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Transport equations with nonlocal diffusion and applications to
Hamilton-Jacobi equations

ALESSANDRO GOFFI

Abstract. We investigate regularity and a priori estimates for Fokker—Planck and Hamilton—Jacobi equa-
tions with unbounded ingredients driven by the fractional Laplacian of order s € (1/2, 1). As for Fokker—
Planck equations, we establish integrability estimates under a fractional version of the Aronson—Serrin
interpolated condition on the velocity field and Bessel regularity when the drift has low Lebesgue integra-
bility with respect to the solution itself. Using these estimates, through the Evans’ nonlinear adjoint method
we prove new integral, sup-norm and Holder estimates for weak and strong solutions to fractional Hamilton—
Jacobi equations with unbounded right-hand side and polynomial growth in the gradient. Finally, by means
of these latter results, exploiting Calderon—Zygmund-type regularity for linear nonlocal PDEs and frac-
tional Gagliardo-Nirenberg inequalities, we deduce optimal L7 -regularity for fractional Hamilton—Jacobi
equations.
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1. Introduction

In this paper, we analyze the regularity properties of transport equations of Fokker—
Planck-type and Hamilton—Jacobi equations with fractional diffusion driven by a frac-
tional power of the Laplacian, (—A)*, with subcritical order s € (%, 1). In particular,
we address well-posedness, parabolic Bessel regularity, and integrability estimates for
solutions to (backward) fractional Fokker—Planck equations of the form

=3 p(x, 1) + (=AY p(x, 1) + div(b(x, 1) p(x, 1)) =0 in Qr :=T¢ x (0, ),
p(x, ) = pr(x) in T,
ey
where the nonlocal diffusion operator is defined on the flat torus T = Rd\Zd [83],
under “rough” integrability conditions on the velocity field, mainly when either b €
L,Q(Lf) (cf (3) below) or b € Lk (pdxdt), k > 1, without requiring a control on its
divergence.

Our second aim is to apply the results for the above transport-diffusion equation
to obtain a priori gradient estimates for strong solutions and regularization effects for
weak solutions of fractional Hamilton—Jacobi equations with subcritical diffusion of
the form

iatu(x, 1)+ (=AY’ u(x,t) + H(x, Du(x,t)) = f(x,t) in Qr, @)

u(x, 0) = up(x) inT9,

where f € L1(Q7) for some ¢ > 1 and H(x, Du) ~ |Dul|”, y > 1, i.e., H has
superlinear gradient growth.

Following the approach in [37,38], we first obtain Sobolev-type regularity for so-
lutions to (1). This level of regularity is crucial to derive new integral, sup-norm
and Holder estimates for solutions to (2) by means of the nonlinear adjoint method
introduced by L.C. Evans [45,46]. These results are then combined with Gagliardo—
Nirenberg interpolation inequalities and maximal regularity in Lebesgue spaces for
fractional heat equations to obtain optimal regularity in Lebesgue spaces for (2). This
approach to deduce a priori estimates for nonlinear problems has been inspired by
[7] (see also [16,17] for later contributions), where semilinear equations with qua-
dratic growth in the gradient have been studied. These interpolation methods have
been also employed in, e.g., [76] (see also the references therein) and recently revived
in [38,50,51] in the context of Mean Field Games [65,66]. In particular, our results
extend those obtained in [37,38] to the fractional framework for s € (1/2, 1), both for
(1) and (2).
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As announced, to study the regularity properties of (1) we need to extend well-known
properties for linear viscous equations with unbounded coefficients to the fractional
framework. In the viscous case, the first works date back to [9,10,62] for linear and
quasi-linear problems, see also [20] for the case of measurable ingredients. Within
this framework, well-posedness and integrability estimates were established when
b € LY(LY) with Q,  satisfying

d 1

1
ﬁ-i-af 7P eld.o0l, Qe 2, 00],

the so-called Aronson—Serrin interpolated condition. We emphasize that this assump-
tion on the drift has been shown to be sharp to get integrability estimates in Lebesgue
classes, at least in the viscous case, cf [19].

As far as we know, nonlocal heat equations with unbounded coefficients have been
treated in [68], see also [56] for gradient perturbations of the fractional Laplacian
and the nonlinear analysis carried out in [2,3] in the context of (fractional) Kardar—
Parisi-Zhang models. The well-posedness and integrability results we present here are
new when the velocity field satisfies a fractional version of the above Aronson—Serrin
condition, i.e., b € L,Q(Lf ) with Q,  fulfilling

d n 1 2s — 1
— 1+ — <
2sP Q 2s

3

In particular, we mention that in this setting we are not able to cover the equality in
(3) neither for the well-posedness nor for integrability estimates of solutions of (1),
and this remains at this stage an open problem.

The second step in the analysis of (1) concerns fractional Bessel regularity estimates
of solutions to (1) when b € L¥(p dxdr) for some k > 1, i.e., in terms of the crossed

term
// 1b/¥p dxdr, k > 1, 4)
0.

which is widely analyzed for the classical viscous Fokker—Planck equations in [77,81].
In particular, we prove that for some suitable k > 1 one has the estimate

_1
l=ay—bplly < //Q b1 + llpell

for o’ in some range determined in terms of the regularity p’ of the terminal data. This
bound is obtained by duality, following [37,38,77], via a maximal regularity estimate
for nonlocal equations with divergence-type terms of the form

-1
I(=2)""2pller < lIbpller + ozl -

These estimates are fundamental to study the regularity properties for PDEs arising in
Mean Field Games, cf [37,41,81,82], see also [23] for the time-fractional framework.
We remark that when b = —D, H(x, Du), (1) becomes the adjoint equation to (2)
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and bounds on the quantity (4) are natural for the mean field equations by duality
[36,37,81].

Owing to these results for (1), we deduce sup-norm, integral and Holder estimates
for solutions to (2) with f € L9. These bounds are obtained by duality and exploit the
aforementioned Bessel regularity properties of solutions to Fokker—Planck equations.

To our knowledge, these estimates for fractional Hamilton—Jacobi equations have
not yet been investigated in the literature, especially in the context of unbounded
coefficients in L? scales. Furthermore, with respect to Holder estimates, we provide
a Holder’s regularization effect when y > 2s.

Finally, we are able to partially prove maximal L?-regularity as addressed in [38,39]
for elliptic and evolutive equations, respectively, driven by the Laplacian. This means,
within our context, a control on d;u, (—A)Su, |Du|¥ € L9 in terms of f € L9 for
an appropriate range of the integrability exponent ¢ > g, see Sect. 5.5.1 for details
on the threshold g. As a result, we find that (2) behaves in terms of regularity as
the fractional heat equation for appropriate values of ¢, despite the presence of the
nonlinear coercive term H = H (x, p) ~ |p|”. By lettings — 1, we recover the same
results of the viscous case [38], but we produce only partial a priori estimates in the
supercritical regime y > 2s.

In the viscous stationary case, the proof in [39] has been given refining the integral
Bernstein method, which, however, does not seem the right path to treat both fractional
and time-dependent problems like (2).

We recall that maximal L?-regularity properties of Calder6n—-Zygmund-type are
well known for general abstract linear evolution equations, see, e.g., [53,64,73], and
are recalled in Lemma 5.16 below, while in the case s = % a result for nonlocal
equations with drift terms can be found in [96].

More precisely, following [38] our strategy consists in regarding (2) as a perturbation
of a fractional heat equation

u(x, 1) + (—=A)’u(x,t) = f(x,1) — H(x, Du)

where H (x, Du) ~ |Du|”. Then, maximal regularity for linear nonlocal problems, cf
[53], applied to the above equation yields

9rully + 1(=A) ullqg < MDul”llq + 1 fllg-

The second step relies on applying fractional Gagliardo—Nirenberg inequalities in-
volving integral norms of the form

y(1-6)

||Dl/l|| L‘/(H25)|| ”LOO(L’

L7~ S llull

for some r € (1, 00], 8 € (0, 1) such that 0y < 1 when y < 2s, and those involving
Ho6lder norms

rad=0)

”DM” L‘](HZS)”M”L?O(C;") )

Ly~ < fluell
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for y > 2s, cf Lemmas 3.5 and 3.6 and [78,80]. This scheme allows to show that

maximal L?-regularity for (2) occurs for strong solutions when f € LY(Q7), q >
d+2s d+6s—2

O=Dy70 dt2s i.e., we have

N
< y < 1—s"

9:ullLacor) + 1(=A) ullLacor) + I1Dul” Lacor)
= C (If lscon: 1) 220 0y 4. d- Tos. H)

We refer to Remark 5.4 and Remark 5.17 for further comments on the restrictions on
y . At this stage, we do not know neither if our restrictions when y > 2s are sharp nor
counterexamples to the maximal regularity below the threshold d+l)s > wheny < 2s.
Nonetheless, by letting s — 1 our results agree with those obtamed in the local case
[37,38].

We believe that our duality approach to obtain integral and Holder bounds, together
with the maximal regularity results, can be adapted to the stationary counterpart of (1)
and (2), leading to new a priori estimates. This will be the matter of future research.

Finally, we remark in passing that, in the classical viscous case, the purely quadratic
regime y = 2 can be addressed using the Hopf—Cole transform, cf [28, Lemma 4.2].
Here, however, when y = 2s, itis not known whether there exists a fractional analogue
of that transformation which allows to reduce (2) into a simpler fractional PDE. Thus,
even the natural (critical) growth case becomes not straightforward to analyze.

We now recall some related results for (1) and (2). As for fractional Fokker—Planck
equations, when b € L® or some control on the divergence is assumed, we refer to
[32] for stationary problems and to [36] for the evolutive case. Instead, the viscous
case is well known, even under weaker assumptions on the velocity field [19,20,37,
38,41,62,77,81].

As for Hamilton—Jacobi equations, Holder’s regularity results have been largely
investigated for parabolic problems in the borderline cases s = 0 and s = 1. For
first-order and second-order degenerate problems, we refer to [24,26,29,33], while
we mention [62,63] for the uniformly parabolic case. Recently, Holder estimates for
second-order degenerate problems with unbounded right-hand side have been analyzed
in [31], see also [93] for PDEs driven by the Laplacian, via De Giorgi’s techniques.
Holder, integral and sup-norm estimates for the parabolic problem have been already
addressed in the paper [38] for the viscous case s = 1, and we recover those results
by letting s — 1. As for integrability estimates, we refer to [27] for the degenerate
case and [38] for the viscous problem.

Holder’s regularity of fully nonlinear nonlocal equations with super-quadratic first-
order terms has been treated in [30], where the regularity stems from the coercivity of
H rather than the ellipticity. Holder’s regularization effect of solutions to fractional
Hamilton—Jacobi equations with first-order terms having at most critical growth y =
2s has been observed by L. Silvestre in [86]. In this case, the author has also obtained
Holder bounds in the fractional supercritical regime 2s < y < 2s + ¢ imposing some
smallness conditions on the data. More recently, a regularization effect when s = 1/2
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has been investigated in [55] under a smallness condition on the initial datum in Besov
scales.

Instead, the literature on Lipschitz regularity is considerable. The conservation of
Lipschitz regularity (i.e., with u(0) € W) for every s € (0, 1) and a smoothing
effect when s € (1/2, 1) go back to [44] (see also [54,57]). Besides, Lipschitz and
further regularity for nonlocal Hamilton—Jacobi equations has been investigated in
the case of critical diffusion s = 1/2 by L. Silvestre in [87]. Gradient regularity for
viscosity solutions of coercive fractional Hamilton—Jacobi equations has been widely
analyzed using viscosity solutions’ techniques. In [13], the authors have analyzed
Lipschitz regularity of solutions via the Ishii-Lions method when f is bounded (which
requires the restriction y < 2s, as for the classical viscous case s = 1) and via
a weak version of the Bernstein method in the periodic setting [14], where f €
W12 in the space variable and y > 1, even for more general integro-differential
operators than fractional powers of the Laplacian. We finally mention that fractional
Hamilton—Jacobi-type PDEs and regularity issues have been recently investigated in
the framework of periodic homogenization problems [11].

As for the stationary counterpart of (2) with unbounded terms in Lebesgue scales,
we mention [1,2]. Related results for Hamilton—Jacobi equations, even degenerate,
can be found in [12,15,39,70] and the references therein. Other regularity estimates
for space-fractional Fokker—Planck equations, also combined with Hamilton—Jacobi
equations in the context of Mean Field Games, can be found in [32,36], while for
advection equations with fractional diffusion we refer the reader to [88,89].

Outline. Section 2 presents a list of the main results and assumptions used through-
out the paper. Section 3 is devoted to introduce the main functional spaces and related
embedding properties. Section 4 concerns the analysis of the well-posedness, Bessel
regularity, and integrability estimates for fractional Fokker—Planck equations, while
Sect. 5 comprises the applications to regularity issues for equations of Hamilton—
Jacobi-type with nonlocal diffusion. Appendix A collects some properties for advec-
tion equations with fractional diffusion.

2. Assumptions and main results

Throughout the manuscript, we will assume s € (1/2, 1) unless otherwise stated.
Our first main results concern the fractional Fokker—Planck equation (1): in the first
one, b is assumed to belong to mixed Lebesgue classes in the fractional Aronson—
Serrin zone, while in the second result the parabolic Bessel regularity is studied in
terms of the crossed quantity (4). More precisely, in this section for © € R we deal
with anisotropic spaces of the form

(1) = [u e L7, T; By () o e 17 (0. 7: )~ (19) ],

where H Ilf (T?) is the space of Bessel potentials on the torus. We refer to Sect. 3.2 for
additional properties of these spaces.



Vol. 21 (2021) Transport equations with nonlocal diffusion and applications 4267

We will assume the following additional assumption, referring to Appendix A for
further discussions on its validity.

(I) There exists a unique weak solution to the dual problem of (1)

ov(x, )+ (=AY v(x,t) —b(x,t) - Dv(x,t)=f(x,t) in Qw,t:z'ﬂ‘d X (w, 1),

v(x, ) = v, (x) inT¢.
®)]
with w € [0, 7), where b satisfies (3). In addition, if v(w) > 0, then v > 0 a.c.
on Q.

Theorem 2.1. Let be LR(0, T; LT (T9)) with Pe(d/(2s — 1), 00) and Q € (2s/(2s —

1), oo] satisfying
d 1 2s — 1
% Q"
and p; € H~Y(TY) with pr € Ll(']Td). Then, there exists a weak solution p €
H3 Q) 10 (1). If, in addition, p; € LP(T%), p € (1,00], then p € L™(0, ;
LP(T%)). Finally, if (I) holds and p; > 0, the solution is unique and p > 0 a.e. on

Q.

Theorem 2.2. Let p be a (nonnegative) weak solution to (1) and 1 < o’ <

)

d+2s
2s—1°

(i) There exists C > 0, depending on T, o', d, s such that

101310,y = C ( //Q b, O p(x, 1) dxdr + ||pr||y<w)) ,

where
, d+2s
l<o <
d+2s—1
and
m =14 d+2s
os—1)

(ii) There exists C > 0, depending on T, o', d, s such that

1ollyr1 g,y = C ( //Q b, D" p(x, 1) dxds + ||pr||Lp/<Td)> ,

where either

d+2
o = %wim any finite p > 1,
or
d+2s , 25 . dU
— <0 < ——Wwithp= ————
d125—1 25— 1 d+2s—o
and
) d+2s
m:

+ os—1)
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As for (2), we suppose that H (x, p)isC ! (’]I‘d X ]Rd), convex in p and has polynomial
growth in the gradient entry, i.e.,
there exist constants ¥ > 1 and Cy > 0such that
Cy'lpl’ = Cu < H(x, p) < Cu(lpl” + 1),
D,H(x,p)-p—H(x,p) > Cy'lpl" = Ch, (H)
Ci'lpl" ™ = Cu < ID,H(x, p)| < Clpl” ™" + Ca,
for every x € T?, p € RY. Moreover, we suppose without loss of generality that
H > 0. Recall that the Lagrangian L : T x RY — R, L(x,v) = supp{p -V —

H (x, p)}, namely the Legendre transform of H in the p-variable, is well defined by
the superlinear behavior of H (x, -). Moreover, by convexity of H (x, -),

H(x’p) = Sup {U'p_L(x7v)}’
veRd
and
H(x,p)=v-p—L(x,v) ifandonlyif v=D,H(x, p). (6)

The following properties of L are standard (see, e.g., [25]): for some Cy, > 0,
Co' W = CL < Lx,v) < Covl” (LD @)

forall v € RY.
Concerning the case y > 2s and when dealing with Holder regularity, we will
impose some additional space regularity, i.e., for ¢ € (0, 1) to be determined,

H(x, p) = HGx+6 p) = Clél” (1D, Hx, p)Y +1) (Ho)
forall x, £ € T¢ and p € RY. A prototype example of H satisfying (H) is
H(x, p) = h(x)|pl" +b(x)-p. 0<hg<h(x), hbeC(T).

Note that whenever 1 € C*(T¢), this model Hamiltonian satisfies also (H,). Unless
otherwise stated, in the next results, we will always assume that (I) holds to have the
full well-posedness of the adjoint problem. However, our approach via duality makes
use only of the existence of positive solutions to (1). Then, our first results for (2)
concern the sup-norm and integral estimates for strong solutions as in Definition 5.3
when f € L4, obtained via the nonlinear adjoint method through the strategy already
implemented in [37,38].

Theorem 2.3. Let (H) be in forceandy > 1, q > %. Then, there exists a constant
C > 0 depending on T,d,s,q, | fllLaor), luollc(ray such that any global weak
solution to (2) satisfies

lu(-, Dllceray < C forall T € [0, T].

The estimate holds even for strong solutions to (2).
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Theorem 2.4. Let (H) be in force and y € (d;rfz;z, 23). Let also u € Hgs(QT) be
+2s

a strong solution to (2) with q > (2?——1)1/“ The following assertions hold:

(A) There exists a constant C1 > 0, depending on T,d,s,Cu, |l fllLic0.)

[[uoll B225/4pay 4 = d“zLst, such that any strong solution to (2) satisfies
q9

117 ||L00(0,1;Lp(11*d)) <C

forl < p < oo.
(B) There exists a constant C > 0, depending on T,d,s,Cyll fllrLi0,)
lluoll g2s-2s/9 (Tdy such that any strong solution to (2) satisfies
]

[|ue ||L00(o,f;Lp(1rd)) <G

. _ dq : d+2s
with p = d+2s—2sq ifqg < 2s -

Owing to a similar approach and following the scheme of [38], spatial Holder’s
regularity estimates for weak energy solutions to fractional Hamilton—Jacobi equations
with unbounded right-hand side are provided.

Theorem 2.5. Assume (H), (Hy) and y > 2s.

(C) Let f € LY(Q1) withq > djtf;y,. Let u be a local weak solution to (2). Then,

there exists C1 > 0 depending on t1, Cy, ||u ”C@T)’ Nl fllLacor), q,d, T, s such
that

Supte(t],T)[”('v t)]ca(']rd) < C

with a, q, v as follows:

— Fory =2swegeta =25 — % suchthata € (0,2s — 1) whenq < d +2s,
a < 1whend+2s < g < %, while we have any a € (0, 1) when
q > c21'+2i .

—_ §— ’

—For2s <y < ﬁ (ie, y'2s —1) > 1), we geta = y'(2s — 1
suchthata € (0,2s — 1) ifg < %a € @2s—1, 1)90% <

d+2 —1 . . d+2. —1
q < % while we have any o € (0, 1) if g > %;

~ Fory > st (e, y'(2s — 1) < 1), we geta = y'(2s — 1) — dtli €0, 1)
d+2s

y'2s=1)°

(D) If u is a strong solution in ’HZ“(QT) with ¢ >

_ d42s
) q

whenever q >
(2‘51'—12)5)/ to (2), then u €
L>®0,T;C“ (Td)). In particular, there exists a positive constant Cy depend-

ing on Cy, |uollco(ray, I fllLacor) g.d, T, s such that

suptE(O’T)[u(-, I)]Ca('ﬂ*d) < (.

witha, y asin (C).
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‘We remark that

d+2s . d+2

a=y'Q2s—1)— sa=y — and
q

_ @429 =1 d+2
T 1-Q2-=25)y Yy —1

ass —> 17,

so that we find the same thresholds in [38].
In the last part of the paper, we address maximal L?-regularity in the form of a
priori estimates for strong solutions, that is stated in the next

Theorem 2.6. Assume (H), (H,). Let u € Hés (Qr) be a strong solution to (2) with

q > (fo—%)sy,, and assume that there exists K 1 > 0 such that

Il fllLacor) + lluoll 5_2s =< Ki.
qu /

(T)
if
(d+25)(y—1) d+65—2
a-hy  Tve ( PEST ’25)
q> 4= ify =2s

(d+2s)(y—1) . s
@i VYV E (25’ ﬁ) :
then there exists a constant C1 > 0 depending on 121 ,q,d,T,s,Cy such that

0iuliacor) + Mull Lo, 125 vy + I1Dul”ILa (7)) < Ci-

Note that
d+25)(y — 1) d+2)(y -1 1 _
- and —oo0ass — 1
2s —2)y +2s 2 1—3s

so that we recover the same thresholds found in [38].
We finally point out that our results, and in particular the Holder bounds, apply to
the so-called fractional Kardar—Parisi—Zhang equations, see [3,57], of the form

0,7+ (—A)’z =G(x, Dz(x,1)) — f(x,1)in O

where G satisfies (H). In other terms, the sign in front of H is not important since
u = —z solves (2) with H(x, p) = G(x, —p).

3. Functional spaces
3.1. Stationary spaces: definitions and useful results

We denote by L? (T¢) the space of all measurable and periodic functions belonging

to szoc(Rd) endowed with the norm || - ||, = || - [l Lr((0,1)¢)- Let k be a nonnegative
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integer. We denote by Wk-P(T9) the space of L? (T?) functions with distributional
derivatives in L? (T%) up to order k. For u € R and p € (1, 00), the space of Bessel
potentials H I’f (T?) comprises those distributions verifying the integrability condition
- A)%u e LP(T%), where (I — A)% is the operator defined in terms of Fourier
series as

S

I -5u=3" (1 +4n2k2)

kezd

’:‘l(k)eQJTik-x’

with
ak) = / u(x)e ik
Td
We denote the norm in Hjy (T¢) as

K ®
lullp,p =1 = A)Zullp = flullp + 1(=A) Zull .

The proof of the latter equivalence is given in [36, Remark 2.3]. Let us also remark
that when © = k is a nonnegative integer, wkr s isomorphic to H k see, e.g., [36,
Remark 2.3]. Moreover, it can be seen that the operator (I — A) 7 maps isometrically
H [7,7+“ into H, for any n, u € R, see again [36, Remark 2.3] for the proof. We further
recall that another characterization of spaces of Bessel potentials can be given via
complex interpolation methods, namely,

HY (T = [LP(TY), WEP (T)]g, = k6,

where [X, Y]y stands for the complex interpolation space among the Banach spaces
(X, Y), see, e.g., [18,73] for a complete account.

Letnow p € (0,1) and 1 < p,g < oo. The Besov space B;,‘q (Td) consists of all
functions u € L?(T%) such that the norm

1
. 1

. ”f(-x + h) - f(x)“Lp(Td) ah !
el g, coay = Mullrsy +4 TR

is finite. When p = ¢ = oo and i € (0, 1), we have Bl (T¢) ~ CH(T9) (cf [84,
Section 3.5.4 p. 168-169]), i.e., the classical Holder space, which is endowed with the
equivalent norm

uXx) —u
lullcnray = llulloo +  sup M,
x#yeTd dist(x, y)H

where dist(x, y) is the geodesic distance among x,y € T¢. When p = ¢ and
is not an integer, one has Bﬁp (T9) ~ WHP(T?), where WH-P(T¢) is the classical
Sobolev—Slobodeckii scale in the periodic setting, see [73, p.13]. When g = co and p
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is finite, the space B;,Loo (T?) ~ N*P(T?) is known as Nikol’skii space [79] and the
aforementioned norm is interpreted in the usual sense via

Nl jowperay := lullpp(ray + sup |R| ™ llu(x + ) — uC) || pppay »
[h]>0

see [67, Chapter 17] for the whole space case and [94, p. 460], [84, Section 3.5.4]
for the definition in the periodic case. Yet another characterization of Besov classes
can be given by means of real interpolation methods. For m € N, p, g € [1, co] and
6 € (0, 1) we have

BI™(TY) ~ (LP(Td), W’"*”(’Jl‘d))e’q ,
where (X, Y)g 4 stands for the real interpolation space of the interpolation couple
of Banach spaces (X, Y), with equivalence of the respective norms, see, e.g., [73,
Example 1.10], [67, Theorem 17.24]. We also denote by F ;fq (Td) the periodic Triebel—-
Lizorkin scale and refer to [84, Section 3.5.2] for its definition.

We recall some standard embeddings we will use in the sequel among the afore-
mentioned spaces.

Lemma3.1. (i) Letv, u € Rwithv < p, then Hj (T¢) — Hl‘j(’]I‘d).
(ii) If pu > d and n — d/ p is not an integer, then H},‘(’]I‘d) s CH—d/p(T4).
(iii) Letv,u € Rwithv < u, p,q € (1, 00) and

then Hpy (T?) < Hp(T?).
(iv) If pu = d, then H}f(']l‘d) s LI(T?) forall1 < g < oo.
Proof. For (1)—(iii) see [36, Lemma 2.5], [84] and the references therein, while for (iv)
see [4]. O
Lemma 3.2. (i) Letv, u € Rwithv < p, then W*P(T) ¢ WY-P(T9).

(ii) If pp > d and u — d/p is not an integer, then WP (T%) c CH=4/P(T9),
(iii) Letv,u € Rwithv < u, p,q € (1, 00) and

then WH-P(T?) ¢ W4 (T%).
(iv) If pu = d, then WP (T?) < L9(T¢) forall 1 < q < oo.

Proof. For (i)—(iii) we refer to [84, Section 3.5.5] and [84], while for (iv) see [43,
Theorem 6.9]. O

Lemma 3.3. We have the following inclusions for u € R.
(i) Bpp(T%) € Hy (T4) € BY (T for 1 < p <2.
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(ii) B;‘,Q(Td) C HY(T?) € BL,(TY) for2 < p < <.
(iii) B}y (T?) € Hy (T%) € Bpoo(T?) for 1 < p < oc.

Proof. The result on R9 is proved in [95, Section 2.3.3] (see also [18, Theorem 6.4.4].
Recalling that H ,’,‘ is isomorphic to a Triebel-Lizorkin scale (see [84, Theorem 3.5.4-
(v)] and the same chapter for the definition of this space), one uses [84, Remark
3.5.1.4-(20)] to show (i) and (ii). Property (iii) is proved in [18, Theorem 6.2.4] and
[94, Theorem 20)]. [l

We now recall the following compactness result.

Lemma 3.4. For u > 0 such that up < dand 1 < q < df—ﬁp the embedding of
H ;f (T9) onto L4(T9) is compact.

Proof. When u = k € N this is the classical Rellich—-Kondrachov theorem [67]. We
restrict to consider i € (0, 1). When p = 2 the result can be deduced by the fact that
HY (T%) ~ W2(T?), and by classical compactness properties of real interpolation
spaces, cf [95, Section 1.16.4] applied with A = (L*(T¢), W'2(T%))g2, Ag = B =
L*(T?), Ay = WH2(T?), using the compactness of W1-2(T%) onto L?(T¢) that gives
the compact embedding of Hz" onto L2. Then, the compact embedding of Hz" onto
L9, 1 < g < 2d/(d — 2u) follows by interpolation as we will show in the case
p # 2 below. The general case can be handled as follows. It is well-known that
wlr (Td ) is compactly embedded onto L" (Td) forall ¥ suchthatl < r < ddTpp by the
Rellich—Kondrachov theorem, and hence the identity map 7 : wlp (Td ) — LP (Td ),
T (1) = u is compact. Moreover, T is also continuous from L?” (T4) onto itself. Thus,
one first recalls that Besov spaces can be defined via real interpolation as follows
BY, (T4) = (LP(T4), WP (T9)), ,. Then, one may compose continuous embeddings
from Lemma 3.3-(i) and (ii) with compact embeddings for fractional Sobolev spaces
WHP(T4) onto LP(T?) as obtained in [6]. The latter can be deduced in turn via
compactness results for real interpolation spaces [95, Section 1.16.4] as in the case
p = 2. Therefore, we have the compact embedding of H [’f (T9) onto L? (T9). We now
take a bounded sequence u, in H ,’f (T9). Therefore, one can extract a subsequence
un, converging strongly in L? (T%). By interpolation, for every p < ¢ < diﬁ’ there
exists 6 € (0, 1) such that

1-6 6
”Mnk - unj”q = ||Mnk - unj“p ”unk - Mﬂj”ddp -0
—np

as j, k — oosince uy, isboundedin H ;,‘ (T9), whichis in turn continuously embedded

d
onto L4 i (T9) by Lemma 3.1-(iii). Then, we have the strong convergence in L9 with
q as above, as desired. O

We first recall the following Gagliardo—Nirenberg inequality

Lemma3.5. Let 1 < g,r < oo, 1 <z <ocands € (1/2,1). Letu € H>(T%) N
L* ('I[‘d). Then, there exists a constant C depending ond, q, z,s,r and 0 € (0, 1) such
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that
”u”W"(Td) C”u”HZs(Td)”u”L (Td) (8)
where
1 1 1 2s 1-6
—=— 40— )+ —=,1 <2s0.
r q d z

Proof. Inequality (8) has been obtained in [52, Corollary 1.5] and [68, Theorem 6]
on the whole space for r, z € (1, 00), the periodic case being obtained via extension
arguments, see, e.g., [38, Lemma A.3] or [36, Lemma 2.5]. When, e.g., ¢ > 2, the
endpoint case z = oo can be deduced from the results in [22, Corollary 3.2-(c)] owing
to the inclusion H qu < W24, O

We now provide a Gagliardo—Nirenberg interpolation inequality involving Holder
and Bessel potential scales.

Lemma 3.6. Letu € H* (TY)NC*(T9), g € (1,00), @ € (0, 1), s € (1/2,1). There
exists a constant ¢ > 0 depending on d, B, a, q, s, p such that

||Mllwl P(Td) =< C”””Hz&‘(’]rd)”””cot ']I‘d)’
when the following compatibility conditions hold

1_ ! 2s o
;——-l—( _'3)<__E>_ﬂ3’

with

ﬂe[l ¢ >,ot7é2s—g.
25 — q

Proof. We first prove the inequality on R?, the periodic case being again a consequence
of an extension argument. We use [52, Theorem 4.1] saying that

/5
lull gy, ey < Clul, vo L || R
holds if
d
——v=>0=-B(——w|+B|——n):
0 P1
d
Vo — — F VI — —;
Po P1

v = (1= B)vo+ pvr.

We take pg = 00, g = 1,v; =2s,v =1, p; = ¢ to get

1-p B
Il ety < Cllullg? gy 15,
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On the one hand, we use the embedding qus — Bgf)o from Lemma 3.3-(iii) and
conclude

1—
Il may < Callelpg” gy Nl gy -

On the other hand, owing to the embedding B 11)1 — H ,;, together with the fact that

B ., >~ C%, we conclude

1-p B
||u||Hp1(Rd) = C3||u||coz(Rd) ”u”Hqu(]Rd)

for

with B € (0, 1),
<= pBa+p2s (€))

and

d
o £ 25 — —.
q

From (9), we deduce f > 7—%. =

Remark 3.7. The above inequality has been obtained in [78,80] when s = 1, see also
[75].

We conclude this section with a fractional Poincaré—Wirtinger inequality.

Lemma 3.8. Let U C RY be a cube. There exists C = C(d, p, u, U) such that for
e 0, 1]and p € (1, 00)

lu —uyllrwy < Cilulwerw),

where uy = fU udx and [-lwe.r ) stands for the Gagliardo seminorm. As a conse-
quence, when U = T, for s € (1/2, 1) there exists C» > 0 such that

_1
le —uvlippay < C2l(=A)""2ullLp(pe).

Proof. The first inequality can be found in [8, Proposition B.11], [67, Chapter 17].
The second one follows from the first and the inclusions between Bessel and Sobolev—
Slobodeckii spaces Hj "“(T4) € WP (T?) € HY “(T9), € > 0, u € R, cf [36,
Lemma 2.14]. U
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3.2. Parabolic spaces: definitions and embeddings

In this section, we introduce some functional spaces involving time and space
weak derivatives. Let again £ € R and p € (1,00). We denote by HZ Q) =
LP(0, T, H;f(’ﬂ"’)), Q =T x I, the space of measurable functions u : (0,7) —
HY (T?) endowed with the norm

T ’
Il = ([ a0 0

We define the space H,(Q) as the space of functions u € H)(Q) with d,u €
(His,_u(Q))’ equipped with the norm

lullzes o) = Nl o) + N0t gsre gy -

We refer the reader to [34,36]. These are natural spaces in the standard parabolic setting
s = 1: whens = 1 and u = 2 we have H% ~ Wg’l, cf [62], see also [41,59,61], [21,
Chapter 6] for further properties in the case s = 1. Note that (Hff,_“ (Q))’ coincides
with H’;fzs(Q). In the sequel, we denote by Q; = T¢x (0, 7) and Q,,; = T¢ x (w, 7).

We now recall the following trace result of functions in Hl’f on the hyperplane t = 0,

which extends [62, Lemma I1.3.4] for classical spaces associated with heat PDEs to
the fractional framework.

Lemma 3.9. If u € H4(Qr), u € Rand p > 1, then u(0) € Bl >/P(T4). In
addition, the space 'Hg is continuously embedded into C ([0, T']; ng—Zs/p (T%)).

Proof. The first statement is a consequence of [73, Corollary 1.14] since (LP(T9),
H 2Y(TI‘d))l Upp = 82 2/P (1), the embedding properties for the domain of the
fractlonal Laplacian D(—(—A)®) and the reiteration theorem in interpolation theory.
The second fact can be deduced again by [73, Corollary 1.14], see also [5, Theorem
111.4.10.2] and [38] for the case s = 1. O

We now recall some fractional parabolic embedding theorems partially proved in
[36] and in [49]. We adapt the interpolation approach proposed in [59,61].

Lemma 3.10. (i) If1 < p < d-zzs’ then ’Hg (Qr) is continuously embedded into

d+2
LU(Q7) for 1 < g < F55200.

(ii) For p > 2 the parabolic space st_l(QT) is continuously embedded into
L%, T; B, (']I‘d)) where § > p and

d+2s d+2s

=2s—1 ,
o N + 3 »

while for pe(1, 2] we have the embedding ofHﬁffl (Q7) into L%(0, T Hg (T4y)
with § > p and o as above.
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(iii) If p > M then st_l (O7) is continuously embedded into C**/ for some

o € (0, 1) Moreover, the space H2A (Qr)forp e (‘H'szs, ;’;"—?) is continuously

embedded onto C([0. T]: C*~“7 (T4)),

Proof. (i) is proved in [36, Proposition 2.11] for 1 < g < -4+29p

d+2s—pup*
ification of that proof allows even to prove the endpoint case g = % which
we provide below. Here, we distinguish the cases | < p < 2and2 < p < o0 in
view of the inclusions stated in Lemma 3.3. To prove the first case 1 < p < 2, we
note that for any 6 € (0, 1), if v = v(#) = (u — 2s/p)(1 — 6) 4+ ub, then H[‘,’
can be obtained by complex interpolation between H), I and H), p=2s/p (see, e.g., [18,
v+d/q d/p .

A slight mod-

Theorem 6.4.5]). Moreover, H » is continuously embedded in H,, in view of

Lemma 3.1. Hence, for a.e. ¢,

e(d. p.s.q) WDl _aya < Nl < D@1, , OIS,

d+2s(1—6)
—

T
(1-0)%
<0 ( | o, ||u(r)||fi,,,dr)
0
6

N T A
=4L2 0 ng—l?/ﬂ(qrd) w,p )

where we used that for 1 < p < 2, ng_ s/ (T¢) is embedded onto H I’f —2s/p (cf
Lemma 3.3-(i)). Then, the last inequality is less than or equal to

Therefore, for all 5v—%+a=;¢+3—

T P
( / TN dr)
0

0 (4

T 0
(1-0)p p
C sup flu@®I, </ lu ()|, dt)
1€[0,T] By, /P (1d) t.p
(1-0)p
<
<C IIMIIH»;(Q ) [|u (I)IIH;L(Q ) = <C IIMIIHM(Q )

where in the second inequality we used the embedding in Lemma 3.9
Hy (0r) = € (10, T1: B /7 (1))

while, in the last one, Young’s inequality.

As for the case p > 2, we may interpolate in the Sobolev—Slobodeckii or the
Besov scale depending on the differentiability order: we only outline the proof in the
scale W when p and p — 2s/p are noninteger, the other being equivalent using the
appropriate embeddings and interpolations in Besov spaces from [67,84]. In particular,
one uses that WP can be obtained by real interpolation among W7 and WH~25/P-P,
Moreover, W"? is continuously embedded in wvtd/a—d/p.q in view of Lemma 3.2-
(iii). Hence, for a.e. f,

cd.p.s. @) lu®l ,_g,q. 4070,

< @ llwvopay < M@y a0 oy 10O e,
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_d+2s(1-6)

Then, for all @ verifying o < v — % + ;—1 <u+4+ % we have

0

T P r £
0 < v
</0 “u(t)”W‘"vq(Td) dt) < Cj (/0 ||u(t)||w“—7a+‘q’~q(w)dt>

D00 ,
S C2 0 ”u(t)“WM—Zx/p,p(Td) ”u(t)”W;Lp(’H‘d) dt

0
0

0

T
1-6
<G sup @y, ) ( / ||u<z)||,'1,,,dz>

te[0,T] 0

where we used that H ,’,‘ is embedded into W#P when p > 2 (see Lemma 3.3). At this
stage, one has to use the maximal regularity embedding in Lemma 3.9 to get

(@) = € (10, 71 WH=2/rr (1)

and finally conclude the assertion setting « = 0 to get

T P
q
q P
(f wongar)” < cugy,,.

Item (ii) is then a consequence of the above computations setting ¢ = 8, u = 2s — 1,
0 =p/q=p/é

The assertion (iii) is a consequence of [36, Theorem 2.6], while the last assertion is
a byproduct of the embedding in Lemma 3.9 and [67, Theorem 17.52] or Lemma 3.2,
since

d+2s

g2
H2 (Qr) < C ([o, TI: Boy ¥ (Td)) < C ([0, T1. C¥ % (Td)>

O
Lemma3.11. Letr 1 < p < d-;—Tzs, nw € R, uw > 0. Then, the space Hg(QT) is
compactly embedded onto L9(Qr) for 1 < q < d(i;zj)lfp.

Proof. To show the compactness, we restrict to consider the case u € (0, 2s], the
general case being consequence of the isometry property of the operator (I — A)%
on the spaces of Bessel potentials. The idea is to exploit the so-called Aubin—Lions—
Simon lemma. Let © € Rand 0 < pu < 2s with p satisfying 1 < p < d-;l. Note first

that H I’f, (T9) is reflexive and separable. Therefore, the space L”(0, T; (H;f, (T4)))
is isomorphic to (LP (0, T; Hl’j, (T4y)) = (H’;,(QT))’. One can easily see that, by
definition, ), (Q7) is isomorphic to

E = {u eLP (0, T H;;(T")) o e LP (0, T (ij”(?l‘d))/>} .
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Note also that H ;f (T%) is compactly embedded into L? (T%) by Lemma 3.1-(iv) and
LP(T%) is continuously embedded in (ij‘“(Td))' since i < 2s. Then, Aubin—
Lions—Simon lemma (see [90] and [85, Proposition II1.1.3]) implies that E is com-
pactly embedded into L” (Q7). Hence H’;(QT) is compactly embedded in L9(Q7)
for any 1 < g < p. Let u, be a bounded sequence in H’,f (Qr). By the previous

discussion, we may extract a subsequence u,, converging to u strongly in L”(Qr).

(d+2s)p
Forany p < g < A+ —up

0 < 6 < 1 such that

arguing by interpolation, we may assert the existence of

”Mn — Up; ” =< ||un — Up; ||9 ||un — Up; ” 1_(?/+23) -0
k illLacory = I1%nk illLer) 1%nk il e
as j, k — +o0, since u,, belongs to H’,f (Qr), whichis in turn continuously embedded
(d+2s5)p ) .
into L 4+%-rr in view of Lemma 3.10, so u,,, converges strongly alsoin L7(Q7). O

We now recall a maximal regularity theorem for fractional heat equations. Consider
the problem

(10)

ou + (—A)Y’u= f(x,t) inQr,
u(x,0) = ug(x) in T¢.

We have the following result for strong solutions to (10), i.e., u € Hgs, the equation
is solved a.e. and u(0) is meant in the sense of traces.

Theorem 3.12. Let p > 1. Suppose thatu € Hﬁ(QT) solves (10). Then, every strong
solution to (10) verifies

lelyesior) = € (1 g2 oy, + 10l g2y )
where C > 0 depends ond, T, p, s (but remains bounded for bounded values of T ).

Proof. The proof is a consequence of well-known results for abstract evolution equa-
tions when . = 2s, see, e.g., [53]. The general case can be handled using the isometry
of the Bessel operator as in [60], and it is proved in [34]. In particular, in [34] the
proof is provided for stochastic PDEs, which makes necessary the restriction p > 2.
However, for standard PDEs one simply requires p > 1, as it can be seen in [34,
Lemma 3.2 and Lemma 3.4]. O

The last part of the section is devoted to present a Sobolev embedding theorem
for the parabolic Bessel potential class H%,S ~! with traces on the hyperplane t = 0
belonging to L. This can be regarded as a nonlocal counterpart of [37, Proposition
A.2]. The result is given via the above interpolation theory arguments, although a
different proof can be done as in [37, Appendix A] via duality.

Lemma3.13. Lets € (5, 1). If | <0’ < (d +25)/(d +2s — 1), then HX "' (Qr)
is continuously embedded into LP (Q) for
1 1 2s — 1

p o d+2s
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Moreover, ifu € Hi‘f_l(QT) and u(-,0) € LY (T?), we have

lellzrory = € (Il gpy + 14O i) ) - (11

where the constant C depends ond, p, o', T, but remains bounded for bounded values
of T.

Proof. The result is a consequence of Lemma 3.10-(i) with p = ¢/, u = 25 — 1 and
the fact that

1 O)llyy2s1-25/0." cgay < Clle(O) [ 1 (e

for some positive constant C>0 provided that o > d + 2s,1.e.,0’ < di’gfjl (< 2).
0

Lemma 3.14. Let © > Oand 1 < p < oo. Then WH-P(T4) C N*-P(T9) with con-
tinuous embedding. In particular, the space LP(I; WHP(T?)) C LP(I; N*P(T9))
with continuous inclusion, where I C R. Similarly, we have H;,L(']I'd) C NH-P(T9)
and hence LP(I; Hj (T4)) € LP(I; N*P(T?)).

Proof. The embedding W“”’(Td) - N“"’(']Td) is proved in [94], [92], see also [38,
Lemma A.3] for the periodic setting. As for H f; (T4)y € N*-P(T?), we use the chain
of inclusions Hj, (T¢) ~ F;jz(qrd) C B[’jz(?rd) C Bpoo(T9) = NH-P(T?), Fho (T?)
being the periodic Triebel-Lizorkin space, cf [84]. Here, the first inclusion follows
by the embedding F;lq('ﬂ‘d) C B;Oq('ﬂ‘d) valid for pg < p1, g0 < coand s € R,
cf [84, Section 3.5.1, Remark 4], applied with s = u, po = p1 = p and ¢ = 2,
while the second embedding is a consequence of the inclusion Bf, % (T4) C B;ql (T9)
for p < 00,q0 < q1 < 00, s € R, see [84, Section 3.5.1, Remark 4], applied with
s = pand go = 2, ¢ = oo. The proof of the equivalences H), (T?) ~ F I‘fz(’ﬂ'd ) and

Bhoo(T4) >~ N*P(T?) can be found in [84, Theorem 3.5.4-(iv) and (v)]. O

4. Fractional Fokker-Planck equations
4.1. Weak solutions for the fractional Fokker—Planck equation

This part is devoted to study the following Fokker—Planck equation with fractional
diffusion
—p(x, 1) + (=A) p(x, 1) +div(b(x, 1) p(x,1)) =0 in O, (12)
p(x.7) = pr(x) in T¢.
Note that when the vector field b(x, 1) = —D, H (x, Du(x, t)), where H is the nonlin-
ear term appearing in (2), then (12) becomes the adjoint equation of the linearization
of (2). Here, € (0, T] and Q; := T? x (0, 7). From now on, unless otherwise
specified, we will focus on d > 2. We will consider the following notion of weak
solution
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Definition 4.1. Let b € L0, T; L?(T%)) with 7 € (d/(2s — 1),00)and Q €
(2s/(2s — 1), oo] be such that

d 1 2s — 1

2s1’+a< 2s

, 13)

and p; € H*~1(T9). A (weak) solution p to (12) belongs to H%Sil (Q+) and satisfies

T
// 8zp<pdxdt+/ (—A)S_%p(—A)%cp—prwdxdt=/ pr(X)p(x, T)dx
0/ T 0; T4

(14)
forall ¢ € H%(Td x (0, T]).

In particular, the above formulation holds even when test functions are chosen to be-
long to the class H1(Q:) := {¢ € L*(0, t; H'(T%)), 8,9 € L*(0, t; H=>+1(T9))}.
We stress that when s = 1 the above setting falls within the classical matter described
in [19,20,62] . We remark in passing that p € H%Sil(Qf) — C([0, T]; (H>~1(T9),
H='(T%))1)2,2) =~ C([0, T]; H*~1(T9)) in view of the classical abstract trace result
[42, Section XVIIL.3 eq. (1.61)].

Remark 4.2. We point out that time integration by parts

// goatp+// afgopdxdr=/ go(x,wp(x,r)dx—/ o, )p(x, ) dx
[oF (0B T Td

s)
holds, where duality pairings are hidden here. To prove this fact, one represents
2s—1
Hz (Qr) as

HE (00 = fu e 12 (0.7 H>711)) o e 12 (0,7 17T |

which coincides with the space W (0, r, H Zs=1(1dy  H=1(T?)) defined in [42, Chapter
XVIIL, Section 3]. Then, one uses that C$° ([0, 71; H*~!(T%)) is dense in H%S_l (T9),
the embedding H3* ™' (Q,) = C([0, T]; (H*~1(T?), H~'(T9))1,22) =~ C([0, T;
H~1(T9)) to give sense to the traces and the fact that (15) is true for ¢, p €
Coo(0,t]; H 2s=1(T4)) by the theory of integration and derivation in Banach spaces.
In this setting, it is sufficient to have H>~1(T¢) — H~1(T¢), with H*~1(T¢) dense
in H™! (’H‘d), cf [69, Proposition 3.3], as described in [42].

Throughout this section, we will assume that

pe € HNTY, pr =0, and / pe()dx = 1. (16)
'ﬂ"d

. _ _ 2(d+2s)
We further observe that since s > 1/2 we have p € H%S Uand H%S Lo Lo s

L? — L' and hence p(tr) € L'(T¢) for a.e. t. Therefore, by using ¢ = 1 as a test
function one obtains f pap(t) =1fort € (0, 7).
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Remark 4.3. Note that on R? x (0, T') it is easy to check that the equation
o+ (=AY p+div(b(x,1)p) =0
is invariant under the scaling
pn(x, 1) =p (Ax, X2St) and by (x, 1) :=2>"1p (kx, Azst) .

Therefore, when looking the equation at small scales, for s € (1/2, 1) one has to
check the effect of the scaling on the Lebesgue norm of the velocity filed. In such
case, the subcritical space turns out to be the mixed space L2(L?) when the exponents
P>d/(2s —1)and Q > 2s/(2s — 1) fulfill the condition
d 1 2s — 1
<

YA T

which can be seen as the fractional counterpart of the classical Aronson—Serrin in-
terpolated condition for viscous problems with unbounded coefficients [19,20,62]
mentioned in the introduction. This condition allows to give a distributional sense to
the transport term. Indeed, for ¢ € H%, p € H%Sil and ? = Q, we have by Holder’s
inequality

// div(b(x, 1)p)p = — // b(x.00p - Do < bl a2 llpll 21420 [ Dl 2
L Ld+2-2s

25s—1

< ‘
S B gz Il 1Dl 2

Classical Fokker—Planck equations with low regularity assumptions on the drift
have been studied in [21,37,77,81] and references therein.

4.2. Existence and integrability estimates

We premise the following auxiliary result that allows to deduce the positivity and
uniqueness for the solution p to (12).

Lemma 4.4. Any weak solution to (12) satisfies

// pfdxdt:/ d,o(r)v(r)dx (17)
T T

forany v € 'Hé solution to (5).

Proof. Let v be a weak solution to the problem

v+ (=AY v+ b(x,t)- Dv= f(x,t) in Q;
v(x,0) =0 inT9

Then, by duality we immediately get (17). 0



Vol. 21 (2021) Transport equations with nonlocal diffusion and applications 4283

We now present the main result of this section. Note that our approach is based on
maximal regularity arguments, which is a different strategy compared to [20].

Proof of Theorem 2.1. Step 1. Existence in the energy space H%S_I(QT). We apply
Leray—Schauder fixed point theorem for the existence (see [48, Theorem 11.6]) on the
space H%Sil(Q,). Consider the map M : H%Sfl x [0,1] — H%Sil(Qr) defined by
m +— p = M[m; o] given by solving the following parametrized PDE

—0;p+ (=AY p =odiv(b(x, )m) in Qr, p(x, T) = op(x) in T,

Note that M[m; 0] = 0 by standard results for fractional heat equations. We first show
that it is well defined. We start with the case ? = Q (whence condition (13) becomes
P > ”zl;"—ff). By parabolic Calder6n—Zygmund regularity theory (cf Theorem 3.12),
we have

10llyz-1 g,y < C (o lbmll2g,) + o loe -1 zay)
<C (||b||LT(QI)||m||LgTZ(QT) + ||pf||Hu<w)) .oas)

Now, note that

20 2(d + 25)

1 < < .
P—2 d+2-2s

2(d+2s)

We then argue by interpolation, exploit the embedding of H%Sfl (Q7) = L T (Q7)
in Lemma 3.10 and the fact that m € L'(Q;) to show, applying also Young’s inequal-
ity,

0 1-6
[ml|l 2 = Cillml; o llmll :
L?=2(0r) L@ Lﬁf;};; (0)
0 1-6
= Clt ”m“ 2(d+2s) =< C2 + 8”m”H%S71(Q1)

Lat2-25 (Q,)

for some 6 € (0, 1), ¢ > 0. Then, for ¢ = 1/2 we have

1
1Plyg1(0ry = C2 (1Blrgn + locll mien) + 3 Imlygiq, -

This shows that M is well defined from 'H%S_l (Q;) intoitself, since m € H%S_l (Q5).
Moreover, if p € H%S_l(Q,) and o € [0, 1] is a fixed point of the map p = M|[p; o]
we have that p € H%s_l (Q7) is a solution of (12) and the a priori estimate (18) carry
through uniformly on o € [0, 1]. Thus, we obtain the existence of a constant M > 0
depending only on the data (namely ||b|;»(g,), Pz> T s) such that

”p“';-(%S*I(QI) <M.

We finally show that the map M is compact. Let m, be a bounded sequence in
H37(Q,) and let p, = M[my; o] with p,(t) = op,. Since |blm, € L*(Q-),
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we have that div(bm,) € ]HI_ (Qr), and hence by Theorem 3.12 we deduce p, €

QY '(Q,). By the compactness of st "onto L2(Q;) (cf Lemma 3.11), which
is ensured by the restriction s > 1/2, we have that, along a subsequence, p, con-
verges strongly in LZ(Q,) to p and (—A)‘Y_lﬂpn converges weakly to (—A)S_l/zp
in LZ(Q,). Moreover, p solves the same problem as p, given the couple (m, o). We
use (=AY (p, —p) € H%(Qr) as admissible test function in the weak formulation
of the equation satisfied by p,, together with the fact that

—~ // 3 (on — P) (=AY " (py — p) dxdr

=——// o [0 (o — ] axar
'ﬂ"l

__E/W [( 2T (on — p)] (t)dx+;/w [(_A)%(p"_[))]z(t)dx,

to conclude

//Q (=AY (o — p) 2 dxds

+// do(—A) " (py — p) dxdt.

Since |b|m,, € L>(Q;)and (—A)*~Y/2p, converges weakly to (=AY 12pinL2(Q,),
the first term on the right-hand side of the above inequality converges to 0. Similarly,
since 9,0 € H l(Q,) and exploiting again the weak convergence of (—A)* 12y,
in L2(Q-), the third term goes to 0. Similar motivations provide the convergence of
the second term. This shows that (—A)*~1/2p, converges strongly to (—A)* 125 in
L2(Qx).

Finally, to show the strong convergence of d;0, to d;p in H; Y(0,) we argue by
duality. For every ¢ € Hé(Qf) we have

‘ // 3 (o — p) g drds
[P

(=AY (pp — p)g dxdt

+ ‘// div (b (pn — p)) @ dxdt
O

< c//Q (=AY (o — p)]| D] dxdr

4 //Q 0w — plIbl D dxdr,

which yields the strong convergence of 9; o, to 9; 0 in H, ! (Q+) in view of the previous
claims.
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The general case P # Q can be dealt with similarly. Indeed, in the borderline case
Q = oo, we observe that

Ibmllz2g,) = ellblllze(o.c:exaplimll ( . 2—2(%)

We then observe that

20 2d
<
P—2 d—22s—1)

1<

which yields by interpolation for 7 > 2 7 the inequality

m]] 22 <Clm|’
LZ(O L7 2(1rd)> Lz<0t = 1)(']1'11))

2d
for a.e. t € (0, 7). Using the Sobolev embedding HZZS_I(’]I‘d) s L7220 (T9)), we
conclude

)= Clmll g

[ ]| 22
L2(0,7;L?-2 (T9)
and then proceed as above. When 2, Q are finite, we have

lbmliz2c0,) < IblllLe 2(Tdy) llm||
L=(Q7) L (O‘L’L(T)) QZ(O‘L’L? 2(']1‘11))

We now use interpolation with 5, §, ¢ (cf [10, Lemma 1]) satisfying
-2 1—-0 6(n-2
Q-2 n (n—2)

2@ ¢ 2n
P2 0(5 —2)

2P 26

Il

|
>
+

for® € (0,1),n < Q, 8§ < 2. This gives, using that m € L' (T%),

0
”m” JL 2P = C“m” 2n 25
(0 75 Lj(Td)> L2 (O,r;Lm(Td)>

We now exploit the mixed-norm embedding in [36, Proposition 2.11] (applied with

p=2q=550=" z,u—2s—1)toconclude
lm)” < Climll} -
L"TZ(O,I;L%('H“’)) ()
provided that

d n 1 2s—1
<
256 1 2s
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i.e., when (13) holds for 2, Q.

Step 2. A priori estimates via Duhamel’s formula. The proof we are going to present
can be made rigorous by regularization (cf [82, Lemma 2.3]), using Duhamel’s formula
for the regularized PDE and then passing to the limit. The approach is inspired by [19],
and it has been also recently implemented in [40, Lemma A.3] to get estimates in mixed
Lebesgue scales and in [35, Lemma A.3].

We claim that there exists t* € (0, 7] independently of p; € L? (T?) such that
oG, Ollipreray < Callpellpp(ray forallz € [f*, T]

for some Cp > 0. Set p(-,t) := p(-,7 —t) for all t € [0, t] and use Duhamel’s
formula to represent the solution of the (forward) equation as

t
5O =Tipe = [ Tooivibir( o)do.
where 7; = ¢ (2" We have

IO L ray < ||Tt,0r||Lp('J1“’) +

t
/ Ti—0div(bp) (-, ®)dw
0

LP(Td)

! _dl_1y_ 1o
< lloell o eray + / (t — )" @7 D TEdiv(bA) (- )| gt gy deo
0
! 41y 1
< lpelLoca) + / (t — ) FGHH bjC, o) oo |
0

where we applied the decay estimates of the fractional heat semigroup between the
spaces of Bessel potentials

ity < o-£8) b
< s\a p s _
I Zeull pp ey < Ct ||“||Hu Lrdy

(cf [36]). We then use Holder’s inequality to bound the right-hand side of the last
inequality with

: ey B
”p”LOC(O,r;LP(Td))/O(t - (1)) S\a P s ||b(, CL))”LT(Td)d(l)

1

1
1 d(1 1 "\ o
3 a=7) 5|2\ ~
- ( / O(I_w)[ £(i-3)-4] ) 1620, 1o 15l oo, es 0ty

where
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which is indeed satisfied precisely when

d 1 2s — 1

2sT+Q< 2s

Hence,

atl
||P||L00(o,r;L17(1rd)) = ||,Or||Lp(qrd) + C||b||LQ(0,T;LT(11‘d))f < ||P||L00(0,1;Lp(qrd)) )

which gives

||ﬁ||LM(0,r;Lp(Td)) < 2llpzllLrra)

by taking

’

a+1
t>t* = 1 )
- 2C1IPll La(o,7; L7 (14y)

and hence the validity of the estimate on [0, *]. Note that t* does not depend on
Il oz Il (Tay and hence one can iterate the argument to get the estimate in [0, 7] as in
[19].

Step 3. Positivity and uniqueness. Positivity and uniqueness follow exploiting Lemma4.4.
In particular, if p1, po are two solutions of (12), by (17), we get

//Q (1 — p2) f dxdi =0

which implies p; = p; a.e. on Q. Positivity of solutions follows in a similar way.
O

Remark 4.5. In Step 1, we can actually reach the threshold
d 1 251

we Q" 2

by assuming a smallness condition on ||| .oz »), since interpolation inequalities are
no longer available (cf [91] for the elliptic viscous case).

4.3. Parabolic Bessel regularity

We finally describe further regularity results that rely on the information b €
LK (p dxdr) for some k > 1, that will be used in the forthcoming sections. We start
with the following maximal L?-regularity result for PDEs with divergence-type terms
and terminal data in L. The method of proof we present below has been already used
in [37,41,77].

Proposition 4.6. Let p be a (nonnegative) weak solution to (12) and

d+2s
d+2s—1

<o <

19)
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Then, there exists C > 0, depending on o', d, T, s such that

1Pllss-10,y = € (I8l o7 (q,y + el i) 20)
Note that C here does not depend on 7 € (0, T].

Proof. Let p be smooth, the general case follows by an approximation argument. Let
¢ be a smooth test function vanishing at the initial time ¢ (-, 0) = 0. The strategy
follows the proof of [37, Proposition 2.4], and it is based on duality arguments. A
different proof of the result will be provided in Remark 4.7, see also Proposition 4.8.
Using the weak formulation of (32), we write for ¢ as above

// p (819 + (=A)'¢ —b - Dg) dxdr = /por(X)w(x, ) dx. (21

Let § > 0 and ¢ = s be the solution to the forward fractional heat equation

o' =2
v+ (Ary = (1A HpP+6) T (=A»TEp in 0r,
Y(x,00=0 in T
By maximal L?-regularity, we get

o'—2

1 _1
1l = CI (1A 2pR+8) T (A Tpllieo,)

1 ’ 1 !
<C —A)Y 2 o'—1 - = Cll(=A) 2 071 .
= Cl=A)Y"2pl” llLo(0n H=AY"200 0 0.,

We take ¢ = (—A)S_% ¥ in the weak formulation (21) to see that after integrating by
parts

// (=AY~ 2p2 +6) 2 (=AY 2 p|? dxdr

< boll o (o) IPlLe (0o + ozl L1(ray 19 (s D lloo- (22)
Now, observe that
_1
”I//”’HZS(QT) C”I//”C(BZS ZS/U(Td)) CH(I - A)g 2I/f||C(B;;23/G(Td))
> CligC, Ol g2 ay = ClloC, Dl g ) = Cllo() oo

when o > d+2s for possibly different positive constants, always denoted by C. Here,
we used the isometry properties of the Bessel potential operator on Besov scales [18,
Theorem 6.2.7] and the embeddings in Lemma 3.2 (see also the Morrey embedding
in [67, Theorem 17.52] for o > 2s). We then get

-2
I (artor )7 lcar o arar
< C1 (1ol orig,y + e licesy) 1 lagzsco,)

< €2 (160l g, + IorllLicen)) I=2Y 20
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and let 5 — 0 to conclude
_1
”(_A)Y zp”er’(Qr) < C2(”b’0”L”/(QI) + ”10‘(”L1(Td))'

The estimate on p € L"/(Q,) follows by using that of ||(—A)S_%,0||Lo'(Qr) and
the fractional Poincaré-Wirtinger inequality in Lemma 3.8. The estimate on the time
derivative can be obtained by duality. Indeed, for any ¢ € L° (0, t; H; (’H‘d )) we have

'// 0: po dxdt
O

where we used that W% ~ H! and Hélder’s inequality. O

_1 1
= ’/ (_A)S 210(_A)2(dedt + ||b/0||L<r’(Qr)||D<P||LU(Q,)
O

_1 1
< CU=AY"2pll o gy + 160l o7 o VI (= B)2 1o 01

Remark 4.7. A slightly different proof of the above result can be obtained as follows.
We observe that p € Hg“l readily implies p € H?fl forevery 1 < o’ < 2. Letus
rewrite equation (12) as a perturbation of a fractional heat equation

—0p + (=A) p =div(b(x,)p) on Q¢

with terminal data p(x, 7) := p¢ (x) on T¢. By parabolic regularity theory (see The-
orem 3.12) p enjoys the estimate

1Pl g,y = € (1PN g, + Ibelly-aorar ) -

By exploiting Sobolev embedding for fractional Sobolev spaces in Lemma 3.2, one
immediately obtains that

”p‘L' ||W2:—1—2s/a’,a’(']1‘d) < C”,OT ”Ll(Td)

whenever 1 < o’ < 9325 Indeed, by [84, Section 3.5.4] we have (WP (T%)) =

, d+2s—1"
WP (T4) and thus by definition we get
/ prydx
Td
=< C||(/)||W25/rr/—25+l,a('ﬂ‘d)“pf”Ll(']l'd) < Cllp; ||Ll('11‘d),

ozl W2s—1-2s/’ o' (Tdy = sup
peWs/o' 25t lo(Td) g

w2s/o’=2s+1,0 (Td):l

IA

lelloollozll L1 (e

where the last inequality is a consequence of the embedding W25/9'~2s+1.0 (Td) <
C(T9) (cf Lemma 3.2-(ii)) when

(2s/0" —2s+1)0 > d,

that is o > d + 2s or, in other words, when o’ satisfies (19). This highlights that the
range of o’ is imposed by the heat part of the equation.
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The next result asserts the fractional Bessel regularity of the fractional Fokker—
Planck equation when the trace p, belongs to some suitable Lebesgue class. A different
proof has been proposed in [38, Proposition 2.2].

Proposition 4.8. Let p be a (nonnegative) weak solution to (12), p; € LY (T?) and

either
d+2
o = % with any finite p > 1,
or
d + 2S , 2S . / dU
— <o < ——withp' = :
d+2s—1 25— 1 (d + Do —(d +25)

Then, there exists C > 0, depending on o', d, T, s such that

1PNy = € (1601070, + Noel o)) - (23)

Proof. We can proceed as in Proposition 4.6, except for the treatment of the term
involving p;, modifying (22). For 2s < o < d + 2s we have

1
— _ S—5
Wl 2 CI e (gaiin qayy = CNE = B30 (gro2io

2 ClloC, Dl g1y 2 Clo@N e

where in the last inequality we used the Sobolev embedding [67, Theorem 17.49].
Wheno =d + 2s
_1
1l 0r) = CIV Nl gavio ayy = CHU = AY 729l g2
2 C ||(p(5 T) ”B,],;ZS/U (Td) 2 C ”(p(‘[) ”LP(T‘])'
forany p € (1, oo), where we used the critical Gagliardo—Nirenberg—Sobolev embed-
2

ding B;;F(Td) s LP(T%) for all finite p from [67, Theorem 17.55] to conclude.
O

As a consequence, the above results yield the proof of Theorem 2.2.
Proof of Theorem 2.2. We use Proposition 4.6 and Proposition 4.8, depending on the

range of o/, and the generalized Holder’s inequality to conclude

1PNy, = € (1801 2™ o g,y + loell o))

1/m’
' 1
<C <<// |b|™ pdxdt) ||/0||L/;rleT) + ”'OT”LP'(Td)> , (24

for ¢ > o’ satisfying
1 1 1
R 25)
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Then, by Young’s inequality, for all ¢ > 0

1 /
160210, < € (g // b1 p dxdt + ellpll o, + ||pf||”f(w)). 26)

One can verify that the identity m’ = 1 + J?;g%l) and (25) yield

1 251

1
¢ o d+2s

Indeed, (25) gives

m m 1 m— 1
o

and then the definition of m’ in (2.2) yields the conclusion. The continuous embedding
of H2'(Q:) in L*(Q-) stated in Lemma 3.13 then implies

lolleco.) = Ci (”’0”st "o >+T) ’

finally giving

lolize g,y = CCh ( // 6™ p dxdr + ellpllze g,y + oy (Td)) 27

Hence, the term & p|| ¢ (o, can be absorbed by the left hand side of (27) by choosing
e = (2CCy)~ !, thus providing the assertion. O

Remark 4.9. In view of the embeddings
_ 25—1-28
HE s C ([0, 1B, ° (Td)) :
estimate in Theorem 2.2 implies

||,O(t)|| 2_;_]_275/ y < C (// |b(x7 t)|m’p(x7 t) dxdr + ”p‘r"Lp/(Td)) .
o (Tdy) T

B
(T,U/

Corollary 4.10. Let p be a nonnegative weak solution to (12). Then, there exists
C > Odepending ond, q', T, s such that

d+2s
sup [[oOI aes—v 2 + el =C (// |b| @=D4 p dxdt + || prll;p (pa )
tel0,7] 13~,d_/+2‘Y ) Lgo) 0 D

PP

5 o— _ (d+29q" - _dq__ 25(d+2s) d+2s .
where p' = 25117 and p = 75— - when dia? <4 < 75 while

d+25 and p = o0 if g > %.

p > 1 arbitrarily large when q =

Proof The estimates are consequences of Remark 4.9 and Theorem 2.2 applied with

% = , + ¢213+21s together with the continuous embedding of H(szl onto L4 ,(QT). Il
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5. On fractional Hamilton-Jacobi equations
5.1. On the notions of solutions

We first provide the following notion of weak solution to (2); we will need to discuss
Holder’s regularization effects for (2). See [37] for a similar definition in the viscous
case s = 1.

Definition 5.1. We say that

(1) u is alocal weak solution to (2) if forall0 <w < T

et (T x @, 1))NC(Qr), HCDweLl (Qur),  @28)
and DpH (-, Du) € L” (Quc) (29)
d—+2s

for some P >

) 30
2s — 1 (30)

andforall0 < w <t < T, ¢ € H3* " (T¢ x (0, 7)) N L®(Qp.)

T
//8,u¢dxdt+// (—A)2u (=AY "2¢ + H(x, Du)gp dxdr
wd T T4 x (w,7)

_ // Fodxdr. 31)
T x (w,7)

(ii) u is a global weak solution if (28)—(29)—(30) hold for all 0 < w < T, thatis, on
all Q7 (and therefore, (31) is also satisfied up to w = 0).

Remark 5.2. Under the conditions (H) on the Hamiltonian, we observe that if (29)

holds, i.e., D, H(-, Du) € Lf’:’t, P> ‘éj_zf , then the condition (28) is always satisfied
d+2s
d+1 -

by requiring y >

Definition 5.3. We say that u € st(QT), q > 1, is a strong solution to (2) if the
equation is solved for a.e. (x,7) € Qr and the initial condition holds in the trace
sense, i.e., u(0) € B;;—zs/q (T%).

Remark 5.4. 1t is immediate to verify by using Sobolev embeddings that whenever
q > szrs2s and u € HZS(QT)’ then u € Hé(QT), u e C(0, TI: qué_ZS/q(Td)) and

hence u is a global weak solution. This means that (31) is satisfied up to w = 0.
We note that under the restriction g > (z‘ff—f)sy, the results in [36, Proposition 2.11]

(applied with p = g, 6 = 1/y and replacing g with y¢q) give the embedding

HE(Qr) = L7 (0, T; Whra(rd)).
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This means that [Du|?~! € L?, for ? > g:ff . Furthermore, we restrict to consider

d+6s—2

—_— 1
V> i (> 1

sothatu € L%(0, T; W 2(T9)) (and in particular u € Hé(QT)) by parabolic Sobolev
embedding and the weak formulation can be safely used. Indeed, embeddings from
[36] yield that HéS(QT) < L%0, T; H21 (T?)) whenever

d d+2s(1—-¢q/2) 2(d + 2s)
<24+ - — —mMmm— q>—">=.
2 q d+6s—2
In particular, we have

d+2s 2(d + 2s)
>
2s -1y d+6s—2

hence y > d:;_?sz;z. This is consistent with [38], where the condition y > % is
needed when s = 1. We believe that this restriction can be relaxed to
d+2s
j/ >
d+1

so that ¢ > Q‘ff—%;y, > 1 using techniques from renormalized solutions, cf [74].
Note also that in the subcritical gradient growth case y < 2s, the solutions are not

. . d+2s d+2s
necessarily continuous when =7 S TRE

Remark 5.5. By classical embedding properties for Besov and Sobolev—Slobodeckii
spaces, we have the following inclusions

<g<

. d+2s
, , CZA q (Td) forq > d-z‘r?j‘ ,
2 252 ‘
w4 (1), Bq; S/q(Td) — 1 LP(T9) for p € [1,00) and ¢ = d—2&-s237
LP (1) for p € [1, zpilye ] and g < 452

5.2. Further estimates for the adjoint variable via duality

First, we prove a simple representation formula for (2) by duality with the adjoint
problem

!—8,,0 + (=A)p —div(D,H(x, Du(x,t)p(x,1)) =0 in Q«, (32)

p(x,7) = pq in T¢

where p; € C(T?), pr = 0 with [|oc [l = 1.

Lemma 5.6. Let u be a local weak solution to (2). Assume that p is a weak solution
to (32). Then, for all w € (0, t) we have

/du(x,r)pr(x)dxz/ du(x,a)),o(x,w)dx+// L(x, DpH(x,Du))pdxdt
T T ,T

+ / fpdxdt (33)
Qu,r
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Moreover, if u is either a strong solution in HéS(QT) or a global weak solution, the
previous identity holds up to w = 0.

Proof. Using —p € H%S_l (Quw.r)NL>®(Q, ¢) as atest function in the weak formula-

tionof (2)and u € H%(Qw,,) as a test function in the corresponding adjoint equation,
after summing both expressions we obtain

] w

+ // fpdxdr =0
Qwﬁf

We are now ready to prove the crossed integrability bound on D, H with respect to
the density p.

—/. (0ru(t), p(t)) —/ (Orp (1), u(t)) + // (DpH (x, Du) - Du — H(x, Du))p dxdt
O

Proposition 5.7. Let u be a local weak solution to (2) and p be a weak solution to
(32) with || pr || 1 (7ay = 1. Then, there exists a positive constant C (depending on Cp,
lullcgpy W lacory - d. T, s) such that

//Q |DpH(x, Du(x, t))|}’/p(x, t)ydxdt < C, (34)

Remark 5.8. An immediate consequence of (34) is the bound
//Q |Du(x, t)|ﬂp(x, t)dxdr < Cg foralll < g8 <y. 35)
Indeed, by (H) and [,p(t) = 1 fora.e. 1, foT |Du(x, t)|” p(x, t) dxdt < C, which
yields (35) for B = y. For B8 < y it is enough to exploit Young’s inequality and

el ray = 1.

Proof. Rearrange the representation formula (33) to get, forO <71 <7 < T,

// L(x,DpH(x,Du)),odxdt =/ u(x, 7)pr (x)dx
er,r Td

[ wwmpwmac- [[ - fpasar (36)
Td O 1
Fix n to be determined such that
d+2s
n>-—7-:
2s — 1)y’

We use the bounds on the Lagrangian and Holder’s inequality to get

c;l// |DI,H(x,Du)|y/,o§// L(x, D,H (x, Du)p dxdt
QT],T QTI,T

= 2llullceg,) + 1 Loy Il (o, )



Vol. 21 (2021) Transport equations with nonlocal diffusion and applications 4295

Let o be such that

By Lemma 3.10, we have

HE " (Qr) = L7 (Qry )

d+2s

d£2s assures that o/ < 75.—1- Then, in view of Theo-

2s

Moreover, the choice n >
rem 2.2-(i) we have

1Pl (g, = € (1Pl 1, +1)
<C (// |D,H(x, Du)|" p dxdr + 1)
Ocy x

n d+2s
(2s — o’

for

Thus, we get

cg‘//Q IDyH (e, D)l p < 2lull gy + Cll flago, )
71,7

(// |D,H(x, Du)|" p dxdr + 1) .
Q-rl,r

Finally, the right-hand side can be absorbed in the left-hand side when r’ < ', i.e.,
d+2s d+2s ,
= <V.
2s — 1o 2s —1)n

One then obtain (34) by letting t; — 0 (note that here constants remain bounded for
71 € (0, 7). O

m =1+

The crossed integrability of D, H against the adjoint variable p finally provides
the L% regularity of (—A)*~!/2p. The next result extends [37, Corollary 3.4] to the
fractional framework.

Corollary 5.9. Let u be a local weak solution to (2) and p be a weak solution to (12).
Let & be such that

_ _ d+2s
o>d+2s and 6 > ———.
y'—D@2s—-1)

Then, there exists a positive constant C such that
. <
”’OH'H?, 1(Qr) <C,

where C depends in particular on Cy, || fll 15 (0,) ||u||C@T) ,n,d, T,s (but not on

= d+2
T, p1), 0 > T



4296 A. GOFFI J. Evol. Equ.

Remark 5.10. Note that the condition on ¢ can be rewritten as

_ id +2s ify <2s
g >
d+2 .
—(},,71)(25571) if y > 2s.
Proof. Since &' < 24525 (2.2) applies (with o = &), yielding

1ol2100 = € (// |DyH (x, Dutx, )| p(x. 1) dedr + 1) ,
’ Q-

with

, N d+2s -
T T sas—n -

If m" = y’, use Proposition 5.7 to conclude. Otherwise, if m’ < y’ use Young’s
inequality first to control [[ |D,H (x, Du(x, )| p dxdt with JJ |DpH (x, Du)|”’
dxdr + 7. O

5.3. Sup-norm and integral estimates

We are now ready to prove the sup-norm estimate for global weak solutions to
fractional Hamilton-Jacobi equations in terms of [|ug || ¢ (d)-

Proof of Theorem 2.3. We argue as in [37, Proposition 3.7]. First, we prove a bound
from above for u

u(x, ) < lluollceray + CIl f Il La(ray

forallt € (0,T), x € T? and g > d-;szs. Consider indeed the strong solution to the
backward problem

4+ (=A)u=0 inT? x (0, 1)
w(x, ) = pr(x) in T4

with ;€ C®(T9), ur > 0 and || ¢ L1 (ray = 1. We use u as a test function in the
weak formulation of the fractional Hamilton—Jacobi equation to deduce

/ u(x,r),ur(x)dx=/ u(x,O)u(x,O)dx—!—// fudxdl—// H(x, Du)pu dxdr.
T T4 O O 37)

Using Theorem 4.6 with b = 0 we find ||/,L||H2x—l (00) < C and by Lemma 3.10-(i) we
conclude ’

”M”L‘/(Q,) <C.
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with ¢’ < %. Then, using the above estimate, Holder’s inequality to the second

term of the right-hand side of the above inequality and exploiting that || w11 ey = 1

: d+2s
one has, choosing g > 5=,

/Tdu(x, Oy (x,0)dx + //Q Surdxde < luollcray + Cll fllac,)-

By the assumption H > 0, one concludes

/TdM(X, Dpr(x)dx < [luolleeray + Cllf zaco,)

and the claimed estimate from above by duality after passing to the supremum over
pe € LN(T).

To prove the bound from below, we argue using (33) with @ = 0 and proceed as in
Proposition 5.7. Fix some 7 such that

d+2s

T 25—y

We use the bounds on the Lagrangian, the upper bound obtained in Step 1, and Holder’s
inequality to get

Czl // |DpH (x, Du)|y/,0 < // L(x,D,H(x, Du)p dxdr < 2”””C(§ )
Or 0- ‘

+fllnceallelLr o,y
< 2“”0”C(Td) + C“f”Lq(Qr) + ”f”Ln(Qr)“p”L”,(Qr)

The strategy of Proposition 5.7 provides a bound on |, 0. |DpH (x, Du)lV, p and thus
on ||,o||L,7/(Qr), depending on ||lug||¢(re). Going back to (37) we have

/ u(x, 7)p; dxz/ u(x,O),o(x,O)—CL// ,odxdt+// fp dxdt
Td Td [0 O

Since [[ fp can be bounded from below by Holder’s inequality, we get

/Tdu(x, D)pe(x)dx = —lu(, 0)ll¢re) — CLt — C

Since p; can be arbitrarily chosen so that || p; || Li(Tdy = 1, we conclude the desired
result. O

To deduce integral estimates, we use a L? version of the adjoint method. We recall
that integral estimates for parabolic viscous Hamilton—Jacobi equations have been
already obtained in [38] using the same method, [51], see also [27, Theorem 3.1] for
degenerate problems.
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Remark 5.11. Results in Theorem 2.4 can be regarded as a priori estimates since

H2 < C ([o, Tl 335[23/‘1(1‘5’)) < C ([0, T1: L”(Td))

. d
with p= d+2sti2sq :
Proof of Theorem 2.4. We denote by T (w) = max{—k, min{k, w}} the truncation at
level k > 0, ut = max{u,0}and u™ = (—u)™".

Step 1. We first prove that

lu® Ol o eray < € (lug llpoeray + 1 flzacoo)) (38)

forall T € (0, T) and x € T?, p € [1, 00). For k > 0, consider the weak nonnegative
solution to the following backward problem for the fractional heat equation

—0Orp(x, 1) + (=AY u(x, 1) =0 in Qq,
w(x, 7) = pr(x) in T4,
[ACAEN ) L

lut @5
tence of energy solutions. First, observe that ||z | ,» < 1 and that under the standing

restrictions on y we have

with u (x) = . This truncation argument is needed to ensure the exis-

d—+2s 2s(d + 2s)
>
2s — 1)y’ d + 452

Thus, we can safely apply Corollary 4.10 with b = 0 to deduce

”H’”L"/(QT) <C,

— dq _ d+2s :
and p = Ti2g T4 = T and any p > 1, with

d+2s d+2s
for (2s——l)y’ < qg < 7y

C not depending on k. By parabolic Kato’s inequality, cf [68, Theorem 34], u™ is a
subsolution to

duT e, )+ (—A) uT () < [f(x, 1)
—H (x, Du(x, t))] x{u>0) in O,

where x4 denotes the indicator function of a given set A. Using u as a test function
in the weak formulation of the above equation we show that

/ ut(x, T (x) dx 5/ u(')"(x),u(x,O)dx—i—// fudxde
Td Td +N{u>0}

—// H(x, Du)u dxdt.
N{u>0}

We apply Holder’s inequality to the second term of the right-hand side of the above
equality, the fact that H > 0 and the fact that the fractional heat equation preserves
the L? norms, i.e., ”M(I)”LP/(’W) < lforallt € [0, t], to get, after sending k — o0,

lut @l pperay < C (lug peray + 1f T llLacon)) -
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Step 2. To prove the bound on the negative part, consider for k > 0 the solution p = pi
to the adjoint problem

{—a,p(x, 1) + (=AY p(x, 1) + div(D, H(x, Du)x(u<oyp) in Oy,

p(x,T) = e (x) in T.
_ [T ol
where now pu;(x) = o First, by Corollary 4.10 we have
u (vt P

0 s—1)  2s /
o)l d<2+23_1)_2,. +llollq (00)

By 1T
d+2s
<c( [ 1D DN F T o pardr 4 1pel ) 39
O

with C not depending on k. We note again that in view of the parabolic Kato’s inequality
u~ is a weak subsolution to

du~(x, 1) + (=A)'u"(x, 1) < [—f(x, 1) + H(x, Du(x, 1) x{u<oy in Q.

Owing to the representation formula we get

/ du_(‘L'),O(‘L') dx + // [—DpH(x, Du) - Du™ — H(x, Du)]x{u<oyp dxdt
T O

5/ uap(omx—// fo.
Td +N{u<0}

By the assumption on the Lagrangian, we get

[-DpH(x, Du) - Du~ — H(x, Du)| xu<o0y = L (x, DpH (x, —Du™)) X{u<0
= [ 1D, H G D) = €1 xuso.

Then, we denote by

L (d+2s)q’ L (d +2s5)q’
Pega+n—w+2)" Tdtastas-ng
and get
/ u (t)p(r)dx + CL_l // |D,H (x, Du)|”/,o dxdr — Cp, // X{u<0yp dxdt
Td QT Qf
Slugll 2_aen Mo den 2 + 1ol o)1 oo -
BL T () By (MY

By Lemma 3.2 and Sobolev inclusions for Besov spaces

Uy 5— < Cillug |l 252 < Collug || p2s-
” 0 “ Lﬁ_d(ZVZVI) = 1“ 0 ”Bj;; 2Y/‘1(Td) — 2” 0 ”3351 23/‘1(']I‘d)

.
By 77 @
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since
5 2s d 25 d@2s—1) d 25 dQ2s-—1) d(d+1)q’—(d+2s)
S-—— = — — —
qg q q d+2s p q d+2s d +2s)q’
and
(d + 2s)q’
q<— .
q'd+1)—(d+2s)
Then, we get
/ u (t)p(r)dx + CL_l // |DpH (x, Du)|”/,0 dxdr — Cp, // X{u<0yp dxdt
T4 0 O
= Cllug ll g2s=25/a gy 1P O asony 20+ pllLar o) I lLacon - (40)

7 (T4)

'

The term ||p(0)|| a@s—1) 25 can be bounded owing to Corollary 4.10, so using (39)
2

+2s q’ /
B (T)

we conclude

/du_(t)p(t)dx-f-Czl// Dy H (x, Du)|” p dxdz
T [

d+2s
<c (nuant;-zs/q(w) + ||f‘||Lq(Q,>) (//Q Dy H (x, Du)| B2y, -0y p dxdr + 1)

+CL//Q X{u<opp dxdr .

Since g > (Z?f—%;y,, one can use Young’s inequality and that [p(r) dx < |lucll,y <1

to conclude, after letting k — oo,

[ @ = € (1120, + 15 usco0)

y'q@2s=1)

+CCLT (g Nl g2 ey + 17 Tz ) ™ 4 Cor. @)
Combining Step 1 and Step 2, we conclude

||“||L00(0,1;Lp(11‘d)) <C
for p as above. 0

Remark 5.12. We underline that knowing a well-posedness result, together with inte-
d+2s

grability estimates, for the adjoint equation (12) when b € L f,’ " would allow to give
y—1

an estimate of u € fofj when y < 2s under finer properties of the data, see, e.g.,

[38, Remark 3.6]. This would be also consistent with results in [74]. However, such
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d+2s
properties of the adjoint variable in the borderline case b € L j‘[ ' are at this stage an

open problem, cf [19,20,62] for the case s = 1.

The dependence in the integral estimate of Theorem 2.4 on [lu, || p2-2s/q can be
q9

weakened to |luy ||z if one knows further integrability of o from Corollary 4.10

when o’ > 2s2i1, see, e.g., [38].

5.4. Holder regularity results

We are now in position to prove Holder bounds for solutions to the fractional
Hamilton—Jacobi equation (2) as in Theorem 2.5.

Proof of Theorem 2.5. Since H is convex and superlinear, we write for a.e. (x,t) €

Or

H(x, Du(x,t)) = sup {v- Du(x,t) — L(x,v)}.
veRd

Let 0 < w < t < T. By the weak formulation of (2), we obtain
t 1 1
/ (Ou(t), p(2))dt + // (=M)2u(x, 1) (=AY " 2o(x, 1)
w Qw,f
+[®(x,t) - Du(x,t) — L (x,O(x,1))] ¢ dxdt

< / f(x, e(x, t)dxdr 42)
Ouw.z

for all test functions ¢ € H%S_l(Qw’f) NL>®(Q, ) and measurable ® : Q,  — R4
such that L(-, ©(-,-)) € L'(Qy.r) and ® - Du € L'(Q,,. ;). Note that the previous
inequality becomes an equality if ©(x, 1) = D, H (x, Du(x,1)) in Q4 ¢.

We fix pr € C®(TY), || pll 1 (pra) = 1 and pr > 0. Set

w(x, ) =nu(x, 1),

where n € C§°((0, T]) is a smooth function such that 0 < n(¢) < 1 for all 7.
Use now (42) with E(x, 1) = D,H (x, Du(x,1)) and ¢ = np € H¥ 1 (Qp) N
L*°(Q 1), where p is the adjoint variable (i.e., the weak solution to (32)) to find

/ (dw(r), p(r))dr

w

+ // (—A)Tw(x, 1) (—A) " 2g(x. 1) + D, H(x, Du) - Dwp

—L (x, D, H (x, Du)) np dxdr

= / fnpdxdr + // un’p dxdr. (43)
Qu,t

w,T
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Then, we use w € Hi(QT) as a test function in the weak formulation of the adjoint
problem satisfied by p to get

—/T B0 (1), w(t))dt+// (—A)Y "2 p(=A) 2w+ D, H(x, Du)p-Dw dxdr = 0.
Qa),r

w
(44)
We now fix w small so that n(w) = 0. We then obtain, subtracting the previous equality
to (43), and integrating by parts in time, the identity

[ o= [ a@renpe
T4 OQuw.r
+// n(t)L (x,DPH(x,Du(x,t))),o(x,t)dxdt

+ // n (Oulx, t)p(x, t)dxde. (45)

Forh > 0and & € RY, |£| = 1, define p(x, 1) := p(x — hé, t). After a change of
variables in the nonlocal problem (32), it can be seen that /5 satisfies, using w as a test
function,

w

—/T<3z,5(t),w(t))dt+// (—A) "2 p(—A) 2w dxdr
Q(D,f

+// D,H (x — h&, Du(x — h&, 1)) p(x, 1) - Dw(x,t)dxdr = 0. (46)

As before, we plug the vector field ©(x, 1) = D, H (x — h&, Du(x — h&,t)) and the
test function ¢ = 1 in (42) to conclude

/ (0rw(1), p(2))dt

+// (=AY "Ip(—A)Iw + D, H (x — he, Du(x — he, 1)) - Dwp

—L (x, DpH(x — h&, Du(x — h&, 1)) np dxds

5/ fnﬁdxdt—i—// un'p dxdr.
Qw,r w,T

‘We subtract (46) to the previous inequality and obtain

/ dw(x, ) pr (x)dx < // L (x, DpH (x — h&, Du(x — h&, t))) np dxdr
T w,T

+/ fnﬁdxdt—i—// un'p dxdt,
Qw,T w,T
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which, after the change of variables x — x + h&, becomes
/ w(x + héE, T)p (x)dx < // n()L (x—f—hé, D,,H(x,Du(x,t))),o(x,t)dxdt
Td Q(A}.T

+/ fn,@dxdt—l—// un’ pdxdr. (47)
Qu,t

,T

Taking the difference between (47) and (45), we conclude

/ g (WO BE D) =W, T)pr (¥)dx
= [, n0) (1 (e, Dy Dt ) ~Lx, Dy HIs, Dt 1) 1) s
+//Qm N f .0 (px — hé. 1) — plx. 1)) dxdt
+ //QW ' (Ou(x, 1) (p(x — hé, 1) — p(x, 1)) dxdr )

Step 2. We now estimate all the right hand side terms of (48). We emphasize that
constants C, Cy, ... are not going to depend on 7, p;, h, §.

First, following [38, Theorem 1.2-Step 2] and the proof of Proposition 5.7, we
observe that in view of Theorem 2.2 we get

// |DpH (e, Due, ) plr. ) dedr + lpllyt g, <Ca.

dtds—1—y/(2s—1)

Let o € (0, 1) to be determined later. For v = D, H (x, p), we have L(x,v) =
v-p— H(x, p) and thus

L (x+ h&, DpH(x, Du(x,1))) — L(x, DpH (x, Du(x, 1))
< H(x,Du(x,t)) — H(x+&, Du(x,t)).

Next, using (H,) and the above inequality, we get

// n(t) (L(x + h&, Dy H(x, Du(x, 1)) — L (x, DpH (x, Du(x, 1)))) p(x, t) dxdr

< cmw“// (IDpH (. Dux, )1 +1) p(x, 1) dxdr < Clh|“.
Q(u,r
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We can apply the Sobolev embedding in Lemma 3.10-(ii) withé = ¢’, p= d+4+is’(2s—l)

d+2s d+2s
(= d+2s—1 q

<2),givinga = y’'(2s — 1) — and Lemma 3.14, to show

'//Q n@) f(x, 1) (p(x —h& 1) — p(x, 1)) dxdt

< |h|°‘// | f(x, 0l l(p(x_h‘g"ht')a_ PLOIN gy

<RI 290w 1Pl L7 (. N’ ()

<C |h|a ”f”Lq(Qw,r) ”’O”qu(w,‘E;H"‘/(Td))
q

< o o
= Gl flliaoollelyzs-1t g,

dtds—1—y/(25—1)

< G3|h* I fllLa(Qu.0)-

Finally, as above, we conclude
‘// n'(Ou(x, 1) (p(x — h, 1) — p(x, 1)) dxdr
Qw,f
< |h* ( sup |77/(t)|) ”u”L‘]/(Qw ) ”p”Lq’(w,r;Nouq’('H‘d))
0,7) '
a / _
< Cilh| ((%ujl?) n (t)|> ”u”C(QT)”p”Lq/(w,t;H;,(Td))
< Ca|h|* sup |0/ (1)].
0,7)

Plugging all the estimates in (48), we obtain

/ (wlr +hE, 7) —w(x, 7)) pr(x)dx
T

< Clh* (SUP I’ (O] + 1) (49)
0,7)

d+2s
when g > By

Step 3. Since (49) holds for all smooth p; > 0 with || oz || 1 (1ay = 1, we get

n(m)u(x +hé, v) —u(x, v)] < Clh|* ((%up) In' ()] + 1)
T

forall x € T4, & € R¢, h > 0. Thus, u(-, t) is Holder continuous, and

N[, D leeqra) < C (sup ' ()] + 1) :
©0,7)
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Since C does not depend on 7 € (0, T), we take #; € (0, T), n = n(¢) nonnegative
smooth function on [0, 7] such that () < 1, n(t) = 1 on [t{, T] and vanishing on
[0, #1/2]. This proves Theorem 2.5-(C).

To prove the global-in-time bound in (D), one may observe that if u € Hés (O7)

is a strong solution with ¢ > Q‘jt—%‘;y,, y > 2s (or a global weak solution), then

the solution is global in time and one can take w = 0 throughout the proof setting
also n = 1 on [0, T]. Being the solution global, norms ”“”C@T) can be replaced
by lluoll¢(rey by Theorem 2.3, which are in turn bounded by [|uo || ce (). Now, an

additional term of the form

/ u(x+h,0) —u(x,0)
Td ||

p(x,0)dx

arises, which can be immediately bounded by [MQ]CQ(Td) since f pap(0) = 1. O

Remark 5.13. Using the same scheme of Theorem 2.5, we believe one can even handle
the case y < 2s by considering appropriate weak solutions (not continuous on the
whole cylinder Q7) to (2).

Remark 5.14. An approach similar to that for the Holder bounds and the one in [37,
Theorem 1.1], which exploits the regularity properties in Corollary 5.9, yields a Lip-
schitz regularization effect for (2) whenever f € L9(0, T qu_zs (T?)) for o = q as
in Corollary 5.9. This requires to impose that | D, H (x, p)| < Cg(|p|¥ + 1) instead
of (Hy), see [49, Chapter 7].

5.5. Maximal L9-regularity
5.5.1. An overview of the results in the viscous case

Let us first consider the following viscous problem
—Au+|Dul” = f(x)inT¢, y > 1, (50)

where f is an unbounded source term belonging to a suitable Lebesgue space L?. In
[71,72] P.-L. Lions proposed the following conjecture:

Conjecture 5.15. Let f € L4(T?), g > 1, for some

d _dy-1)
q>—=—.
v v

(51
and y > 1. Then, every solution to (50) satisfies the a priori estimate

2
D ullze + I Dul”lla S If e

Moreover, the estimate is false when g < d/y’.
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A byproduct of this statement is a maximal L?-regularity for solutions to (50). In
other words, (50) behaves, in terms of regularity, as the Poisson equation (cf [48,
Theorem 9.9]) under the regime (51) of the integrability exponent g of the right-hand
side f. Conjecture 5.15 completes the results in [70] for the subcritical range of the
integrability of the forcing term, where it was proved a Lipschitz regularity result
when f € L1, q > d, and every y > 1, obtained via an integral Bernstein method.
A proof of Conjecture 5.15 has been proposed in [39] appropriately modifying the
Bernstein method, while an extension to the parabolic viscous framework has been
already provided in [38]. More precisely, in Theorem 1.1 of [38] it has been proved
that maximal regularity for viscous (2) occurs for strong solutions when f € LY(Q7)
with

—1 .
- (d+2)y7 1f1+ﬁ<y<2
d+2)L7 ify =2,

Note that by scaling arguments the threshold ¢ = (d 4-2)(y —1)/y can be regarded as
a parabolic analogue to the one in (51). We also refer to [40] for more recent maximal
regularity results for viscous (s = 1) problems with quadratic gradient growth and
right-hand sides in mixed Lebesgue scales and to [58] (and the references therein)
for some maximal regularity properties for fully nonlinear second-order uniformly
parabolic problems in the context of L? viscosity solutions.

5.5.2. The fractional case

We first recall the following Calder6n—Zygmund regularity result for the fractional
heat equation with unbounded potential.

Lemma 5.16. Letu € HéS(QT), q > 1, be a strong solution to

oru+ (—A)’u=V(x,t) inQr
u(x,0) = ug(x) inT9,

with V € L4(Qr) andug € (L(T), HX (T9)1_1/q.4 = By >*/*(T?). Then, there

exists a constant C that remains bounded for bounded values of T, such that

||M||Hgs'(QT) = ||0:ullLacor) + ||M||Lq(0,T;Hq2S(Td))

= € (IVllLacor + ol - gy )
. . 2s—=25/q ;nd .
As a consequence, every strong solution to (2) with ug € By, (T%) satisfies

lellyzsory = €U lLacor) + I1H (x, Du)llzacor) + IIuollBglsI—zs/q(W)) .
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By gathering the previous results and the estimates in Theorems 2.3 and Theo-
rem 2.4, we have the following maximal L7-regularity result for (2) with (fractional)
sub-natural growth.

Proof of Theorem 2.6. We exploit the Gagliardo—Nirenberg inequality in Lemma 3.5
to get for y € (1, 2s)

IDu(®)llLracor) < C1IIM(I)IIst(Td)||u(t)||L&(Td) (52)
forz € (1,00) and 6 € [, 1) with
1 —1+9<1 2s>+1—9
vq d g d z

By Theorems 2.3 and 2.4, we have

lull Lo (0, 7; 12 (Tey) < O©

d+2s _ d+2s _
ifg < 2Ay,ze[1 o0) when ¢ = 2bv,z—oofor

dq
forany z < p = m

q > d+25 . Since g > (2s—l)y/’ we conclude p > d(y 1) . Then, we choose z close to
diy—1 1)
= sothat

1,1 1

= + [E

_z d vq
Oy = Ty Z 1 y <1
b4 d q

and 0 € [1/2s, 1/y). Raising (52) to y¢ and integrating in time, we have

(1-6)
ly lull}

| Dullzraco, < Callul Lo(0.7: 3T Ul oo 0,75 L2(T4))

Then, by (H) we deduce for positive constants C3, C4 > 0

1H G, Dllzacr = Cs (1+ 11Dl a0,

4 y(1-0)
=G (nunm (orsapcon) IEm sz + 1) .

Using Lemma 5.16 and Young’s inequality, we have

lellzon = Cs (1H e, DudllLacop + £ s + Nuoll g-2va )

(1-6)
E C6 (“M”Lq(o T: H2X('J1‘(1)) ”u”Zoo(O‘T:Lz('ﬂ*d)) + ”f”Lq(QT) + ”M()”Bt?;*k/q(rﬂﬂd))
7(1 9)

1
IIMIILq(o T; st(qrd))+C7||u||Loo(0 r.1:(rdy T C6 (”f”L‘I(QT) + IIMollng—Zs/q(Td)) :
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We then absorb the term % lu ||H3x (or)On the left-hand side and use the integral estimate
in Theorem 2.4 in L°°(L%) to conclude the assertion. Then, we have

I1DulllLracor) = C (”f”L‘I(QT)» ”1’[0”332_25/11('11*(1)>

for a possibly different constant C > 0. To prove the case y > 2s, we begin with the
Holder bound in Theorem 2.5

sup |[u(®)llcea(ray < 00
1€[0,T]

valid for y > 2s as follows:

e Fory =2s,wegeta =25 — d;Zs such thato € (0,2s — 1) wheng < d 4+ 2s,

42 while we have any o € (0, 1) when g > 42
e For2s <y < 272s G.e.,y (2s -1 >1,wegeta=9y"(2s — 1) — d—;2s such

that o € (0,25 — 1) if ¢ < o€ (2s — 11)1f%_q<
(d+2s)(y—=1)

a < lwhend+2s<q<

d+2s
@s—-Dy'-1)° i |
T—(2—25 )y , while we have any o € (0, 1) if ¢ > %

o Fory > 51 (ie,y/(2s — 1) < 1), we getar = y'(2s — 1) — —d+q2f € (0,1)

when g > y,‘f;rszjl)(_ d + 2s).

We use Lemma 3.6 to get fora.e. r € (0, T)

[Du) |l Lya(ray < C”“U)”].[Zs('ﬂ'd)”u(t)Hca (T4)

and hence after raising the above inequality to the power y¢ and integrating in time
we get

B
||DL£||LJ/q(QT) = C”M” (0 T HZY(Td)) ll ||L°°(0 T; CO‘(Td))

where
1-— d
ﬂe[ “,1>,a¢2s——.
2s —« q
Choosing 8 = 35, and ¢ > %), we get
By < 1 when

d+2 -2
a=y'2s—1) — +s>7/ i

ie,wheny <s/(1 —s)

- d+2s5)(y — 1)
25 — (2 —=25)y
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Observe also that _2—12s < —23S2S = ﬁ In particular, when y = 25 we have ¢ >
% = % Then, we deduce

1H @ Dwlaor < C1 (14 11Dl 00,

1_
< Cy(llu))® r{-h)

Lq(O,T;HqZS(T“’))”u”LOO(O,T;C‘Y('ﬂ“’)) +1),

which allows to exploit generalized Young’s inequality since y8 < 1 and conclude as
in the case y < 2s. O

Remark 5.17. The restriction y < 1= is not new in the literature. Under the assump-

tiony € [%, IST.S)’ it has been recently proved in [3] the existence of solutions for

fractional Kardar—Parisi—-Zhang equations with right-hand side in L¢ under suitable
restrictions on g for problems posed on bounded C!! domains of R¥.
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A. Nonlocal equations with drift terms

We begin with the following comparison principle for (5), whose proof follows the
strategy implemented in [47]. By weak solutions to (5), we mean a function in the
space H;(QT) satisfying the equation in the sense of distributions.
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Proposition A.1. Let vi, v» € L*(w, T; H21 (T?)) be, respectively, a weak sub- and

supersolution to (5) with b € LT(Qw,,), ? > gjzi such that vi(w) < va(w). Then

v S v2in Qg z.

Proof. Let us suppose that vy, vy are two weak sub- and supersolutions to (5) such
that w = vy — vy > Oin asubset D C Qr such that | D| > 0. Denote by

{w+—k if wt >k
wy =

0 otherwise

for k € (0, M), M = suppw™. We use ¢ = (=AY Swp € L2(H¥1) as a test
function in the weak formulation of the difference of the two equations. We then get

1=s 1
esssup,e(o,r)/TdK—A) 2 wk|2 dx +//Q |(—A)2wk|2 dxdt
T

5// b1l D] | (=AY~ wy dxdr.
or

Denote by

Er:={(x,1)e Qr :k <wt <supw™}.
D

We then note that by Holder’s inequality

// |b| Dw||(—A) S wy | dxdr
or

< bl ax2s ||Dwk|| 200 1= kall 229
LT (Ey Len TH2-25 (Q7)

< C|bl g2 ||Dwk||L2 ||wk|| 2129
L=T (Ey Q1) 50T HY (Tdy)
d+2-2s

We use the fractional Gagliardo—Nirenberg inequality on Besov scales [52, Theorem
1.2] saying that

IIMIIBV | (Td) <CIIMII (Td)llull N (T
for

d

——v=>10=-0)|——w)+0|——vi);
Po P1
d

Vo — — FV— —;

Po P

v<(1—0)y+0v;.

We thentake v =2 —2s,g = 1, po = p1 = 2,v9 = 1 — s, vy = 1| and get using
Lemma 3.3-(iii)

e Ol -2y < CR@N s 10Oy
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with & € (1/s — 1, 1) and p fulfilling the above compatibility condition. We then
integrate in time to get

T T
P (1-60)p op
[ O = [ @l @1 o

We take @ = 2/p for p = 29429 o that @ = 92-25 (hence § + 1 = 2442 b,

— d+2-2s° d+2s T d+2s
Op=2and (1 —-0)p = 3:35:2. Then, it is immediate to check that

d d d
——242s=(01-0)|-—-1+s)+6|=-—-1]).
p 2 2

2(d+2s) 2—2s J
Ld+2-2s { 0,T; HZ(d-;—Zx) (Td)
d+2=2s

This yields

42s—1) T 5
d+2-2s
= C”u”L;ro(o’T;Hl—s(Td)) (/0 ||u(t)||H2|(Td)> . (53)

Note that this agrees with the classical viscous case s = 1, cf [47, Lemma 3.1]. This
yields the embedding

2(d+2s)
L (0, T H;—S(Td)) nr? (0, T Hl(’ﬂ‘d)> o L5 <0, T: H223, (Td)) .

d+2-2s

Embedding (53), after applying Young’s inequality, gives

222;;1) d;rZEZ.r
lull 2w+29) , < Cullull 5 0o 7. s pany 1115700 . ot
L d¥2=2s (O’T;H%&Zizs) (Td)) L>®(0,T; H!=5(T%)) L2(0,T; H, (T9))
d+2-2s

=G (”’/‘”LOO(O,T;HI’S(T‘{)) + ||“||L2(0,T;H‘(T">)) :
We then conclude
Ls 1 2
(esssupre o,y I=2) T will 2oy + 1 (=) w20,
Ios 1 2
< cnmu%(m (esssupte(oj)n(—A) 2wl L2 (pay + ||(—A)2wk||L2(QT)) :
(54
As k — M this yields ”b”L‘éii E — 0, and hence (54) gives a contradiction. [
S — k

We have the following existence result obtained by similar arguments used for
elliptic problems, cf [2, Lemma 3.4], [47] and the references therein.

Proposition A.2. Let v, € H'™*(T%) and b € L*(Qu.c), P > T2 Then, there

exists a solution v € H%(Q(w,f)) to (5).
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Proof. We prove the existence via the Leray—Schauder fixed point theorem. Define
the map ¥ : H}(Qu.r) x [0, 11 — HL(Qu,7) as the map z —> W[z; 0] = v with v
solving the parametrized equation

v+ (=AY v =0b(x,1)- Dzin Qu, v(x, ®) = ov, in T?,

for the parameter o € [0, 1]. First, observe that W[z; 0] = 0 by standard results

. . 1 2(d+2s) 2(d+2s)
for fractional heat equations. We then observe that H, < Ld+%=2 < [d+2-2_ By
Holder’s inequality, we observe b - Dz € L2, when b € LY, with > ‘zi:r_zi since

2(d+2s)
Dz € LTix, Then, maximal regularity yields v € H%S and hence v € L*(H").

Finally, by using the equation we get 8;v € L>(H "), so that the map is well defined
in H%. We now prove the compactness of the map. Let z,, be a bounded sequence in
H%(Qw,r) and v, = ¥[z,, o]. Arguing as above, we get v, € H%(Qw,,) and then
exploit the compactness of ’Hé(Qw,r) into L2(Qw‘f) (see Lemma 3.11 with u = 1),
to have the strong convergence of v, to v in Lz(Qw,r) and the weak convergence of
(—A) 7 v, to (—A) 7 vin L2(Qw) along a subsequence. The compactness of W follows
by using now the test function ¢ := (=A)!' =5 (v, — v) that satisfies the requirements
¢ € L>(H>~ 1) with 8,¢ € L>(H™"). We then write

// |(—A)2 (v — v)? dudr < // b Dzy(—A)'™S (v, — v) dxdr
,T OQuw.t

—/ (—A)2v- (=A)? (vp — v) dxdr
0

—// B vn(—=A)' 75 (v, — v) dxdr ,

which shows the strong convergence of (—A) 3 vy to (—A) > vin LZ(QCM) by using that
dv, € L2(H™Y), the weak convergence of (—A)%vn to (—A)%v in L2(Qa,) and the
factthat |b||Dz| € L? (Qw,r) (note that we have also that (—A) =S 0 converges weakly
to (—A)! ™). The strong convergence of the time derivative follows by duality.

To prove the a priori estimate for every fixed point g € H% (Qu.r) of the map W, that
is satisfying g = W[g; o], we argue by contradiction as in the elliptic case. Indeed,
suppose that for any n one has v, € H%(Qw,r), o0, € [0, 1] such that v, = V[v,; 0,]
with ”U"”Hi(Qw,r) > n. This means that

”Un”Hé(Qw,‘[) — OQ.
The condition v, = ¥[v,; 0,,] gives
vy + (_A)Svn =opb(x,t) - Dv,
with v, (x, w) = 0,v,. Set w, = v,,/||vn||H%(Q(m)). Then, we have

orwy, + (_A)Swn < |bl|Dwy|
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and w, is bounded in Hé(Q(w,,)) (actually one has ”w”HHé(Q(m,r)) = 1). Arguing
as above, we have |b||Dw,| € L2(Qa,’,), and hence w, € H; and, in particular,
the sequence wy,, is relatively compact in Hé(Qw,f) using the previous arguments.
Therefore, there exists a subsequence to w,, converging strongly to w and by letting
n — oo we deduce

dw+ (—A)'w < |b||Dw

with w(x, 0) = 0. By the comparison principle, we deduce w < 0. Similarly, using
the same proof for —w we conclude w > 0 to get w = 0. Since ||wn||H%(war) =1
and wy,, is strongly convergent, we get a contradiction. We then conclude the existence
of solutions by the Leray—Schauder fixed point theorem [48, Theorem 11.6]. g

Remark 1. The proof of the above result remains the same if one adds a forcing term
feL?,.

Remark 2. The existence of a suitable weak solution when b € L*(Q;), ? > g;r_zi‘ ,

has been obtained in [56, Example 3 p.335].

Remark 3. Well-posedness of (5) has been recently addressed in [3], see also [1,2]
for the stationary problem, in the context of L' data for problems posed on bounded
domains. In this case v € LP(W'P), p < % since forb € LT, P > g;’ff one has
b-Dvell,
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