations provide the convergence of
the second term. This shows that (−�)s−1/2ρn converges strongly to (−�)s−1/2ρ in
L2(Qτ ).
Finally, to show the strong convergence of ∂tρn to ∂tρ in H

−1
2 (Qτ ) we argue by

duality. For every ϕ ∈ H
1
2(Qτ ) we have∣∣∣∣

¨
Qτ

∂t (ρn − ρ) ϕ dxdt

∣∣∣∣
≤

∣∣∣∣
¨

Qτ

(−�)s(ρn − ρ)ϕ dxdt

∣∣∣∣ +
∣∣∣∣
¨

Qτ

div (b (ρn − ρ)) ϕ dxdt

∣∣∣∣
≤ C
¨

Qτ

|(−�)s−
1
2 (ρn − ρ)||Dϕ| dxdt

+
¨

Qτ

|ρn − ρ||b||Dϕ| dxdt,

which yields the strong convergence of ∂tρn to ∂tρ inH−1
2 (Qτ ) in view of the previous

claims.



Vol. 21 (2021) Transport equations with nonlocal diffusion and applications 4285

The general case P �= Q can be dealt with similarly. Indeed, in the borderline case
Q = ∞, we observe that

‖bm‖L2(Qτ ) ≤ c‖|b|‖L∞(0,τ ;LP (Td ))‖m‖
L2

(
0,τ ;L 2P

P−2 (Td )

) .

We then observe that

1 <
2P

P − 2
<

2d

d − 2(2s − 1)
,

which yields by interpolation for P > d
2s−1 the inequality

‖m‖
L2

(
0,τ ;L 2P

P−2 (Td )

) ≤ C‖m‖θ

L2

(
0,τ ;L

2d
d−2(2s−1) (Td )

)

for a.e. t ∈ (0, τ ). Using the Sobolev embedding H2s−1
2 (Td) ↪→ L

2d
d−2(2s−1) (Td)), we

conclude

‖m‖
L2

(
0,τ ;L 2P

P−2 (Td )

) ≤ C‖m‖θ

H2s−1
2 (Qτ )

and then proceed as above. When P ,Q are finite, we have

‖bm‖L2(Qτ ) ≤ ‖|b|‖LQ (0,τ ;LP (Td ))‖m‖
L

2Q
Q−2

(
0,τ ;L 2P

P−2 (Td )

) .

We now use interpolation with η, δ, ζ (cf [10, Lemma 1]) satisfying

Q − 2

2Q
= 1 − θ

ζ
+ θ(η − 2)

2η
,

P − 2

2P
= 1 − θ + θ(δ − 2)

2δ
.

for θ ∈ (0, 1), η < Q , δ < P . This gives, using that m ∈ L1(Td),

‖m‖
L

2Q
Q−2

(
0,τ ;L 2P

P−2 (Td )

) ≤ C‖m‖θ

L
2η

η−2

(
0,τ ;L 2δ

δ−2 (Td )

)

We now exploit the mixed-norm embedding in [36, Proposition 2.11] (applied with
p = 2, q = 2δ

δ−2 , θ = η−2
η

, μ = 2s − 1) to conclude

‖m‖θ

L
2η

η−2

(
0,τ ;L 2δ

δ−2 (Td )

) ≤ C‖m‖θ

H2s−1
2 (Qτ )

provided that

d

2sδ
+ 1

η
<

2s − 1

2s
,
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i.e., when (13) holds for P ,Q .
Step 2. A priori estimates via Duhamel’s formula. The proof we are going to present

can bemade rigorous by regularization (cf [82, Lemma2.3]), usingDuhamel’s formula
for the regularized PDE and then passing to the limit. The approach is inspired by [19],
and it has been also recently implemented in [40, LemmaA.3] to get estimates inmixed
Lebesgue scales and in [35, Lemma A.3].
We claim that there exists t∗ ∈ (0, τ ] independently of ρτ ∈ L p(Td) such that

‖ρ(·, t)‖L p(Td ) ≤ C2‖ρτ‖L p(Td ) for all t ∈ [
t∗, τ

]
for some C2 > 0. Set ρ̃(·, t) := ρ(·, τ − t) for all t ∈ [0, τ ] and use Duhamel’s
formula to represent the solution of the (forward) equation as

ρ̃(t) = Ttρτ −
ˆ t

0
Tt−ωdiv(bρ̃)(·, ω)dω .

where Tt = e−t (−�)s . We have

‖ρ̃(t)‖L p(Td ) ≤ ‖Ttρτ‖L p(Td ) +
∥∥∥∥
ˆ t

0
Tt−ωdiv(bρ̃)(·, ω)dω

∥∥∥∥
L p(Td )

≤ ‖ρτ‖L p(Td ) +
ˆ t

0
(t − ω)

− d
2s (

1
a − 1

p )− 1
2s ‖div(bρ̃)(·, ω)‖H−1

a (Td )
dω

≤ ‖ρτ‖L p(Td ) +
ˆ t

0
(t − ω)

− d
2s (

1
a − 1

p )− 1
2s ‖bρ̃(·, ω)‖La(Td )dω ,

where we applied the decay estimates of the fractional heat semigroup between the
spaces of Bessel potentials

‖Tt u‖L p(Td ) ≤ Ct
− d

2s

(
1
a − 1

p

)
− 1

2s ‖u‖H−1
a (Td )

(cf [36]). We then use Hölder’s inequality to bound the right-hand side of the last
inequality with

‖ρ̃‖L∞(0,τ ;L p(Td ))

ˆ τ

0
(t − ω)

− d
2s

(
1
a − 1

p

)
− 1

2s ‖b(·, ω)‖LP (Td )dω

≤
(ˆ t

0
(t − ω)

[
− d

2s

(
1
a − 1

p

)
− 1

2s

]
Q ′) 1

Q ′
‖b‖LQ (0,τ ;LP (Td ))‖ρ̃‖L∞(0,τ ;L p(Td ))

where

1

a
= 1

P
+ 1

p
.

In particular, the above integral term is well posed provided that

α :=
(

− d

2sP
− 1

2s

)
Q ′ > −1,
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which is indeed satisfied precisely when

d

2sP
+ 1

Q
<

2s − 1

2s
.

Hence,

‖ρ̃‖L∞(0,τ ;L p(Td )) ≤ ‖ρτ‖L p(Td ) + C‖b‖LQ (0,τ ;LP (Td ))t
α+1
Q ′ ‖ρ̃‖L∞(0,τ ;L p(Td )) ,

which gives

‖ρ̃‖L∞(0,τ ;L p(Td )) ≤ 2‖ρτ‖L p(Td )

by taking

t ≥ t∗ :=
(

1

2C‖b‖LQ (0,τ ;LP (Td ))

) Q ′
α+1

and hence the validity of the estimate on [0, t∗]. Note that t∗ does not depend on
‖ρτ‖L p(Td ) and hence one can iterate the argument to get the estimate in [0, τ ] as in
[19].
Step3.Positivity anduniqueness. Positivity anduniqueness followexploitingLemma4.4.

In particular, if ρ1, ρ2 are two solutions of (12), by (17), we get
¨

Qτ

(ρ1 − ρ2) f dxdt = 0

which implies ρ1 = ρ2 a.e. on Qτ . Positivity of solutions follows in a similar way.
�

Remark 4.5. In Step 1, we can actually reach the threshold

d

2sP
+ 1

Q
= 2s − 1

2s

by assuming a smallness condition on ‖b‖LQ (LP ), since interpolation inequalities are
no longer available (cf [91] for the elliptic viscous case).

4.3. Parabolic Bessel regularity

We finally describe further regularity results that rely on the information b ∈
Lk(ρ dxdt) for some k > 1, that will be used in the forthcoming sections. We start
with the following maximal Lq -regularity result for PDEs with divergence-type terms
and terminal data in L1. The method of proof we present below has been already used
in [37,41,77].

Proposition 4.6. Let ρ be a (nonnegative) weak solution to (12) and

1 < σ ′ <
d + 2s

d + 2s − 1
. (19)
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Then, there exists C > 0, depending on σ ′, d, T, s such that

‖ρ‖H2s−1
σ ′ (Qτ )

≤ C
(
‖bρ‖Lσ ′

(Qτ )
+ ‖ρτ‖L1(Td )

)
. (20)

Note that C here does not depend on τ ∈ (0, T ].
Proof. Let ρ be smooth, the general case follows by an approximation argument. Let
ϕ be a smooth test function vanishing at the initial time ϕ(·, 0) = 0. The strategy
follows the proof of [37, Proposition 2.4], and it is based on duality arguments. A
different proof of the result will be provided in Remark 4.7, see also Proposition 4.8.
Using the weak formulation of (32), we write for ϕ as above¨

Qτ

ρ
(
∂tϕ + (−�)sϕ − b · Dϕ

)
dxdt =

ˆ
Td

ρτ (x)ϕ(x, τ ) dx . (21)

Let δ > 0 and ψ = ψδ be the solution to the forward fractional heat equation⎧⎨
⎩∂tψ + (−�)sψ =

(
|(−�)s− 1

2 ρ|2 + δ
) σ ′−2

2
(−�)s− 1

2 ρ in Qτ ,

ψ(x, 0) = 0 in Td .

By maximal Lσ -regularity, we get

‖ψ‖H2s
σ (Qτ ) ≤ C‖

(
|(−�)s−

1
2 ρ|2 + δ

) σ ′−2
2

(−�)s−
1
2 ρ‖Lσ (Qτ )

≤ C‖|(−�)s−
1
2 ρ|σ ′−1‖Lσ (Qτ ) = C‖(−�)s−

1
2 ρ‖σ ′−1

Lσ ′
(Qτ )

.

We take ϕ = (−�)s− 1
2 ψ in the weak formulation (21) to see that after integrating by

parts
¨

Qτ

(
|(−�)s−

1
2 ρ|2 + δ

) σ ′−2
2 |(−�)s−

1
2 ρ|2 dxdt

≤ ‖bρ‖Lσ ′
(Qτ )

‖Dϕ‖Lσ (Qτ ) + ‖ρτ‖L1(Td )‖ϕ(·, τ )‖∞. (22)

Now, observe that

‖ψ‖H2s
σ (QT ) ≥ C‖ψ‖

C(B2s−2s/σ
σσ (Td ))

= C‖(I − �)s−
1
2 ψ‖

C(B1−2s/σ
σσ (Td ))

≥ C‖ϕ(·, τ )‖
B1−2s/σ

σσ (Td )
= C‖ϕ(·, τ )‖

B1−2s/σ
σσ (Td )

≥ C‖ϕ(τ)‖∞

when σ > d+2s for possibly different positive constants, always denoted byC . Here,
we used the isometry properties of the Bessel potential operator on Besov scales [18,
Theorem 6.2.7] and the embeddings in Lemma 3.2 (see also the Morrey embedding
in [67, Theorem 17.52] for σ > 2s). We then get

¨
Qτ

(
|(−�)s−

1
2 ρ|2 + δ

) σ ′−2
2 |(−�)s−

1
2 ρ|2 dxdt

≤ C1

(
‖bρ‖Lσ ′

(Qτ )
+ ‖ρτ‖L1(Td )

)
‖ψ‖H2s

σ (Qτ )

≤ C2

(
‖bρ‖Lσ ′

(Qτ )
+ ‖ρτ‖L1(Td )

)
‖|(−�)s−

1
2 ρ|‖σ ′−1

Lσ ′
(Qτ )
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and let δ → 0 to conclude

‖(−�)s−
1
2 ρ‖Lσ ′

(Qτ )
≤ C2(‖bρ‖Lσ ′

(Qτ )
+ ‖ρτ‖L1(Td )).

The estimate on ρ ∈ Lσ ′
(Qτ ) follows by using that of ‖(−�)s− 1

2 ρ‖Lσ ′
(Qτ )

and
the fractional Poincaré-Wirtinger inequality in Lemma 3.8. The estimate on the time
derivative can be obtained by duality. Indeed, for any ϕ ∈ Lσ (0, τ ; H1

σ (Td)) we have∣∣∣∣
¨

Qτ

∂tρϕ dxdt

∣∣∣∣ =
∣∣∣∣
¨

Qτ

(−�)s−
1
2 ρ(−�)

1
2 ϕ dxdt

∣∣∣∣ + ‖bρ‖Lσ ′
(Qτ )

‖Dϕ‖Lσ (Qτ )

≤ C(‖(−�)s−
1
2 ρ‖Lσ ′

(Qτ )
+ ‖bρ‖Lσ ′

(Qτ )
)‖(−�)

1
2 ϕ‖Lσ (Qτ )

where we used that W 1,σ � H1
σ and Hölder’s inequality. �

Remark 4.7. A slightly different proof of the above result can be obtained as follows.
We observe that ρ ∈ H2s−1

2 readily implies ρ ∈ H2s−1
σ ′ for every 1 < σ ′ < 2. Let us

rewrite equation (12) as a perturbation of a fractional heat equation

−∂tρ + (−�)sρ = div(b(x, t)ρ) on Qτ

with terminal data ρ(x, τ ) := ρτ (x) on T
d . By parabolic regularity theory (see The-

orem 3.12) ρ enjoys the estimate

‖ρ‖H2s−1
σ ′ (Qτ )

≤ C
(
‖bρ‖Lσ ′

(Qτ )
+ ‖ρτ‖W 2s−1−2s/σ ′,σ ′

(Td )

)
.

By exploiting Sobolev embedding for fractional Sobolev spaces in Lemma 3.2, one
immediately obtains that

‖ρτ‖W 2s−1−2s/σ ′,σ ′
(Td )

≤ C‖ρτ‖L1(Td )

whenever 1 < σ ′ < d+2s
d+2s−1 . Indeed, by [84, Section 3.5.4] we have (Wμ,p(Td))′ =

W−μ,p′
(Td) and thus by definition we get

‖ρτ‖W 2s−1−2s/σ ′,σ ′
(Td )

= sup
ϕ∈W 2s/σ ′−2s+1,σ (Td ),‖ϕ‖

W2s/σ ′−2s+1,σ (Td )
=1

∣∣∣∣
ˆ

Td
ρτϕ dx

∣∣∣∣
≤ ‖ϕ‖∞‖ρτ‖L1(Td )

≤ C‖ϕ‖W 2s/σ ′−2s+1,σ (Td )
‖ρτ‖L1(Td ) ≤ C‖ρτ‖L1(Td ),

where the last inequality is a consequence of the embedding W 2s/σ ′−2s+1,σ (Td) ↪→
C(Td) (cf Lemma 3.2-(ii)) when(

2s/σ ′ − 2s + 1
)
σ > d,

that is σ > d + 2s or, in other words, when σ ′ satisfies (19). This highlights that the
range of σ ′ is imposed by the heat part of the equation.
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The next result asserts the fractional Bessel regularity of the fractional Fokker–
Planck equationwhen the traceρτ belongs to some suitable Lebesgue class. A different
proof has been proposed in [38, Proposition 2.2].

Proposition 4.8. Let ρ be a (nonnegative) weak solution to (12), ρτ ∈ L p′
(Td) and

either

σ ′ = d + 2s

d + 2s − 1
with any finite p > 1,

or

d + 2s

d + 2s − 1
< σ ′ <

2s

2s − 1
with p′ = dσ

(d + 1)σ − (d + 2s)
.

Then, there exists C > 0, depending on σ ′, d, T, s such that

‖ρ‖H2s−1
σ ′ (Qτ )

≤ C
(
‖bρ‖Lσ ′

(Qτ )
+ ‖ρτ‖L p′ (Td )

)
. (23)

Proof. We can proceed as in Proposition 4.6, except for the treatment of the term
involving ρτ , modifying (22). For 2s < σ < d + 2s we have

‖ψ‖H2s
σ (QT ) ≥ C‖ψ‖

C
(
B2s−2s/σ

σσ (Td )
) = C‖(I − �)s−

1
2 ψ‖

C
(
B1−2s/σ

σ,σ (Td )
)

≥ C‖ϕ(·, τ )‖
B1−2s/σ

σσ (Td )
≥ C‖ϕ(τ)‖

L
dσ

d+2s−σ (Td )
,

where in the last inequality we used the Sobolev embedding [67, Theorem 17.49].
When σ = d + 2s

‖ψ‖H2s
σ (QT ) ≥ C‖ψ‖

C(B2s−2s/σ
σσ (Td ))

= C‖(I − �)s−
1
2 ψ‖

C(B1−2s/σ
σσ (Td ))

≥ C‖ϕ(·, τ )‖
B1−2s/σ

σσ (Td )
≥ C‖ϕ(τ)‖L p(Td ).

for any p ∈ (1,∞), where we used the critical Gagliardo–Nirenberg–Sobolev embed-

ding B
1− 2s

σ
σσ (Td) ↪→ L p(Td) for all finite p from [67, Theorem 17.55] to conclude.

�

As a consequence, the above results yield the proof of Theorem 2.2.

Proof of Theorem 2.2. We use Proposition 4.6 and Proposition 4.8, depending on the
range of σ ′, and the generalized Hölder’s inequality to conclude

‖ρ‖H2s−1
σ ′ (Qτ )

≤ C
(
‖bρ1/m′

ρ1/m‖Lσ ′
(Qτ )

+ ‖ρτ‖L p′ (Td )

)

≤ C

((¨
Qτ

|b|m′
ρ dxdt

)1/m′

‖ρ‖1/m
Lζ (Qτ )

+ ‖ρτ‖L p′ (Td )

)
, (24)

for ζ > σ ′ satisfying
1

σ ′ = 1

m′ + 1

mζ
. (25)
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Then, by Young’s inequality, for all ε > 0

‖ρ‖H2s−1
σ ′ (Qτ )

≤ C

(
1

ε

¨
Qτ

|b|m′
ρ dxdt + ε‖ρ‖Lζ (Qτ ) + ‖ρτ‖L p′ (Td )

)
. (26)

One can verify that the identity m′ = 1 + d+2s
σ(2s−1) and (25) yield

1

ζ
= 1

σ ′ − 2s − 1

d + 2s
.

Indeed, (25) gives

1

ζ
= m

σ ′ − m

m′ = 1

σ ′ − m − 1

σ

and then the definition ofm′ in (2.2) yields the conclusion. The continuous embedding
of H2s−1

σ ′ (Qτ ) in Lζ (Qτ ) stated in Lemma 3.13 then implies

‖ρ‖Lζ (Qτ ) ≤ C1

(
‖ρ‖H2s−1

σ ′ (Qτ )
+ τ

)
,

finally giving

‖ρ‖Lζ (Qτ ) ≤ CC1

(
1

ε

¨
Qτ

|b|m′
ρ dxdt + ε‖ρ‖Lζ (Qτ ) + ‖ρτ‖L p′ (Td )

)
, (27)

Hence, the term ε‖ρ‖Lζ (Qτ ) can be absorbed by the left hand side of (27) by choosing
ε = (2CC1)

−1, thus providing the assertion. �

Remark 4.9. In view of the embeddings

H2s−1
σ ′ ↪→ C

(
[0, τ ]; B2s−1− 2s

σ ′
σ ′σ ′ (Td)

)
,

estimate in Theorem 2.2 implies

‖ρ(t)‖
B
2s−1− 2s

σ ′
σ ′σ ′ (Td ))

≤ C

(¨
Qτ

|b(x, t)|m′
ρ(x, t) dxdt + ‖ρτ‖L p′ (Td )

)
.

Corollary 4.10. Let ρ be a nonnegative weak solution to (12). Then, there exists
C > 0 depending on d, q ′, T, s such that

sup
t∈[0,τ ]

‖ρ(t)‖
B

d(2s−1)
d+2s − 2s

q′
p̃′ p̃′ (Td )

+ ‖ρ‖Lq′
(Qτ )

≤ C

(¨
Qτ

|b| d+2s
(2s−1)q ρ dxdt + ‖ρτ‖L p′ (Td )

)

where p̃′ = (d+2s)q ′
d+2s+(2s−1)q ′ and p = dq

d+2s−2sq when 2s(d+2s)
d+4s2

< q < d+2s
2s , while

p > 1 arbitrarily large when q = d+2s
2s and p = ∞ if q > d+2s

2s .

Proof. The estimates are consequences of Remark 4.9 and Theorem 2.2 applied with
1
σ ′ = 1

q ′ + 2s−1
d+2s together with the continuous embedding ofH2s−1

σ ′ onto Lq ′
(QT ). �
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5. On fractional Hamilton–Jacobi equations

5.1. On the notions of solutions

We first provide the following notion of weak solution to (2); wewill need to discuss
Hölder’s regularization effects for (2). See [37] for a similar definition in the viscous
case s = 1.

Definition 5.1. We say that

(i) u is a local weak solution to (2) if for all 0 < ω < T

u ∈ H1
2

(
T
d × (ω, T )

)
∩ C

(
QT

)
, H(·, Du) ∈ L1 (

Qω,T
)
, (28)

and DpH(·, Du) ∈ LP (
Qω,τ

)
(29)

for some P >
d + 2s

2s − 1
, (30)

and for all 0 < ω < τ ≤ T , ϕ ∈ H2s−1
2 (Td × (ω, τ)) ∩ L∞(Qω,τ )

ˆ τ

ω

ˆ
T
∂t uϕ dxdt +

¨
Td×(ω,τ)

(−�)
1
2 u (−�)s−

1
2 ϕ + H(x, Du)ϕ dxdt

=
¨

Td×(ω,τ)

f ϕ dxdt. (31)

(ii) u is a global weak solution if (28)–(29)–(30) hold for all 0 ≤ ω < T , that is, on
all QT (and therefore, (31) is also satisfied up to ω = 0).

Remark 5.2. Under the conditions (H) on the Hamiltonian, we observe that if (29)
holds, i.e., DpH(·, Du) ∈ LP

x,t , P > d+2s
2s−1 , then the condition (28) is always satisfied

by requiring γ > d+2s
d+1 .

Definition 5.3. We say that u ∈ H2s
q (QT ), q > 1, is a strong solution to (2) if the

equation is solved for a.e. (x, t) ∈ QT and the initial condition holds in the trace
sense, i.e., u(0) ∈ B2s−2s/q

qq (Td).

Remark 5.4. It is immediate to verify by using Sobolev embeddings that whenever
q > d+2s

2s and u ∈ H2s
q (QT ), then u ∈ H1

2(QT ), u ∈ C([0, T ]; B2s−2s/q
qq (Td)) and

hence u is a global weak solution. This means that (31) is satisfied up to ω = 0.
We note that under the restriction q > d+2s

(2s−1)γ ′ the results in [36, Proposition 2.11]
(applied with p = q, θ = 1/γ and replacing q with γ q) give the embedding

H2s
q (QT ) ↪→ Lγ q

(
0, T ;W 1,γ q(Td)

)
.
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This means that |Du|γ−1 ∈ LP
x,t for P > d+2s

2s−1 . Furthermore, we restrict to consider

γ >
d + 6s − 2

d + 2s
(> 1)

so that u ∈ L2(0, T ;W 1,2(Td)) (and in particular u ∈ H1
2(QT )) by parabolic Sobolev

embedding and the weak formulation can be safely used. Indeed, embeddings from
[36] yield that H2s

q (QT ) ↪→ L2(0, T ; H1
2 (Td)) whenever

1 < 2s + d

2
− d + 2s(1 − q/2)

q
�⇒ q >

2(d + 2s)

d + 6s − 2
.

In particular, we have

d + 2s

(2s − 1)γ ′ >
2(d + 2s)

d + 6s − 2

hence γ > d+6s−2
d+2s . This is consistent with [38], where the condition γ > d+4

d+2 is
needed when s = 1. We believe that this restriction can be relaxed to

γ >
d + 2s

d + 1

so that q > d+2s
(2s−1)γ ′ > 1 using techniques from renormalized solutions, cf [74].

Note also that in the subcritical gradient growth case γ < 2s, the solutions are not
necessarily continuous when d+2s

(2s−1)γ ′ ≤ q < d+2s
2s .

Remark 5.5. By classical embedding properties for Besov and Sobolev–Slobodeckii
spaces, we have the following inclusions

W
2s− 2s

q ,q
(Td ), B2s−2s/q

qq (Td ) ↪→

⎧⎪⎪⎨
⎪⎪⎩
C2s− d+2s

q (Td ) for q > d+2s
2s ,

L p(Td ) for p ∈ [1,∞) and q = d+2s
2s ,

L p(Td ) for p ∈ [1, dq
d+2s−2sq ] and q < d+2s

2s .

5.2. Further estimates for the adjoint variable via duality

First, we prove a simple representation formula for (2) by duality with the adjoint
problem{

−∂tρ + (−�)sρ − div(DpH(x, Du(x, t)ρ(x, t)) = 0 in Qτ ,

ρ(x, τ ) = ρτ in Td
(32)

where ρτ ∈ C∞(Td), ρτ ≥ 0 with ‖ρτ‖1 = 1.

Lemma 5.6. Let u be a local weak solution to (2). Assume that ρ is a weak solution
to (32). Then, for all ω ∈ (0, τ ) we haveˆ

Td
u(x, τ )ρτ (x) dx =

ˆ
Td
u(x, ω)ρ(x, ω) dx +

¨
Qω,τ

L
(
x, DpH(x, Du)

)
ρ dxdt

+
¨

Qω,τ

fρ dxdt (33)
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Moreover, if u is either a strong solution in H2s
q (QT ) or a global weak solution, the

previous identity holds up to ω = 0.

Proof. Using−ρ ∈ H2s−1
2 (Qω,τ )∩L∞(Qω,τ ) as a test function in the weak formula-

tion of (2) and u ∈ H1
2(Qω,τ ) as a test function in the corresponding adjoint equation,

after summing both expressions we obtain

−
ˆ τ

ω

〈∂t u(t), ρ(t)〉 −
ˆ τ

ω

〈∂tρ(t), u(t)〉 +
¨

Qω,τ

(DpH(x, Du) · Du − H(x, Du))ρ dxdt

+
¨

Qω,τ

fρ dxdt = 0

�

We are now ready to prove the crossed integrability bound on DpH with respect to
the density ρ.

Proposition 5.7. Let u be a local weak solution to (2) and ρ be a weak solution to
(32) with ‖ρτ‖L1(Td ) = 1. Then, there exists a positive constant C (depending on CH ,
‖u‖C(QT ), ‖ f ‖Lq (QT ), q, d, T, s) such that

¨
Qτ

|DpH(x, Du(x, t))|γ ′
ρ(x, t) dxdt ≤ C , (34)

Remark 5.8. An immediate consequence of (34) is the bound
¨

Qτ

|Du(x, t)|βρ(x, t) dxdt ≤ Cβ for all 1 ≤ β ≤ γ. (35)

Indeed, by (H) and
´
Tdρ(t) = 1 for a.e. t ,

˜
Qτ

|Du(x, t)|γ ρ(x, t) dxdt ≤ C , which
yields (35) for β = γ . For β < γ it is enough to exploit Young’s inequality and
‖ρ(t)‖L1(Td ) = 1.

Proof. Rearrange the representation formula (33) to get, for 0 < τ1 < τ < T ,

¨
Qτ1,τ

L
(
x, DpH(x, Du)

)
ρ dxdt =

ˆ
Td
u(x, τ )ρτ (x)dx

−
ˆ

Td
u (x, τ1) ρ (x, τ1) dx −

¨
Qτ1,τ

fρ dxdt. (36)

Fix η to be determined such that

η >
d + 2s

(2s − 1)γ ′ .

We use the bounds on the Lagrangian and Hölder’s inequality to get

C−1
L

¨
Qτ1,τ

|DpH(x, Du)|γ ′
ρ ≤
¨

Qτ1,τ

L(x, DpH(x, Du)ρ dxdt

≤ 2‖u‖C(
Qτ

) + ‖ f ‖Lη
(
Qτ1,τ

)‖ρ‖Lη′ (Qτ1,τ

)



Vol. 21 (2021) Transport equations with nonlocal diffusion and applications 4295

Let σ be such that

1

η′ = 1

σ ′ − 2s − 1

d + 2s
.

By Lemma 3.10, we have

H2s−1
σ ′

(
Qτ1,τ

)
↪→ Lη′ (

Qτ1,τ

)
Moreover, the choice η > d+2s

2s assures that σ ′ < d+2s
d+2s−1 . Then, in view of Theo-

rem 2.2-(i) we have

‖ρ‖Lη′ (Qτ1,τ

) ≤ C
(
‖ρ‖H2s−1

σ ′
(
Qτ1,τ

) + 1
)

≤ C1

(¨
Qτ1,τ

|DpH(x, Du)|m′
ρ dxdt + 1

)

for

m′ = 1 + d + 2s

(2s − 1)σ
.

Thus, we get

C−1
L

¨
Qτ1,τ

|DpH(x, Du)|γ ′
ρ ≤ 2‖u‖C(

Qτ

) + C1‖ f ‖Lη
(
Qτ1,τ

)
(¨

Qτ1,τ

|DpH(x, Du)|m′
ρ dxdt + 1

)
.

Finally, the right-hand side can be absorbed in the left-hand side when r ′ < γ ′, i.e.,

m′ = 1 + d + 2s

(2s − 1)σ
= d + 2s

(2s − 1)η
< γ ′.

One then obtain (34) by letting τ1 → 0 (note that here constants remain bounded for
τ1 ∈ (0, τ )). �
The crossed integrability of DpH against the adjoint variable ρ finally provides

the Lσ ′
regularity of (−�)s−1/2ρ. The next result extends [37, Corollary 3.4] to the

fractional framework.

Corollary 5.9. Let u be a local weak solution to (2) and ρ be a weak solution to (12).
Let σ̄ be such that

σ̄ > d + 2s and σ̄ ≥ d + 2s

(γ ′ − 1)(2s − 1)
.

Then, there exists a positive constant C such that

‖ρ‖H2s−1
σ̄ ′ (Qτ )

≤ C,

where C depends in particular on CH , ‖ f ‖L σ̄ (QT ), ‖u‖C(QT ) , η, d, T, s (but not on

τ, ρτ ), σ̄ > d+2s
2s .
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Remark 5.10. Note that the condition on σ̄ can be rewritten as

σ̄ >

{
d + 2s if γ ≤ 2s

d+2s
(γ ′−1)(2s−1) if γ > 2s.

Proof. Since σ̄ ′ < d+2s
d+2s−1 , (2.2) applies (with σ = σ̄ ), yielding

‖ρ‖H2s−1
σ̄ ′ (Qτ )

≤ C

(¨
Qτ

|DpH(x, Du(x, t))|r ′
ρ(x, t) dxdt + 1

)
,

with

m′ = 1 + d + 2s

σ̄ (2s − 1)
≤ γ ′.

If m′ = γ ′, use Proposition 5.7 to conclude. Otherwise, if m′ < γ ′ use Young’s
inequality first to control

˜ |DpH(x, Du(x, t))|r ′
ρ dxdt with

˜ |DpH(x, Du)|γ ′

dxdt + τ . �

5.3. Sup-norm and integral estimates

We are now ready to prove the sup-norm estimate for global weak solutions to
fractional Hamilton–Jacobi equations in terms of ‖u0‖C(Td ).

Proof of Theorem 2.3. We argue as in [37, Proposition 3.7]. First, we prove a bound
from above for u

u(x, τ ) ≤ ‖u0‖C(Td ) + C‖ f ‖Lq (Td )

for all τ ∈ (0, T ), x ∈ T
d and q > d+2s

2s . Consider indeed the strong solution to the
backward problem

{
−∂tμ + (−�)sμ = 0 in Td × (0, τ )

μ(x, τ ) = μτ (x) in Td

with μτ ∈ C∞(Td), μτ ≥ 0 and ‖μτ‖L1(Td ) = 1. We use μ as a test function in the
weak formulation of the fractional Hamilton–Jacobi equation to deduce

ˆ
Td

u(x, τ )μτ (x) dx =
ˆ

Td
u(x, 0)μ(x, 0) dx +

¨
Qτ

f μ dxdt −
¨

Qτ

H(x, Du)μ dxdt.

(37)
Using Theorem 4.6 with b = 0 we find ‖μ‖H2s−1

σ ′ (Qτ )
≤ C and by Lemma 3.10-(i) we

conclude

‖μ‖Lq′
(Qτ )

≤ C.
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with q ′ < d+2s
d . Then, using the above estimate, Hölder’s inequality to the second

term of the right-hand side of the above inequality and exploiting that ‖μτ‖L1(Td ) = 1

one has, choosing q > d+2s
2s ,

ˆ
Td
u(x, 0)μ(x, 0) dx +

¨
Qτ

f μ dxdt ≤ ‖u0‖C(Td ) + C‖ f ‖Lq (Qτ ).

By the assumption H ≥ 0, one concludes

ˆ
Td
u(x, τ )μτ (x) dx ≤ ‖u0‖C(Td ) + C‖ f ‖Lq (Qτ )

and the claimed estimate from above by duality after passing to the supremum over
μτ ∈ L1(Td).

To prove the bound from below, we argue using (33) with ω = 0 and proceed as in
Proposition 5.7. Fix some η such that

η >
d + 2s

(2s − 1)γ ′ .

Weuse the bounds on the Lagrangian, the upper bound obtained in Step 1, andHölder’s
inequality to get

C−1
L

¨
Qτ

|DpH(x, Du)|γ ′
ρ ≤
¨

Qτ

L(x, DpH(x, Du)ρ dxdt ≤ 2‖u‖C(
Qτ

)
+‖ f ‖Lη(Qτ )‖ρ‖Lη′

(Qτ )

≤ 2‖u0‖C(Td ) + C‖ f ‖Lq (Qτ ) + ‖ f ‖Lη(Qτ )‖ρ‖Lη′
(Qτ )

The strategy of Proposition 5.7 provides a bound on
˜

Qτ
|DpH(x, Du)|γ ′

ρ and thus
on ‖ρ‖Lη′

(Qτ )
, depending on ‖u0‖C(Td ). Going back to (37) we have

ˆ
Td
u(x, τ )ρτ dx ≥

ˆ
Td
u(x, 0)ρ(x, 0) − CL

¨
Qτ

ρ dxdt +
¨

Qτ

fρ dxdt

Since
˜

fρ can be bounded from below by Hölder’s inequality, we get

ˆ
Td
u(x, τ )ρτ (x) dx ≥ −‖u(·, 0)‖C(Td ) − CLτ − C

Since ρτ can be arbitrarily chosen so that ‖ρτ‖L1(Td ) = 1, we conclude the desired
result. �

To deduce integral estimates, we use a L p version of the adjoint method. We recall
that integral estimates for parabolic viscous Hamilton–Jacobi equations have been
already obtained in [38] using the same method, [51], see also [27, Theorem 3.1] for
degenerate problems.
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Remark 5.11. Results in Theorem 2.4 can be regarded as a priori estimates since

H2s
q ↪→ C

(
[0, T ]; B2s−2s/q

qq (Td)
)

↪→ C
(
[0, T ]; L p(Td)

)
with p = dq

d+2s−2sq .

Proof of Theorem 2.4. We denote by Tk(ω) = max{−k,min{k, ω}} the truncation at
level k > 0, u+ = max{u, 0} and u− = (−u)+.

Step 1. We first prove that

‖u+(·, τ )‖L p(Td ) ≤ C
(‖u+

0 ‖L p(Td ) + ‖ f ‖Lq (Qτ )

)
(38)

for all τ ∈ (0, T ) and x ∈ T
d , p ∈ [1,∞). For k > 0, consider the weak nonnegative

solution to the following backward problem for the fractional heat equation{
−∂tμ(x, t) + (−�)sμ(x, t) = 0 in Qτ ,

μ(x, τ ) = μτ (x) in Td ,

with μτ (x) = [Tk (u+(x,τ )]p−1

‖u+(τ )‖p−1
p

. This truncation argument is needed to ensure the exis-

tence of energy solutions. First, observe that ‖μτ‖p′ ≤ 1 and that under the standing
restrictions on γ we have

d + 2s

(2s − 1)γ ′ >
2s(d + 2s)

d + 4s2

Thus, we can safely apply Corollary 4.10 with b ≡ 0 to deduce

‖μ‖Lq′
(Qτ )

≤ C,

for d+2s
(2s−1)γ ′ < q < d+2s

2s and p = dq
d+2s−2sq or q = d+2s

2s and any p > 1, with

C not depending on k. By parabolic Kato’s inequality, cf [68, Theorem 34], u+ is a
subsolution to

∂t u
+(x, t) + (−�)su+(x, t) ≤ [ f (x, t)

−H(x, Du(x, t))]χ{u>0} in Qτ ,

where χA denotes the indicator function of a given set A. Using μ as a test function
in the weak formulation of the above equation we show thatˆ

Td
u+(x, τ )μτ (x) dx ≤

ˆ
Td
u+
0 (x)μ(x, 0) dx +

¨
Qτ ∩{u>0}

f μ dxdt

−
¨

Qτ ∩{u>0}
H(x, Du)μ dxdt.

We apply Hölder’s inequality to the second term of the right-hand side of the above
equality, the fact that H ≥ 0 and the fact that the fractional heat equation preserves
the L p norms, i.e., ‖μ(t)‖L p′ (Td )

≤ 1 for all t ∈ [0, τ ], to get, after sending k → ∞,

‖u+(τ )‖L p(Td ) ≤ C
(‖u+

0 ‖L p(Td ) + ‖ f +‖Lq (Qτ )

)
.
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Step 2. To prove the bound on the negative part, consider for k > 0 the solution ρ = ρk

to the adjoint problem{
−∂tρ(x, t) + (−�)sρ(x, t) + div(DpH(x, Du)χ{u<0}ρ) in Qτ ,

ρ(x, τ ) = μτ (x) in Td .

where now μτ (x) = [Tk (u−(x,τ )]p−1

‖u−(τ )‖p−1
p

. First, by Corollary 4.10 we have

‖ρ(0)‖
B

d(2s−1)
d+2s − 2s

q′
p̃′ p̃′ (Td )

+ ‖ρ‖Lq′
(Qτ )

≤ C

(¨
Qτ

|DpH(x, Du)| d+2s
(2s−1)q χ{u<0}ρ dxdt + ‖ρτ‖L p′ (Td )

)
(39)

withC not depending on k.Wenote again that in viewof the parabolicKato’s inequality
u− is a weak subsolution to

∂t u
−(x, t) + (−�)su−(x, t) ≤ [− f (x, t) + H(x, Du(x, t))]χ{u<0} in Qτ .

Owing to the representation formula we get
ˆ

Td
u−(τ )ρ(τ) dx +

¨
Qτ

[−DpH(x, Du) · Du− − H(x, Du)]χ{u<0}ρ dxdt

≤
ˆ

Td
u−
0 ρ(0) dx −

¨
Qτ ∩{u<0}

fρ.

By the assumption on the Lagrangian, we get[−DpH(x, Du) · Du− − H(x, Du)
]
χ{u<0} = L

(
x, DpH

(
x,−Du−))

χ{u<0}
≥

[
C−1
L |DpH(x, Du)|γ ′ − CL

]
χ{u<0}.

Then, we denote by

p̃ := (d + 2s)q ′

q ′(d + 1) − (d + 2s)
, p̃′ := (d + 2s)q ′

d + 2s + (2s − 1)q ′

and get
ˆ

Td
u−(τ )ρ(τ) dx + C−1

L

¨
Qτ

|DpH(x, Du)|γ ′
ρ dxdt − CL

¨
Qτ

χ{u<0}ρ dxdt

≤ ‖u−
0 ‖

B
2s
q′ − d(2s−1)

d+2s
p̃ p̃ (Td )

‖ρ(0)‖
B

d(2s−1)
d+2s − 2s

q′
p̃′ p̃′ (Td )

+ ‖ρ‖Lq′
(Qτ )

‖ f −‖Lq (Qτ ) .

By Lemma 3.2 and Sobolev inclusions for Besov spaces

‖u−
0 ‖

B
2s
q′ − d(2s−1)

d+2s
p̃ p̃ (Td )

≤ C1‖u−
0 ‖

B2s−2s/q
q p̃ (Td )

≤ C2‖u−
0 ‖

B2s−2s/q
qq (Td )
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since

2s − 2s

q
− d

q
= 2s

q ′ − d(2s − 1)

d + 2s
− d

p̃
= 2s

q ′ − d(2s − 1)

d + 2s
− d

(d + 1)q ′ − (d + 2s)

(d + 2s)q ′

and

q <
(d + 2s)q ′

q ′(d + 1) − (d + 2s)
.

Then, we get
ˆ

Td
u−(τ )ρ(τ) dx + C−1

L

¨
Qτ

|DpH(x, Du)|γ ′
ρ dxdt − CL

¨
Qτ

χ{u<0}ρ dxdt

≤ C‖u−
0 ‖

B2s−2s/q
qq (Td )

‖ρ(0)‖
B

d(2s−1)
d+2s − 2s

q′
p̃′ p̃′ (Td )

+ ‖ρ‖Lq′
(Qτ )

‖ f −‖Lq (Qτ ) . (40)

The term ‖ρ(0)‖
B

d(2s−1)
d+2s − 2s

q′
p̃′ p̃′ (Td )

can be bounded owing to Corollary 4.10, so using (39)

we conclude

ˆ
Td

u−(τ )ρ(τ ) dx + C−1
L

¨
Qτ

|DpH(x, Du)|γ ′
ρ dxdt

≤ C

(
‖u−

0 ‖
B2s−2s/q
qq (Td )

+ ‖ f −‖Lq (Qτ )

) (¨
Qτ

|DpH(x, Du)| d+2s
(2s−1)q χ{u<0}ρ dxdt + 1

)

+CL

¨
Qτ

χ{u<0}ρ dxdt .

Since q > d+2s
(2s−1)γ ′ , one can use Young’s inequality and that

´
ρ(t) dx ≤ ‖μτ‖p′ ≤ 1

to conclude, after letting k → ∞,
ˆ

Td
u−(τ )ρ(τ) dx ≤ C

(
‖u−

0 ‖
B2s−2s/q
qq (Td )

+ ‖ f −‖Lq (Qτ )

)

+CCLτ
(
‖u−

0 ‖
B2s−2s/q
qq (Td )

+ ‖ f −‖Lq (Qτ )

) γ ′q(2s−1)
γ ′q(2s−1)−(d+2s) + CLτ . (41)

Combining Step 1 and Step 2, we conclude

‖u‖L∞(0,τ ;L p(Td )) ≤ C

for p as above. �

Remark 5.12. We underline that knowing a well-posedness result, together with inte-

grability estimates, for the adjoint equation (12) when b ∈ L
d+2s
2s−1
x,t would allow to give

an estimate of u ∈ L
d γ−1
2s−γ

x,t when γ < 2s under finer properties of the data, see, e.g.,
[38, Remark 3.6]. This would be also consistent with results in [74]. However, such
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properties of the adjoint variable in the borderline case b ∈ L
d+2s
2s−1
x,t are at this stage an

open problem, cf [19,20,62] for the case s = 1.

The dependence in the integral estimate of Theorem 2.4 on ‖u−
0 ‖

B2s−2s/q
qq

can be

weakened to ‖u−
0 ‖L p if one knows further integrability of ρ from Corollary 4.10

when σ ′ ≥ 2s
2s−1 , see, e.g., [38].

5.4. Hölder regularity results

We are now in position to prove Hölder bounds for solutions to the fractional
Hamilton–Jacobi equation (2) as in Theorem 2.5.

Proof of Theorem 2.5. Since H is convex and superlinear, we write for a.e. (x, t) ∈
QT

H(x, Du(x, t)) = sup
ν∈Rd

{ν · Du(x, t) − L(x, ν)} .

Let 0 < ω < τ < T . By the weak formulation of (2), we obtain

ˆ τ

ω

〈∂t u(t), ϕ(t)〉dt +
¨

Qω,τ

(−�)
1
2 u(x, t) (−�)s−

1
2 ϕ(x, t)

+ [�(x, t) · Du(x, t) − L (x,�(x, t))]ϕ dxdt

≤
¨

Qω,τ

f (x, t)ϕ(x, t) dxdt (42)

for all test functions ϕ ∈ H2s−1
2 (Qω,τ )∩ L∞(Qω,τ ) and measurable� : Qω,τ → R

d

such that L(·,�(·, ·)) ∈ L1(Qω,τ ) and � · Du ∈ L1(Qω,τ ). Note that the previous
inequality becomes an equality if �(x, t) = DpH(x, Du(x, t)) in Qω,τ .

We fix ρτ ∈ C∞(Td), ‖ρτ‖L1(Td ) = 1 and ρτ ≥ 0. Set

w(x, t) = η(t)u(x, t),

where η ∈ C∞
0 ((0, T ]) is a smooth function such that 0 ≤ η(t) ≤ 1 for all t .

Use now (42) with �(x, t) = DpH(x, Du(x, t)) and ϕ = ηρ ∈ H2s−1
2 (Qω,τ ) ∩

L∞(Qω,τ ), where ρ is the adjoint variable (i.e., the weak solution to (32)) to find

ˆ τ

ω

〈∂tw(t), ρ(t)〉dt

+
¨

Qω,τ

(−�)
1
2 w(x, t) (−�)s−

1
2 ϕ(x, t) + DpH(x, Du) · Dwρ

−L
(
x, DpH(x, Du)

)
ηρ dxdt

=
¨

Qω,τ

f ηρ dxdt +
¨

Qω,τ

uη′ρ dxdt. (43)
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Then, we use w ∈ H1
2(QT ) as a test function in the weak formulation of the adjoint

problem satisfied by ρ to get

−
ˆ τ

ω

〈∂tρ(t), w(t)〉dt+
¨

Qω,τ

(−�)s−
1
2 ρ(−�)

1
2 w+DpH(x, Du)ρ ·Dw dxdt = 0.

(44)
We nowfixω small so that η(ω) = 0.We then obtain, subtracting the previous equality
to (43), and integrating by parts in time, the identity

ˆ
Td

w(x, τ )ρτ (x)dx =
¨

Qω,τ

η(t) f (x, t)ρ(x, t)dxdt

+
¨

Qω,τ

η(t)L
(
x, DpH(x, Du(x, t))

)
ρ(x, t)dxdt

+
¨

Qω,τ

η′(t)u(x, t)ρ(x, t)dxdt. (45)

For h > 0 and ξ ∈ R
d , |ξ | = 1, define ρ̂(x, t) := ρ(x − hξ, t). After a change of

variables in the nonlocal problem (32), it can be seen that ρ̂ satisfies, using w as a test
function,

−
ˆ τ

ω

〈∂t ρ̂(t), w(t)〉dt +
¨

Qω,τ

(−�)s−
1
2 ρ̂(−�)

1
2 w dxdt

+
¨

Qω,τ

DpH (x − hξ, Du(x − hξ, t)) ρ̂(x, t) · Dw(x, t) dxdt = 0. (46)

As before, we plug the vector field �(x, t) = DpH(x − hξ, Du(x − hξ, t)) and the
test function ϕ = ηρ̂ in (42) to conclude

ˆ τ

ω

〈∂tw(t), ρ̂(t)〉dt

+
¨

Qω,τ

(−�)s−
1
2 ρ̂(−�)

1
2 w + DpH (x − hξ, Du(x − hξ, t)) · Dwρ̂

−L
(
x, DpH(x − hξ, Du(x − hξ, t))

)
ηρ̂ dxdt

≤
¨

Qω,τ

f ηρ̂ dxdt +
¨

Qω,τ

uη′ρ̂ dxdt.

We subtract (46) to the previous inequality and obtain

ˆ
Td

w(x, τ )ρ̂τ (x)dx ≤
¨

Qω,τ

L
(
x, DpH (x − hξ, Du(x − hξ, t))

)
ηρ̂ dxdt

+
¨

Qω,τ

f ηρ̂ dxdt +
¨

Qω,τ

uη′ρ̂ dxdt,
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which, after the change of variables x �→ x + hξ , becomes

ˆ
Td

w(x + hξ, τ )ρτ (x)dx ≤
¨

Qω,τ

η(t)L
(
x + hξ, DpH(x, Du(x, t))

)
ρ(x, t) dxdt

+
¨

Qω,τ

f ηρ̂ dxdt +
¨

Qω,τ

uη′ρ̂ dxdt. (47)

Taking the difference between (47) and (45), we conclude

ˆ
Td

(w(x + hξ, τ ) − w(x, τ ))ρτ (x)dx

≤
¨

Qω,τ

η(t)
(
L

(
x+hξ, DpH(x, Du(x, t))

)−L(x, DpH(x, Du(x, t)))
)
ρ(x, t) dxdt

+
¨

Qω,τ

η(t) f (x, t) (ρ(x − hξ, t) − ρ(x, t)) dxdt

+
¨

Qω,τ

η′(t)u(x, t) (ρ(x − hξ, t) − ρ(x, t)) dxdt (48)

Step 2. We now estimate all the right hand side terms of (48). We emphasize that
constants C,C1, . . . are not going to depend on τ, ρτ , h, ξ .

First, following [38, Theorem 1.2-Step 2] and the proof of Proposition 5.7, we
observe that in view of Theorem 2.2 we get

¨
Qω,τ

|DpH(x, Du(x, t))|γ ′
ρ(x, t) dxdt + ‖ρ‖H2s−1

d+2s
d+4s−1−γ ′(2s−1)

(Qω,τ )
≤ C2.

Let α ∈ (0, 1) to be determined later. For ν = DpH(x, p), we have L(x, ν) =
ν · p − H(x, p) and thus

L
(
x + hξ, DpH(x, Du(x, t))

) − L(x, DpH (x, Du(x, t))

≤ H(x, Du(x, t)) − H (x + ξ, Du(x, t)) .

Next, using (Hα) and the above inequality, we get

∣∣∣∣∣
¨

Qω,τ

η(t)
(
L(x + hξ, DpH(x, Du(x, t))) − L

(
x, DpH(x, Du(x, t))

))
ρ(x, t) dxdt

∣∣∣∣∣
≤ C2CL |h|α

¨
Qω,τ

(
|DpH(x, Du(x, t))|γ ′ + 1

)
ρ(x, t) dxdt ≤ C |h|α.
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Wecan apply theSobolev embedding inLemma3.10-(ii)with δ = q ′, p= d+2s
d+4s−1−γ ′(2s−1)

(≤ d+2s
d+2s−1 < 2), giving α = γ ′(2s − 1) − d+2s

q , and Lemma 3.14, to show

∣∣∣∣∣
¨

Qω,τ

η(t) f (x, t) (ρ(x − hξ, t) − ρ(x, t)) dxdt

∣∣∣∣∣
≤ |h|α

¨
Qω,τ

| f (x, t)| | (ρ(x − hξ, t) − ρ(x, t)) |
|h|α dxdt

≤ |h|α‖ f ‖Lq (Qω,τ )‖ρ‖Lq′
(ω,τ ;Nα,q′

(Td ))

≤ C1|h|α‖ f ‖Lq (Qω,τ )‖ρ‖Lq′
(ω,τ ;Hα

q′ (Td ))

≤ C2|h|α‖ f ‖Lq (Qω,τ )‖ρ‖H2s−1
d+2s

d+4s−1−γ ′(2s−1)

(Qω,τ )

≤ C3|h|α‖ f ‖Lq (Qω,τ ).

Finally, as above, we conclude∣∣∣∣∣
¨

Qω,τ

η′(t)u(x, t) (ρ(x − hξ, t) − ρ(x, t)) dxdt

∣∣∣∣∣
≤ |h|α

(
sup
(0,T )

|η′(t)|
)

‖u‖Lq′
(Qω,τ )

‖ρ‖Lq′
(ω,τ ;Nα,q′

(Td ))

≤ C1|h|α
(
sup
(0,T )

|η′(t)|
)

‖u‖C(QT )‖ρ‖Lq′
(ω,τ ;Hα

q′ (Td ))

≤ C2|h|α sup
(0,T )

|η′(t)|.

Plugging all the estimates in (48), we obtain
ˆ

Td
(w(x + hξ, τ ) − w(x, τ )) ρτ (x)dx

≤ C |h|α
(
sup
(0,T )

|η′(t)| + 1

)
(49)

when q > d+2s
(2s−1)γ ′ .

Step 3. Since (49) holds for all smooth ρτ ≥ 0 with ‖ρτ‖L1(Td ) = 1, we get

η(τ)[u(x + hξ, τ ) − u(x, τ )] ≤ C |h|α
(
sup
(0,T )

|η′(t)| + 1

)

for all x ∈ T
d , ξ ∈ R

d , h > 0. Thus, u(·, τ ) is Hölder continuous, and

η(τ)[u(·, τ )]Cα(Td ) ≤ C

(
sup
(0,T )

|η′(t)| + 1

)
.
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Since C does not depend on τ ∈ (0, T ), we take t1 ∈ (0, T ), η = η(t) nonnegative
smooth function on [0, T ] such that η(t) ≤ 1, η(t) = 1 on [t1, T ] and vanishing on
[0, t1/2]. This proves Theorem 2.5-(C).

To prove the global-in-time bound in (D), one may observe that if u ∈ H2s
q (QT )

is a strong solution with q > d+2s
(2s−1)γ ′ , γ ≥ 2s (or a global weak solution), then

the solution is global in time and one can take ω = 0 throughout the proof setting
also η ≡ 1 on [0, T ]. Being the solution global, norms ‖u‖C(QT ) can be replaced
by ‖u0‖C(Td ) by Theorem 2.3, which are in turn bounded by ‖u0‖Cα(Td ). Now, an
additional term of the form

ˆ
Td

u(x + h, 0) − u(x, 0)

|h|α ρ(x, 0) dx

arises, which can be immediately bounded by [u0]Cα(Td ) since
´
Tdρ(0) = 1. �

Remark 5.13. Using the same scheme of Theorem 2.5, we believe one can even handle
the case γ < 2s by considering appropriate weak solutions (not continuous on the
whole cylinder QT ) to (2).

Remark 5.14. An approach similar to that for the Hölder bounds and the one in [37,
Theorem 1.1], which exploits the regularity properties in Corollary 5.9, yields a Lip-
schitz regularization effect for (2) whenever f ∈ Lq(0, T ; H2−2s

q (Td)) for σ = q as
in Corollary 5.9. This requires to impose that |Dx H(x, p)| ≤ CH (|p|γ + 1) instead
of (Hα), see [49, Chapter 7].

5.5. Maximal Lq -regularity

5.5.1. An overview of the results in the viscous case

Let us first consider the following viscous problem

− �u + |Du|γ = f (x) in Td , γ > 1, (50)

where f is an unbounded source term belonging to a suitable Lebesgue space Lq . In
[71,72] P.-L. Lions proposed the following conjecture:

Conjecture 5.15. Let f ∈ Lq(Td), q > 1, for some

q >
d

γ ′ = d(γ − 1)

γ
. (51)

and γ > 1. Then, every solution to (50) satisfies the a priori estimate

‖D2u‖Lq + ‖|Du|γ ‖Lq � ‖ f ‖Lq .

Moreover, the estimate is false when q ≤ d/γ ′.
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A byproduct of this statement is a maximal Lq -regularity for solutions to (50). In
other words, (50) behaves, in terms of regularity, as the Poisson equation (cf [48,
Theorem 9.9]) under the regime (51) of the integrability exponent q of the right-hand
side f . Conjecture 5.15 completes the results in [70] for the subcritical range of the
integrability of the forcing term, where it was proved a Lipschitz regularity result
when f ∈ Lq , q > d, and every γ > 1, obtained via an integral Bernstein method.
A proof of Conjecture 5.15 has been proposed in [39] appropriately modifying the
Bernstein method, while an extension to the parabolic viscous framework has been
already provided in [38]. More precisely, in Theorem 1.1 of [38] it has been proved
that maximal regularity for viscous (2) occurs for strong solutions when f ∈ Lq(QT )

with

q >

{
(d + 2) γ−1

γ
if 1 + 2

d+2 < γ < 2

(d + 2) γ−1
2 if γ ≥ 2.

Note that by scaling arguments the threshold q = (d+2)(γ −1)/γ can be regarded as
a parabolic analogue to the one in (51). We also refer to [40] for more recent maximal
regularity results for viscous (s = 1) problems with quadratic gradient growth and
right-hand sides in mixed Lebesgue scales and to [58] (and the references therein)
for some maximal regularity properties for fully nonlinear second-order uniformly
parabolic problems in the context of L p viscosity solutions.

5.5.2. The fractional case

We first recall the following Calderón–Zygmund regularity result for the fractional
heat equation with unbounded potential.

Lemma 5.16. Let u ∈ H2s
q (QT ), q > 1, be a strong solution to

{
∂t u + (−�)su = V (x, t) in QT

u(x, 0) = u0(x) in Td .

with V ∈ Lq(QT ) and u0 ∈ (Lq(Td), H2s
q (Td))1−1/q,q � B2s−2s/q

qq (Td). Then, there
exists a constant C that remains bounded for bounded values of T , such that

‖u‖H2s
q (QT ) = ‖∂t u‖Lq (QT ) + ‖u‖Lq (0,T ;H2s

q (Td ))

≤ C
(
‖V ‖Lq (QT ) + ‖u0‖B2s−2s/q

qq (Td )

)
.

As a consequence, every strong solution to (2) with u0 ∈ B2s−2s/q
qq (Td) satisfies

‖u‖H2s
q (QT ) ≤ C(‖ f ‖Lq (QT ) + ‖H(x, Du)‖Lq (QT ) + ‖u0‖B2s−2s/q

qq (Td )
) .
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By gathering the previous results and the estimates in Theorems 2.3 and Theo-
rem 2.4, we have the following maximal Lq -regularity result for (2) with (fractional)
sub-natural growth.

Proof of Theorem 2.6. We exploit the Gagliardo–Nirenberg inequality in Lemma 3.5
to get for γ ∈ (1, 2s)

‖Du(t)‖Lγ q (QT ) ≤ C1‖u(t)‖θ
H2s
q (Td )

‖u(t)‖1−θ

Lz(Td )
(52)

for z ∈ (1,∞) and θ ∈ [ 1
2s , 1

)
with

1

γ q
= 1

d
+ θ

(
1

q
− 2s

d

)
+ 1 − θ

z
.

By Theorems 2.3 and 2.4, we have

‖u‖L∞(0,T ;Lz(Td )) < ∞

for any z ≤ p = dq
d+2s−2sq if q < d+2s

2s , z ∈ [1,∞) when q = d+2s
2s , z = ∞ for

q > d+2s
2s . Since q > d+2s

(2s−1)γ ′ , we conclude p >
d(γ−1)
2s−γ

. Then, we choose z close to
d(γ−1)
2s−γ

so that

θγ =
1
z + 1

d − 1
γ q

1
z + 2s

d − 1
q

γ < 1

and θ ∈ [1/2s, 1/γ ). Raising (52) to γ q and integrating in time, we have

‖Du‖Lγ q (QT ≤ C2‖u‖γ θ

Lq
(
0,T ;H2s

q (Td )
)‖u‖γ (1−θ)

L∞(0,T ;Lz(Td ))
.

Then, by (H) we deduce for positive constants C3,C4 > 0

‖H(x, Du)‖Lq (QT ) ≤ C3

(
1 + ‖|Du|‖γ

Lγ q (QT )

)

≤ C4

(
‖u‖γ θ

Lq
(
0,T ;H2s

q (Td )
)‖u‖γ (1−θ)

L∞(0,T ;Lz(Td ))
+ 1

)
.

Using Lemma 5.16 and Young’s inequality, we have

‖u‖H2s
q (QT ) ≤ C5

(
‖H(x, Du)‖Lq (QT ) + ‖ f ‖Lq (QT ) + ‖u0‖B2s−2s/q

qq (Td )

)
≤ C6

(
‖u‖γ θ

Lq (0,T ;H2s
q (Td ))

‖u‖γ (1−θ)

L∞(0,T ;Lz(Td ))
+ ‖ f ‖Lq (QT ) + ‖u0‖B2s−2s/q

qq (Td )

)

≤ 1

2
‖u‖Lq (0,T ;H2s

q (Td ))+C7‖u‖
γ (1−θ)
1−γ θ

L∞(0,T ;Lz(Td ))
+ C6

(
‖ f ‖Lq (QT ) + ‖u0‖B2s−2s/q

qq (Td )

)
.
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We then absorb the term 1
2‖u‖H2s

q (QT ) on the left-hand side and use the integral estimate
in Theorem 2.4 in L∞(Lz) to conclude the assertion. Then, we have

‖|Du|‖Lγ q (QT ) ≤ C
(
‖ f ‖Lq (QT ), ‖u0‖B2s−2s/q

qq (Td )

)
for a possibly different constant C > 0. To prove the case γ ≥ 2s, we begin with the
Hölder bound in Theorem 2.5

sup
t∈[0,T ]

‖u(t)‖Cα(Td ) < ∞

valid for γ ≥ 2s as follows:

• For γ = 2s, we get α = 2s − d+2s
q such that α ∈ (0, 2s − 1) when q < d + 2s,

α < 1 when d +2s ≤ q < d+2s
2s−1 , while we have any α ∈ (0, 1) when q ≥ d+2s

2s−1 ;

• For 2s ≤ γ < 1
2−2s (i.e., γ

′(2s − 1) > 1), we get α = γ ′(2s − 1) − d+2s
q such

that α ∈ (0, 2s − 1) if q < d+2s
(2s−1)(γ ′−1) , α ∈ (2s − 1, 1) if d+2s

(2s−1)(γ ′−1) ≤ q <

(d+2s)(γ−1)
1−(2−2s)γ , while we have any α ∈ (0, 1) if q ≥ (d+2s)(γ−1)

1−(2−2s)γ ;

• For γ ≥ 1
2−2s (i.e., γ ′(2s − 1) ≤ 1), we get α = γ ′(2s − 1) − d+2s

q ∈ (0, 1)

when q > d+2s
γ ′(2s−1) (≥ d + 2s).

We use Lemma 3.6 to get for a.e. t ∈ (0, T )

‖Du(t)‖Lγ q (Td ) ≤ C‖u(t)‖β

H2s
q (Td )

‖u(t)‖1−β

Cα(Td )

and hence after raising the above inequality to the power γ q and integrating in time
we get

‖Du‖Lγ q (QT ) ≤ C‖u‖β

Lq
(
0,T ;H2s

q (Td )
)‖u‖1−β

L∞(0,T ;Cα(Td ))
,

where

β ∈
[
1 − α

2s − α
, 1

)
, α �= 2s − d

q
.

Choosing β = 1−α
2s−α

(or α close to 1 when γ < 1
2−2s and q ≥ (d+2s)(γ−1)

1−(2−2s)γ ), we get
βγ < 1 when

α = γ ′(2s − 1) − d + 2s

q
>

γ − 2s

γ − 1
,

i.e., when γ < s/(1 − s)

q >
(d + 2s)(γ − 1)

2s − (2 − 2s)γ
.
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Observe also that 1
2−2s < 2s

2−2s = s
1−s . In particular, when γ = 2s we have q >

(d+2s)(2s−1)
4s2−2s

= d+2s
2s . Then, we deduce

‖H(x, Du)‖Lq (QT ) ≤ C1

(
1 + ‖|Du|‖γ

Lγ q (QT )

)
≤ C2(‖u‖γβ

Lq (0,T ;H2s
q (Td ))

‖u‖γ (1−β)

L∞(0,T ;Cα(Td ))
+ 1) ,

which allows to exploit generalized Young’s inequality since γβ < 1 and conclude as
in the case γ < 2s. �
Remark 5.17. The restriction γ < s

1−s is not new in the literature. Under the assump-

tion γ ∈
[
d+2s
d+1 , s

1−s

)
, it has been recently proved in [3] the existence of solutions for

fractional Kardar–Parisi–Zhang equations with right-hand side in Lq under suitable
restrictions on q for problems posed on bounded C1,1 domains of Rd .
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A. Nonlocal equations with drift terms

We begin with the following comparison principle for (5), whose proof follows the
strategy implemented in [47]. By weak solutions to (5), we mean a function in the
space H1

2(QT ) satisfying the equation in the sense of distributions.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


4310 A. Goffi J. Evol. Equ.

Proposition A.1. Let v1, v2 ∈ L2(ω, τ ; H1
2 (Td)) be, respectively, a weak sub- and

supersolution to (5) with b ∈ LP (Qω,τ ), P ≥ d+2s
2s−1 such that v1(ω) ≤ v2(ω). Then

v1 ≤ v2 in Qω,τ .

Proof. Let us suppose that v1, v2 are two weak sub- and supersolutions to (5) such
that w = v1 − v2 > 0 in a subset D ⊂ QT such that |D| > 0. Denote by

wk =
{

w+ − k if w+ > k

0 otherwise

for k ∈ (0, M), M = supD w+. We use ϕ = (−�)1−swk ∈ L2(H2s−1) as a test
function in the weak formulation of the difference of the two equations. We then get

esssupt∈(0,T )

ˆ
Td

|(−�)
1−s
2 wk |2 dx +

¨
QT

|(−�)
1
2 wk |2 dxdt

≤
¨

QT

|b||Dwk ||(−�)1−swk | dxdt.

Denote by

Ek := {(x, t) ∈ QT : k < w+ < sup
D

w+}.

We then note that by Hölder’s inequality
¨

QT

|b||Dwk ||(−�)1−swk | dxdt

≤ ‖b‖
L

d+2s
2s−1 (Ek)

‖Dwk‖L2(QT )‖(−�)1−swk‖
L

2(d+2s)
d+2−2s (QT )

≤ C‖b‖
L

d+2s
2s−1 (Ek)

‖Dwk‖L2(QT )‖wk‖
L

2(d+2s)
d+2−2s (0,T ;H2−2s

2(d+2s)
d+2−2s

(Td ))
.

We use the fractional Gagliardo–Nirenberg inequality on Besov scales [52, Theorem
1.2] saying that

‖u‖Bν
p1(T

d ) ≤ C‖u‖1−θ

B
ν0
p0∞(Td )

‖u‖θ

B
ν1
p1∞(Td )

for

d

p
− ν = (1 − θ)

(
d

p0
− ν0

)
+ θ

(
d

p1
− ν1

)
;

ν0 − d

p0
�= ν − d

p
;

ν < (1 − θ)ν0 + θν1.

We then take ν = 2 − 2s, q = 1, p0 = p1 = 2, ν0 = 1 − s, ν1 = 1 and get using
Lemma 3.3-(iii)

‖u(t)‖H2−2s
p (Td )

≤ C‖u(t)‖1−θ

H1−s
2 (Td )

‖u(t)‖θ

H1
2 (Td )
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with θ ∈ (1/s − 1, 1) and p fulfilling the above compatibility condition. We then
integrate in time to get

ˆ T

0
‖u(t)‖p

H2−2s
p (Td )

dt ≤ C
ˆ T

0
‖u(t)‖(1−θ)p

H1−s
2 (Td )

‖u(t)‖θp
H1
2 (Td )

dt.

We take θ = 2/p for p = 2(d+2s)
d+2−2s , so that θ = d+2−2s

d+2s (hence θ + 1 = 2d+2
d+2s > 1

s ),

θp = 2 and (1 − θ)p = 4(2s−1)
d+2−2s . Then, it is immediate to check that

d

p
− 2 + 2s = (1 − θ)

(
d

2
− 1 + s

)
+ θ

(
d

2
− 1

)
.

This yields

‖u‖2
d+2s

d+2−2s

L
2(d+2s)
d+2−2s

(
0,T ;H2−2s

2(d+2s)
d+2−2s

(Td )

)

≤ C‖u‖
4(2s−1)
d+2−2s

L∞(0,T ;H1−s (Td ))

(ˆ T

0
‖u(t)‖2

H1
2 (Td )

)
. (53)

Note that this agrees with the classical viscous case s = 1, cf [47, Lemma 3.1]. This
yields the embedding

L∞ (
0, T ; H1−s

2 (Td)
)

∩ L2
(
0, T ; H1(Td)

)
↪→ L

2(d+2s)
d+2−2s

(
0, T ; H2−2s

2(d+2s)
d+2−2s

(Td)

)
.

Embedding (53), after applying Young’s inequality, gives

‖u‖
L

2(d+2s)
d+2−2s (0,T ;H2−2s

2(d+2s)
d+2−2s

(Td ))
≤ C1‖u‖

2(2s−1)
d+2s

L∞(0,T ;H1−s (Td ))
‖u‖

d+2−2s
d+2s

L2
(
0,T ;H1

2 (Td )
)

≤ C2

(
‖u‖L∞(0,T ;H1−s (Td )) + ‖u‖L2(0,T ;H1(Td ))

)
.

We then conclude(
esssupt∈(0,T )‖(−�)

1−s
2 wk‖L2(Td ) + ‖(−�)

1
2 wk‖L2(QT )

)2
≤ C‖b‖

L
d+2s
2s−1 (Ek )

(
esssupt∈(0,T )‖(−�)

1−s
2 wk‖L2(Td ) + ‖(−�)

1
2 wk‖L2(QT )

)2
.

(54)

As k → M this yields ‖b‖
L

d+2s
2s−1 (Ek )

→ 0, and hence (54) gives a contradiction. �

We have the following existence result obtained by similar arguments used for
elliptic problems, cf [2, Lemma 3.4], [47] and the references therein.

Proposition A.2. Let vω ∈ H1−s(Td) and b ∈ LP (Qω,τ ), P ≥ d+2s
2s−1 . Then, there

exists a solution v ∈ H1
2(Q(ω,τ)) to (5).
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Proof. We prove the existence via the Leray–Schauder fixed point theorem. Define
the map � : H1

2(Qω,τ ) × [0, 1] → H1
2(Qω,τ ) as the map z �−→ �[z; σ ] = v with v

solving the parametrized equation

∂tv + (−�)sv = σb(x, t) · Dz in Qω, v(x, ω) = σvω in Td ,

for the parameter σ ∈ [0, 1]. First, observe that �[z; 0] = 0 by standard results

for fractional heat equations. We then observe that H1
2 ↪→ L

2(d+2s)
d+2s−2 ↪→ L

2(d+2s)
d+2−2s . By

Hölder’s inequality, we observe b · Dz ∈ L2
x,t when b ∈ LP

x,t with P ≥ d+2s
2s−1 since

Dz ∈ L
2(d+2s)
d+2−2s . Then, maximal regularity yields v ∈ H2s

2 and hence v ∈ L2(H1).
Finally, by using the equation we get ∂tv ∈ L2(H−1), so that the map is well defined
in H1

2. We now prove the compactness of the map. Let zn be a bounded sequence in
H1

2(Qω,τ ) and vn = �[zn, σ ]. Arguing as above, we get vn ∈ H1
2(Qω,τ ) and then

exploit the compactness of H1
2(Qω,τ ) into L2(Qω,τ ) (see Lemma 3.11 with μ = 1),

to have the strong convergence of vn to v in L2(Qω,τ ) and the weak convergence of

(−�)
1
2 vn to (−�)

1
2 v in L2(Qω) along a subsequence. The compactness of� follows

by using now the test function ϕ := (−�)1−s(vn − v) that satisfies the requirements
ϕ ∈ L2(H2s−1) with ∂tϕ ∈ L2(H−1). We then write

¨
Qω,τ

|(−�)
1
2 (vn − v)|2 dxdt ≤

¨
Qω,τ

b · Dzn(−�)1−s (vn − v) dxdt

−
¨

Qω

(−�)
1
2 v · (−�)

1
2 (vn − v) dxdt

−
¨

Qω,τ

∂tvn(−�)1−s (vn − v) dxdt ,

which shows the strong convergence of (−�)
1
2 vn to (−�)

1
2 v in L2(Qω,τ )byusing that

∂tvn ∈ L2(H−1), the weak convergence of (−�)
1
2 vn to (−�)

1
2 v in L2(Qω) and the

fact that |b||Dz| ∈ L2(Qω,τ ) (note thatwehave also that (−�)1−svn convergesweakly
to (−�)1−sv). The strong convergence of the time derivative follows by duality.
To prove the a priori estimate for every fixed point g ∈ H1

2(Qω,τ ) of the map�, that
is satisfying g = �[g; σ ], we argue by contradiction as in the elliptic case. Indeed,
suppose that for any n one has vn ∈ H1

2(Qω,τ ), σn ∈ [0, 1] such that vn = �[vn; σn]
with ‖vn‖H1

2(Qω,τ ) ≥ n. This means that

‖vn‖H1
2(Qω,τ ) → ∞.

The condition vn = �[vn; σn] gives
∂tvn + (−�)svn = σnb(x, t) · Dvn

with vn(x, ω) = σnvω. Set wn = vn/‖vn‖H1
2(Q(ω,τ ))

. Then, we have

∂twn + (−�)swn ≤ |b||Dwn|
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and wn is bounded in H1
2(Q(ω,τ)) (actually one has ‖wn‖H1

2(Q(ω,τ ))
= 1). Arguing

as above, we have |b||Dwn| ∈ L2(Qω,τ ), and hence wn ∈ H1
2 and, in particular,

the sequence wn is relatively compact in H
1
2(Qω,τ ) using the previous arguments.

Therefore, there exists a subsequence to wn converging strongly to w and by letting
n → ∞ we deduce

∂tw + (−�)sw ≤ |b||Dw|
with w(x, 0) = 0. By the comparison principle, we deduce w ≤ 0. Similarly, using
the same proof for −w we conclude w ≥ 0 to get w ≡ 0. Since ‖wn‖H1

2(Qω,τ ) = 1
and wn is strongly convergent, we get a contradiction. We then conclude the existence
of solutions by the Leray–Schauder fixed point theorem [48, Theorem 11.6]. �

Remark 1. The proof of the above result remains the same if one adds a forcing term
f ∈ L2

x,t .

Remark 2. The existence of a suitable weak solution when b ∈ LP (Qτ ), P > d+2s
2s−1 ,

has been obtained in [56, Example 3 p.335].

Remark 3. Well-posedness of (5) has been recently addressed in [3], see also [1,2]
for the stationary problem, in the context of L1 data for problems posed on bounded
domains. In this case v ∈ L p(W 1,p), p < d+2s

d+1 since for b ∈ LP , P > d+2s
2s−1 one has

b · Dv ∈ L1
x,t .
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