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Abstract 
The pharmaceutical industry has contributed positively to global longevity and well-being, and 

as well to the economy. However, several challenges must be faced by the pharmaceutical 

R&D, like the increasing difficulty in developing new treatments with significant advantages 

over the existing ones and the need to accelerate the entire R&D process, which often lasts more 

than half of the patent life and requires substantial investments of resources, labor and money.  

In this Dissertation, novel model-based methods are developed in order to streamline 

pharmaceutical R&D, while improving product and process understanding and ensuring 

product quality and process robustness. Specifically, the methods proposed in this Dissertation 

allow to: (i) streamline the design of tablets lubrication; (ii) minimise  model prediction variance 

in the whole design space by means of a trade-off between space exploration and information 

maximisation, (iii) adapt the novel procedure for the minimisation of model prediction variance 

to the operation of an automated platform in order to streamline kinetic studies; (iv) implement 

a fully autonomous operation of a chemical platform with the aim of collecting experiments to 

estimate model parameters and minimise model prediction variance; (v) accurately predict drug 

solubility in mixtures of organic solvents; (vi) predict drug solubility in intestinal fluids, 

considering the effects of food and physiological factors.  

Steamlining the design of tablets lubrication: Tablets lubrication is an important step in direct 

compression processes, for instance to prevent the powder from adhering on metal surfaces, 

however it cannot be excessive otherwise it degrades tablets manufacturability and properties 

(such as dissolution). An extended version of the Kushner and Moore model proposed by 

Nassar et al. (2021) is usually employed to predict tablets properties (tensile strength) based on 

tablets solid fraction and lubrication extent.  Experiments to estimate model parameters are 

generated through a tablet press, where the same blend (i.e., the powder characterised by the 

same lubrication extent) is compressed multiple times at different compression pressures. 

However, too many blends (typically 7-9) are used in the experimentation to calibrate the 

model, thus causing an excessive waste of Active Pharmaceutical Ingredient (API). In this 

Dissertation, a novel model-based design of experiments (MBDoE) method is proposed to 

determine the most informative lubrication extent for the blend used in the experimentation, 
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namely, the lubrication extent of the blend that allows to maximise the precision of the 

estimated model parameters. The use of this method leads to a significant reduction of the 

experimental burden: only 3-4 blends are sufficient to obtain statistically precise parameters 

and satisfactory prediction accuracy for industrial applications. Therefore, the experimental 

burden is reduced by 60-70%.  

Minimise model prediction variance in the whole design space by means of a trade-off 

between space exploration and information maximisation: state-of-the-art MBDoE methods 

for parameters precision select experimental conditions that minimise parameters uncertainty, 

but this does not necessarily lead to a minimisation of model prediction variance in the whole 

design space. Moreover, they tend to localise the experiments in regions of high information 

content (namely, leading to maximum parameters precision), but this may translate into a scarce 

exploration of the design space. Therefore, a novel exploratory MBDoE (eMBDoE) method is 

developed in order to minimise model prediction variance (G-optimality, 𝐽𝐽𝐺𝐺) in the whole 

design space with the minimum experimental burden, while ensuring parameters precision. This 

is achieved by selecting a first set of candidate design points based on a user-defined threshold 

𝐽𝐽𝐺𝐺,thr of G-optimality, among which the information content is maximised to find the best 

experimental condition. This is practically implemented through maps of G-optimality. 

Therefore, the proposed method is named G-map eMBDoE. The performance of G-map 

eMBDoE is tested with two simulated systems (i.e.: an algebraic model with two inputs and 

one output; a differential equation model with two constant inputs and two dynamic outputs 

sampled at three sampling points) and compared to an information-based method, MBDoE, and 

to two exploration-based methods, namely Latin Hypercube sampling and statistical design of 

experiments. The results suggest that G-map eMBDoE, compared to the abovementioned state-

of-the-art methodologies, is able to enhance space exploration with respect to MBDoE and to 

minimise model prediction variance in the whole design space in the most efficient way, while 

ensuring parameters precision.   

Adaptation of the novel procedure for the minimisation of model prediction variance to 

the operation of an automated platform in order to streamline kinetic studies: to further 

confirm the advantages of the G-map eMBDoE, this method is applied to an automated platform 

for kinetic studies. The reaction considered is the total methane oxidation, but the procedure is 

applicable to any other model of interest in the (bio)pharmaceutical industry. Based on 

preliminary simulations on the system under study, a G-optimality constraint is selected; then, 
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MBDoE and two G-map eMBDoE designs (with two different thresholds 𝐽𝐽𝐺𝐺,thr) are compared. 

The experimental results show that the most explorative G-map eMBDoE design (i.e., the one 

with the lower 𝐽𝐽𝐺𝐺,thr of the two) also leads to the greatest reduction of model prediction variance 

in the whole design space and to a minimisation of 78% of the experimental burden to obtain 

statistically precise model parameters.  

Fully autonomous operation of a chemical platform with the aim of collecting experiments 

to estimate model parameters and minimise model prediction variance: based on the results 

of G-map eMBDoE with both simulated and experimental data, this method can be useful to be 

implemented in fully autonomous chemical platforms, with no human intervention, with the 

aim of generating highly informative experiments with the minimum experimental burden. 

However, to do so a method to automatically select the most suitable G-optimality constraint is 

needed. Therefore, an adaptative G-map eMBDoE is proposed, which re-determines the best 

G-optimality constraint as soon as a new experiment is measured, without human intervention. 

This is done by analysing the overlap between maps of information content and maps of model 

prediction variance: if the most informative points have the highest G-optimality, space 

exploration is enhanced if points with lower G-optimality are favored; if the most informative 

points have the lowest G-optimality, space exploration is enhanced if points with higher G-

optimality are favored. For a fair comparison with the original G-map eMBDoE method, the 

adaptative G-map eMBDoE is applied to the two simulated systems (namely, both the algebraic 

and the differential equations model) previously used with G-map eMBDoE. The results show 

that the novel method is able to find a satisfactory trade-off between space exploration and 

information maximisation. Even if its results may be less efficient than the ones obtained by 

changing manually 𝐽𝐽𝐺𝐺,thr and selecting the most favorable threshold 𝐽𝐽𝐺𝐺,thr at the end of the 

simulated experimental campaign, it is still significantly better than the worst scenario 

encountered when an unfavorable 𝐽𝐽𝐺𝐺,thr is manually selected. Considering that the results of the 

adaptative G-map eMBDoE are achieved without requiring any human intervention, they 

suggest that the proposed method is ready to be implemented in a fully autonomous chemical 

platform, thus fully exploiting Industry 4.0 technologies.  

Accurately predicting drug solubility in mixtures of organic solvents : a data-driven model 

is proposed to improve the prediction of drug solubility in mixtures of organic solvents. Little 

information is required to predict solubility: (i) temperature; (ii) mixture composition before 

API dissolution; (iii) UNIFAC subgroups associated to the solvents in the mixture. Such input 
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variables can be correlated among each other, but correlation is handled by the use of Partial 

Least Square (PLS). To test the proposed model with experimental data, a real drug substance 

and 14 organic solvents commonly used in crystallisation units are used and a high-throughput 

technology with 96-vials plates is employed. The PLS model is calibrated with solubility 

measurements in the single solvents and in a few binary mixtures at two temperatures (20 and 

40°C) and it is validated with: binary mixtures with the same pair of solvents used in calibration, 

but at a different composition; binary mixtures with different pairs of solvents; ternary mixtures; 

data at a higher temperature (50°C). The PLS method provides satisfactory predictions both in 

calibration and validation, as shown by the coefficient of determination equal to 0.92 and 0.90, 

respectively. Finally, the same modelling approach is applied to 9 datasets from the Literature 

involving drug and drug-like molecules and the majority of the calibration and validation 

datasets lead to a coefficient of determination between 0.95 and 0.99.  

Predict drug solubility in intestinal fluids, considering the effects of food and physiological 

factors: the safety and efficacy of solid oral dosage forms depend on their bioavailability, 

namely on the fraction of drug that reaches the systemic circulation. Only the drug that is 

dissolved in the intestinal fluids can pass through the gut wall and reach the bloodstream. 

Therefore, solubility in intestinal fluids is a key property that must be assessed from the early 

stages of drug development. However, this assessment is complicated by the fact that a high 

level of variability is present due to differences in physiological factors within one individual 

(e.g., variations in pH, bile salts concentration and food digestion products concentrations due 

to fasted and fed conditions) and among different subjects (e.g., due to age, sex and ethnicity). 

Moreover, human intestinal fluids of treated patients cannot be sampled extensively, therefore 

in-vitro biorelevant media must be employed to study drug solubility. The in-vitro data can then 

be used to calibrate pharmacokinetic (PK) models describing the interaction between the drug 

and the human body. In fact, model-based PK simulations with commercial software are 

extremely useful because they allow to simulate a variety of scenarios and to generate virtual 

populations with intra- and inter-subject variability. In this Dissertation, a Gaussian Process 

model is developed to support PK studies: (i) it is able to represent food effects, improving the 

accuracy of the prediction of in-vitro data with respect to standard models available in 

commercial software; (ii) it has a structure that allows to integrate it within a commercial PK 

software that simulates multiple individuals with different physiological factors. Thus the 
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improved prediction of drug solubility will allow to improve the overall simulation of 

physiologically-based pharmacokinetics, taking into account inter- and intra-subject variability.  



 
 

 

List of Symbols  
Acronyms 
ADME Absorption, distribution, metabolism and excretion 
AE absolute error 
API Active Pharmaceutical Ingredient 
BS Bile salts 
cGMP current Good Manufacturing Practices 
CH cholesterol 
CI confidence interval 
CIGP  confidence interval of the GP model 
CIPLS  confidence interval of the PLS model 
CMA Critical material attribute 
CMC critical micelles concentration 
CPP Critical process parameter 
CQA Critical quality attribute 
CTA clinical trial application 
DoE design of experiments 
DS Design space 
EFPIA European Federation of Pharmaceutical Industries Associations 
EMA European Medicines Agency 
eMBDoE exploratory MBDoE 
FaSSIFs fasted SIFs 
FDA Food & Drug Administration 
FIM Fisher Information Matrix 
GC Gas chromatography 
GC-MSD Gas chromatography with mass detector 
GDC sodium glycodeoxy-cholate 
GLC sodium glycocholate hydrate 
G-map mapping of G-optimality 
GP Gaussian Process 
HIF Human intestinal fluids 
H-map mapping of FIM-based information 
HPLC High-performance liquid chromatography 
HTE High-throughput experimentation 
ICH International Council on Harmonization 
IND investigational new drug application 
IoT Internet of Things 
IRR Internal Rate of Return 
IVGTT Intravenous glucose tolerance tests 
IVIV In vitro in vivo 
LB lower bound 
LH Latin Hypercube 
LV latent variables 
MBDoE model-based design of experiments 
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MCC microcrystalline cellulose 
ML Machine Learning 
MLR Multivariate Linear Regression 
MS Mass spectrometers 
NDA New Drug Application 
OA oleic acid 
OFAT One-factor-at-a-time 
OSD oral solid dosage 
PAT Process analytical technology 
PBPK physiologically-based pharmacokinetics 
PC lecithin, namely L-alpha-phosphatidylcholine  
PD pharmacodynamics 
PK pharmacokinetics 
PLS Partial Least Squares 
QbD Quality-by-Design 
QbT Quality-by-Testing 
QSAR Quantitative structure–activity relationship 
QSPR Quantitative structure–property relationship 
QTPP Quality target product profile 
R&D research and development 
RMG Reaction Mechanism Generator 
RMSE root mean squared error 
SE squared exponential function 
SEPLS  standard error of the PLS model 
SF solid fraction 
SIF Simulated intestinal fluids 
SMILES Simplified Molecular Input Line Entry System 
SPE  squared prediction error 
SPElim  confidence limit of the squared prediction error 
TC sodium taurocholate hydrate 
TCDC sodium taurochenodeoxycholate 
TS tensile strength 
UB upper bound 
UPLC Ultra- high-performance liquid chromatographic systems 
VIP variable importance in projection 

Symbols  
A  number of latent variables 
𝑎𝑎1, 𝑎𝑎2 extended Kushner and Moore parameters  
𝑏𝑏1, 𝑏𝑏2 extended Kushner and Moore parameters 
[BS]app   apparent bile salts concentration  
cov(𝐟𝐟∗)  covariance function of the noise-free predictions 
det(∙) matrix determinant 
𝑑𝑑  degree of freedom of the PLS model 
𝑑𝑑𝑖𝑖𝑖𝑖  distance metrics between two designs, 𝑖𝑖 and 𝑗𝑗 
𝐷𝐷 tablet diameter 
𝔼𝔼[∙]  expected value 
𝐄𝐄  matrix of residuals for the input matrix of a PLS model 
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𝐸𝐸𝑎𝑎,1(/2/3)  parameters of the kinetic model of total methane oxidation 
𝐟𝐟  set of model equations 
𝐟𝐟∗̅  mean function at test conditions 
𝑓𝑓𝑖𝑖
S(/L)  fugacity of the 𝑖𝑖-th compound in the solid (or liquid) phase 
𝐅𝐅  matrix of residuals for the output matrix of a PLS model 
𝐹𝐹 breaking force 
𝐹𝐹ℎ fraction occupied by the headspace 
𝐹𝐹𝐺𝐺 ,min (/mean/max)
𝜓𝜓≫   minimum (or mean or maximum) fraction of G-optimality for 

the design points having the highest information content, with 
respect to the maximum G-optimality calculated in the whole 
design space 

𝑔𝑔𝑘𝑘  effect of the 𝑘𝑘-th subgroup in the mixture 
𝒢𝒢𝒢𝒢  Gaussian Process model 
𝐡𝐡  set of equations of measurable responses 
ℎ𝑛𝑛  leverage of the 𝑛𝑛-th observation of the PLS model 
𝐇𝐇𝛉𝛉�  Fisher Information Matrix of a general model with estimated 

parameters 𝛉𝛉� 
𝐽𝐽𝐺𝐺   scalar value summarising the G-optimality values calculated for 

all responses and all time points at a specific point in the design 
space 

𝐽𝐽𝐺𝐺,min (/mean/max)   minimum (or mean or maximum) values of 𝐽𝐽𝐺𝐺 calculate in the 
whole design space 

𝐽𝐽𝐺𝐺,thr   thresholds of G-optimality 
𝐽𝐽𝐺𝐺,thr,prior   G-optimality threshold based on prior knowledge on the system 
𝐽𝐽𝐺𝐺,thr,mean   G-optimality threshold based on measured preliminary data 
𝐽𝐽𝐺𝐺,min (/mean/max)
𝜓𝜓≫   minimum (or mean or maximum) scalar measure of G-

optimality calculated for the most informative points 
𝑘𝑘1(/2/3),ref  parameters of the kinetic model of total methane oxidation 
𝐾𝐾(∙,∙)  matrix of covariances between two specified matrices 
𝐾𝐾𝑚𝑚:𝑤𝑤,𝑢𝑢(/𝑖𝑖)  water-to-micelle partition coefficients of unionised (or ionised) 

species 
ℓ  hyperparameter of the squared exponential function 
𝐿𝐿�𝛉𝛉��  negative log-likelihood function 
𝑚𝑚(∙)  prior mean function of the GP model 
𝑚𝑚𝑇𝑇 tablet weight 
𝑁𝑁  total number of experimental measurements 
𝒩𝒩  normal distribution 
𝑁𝑁𝑒𝑒  number of performed experiments 
𝑁𝑁𝑘𝑘  number of UNIFAC subgroups in the mixture 
𝑁𝑁sp  number of sampling points considering all the performed 

experiments 
𝑁𝑁sp𝑖𝑖  number of sampling points in the 𝑖𝑖-th experiment 
𝑁𝑁𝑢𝑢  number of control variables 
𝑁𝑁𝑥𝑥  number of state variables 
𝑁𝑁𝑦𝑦  number of response variables 
𝑁𝑁𝜃𝜃  number of model parameters 



Motivation and state of the art  xi 

  2023, Francesca Cenci, University of Padova (Italy)   

𝑁𝑁𝜑𝜑  number of possible experimental conditions within the 
discretised design space 

𝑁𝑁𝐾𝐾 number of lubrication extents 
𝑁𝑁𝐿𝐿  number of liquid organic solvents in the mixture 
𝑁𝑁reg number of fictitious data points  
𝑁𝑁𝑆𝑆𝑆𝑆 number of solid fraction values 
𝑁𝑁∗  number of test (or validation) data 
𝐏𝐏  matrix of loadings of the input matrix 
pK𝑎𝑎,1(/2)  dissociation constant of the acid (or base) 
𝐐𝐐  matrix of loadings of the output matrix 
𝑟𝑟  kinetic rate 
𝑅𝑅2  coefficient of determination 
𝑅𝑅𝑎𝑎2  amount of 𝑦𝑦 variance explained by the 𝑎𝑎-th latent variable 
𝑠𝑠  standard deviation of the PLS model 
𝐬𝐬  row-vector of sensitivity indices 
𝐒𝐒 sensitivity matrix 
𝑆𝑆0  intrinsic solubility 
𝑆𝑆BS,u(/i)  bile-salt mediated enhancement of solubility of the unionized 

(or ionized) species 
𝑆𝑆pH  overall pH-dependent solubility 
𝑆𝑆pH,i  pH-dependent solubility of ionised species 
𝑆𝑆𝑇𝑇  total solubility 
𝑡𝑡  time 
𝐓𝐓  matrix of scores 
𝑡𝑡blend blending time 
𝑡𝑡𝑖𝑖  t-value for the 𝑖𝑖-th parameter 
𝐭𝐭sp  vector of sampling points 
𝑡𝑡ref  reference t-value 
𝑇𝑇2  Hotelling statistics 
𝑇𝑇lim2   confidence limit of the Hotelling statistics 
𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠=0.85,0 initial tensile strength at 0.85 solid fraction 
𝐮𝐮, 𝐮𝐮LB, 𝐮𝐮UB vector of control variables, lower bounds and upper bounds of 

control variables 
𝐔𝐔  matrix of input observations 
𝑉𝑉  number of regressors of PLS models 
𝐕𝐕𝑦𝑦  matrix of model prediction variances calculated by means of 

the G-optimality definition 
𝐕𝐕𝛉𝛉�  variance-covariance matrix 
𝐕𝐕𝛉𝛉�
0  prior variance-covariance matrix of model parameters 

𝑉𝑉𝑏𝑏 blender volume 
𝑉𝑉𝑐𝑐 cup volume 
𝑊𝑊  wall height of the tablet 
𝐖𝐖  matrix of weights  
𝐱𝐱  vector of state variables 
𝑥𝑥mol,𝑖𝑖  molar fraction of the i-th compound in the PLS model 
�̇�𝐱  vector of first derivatives of state variables 
𝐲𝐲  vector of measurable model responses 
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𝐘𝐘  matrix of observed response variables 
𝐲𝐲�  vector of measurable model responses predicted by the model 
𝐲𝐲�GP  prediction of the Gaussian Process model 
𝐲𝐲�LR  prediction of the linear regression model 
  

Greek letters 
𝛼𝛼   significance level 
𝛼𝛼equip  equipment dependent factor 
𝛾𝛾 lubrication rate constant of the blend 
𝛾𝛾𝑖𝑖  activity coefficient of the 𝑖𝑖-th compound 
𝛾𝛾𝑖𝑖
𝐶𝐶(/𝑅𝑅)  combinatorial (or residual) contribution to the activity coefficient 

of the 𝑖𝑖-th compound  
𝛃𝛃  parameters of a linear regression model 
𝜀𝜀  error of the mathematical model 
𝛉𝛉  vector of model parameters  
𝛉𝛉�  vector of estimated model parameters 
𝛉𝛉0,𝛉𝛉�true,𝛉𝛉LB, 𝛉𝛉UB vector of initial parameters values, true parameters values, lower 

bounds (LB) and upper bounds (UB) for parameters estimation 
𝚯𝚯 vector of model parameters when variables are scaled 
𝜅𝜅(∙,∙)  kernel function 
𝜅𝜅cond, 𝜅𝜅cond,max condition number, maximum condition number 
𝜆𝜆𝑎𝑎, 𝜆𝜆min (/max)  𝑎𝑎-th eigenvalue, maximum (or maximum) eigenvalue 
𝚲𝚲−1  matrix with the inverse of the eigenvalues of the PLS model 
𝜇𝜇  mean  
𝜇𝜇cal  mean of the residuals of the calibration dataset of the PLS model 
υ𝑖𝑖𝑘𝑘  number of occurrences of the 𝑘𝑘-th subgroup in the 𝑖𝑖-th solvent 
𝜌𝜌𝑡𝑡 true density of the powder blend 
𝛔𝛔𝑦𝑦  standard deviation of the response measurement error 
𝜎𝜎cal  variance of the residuals of the calibration dataset of the PLS 

model 
𝜎𝜎SE2   hyperparameter of the squared exponential function  
𝚺𝚺𝑦𝑦  response variance-covariance matrix 
𝜎𝜎𝑦𝑦2  response variance  
𝛗𝛗  design vector 
𝛗𝛗 cand  candidate design points 
𝛗𝛗 opt  design vector solving the MBDoE optimisation problem 
𝛗𝛗opt
∗   reference design (e.g., MBDoE design) used to determine  

𝐽𝐽𝐺𝐺,thr,meas  
𝛗𝛗𝜓𝜓≫  design points with the highest information content 
𝜒𝜒𝑦𝑦2  statistics for the 𝜒𝜒2-test calculated for a given dataset 
𝜒𝜒ref2   reference value for the 𝜒𝜒2-test 
𝜓𝜓, 𝜓𝜓min (/max) scalar measure of the FIM, minimum (or maximum) scalar 

measure of the FIM 
𝜔𝜔blend mixer rotational speed 
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Chapter 1  
Motivation and state of the art 

This Chapter provides an overview of the main features of research and development (R&D) 

in the pharmaceutical industry. First, the socio-economic framework is described, highlighting 

strengths and difficulties of this sector. Then, the main steps from drug discovery to the launch 

of the final product are illustrated, focusing the attention on the main challenges concerning 

both product and process development. The regulatory framework is then described, and its 

impact on R&D and manufacturing explained. Moreover, two major contributions to the 

innovation of the pharmaceutical industry are discussed: Quality by Design (QbD) initiatives 

and Industry 4.0 new technologies. Opportunities and challenges of both are highlighted, 

together with some relevant examples from the literature. Finally, the objectives of this work 

are presented and the roadmap of this Dissertation is provided.  

1.1 Motivation of the State-of-the-Art 

The research activities presented this Dissertation (Chapters 3-8) focus on the reduction of time, 

labor and resources for the pharmaceutical R&D, while ensuring product quality and process 

robustness. Chapter 1 explains why this work provides a valuable contribution to the 

pharmaceutical sector:  

• First, the socio-economic framework is illustrated in order to explain why the pharmaceutical 

industry deserves attention, thanks to the positive contribution to the well-being and 

economic wealth worldwide, and why it requires reduced costs to maintain a satisfactory 

return on investment. 

• Then, the different steps from the discovery of a new molecular entity to the launch of the 

final product are explained, in order to highlight the necessity to: (i) accelerate the R&D 

timeline for a better patent exploitation; (ii) propose novel methods for a consistent delivery 

of high-quality products; (iii) propose novel methods to improve process robustness and 

flexibility.  



2   Chapter 1 

 2023, Francesca Cenci, University of Padova (Italy) 

• However, the pharmaceutical R&D can be innovated only considering the boundaries set by 

the regulatory framework. Therefore, the role of regulatory agencies and the consequences 

to the pharmaceutical sector are explained.  

• Afterwards, recent incentives (i.e., Quality-by-Design) to favour innovation are explained, 

focusing on the two aspects that are most relevant for this Dissertation: mathematical models 

and statistical design of experiments (DoE).  

• Statistical DoE is established in the pharmaceutical industry nowadays, with the advantage 

of modernising the experimental approach with respect to previous trial and error 

approaches, but it may be suboptimal for the development of models different from 

regression ones. Therefore, another method to design experiments is presented: model-based 

design of experiments (MBDoE). State-of-the-art applications of MBDoE to the 

pharmaceutical R&D are reviewed in detail to better explain the innovations of the MBDoE 

methods presented in this Dissertation.  

• In addition, Industry 4.0 has provided useful tools to streamline pharmaceutical R&D, 

therefore the overall framework of Industry 4.0 technologies is described. Then, high-

throughput and/or automated technologies are explained in detail since they are used in this 

Dissertation: (i) in fact, partially automated high-throughput technologies are used to 

generate the experimental data of Chapters 7-8; (ii) an automated microreactor platform is 

used to experimentally validate the new MBDoE method proposed in Chapter 5; (iii) a new 

MBDoE algorithm is developed in Chapter 6 with the purpose of allowing a fully 

autonomous decision-making in the platform. 

Finally, the objectives of this Dissertation are explained and the roadmap illustrated. 

1.2 Socio-economic framework of the pharmaceutical industry  

The pharmaceutical industry is concerned with the research, development, manufacturing and 

distribution of life-saving drugs and medical treatments. This sector gives a valuable 

contribution to the global economy on many levels: pharmaceutical companies pay salaries, 

support suppliers and pay taxes (www.efpia.eu/more-than-medicine). Different professionals 

are employed in these companies for a variety of roles: (i) in product development, for instance 

in laboratory-based R&D, clinical trials and regulatory affairs; (ii) in product manufacturing, 

such as process development and quality control; (iii) in the commercialisation of the final 

product, involving marketing, sales and distribution (Getreskilled, 2022). Moreover, revenues 
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of the pharmaceutical companies have had a positive trend in recent years: in 2014, total 

pharmaceutical revenues at global level exceeded 1 trillion United States dollars (USD) for the 

first time (González Peña, 2021), while the total global pharmaceutical market was estimated 

at 1.48 trillion US dollars in 2022 (Statista, 2023). One of the largest pharmaceutical markets 

is US and it is expected to grow from $567 billions in 2022 to $903 billions by 2030 (Insights10, 

2022). Another important pharmaceutical market is United Kingdom, which is among the 10 

top markets at global level according to Statista (2022). In fact, UK holds 2.6 percent of the 

global pharmaceutical sector and its two main companies, namely GSK and AstraZeneca, had 

a market capitalisation of 57 and 170 billion British pounds, respectively, at late 2022 (with the 

latter one being boosted by the development of the COVID-19 vaccine in collaboration with 

Oxford University). Positive economic trends are also encountered in the so-called 

pharmerging countries, namely countries with a low position in the rank of pharmaceutical 

markets, but having a rapid growth, such as India, China, South Africa, Brazil, Russia, 

Indonesia and Turkey. According to IMARC Group (2022), their global market size reached 

US$ 1.1 billions in 2022 and it is expected to grow up to US$ 2.2 billions by 2028.  

Besides the benefits for the global economy, the innovative products of the pharmaceutical 

industry have greatly contributed to the well-being and increase of longevity worldwide. For 

instance, Buxbaum et al. (2020) considered the increase of 3.9 years of life expectancy between 

1990 and 2015 in the US and isolated the factors contributing to at least 0.1 years of variation 

in the life expectancy. They obtained 12 categories overall (namely, diseases related to the 

circulating system, malignant neoplasms, traumas, neurological neoplasms and others), which 

explained the increase of longevity of 2.9 years; in turn, this increase in longevity was 

attributable to public health by 44%, to pharmaceuticals by 35% and to other medical care by 

13%. This positive result is a further incentive to promote and improve the R&D activities in 

the pharmaceutical sector. Coherently, the 2022 report by the European Federation of 

Pharmaceutical Industries Associations (EFPIA) highlighted that the European citizens have an 

expectancy of life that is 30 years longer than a century ago and their quality of life has greatly 

improved thanks to innovative treatments against a variety of diseases, such as some cancer 

types, HIV and cardiovascular diseases. To further reduce mortality and improve quality of life, 

it is important to keep investing on pharmaceutical R&D and, also, to align the research with 

unmet patients’ needs, especially treatments against Alzheimer’s, Multiple Sclerosis, many 

cancers, and rare diseases (EFPIA, 2022; Panteli and Edwards, 2018). 
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Despite the positive economic trend and the importance of innovative pharmaceutical 

treatments for the life of patients worldwide, there are several challenges to be faced in the 

pharmaceutical R&D. Deloitte has published annual reports titled “Measuring the return from 

pharmaceutical innovation” from 2010 onwards; the trend of  Internal Rate of Return (IRR) per 

year is decreasing in the period analysed: besides the positive peak in 2021, likely due to 

COVID-19 vaccines, the IRR decreased to 1.2% in 2022, reaching the lowest value in the time 

lapse considered (Figure 1.1a). A contribution to the decreasing IRR is given by the increasing 

costs and duration of pharmaceutical R&D: Deloitte’s report 2022 highlights that the total R&D 

expenditure increased from $85.5 billions in 2013 to $139.2 billions in 2022 (Figure 1.1b); 

moreover, 12-13 years can elapse between the discovery of a new active molecule and the 

launch of the final product in the market (Destro and Barolo, 2022). More details on product 

and process development and on their challenges are provided in Section 1.2.  

 
Figure 1.1. Economic trend of the pharmaceutical industry in terms of: a) IRR [%] 
from 2013 to 2022; b) total R&D expenditure from 2013 to 2022 (adapted from 
Deloitte, 2023).  

1.3 New drug: from R&D to marketing 

The launch of a new drug is made of three main steps, as illustrated in Figure 1.2: (i) research, 

(ii) development and (iii) manufacturing. It is a long process, typically lasting 12-13 years, 
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therefore more than half of the patent life that starts when a new active substance is synthesised 

and expires 20 years later (EFPIA, 2020). In fact, pharmaceutical companies need to streamline 

every step of this long procedure in order to exploit the patent to the fullest and to repay the 

investments made on the successful drug, as well as on the candidates that have not passed the 

pre-clinical and clinical trials.    

 
Figure 1.2. Illustration of the main steps of pharmaceutical R&D and manufacturing 
(adapted from Destro and Barolo, 2022).  

After patent application, pre-clinical studies are carried out to obtain detailed information on 

dosing and toxicity levels. To this purpose, both in-vivo and in-vitro experiments are performed 

and they must comply with the good laboratory practices regarding personnel, equipment and 

operating procedures (FDA, 2018). Usually, 1 out of 5000-10000 entities that enter pre-clinical 

studies is able to reach the final approval (Lipsky and Sharp, 2001); the research phase involves 

3-6 years of work and about 15% of the overall budget to launch a new drug (EFPIA, 2020; 

Destro and Barolo, 2022).  

While pre-clinical trials focus mainly on drug safety, clinical trials of the development phase 

aim at characterizing the interaction of the drug with the human body (FDA, 2018). However, 

tests in humans cannot be performed without official authorisation by competent authorities, 

such as the investigational new drug application (IND) by the FDA or the clinical trial 

application (CTA) by the EMA (Destro and Barolo, 2022). After that, clinical trials must be 
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properly designed: first of all, research questions and objectives (typically related to drug safety 

and efficacy) must be defined; then, duration, selection criteria for participants, administration 

route and schedule and type of data analysis must be defined. Moreover, there are three clinical 

trials phases (as shown in Figure 1.2), which involve an increasing number of volunteers: 

• clinical trial Phase I: from 20 to 100 volunteers; 

• clinical trial Phase II: from 100 to 500 volunteers; 

• clinical trial Phase III: from 1000 to 5000 volunteers.  

In parallel with the product development, the process is developed in order to produce the 

Active Pharmaceutical Ingredient (API) for clinical trials and to have a manufacturing process 

ready when the drug passes all the tests and is approved. Overall, the development phase lasts 

6-7 years and absorbs approximately 50% of the budget, whose 30% is used in phase III, to 

launch a new drug (Destro and Barolo, 2022).  

When the drug passes all clinical trials proving its safety and efficacy, the drug developer can 

file an application to FDA (Food & Drug Administration) or EMA (European Medicines 

Agency) to market the drug. The review from regulators can take up to two years and the drug 

can be commercialised after the approval. During drug manufacturing, tests must be carried out 

periodically to ensure safety and efficacy of the drug; this is considered as the Phase IV of 

clinical trials (Destro and Barolo, 2022).   

1.3.1 Main challenges of pharmaceutical R&D 

As shown in Figure 1.2, one of the major difficulties of drug research is the decreasing 

availability of candidate drugs to be tested. This trend started from the 80s and is related to the 

difficulty of proposing new treatments having evident advantages over the ones already 

existing, such as increased efficacy, higher potency, reduced toxicity, ease of administration or 

affordability (Kiriiri et al., 2020). To favour the synthesis of new molecular entities, high-

technology platforms and combinatorial chemistry have been employed, but they led to highly 

lipophilic molecules displaying poor water solubility (Kiriiri et al., 2020).  In turn, scarce 

solubility can degrade drug manufacturability and pharmacokinetic properties (i.e., properties 

related to the interaction between drugs and human body). For this reason, drug solubility in a 

variety of conditions of relevance for the pharmaceutical industry is studied in the works 

presented in this Dissertation (see Section 1.9).  
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As regards drug development, one of the main issues is the small success rate: 57% of the drugs 

tested in Phase I pass to Phase II; 39% of the drugs tested in Phase II are admitted to Phase III; 

29% of the candidate drugs pass Phase III. Moreover, the recruitment of volunteers is an 

arduous task for researches, contributing to the increase of duration and costs of clinical trials: 

it is estimated that only 55% of trials is able to recruit the original specified number of 

participants (Allison et al., 2022). The inclusion of proper percentages of minorities is even 

more difficult, with African Americans and Hispanics still covering small percentages of 

participants despite the efforts to be more inclusive (Allison et al., 2022; Fisher and Kalbaugh, 

2011). It is important to improve this aspect because individuals from different ethnic groups 

may react differently to the same drug. For instance, Tamargo et al. (2022) observed that after 

treating ethnically diverse patients with antithrombotics or lipid-lowering drugs, the differences 

of drug-metabolising enzymes and drug transporters attributable to patients ethnicity caused 

different responses to the drugs. A more detailed characterisation of physiological factors and 

of their impact on drug efficacy will be important also to pave the way for personalised 

medicine (Tamargo et al., 2022).  

On the other side, the main issues of process development are related to the necessity of rapidly 

producing the API for product development, passing from few grams for pre-clinical trials to 

hundreds of kilograms for phase III of the clinical trials. Rapidity is often achieved at the 

expense of process understanding and robustness, which translates into lack of process 

robustness at the manufacturing scale (Destro and Barolo, 2022).  

The need to reach the market in reduced timelines also favours the employment of proven 

technology that might be suboptimal in terms of costs and efficacy in the long term (Peters, 

2019). Moreover, the adoption of innovative solutions is hampered by the strict regulatory 

environment in which pharmaceutical companies operate, due to the perceived risk of not 

receiving approval from regulatory agencies (Peters, 2019). More details on the regulatory 

framework are provided in Section 1.4.  

1.4 Regulatory framework and Quality-by-design initiatives 

Regulatory agencies have an important role in the protection of patients’ health and were 

created as a response to some incidents, such as the fatalities caused by Elixir Sulfanilamide in 

the US in 1937 and the birth defects caused by Thalidomide in the 60s (Destro and Barolo, 

2022; Collins, 2018). While the initial aim was mainly to control toxicologic effects of drugs, 

the role of regulatory agencies nowadays includes several aspects; for instance: the review of 
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submissions concerning the approval of new drugs; the approval of variations to products and/or 

processes in the drug lifecycle; the visit of manufacturing sites and the assessment of 

compliance with regulations (Collins, 2018). Two benchmark regulatory agencies are the Food 

and Drug Administration (FDA) in the US and the European Medicines Agency (EMA) in 

Europe, but several others exist at national and international level and they can be found in 

Global Regulatory Authority Websites (2023). Most of them have specific regulations, even though 

some basics principles are shared and a further alignment is promoted by the International Council 

on Harmonization (ICH; Collinds, 2018)   

Besides the important role in ensuring safety and efficacy of the drugs, this strict regulatory 

environment discouraged innovation in the pharmaceutical processes, as highlighted also by the 

Wall Street Journal in 2003 (Abboud and Hensley, 2003). For this reason, FDA started a series of 

initiatives at early 2000s to promote innovation in the pharmaceutical industry. For instance, 

“Pharmaceutical current Good Manufacturing Practices (cGMPs) for the 21st century – A risk-

based approach” was introduced in 2004 (FDA, 2004b) in order to promote the following: adoption 

of new technologies; implementation of modern quality management techniques; implementation 

of risk-based approaches. This and other documents published by FDA (FDA, 2004c; FDA, 2006) 

and ICH (ICH 2006, 2009a, 2009b, 2011, 2012) promoting Process Analytical Technology 

(PAT) and Quality-by-Design (QbD) principles contributed to modernising R&D and 

manufacturing industry, focusing on the adoption of science-driven methods and risk-based 

approaches.   

1.4.1 Quality by Design (QbD) 

One of the main issues highlighted by cGMPs for the 21st Century was the need for a common 

definition of pharmaceutical quality for regulatory purposes. Nowadays, a widely recognised 

definition of drug quality is the absence of contamination and a consistent correspondence between 

the drug effects and the drug performance declared in the label (Woodcock, 2004; Sivaraman and 

Banga, 2015; Destro and Barolo, 2022). The main innovation given by Quality-by-Design 

principles relies in the way pharmaceutical quality is attained. In fact, prior to the QbD principles, 

a Quality-by-Testing (QbT) approach was adopted (Sivaraman and Banga, 2015; Yu, 2008): in a 

QbT context, the raw material is tested and if it is below the approved standards it is discarded; the 

approved raw material is processed through a strictly controlled manufacturing process, with the 

necessity of asking FDA for approval of any changes; the end-product is tested a posteriori and if 

the results do not meet the approved performance it must be discarded. However, the QbT approach 
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lacks flexibility and proper understanding of root causes for failures, with the risk of repeatedly 

waste time and material until the root causes are well understood.  

On the other side, QbD focuses on the idea that product quality should be built in at the design stage 

(Sivaraman and Banga, 2015, Destro and Barolo, 2022). The main steps to implement the QbD 

paradigm are (Djuris and Djuric, 2017): 

• step 1: the definition of the Quality target product profile (QTPP), namely the drug’s safety, 

efficacy and performance characteristics; 

• step 2: based on the QTPP, the definition of the Critical quality attributes (CQAs), namely 

the physical, chemical, biological, or microbiological properties that contribute to the 

attainment of the desired quality (ICH, 2009); 

• step 3: the risk assessment in order to identify critical material attributes (CMAs) and 

critical process parameters (CPPs), namely the properties of the raw materials and the 

operating variables, respectively, having an impact on CQAs; 

• step 4: the definition of the Design Space (DS), namely the multivariate space of CMAs 

and CPPs that ensures the attainment of the desired product quality. The DS is based on 

the scientific understanding of products and processes and allows for much greater 

flexibility with respect to QbT: once the DS is approved, pharmaceutical companies can 

make variations within the DS without filing for a new approval; 

• step 5: the definition of a control strategy, i.e. a set of actions and controls that ensures 

process performance and product quality (Destro and Barolo, 2022); 

• step 6: continual improvement and verification. The data collected from the process are 

used to optimise the current process, to validate the chemometric models of PAT, to review 

mathematical models. Also, the performance of the process can be improved by increasing 

process capability, defined as the number of standard deviations between the process mean 

and the nearest specification limit (Yu and Kopcha, 2017). 

Both industry and regulators support the benefits of adopting QbD principles in the 

pharmaceutical industry. QbD is expected to give valuable contribution to the reduction of time 

and costs of pharmaceutical R&D, as well as to improve quality and profitability of both  

branded and generic drugs (Grangeia et al., 2020).  

Different methodologies can be used to efficiently implement QbD in the pharmaceutical 

industry; Sections 1.5 and 1.6 describe two methodologies that are used in this Dissertation: 

mathematical modelling and design of experiments.  
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1.5 Implementation of quality by design through mathematical 
modelling 

A mathematical model is the representation of a system or phenomenon through mathematical 

equations and parameters. Mathematical modelling has a crucial role in the implementation of 

key QbD principles: for instance, to identify CMAs and CPPs and to assess their level of 

criticality; to derive a functional relationship between CQAs and CMAs and CPPs; to improve 

product and process understanding (Djuris and Djuric, 2017).  

Different categories of models are available: first-principles (or mechanistic or white-box) 

models, based on the scientific understanding of the system/phenomenon; data-driven (or 

empirical or black-box) models, based on relations (e.g., correlations) among and patterns in 

data; hybrid models, which combine the two types. Some examples of applications, together 

with advantages and limitations are shown in Figure 1.3 and explained  in Sections 1.5.1-1.5.3  

 
Figure 1.3. Mathematical modelling: mechanistic, data-driven and hybrid approaches. In 
the description of each approach, three aspects are included: models examples; advantages; 
limitations.    

After the description of first-principles, data-driven and hybrid models, the guidelines for 

modellers in the pharmaceutical industry are described in Section 1.5.4. 

1.5.1 First-principles models 

One of the main advantages of first-principles models is that they allow to deepen products and 

process understanding by describing the physical, chemical and biological properties and/or 
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phenomena of the system under study. For instance, this can be done by considering: mass, 

energy and momentum balances; thermodynamic or transport phenomena models; kinetic laws 

and reaction mechanisms. Moreover, modelling approaches widely used in the pharmaceutical 

industry since the early stages of drug R&D are the ones describing the interaction between the 

drug and the human body: pharmacodynamic (PD) models, representing the action of the drug 

on the human body; pharmacokinetic models (PK), representing the effect of the organism on 

the drug (Marino et al., 2023). In fact, PK models of different levels of complexity can be found, 

from simple empirical correlations to complex physiologically based pharmacokinetic (PBPK) 

models (Stamatopoulos, 2022). Specifically, a PBPK model is a compartmental model where 

compartments represent physiological entities like organs and tissues and the flows linking 

different compartments represent blood streams (Stamatopoulos, 2022). PBPK models allows 

to study all the main phenomena occurring after administering the drug, namely absorption, 

distribution, metabolism and excretion (ADME), and to assess the factors responsible for intra- 

and inter-subject variability in the PK of drugs.  

The advantages of first-principles models is that they allow to improve the science-driven 

understanding of pharmaceutical products and processes, they require a relatively small number 

of calibration experiments (if parameters do not have identifiability issues, see Section 1.7) and 

they have a better performance in extrapolation with respect to data-driven models. On the other 

side, they have some limitations: the derivation of their equations and parameters is more 

complex and requires more time, resources and modelling efforts; their computational burden 

is usually higher (Destro and Barolo, 2022; Djuris and Djuric, 2017).  

As an example, PBPK models are employed since pre-clinical trials and the first stages of 

clinical trials, where data on the specific drug of interest are not abundant; with a combination 

of data retrieved from in vitro experiments, in silico experiments and, eventually, clinical trials 

it is possible to obtain mathematical models that allow to extrapolate outside the studied 

population and experimental conditions (Tsamandouras et al., 2015). Moreover, at early stages 

of drug development is also important to develop reaction kinetic models, because they allow 

to understand the effect of reaction conditions (e.g., temperature, initial conditions) on the 

formation of both products and impurities. In turn, this information can be used to develop the 

reaction chemistry and determine process operating ranges (Sen et al., 2021).   

Although DS can be obtained with any model type, first-principles models are preferred because 

they provide a more comprehensive description of the relationships between CMAs, CPPs and 
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CQAs; however, data-driven models are still common for systems that are not well understood 

(Destro and Barolo, 2022). 

1.5.2 Data-driven models 

A detailed review on data-driven applications in the (bio)pharmaceutical industry is out of the 

scope of this Dissertation, but can be found in the recent work of Dong et al. (2023), who 

considered: 

• statistics-based methods, such as linear regression models built with design of experiments 

techniques (see Section 1.5) or Bayesian inference methods that also provide an estimation 

of uncertainty;  

• machine learning (ML) methods, in turn divided into unsupervised, supervised (like the 

Partial Least Square and Gaussian Process models developed in this Dissertation in 

Chapters 7-8and reinforcement learning.  

 For instance, during drug development, Quantitative structure–activity relationship (QSAR) 

and Quantitative structure–property relationship (QSPR) models can be used to relate biological 

activity and molecule properties of the drug with the chemical structure of the molecules 

involved. Such relation can be built with any type of modelling approach, from linear regression 

models to neural networks (Borhani et al., 2019). Another method that is commonly used during 

drug R&D is in vitro in vivo (IVIV) correlation, namely a predictive model used to predict the 

in vivo drug response (e.g., drug concentration in plasma) based on its in vitro properties (e.g., 

rate or extent of drug dissolution or release; Lu et al., 2011). 

The main advantages of data-driven models are: ability to represent correlation structure among 

data; faster development; reduced computational burden in case of simplified representations 

of high complex mechanistic models (Destro and Barolo, 2022). Due to these strengths, they 

have been applied at different stages of pharmaceutical R&D and manufacturing, such as drug 

discovery, reaction modelling, optimisation of reaction conditions, process design and 

optimisation and dynamic operation control (Dong et al., 2023).  

However, open challenges must be faced in the implementation of data-driven approaches in 

the pharmaceutical industry. In fact, data-driven models usually require a larger calibration 

dataset with respect to mechanistic models, but data can be scarce or variable in terms of 

structure and quality. Moreover, model generalisation and interpretability is more difficult with 

this type of models and the performance may be poor in extrapolation. Furthermore, complex 
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data-driven models such as representations of complex (bio)-chemical reaction networks could 

be difficult to solve, thus reducing the usefulness of those approaches for monitoring and 

control purposes (Dong et al., 2023; Destro and Barolo, 2022).  

1.5.3 Hybrid models 

There is not a univocal definition of hybrid (or semi-empirical or grey-box models; Sansana et 

al., 2021), even though they always refer to a combination of system understanding and 

empirical data. For example, Djuris and Djuric (2017) include in the definition of hybrid models 

the ones used to predict properties such as compression and compaction parameters, like the 

Kawakita and Lüdde (Kawakita and Lüdde, 1971) model relating tablet porosity to the applied 

pressure. In fact, the prediction of mechanical and structural properties of tablets using raw 

material properties and process parameters is still a challenge due a limited understanding of 

the powder compaction process (Wünsch et al., 2019). Therefore, semi-empirical models are 

available and commonly used instead of mechanistic ones. Even though those semi-empirical 

models do not describe the phenomenon in detail, their parameters can still have a physical 

interpretation; for instance, the two parameters of the Kawakita and Lüdde model are related 

to: (i) failure stress in the case of piston compression (Mani et al., 2004); (ii) initial porosity of 

the tablet.  

Other definitions of hybrid or grey-box models refer to the combination of first-principles and 

data-driven models within the same modelling framework. As illustrated in Figure 1.4, this can 

be done by building different configurations (Sansana et al., 2021): 

• serial configuration, preferred when the first-principles model is accurate enough. Two 

alternatives are available: (Figure 1.4a) a data driven model is used to predict a 

property/phenomenon for which a first-principles model is not available and its output is 

used as one of the inputs of a first-principles model; (Figure 1.4b) in case of data scarcity, 

both measured variables and outputs of a first-principles model are used as inputs of a data-

driven model; 

• parallel configuration (Figure 1.4c), where the data-driven model is trained to compensate 

for the mismatch between experimental data and predictions of the first-principles model, 

which is typically caused by the inability of the first-principles model to represent some 

effects, non-linearities or dynamic behaviour.  
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Figure 1.4 Hybrid models: a-b) two alternative series configurations; c) parallel configuration. 
White boxes refer to first-principles models, black boxes to data-driven models. Adapted from 
Sansana et al. (2021).   

Combinations of first-principles and data-driven models are often used to model (bio)reactors 

used in the pharmaceutical industry, where several unwanted impurities are produced through 

side reactions that are not well-understood. In this case, the known part can be described 

through first-principles models, like material balances, while the unknown stoichiometry and 

kinetics can be described though a data-driven model (Bonvin et al., 2016). For instance, one 

of the first applications of hybrid modelling was the one of Psichogios and Ungar (1992), who 

developed a hybrid approach like the one of Figure 1.5b: an artificial neural network model was 

used to describe the unknown kinetics and its output was sent as in input of a first-principles 

model representing mass and energy balances. This is configuration allowed to improve model 

extrapolation and interpretability and the presence of the first-principles model allowed to 

simplify the structure of the artificial neural networks.  

Moreover, hybrid modelling approaches are advantageous for the simulation of entire 

processes, since rigorous models of some process units (e.g., reactors and decantors) may be 

absent or too cumbersome to derive (Asprion et al., 2019). 

1.5.4 Guidelines for modellers in the pharmaceutical industry 

Regardless of the type of model selected, modelling is not just describing the system through 

mathematical equations, but it is a broader activity that includes several aspects, for instance 

the statement of modelling hypothesis and assumptions and the validation of the model itself 

(Sansana et al., 2021). In fact, models to be included in QbD-based submissions should be 

developed following a rigorous procedure, as highlighted in ICH Points to Consider (R2; see 

Figure 1.6): 

• step 1: define the purpose of the model; 
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• step 2: select the modelling approach, namely first-principles, data-driven or hybrid; also 

the variables to be included in the model and the experimental/sampling strategy should be 

defined at this stage; 

• step 3: understand the limitations of the modelling assumptions. In turn, this is useful to 

appropriately design experiments, to interpret the results and to develop proper risk-

mitigation strategies;  

• step 4: collect experimental data at laboratory, pilot or commercial scale. The variable 

ranges used in the experimentation should be representative of the real operating 

conditions; 

• step 5: identify model structure and parameters, namely determine the most suitable model 

equations and estimate model parameters. This is done considering both the available 

knowledge on the system and the collected data; 

• step 6: validate the model; 

• step 7: assess the uncertainty of model predictions and elaborate a risk-mitigation strategy 

based on the level of impact of the model;  

• step 8: document the outcomes of model development, from the modelling assumptions to 

the plans for further model update and improvement. Also the level of documentation 

depends on the impact of the model;  

• step 9: implement the obtained model in the cGMP quality system.  

The level of rigor depends on the  the impact of the model. For instance, a more detailed 

documentation must be produced for high-impact models, namely the ones whose predictions 

are the unique indicators of product quality  (ICH Points to Consider, R2).  

The rigorous procedures to develop mathematical models in the pharmaceutical industry can 

benefit from the novel methods presented in this Dissertation to identify precise model 

parameters and to assess and reduce model prediction uncertainty, as explained in Section 1.9. 

Finally, one of the key aspects in model development is data collection. Due to the impact of 

the experimental plans on the time, labor and resources employed in pharmaceutical R&D, 

state-of-the-art design of experiments techniques are explained in Section 1.6. 
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1.6 Implementation of quality by design through design of 
experiments 

For decades, the pharmaceutical industry has employed trial and error approaches to perform 

experiments, mainly based on the knowledge and experience of the experimenter. Usually, one-

factor-at-a-time (OFAT) methods were adopted, meaning that one factor was changed within 

its plausible range while the others were kept fixed. However, OFAT experiments do not allow 

to detect interactions among factors, nor to find the optimum (Singh et al.,2005). To overcome 

inefficient experimental approaches, a science-based method has been promoted by QbD 

initiatives: statistical design of experiments (DoE, Montgomery, 2013). DoE is a systematic 

approach that allows to implement statistical thinking at the beginning of product development 

and it allows to build relationships between factors (e.g., CMAa and CPPs) and responses (e.g., 

CQAs). Therefore, it is useful to implement QbD principles. In fact, the use of factorial DoE 

has brought many advantages to the pharmaceutical R&D with respect to the commonly used 

OFAT approaches, allowing to: (i) select the factors that are more influential on the response; 

(ii) evaluate the effects of factors interaction on the response; (iii) reduce the experimental 

burden for experimental design exploration; (iv) identify regression models to be employed for 

the design, analysis and improvement of products and processes; (v) aid the definition of the 

design space (Grangeia et al., 2020; Fukuda et al., 2018; Politis et al., 2017; Singh et al., 2005a; 

Singh et al., 2005b). Nowadays FDA expects DoE to be part of New Drug Applications (NDAs) 

(Weissman and Anderson, 2015).  

DoE does not require a detailed mathematical model in order to select the experimental 

conditions. In fact, it requires: response variables that are indicative of process conditions, 

experimental factors that may influence the responses and reasonable ranges for the input 

factors. Then, DoE makes purposeful changes of the factors within their ranges in order to 

verify their effects on the response (Montgomery, 2013). Three main types of DoE are available 

(Figure 1.5, Politis et al., 2017):   

• mixture design (Figure 1.5a), where the overall amount is fixed and different proportions 

of the constituents are varied. Notice that the varied quantities are not independent to each 

other, because the increase of one variable determines the decrease of other variables in 

order to keep the total amount fixed; 

• factorial (or process) designs (Figure 1.5b), where every factor can be changed 

independently from the others;  
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• mixture-process designs (Figure 1.5c), where mixture designs are performed at every level 

of the process factors.  

  
Figure 1.5 Categories of DoE: (a) mixture design; (b) factorial (or process) design; (c) mixture-
process design. Capital letters A, B, C indicate different factors. Adapted from Politis et al. 
(2017).  

Several sub-types of DoE techniques exist, especially for factorial designs; a detailed 

description can be found in Montgomery (2013), Politis et al. (2017), Grangeia et al. (2020).  

Moreover, DoE is an iterative procedure of increasing complexity. To study new systems, a 

screening design is usually performed with the aim of collecting data about a variety of factors 

that are supposed to have an influence on the response. Then, interactions are analysed in depth; 

finally, optimisation is carried out. Every DoE technique assumes a certain mathematical 

relationship between factors and response variables. The mathematical relationship is usually a 

linear regression model, but it can have different levels of complexity based on the scope of the 

experimentation. In fact, screening designs typically assume simple models, made of main 

effects only or main effects and interactions, and they consider two levels for every factor. 

Based on this data, only the few critical factors are retained and they are used for optimisation. 

In turn, optimisation DoE designs assume quadratic models, thus they require at least three 

levels for every factor in order to characterise quadratic terms (Beg, 2021; Grangeia et al., 

2020).  

Mixture designs are typically employed in the pharmaceutical industry for applications such as: 

the characterisation and optimisation of tablets formulation at a fixed tablet mass; the selection 

of proper diluent proportions in solid formulations; the selection of appropriate solvent–

cosolvent combinations in liquid forms (Politis et al., 2017). Instead, mixture-process designs 

are not frequently used due to the high number of experiments designed (Politis et al., 2017). 

For instance, it was used by Dunn et al. (2019) in order to study intestinal drug solubility in a 
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variety of biorelevant conditions: they performed a mixture design with 4 biorelevant 

amphiphiles (bile salt, phospholipid, oleate, and monoglyceride) at 3 pH values (5, 6, and 7) 

and at 3 total amphiphile concentrations (11.7, 30.6, and 77.5 mM). The overall design was 

made of 351 experimental points, which may be excessive especially at the early stages of drug 

development where scarce API is available for experimentation.  

In general, DoE techniques have been employed at all stages of product and process 

development. Several applications of DoE for product development were reviewed in the book 

of Sarwar Beg (2021), including DoE for the development of solid oral dosage forms, topical 

drug products, transdermal drug products, injectable drug products, inhalational products, 

ophthalmic and vesicular drug products. Moreover, applications of DoE process scale-up and 

process optimisation were reviewed by Weissman and Anderson (2015). Their study showed 

that DoE was used to optimise a variety of reaction types encountered in the pharmaceutical 

industry, such as hydrolysis, acylation, oxidation, halogenation, nitration, reduction, C−N bond 

formation, metal-catalysed cross-couplings and metal-mediated reactions, aryl alkylation, O-

alkylation and miscellaneous reactions. In these applications, DoE allowed to maximise yield, 

to achieve the desired quality for scale-up, to minimise side-reactions occurring after scale-up, 

to gain scientific insights on the side-reactions leading to those impurities and to understand 

and counterbalance the causes of a dropped yield after scale-up.  

However, DoE methods have some limitations too: 1) experimental conditions are designed all 

at once, without progressively updating the process knowledge as soon as data from a new 

experiment are available; thus, the experimenter is not taking advantage of the deeper process 

knowledge to improve the quality of the designed experiments; 2) conventional DoE 

approaches are typically used to calibrate linear regression models, which are reliable in 

interpolation, but not always in extrapolation as they lack mechanistic process knowledge 

(Garud et al., 2017; Duarte et al., 2004). For these reasons, a different method to design 

experiments will be used in Chapters 3-6 of this Dissertation, namely model-based design of 

experiments (explained in following section).  

1.7 Model-based design of experiments (MBDoE) in the 
pharmaceutical industry 

As explained in Sections 1.3-1.4, one of the objectives of QbD is to improve the understanding 

of pharmaceutical products and processes and this can be supported by mathematical modelling. 

For the model to be representative of the system under study, both its equations and parameters 
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must be identified through proper experimental data. However, not all experiments are equally 

informative for a given model and/or for a given modelling purpose (e.g., selection of the best 

model structure or estimation of precise model parameters). In fact, the statistical DoE approach 

presented in Section 1.5 is suitable for regression models, but it may be uninformative for the 

development of first-principles ones.  

On the other side, model-based design of experiments (Espie and Macchietto, 1989) allows to 

define the most informative experimental conditions for the specific model and/or modelling 

purpose of interest. The generalisability of MBDoE to any mathematical model derives from 

the fact that experiments information content is estimated through the Fisher Information 

Matrix (FIM; Fisher, 1950), which in turn is calculated using model equations and current 

parameters values (see Chapter 2). Moreover, MBDoE can be applied to different purposes of 

model identification (Figure 1.6):  

1.   to discriminate among candidate model structures (MBDoE for model discrimination; 

Hunter and Reiner, 1965; Box and Hill, 1967; Buzzi-Ferraris and Forzatti, 1983; Buzzi-

Ferraris et al., 1984; Buzzi-Ferraris et al., 1990); 

2.   to maximise the prediction of parameters estimates (MBDoE for parameters precision; 

Pukelsheim, 1993; Franceschini and Macchietto, 2008a; Franceschini and Macchietto, 

2008b;);  

3.   to minimise the uncertainty of model predictions (MBDoE for minimisation of model 

prediction variance; Kiefer and Wolfowitz, 1959; Kiefer and Wolfowitz, 1960; Wong, 

1995).  

 
Figure 1.6 Elements of a mathematical model and corresponding MBDoE designs.  

MBDoE for parameters precision is the most frequent MBDoE method in pharmaceutical 

applications and it is involved in all MBDoE case studies of the first part of this Dissertation 

(Chapters 1-4). Therefore, it is explained with more details in the following Section. Then, 

applications of MBDoE in the (bio)pharmaceutical industry are reviewed. 
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1.7.1 MBDoE for parameters precision  

Assuming that the most suitable model structure has already been defined for the system under 

study (e.g., through MBDoE for model discrimination), parameters identification must be 

carried out, namely the values of the parameters must be determined. Two types of analysis can 

be performed to assess parameters identifiability (McLean and McAuley, 2012): 

• structural identifiability, which assesses if it is possible to obtain unique parameters 

estimates using perfect noise-free data. In other terms, the parameters are structurally 

identifiable if there are not two (or more) different sets of parameters values giving the same 

input-output behaviour of the model;   

• practical identifiability, which assesses if it is possible to obtain precise parameters values 

with the available data.   

In turn, the practical identifiability of a given parameter may be hampered by two main factors 

(McLean and McAuley, 2012): i) the response variable of the model has little sensitivity with 

respect to the parameter; in other terms, the response is scarcely influenced by variations of the 

parameter; ii) the parameter is correlated to other parameters of the model, meaning that its 

effects on the response can be correlated to the effects of other parameters.  

Practical identifiability can be preliminarily analysed by visualising the profiles of sensitivity 

indices calculated for all model parameters, at all relevant experimental conditions. An 

illustrative example is shown in Figure 1.7: parameters 𝜃𝜃�1 and 𝜃𝜃�2 have a specular profile, 

meaning that they are correlated and it is impossible to obtaine unique parameters estimates for 

them; instead, 𝜃𝜃�3 and 𝜃𝜃�4 have profiles of different shape, therefore they can be uniquely 

estimated; finally, the sensitivity of the response variable with respect to 𝜃𝜃�4 is negligible until 

the 10th experimental condition, suggesting that the experiments from no. 1 to 10 are not useful 

to precisely estimate this parameter.  
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Figure 1.7 Profiles of sensitivity indices calculated at different experimental conditions 
(adapted from McLean and McAuley, 2012). Values in x- and y-axis are chosen for 
illustrative purposes only.  

Practical identifiability can be studied in a more rigorous way using the FIM, which is built 

using sensitivity indices of the response variable with respect to every model parameter and 

becomes singular when parameters are correlated. Therefore, a rank-deficient FIM or a high 

condition number (ratio between maximum and minimum eigenvalues of the FIM) suggest that 

some parameters are not practically identifiable (Petersen et al., 2001; Dochain and 

Vanrolleghem, 2001; McLean and McAuley, 2012; López C. et al., 2015). 

Moreover, based on the Cramer-Rao Theorem, the inverse of the FIM is a minimum bound for 

the variance-covariance matrix (𝐕𝐕𝛉𝛉�) of the parameters (Bard, 1974), meaning that a small 

information content of the experiments corresponds to a high uncertainty of the parameters 

estimates obtained with those data.  

Therefore, to improve practical identifiability of the parameters (e.g., to reduce the condition 

number of the FIM) and, at the same time, to maximise parameters precision, highly informative 

data must be collected. This is the objective of MBDoE for parameters identification and it can 

be achieved by maximising scalar indices of the FIM or, equivalently, by minimising 

corresponding scalar indices of 𝐕𝐕𝛉𝛉�. To do so, the state-of-the-art optimality criteria (also called 

alphabetical criteria) and be considered (Figure 1.8; Kiefer, 1959; Pukelsheim, 1993; 

Franceschini and Macchietto, 2008a): 

• D-optimality, namely the maximisation of the determinant of the FIM, or the minimization 

of the determinant of 𝐕𝐕𝛉𝛉�. From a geometrical point of view, it corresponds to the 

minimisation of the volume of the confidence region; 
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• A-optimality, namely the maximisation of the trace of the FIM, or the minimisation of the 

trace of 𝐕𝐕𝛉𝛉�. It corresponds to a minimisation of the dimension of the enclosing box around 

the confidence region;  

• E-optimality, namely the maximisation of the smallest eigenvalue of the FIM, or the 

minimisation of the largest eigenvalue of 𝐕𝐕𝛉𝛉�. It corresponds to the minimisation of the 

major axis of the confidence region.  

 
Figure 1.8 Graphical visualisation of the state-of-the-art optimality criteria of MBDoE for 
parameters identification (adapted from Franceschini and Macchietto, 2008a).  

Finally, the variance-covariance matrix of parameters 𝐕𝐕𝛉𝛉� is also representative of parameters 

correlation, since it can be used to calculate correlation indices for every pair of model 

parameters (Franceschini and Macchietto, 2008b). From a geometrical point of view, 

parameters correlation can be visualised in Figure 1.9 by looking at the angle between the major 

axis of the confidence ellipse and the x-axis. Parameters correlation would be absent if the 

major axis of the ellipse was perpendicular to the x-axis.  

1.7.2 MBDoE applications in the (bio)pharmaceutical industry 

Since MBDoE maximises the information content of experiments, the experimental burden 

required to achieve a specific modelling purpose is minimised. This is beneficial in the 

(bio)pharmaceutical industry, due to the urgent need to reduce time and costs of product and 

process development. Moreover, the high information content provided by a relatively small 

number of experiments allows to improve the experimentation outcomes at the early stages of 

drug development, when a limited amount of the API of interest is available.   
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In Table 1.1, different applications of MBDoE in the (bio)pharmaceutical industry are shown. 

They are divided into two main categories, namely physiological systems and process 

development/optimisation, with the former one showing a higher number of applications from 

the 80s onwards.  
Table 1.1. MBDoE applications in the (bio)pharmaceutical sector.     

Category Application Topic Reference 

Physiological 
systems 

Optimal blood sampling protocols Parameters precision Mori and DiStefano (1979) 
Optimal blood sampling protocols Parameters precision D'Argenio (1981) 
Optimal blood sampling protocols Parameters precision DiStefano (1981) 
Optimal blood sampling protocols Parameters precision DiStefano (1982) 
Optimal blood sampling protocols Parameters precision Kalicka and Bochen (2006) 
Dose response studies Parameters precision Fedorov and Leonov (2001)  
Dose response studies Parameters precision Dragalin and Fedorov (2006)  

Dose response studies Minimisation of 
prediction variance Dette et al., (2008) 

PK, PD models Parameters precision Nyberg et al., (2009)  
PK, PD models Parameters precision Galvanin et al. (2013) 
Population kinetic studies Parameters precision Foracchia et al. (2004) 
Population PK and PD models Review Ogungbenro (2009)  
Transdermal drug delivery Parameters precision Schittkowski (2008)  
Glucose-insulin system Parameters precision Silber (2009)  
Dose-response, PK, PD models Review Sverdlov et al. (2020)  

Process 
development/ 
optimisation 

Batch crystallisation Parameters precision Chung et al. (2000)  
Freeze-Drying Operations Parameters precision De-Luca et al. (2020)   
Freeze-Drying Operations Parameters precision Geremia et al. (2022)  

Batch reactor 
Parameters precision 
and minimisation of 
prediction variance 

Shahmohammadi and 
McAuley (2019)   

Batch reactor Parameters precision Shahmohammadi and 
McAuley (2020) 

System models 
Parameters precision 
and prediction 
fidelity 

Geremia et al. (2023) 

Bioprocess engineering Review Abt et al. (2018) 

1.6.2.1 MBDoE applied to physiological systems 

The main applications of MBDoE to physiological systems concern:  

• optimisation of blood sampling protocols (DiStefano, 1981; DiStefano, 1982; D'Argenio, 

1981; Kalicka and Bochen, 2006); 

• dose-response studies (Fedorov and Leonov, 2001; Dragalin and Fedorov, 2006; Dette et 

al., 2008); 

• PK, PD studies (Nyberg et al., 2009, Galvanin et al., 2013) and population studies, namely 

kinetic studies that consider inter-subject variability (Foracchia et al., 2004; Ogungbenro, 

2009);  

• development of specific drugs/drug delivery systems (Schittkowski, 2008; Silber, 2009); 

• review of dose-response, PK, PD studies (Sverdlov et al., 2020). 
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Such applications will be described with more detail in the following. Optimisation of blood 

sampling protocols. Different works published from the 80s focused mainly in the optimisation 

of the blood sampling schedule, while the remaining input variables (such as administration 

protocol for the drug/tracer) were selected by the experimenter. For instance, DiStefano (1981) 

considered physiological systems where only one input port is accessible (e.g., blood) and one 

output port is accessible for sampling (e.g., blood), from which one response variables can be 

measured (e.g., tracer concentration), even though the procedure could be generalised to 

systems with more input/output variables. An “impulse-response” experimental procedure was 

selected: the species of interest was introduced into the blood through an approximated impulse 

and the blood was sampled at discrete sampling points. While the administration protocol was 

selected a priori, the objective of the MBDoE was to determine the optimal sampling points in 

order to maximise the precision of the parameters of the differential equations representing the 

physiological system. The procedure was successfully applied to study thyroid hormone 

kinetics and it allowed to maximise parameters precision with a number of blood samples equal 

to the number of model parameters to be identified. Moreover, the work of D'Argenio (1981) 

aimed at comparing the precision of parameters estimates obtained with conventional sampling 

schedules and with optimal ones, assuming there is no prior knowledge on parameters values 

at the beginning of the experimentation. They developed a sequential MBDoE procedure 

involving a group of subjects, where the data retrieved from one subject were used to update 

model parameters and refine the optimisation of the sampling schedule for the next subject. In 

the two in silico examples considered, the dose regimen (e.g., amount of therapeutic, duration 

of infusion) was selected a priori.. The simulated results showed that the best performance was 

achieved with the optimised sampling schedule, besides the biological variability existing 

among different subjects that could potentially affect the values of the pharmacokinetic 

parameters.  

Dose-response studies. Dose-response studies typically involve experiments where binary 

responses are analysed, such as success-failure and dead-alive responses in toxicological 

studies (Fedorov and Leonov, 2001). Usually, Phase I clinical trials determine the maximum 

tolerated dose based on toxicity only; once the dose range corresponding to acceptable toxicity 

levels is determined, Phase II clinical trials determine the dose within that range that ensures 

efficacy (Dragalin and Fedorov, 2006). In this context, Dragalin and Fedorov (2006) developed 

a MBDoE procedure to study both safety and efficacy responses in one experimental campaign, 

thanks to the use of models having two dependent binary outcomes, one for efficacy and one 
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for toxicity. Since the model was non-linear, the FIM (thus, the estimation of information 

content for every experimental condition) was dependent on the current estimates of model 

parameters; therefore, the authors developed an adaptive MBDoE procedure: the procedure was 

initialised with preliminary experiments performed in a first cohort of patients in order to have 

preliminary parameters estimates; then, the range of doses satisfying the constraints on efficacy 

and toxicity was assessed and the dose level providing the highest information content was 

selected for the new cohort of patients; the new data were used to update model parameters and 

the new optimal dose satisfying constraints on efficacy and toxicity was determined; and so on. 

The successful results suggested that this approach can aid the acceleration of drug development 

thanks to the combination of Phase I and Phase II objectives in one single experimentation.  

PK, PD, population studies. MBDoE has been applied to PK, PD and population models to 

support pharmaceutical product development, especially to maximise parameters precision. For 

instance, Nyberg et al. (2009) observed that commonly used optimal design software allowed 

to optimise sampling points only, but also other input variables (e.g., infusion duration of a 

drug, titration schemes, etc.) are crucial to select properly. Therefore, they applied MBDoE for 

parameters precision with the aim of optimising the information content of both dose and 

sampling points. The successful results suggested that this method was suitable to support both 

early and late stages of drug development and could be extended to a larger set of variables to 

be optimised, for instance: time to change treatment in titration or disease progression studies; 

dose schedule in oncology trials; duration of the different steps of drug-drug interaction studies.  

Furthermore, Galvanin et al. (2013) developed a method to combine structural identifiability 

and MBDoE for parameters precision and validated it using a model representing the 

relationship between microbial burden and antimicrobial agent concentrations, that is 

commonly studied through in vitro time-kill experiments.  

Finally, the study of inter-subject variability through population model was considered by 

Foracchia et al. (2004), who developed a software for the optimisation of number and location 

of sampling points for each subject, and by Ogungbenro et al. (2009), who reviewed different 

MBDoE applications for the development of mixed-effect modelling techniques (that are part 

of population analysis).  

Development of specific drugs/drug delivery systems. In the work of Schittkowski (2008), 

the transdermal diffusion of drugs was modelled through a differential equation model 

representing the effects of different variables (e.g., thickness of tissue, thickness of membrane, 

initial mass of substrate, etc.) on diffusion and metabolism. MBDoE was successfully applied 



26   Chapter 1 

 2023, Francesca Cenci, University of Padova (Italy) 

to improve practical identifiability of model parameters. Moreover, Silber at al. (2009) 

considered Intravenous glucose tolerance tests (IVGTT), which are useful to study glucose-

insuline systems, but are complex and laborious. Therefore, they applied MBDoE to optimally 

modify IVGTT for type 2 diabetic patients and they were able to minimise parameters 

uncertainty with a reduced experimental burden.  

Review. Finally, different applications of MBDoE techniques to aid product development from 

phase I to Phase III clinical trials were reviewed by Sverdlov et al. (2020), including:  dose-

response studies; simultaneous studies of efficacy and toxicity; comparisons between different 

treatment groups; population PD-PK studies.   

1.6.2.2 MBDoE applied to (bio)pharmaceutical process development  

MBDoE is a promising technique also to support process development, even though it has not 

been applied systematically to all steps of the development of (bio)pharmaceutical processes.  

Chung et al. (2000) used MBDoE to a crystallisation unit, aiming at precisely estimating 

nucleation and growth parameters with the minimum number of experiments. The successful 

results suggested that this method can aid to accelerate the launch into the market of crystal 

products. De-Luca et al. (2020) implemented a MBDoE approach to calibrate a model of the 

primary drying phase of a freeze-drying process and were able to precisely estimate heat- and 

mass-transfer parameters with only one optimally designed experiment. Moreover, Geremia et 

al. (2023) developed an optimal protocol to calibrate primary drying models using only pressure 

measurements and gravimetric tests, thus eliminating the need for temperature measurements 

that require invasive experiments and/or sensors. Moreover, Shahmohammadi and McAuley 

(2019) developed two methods to handle singularity issues of the FIM and applied them to a 

fed-batch reactor model, namely Michaelis Menten reaction model, typically used to describe 

the production of therapeutic agents. The two methods allowed to obtain precise parameters 

estimates and reduced model prediction variance for the system under study and they are 

promising also for processes involving a higher number of parameters or for automated 

experiments in case of a non-invertible FIM. The issue of non-invertible FIM in the context of 

pharmaceutical applications was tackled also by Shahmohammadi and McAuley (2020), who 

proposed a Bayesian approach accounting for prior information and tested it with a Michaelis-

Menten batch reaction system for the production of a pharmaceutical agent.    

Geremia et al. (2023) considered a system model for direct compression of tablets made of sub-

models representing: (i) tablet press unit, (ii) tablet disintegration test unit, and (iii) in-vitro 
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dissolution test unit. They combined MBDoE for parameters precision with multivariate 

statistical methods to aid the interpretation of the results. The procedure was tested in silico and 

the satisfactory results suggested that it can be used to aid model-based development of 

pharmaceutical processes.  

Finally, Abt et al. (2018) reviewed MBDoE applications in order to promote its employment in 

the biopharmaceutical sector, where empirical strategies are predominant for process 

development and optimisation. In fact, statistical DoE experiments are commonly used to 

implement QbD principles, but biopharmaceutical applications require numerous and time-

consuming DoE experiments. Therefore model-based methods were suggested as a way to 

minimise time and costs.   

1.8 Industry 4.0 technologies in the pharmaceutical industry 

Industry 4.0, also referred to as Fourth industrial revolution, is a new industrial stage in which 

emerging technologies are used to provide digital solutions (Frank et al., 2019). In this section, 

general concepts of Industry 4.0 technologies applicable to any type of industries are illustrated; 

then, the applications that are relevant for this Dissertation are explained, especially high-

throughput and automated experimental platforms used in the pharmaceutical sector.   

1.8.1 Industry 4.0 technologies 

Industry 4.0 technologies can be grouped into two main categories, as shown in Figure 1.9 

(Frank et al., 2019): (i) front-end technologies, related to manufacturing and market needs; (ii) 

base technologies, that provide connectivity and intelligence for front-end technologies.  

 

Figure 1.9 Industry 4.0 technologies (adapted from Frank et al., 2019).   
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Front-end technologies include:  

• Smart Manufacturing. It can be achieved by digitalising all physical objects with sensors, 

actuators and Programmable Logic Controllers and allowing a flow of information across 

the hierarchical levels of the company, in order to help decision-making and to reduce 

human intervention.  Moreover, a key role in Smart Manufacturing is played by 

automation, since the use of robots allows to improve accuracy, reliability and efficiency 

and to let workers dedicate to more demanding tasks. Another aim is to have flexible 

production lines, although this is the most difficult level of Smart Manufacturing to 

implement: for instance, traceable materials (e.g., materials with sensors applied on them) 

are sent to manufacturing machines, which can read products requirements in the sensors 

and consequently execute the actions needed for manufacturing.  

• Smart Products. Technologies for Smart Products include sensors applied to the product 

that allows to connect the product itself with other objects or systems. With artificial 

intelligence, products can autonomously optimise themselves (Autonomous Smart 

Products) and this is the most complex implementation of Smart Product principles.   

• Smart Working. Smart working technologies aim at improving working conditions and 

workers’ productivity. For instance, they include: mobile devices for the remote control of 

operation activities; virtual reality to train workers in manufacturing maintenance; 

augmented reality to provide workers with an interactive guidance on the steps to be made.  

• Smart Supply Chains. Smart Supply Chains technologies mainly consists in digital 

platforms for the real-time exchange of information with suppliers and distribution centres, 

in order to reduce operational costs and delivery time.  

All the abovementioned Smart technologies benefits from the base technologies, namely: 

Cloud, Internet of Things (IoT), Big Data and Analytics. Cloud services allow to integrate 

different devices and to access a shared pool of computing resources, while IoT refers to the 

network of physical objects (“things”) embedded with sensors and software to exchange data 

in an internet environment through wireless communication. In this context, a huge amount of 

data is collected from systems and objects, generating the so-called Big Data, that must be 

analysed through Analytics techniques in order to extract valuable information. In turn, Big 

Data and Analytics are considered as the key drivers of the fourth industrial revolution.  

Overall, the main objective of Industry 4.0 is to achieve autonomous decision-making, namely 

to implement algorithms that use the data generated by the plant in order to autonomously plan 

and execute the needed activities (Destro and Barolo, 2022). However, this level of autonomous 
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operation is still an open challenge: for instance, in the 92 companies from the machinery and 

equipment sector analysed by Frank et al. (2019), the adoption of flexible production lines was 

very limited, probably due to a higher interest of the companies on productivity rather than 

flexibility and to the need of changing the layout and production methods, thus requiring 

financial investments and interruption of operations routines.  

1.8.2 Applications of Industry 4.0 technologies in the pharmaceutical 
industry 

Applied to pharmaceutical companies, Industry 4.0 technologies can bring several benefits 

(Bhattamisra et al., 2023; Borkar et al., 2023; Stasevych and Zvarych, 2023; Destro and Barolo, 

2022; McKinsey & Company, 2021):  

• reduction of costs from drug discovery, to product and process development, to 

manufacturing;  

• decrease of the time-to-market, allowing a better exploitation of the patent; 

• faster and more robust scale-up from laboratory to commercial scale; 

• more consistent quality assurance; 

• increase of productivity and yield; 

• decrease of deviations and non-conformances; 

• faster approval of new products and/or changes; 

• higher employee satisfaction from user-friendly processes/tools;  

• possibility for patients to receive precise and rapid diagnosis and customised treatments.  

In fact, flexible production lines and the possibility to quickly integrate data coming from 

patients paves the way to personalised medicine, which is expected to grow in the future. Some 

relevant examples of personalised medicine concern the production of customised drug dosage 

and release profile based on patients’ physiological characteristics and the production of 

customised medications for the treatment of neurological disorders, such as Alzheimer’s 

disease (Stasevych and Zvarych, 2023).  

Relevant examples of applications of Industry 4.0 technologies for this Dissertation are high-

throughput and automated experimental platforms, since they have been used to carry out 

different case studies (see Chapters 4-8), therefore they are described more in detail.  
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1.8.2.1 High-throughput experimentation (HTE) 

High-throughput experimentation (HTE) is defined as the workflow of performing multiple 

experiments in parallel. HTE is spreading in pharmaceutical companies, because they allow to 

fasten the experimentation without degrading the quality of the results. In fact, the review of 

Mennen et al. (2019) showed that high-throughput technologies have been employed to study 

more than two dozen bio- and chemocatalytic reaction types, ranging from common organic 

synthesis to novel reaction methods (such as photoredox catalysis and C−H activation) and 

including the analysis of both continuous and discrete variables. Moreover, it has been used to 

support process development, for instance by assessing salt formation and metal scavenging 

useful to study downstream unit operations. In the academic and industrial laboratories 

analysed in the review, high-throughput technologies were frequently made of the components 

shown in Table 1.1. 

Table 1.2. Equipment found in THE laboratories (adapted from Mennen et al., 2019)    

Manual Automatic Analytical 

vials-plates 
pipettors 

gloveboxes 
evaporators 

stirrers 
gas delivery 

liquid handler 
solid handler 

 

UPLC 
HPLC 

MS 
GC-MSD 

As shown in Table 1.2, high-throughput technologies are often a mixture of manual and 

automated components, where different degrees of automation may be found in different 

laboratories. The parallelisation is possible thanks to the employment of plates with multiple 

vials of varying volumes (typically, 1, 2 or 4 mL), namely 24-, 48- and 96-vials plates. Other 

frequent components used are: single and multichannel pipettors; nitrogen filled gloveboxes for 

screen setup; centrifugal evaporators for solvents removal; stirrers for agitation and heating; 

gas delivery systems usually for hydrogenations and carbonylations and allowing to work at 

atmospheric or elevated pressures. Usually, the automated components are limited to liquid or 

solid handling robots that dispense material into the vials, even though higher level of 

automation can be found in some platforms thanks to the presence of automated 

heating/cooling, stirring and sampling at schedules sampling times.  

Moreover, the rapidity of the screen is influenced by the technology used to analyse the 

samples. Some possibilities are: high-performance liquid chromatography (HPLC); mass 

spectrometers (MS); gas chromatography with mass detector (GC-MSD). However, the best 

solution in terms of rapidity is ultra- high-performance liquid chromatographic systems 
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(UPLC), which in some cases takes 20−30 seconds against the common 16−18 hours of analysis 

required for a single 96-vials plate. 

Overall, high-throughput technologies can support the activities from preclinical development 

to manufacturing, allowing to reduce experiments duration, to give insights for reaction 

discovery and process development and to enhance the exploration of chemical space and 

process variables (Mennen et al., 2019).  

1.8.2.2 Automated (bio)reactor platforms in flow conditions 

The hardware of automated flow platforms requires mainly four elements (Figure 1.10): 1) a 

delivery system for the reagents; 2) a flow reactor; 3) an online or inline measurement system, 

e.g. gas chromatography (GC) or high-pressure liquid chromatography (HPLC); 4) a digital 

device to connect the various platform components, to impose changes to the manipulated 

variables (e.g., reagents flow rates, reactor temperature, reactor pressure) and to receive and 

elaborate the information from the measurement system (Barz et al., 2022). Another crucial 

aspect is the software used to integrate all the components and to implement user-defined 

algorithms. To this purpose, one of the preferred software is LabView, where customised 

Python or MATLAB algorithms can be implemented (Cherkasov et al., 2018). 

 

Figure 1.10 Industry 4.0 technologies (adapted from Frank et al., 2019).   

The realisation of flow conditions has several benefits for kinetic studies with respect to the 

traditional experiments in batch reactors: in fact, flow systems have a more precise and 

reproducible control over reagents additions, higher accuracy in temperature and reaction time 

and the possibility to explore conditions that are difficult to study in batch systems, such as very 

fast reactions or the presence of unstable intermediates (Taylor et al., 2021).  

Moreover, continuous platforms are usually operated at steady-state due to the easier control 

and operation and to the consistency of data obtained at stationary conditions (Barz et al., 2022). 



32   Chapter 1 

 2023, Francesca Cenci, University of Padova (Italy) 

This may be a limitation due to the need of waiting until steady-state conditions are attained. 

However, recent works have developed experimental strategies to perform sampling at transient 

flow conditions, allowing to increase the number of data retrieved in one experiment and to 

shorten the duration of the experimental campaign (Waldron et al., 2020).  

Different applications of flow reactor platforms have been reviewed by Barz et al. (2022) and 

they show the advantages in terms of improved system understanding, for instance allowing to 

derive suitable kinetic model and precise kinetic parameters. In turn, this type of information 

reduces the time for process development and the overall scale-up costs (Taylor et al., 2021). 

Moreover, besides platforms to perform chemical reactions, also bioreactor platforms have been 

used to optimise cultivation and production media and the cultivation conditions (Barz et al., 

2022). 

In the pharmaceutical industry, continuous-flow (bio)reactor platforms are present, but they are 

not always exploited to the fullest due to the lack of a proper experimental plan. Consequently, 

expensive data are produced, leading to a waste of time and resources due to uninformative 

experimental conditions (Barz et al., 2022). For this reason, the attention of recent research is 

focusing on the development of algorithms that allow to improve the selection of the 

experimental conditions and to fully automate this selection, thus reducing human intervention.   

1.9 Objectives of the research 

As described in the previous sections, several challenges must still be faced by the 

pharmaceutical industry to streamline R&D. Specifically, open challenges for modellers that 

are tackled in this Dissertation are related to: 

• Development of first-principles models.  First-principles models are beneficial to improve 

robustness, to enhance product and process understanding, to have reliable predictions in 

extrapolation. However, the bottleneck is the derivations of equations and parameters that 

accurately represent the system (Chatterjee et al., 2017). For instance, mechanistic models 

are useful to improve the fundamental scientific understanding of a new process and to 

optimise known processes (Mortier et al., 2011), but their derivation maybe hampered by 

the  lack of fundamental equations due to the high complexity (Djurisand Djuric, 2017). 

Moreover, even when a model structure is available, parameters identifiability (thus, the 

possibility to obtain unique parameters estimates) should be assessed. For instance, this is 

a crucial aspect of PD and PK models where parameters must be properly estimated in order 

to describe the exposure-response relationship, but identifiability issues become more 
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difficult to be analysed in case of complex mechanistic models. Therefore, this Dissertation 

presents new MBDoE methods to streamline the identification of model parameters for 

semi-empirical and first-principles models.  

• Evaluation of model reliability. International guidelines promoted by regulatory agencies 

recognise the important of the assessment of model reliability. In fact, the usefulness of the 

model in making conclusions and decisions depend on model reliability (Mortier et al., 

2011). For instance, ICH Points to Consider (R2) state that model predictions uncertainty 

must be considered to set operational boundaries.  However, this problem is not addressed 

systematically during product and process development: in fact, once the most suitable 

model structure is identified, experimental data are designed and collected primarily with 

the aim of precisely estimating model parameters, with less efforts to assess and/or improve 

the level of model prediction uncertainty in a rigorous way. Moreover, the minimisation of 

uncertainty of model parameters, for example through MBDoE for parameters precision, 

does not lead necessarily to a minimisation of model prediction uncertainty in the whole 

design space. Therefore, new methods based on MBDoE are proposed in this Dissertation 

aiming at assessing model prediction variance and minimising it in the whole design space.  

• Adaptation of modelling strategies to new technologies. Industry 4.0 has brought several 

innovations that can be useful to the pharmaceutical industry, such as: (i) the possibility to 

increase the experimentation outcomes through high-throughput technologies; (ii) the 

possibility to execute repetitive tasks by means of automated robots, leaving more time to 

experimenters for more demanding tasks; (iii) at the highest level of automation, the 

possibility to set up an automated platform that autonomously initialises, adapt and stop a 

complete experimental campaign and that automatically calculated key indicators of system 

performance; (iv) combination of science-based understanding of intra- and inter-subject 

variability and of automated flexible production lines to realise personalised medicines. 

However, this potential has not been fully exploited yet and some of the reasons are related 

to the lack of suitable models to accurately represent the system under study and the lack of 

an adaptable and science-based strategy to design experiments through automated and/or 

high-throughput platforms. For these reasons, novel model-based methods are developed in 

order to guide the use of high-throughput and/or automated technology in a science-based 

way to produce highly informative experiments with a reduced experimental effort and to 

better represent the obtained data through mathematical modelling. Also an autonomous 
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MBDoE method is developed to find the most suitable trade-off between space exploration 

and information maximisation with an automated chemical platform, without requiring 

human intervention.  

• Assessm of drug solubility to support product and process development. Solubility is 

one of the key properties for drugs because it has an impact on drug manufacturability and 

on its safety and efficacy. In fact, process units widely employed in the pharmaceutical 

industry, e.g. crystallisation units, require the knowledge of drug solubility in a variety of 

organic solvents and mixtures of organic solvents in order to be designed, operated and 

optimised (Ruether and Sadowski, 2009; Papadakis et al., 2016; Ye and Ouyang, 2021). 

Moreover, the effect of a drug on the human body depends on the fraction of drug that 

reaches the bloodstream, which in turn relies on the possibility for a drug to be absorbed at 

intestinal level. Only drug particles that are solubilised in human intestinal fluids can be 

absorbed, therefore intestinal solubility is a critical property that must be characterised from 

early stages of drug development.  However, there is a need for mathematical models able 

to predict drug solubility in human intestinal fluids or in mixtures of organic solvents with 

satisfactory accuracy, therefore new data-driven approaches are proposed in this 

Disssertation with this purpose.  

• Reduction of time, labor and resources in R&D. Together with the abovementioned 

improvements, there is an urgent need of reducing time and costs to launch a new drug into 

the market. This will be beneficial on several levels: for pharmaceutical industries, thanks 

to an increased Return On Investments of R&D; for patients, because the access to new high 

quality treatments will be favored, with less shortages and recalls and more investments on 

currently unmet patients’ needs; for national health systems, for the possibility of retrieving 

adequate amounts of therapeutics at more affordable prices. Therefore, MBDoE methods 

are developed in this Dissertation, aiming at providing highly experimental data with a 

reduced experimental effort.  

In this context, the main objective of this Dissertation is to develop model-based methods to 

streamline pharmaceutical R&D, while at the same time improving product and process 

understanding and ensuring product quality and process robustness. This is done by proposing 

different methods to solve the following case studies:  

• Tablets lubrication (Case study 1). Considering a semi-empirical model describing the 

lubrication of tablets produced by direct compression processes (Nassar et al., 2021), a 
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novel MBDoE method to calibrate the model with minimum experimental burden is 

developed. The method must be adapted to the features of the tablet press used to perform 

experiments. The calibrated model must meet the industrial standards of model prediction 

accuracy in order to be used to design and scale-up lubrication units during process 

development.   

• Minimisation of model prediction variance (Case study 2). A novel explorative MBDoE 

(eMBDoE) method is developed in order to minimise model prediction variance in the 

whole design space, while ensuring high information content (namely, ensuring statistically 

sound parameters estimates) and minimising the number of experiments required. Model 

prediction variance is estimated in terms of G-optimality and the most suitable trade-off 

between space exploration and information maximisation is determined based on a user-

defined threshold on G-optimality. The proposed method, named G-map eMBDoE , is 

validated in silico with two models of increasing complexity: an algebraic model with one 

output and two inputs; a differential equation with two outputs sampled at different 

sampling points and two constant inputs.    

• Minimisation of model prediction variance with an automated chemical platform 

(Case study 3). The G-map eMBDoE method is upgraded and made suitable to be applied 

to an automated chemical platform for total methane oxidation operating in flow conditions. 

An algorithm to select the best threshold on G-optimality based on preliminary 

experimental data is proposed (previously, that threshold was selected by the user). The 

upgraded G-map eMBDoE method is validated with experimental data generated by an 

automated platform for total methane oxidation.   

• Autonomous operation of the chemical platform to reduce model prediction variance 

(Case study 4). A general framework that includes both the results of Case study 2 and 3 is 

developed: an autonomous algorithm that selects the G-optimality thresholds and updates 

its calculation as soon as new experiments are available. Such method increases the 

generalisability of the G-map eMBDoE and reduces the need of human intervention. 

Therefore, ongoing work consists in its integration into the software of the automated 

chemical platform in order to achieve full autonomous operation from the beginning to the 

end of the experimental campaign.  

• Machine Learning model to predict drug solubility in organic mixtures (Case study 5). 

A machine learning supervised model (inspired by QSPR models)for the prediction of 
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solubility of complex drug and drug-like compounds in organic solvent mixtures is 

developed. The model requires a relatively limited amount of information for predictions: 

(i) temperature; (ii) composition of the solvents mixture before solid dissolution; (iii) 

UNIFAC (UNIQUAC Functional-group Activity Coefficients) subgroups. Differently from 

the state-of-the-art solubility models, able to predict drug solubility only in water or in 

single organic solvents (or few binary mixtures), the proposed PLS model is able to 

accurately predict solubility in a variety of conditions: single solvents, binary mixtures, 

ternary mixtures at different compositions and temperatures. The model is developed with 

calibration and validation experimental data of a real drug generated with a high-throughput 

technology. The proposed modelling approach is further validated with 9 literature of drug-

like compounds retrieved in the literature.    

• Machine Learning model to predict drug solubility in intestinal fluids (Case study 6). 

A machine learning model based on a Gaussian Process regression model, for the prediction 

of drug solubility in Simulated Intestinal Fluids is developed. To have a better 

representation of the complexity of the interactions in Human Intestinal Fluids, a recently 

published dataset by Stamatopoulos et al. (2023) on a real API is used. Instead of typical 

oversimplified biorelevant media made of one pH value and one bile salts type and, 

sometimes, lecithin to form micelles with the bile salts, the dataset used in this work 

considered a range of pH values, 4 different types of bile salts in different proportions, 

lecithin and oleic acid and cholesterol to mimic food effects. Also the experimental data of 

the published dataset were generated by means of a high-throughput technology. The 

structure of the GP model is selected in order to make it suitable for an integration in 

commercial software like Simcyp (Certara UK limited, Sheffield), where dynamic 

simulations of virtual populations can be performed, thus allowing the study on intra- and 

inter-subject variability. Ongoing work consists in the final implementation of the GP 

models proposed in this Dissertation.  

Case studies 1, 5, 6 have been carried out in collaboration with a multinational pharmaceutical 

company, GSK (Ware, U.K.; Stevenage, U.K.), while Case studies 2,3,4 have been carried out 

in collaboration with University College of London (London, U.K.).      
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1.9.1 Dissertation roadmap 

As explained in the previous section, two main types of model-based techniques are employed 

to solve the six case studies: (i) model-based design of experiments for Case studies 1-4; (ii) 

data-driven modelling for Case studies 5-6.  

Chapter 2 describes the two abovementioned techniques, providing more details for the 

methods used in this Dissertation: MBDoE for parameters precision; MBDoE to minimise 

model prediction variance; PLS; GP regression; statistical indices to assess parameters 

precision and prediction accuracy. Chapters 3-8 shows the results of Case studies 1-6, 

respectively. Specifically, Chapters 3-6 concern the development of new MBDoE methods that 

allow to support process and product development in the pharmaceutical industry: Chapter 3 

proposes a novel MBDoE method that allows to design highly informative experiments to 

design tablets lubrication, thus to support the development of direct compression processes; 

Chapters 4-6 develop an exploratory MBDoE method that is validated experimentally using a 

chemical platform, therefore it can support product and process development through an 

improved understanding of main and side reactions (although the method is general, therefore 

it can be useful for any application involving the use of a mathematical model). Moreover, 

Chapters 7-8 propose modelling approaches to better characterise drug solubility for both 

process and product development: in Chapter 7, drug solubility is studied in mixtures of 14 

organic solvents typically employed in cristallisation units, thus supporting the development 

and/or optimisation of crystallisation processes; in Chapter 8, solubility is assessed in vitro by 

using biorelevant media representing human intestinal fluids, therefore they can support 

product development during clinical trials.  

Finally, Appendix A provides further explanation of the method used to solve Case study 1. 

Appendices B-D show additional results of Case study 2, while Appendices E-F shows 

additional results of Case study 3. Finally, Appendix G-I provide additional explanations and 

results for Case study 5.
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Figure 1.9 Roadmap of this Dissertation. The mathematical methods used are explained in Chapter 2, while the six case studies in Chapters 3-8.   
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Chapter 2  
Mathematical methods 

This Chapter provides an overview of the techniques employed in this Dissertation, which can 

be grouped into two main categories: model-based design of experiments and data-driven 

modelling. Model based design for parameters identification and minimisation of model 

prediction uncertainty is introduced. Furthermore, data-driven modelling approaches employed 

in this work, such as Partial Least Square and Gaussian Process regression, are then presented. 

2.1 Model-based design of experiments (MBDoE)  

Physical systems can be represented through mathematical models by identifying two main 

entities: model equations and parameters. In both cases, experimental data are required to 

develop a model that reliably represents the system under study. Therefore, different design of 

experiments techniques have been proposed in literature to guide experimental campaigns in a 

science-driven way. As explained in Chapter 1, statistical DoE has improved the use of 

resources in the pharmaceutical industry by replacing the ineffective trial-and-error or one-

factor-at-a-time approaches, but it has still some limitations, such as the fact that multiple 

experiments are designed at once, without being updated when new knowledge is available, or 

the fact that it is suitable to identify linear regression models, but not necessarily non-linear 

mechanistic models.  

To overcome these limitations, model-based design of experiments (MBDoE; Espie and 

Macchietto, 1989) techniques can be employed. MBDoE defines experiments information 

content based on the purpose of the experimentation, which may be: (i) identification of model 

structure, (ii) identification of model parameters, or (iii) minimisation of model prediction 

uncertainty. In the former case, MBDoE designs experimental conditions that are most useful 

to discriminate among model candidates; different MBDoE techniques for model 

discrimination have been proposed in literature and some examples can be found in Hunter and 

Reiner (1965), Buzzi-Ferraris and Forzatti (1983), Galvanin et al. (2016), Waldron et al., 

(2019). In this Dissertation, the second and third types of MBDoE techniques are employed. 

The basic assumption is that the most representative model structure for the system under study 
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is available and that experiments must be collected to get parameters estimates and/or to 

quantify model prediction uncertainty. More details are provided in the following Sub-sections. 

2.1.1 MBDoE to maximise parameters precision 

Model-based design of experiments methods for parameters precision requires the model 

structure in order to quantify the expected information content of an experiment. The structure 

of a general differential and algebraic model can be represented as: 

𝐟𝐟(�̇�𝐱,𝐱𝐱,𝐮𝐮, 𝑡𝑡,𝛉𝛉) = 𝟎𝟎 

𝐲𝐲� = 𝐡𝐡(𝐱𝐱) , 
(2.1) 

where 𝐟𝐟 is a set of model equations, 𝐱𝐱 and �̇�𝐱 are 𝑁𝑁𝑥𝑥-dimensional vectors of state variables and 

their first derivatives respectively, 𝐮𝐮  is a 𝑁𝑁𝑢𝑢-dimensional vector of control variables, 𝑡𝑡 is time, 

𝛉𝛉 is a 𝑁𝑁𝜃𝜃-dimensional vector of model parameters, 𝐲𝐲 is a 𝑁𝑁𝑦𝑦-dimensional vector of response 

variables that are measurable.  

Parameter estimates (indicated as 𝛉𝛉�) from experimental data are computed by minimising the 

difference between measured responses (𝐲𝐲) and predicted responses (𝐲𝐲�) through the negative 

log-likelihood function 𝐿𝐿�𝛉𝛉�� (Bard, 1974): 

𝐿𝐿�𝛉𝛉�� =  𝑁𝑁
2

log(2𝜋𝜋) + 𝑁𝑁sp
2

log�det�𝚺𝚺𝑦𝑦�� +  

+ 1
2
∑ �𝐲𝐲𝑖𝑖 − 𝐲𝐲�𝑖𝑖(𝛉𝛉�)�

𝑇𝑇𝑁𝑁sp
𝑖𝑖=1 𝚺𝚺𝑦𝑦−1�𝐲𝐲𝑖𝑖 − 𝐲𝐲�𝑖𝑖(𝛉𝛉�)�, 

 

(2.2) 

where 𝚺𝚺𝑦𝑦 is the variance-covariance matrix of measurement error, 𝑁𝑁sp is the number of 

sampling points considering all the 𝑁𝑁𝑒𝑒 performed experiments, namely 𝑁𝑁sp = ∑ 𝑁𝑁sp𝑖𝑖
𝑁𝑁𝑒𝑒
𝑖𝑖=1  (𝑁𝑁sp𝑖𝑖 

is the number of sampling points in the 𝑖𝑖-th experiment), 𝑁𝑁 is the total number of experimental 

measurements calculated as 𝑁𝑁 = ∑ 𝑁𝑁sp𝑖𝑖
𝑁𝑁𝑒𝑒
𝑖𝑖=1 𝑁𝑁𝑦𝑦. When experimental data are collected, the 

variance terms in 𝚺𝚺𝑦𝑦 can be calculated as the square of the pooled standard deviations (Killeen, 

2005). However, not all the experiments are equally able to provide estimates 𝛉𝛉� with enough 

statistical precision, because this depends on their information content. The information content 

of the experiments is evaluated through the Fisher Information Matrix (FIM) 𝐇𝐇𝛉𝛉� which, for 

dynamic systems, is expressed as (Zullo, 1991): 

𝐇𝐇𝛉𝛉��𝛉𝛉�, 𝛗𝛗� =  �𝐕𝐕𝛉𝛉�
0�
−1

+ ∑ �d𝐲𝐲�
d𝛉𝛉�
�
𝑖𝑖

𝑇𝑇𝑁𝑁sp
𝑖𝑖=1 𝚺𝚺𝑦𝑦−1 �

d𝐲𝐲�
d𝛉𝛉�
�
𝑖𝑖
 , 

  

(2.3) 
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where 𝐕𝐕𝛉𝛉�
0 is the 𝑁𝑁𝜃𝜃 × 𝑁𝑁𝜃𝜃 prior variance-covariance matrix of model parameters, while �d𝐲𝐲�

d𝛉𝛉�
�
𝑖𝑖
 is 

the 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝜃𝜃 matrix with first-order derivatives of model responses with respect to the 

parameters at time point 𝑖𝑖.     

Based on Cramer-Rao Theorem, the inverse of the FIM represents a lower limit for the variance-

covariance matrix (𝐕𝐕𝛉𝛉�)  of the parameters (Bard, 1974): 

𝐕𝐕𝛉𝛉��𝛉𝛉�,𝛗𝛗� ≥  �𝐇𝐇𝛉𝛉��𝛉𝛉�,𝛗𝛗��
−1

 . 
 

(2.4) 

In other terms, Eq. (2.4) provides an upper limit to parameters precision and, when the equality 

holds, parameters are defined efficient (Bard, 1974). Finally, the variance-covariance matrix 

(𝐕𝐕𝛉𝛉�) can be approximated as the inverse of the FIM by using the first term Taylor expansion 

(Bard, 1974).  

MBDoE for parameter identification is an optimisation problem that aims at minimizing the 

parametric uncertainty (represented by 𝐕𝐕𝛉𝛉�) by maximizing a scalar measure (𝜓𝜓(𝐇𝐇𝛉𝛉�)) of the 

FIM. To this purpose, the so-called alphabetical criteria (Pukelsheim, 1993) are widely used: 

(i) maximisation of the FIM determinant or minimisation of 𝐕𝐕𝛉𝛉� determinant (D-optimal 

criterion); (ii) maximisation of FIM trace or minimisation of 𝐕𝐕𝛉𝛉� trace (A-optimal criterion); (iii) 

maximisation of the FIM minimum eigenvalue or minimisation of the 𝐕𝐕𝛉𝛉� maximum eigenvalue 

(E-optimal criterion); (iv) minimisation of the ratio between maximum and minimum FIM 

eigenvalue (modified E-optimal). The optimisation problem is formulated as: 

𝛗𝛗 opt = arg min
𝛗𝛗

𝜓𝜓(𝐕𝐕𝛉𝛉�) ,     

(2.5) 

where the outcome 𝛗𝛗 opt is made of the values of all control variables leading to a maximum 

information content; in other terms, 𝛗𝛗 opt represents the most informative experimental 

conditions to be measured.  

For instance, 𝜓𝜓(𝐕𝐕𝛉𝛉�) = 𝜓𝜓E(𝐕𝐕𝛉𝛉�) in the case of E-optimal design: 

𝜓𝜓E(𝐕𝐕𝛉𝛉�) = 𝜆𝜆max(𝐕𝐕𝛉𝛉�)  , 
    

(2.6) 

where 𝛗𝛗 is the “design vector”, which contains the set of control variables that define the 

experimental conditions, while 𝜆𝜆max refers to the maximum eigenvalue of the variance-

covariance matrix 𝐕𝐕𝛉𝛉�.  
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2.1.2 MBDoE to minimise model prediction uncertainty 

Once a model structure such as Eq. (2.1) is available, experiments can be collected to minimise 

model prediction uncertainty. Specifically, the conventional G-optimal criterion allows to 

minimise the maximum prediction variance through the following optimisation (Kiefer and 

Wolfowitz, 1959): 

𝛗𝛗 opt = arg min
𝛗𝛗

𝜓𝜓�𝐕𝐕𝑦𝑦�,     (2.7) 

If all 𝑁𝑁𝑦𝑦 responses can be characterised through 𝑁𝑁sp𝑖𝑖 sampling points, 𝐕𝐕𝑦𝑦 is a 𝑁𝑁𝑦𝑦𝑁𝑁sp𝑖𝑖 × 𝑁𝑁𝑦𝑦𝑁𝑁sp𝑖𝑖 

matrix containing the estimated variance of each response at each time point. Its 𝑗𝑗𝑖𝑖-th element 

𝐕𝐕𝑦𝑦�𝛉𝛉�,𝛗𝛗��
𝑖𝑖,𝑖𝑖 

is calculated as: 

𝐕𝐕𝑦𝑦�𝛉𝛉�,𝛗𝛗��
𝑖𝑖,𝑖𝑖 

= �d𝑦𝑦
�𝑗𝑗
d𝛉𝛉�
�
𝑖𝑖

𝑇𝑇
[𝐇𝐇𝛉𝛉�]−1 �d𝑦𝑦

�𝑗𝑗
d𝛉𝛉�
�
𝑖𝑖
 ,       for 𝑗𝑗 = 1, … ,𝑁𝑁𝑦𝑦;  𝑖𝑖 = 1, … ,𝑁𝑁sp𝑖𝑖   (2.8) 

where �d𝑦𝑦
�𝑗𝑗
d𝛉𝛉�
�
𝑖𝑖
 is the 𝑁𝑁𝜃𝜃 × 1 vector of first derivatives of 𝑦𝑦�𝑖𝑖 with respect to the full set of model 

parameters at sampling point 𝑖𝑖, while 𝐇𝐇𝛉𝛉� is the Fisher information matrix of Eq. (2.3). The 

scalar index 𝜓𝜓�𝐕𝐕𝑦𝑦� in Eq. (2.7) is usually the largest diagonal element of 𝐕𝐕𝑦𝑦.  

2.1.3 Sequential and parallel MBDoE procedure 

Estimation of model parameters and/or quantification of model prediction variance takes place 

after collecting the experiments designed though the optimisation in Eq. (2.5) or (2.7). There 

are two main procedures in which model calibration and experiments design can be performed: 

sequential (Espie and Macchietto, 1989; Asprey and Macchietto, 2000) and parallel (Galvanin 

et al., 2007) MBDoE procedures.  

As shown in Figure 2.1, the sequential MBDoE procedure is made of the following steps: 

• step 1: the prior knowledge on the system is defined; it is typically made of: model 

equations; preliminary experiments to provide initial parameters values 𝛉𝛉�0; lower 𝛉𝛉�LB and 

upper 𝛉𝛉�UB bounds for parameters estimates; response measurement errors 𝜎𝜎𝑦𝑦2; 

• step 2: MBDoE is performed, namely the optimisation of Eq. (2.5) or (2.7) is solved to 

obtain the optimal experimental condition 𝛗𝛗 opt; 

• step 3: the experiment is performed. In physical systems, the experiment is carried out with 

real equipment. In case of simulated systems, the experiment can be generated in silico 

using model equations and the parameters assumed as “true” values 𝛉𝛉�true; then, gaussian 
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noise with zero mean and 𝜎𝜎𝑦𝑦2 variance is usually added to the predicted response variable 

in order to mimic experimental errors; 

• step 4: once data of the new experiment are available, they are used to re-estimate model 

parameters 𝛉𝛉�; 

• step 5: a user-defined criterion to stop the experimental campaign is evaluated. This 

criterion can be based on the maximum number of experiments allowed in the 

experimentation or on the model performance assessed by means of the indices explained 

in Subsection 2.1.4. Steps 2-5 are iterated until the chosen criterion is satisfied, for instance 

until the experimental budget is reached. 

  

 

Figure 2.1. Schematic of the sequential MBDoE procedure.  

Parallel MBDoE (Figure 2.2) is different from the sequential one beacuse the MBDoE 

optimisation in step 2 provides multiple optimal experimental conditions that can be executed 

in parallel in step 3. Afterwards, the model can be calibrated and analysed as explained in 

section 2.1.4.  
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Figure 2.2. Schematic of the parallel MBDoE procedure.  

The main advantage of the sequential approach over the parallel one is that it allows to improve 

parameters estimates as soon as new data are available. In turn, the FIM is updated since it is a 

function of model parameters, meaning that the estimation of information content improves as 

the experimentation progresses.   

On the other side, parallel MBDoE is often preferred when multiple pieces of equipment are 

available or when it is preferable to design all experiments simultaneously for practical reasons 

(e.g. the need to set up or book experimental equipment in advance).  

2.1.4 Analysis of model performance  

After model calibration, the performance of the model can be assessed in terms of parameters 

precision, model adequacy and prediction accuracy, as explained in the following Sub-

subsections.  

2.1.4.1 Parameters precision 

The precision of parameter estimates can be assessed through 100(1-α)% confidence intervals 

(CIs) and statistical tests, such as 𝑡𝑡-tests (Bernaerts et al., 2001; Asprey and Naka, 1999). 

Confidence intervals are calculated from the parameter variance-covariance matrix 𝐕𝐕𝛉𝛉�: 
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CI =   𝑡𝑡1−𝛼𝛼/2 �𝑁𝑁𝑦𝑦 − 𝑁𝑁𝜃𝜃� �𝐕𝐕𝛉𝛉�𝑖𝑖𝑖𝑖,   ∀ 𝑖𝑖 = 1, … ,  𝑁𝑁𝜃𝜃 (2.9) 

where 𝑡𝑡1−𝛼𝛼/2 �𝑁𝑁𝑦𝑦 − 𝑁𝑁𝜃𝜃� is the Student 𝑡𝑡-value with (𝑁𝑁𝑦𝑦 − 𝑁𝑁𝜃𝜃) degrees of freedom and a 

significance level 𝛼𝛼, while 𝐕𝐕𝛉𝛉�𝑖𝑖𝑖𝑖 is the 𝑖𝑖-th diagonal element of 𝐕𝐕𝛉𝛉�. In this work, 95% confidence 

intervals are considered.  

Moreover, a 𝑡𝑡-test is performed for every model parameter. To have sufficient parameters 

precision, the following condition has to be satisfied: 
𝜃𝜃𝚤𝚤�

𝑡𝑡1−𝛼𝛼/2 �𝑁𝑁𝑦𝑦−𝑁𝑁𝜃𝜃��𝐕𝐕𝛉𝛉� 𝑖𝑖𝑖𝑖

> 𝑡𝑡ref ,                      ∀ 𝑖𝑖 = 1, … ,𝑁𝑁𝜃𝜃  (2.10) 

where 𝑡𝑡ref = 𝑡𝑡1−𝛼𝛼�𝑁𝑁𝑦𝑦 − 𝑁𝑁𝜃𝜃�. 

2.1.4.2 Model adequacy 

Statistical tests based on residuals are performed in order to assess the fitting quality of the 

model. Assuming a correct model structure, residuals should be due to errors in the observations 

only, and have a Gaussian (i.e., random) distribution with zero mean and standard deviation 𝜎𝜎𝑦𝑦. 

Instead, if residuals are large and/or nonrandom they suggest that the model structure is not 

adequate (Bard, 1974). This is assessed through a 𝜒𝜒2-test on the sum of the squares of residuals, 

in which the χy
2 statistics is calculated as: 

𝜒𝜒𝑦𝑦2 =  ∑ �(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)
𝜎𝜎𝑦𝑦

�
2

 𝑁𝑁𝑦𝑦
𝑖𝑖=1                                                                                                                  (2.11) 

where 𝑦𝑦�𝑖𝑖 indicates the 𝑖𝑖-th predicted response; χy
2 is compared against a reference value at a 

100(1 − 𝛼𝛼)% confidence level and 𝑁𝑁𝑦𝑦 − 𝑁𝑁𝜃𝜃 degrees of freedom ( 𝜒𝜒ref2 =  𝜒𝜒100(1−𝛼𝛼)%,𝑁𝑁𝑦𝑦−𝑁𝑁𝜃𝜃
2 ) 

and the test is passed if 𝜒𝜒𝑦𝑦2  <  𝜒𝜒ref2 .  

2.1.4.3 Model predictive power 

The model predictive power is analysed by means of root mean squared error (RMSE), absolute 

error (AE) and coefficient of determination (𝑅𝑅2). The first two measure the difference between 

measured and predicted responses, while 𝑅𝑅2 represents the quality of fitting of the calibrated 

model. They are calculated as: 

RMSE =  �
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑁𝑁𝑦𝑦 
𝑖𝑖=1

𝑁𝑁𝑦𝑦 
  (2.12) 
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AE = |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|  (2.13) 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑁𝑁𝑦𝑦 
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2
𝑁𝑁𝑦𝑦 
𝑖𝑖=1

  (2.13) 

where |∙| indicates the absolute value and 𝑦𝑦� is the dependent variable mean.  

2.2 Data-driven modelling 

As explained in Section 1.5, a variety of data-driven approaches have been applied in the 
pharmaceutical industry, with many benefits at all stages of drug discovery and development. 
In this Dissertation, two Machine Learning (ML) techniques are used: Partial-Least Squares 
(PLS) and Gaussian Process (GP) regression, which are introduced in the following 
Subsections. 

2.2.1 Partial Least-Squares (PLS) 

Partial-Least Squares (PLS; Wold et al., 1983; Geladi and Kowalski,1986) is a multivariate 

regression technique that allows to: (i) explain the joint correlation structure of the input matrix 

U and the response matrix 𝐘𝐘 and (ii) predict the response variable 𝐘𝐘� at new experimental 

conditions.  

After pre-treating 𝐔𝐔 and 𝐘𝐘 through auto-scaling (i.e., mean-centering and scaling to unit 

variance of the variables, Eriksson et al., 2006), PLS identifies a subspace of 𝐴𝐴 ≪ min (𝑁𝑁,𝑉𝑉) 

directions of maximum variability of the input data 𝐔𝐔, also called latent variables (LVs), that 

are most correlated, and accordingly predictive, for the 𝑁𝑁𝑦𝑦 response variables 𝐘𝐘. Considering 

𝐔𝐔 and 𝐘𝐘 having dimensions [N × 𝑉𝑉] and [N × 𝑁𝑁𝑦𝑦], respectively, the model structure is given 

by the following equations: 

𝐔𝐔 = 𝐓𝐓𝐏𝐏T + 𝐄𝐄 ,  (2.15) 

𝐘𝐘 = 𝐓𝐓𝐐𝐐T + 𝐟𝐟 , (2.16) 

𝐓𝐓= 𝐔𝐔𝐖𝐖
𝐏𝐏T𝐖𝐖

 , (2.17) 

where 𝐓𝐓 is the [𝑁𝑁 × 𝐴𝐴] matrix of scores, 𝐏𝐏T is the [A × 𝑉𝑉] matrix of loadings of 𝐔𝐔, 𝐐𝐐T is the 

[A × 𝑁𝑁𝑦𝑦] matrix of loadings of 𝐘𝐘, 𝐖𝐖 is the [V × 𝐴𝐴] matrix of weights, 𝐄𝐄 and 𝐅𝐅 are the [N × 𝑉𝑉] 

and [N × 𝑁𝑁𝑦𝑦] residuals of the 𝐔𝐔 and 𝐘𝐘 spaces, respectively.  

Given a new observation 𝐮𝐮𝑛𝑛, the predicted response 𝐲𝐲�𝑛𝑛 can be calculated as: 

𝐲𝐲�𝑛𝑛 = 𝐭𝐭𝑛𝑛𝐏𝐏T ,  (2.18) 

where 𝐭𝐭𝑛𝑛 is the [1 × 𝐴𝐴] vector of scores calculated with 𝐮𝐮𝑛𝑛 as indicated in Eq. (2.17).  
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Moreover, a PLS model can be interpreted as a linear regression model (the derivation can be 

found in Wold et al., 1983):  

𝑦𝑦�𝑛𝑛 = 𝐮𝐮𝑛𝑛T𝛃𝛃 . (2.19) 

. The form of Eq. (2.19) is useful also because it gives an indication of the type and relevance 

of the effect of every regressor through parameters 𝛃𝛃; moreover, this is the form usually 

employed to define model prediction uncertainty.  

More details on the analysis and interpretation of the PLS model are provided in the following 

Sub-Subsection. 

2.2.1.1 Analysis of PLS model performance 

To evaluate the performance of the PLS model, the following analyses are performed: 

• test on sample diagnostics, to identify potential outliers and/or observations with a high 

impact on the model; 

• calculation of model prediction uncertainty; 

• study of variable importance, to identify the input variables with a considerable impact on 

the model; 

• test on model diagnostics, to calculate the amount of data variability captured by the PLS 

model, both in calibration and for new unknown validation/test data. 

Tests on sample diagnostics is performed considering the so-called Hotelling 𝑇𝑇𝑛𝑛2 statistic and 

Squared prediction error SPE𝑛𝑛 statistics calculated as:  

𝑇𝑇𝑛𝑛2 = 𝐭𝐭𝑛𝑛𝚲𝚲−1𝐭𝐭𝑛𝑛T , (2.20) 

SPE𝑛𝑛 = 𝐞𝐞𝑛𝑛𝐞𝐞𝑛𝑛T, (2.21) 

where 𝐭𝐭𝑛𝑛 is the score of the 𝑛𝑛-th observation, 𝚲𝚲−1 is a matrix whose diagonal elements are the 

inverse of the eigenvalues 𝜆𝜆𝑎𝑎, 𝐞𝐞𝑛𝑛 is the residual of the 𝑛𝑛-th observation. Hotelling 𝑇𝑇𝑛𝑛2 statistic 

represents the distance of the observation from the average conditions of the calibration dataset, 

while SPE𝑛𝑛 statistic represents the distance of the observation from the latent space identified 

by the 𝐴𝐴 latent variables. Therefore, observations with high 𝑇𝑇𝑛𝑛2 have a high leverage on the PLS 

model, while observations with high SPE𝑛𝑛 have a correlation structure that differs from the one 

captured by the model. 

Under the assumption of multinormally distributed observations, both statistics can be 

compared against their confidence limits 𝑇𝑇lim2  (Eq. 16) and SPElim: 
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𝑇𝑇lim2 = (𝑁𝑁−1)𝐴𝐴
𝑁𝑁−𝐴𝐴

𝐹𝐹(𝑉𝑉,𝑁𝑁 − 𝑉𝑉,𝛼𝛼) , (2.22) 

SPElim = 𝜎𝜎cal
2𝜇𝜇cal

𝜒𝜒2𝜇𝜇cal/𝜎𝜎cal,𝛼𝛼
2  , (2.23) 

In Eq. (18), 𝐹𝐹(𝑉𝑉,𝑁𝑁 − 𝑉𝑉,𝛼𝛼) is a Fisher’s distribution with 𝑉𝑉 and 𝑁𝑁 − 𝑉𝑉 degrees of freedom and 

significance level 𝛼𝛼, namely a confidence limit of 100(1 − 𝛼𝛼)%. In Eq. (19), 𝜇𝜇cal and 𝜎𝜎cal are 

the mean and the variance of the residuals of the calibration dataset, respectively, while 

𝜒𝜒2𝜇𝜇cal/𝜎𝜎cal ,𝛼𝛼
2  is the 𝜒𝜒2 distribution with 2𝜇𝜇cal/𝜎𝜎cal degrees of freedom. In this work, 95% 

confidence limits are considered. 

Once the prediction 𝑦𝑦�𝑛𝑛 of a given observation is calculated as in Eq. (2.19), its uncertainty can 

be characterised in terms of confidence interval as in Faber and Kowalski (1997) and in Facco 

et al. (2015). The wider the confidence interval, the larger prediction uncertainty. If the 

prediction error follows a t-distribution, the 100(1 − 𝛿𝛿)% confidence interval (CIPLS) of 𝑦𝑦�𝑛𝑛 is 

calculated as: 

CIPLS = 𝑦𝑦�𝑛𝑛 ± 𝑡𝑡𝛼𝛼
2 ,𝑁𝑁−𝑑𝑑 ∙ 𝑠𝑠 , (2.24) 

where 𝑡𝑡 indicates a t-statistic, 𝛼𝛼 is the significance level of CIPLS and 𝑑𝑑 is the degree of freedom 

of the PLS model, in this case 𝑑𝑑 = 𝐴𝐴. Moreover, 𝑠𝑠 is the standard deviation calculated as: 

s = SEPLS�1 + ℎ𝑛𝑛 + 1
𝑁𝑁

 . 
(2.25) 

In Eq. (2.25), SEPLSrepresents the standard error of calibration calculated for the PLS model 

and ℎ𝑛𝑛 represents the leverage of the observation. They are calculated as:  

SEPLS = �∑ (𝑦𝑦𝑛𝑛−𝑦𝑦�𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

𝑁𝑁−𝑑𝑑
 , 

(2.26) 

ℎ𝑛𝑛 = 𝐭𝐭𝑛𝑛𝚲𝚲−1𝐭𝐭𝑛𝑛T

𝑁𝑁−1
 , (2.27) 

where 𝑦𝑦𝑛𝑛 and 𝑦𝑦�𝑛𝑛 are measured and predicted outputs of the calibration dataset. 

The PLS model is also analysed in order to identify the input variables having a higher impact 

on the model itself. This can be done considering the PLS regression coefficients 𝛃𝛃 of Eq. 

(2.19): the sign of a given parameter indicates whether an increase of the corresponding 

regressor determines an increase or decrease of the response variable, while the absolute value 

of the parameters indicates the relevance of the impact of the regressor on the response. 

Moreover, the variable importance in the projection, namely the VIP index (Chong and Jun, 

2005), can be calculated for the v-th input variable as: 
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VIP𝑣𝑣 = �𝑉𝑉 ∑ 𝑅𝑅𝑎𝑎2𝐴𝐴
𝑎𝑎=1 (𝑤𝑤𝑣𝑣,𝑎𝑎)2

∑ 𝑅𝑅𝑎𝑎2𝐴𝐴
𝑎𝑎=1

 , 
(2.28) 

where 𝑅𝑅𝑎𝑎2 is the amount of 𝑦𝑦 variance explained by the 𝑎𝑎-th latent variable and 𝑤𝑤𝑣𝑣,𝑎𝑎 weight of 

the 𝑣𝑣-th input variable on the 𝑎𝑎-th LV. The higher VIP𝑣𝑣, the higher the influence of the 

corresponding input variable on the PLS model. Usually, a threshold of 1 is employed (Chong 

and Jun, 2005): if VIP𝑣𝑣 > 1, the v-th variable is deemed highly influential on the model.  

Finally, model diagnostics can be performed by calculating RMSE and 𝑅𝑅2 as in Eq.s (2.12) and 

(2.14), respectively.  

2.2.2 Gaussian Process (GP) regression 

Consider a response variable 𝑦𝑦 expressed by a general regression model:  

𝑦𝑦 = 𝑓𝑓(𝐮𝐮) + 𝜀𝜀, (2.29) 

where 𝐮𝐮 is the vector of 𝑉𝑉 regressors and 𝑓𝑓 is the unknown function relating 𝑦𝑦 to 𝐮𝐮. Assume 

that the difference between measured y and the calculated f(u), namely 𝜀𝜀, is only due to 

measurement errors following an independent, identically distributed Gaussian distribution 

with mean equal to 0 and variance 𝜎𝜎𝑛𝑛2, namely: 

𝜀𝜀 ~𝒩𝒩(0,𝜎𝜎𝑛𝑛2) . (2.30) 

A Gaussian Process model defines a Gaussian distribution over 𝑓𝑓, therefore 𝑓𝑓 is completely 

characterised by a mean function 𝜇𝜇(𝐮𝐮) and a covariance function 𝜅𝜅(𝐮𝐮) (Rasmussen and 

Williams, 2006):  

𝜇𝜇(𝐮𝐮) = 𝔼𝔼[𝑓𝑓(𝐮𝐮)] , (2.31) 

𝜅𝜅(𝐮𝐮,𝐮𝐮′) = 𝔼𝔼[(𝑓𝑓(𝐮𝐮) − 𝜇𝜇(𝐮𝐮))(𝑓𝑓(𝐮𝐮′) − 𝜇𝜇(𝐮𝐮′))] , (2.32) 

where 𝔼𝔼[∙] indicates the expected value.  

Therefore, the GP model can be indicated as (Rasmussen and Williams, 2006): 

𝑓𝑓(𝐮𝐮) ~𝒢𝒢𝒢𝒢�𝜇𝜇(𝐮𝐮),𝜅𝜅(𝐮𝐮,𝐮𝐮′)� . (2.33) 

Prior distributions of 𝜇𝜇(𝐮𝐮) and 𝜅𝜅(𝐮𝐮,𝐮𝐮′) are defined before collecting experiments and they are 

updated with observed data. The prior distribution of 𝜇𝜇(𝐮𝐮), namely the mean of data points 

before observing the actual measurements, is typically assumed to be equal to zero (Rasmussen 

and Williams, 2006). Different covariance functions 𝜅𝜅(∙,∙) are available in the literature; a 

common choice is the squared exponential function (SE, Wang et al., 2020; Petsagkourakis and 

Galvanin, 2021):  
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𝜅𝜅(𝐮𝐮,𝐮𝐮′) = 𝜎𝜎SE2 exp �− �𝐮𝐮−𝐮𝐮′�
2

ℓ2
� , (2.34) 

where 𝜎𝜎SE2  and ℓ are two hyperparameters. 

If 𝑁𝑁 observations are available (“training” or “calibration” data, 𝐔𝐔) and the GP model is used 

to make predictions at 𝑁𝑁∗ new conditions (“test” or “validation” data, 𝐔𝐔∗) and if measurements 

have Gaussian errors with variance 𝜎𝜎𝑦𝑦2, the joint distribution of the response variables 𝐲𝐲 at the 

training data and of the function values 𝐟𝐟∗ at the test data under the prior is expressed as:  

�
𝐲𝐲
𝐟𝐟∗
�~𝒩𝒩�0, �

𝐾𝐾(𝐔𝐔,𝐔𝐔) + 𝜎𝜎𝑦𝑦2𝐈𝐈 𝐾𝐾(𝐔𝐔,𝐔𝐔∗)
𝐾𝐾(𝐔𝐔∗,𝐔𝐔) 𝐾𝐾(𝐔𝐔∗,𝐔𝐔∗)

�� , (2.35) 

where the output of the function 𝐾𝐾(∙,∙) is a matrix of covariances calculated with the elements 

of the two input matrices: for instance, 𝐾𝐾(𝐔𝐔,𝐔𝐔∗) provides the [𝑁𝑁 × 𝑁𝑁∗] matrix containing the 

covariances calculated for every pair of training (𝐔𝐔) and test (𝐔𝐔∗) point.  

Then, the joint Gaussian prior distribution is conditioned on the observed data (more details can 

be found in Rasmussen and Williams, 2006) and the GP model is completely defined by the 

posterior mean 𝐟𝐟∗̅ and covariance cov(𝐟𝐟∗) functions:    

𝐟𝐟∗̅ = 𝐾𝐾(𝐔𝐔∗,𝐔𝐔)[𝐾𝐾(𝐔𝐔,𝐔𝐔) + 𝜎𝜎𝑦𝑦2𝐈𝐈]−1𝐲𝐲 , (2.36) 

cov(𝐟𝐟∗) = 𝐾𝐾(𝐔𝐔∗,𝐔𝐔∗) − 𝐾𝐾(𝐔𝐔∗,𝐔𝐔)[𝐾𝐾(𝐔𝐔,𝐔𝐔) + 𝜎𝜎𝑦𝑦2𝐈𝐈]−1𝐾𝐾(𝐔𝐔,𝐔𝐔∗) ; (2.37) 

where cov(𝐟𝐟∗) is the covariance of the noise-free predictions and it becomes (cov(𝐟𝐟∗) + 𝜎𝜎𝑦𝑦2𝐈𝐈) if 

also noise is taken into account; 𝜎𝜎𝑦𝑦2 is often considered as a hyperparameter of the GP model 

(Petsagkourakis and Galvanin, 2021). The covariance functions allow also to estimate model 

prediction uncertainty through the calculation of 95% confidence intervals (CIGP): 

CIGP =  𝐟𝐟∗̅ ± 1.96�cov(𝐟𝐟∗) .  (2.38) 

A common approach to estimate the hyperparameters 𝛉𝛉𝐆𝐆𝐏𝐏 = {𝜎𝜎SE2 , ℓ,𝜎𝜎𝑦𝑦2} of the GP model is to 

maximise the log-marginal likelihood of the observations 𝐲𝐲 (Rasmussen and Williams, 2006; 

Wang et al., 2020). The marginal likelihood (or evidence) 𝑝𝑝(𝐲𝐲|𝐔𝐔) is defined as the integral of 

the product between the likelihood 𝑝𝑝(𝐲𝐲|𝐟𝐟,𝐔𝐔)  and the prior 𝑝𝑝(𝐟𝐟|𝐔𝐔):  

𝑝𝑝(𝐲𝐲|𝐔𝐔) = ∫ 𝑝𝑝(𝐲𝐲|𝐟𝐟,𝐔𝐔)𝑝𝑝(𝐟𝐟|𝐔𝐔)d𝐟𝐟 ;  (2.39) 

therefore, it is a marginalisation over the function values 𝐟𝐟. The derivation of the integral in Eq. 

(2.39) takes advantage of the fact that the prior is Gaussian and the likelihood is a factorised 

Gaussian; more details can be found in Rasmussen and Williams (2006). The final log-marginal 

likelihood to be maximised results to be:  
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log𝑝𝑝(𝐲𝐲|𝐔𝐔) =  −1
2
𝐲𝐲𝑇𝑇�𝐊𝐊 + 𝜎𝜎𝑦𝑦2𝐈𝐈�

−1
𝐲𝐲 − 1

2
log�𝐊𝐊 + 𝜎𝜎𝑦𝑦2𝐈𝐈� −

𝑛𝑛
2

log2𝜋𝜋, (2.40) 

where 𝐊𝐊 is used to simplify the notation of 𝐾𝐾(𝐔𝐔,𝐔𝐔). In Eq. (2.40), three main terms are present: 

−1
2
𝐲𝐲𝑇𝑇�𝐊𝐊 + 𝜎𝜎𝑦𝑦2𝐈𝐈�

−1
𝐲𝐲, which is the only one containing observed values of the response variable 

𝐲𝐲;   −1
2

log�𝐊𝐊 + 𝜎𝜎𝑦𝑦2𝐈𝐈�, which is a penalisation term depending only on the input variables and 

covariance function; −𝑛𝑛
2

log2𝜋𝜋 is a normalisation term. Typically, the best hyperparameters 𝛉𝛉∗ 

are obtained by maximising the log-likelihood with a gradient-based method (Basak et al., 

2022).   

Finally, the GP model does not necessarily need the assumption of zero mean; it may be useful 

to indicate the mean function for several reasons, for example to express prior knowledge on 

the system or to improve the interpretability of the model (Rasmussen and Williams, 2006). If 

a prior mean function 𝑚𝑚(𝐔𝐔) for the system of interest is known, the zero-mean GP model can 

be applied to the difference between observations y and the mean function 𝑚𝑚(𝐔𝐔), namely to 

(𝐲𝐲 − 𝑚𝑚(𝐔𝐔)). Therefore, the predictive mean for test data 𝐔𝐔∗ is given by the contribution of the 

prior mean function, namely 𝑚𝑚(𝐔𝐔∗), and of the GP regression: 

𝐟𝐟∗̅ = 𝑚𝑚(𝐔𝐔∗) + 𝐾𝐾(𝐔𝐔∗,𝐔𝐔)[𝐊𝐊 + 𝜎𝜎𝑦𝑦2𝐈𝐈]−1(𝐲𝐲 − 𝑚𝑚(𝐔𝐔)), (2.41) 

where 𝐾𝐾(𝐔𝐔∗,𝐔𝐔) and 𝐊𝐊 are the same as in Eq. (2.36). 
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Chapter 3  
Streamlining tablet lubrication design 

via model-based design of experiments1 

In this Chapter, a novel MBDoE method is proposed to calibrate a lubrication model (Nassar et 

al., 2021) with minimum experimental effort, while ensuring a satisfactory prediction accuracy 

for industrial applications. Both sequential and par1allel MBDoE configurations are compared. 

Experimental results involving two placebo blends with different lubrication sensitivity show 

that this methodology is able to reduce the experimental effort by 60-70% with respect to the 

standard industrial practice independently of the formulation considered and configuration (i.e. 

parallel vs. sequential) adopted. 

3.1 Introduction 

In oral solid dosage forms manufacturing, lubrication is a processing step used to enhance the 

ejection of pharmaceutical tablets from a tablet press by reducing the wall friction between the 

tablet and the die walls (Wang et al., 2010). The process consists of mixing a lubricant, usually 

Magnesium Stearate (MgSt), with the remaining pre-blended components of the product 

formulation, and it is typically performed prior to the compaction in the press. 

Besides enhancing tablet ejection during compaction, the addition of the lubricant to the powder 

blend contributes to improving powder flowability (Podczeck and Miah, 1994), increasing 

                                                           
1 Cenci, F., Bano, G., Christodoulou, C., Vueva, Y., Zomer, S., Barolo, M., Bezzo, F. and Facco, P. (2022). 

Streamlining tablet lubrication design via model-based design of experiments. International Journal of 
Pharmaceutics, 614, 121435.  

Cenci, F., Bano, G., Christodoulou,C., Vueva, Y., Zomer, S.Barolo, M., Bezzo, F., Facco, P., 2022. Reducing the 
experimental effort to design pharmaceutical tablet lubrication by model-based design of experiments. In 
32 European Symposium on Computer Aided Process Engineering, Montastruc, L., Negny, S., Eds., 
Comput. Aided Chem. Eng., Elsevier, 51, 25-30.  

Cenci, F., Bano, G., Christodoulou,C., Vueva, Y., Zomer, S. Barolo, M., Bezzo, F., Facco, P., 2022. Development 
of model based strategies to accelerate the experimental campaign for the production of oral solid dosage 
through direct compression [oral presentation]. GRICU conference, Ischia, Italy, Jul 3-6 

Cenci, F., Bano, G., Christodoulou,C., Vueva, Y., Zomer, S. Barolo, M., Bezzo, F., Facco, P., 2022. Reducing the 
experimental effort to design pharmaceutical tablet lubrication by model-based design of experiments 
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powder bulk density (Dansereau and Peck, 1987), and reducing the risk that the powder might 

adhere to metal surfaces during tablet compression (Sabir et al., 2001; Yamamura et al., 2009). 

However, common lubricants such as MgSt can have a negative impact on product intermediate 

and critical quality attributes such as tablet hardness (Kikuta and Kitamori, 1994; Sheskey et 

al., 1995), disintegration time (Kikuta and Kitamori, 1994), and dissolution (Sheskey et al., 

1995). Therefore, finding the right balance between the risks and benefits of lubrication is 

critical to avoid manufacturability issues during process operation while guaranteeing 

consistent product quality. This balance can be found by changing the formulation, the process 

conditions, or a combination of the two.  

Formulation-related factors affecting lubrication are the choice of lubricant (Wang et al., 2010) 

and the amount of lubricant to be added to the formulation (Uchimoto et al., 2013). Process-

related factors are the type of blender, the batch size and the blending time (for a given blending 

speed, or vice versa). In an industrial context, the standard practice is to manipulate blending 

time (or speed) before altering any of the other factors. The choice of blending time can be 

aided by the use of mathematical models that link the blending operating conditions across 

different scales with the compaction performance (e.g., quantified by tablet tensile strength). A 

semi-empirical model that serves to this purpose and has found a broad adoption in industry is 

the one presented by Kushner and Moore (2010). This model can be used to identify the best 

operating conditions for a commercial scale blender from laboratory scale data, with the caveat 

that its applicability is limited to tablets manufactured at a given solid fraction (i.e., 0.85). An 

extension to this model that accounts for the effect of solid fraction has recently been proposed 

by Nassar et al. (2021). This semi-empirical model proved useful in industrial environments, 

but several blending runs at different lubrication extents are required to calibrate it: as many as 

nine blending runs may be required depending on the sensitivity to lubrication of the 

formulation under development. 

This has two main drawbacks. First, a significant amount of active pharmaceutical ingredient 

(API) is required, which may not be available during early drug development, and/or may 

significantly impact costs and resources during late-phase development. Second, a considerable 

amount of time (and related labor) is needed to prepare the blends and to carry out the 

calibration experiments. Overall, the above drawbacks translate into experimental campaigns 

whose cost can easily ramp to tens of thousands of dollars. 

In this study, we tackled this issue by employing a model-based design of experiments 

(MBDoE; Espie and Macchietto,1989; Franceschini and Macchietto, 2008) approach to 
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optimally design the experimental campaign. As explained in section 2.1, MBDoE can be seen 

as an optimisation framework where experiments are selected in order to maximise their 

information content for the purpose of parameters estimation. As a consequence, compared to  

trial-and-error  or statistical DoE approaches, fewer highly informative data are typically 

sufficient to obtain statistically significant parameters estimates (Galvanin et al., 2009; 

Akkermans et al., 2018). Given the advantages in terms of time and resources savings, MBDoE 

has found broad applications in a variety of scientific areas, including the (bio)pharmaceutical 

one. Abt et al. (2018) reviewed state-of-the-art techniques to design experiments in bioprocess 

engineering, and highlighted the potential of MBDoE for parameter identification from product 

development to manufacturing. Kroll et al. (2017) provided an overview of MBDoE 

applications in the biopharmaceutical process life cycle, discussing both past applications and 

future challenges. De-Luca et al. (2020) implemented a MBDoE approach to calibrate a model 

of the primary drying phase of a freeze-drying process, obtaining a significant reduction of the 

required experimental time. MBDoE was applied to estimate the parameters of 

pharmacokinetics and pharmacodynamics models in drug development from preclinical tests to 

phases I-III clinical (Ogungbenro et al., 2009; Galvanin et al., 2013). Violet et al. (2016) applied 

MBDoE to discriminate among stoichio-kinetic models used to predict side reactions and mass 

or heat transfer properties in continuous microreactors used in the pharmaceutical industry. 

Bogacka et al. (2011) applied MBDoE for parameters precision to an enzyme inhibition kinetic 

model used to evaluate the inhibitory potential of a drug when is co-administered with other 

drugs. Shahmohammadi and McAuley (2019, 2020) discussed different strategies to mitigate 

FIM ill-conditioning issues for MBDoE applications to a nonlinear kinetic model based on a 

Michaelis-Menten batch reaction for the production of a pharmaceutical agent.  

In this study, a novel MBDoE procedure for the estimation of the parameters of the semi-

empirical model of Nassar et al. (2021) relating tablet tensile strength to lubrication and solid 

fraction is proposed. Results demonstrate that the optimized procedure dramatically reduces the 

experimental effort and related costs, adopting either a parallel or sequential MBDoE approach.  

This chapter is structured as follows. Section 3.2 briefly presents the direct compression process 

and describes the experimental strategy to produce calibration and validation data. Section 3.3 

presents the mathematical model used in this study and explains the proposed MBDoE 

procedure. Finally, results are presented in section 3.4 and critically discussed within section 

3.5. Some final remarks conclude the work. 
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3.2 Materials and experimental methods 

Direct compression is usually the preferred tablet manufacturing method when it is not 

necessary to improve the materials compaction and flow properties, e.g. by converting fine 

powders into agglomerates through wet or dry granulation (Šantl et al., 2011). It also allows 

removing heat and moisture effects on materials (Alpizar-Ramos and González-de la Parra, 

2017; Cox Gad, 2008). Moreover, direct compression comprises a limited number of unit 

operations which include blending, lubrication, compression and coating. This study focuses 

on the lubrication step, and more specifically, on quantifying compression performance in terms 

of tablet tensile strength as a function of the tablet solid fraction (therefore, compression 

pressure) and lubrication extent (thus, powder blending time), as discussed by Nassar et al. 

(2021). The experimental protocols used in this study are described next. 

3.2.1 Materials 

Experiments are performed with blends composed of the following materials:  

• microcrystalline cellulose (MCC) as Avicel PH102 (FMC Corporation, Philadelphia, 

USA); 

• anhydrous lactose as lactose Supertab 21AN (DFE pharma, Goch, Germany) ; 

• mannitol Pearlitol SD200 (Roquette, Lestrem, France);; 

• croscarmellose-Na as Ac-Di-Sol (FMC Corporation, Philadelphia, USA);  

• magnesium stearate (MgSt) as LIGAMED MF-2-V (Peter Greven, Bad Münstereifel, 

Germany). 

All materials are used as received by the vendors.  

3.2.2 Blend preparation 

Two types of placebo blends with the following compositions are used: 

• formulation A: 2 parts MCC: 1 part lactose, 5% Ac-Di-Sol, 1% MgSt; 

• formulation B: 1 part MCC: 2 parts mannitol, 1% MgSt. 

Formulation A is prepared using a 300L binin blender (Pharmatech, Coleshill, United 

Kingdom) at 60% fill level. All excipients are transferred into the blender and mixed at 17 rpm 

for 20 min.  

Formulation B is prepared in a 500 ml HDPE plastic bottle at 75% fill level using a model T2F, 

Glen mills Turbula (Wab Group, Muttenz, Switzerland) blender. Mannitol and MCC are 
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screened through 1 mm mesh sieve before transferring into the bottle. Formulation B is mixed 

at 46 cycles/min for 20 min.  

3.2.3 Blend lubrication 

The pre-mixed blends are weighted out to the required amount corresponding to 35% head 

space in 500 ml HPDE plastic bottles with diameter/high ratio of 0.5. Magnesium stearate is 

added on the top of the blends through a 500 microns mesh sieve and blended at 46 cycles/min 

for appropriate lubrication time to achieve the targeted extent of lubrication. In particular, the 

lubrication extent (𝑘𝑘, dm) is calculated considering different blender parameters (Nassar et al., 

2021) as follows: 

𝑘𝑘 = 𝛼𝛼equip 𝑉𝑉𝑏𝑏
1
3 𝐹𝐹ℎ 𝜔𝜔blend𝑡𝑡blend                                                                                                         (3.1) 

where 𝛼𝛼equip is an equipment dependent factor; this is 1.5 for the Turbula blender which has 

dual axes of rotation (Nassar et al., 2021). In Eq. (3.1), 𝑉𝑉𝑏𝑏 is the blender volume [dm3], 𝐹𝐹ℎ is 

the fraction [%] occupied by the headspace, which was fixed to 0.35% in these experiments, 

𝜔𝜔blend is the mixer rotational speed [min-1] and 𝑡𝑡blend is the blending time [min]. 

The extent of lubrication tested for each formulation ranges between 90 and 2000 dm. 

3.2.4 Lubricated blend compression 

A Phoenix compaction simulator (Phoenix, West Midlands, USA) is used to manufacture 

tablets from both blends simulating a Fette 1200 press profile with turret speed of 35 rpm. An 

8 mm round concave tooling is utilized to compress tablets with a targeted weigh of 200 mg. 

The pre-compression force used is 0.75 MPa and the tablets are compressed in the pressure 

range 50 - 245 MPa. At each compression pressure three tablets are produced and the weight, 

thickness and hardness of the tablets are recorded. This information is used to calculate solid 

fraction (𝑠𝑠𝑓𝑓, -) and tensile strength (𝑡𝑡𝑠𝑠, MPa), which, for round concave tablets, are calculated 

as (Pitt et al., 1988; Nassar et al, 2021): 

𝑠𝑠𝑓𝑓 =  𝑚𝑚𝑇𝑇

𝜌𝜌𝑡𝑡�(2×𝑉𝑉𝑐𝑐)+𝑊𝑊×�𝜋𝜋×�𝐷𝐷2�
2
��

                                                                                                       (3.2) 

𝑡𝑡𝑠𝑠 =  10 𝑆𝑆

𝜋𝜋𝐷𝐷2�2.84𝑡𝑡𝐷𝐷−0.126 𝑡𝑡
𝑊𝑊+3.15 𝑊𝑊𝐷𝐷+0.01�

                                                                                                 (3.3) 
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where 𝑚𝑚𝑇𝑇 is the tablet weight [kg], 𝑉𝑉𝑐𝑐 is the cup volume [m3], 𝑊𝑊 is the wall height of the tablet 

[m], 𝐷𝐷 is the tablet diameter [m], 𝜌𝜌𝑡𝑡 is the true density of the powder blend [kg/m3], 𝐹𝐹 is 

breaking force [N], 𝑡𝑡 is the overall tablet thickness [m]. 

3.3 Mathematical modelling 

The original Kushner and Moore equation (Kushner and Moore, 2010) relates tensile strength 

𝑡𝑡𝑠𝑠 [MPa] to lubrication extent 𝑘𝑘 [dm], and is valid only for solid fraction 𝑠𝑠𝑓𝑓 = 0.85:  
𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠=0.85

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠=0.85,0
=  (1 − 𝛽𝛽) + 𝛽𝛽exp(−𝛾𝛾𝑘𝑘)                                                                                          (3.4) 

where 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠=0.85,0 [MPa] is the initial tensile strength at 0.85 solid fraction, 𝛾𝛾 [dm-1] is the 

lubrication rate constant of the blend, and 𝛽𝛽 [-] is the total fraction of tensile strength that can 

be lost due to lubrication.  

The empirical model proposed by Nassar et al. (2021) makes the dependence of Kushner and 

Moore parameters on solid fraction explicit by including the following relations into (3.4): 

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠=0.85,0 = 𝑎𝑎1 exp(𝑏𝑏1(1 − 𝑠𝑠𝑓𝑓))                                                                                                   (3.5) 

𝛽𝛽 = 𝑎𝑎2(1 − 𝑠𝑠𝑓𝑓) + 𝑏𝑏2.                                                                                             (3.6) 

Therefore, to estimate model parameters of the resulting extended Kushner and Moore model, 

i.e. 𝑎𝑎1 [MPa], 𝑏𝑏1 [-], 𝑎𝑎2 [-], 𝑏𝑏2 [-] and 𝛾𝛾 [dm-1], two input variables can be manipulated: 

lubrication extent (𝑘𝑘), related to the blending time, and tablet solid fraction (𝑠𝑠𝑓𝑓), related to the 

compression pressure. 

3.3.1 Model-based design of experiments 

To represent the extended Kushner and Moore model (Eq.s 3.4, 3.6), that is a nonlinear 

algebraic model, the general model equations of Eq. (2.1) (section 2) can be simplified to the 

following form:  

𝑦𝑦 = 𝑓𝑓(𝐮𝐮,𝛉𝛉)                                                                                                                                (3.7) 

where 𝑦𝑦 is tensile strength (namely, 𝑡𝑡𝑠𝑠), 𝐮𝐮 is made of solid fraction and lubrication (𝐮𝐮 =

[𝑠𝑠𝑓𝑓,𝑘𝑘]T), and 𝛉𝛉 is 𝛉𝛉 = [𝑎𝑎1, 𝑏𝑏1 ,𝑎𝑎2 , 𝑏𝑏2, 𝛾𝛾]T. In addition, symbol ̂  indicates estimated variables: 

for example, 𝐲𝐲� indicates tensile strength estimated by the model, and 𝛉𝛉� is a set of parameters 

estimated either as initial guesses (based on prior process knowledge) or using calibration data.  

The objective is calibrating the model (i.e., identifying the model parameters) with the 

minimum experimental effort. MBDoE aims at maximizing the amount of information provided 
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by the experiments evaluated through the 𝑁𝑁𝜃𝜃 × 𝑁𝑁𝜃𝜃 Fisher Information Matrix (FIM), as 

explained in section 2.1. In the specific case of the extended Kushner and Moore model, where 

the response (𝑡𝑡𝑠𝑠) depends on two inputs (𝑠𝑠𝑓𝑓 and 𝑘𝑘) and on parameter estimates  𝛉𝛉�  =

[𝑎𝑎�1, 𝑏𝑏�1 ,𝑎𝑎�2 , 𝑏𝑏�2, 𝛾𝛾�]T, the FIM (Eq. 2.3 of section 2.1) can be rewritten in the following form (Box 

and Lucas, 1959): 

𝐇𝐇𝛉𝛉��𝛉𝛉�,𝛗𝛗� = 1
𝜎𝜎𝑦𝑦2
𝐒𝐒(𝛉𝛉�,𝛗𝛗)T𝐒𝐒(𝛉𝛉�,𝛗𝛗)                                                                                                   (3.8) 

where 𝛗𝛗 is the design vector (namely, 𝛗𝛗 = 𝐮𝐮 = [𝑠𝑠𝑓𝑓,𝑘𝑘]𝑇𝑇), 𝜎𝜎𝑦𝑦2 is the response variance, while 

𝐒𝐒(𝛉𝛉�,𝛗𝛗) is the 𝑁𝑁 × 𝑁𝑁𝜃𝜃-dimensional matrix of first-order sensitivity indices of the response with 

respect to each parameter calculated at each experimental point (namely, 𝛗𝛗) and at a given set 

of parameters guesses 𝛉𝛉�. A given row of the sensitivity matrix is a 1 × 𝑁𝑁𝜃𝜃-dimensional vector 

(𝐬𝐬𝑠𝑠𝑠𝑠,𝑘𝑘�𝛉𝛉�,𝛗𝛗�) calculated at the experimental point [𝑠𝑠𝑓𝑓,𝑘𝑘]: 

𝐬𝐬𝑠𝑠𝑠𝑠,𝑘𝑘�𝛉𝛉�,𝛗𝛗� = �𝜕𝜕𝑡𝑡𝑠𝑠
𝜕𝜕𝑎𝑎1

�𝛉𝛉�,𝛗𝛗�, 𝜕𝜕𝑡𝑡𝑠𝑠
𝜕𝜕𝑏𝑏1

�𝛉𝛉�,𝛗𝛗�, 𝜕𝜕𝑡𝑡𝑠𝑠
𝜕𝜕𝑎𝑎2

�𝛉𝛉�,𝛗𝛗�, 𝜕𝜕𝑡𝑡𝑠𝑠
𝜕𝜕𝑏𝑏2

�𝛉𝛉�,𝛗𝛗�, 𝜕𝜕𝑡𝑡𝑠𝑠
𝜕𝜕𝜕𝜕
�𝛉𝛉�,𝛗𝛗��

𝑠𝑠𝑠𝑠,𝑘𝑘 
             (3.9) 

where the subscript 𝑠𝑠𝑓𝑓,𝑘𝑘 indicates that 𝐬𝐬𝑠𝑠𝑠𝑠,𝑘𝑘 is calculated for one specific experiment [𝑠𝑠𝑓𝑓,𝑘𝑘]T.  

Then, the FIM scalar index 𝜓𝜓 can be optimized as in Eq. (2.5) to determine the most informative 

experimental conditions. In this work, experiments are designed through the D-optimal criterion 

and once they are performed, new parameters estimates 𝛉𝛉� are obtained through maximum 

likelihood estimation with constant variance (Eq. 2.2, Section 2.1.1).  

3.3.2 Proposed MBDoE procedure 

For the specific application considered in this study, the MBDoE problem cannot be formulated 

in a standard way as in Eq. (2.5) due to operational constraints. This is because, when a model 

of the form (3.7) is employed, the optimal design vector 𝛗𝛗opt returns one optimal value of solid 

fraction and one optimal value of lubrication extent. When a new experiment is designed, the 

optimal value of lubrication extent may be different from the previous one. However, from a 

practical point of view, this would require filling the blender with API and excipients; achieving 

the desired lubrication extent after the optimal blending time, and generating a single 

compression point (hence, producing only one tablet) at the desired solid fraction value using 

the powder blend lubricated at the desired lubrication extent. Notwithstanding the fact that 

obtaining a single target solid fraction value in a compaction simulator is operationally 

infeasible, this approach would also require the preparation of several different powder blends, 

i.e. one for each optimal solid fraction value. Consequently, even if the number of data points 
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for model calibration is minimised through MBDoE, such measurements would determine a 

significant number of blends to be prepared. However, one should consider that the major 

contribution to the experimental effort is not given by the change of solid fraction for the same 

powder blend (thus, the same 𝑘𝑘), but rather by the change of powder lubrication.  

Therefore, the experimental procedure proposed in this study aims at minimizing the number 

of blends to be prepared in order to achieve model calibration. First, the experimental domain 

must be defined in terms of range and discretization for each input variable (namely, 𝑠𝑠𝑓𝑓 and 𝑘𝑘). 

Then, a two-step MBDoE procedure is performed (Figure 3.1):  

• step 1: calculation of a set of 𝑁𝑁𝑆𝑆𝑆𝑆 optimal values of 𝑠𝑠𝑓𝑓 for every admissible value of 

lubrication; these sets will be denoted as “profiles” in the following; 

• step 2: selection of the optimal profile, i.e. the one maximizing the objective function in 

Eq.(2.5).  

  

 

 

 

 

 

 

 

 

Figure 3.1. Illustration of the proposed MBDoE procedure. (a) After defining the 
range and discretization of sf and k, a set of 𝑁𝑁𝑆𝑆𝑆𝑆 optimal values of sf (dots), each of 
which constitutes a “profile”, is calculated for every possible value of k. (b) Finally, 
the profile that optimizes the MBDoE objective function (dots with squares) is selected 
as the optimal experiment. 

The result of each iteration of the two-step MBDoE procedure is a profile (namely, 𝛗𝛗opt =

[𝑠𝑠𝑓𝑓opt,1, … , 𝑠𝑠𝑓𝑓opt,𝑁𝑁𝑆𝑆𝑆𝑆 ,𝑘𝑘opt]T) characterizing one specific blend.  

To obtain a calibration dataset, steps 1 and 2 of the MBDoE procedure are iterated 𝑁𝑁𝐾𝐾 times. 

Specifically, two datasets of 𝑁𝑁𝐾𝐾 optimal profiles are designed: one with a parallel approach, i.e. 

performing model calibration at the end of the experimental campaign; one with a sequential 

approach, i.e. performing model calibration after measuring each single profile. The former 

 

(a) 

 

(b) 
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approach would be preferred from a practical perspective, because it allows accelerating the 

experimentation by preparing all optimal blends in advance and compressing them in the 

compaction simulator without interruptions.  

From a mathematical standpoint, the two-step MBDoE procedure (both sequential and parallel) 

requires redefining the sensitivity matrix 𝐒𝐒(𝛉𝛉�,𝛗𝛗), where rows corresponding to data points of 

the same profile are stacked together. Therefore, considering 𝑁𝑁𝐾𝐾 optimal profiles with 𝑁𝑁𝑆𝑆𝑆𝑆 

optimal solid fractions each, the sensitivity matrix becomes:  

𝐒𝐒(𝛉𝛉�,𝛗𝛗) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐬𝐬11(𝛉𝛉�,𝛗𝛗)
𝐬𝐬21(𝛉𝛉�,𝛗𝛗)

⋮
𝐬𝐬𝑁𝑁𝑆𝑆𝑆𝑆1(𝛉𝛉�,𝛗𝛗)
𝐬𝐬12(𝛉𝛉�,𝛗𝛗)
𝐬𝐬22(𝛉𝛉�,𝛗𝛗)

⋮
𝐬𝐬𝑁𝑁𝑆𝑆𝑆𝑆,2(𝛉𝛉�,𝛗𝛗)

⋮
𝐬𝐬1𝑁𝑁𝐾𝐾(𝛉𝛉�,𝛗𝛗)
𝐬𝐬2𝑁𝑁𝐾𝐾(𝛉𝛉�,𝛗𝛗)

⋮
𝐬𝐬𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝐾𝐾(𝛉𝛉�,𝛗𝛗)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

                                                                                      (3.10) 

where 𝐬𝐬𝑖𝑖𝑖𝑖(𝛉𝛉�,𝛗𝛗) is the sensitivity vector calculated with the 𝑖𝑖-th solid fraction and the 𝑗𝑗-th 

lubrication value, 𝑖𝑖 = 1, … . ,𝑁𝑁𝑆𝑆𝑆𝑆, 𝑗𝑗 = 1, … . ,𝑁𝑁𝐾𝐾, as in Eq. (3.9).  

3.3.2.1 Numerical issues 

When sensitivity coefficients are calculated, an appropriate scaling should always be applied in 

order to avoid that some variables and/or parameters dominate due to larger numerical values 

(Thompson et al., 2009). To this aim, the following scaling that involves all input and all output 

variables is adopted:  

𝑆𝑆𝐹𝐹 = 𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠ref

                                                                                                                                (3.11) 

𝐾𝐾 = 𝑘𝑘
𝑘𝑘ref

                                                                                                                                    (3.12) 

𝑇𝑇𝑆𝑆 = 𝑡𝑡𝑠𝑠
𝑡𝑡𝑠𝑠ref

                                                                                                                                (3.13) 

where 𝑠𝑠𝑓𝑓, 𝑘𝑘 and 𝑡𝑡𝑠𝑠 can be measured or simulated values, while 𝑠𝑠𝑓𝑓ref, 𝑘𝑘ref and 𝑡𝑡𝑠𝑠ref are reference 

values within the typical range of each variable. Similarly, parameters estimated with scaled 

variables (𝑆𝑆𝐹𝐹, 𝐾𝐾, 𝑇𝑇𝑆𝑆) are indicated with upper-case letters (𝚯𝚯� = [�̂�𝐴1,𝐵𝐵�1, �̂�𝐴2,𝐵𝐵�2,𝛤𝛤�]T). 
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Another typical numerical problem is related to the (potential) ill-conditioning of the sensitivity 

matrix, which translates into a solution that does not exist, or that exists, but is not unique, or 

that is subjected to large perturbations when experimental data have small perturbations (López 

C. et al., 2015). Ill-conditioned matrices (e.g., the sensitivity matrix 𝐒𝐒�𝛉𝛉�,𝛗𝛗� and the Fisher 

information matrix 𝐇𝐇 𝛉𝛉��𝛉𝛉�,𝛗𝛗�) are characterised by a very high condition number 𝜅𝜅: 

𝜅𝜅 = 𝜆𝜆max
𝜆𝜆min

                                                                                                                                    (3.14) 

where 𝜆𝜆max and 𝜆𝜆min are, respectively, the maximum and minimum matrix eigenvalues; 

usually, the empirical upper bound 𝜅𝜅max = 1000 is used (Grah, 2004).  

In our application, we observe that 𝐒𝐒(𝛉𝛉�,𝛗𝛗) is ill-conditioned at the beginning of the MBDoE 

procedure (𝜅𝜅 up to the order of 1017), when experimental data is scarce, but becomes well-

conditioned (i.e., 𝜅𝜅 < 1000) when at least three profiles are used to calculate 𝐒𝐒(𝛉𝛉�,𝛗𝛗). Based on 

this empirical evidence, we define a strategy to tackle 𝐒𝐒(𝛉𝛉�,𝛗𝛗) ill-conditioning based on the 

temporary addition of fictitious data, named ghost data, to 𝐒𝐒(𝛉𝛉�,𝛗𝛗). Details on this technique 

are provided in Appendix A. 

3.4 Results and discussion 

Experiments are performed in order to demonstrate the effectiveness of the proposed MBDoE 

procedure in obtaining statistically sound parameters estimates for the extended Kushner and 

Moore model. This is achieved through the following steps: 

• optimal lubrication values are calculated by solving the MBDoE problem (Eq. 2.5); 

• validation lubrication values are selected a priori in the range of interest; 

• multiple tablets are produced with powder blends having the assigned (e.g., optimal and 

validation) lubrication extents and solid fractions; then, tablets tensile strength is 

experimentally measured;  

• results are analyzed to assess parameters precision, model adequacy and model predictive 

power as described in section 2.1.4. In industry, an empirical upper threshold of 0.25 MPa 

as tensile strength absolute error (𝑡𝑡𝑠𝑠 AE) is often employed; the 𝑡𝑡𝑠𝑠 AE acceptance criterion 

is satisfied when a percentage of at most 5% of data points exceeds this upper threshold 

(Nassar et al., 2021). 
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To perform experiments, two placebo formulations with different sensitivities to lubrication are 

employed: formulation A, characterised by high lubrication sensitivity, and formulation B, 

characterised by low lubrication sensitivity.   

In general, the following decisions must be made to solve the optimisation in Eq. (2.5): 

• initial guesses (𝚯𝚯�0) on parameters to initialize the calculations; 

• input variables domains, namely range and discretization; 

• optimality criterion (i.e., the optimisation objective function); 

• MBDoE approach, namely parallel or sequential MBDoE. 

In this study, the mean of parameters estimates (𝚯𝚯�A,hist, 𝚯𝚯�B,hist, 𝚯𝚯�C,hist, 𝚯𝚯�D,hist and 𝚯𝚯�E,hist) 

obtained with five historical datasets (respectively, Ahist, Bhist, Chist, Dhist and Ehist; Nassar et al., 

2021) are used as reasonable initial parameters guesses (𝚯𝚯�0 = 𝚯𝚯�mean) .  

Moreover, the input variables are optimized within the following domains: 

• 𝑠𝑠𝑓𝑓 ∈ [0.65, 0.90] (continuous interval); 

• 𝑘𝑘 ∈ [90, 2000] dm; integer values only are considered. 

For every optimal lubrication extent, 𝑁𝑁𝑆𝑆𝑆𝑆 = 3 optimal solid fractions are calculated. During 

experiments execution in the compaction simulator, three replicates are measured for every 

optimal solid fraction. Moreover, since it is possible to set up to five main compression levels 

in the equipment, two additional 𝑠𝑠𝑓𝑓 levels are measured. They are randomly chosen in order to 

explore the whole range [0.65, 0.90], and they are used in the validation step only. 

Moreover, in order to better explore the experimental domain, replications of similar 

optimisation results are avoided by imposing that any two optimal values of 𝑠𝑠𝑓𝑓 and 𝑘𝑘 differ by 

at least 0.04 and 150 dm, respectively. 

Overall, three sets of optimal experiments are designed and executed experimentally:  

• four optimal lubrication extents calculated with a parallel two-step MBDoE procedure for 

formulation A; 

• four optimal lubrication extents calculated with a parallel two-step MBDoE procedure for 

formulation B (identical to the previous optimal set since the calculation is formulation-

independent); 

• four optimal lubrication extents calculated with a sequential two-step MBDoE procedure 

for formulation A. 

In addition, validation profiles are measured at low lubrication extents, where tablet tensile 

strength is more affected by small changes in compression pressure and/or lubrication extent. 
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Both optimal blends calculated with a parallel approach and validation blends are prepared in 

advance before being compressed in the compaction simulator.    

The two-step procedure is implemented in MATLAB R2020a v. 9.8, using the ‘active-set’ 

optimisation algorithm (Gill et al., 1984). All calculations are performed with an Intel® Core™ 

i7-10875H CPU, @ 2.30 GHz processor with 64.0 GB RAM. The calculation of one optimal 

profile with five optimal solid fractions takes approximately 1 s.  

3.4.1 Parallel MBDoE 

The optimal lubrication values calculated through the parallel two-step MBDoE procedure are 

shown in Table 3.1. Also validation profiles are measured at 100 dm and 400 dm, which are in 

a range interesting for practical applications (𝑘𝑘 ≤ 400 dm). 
Table 3.1. Optimal lubrication extents designed through a parallel two-step MBDoE 
procedure, together with validation ones, that are experimentally measured for both 
formulation A and B.  

 Lubrication extent 
𝒌𝒌 (dm) 

Purpose 
 

90 calibration and validation 
2000 calibration and validation 

718 calibration and validation 
1849 calibration and validation 

100 validation 
400 validation 

Even though optimal lubrication values in Table 3.1 are designed in parallel, i.e. without 

alternating experiments design and execution, model calibration is performed in an iterative 

way considering an increasing number of optimal profiles from one to four.  

The results in terms of parameters estimates, 95% confidence intervals and t-tests are shown in 

Table 3.2 for formulation A and in Table 3.3 for formulation B. For both formulations, 

parameter precision is not statistically sufficient when the parameters are estimated using only 

two optimal profiles. For formulation A, all parameters passed successfully the t-test when three 

optimal profiles are employed, with the only exception of parameter 𝐴𝐴2 that needs at least four 

optimal profiles. On the other side, parameter 𝐴𝐴2 is never estimated in a satisfactory way for 

formulation B. This may be due to the specific characteristics of formulation B: since parameter 

A2 accounts for lubrication effects and since formulation B has low lubrication sensitivity, 

additional lubrication extents add little useful information for the identification of that 

parameter.   
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Table 3.2. Formulation A: identification of the extended Kushner and Moore model 
parameters by parallel two-step MBDoE procedure at increasing number of lubrication 
extents. An asterisk (*) denotes a parameter not passing the statistical significance test. 

No. of profiles Parameters  Estimate ± 95% CI t-value 95% Reference t-value 95%                             

2 

𝐴𝐴1 0.31±3.65 0.084* 

1.771 
𝐵𝐵1 −4.67±7.14 0.654* 
𝐴𝐴2 0.55±3.74 0.146* 
𝐵𝐵2 0.90±1.21 0.747* 
Γ −3.50±148.52 0.024* 

3 

𝐴𝐴1 0.27±0.04 7.308 

1.717 
𝐵𝐵1 −4.74±0.32 14.631 
𝐴𝐴2 0.47±0.35 1.370* 
𝐵𝐵2 0.86±0.14 6.276 
Γ −2.09±0.34 6.078 

4 

𝐴𝐴1 0.27±0.04 7.547 

1.696 
𝐵𝐵1 −4.74±0.31 15.187 
𝐴𝐴2 0.45±0.25 1.825 
𝐵𝐵2 0.84±0.09 8.757 
Γ −2.14±0.33 4.491 

Table 3.3. Formulation B: identification of the extended Kushner and Moore 
model parameters by parallel two-step MBDoE procedure at increasing 
number of lubrication extents. An asterisk (*) denotes a parameter not passing 
the statistical significance test. 

No. of profiles Parameter [-] Estimate ± 95% CI t-value 95% Reference t-value 95% 

2 

𝐴𝐴1 0.12±7.05 0.017* 

1.771 
𝐵𝐵1 −5.95±66.50 0.090* 
A2 0.74±4.71 0.157* 
𝐵𝐵2 0.66±22.65 0.029* 
Γ −3.48±1016.96 0.003* 

3 

𝐴𝐴1 0.112±0.04 2.898 

1.717 
𝐵𝐵1 −6.01±0.97 6.220 
𝐴𝐴2 0.56±0.96 0.582* 
𝐵𝐵2 0.59±0.34 1.712* 
Γ −2.83±1.63 1.735 

4 

𝐴𝐴1 0.11±0.03 3.220 

1.696 
𝐵𝐵1 −6.14±0.89 6.898 
𝐴𝐴2 0.25±0.74 0.339* 
𝐵𝐵2 0.49±0.27 1.851 
Γ −2.29±0.96 2.385 

Validation results in terms of model predictive power (RMSE, 𝑅𝑅2, 𝑡𝑡𝑠𝑠 AE, 𝑡𝑡𝑠𝑠 parity plots) and 

model adequacy (𝜒𝜒2 test) are shown in Table 3.4 and in Figure 3.2. With concern to formulation 

A, two optimal experiments are not enough for model calibration: RMSE is high, 𝑅𝑅2 is not 

sufficiently close to 1 and the 𝑡𝑡𝑠𝑠 AE acceptance criterion is not satisfied (almost 30% of data 

points have a 𝑡𝑡𝑠𝑠 absolute error greater than 0.25 MPa). In addition, the model is inadequate 

because the 𝜒𝜒2 test is not passed. However, the addition of the third optimal profile leads to 

dramatic improvement (Table 3.4): both the 𝑡𝑡𝑠𝑠 AE acceptance criterion and the 𝜒𝜒2 test are 
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satisfied. Negligible improvements are obtained by adding the fourth optimal profile. On the 

other side, formulation B exhibits a rather different behavior: model adequacy is statistically 

satisfactory (i.e., the 𝜒𝜒2 test is passed) even when only two optimal profiles are employed 

(Table 3.4), while adding the third and fourth profiles does not improve significantly the results. 

Also RMSE and 𝑅𝑅2 reveal a good model predictive power when two optimal profiles are 

employed and they do not differ significantly by adding more profiles. This is consistent with 

what observed during calibration: additional profiles bring in information on the effects of 

lubrication, but since formulation B is less influenced by lubrication with respect to formulation 

A, the information content is mostly related to the solid fraction. Thus, even if parameters are 

not estimated satisfactorily, the model capability of representing solid fraction effects is 

immediately attained. New lubrication profiles can improve parameter estimation, but there is 

no dramatic improvement in the model capability of predicting tensile strength. 

Similarly, the parity plot confirm that a satisfactory model predictive power is achieved with 

three optimal profiles for formulation A (Figures 3.2a-3.2c) and with two optimal profiles with 

formulation B (Figures 3.2d-3.2f). 

Table 3.4. Formulations A and B: validation of the extended Kushner and Moore 
model calibrated with optimal data obtained through parallel two-step MBDoE 
procedure at increasing number of lubrication levels. “% exceeding” indicates the 
percent of data points for which the absolute error on tensile strength is greater than 
0.25 MPa. An asterisk (*) denotes a statistical significance test that is not passed.  

Formulation No. of profiles used in calibration RMSE 𝑹𝑹𝟐𝟐 % exceeding  𝝌𝝌𝒚𝒚𝟐𝟐 𝝌𝝌ref𝟐𝟐  

A 
2 0.230 0.97   29.76 221.692* 

100.75 3 0.101 0.99 0 42.733 
4 0.099 0.99 0 40.986 

B 
2 0.113 0.98 5 38.256 

73.312 3 0.104 0.99 5 32.377 
4 0.098 0.99 3 29.013 
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Figure 3.2. Predicted and measured tensile strength, including both calibration and 
validation experiments. Triangles denote data used in calibration and validation, dots 
denote data used in validation only. Tensile strength is predicted with the model 
calibrated using the following optimal data: (a) two optimal profiles of formulation A; 
(b) three optimal profiles of formulation A; (c) four optimal profiles of formulation A; (d) 
two optimal profiles of formulation B; (e) three optimal profiles of formulation B; (f) four 
optimal profiles of formulation B. Optimal profiles are obtained through a parallel two-
step MBDoE procedure. 

3.4.2 Sequential MBDoE 

In this section, optimal experiments for formulation A are calculated by means of sequential 

two-step MBDoE procedure (Table 3.5). Model calibration is performed after measuring every 

new optimal profile; model validation included also blends at 100 dm, 400 dm, 718 dm (Table 

3.1, Section 3.4.1). 
Table 3.5. Formulation A: validation of the extended Kushner and Moore model 
calibrated with optimal data obtained through the sequential two-step MBDoE procedure 
at increasing number of lubrication levels.     

Lubrication extent  
𝒌𝒌 (dm) 

Purpose 
 

90 calibration and validation 
2000 calibration and validation 

354 calibration and validation 
1849 calibration and validation 

 
(a) 

 
(b)  

(c) 

 
(d) 

 
(e)  

(f) 
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Results in terms of parameters precision are shown in Table 3.6; they are almost identical to 

those obtained with the parallel method. Indeed, also in the sequential case two optimal profiles 

are not sufficient to get statistically satisfactory parameter estimates, while addition of the third 

optimal profile allows estimating all parameters precisely. The only exception is again 

parameter 𝐴𝐴2, which passes the t-test when four optimal profiles are employed.    

Table 3.6. Formulation A: identification of the extended Kushner and Moore model 
parameters by sequential two-step MBDoE procedure at increasing number of 
lubrication levels. An asterisk (*) denotes a parameter not passing the statistical 
significance test. 

No. of profiles Parameter [-] Estimate ± 95% CI t-value 95% Reference t-value 95%                             

2 

𝐴𝐴1 0.30±5.54 0.055* 

1.771 
𝐵𝐵1 −4.69±9.97 0.471* 
𝐴𝐴2 0.48±4.89 0.146* 
𝐵𝐵2 0.88±2.27 0.388* 
Γ −3.5±233.35 0.015* 

3 

𝐴𝐴1 0.28±0.04 7.213 

1.717 
𝐵𝐵1 −4.75±0.32 14.816 
𝐴𝐴2 0.51±0.33 1.565* 
𝐵𝐵2 0.87±0.12 6.970 
Γ −2.23±0.35 6.428 

4 

𝐴𝐴1 0.28±0.037 7.413 

1.696 
𝐵𝐵1 −4.75±0.31 15.258 
𝐴𝐴2 0.48±0.24 1.983 
𝐵𝐵2 0.85±0.09 9.305 
Γ −2.27±0.33 6.781 

Results in terms of model prediction performance and model adequacy are shown in Table 3.7 

and Figure 3.3. Using two optimal profiles for model calibration does not allow achieving the 

desired model predictive power, as demonstrated by the relatively low 𝑅𝑅2 and high RMSE and 

𝑡𝑡𝑠𝑠 AE, as well as by the considerable number of points not lying on the diagonal of the parity 

plot (Figure 3.3.a). Moreover, two optimal profiles are not enough to satisfy the 𝜒𝜒2 test, nor the 

𝑡𝑡𝑠𝑠 AE acceptance criterion. 

However, addition of the third optimal profile is sufficient to improve the model performance 

significantly: the model is adequate (i.e., the 𝜒𝜒2 test is passed); the 𝑡𝑡𝑠𝑠 AE acceptance criterion 

is satisfied; the RMSE is sufficiently low; the 𝑅𝑅2 is sufficiently close to 1; the majority of data 

points lie on the diagonal of the parity plot (Figure 3.b). Finally, adding the fourth optimal 

profile brings negligible improvement in both model adequacy and predictive power. 
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Table 3.7. Formulation A: validation of the extended Kushner and Moore model calibrated 
with optimal data obtained through the sequential two-step MBDoE procedure at increasing 
number of lubrication levels. “% exceeding” indicates the percent of data points for which 
the absolute error on tensile strength is greater than 0.25 MPa. An asterisk (*) denotes a 
statistical significance test that is not passed.      

Formulation No. profiles used in calibration RMSE 𝑹𝑹𝟐𝟐 %  
exceeding 

χy
2 χref

2  

A 
2 0.224 0.97 25 210.535* 

100.749 3 0.096 0.99 0 39.105 
4 0.094 0.99 0 37.334 

 

Figure 3.3. Predicted and measured tensile strength, including both calibration and 
validation data. Triangles denote data used in calibration and validation, dots denote 
data used in validation only. In particular, 𝑡𝑡𝑠𝑠 was predicted with the model calibrated 
using the following optimal data of formulation A: (a) two optimal profiles; (b) three 
optimal profiles; (c) four optimal profiles. Optimal profiles were obtained through the 
sequential two-step MBDoE procedure 

3.5 Discussion  

Results of section 3.4 show that the proposed methodology allows to reduce the experimental 

effort required to calibrate the extended Kushner and Moore model: indeed, the desired model 

predictive power and model adequacy are achieved; with concern to parameter precision, a 

higher uncertainty must be accepted for parameter 𝐴𝐴2 in some formulations. In case of 

formulation B, results indicate that parameter 𝐴𝐴2 cannot be estimated with sufficient precision. 

This appears related to the compactability properties of the formulation itself. However, this 

does not degrade the capability of the model to predict the process behavior, since model 

adequacy and predictive power are still satisfactory. 

Therefore, considering that in a typical experimental campaign 7-9 powder blends are needed, 

the proposed MBDoE procedure leads to a reduction of the experimental burden by 60-70%, 

with great savings in terms of cost, labor and time.  

 
(a) 

 
(b) 

 
(c) 
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Also note that the proposed experimental procedure not only cuts down the number of 

lubrication extents, thus the API usage, but also the time and labor needed for the 

experimentation. The fact that sequential and experimental designs provide very similar results 

means that it is possible to prepare all optimally lubricated blends in advance and compress 

them in the compactor simulator without interruptions, namely without recalculating optimal 

experimental conditions once new data are available. 

3.6 Conclusions 

Given a model linking blending operating conditions with the compaction performance in a 

tablet lubrication process, a model-based design of experiments approach based on a two-step 

optimisation procedure is proposed to design an experimental campaign for parameters 

estimation. Results demonstrated that it is possible to reduce the experimental effort by 60-70% 

with respect to standard industrial practice, with significant benefits in terms of API and labor 

savings. In addition, the comparison between parallel and sequential optimal designs reveal that 

model performance is not penalized if all optimal blends are designed with the same parameters 

guesses and are prepared in advance before being compressed. This allows streamlining the 

experimentation and better organizing the scheduling of lubrication experiments when multiple 

formulations must be compacted with the same equipment.   

Future work will focus on the analysis of the robustness of the proposed approach, when sub-

optimal experiments are collected due to practical and/or economical constraints, and on the 

systematic integration of structural identifiability analysis in the parameters precision task in 

order to mitigate (or, at least, identify) the effects of process-model mismatch. 
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Chapter 4  
An exploratory model-based design of 

experiments approach to aid parameters 
identification and reduce model 

prediction uncertainty2  
This Chapter deals with the study of the trade-off between experimental design space 

exploration and information maximisation, which is still an open question in the field of optimal 

experimental design. Moreover, in state-of-the-art optimal experimental design methods, the 

uncertainty of model prediction throughout the design space is not always assessed after 

parameter identification, although the maximisation of parameters precision does not guarantee 

that the model prediction variance is minimised in the whole domain of model utilisation. To 

tackle these issues, a novel MBDoE method is proposed: a mapping of model prediction 

variance (G-optimality mapping) is used in order to enhance space exploration and reduce 

model prediction uncertainty. This explorative MBDoE (eMBDoE) named G-map eMBDoE is 

tested on two simulated systems and compared against classical methods: (i) factorial design of 

experiments, (ii) Latin Hypercube (LH) sampling and (iii) MBDoE for parameters precision. 

The results show that G-map eMBDoE is more efficient in exploring the experimental design 

space when compared to a standard MBDoE and outperforms classical design of experiments 

                                                           
2 Cenci, F., Pankajakshan, A., Bawa, G., Facco, P. and Galvanin, F. (2023). An exploratory model-based design 

of experiments technique to aid parameters identification and reduce prediction uncertainty. Computers 
and Chemical Engineering, 177, 108353. 

Cenci,F., Pankajakshan,A., Bawa, S. G., Gavriilidis, A.,  Facco, P.,Galvanin, F., 2023. An exploratory model-
based design of experiments technique to aid parameters identification and reduce prediction uncertainty. 
In 33 European Symposium on Computer Aided Process Engineering, Kokossis, A. C., Georgiadis, M. 
C., Pistikopoulos, E. Eds., Comput. Aided Chem. Eng., Elsevier, 52, 1-6. 

Cenci, F., Pankajakshan,A., Bawa, S. G., Gavriilidis, A.,  Facco, P.,Galvanin, F., 2023. An exploratory model-
based design of experiments technique to aid parameters identification and reduce prediction uncertainty 
[poster presentation]. 33 European Symposium on Computer Aided Process Engineering, Athens, Greece, 
June 18-21. 

Cenci, F., Pankajakshan, A., Galvanin, F., Facco, P., 2023. Trade-off between space exploration and information 
maximization in experimental design [oral presentation]. Colloquium Chemiometricum Mediterraneum, 
Padova, Italy, June 27-30. 
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methods in terms of reduction of model prediction uncertainty and maximisation of parameters 

precision.  

4.1 Introduction  

Models are widespread in process industries for a variety of applications, from process 

understanding to product and process optimisation. For instance, simulations of a process model 

allow to evaluate the influence of the process conditions and/or disturbances (Prada et al., 2019) 

on the variables of interest, while the use of modelling at all stages of product development 

enables the compliance of the product to the clients’ need and the selection of the most 

convenient manufacturing route (Mihaluta et al., 2008). The development of predictive models 

to be used in model-based activities requires the identification of model structure, i.e. the set of 

model equations, and model calibration, i.e. the precise estimation of model parameters from 

experimental data.    

Improving the quality of data and information generation has a direct impact on model 

identification activities, thus several design of experiments (DoE) techniques have been 

developed in the last century at the purpose. One of the first is factorial DoE (Montgomery, 

2013), which requires a limited preliminary knowledge on the system (Chapter 1). The data 

thereby generated are used to calibrate an empirical model, usually including first or second-

order terms, which is eventually refined in order to exclude uninfluential factors and/or to add 

higher order terms. Factorial DoE can be beneficial to many industrial sectors, e.g. 

pharmaceutical industries (Singh et al., 2005 Part I and II), food science and technology 

(Granato and de Araújo Calado, 2013), manufacturing industries (Czitrom, 1999). Statistical 

DoE has brought many advantages in the experimentation with respect to the commonly used 

OFAT, but it has some limitations like the fact that process knowledge is not incorporated into 

the design as soon as new data are available and the scarce information obtained for the 

identification of first-principles models (see Chapter 1 for more details).  

To overcome DoE limitations, MBDoE methods have been proposed that are centered on 

process knowledge (Espie and Macchietto, 1989), since physics-based models are employed in 

the calculation of the optimal experimental conditions for model discrimination, parameters 

estimation or minimisation of model prediction variance (see Chapters 1-2).   

MBDoE for parameter precision select the most informative experimental conditions, namely 

the ones minimising the dimension of the uncertainty region of model parameters. Thus, fewer 

experiments are sufficient to identify statistically sound parameters, with great benefits in terms 
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of time, labor and resources. Consequently, MBDoE has been successfully applied to both 

industry and research: in chemical processes, like the production of aziridine through the C-H 

activation with a Pd-catalysis (Echtermeyer et al., 2017) or the execution of transient flow 

experiments to study the esterification of benzoic acid with ethanol (Waldron et al, 2020); in 

the production of renewably-sourced polymers like Cerenol, which has several applications in 

automotive, cosmetics and polymer specialties (Vo et al., 2021); in the pharmaceutical industry, 

e.g. the study of Michaelis-Menten kinetics for the production of a pharmaceutical agent 

(Shahmohammadi and McAuley, 2019); in civil engineering , e.g. for the determination of the 

optimal sensor locations to obtain the Young’s moduli of tall structures (Reichert et al., 2021).   

MBDoE methods determine experimental conditions that optimise a specific objective function 

and hence these optimal conditions are usually restricted in small regions of high information 

content. For instance, the optimal experiments to identify parameters of a kinetic model with 

two unknown parameters is made of a set of two distinct points; if several experiments are 

designed, they should fall in one of the two optimal conditions to avoid information loss (Box, 

1968). However, this feature of MBDoE may lead to a scarce exploration of the design space, 

which in turn may result in poor predictive capability of the model, particularly in unexplored 

regions of the experimental design space. 

The minimisation of parameters uncertainty ensured by MBDoE data does not necessarily 

imply that the entire design space is characterised by a minimisation of model prediction 

uncertainty. In literature, approaches have been proposed to evaluate the regions of model 

reliability within the design space based on different criteria to evaluate the prediction error. 

Dasgupta et al. (2021) built a map of supremum of the mean squared prediction error (SMSPE) 

using a kriging interpolating technique, while Quaglio et al. (2018) mapped the design space 

through a reliability function that depends mainly on the difference between predicted and 

measured responses. As an alternative, model prediction uncertainty can be quantified in terms 

of model prediction variance using the so-called “G-optimality” (Smith, 1918; Kiefer and 

Wolfowitz, 1959), a metric which can be evaluated in the whole design space to detect regions 

of model reliability without increasing the experimental burden. G-optimality has been 

explored in an MBDoE context; for instance, it has been used as an objective function in order 

to determine the optimal experimental conditions that minimise the response prediction 

variance (Smith, 1918; Kiefer and Wolfowitz, 1959). Moreover, the relationship between D-

optimality and G-optimality (namely, between maximisation of the FIM determinant and 

minimisation of G-optimality, respectively) has been analysed for different types of models in 
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order to define the specific conditions under which the equivalence of the two criteria holds. 

For example, the equivalence of D-optimality and G-optimality is demonstrated by Kiefer and 

Wolfowitz (1960) for linear models with homoscedastic errors. Instead, Wong (1995) 

demonstrates that the equivalence between D- and G- optimality rarely holds in case of 

heteroscedastic models. Prus (2019) discusses the features of G-optimal designs with random 

coefficient regression models and states that the equivalence with D-optimal designs does not 

hold in general with this type of models. In addition, the classical G-optimal criterion for 

MBDoE is modified by Stigler (1971) in order to allow for a few experiments suitable to check 

the adequacy of model structure (namely, to assess process-model mismatch). However, to the 

author’s knowledge G-optimality has never been used to enhance space exploration of MBDoE 

designs, to precisely estimate parameters and reduce model prediction variance in the whole 

design space with the minimum experimental effort. Furthermore, a formal description of the 

relation between G-optimality and other MBDoE criteria for non-linear systems with general 

variance models is still lacking in the scientific community. Therefore, a numerical approach 

that is not strictly related to a specific type of model is adopted in this work and validated with 

simulated data. In this Chapter, these issues are tackled by proposing a general new technique 

that integrates G-optimality maps into the conventional MBDoE optimisation framework for 

parameter estimation.  

Section 4.2 describes the proposed MBDoE method, highlighting the novelties with respect to 

the conventional MBDoE explained in Chapter 2. Methods to analyse model performance are 

explained, too. Section 4.3 shows the results of the application of G-map eMBDoE to two 

simulated systems, including a comparison with exploitation-based methods, i.e. MBDoE, and 

exploration-based ones, i.e. factorial DoE and LH. Finally, in Section 4.4 conclusions are drawn 

and future works are proposed. 

4.2 Mathematical modelling  

4.2.1 Explorative MBDoE (eMBDoE) based on G-optimality maps 

The novel MBDoE method proposed in this work aims at enhancing space exploration, 

precisely estimating model parameters and minimising model prediction variance across the 

whole design space with a minimum experimental effort. To this aim, the calculation of model 

prediction variance is included within the MBDoE optimisation framework. More specifically, 
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mapping of G-optimality values is performed to obtain an explorative MBDoE (eMBDoE) 

method; therefore, the novel method is named G-map eMBDoE.  

Figure 4.1a shows the standard sequential procedure for MBDoE (Espie and Macchietto, 1989; 

Asprey and Macchietto, 2000), where optimal experimental design, experiment execution and 

model calibration are carried out sequentially in the design of Ne experiments.  

 
(a) 

 
(b) 

Figure 4.1. Workflow of a conventional (a) sequential MBDoE and of a (b) sequential G-
map eMBDoE. 

Similarly, Figure 4.1b shows the sequential procedure of the proposed G-map eMBDoE, in 

which optimal experimental design is carried out using the novel G-map eMBDoE method. The 

following Subsections 4.2.1.1-4.2.1.3 provide more details on each step of the proposed G-map 

eMBDoE procedure. 

4.2.1.1 Prior knowledge 

The prior knowledge is defined as the information needed to initialise the MBDoE or eMBDoE 

procedure. It includes: 

• structurally identifiable models 𝐟𝐟; 
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• a set of preliminary experiments to obtain initial parameter estimates to initialise the 

MBDoE or G-map eMBDoE procedure. Preliminary experiments are usually designed by 

means of factorial DoE or LH; 

• upper and lower bounds for each control variable included in the design vector 𝛗𝛗; 

• variance-covariance matrix of measurement error 𝚺𝚺𝑦𝑦.  

This information allows to calculate both FIM 𝐇𝐇𝛉𝛉� and G-optimality 𝐕𝐕𝑦𝑦 as defined in Chapter 2.  

4.2.1.2 G-map eMBDoE design 

In the sequential MBDoE procedure shown in Figure 4.1a, the optimal design 𝛗𝛗 opt is given by 

the solution to the optimisation problem presented in Chapter 2, Section 2.1. Whereas, in the 

G-map eMBDoE shown in Figure 4.1b, the most informative experiment is evaluated using an 

additional step as described below and illustrated in Figure 4.2: 

• Step 1: design space characterisation. Each experimental condition in the design space is 

characterised in terms of model prediction variance, represented by scalar indices 𝐽𝐽𝐺𝐺 , which 

leads to a map of G-optimality named G-maps. Similarly, every point in the design space 

is characterised in terms of information content, represented by the scalar measure  𝜓𝜓, 

generating a map of FIM-based information named H-map;  

• Step 2: candidates selection. Experiments that satisfy a threshold 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 on model prediction 

variance represented by 𝐽𝐽𝐺𝐺  are retained for the subsequent optimisation (blue points in 

Figure 4.2); 

• Step 3: information maximisation. Among these candidate design points, the experimental 

condition maximising information is chosen as the optimal experiment (red square in 

Figure 4.2). 

 
Figure 4.2. Schematic representation of the novel eMBDoE method based on G-maps. Grids 
refer to two general control variables 𝑢𝑢1 and  𝑢𝑢2; 𝐽𝐽𝐺𝐺 and 𝜓𝜓 indicate the G-optimality index 
and the FIM scalar measure selected.  
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This procedure has two main degrees of freedom: 

1. the definition of the scalar index 𝐽𝐽𝐺𝐺; 

2. the definition of the G-optimality-based requirement to be satisfied. 

In this work, the following settings are used: 

a) for a given point in the grid (i.e., for a given 𝛗𝛗), the prediction variance 𝐕𝐕𝑦𝑦�𝛉𝛉�,𝛗𝛗��
𝑖𝑖,𝑖𝑖 

of 

each response at every time point is calculated and then summed to obtain a single scalar 

𝐽𝐽𝐺𝐺 : 

𝐽𝐽𝐺𝐺 = ∑ ∑ 𝑽𝑽𝑦𝑦�𝜽𝜽�,𝝋𝝋��
𝑖𝑖,𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1

𝑁𝑁𝑦𝑦
𝑖𝑖=1 ;                   (4.1) 

b) the G-optimality-based constraint to be satisfied by the candidate design points is: 

𝐽𝐽𝐺𝐺 ≥ 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 𝐽𝐽𝐺𝐺,𝑚𝑚𝑎𝑎𝑥𝑥 ,                      (4.2) 

where 𝐽𝐽𝐺𝐺,max  is the maximum value of G-optimality in the grid, while 𝐽𝐽𝐺𝐺,thr  is a threshold 

chosen by the user such that: 0 ≤ 𝐽𝐽𝐺𝐺,thr ≤ 1. More specifically, 𝐽𝐽𝐺𝐺,thr = 0 means that all 

points in the grid are candidates to solve the MBDoE optimisation (Chapter 2), therefore 

the design becomes equivalent to a standard MBDoE. The closer 𝐽𝐽G,thr gets to 1, the fewer 

are the remaining design candidate design points, since only points having the highest model 

prediction variance are accepted.  

The above optimal experimental design procedure of G-map eMBDoE can be translated into a 

constrained optimisation problem described by: 

𝝋𝝋 𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛
𝝋𝝋

𝜓𝜓(𝑽𝑽𝜽𝜽�)  

𝝋𝝋 s.t. 𝐽𝐽𝐺𝐺 ≥ 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 𝐽𝐽𝐺𝐺,𝑚𝑚𝑎𝑎𝑥𝑥 .                   
  (4.3) 

Therefore, information is maximised considering only the candidate design points having 𝐽𝐽𝐺𝐺 ≥

𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max . In this paper, the grid-search approach employed to solve Eq. (4.3) does not impact 

on the final result, since the grid is so fine that an optimisation over continuous variables would 

provide almost identical results (as shown by ad hoc simulations, omitted here for sake of 

conciseness). If the system dimensionality increases, the computational burden to generate the 

grids also increases. Therefore, it may be convenient to build grids to initialise the procedure 

and to set the result obtained as an initial guess for further optimisation over continuous 

variables.  

4.2.1.3 Experiment execution and iterative model calibration 
Once the new experiment 𝛗𝛗 opt is designed, it can be executed either in the physical process or 

in the simulated one. The new acquired measurement is added to the calibration dataset 
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collected up to the previous iteration and model parameters are estimated using the maximum 

likelihood method (Chapter 2). Then, a criterion is assessed in order to decide whether to 

continue the experimental campaign or not. This criterion is user-defined and can be based on 

model performance (such as parameter precision or model prediction accuracy) or on the 

maximum allowed experimental budget. The latter is used in this paper, which implies the 

experimental campaign is terminated when the experimental budget of 𝑁𝑁𝑒𝑒 experiments is 

reached. The performance of the model at every iteration of the sequential procedure is assessed 

after the model calibration step. The types of analyses used for this performance evaluation are 

described in section 4.2.2. 

4.2.2 Model calibration analysis 

After calibrating the model with the new experiments designed and executed at the 𝑖𝑖-th 

iteration, the performance of the optimal experimental design procedure is assessed 

considering:  

• space exploration; 

• parameter precision; 

• model prediction variance throughout the design space; 

• FIM-based optimality metrics 𝜓𝜓 (Chapter 2) throughout the design space. Asprey and 

Macchietto (2000) suggested E-optimality (𝜓𝜓E, Chapter 2) as the most effective criterion 

to use for the Model 2 (Section 4.3.2), being particularly effective on reducing parametric 

uncertainty when a sequential experimental design approach (as in this work) is adopted 

(Galvanin et al., 2007). Therefore, this criterion is used for both Model 1 and 2 for 

comparison purposes. However, ongoing work is showing that the advantages of G-map 

eMBDoE over conventional design techniques hold true also when different optimality 

criteria are used. 

The corresponding analysis methods will be detailed in the following sub-sections.  

4.2.2.1 Space exploration   

The profile of each control variable is visualised to qualitatively compare the level of space 

exploration of the proposed experimental design techniques (eMBDoE, MBDoE or LH). As 

illustrated in Figure 4.3, two control variables 𝑢𝑢1 and 𝑢𝑢2 are represented in the x-axis and y-

axis, respectively; red squares indicate the preliminary experiments used to initialise the 
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procedure; the blue squares represent the subsequent (eMBDoE, MBDoE or LH) experiments 

added iteratively in the sequential procedure. Figure 4.3a shows an example of an exploratory 

design, i.e. a design that covers the entire design space, typical of space-filling design methods 

like LH, while Figure 4.3b shows an example of an exploitative design where new experiments 

(blue squares) are designed in a limited region of high information content, frequently 

encountered in MBDoE applications. 

 
(a) 

 
(b) 

Figure 4.3. Graphical representation of design space exploration for (a) an explorative, 
space-filling design; (b) an exploitative design (MBDoE).  

Since optimal experimental design methods tend to select replicated design points, i.e. optimal 

experiments with the same design vector 𝛗𝛗 opt, the different methods are compared in terms of 

number of distinct design points 𝛗𝛗 opt (see Tables 4.2 and 4.4 of Section 4.3) to give an 

indication of space exploration.  

4.2.2.2 Parameters precision   

Parameter precision is assessed through t-tests, as explained in Chapter 2.    

4.2.2.3 Maps of G-optimality and information content 

At every iteration of the eMBDoE sequential procedure, two maps are built and compared: 

• a G-optimality map (G-map), where 𝐽𝐽𝐺𝐺  is calculated at every point of the grid and displayed 

as a contour plot. 

• an information map (H-map), where 𝜓𝜓 is calculated at every point of the grid and displayed 

as a contour plot. 

The comparison between the two maps is useful to better understand which are the regions that 

would be selected based only on 𝜓𝜓 (i.e. regions of maximum information) and how much the 

method will move the design points from those regions by changing the threshold on  𝐽𝐽𝐺𝐺 .  
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In addition to building G-maps using  𝐽𝐽𝐺𝐺  values, the distribution of G-optimality values (𝐽𝐽𝐺𝐺  

values) in the entire experimental design space at each iteration of the G-map eMBDoE 

procedure are represented by the following scalar indices:  

𝐽𝐽𝐺𝐺,𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝐽𝐽𝐺𝐺,𝑖𝑖) ,                                              𝑖𝑖 = 1, … ,𝑁𝑁𝜑𝜑  (4.4) 

𝐽𝐽𝐺𝐺,𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛�𝐽𝐽𝐺𝐺,𝑖𝑖� =
∑ 𝐽𝐽𝐺𝐺,𝑖𝑖
𝑁𝑁𝜑𝜑
𝑖𝑖=1
𝑁𝑁𝜑𝜑

 ,                     𝑖𝑖 = 1, … ,𝑁𝑁𝜑𝜑  (4.5) 

𝐽𝐽𝐺𝐺,𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝐽𝐽𝐺𝐺,𝑖𝑖) ,                                             𝑖𝑖 = 1, … ,𝑁𝑁𝜑𝜑 (4.6) 

where 𝐽𝐽𝐺𝐺,min, 𝐽𝐽𝐺𝐺,mean and 𝐽𝐽𝐺𝐺,max are the minimum, mean and maximum values of 𝐽𝐽𝐺𝐺 , 

considering all the 𝑁𝑁𝜑𝜑 points in the grid.  

4.2.2.4 Implementation of G-maps and H-maps 

The two models of Section 4.3.1 and 4.3.2 are implemented in Python 3.9 (Rossum and Drake, 

2009) and simulated in an Intel® Core™ i7-10875H CPU, @ 2.30 GHz processor with 64.0 

GB RAM. The grid of points used to select candidate design points based on their G-optimality 

value is obtained by discretising the ranges of control variables into equal intervals. Maps of 

information content across the design space (H-maps) are also built using the same 

discretisation of the design space used with G-maps. The procedures of the two optimisation-

based methods, namely MBDoE and G-map eMBDoE, differ mainly for the additional step of 

selection of candidate design points based on their 𝐽𝐽𝐺𝐺  values. To compare the methods in terms 

of required computational time, the time to design one experiment in each case (MBDoE or G-

map eMBDoE) are reported in Section 4.3.1 and 4.3.2.  

4.3 Results and discussion 

Two simulated systems are used to compare the performance of the following design of 

experiments techniques in terms of space exploration, precise parameter estimation and 

minimisation of model prediction uncertainty: 

• MBDoE: this is an exploitative design (Chapter 2); 

• full-factorial DoE and LH: these designs are exploratory designs, i.e. they guarantee an 

exploration of the whole experimental design space; 

• G-map eMBDoE: this design seeks a trade-off between information maximisation and 

space exploration through the definition of a threshold 𝐽𝐽𝐺𝐺,thr. Different values of 𝐽𝐽𝐺𝐺,thr are 

considered.  
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The space-filling LH design is generated with the doepy package for Python 

(https://doepy.readthedocs.io/en/latest/). Preliminary simulations revealed that the results in 

terms of parameters precision and model prediction variance are similar regardless of random 

variations of the selected LH samples.  

In both simulated systems, in silico data is generated according to the following procedure: 

• model equations and true parameter vector 𝛉𝛉true (see Tables 4.1 and 4.3) are used to 

generate the exact value of the model responses 𝑦𝑦exact at the selected experimental 

condition; 

• a gaussian error with zero mean and a user-defined standard deviation 𝜎𝜎𝑦𝑦 is then added to 

𝑦𝑦exact to obtain a “noisy” measurement 𝑦𝑦noisy. 

The user-defined standard deviation 𝜎𝜎𝑦𝑦 is chosen by the user to mimic the precision of the 

measurements in the physical system and can be typically evaluated from a set of preliminary 

replicated experiments. From now on, the models used to simulate the systems of Section 4.3.1 

and 4.3.2 will be indicated as Model 1 and Model 2, respectively.     

To make the results comparable, the same initial settings are used for all design methods applied 

to a given simulated system: true model parameter vector (𝛉𝛉true) for the in silico data 

generation; initial parameters values and lower and upper bounds (𝛉𝛉0, 𝛉𝛉LB, 𝛉𝛉UB respectively) 

for parameter estimation; standard deviation of the response measurement error (𝛔𝛔𝑦𝑦); ranges 

for the control variables; set of preliminary experiments and total (maximum) number of 

experiments (𝑁𝑁𝑒𝑒) to be executed. Finally, the selection of the proper threshold for G-optimality 

is case-dependent, therefore different sets of  𝐽𝐽𝐺𝐺,thr will be considered for Model 1 and 2.  

Finally, robustness of results to the selection of sampling points for Model 2 and different 

realisations of random noise for the response variables of Models 1 and 2 are shown in 

Appendix B.  

4.3.1 Model 1 

Model 1 is made of the following two-inputs, single response algebraic model: 

𝑦𝑦 =  𝜃𝜃1𝑢𝑢1 + 𝜃𝜃2𝑢𝑢1𝑢𝑢2 + 𝜃𝜃3𝑢𝑢12 + 𝜃𝜃4𝑢𝑢22 + 𝜃𝜃5 𝑠𝑠𝑖𝑖𝑛𝑛(𝑢𝑢1) .   (4.7) 

Preliminary analysis showed that this model is structurally identifiable (by using the structural 

identifiability technique of Asprey and Macchietto, 2000), therefore MBDoE for parameters 

precision can be applied. Moreover, E-optimality criterion is used to optimise information 

content, since Asprey and Macchietto (2000) showed its efficacy for the Model 2 (in Section 
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4.3.2) and the same optimality criterion is used with both case studies for comparison purposes. 

Initial settings on variables and parameters are provided in Table 4.1. In this case, the design 

vector 𝛗𝛗 is equal to 𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2]. 

Different thresholds of G-optimality are employed for the explorative MBDoE: 𝐽𝐽𝐺𝐺,thr ∈ {0, 

0.25, 0.50, 0.65, 0.75, 0.85} to evaluate the impact of threshold choice on design performance. 

Notice that 𝐽𝐽𝐺𝐺,thr = 0 corresponds to a state-of-the-art E-optimal MBDoE, since the constraint 

in Eq. (4.3) becomes 𝐽𝐽𝐺𝐺 ≥ 0 and 𝐽𝐽𝐺𝐺  is always non-negative. All eMBDoE scenarios employ the 

E-optimal criterion. 
Table 4.1. Model 1: initial settings.  

Model features Values 

Inputs  
𝑢𝑢1, 𝑢𝑢2 

𝑢𝑢1 ∈ [−10,10] 
𝑢𝑢2 ∈ [−10,10] 

Output 
standard deviation of measurement errors 

𝑦𝑦  
σ𝑦𝑦 = 5  

Parameters 
true values 
initial value 
lower bounds 
upper bounds 

 
𝛉𝛉true = [𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4,𝜃𝜃5] = [3.5,−2, 1.7, 1.1, 8]  

𝛉𝛉0 = [1,1,1,1,1]  
𝛉𝛉LB = [−10,−10,−10,−10,−10]  

𝛉𝛉UB = [10,10,10,10,10]   

Even though LH and 42 full factorial DoE experiments are designed at once and should be 

evaluated at the end of the experimental campaign, in this Section intermediate results are 

included in order to understand and compare the evolution of different design methods.   

For all the scenarios, the same preliminary dataset is used: 5 experiments selected through a LH 

sampling. These preliminary experiments are used to achieve a first parameter estimation and 

to initialise 𝐇𝐇𝛉𝛉� calculations to avoid potential singularity issues in the information matrix. 

Moreover, parameter estimates from each iteration become initial parameters values for the 

Maximum Likelihood estimation in the subsequent iteration. A maximum budget of 16 

designed experiments is considered for each method; therefore, 𝑁𝑁𝑒𝑒 = 21 experiments are 

obtained at the end of the experimental campaign.  

All the methods are compared in terms of space exploration: Figure 4.4 shows the location of 

the 𝑁𝑁𝑢𝑢 = 2 control variables within the entire design space, while Table 4.2 shows the number 

of distinct experimental conditions (i.e., different 𝛗𝛗) selected by different methods.  
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Figure 4.4. Design space with the experiments selected by: (a) MBDoE ; (b) G-map eMBDoE 
𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.25; (c) G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.50; (d) G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.65; (e) G-map 
eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (f) G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.85;  (g) Latin Hypercube; (h) 42  full 
factorial DoE. Red squares indicate the 5 preliminary experiments 
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Table 4.2.  Number of distinct design points for each scenario compared in the study. 

Scenario No. distinct design points  
MBDoE 7 

eMBDoE, thr:0.25 12 
eMBDoE, thr:0.50 15 
eMBDoE, thr:0.65 16 
eMBDoE, thr:0.75 16 
eMBDoE, thr:0.85 14 

LH 16 
DoE  16 

These results show that the novel explorative MBDoE has the best performance in terms of 

space exploration when a threshold of 0.65-0.75 is selected (Figure 4.4d-e; 16 different design 

points indicated in Table 4.2). Similarly, LH (Figure 4.4g) and 42 full factorial DoE (Figure 

4.4h), which are inherently explorative, select 16 distinct points that cover all regions of the 

design space. Moreover, the smaller the threshold 𝐽𝐽𝐺𝐺,thr, the less eMBDoE experiments are 

spread in the design space  (see Figures 4.4b-d): with 𝐽𝐽𝐺𝐺,thr=0.50, 15 different optimal 

experiments are selected; with 𝐽𝐽𝐺𝐺,thr=0.25, 12 different are selected; with 𝐽𝐽𝐺𝐺,thr=0, namely a 

conventional E-optimal MBDoE, only 7 distinct points are selected (Table 4.2). 

Although G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.85 is one of the most explorative methods (Figure 

4.4f) and has the greatest reduction of G-optimality throughout the entire design space (results 

are provided in Appendix C), it is the eMBDoE scenario that requires more experiments to 

precisely estimate parameter 𝜃𝜃�5 (Appendix C). Hence, to find a better trade-off between space 

exploration and information maximisation, eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 is considered in the 

analysis of precise parameter estimation. For this purpose, the t-values calculated at every 

iteration for the full set of model parameters are shown in Figure 4.5. As shown in Figure 4.5, 

the most critical parameter which requires a higher number of calibration experiments to be 

precisely estimated is 𝜃𝜃5 (Figure 4.5e). MBDoE and eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 require 10 

experiments (5 preliminary and 5 optimal) to pass the t-test, LH requires 17 experiments, while 

DoE is not able to pass the t-test. Finally, details on parameters accuracy (i.e. distance from the 

assumed true value) can be found in Appendix C; moreover, reproducibility of the LH results 

despite random variations of different LH designs is shown in Appendix C.3. 
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(d) 

 
(e) 

 

 

Figure 4.5. Profiles of t-values calculated with: MBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.00); G-map eMBDoE 
(𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); Latin Hypercube (LH); 42 full factorial DoE. Figures (a)-(e) show results of 
parameters 1-5, respectively. t-values are compared against the reference t-value (‘ref’ in 
the legend). Only t-values referred to the 16 optimal/explorative data are shown.  

In Figure 4.6 the different scenarios are compared in terms of model prediction variance across 

the whole experimental design space. Results are shown for MBDoE, G-map eMBDoE with  

𝐽𝐽𝐺𝐺,thr=0.75 threshold, factorial DoE and LH. The smaller the scalar index of 𝐽𝐽𝐺𝐺 , the better the 

performance in terms of reduction of model prediction uncertainty. Scalar indices are calculated 

for the G-maps generated during experiment design step: therefore, the iterative generation of 

G-maps starts with a calibration dataset of 5 preliminary experiments and terminates with a 

calibration dataset of 20 experiment, which is the map used to calculate the last optimal 

experiment since 𝑁𝑁𝑒𝑒=21. The following ranking is obtained in terms of scalar measures of 

model prediction variances:  
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• mean G-optimality 𝐽𝐽𝐺𝐺,mean, from the 11th experiment onwards (Figure 4.6a): 

MBDoE > DoE > LH > eMBDoE (𝐽𝐽𝐺𝐺,thr=0.75) 

• maximum G-optimality  𝐽𝐽𝐺𝐺,max, from the 14th experiment onwards (Figure 4.6b): 

MBDoE > DoE > LH > eMBDoE (𝐽𝐽𝐺𝐺,thr=0.75) 

Instead, the minimum G-optimality is equal to zero in all scenarios throughout the experimental 

campaign, therefore it is omitted here.  

To conclude, scalar indices of G-optimality prove that eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 has the best 

performance in terms of reduction of model prediction variance. Moreover, compared to 

MBDoE, both mean and maximum values of G-optimality are smaller in explorative design 

methods such as DoE and LH. This suggests that space exploration promotes the reduction of 

prediction uncertainty, but the best overall result (i.e. minimum prediction variance and 

maximum parameter precision) is only achieved when a trade-off between space exploration 

and information maximisation is realised.  

 
(a) 

 
(b) 

Figure 4.6. Profiles of scalar indices of G-optimality including (a) mean G-optimality; (b) 
maximum G-optimality calculated for: MBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.00); G-map eMBDoE 
(𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); Latin Hypercube (LH); 42 full factorial DoE.        

G-maps are shown in Figures 4.7 and 4.8 to visualise the regions of higher prediction variance 

within the design space for MBDoE, G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75, LH and DoE. This 

result is compared to the maps of information content (H-maps, Figures 4.9, 4.10) for every 

scenario. For sake of conciseness, only a subset of G-maps and H-maps are included: i) 

calibration dataset of 6 experiments (5 preliminary and 1 optimal): maps obtained after the first 

iteration; ii) calibration dataset of 20 experiments (5 preliminary and 15 optimal): maps 

generated in the last iteration. 

In these maps, different experimental conditions are highlighted: data from experiments already 

performed, which are used to calibrate the model (orange squares); candidate design points 

based on the G-optimality threshold (black dots); experiment selected at the current iteration 
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(red dot). Notice that the discretisation of the design space and the selection of candidates (black 

dots) are not performed in LH and DoE, therefore black points are not present in these figures 

(see Figures 4.7c-d and 4.8c-d). Finally, it must be noticed that: 

• G-maps represent model prediction variance, which must be minimised; therefore, the best 

performance is found in blue regions of Figures 4.7 and 4.8 (i.e., the smallest G-optimality 

values) and the worst one is found in yellow regions (i.e., the highest G-optimality values); 

• H-maps represent the amount of information, based on the E-optimal criterion, which must 

be maximised; in this case, the best performance is found in dark green regions of Figures 

4.9 and 4.10 (i.e., high information values) and the worst performance is found at the red 

regions (small information values). 

After measuring the first optimal experiment (Figure 4.7a-4.7d), the G-maps of MBDoE, 

eMBDoE and LH are quite similar in terms extension of regions with small model prediction 

variance (blue regions). Moreover, in all of them the G-optimality is smaller in central regions, 

while it increases towards extreme values of 𝑢𝑢1 and 𝑢𝑢2. The G-map of DoE (Figure 4.7d) is 

similar, but slightly worse due to a larger extension of regions with high model prediction 

variance (i.e., yellow regions).   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.7. G-maps generated after 6 calibration experiments designed with: (a) MBDoE, 
(b) eMBDoE and 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75, (c) LH, (d) 42 full factorial DoE.  
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The differences in the distribution of G-optimality becomes more evident after measuring the 

20th experiment: indeed, the best performance is achieved with eMBDoE using 𝐽𝐽𝐺𝐺,thr=0.75 

(Figure 4.8b) since it has the largest extension of the blue region; moreover, the yellow regions 

at extreme values of the two control variables disappear. The second-best performance in terms 

of reduction of model prediction variance is found with LH (Figure 4.8c); instead, MBDoE and 

DoE (Figure 4.8a and 4.8d, respectively) still have regions with larger model prediction 

variance (yellow regions). This suggests that an explorative strategy as LH can improve the 

prediction precision with respect to an optimal design, but the best solution is found when a 

good trade-off between space exploration and information maximisation is achieved.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.8. G-maps generated after 20 calibration experiments designed with: (a) MBDoE, 
(b) eMBDoE and 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75, (c) LH, (d) 42 full factorial DoE.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.9. H-maps after 6 experiments with: (a)MBDoE; (b)eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); (c) LH; (d) DoE.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.10. H-maps after 6 experiments with: (a)MBDoE; (b)eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); (c) LH; (d) DoE 
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By looking at the H-maps generated with 6 measured experiment (Figure 4.9) and with 20 

measured experiments (Figure 4.10), it is clear that MBDoE and G-map eMBDoE outperforms 

LH and DoE: indeed, their H-maps are red in the first iteration (Figures 4.9a-b) and become 

green in the subsequent iterations (Figures 4.10a-b), while LH and DoE end up with a light 

green (Figure 4.10c) and a red maps (Figure 4.10d), respectively. This further confirms that the 

enhancement of space exploration of the proposed explorative MBDoE does not entail a 

significant loss of information content with respect to a completely optimal design. 

Finally, the computational times to build G-maps and H-maps (with E-optimal criterion) and to 

design one experiment with Python 3.9 in an Intel® Core™ i7-10875H CPU, @ 2.30 GHz 

processor with 64.0 GB RAM are: 

• 0.12 seconds with G-map eMBDoE and 𝐽𝐽𝐺𝐺,thr=0.75; 

• 0.12 seconds with MBDoE. 

4.3.2 Model 2 

The G-map eMBDoE is applied to the Canoid-type kinetic model describing the material 

balances of the fermentation of baker’s yeast in a fed-batch reactor. Original model and proof 

of structural identifiability can be found in Asprey and Macchietto (2000).    

The two-response dynamic model is represented by the following set of differential and 

algebraic equations:  

𝑟𝑟 =  𝜃𝜃1𝑥𝑥2
𝜃𝜃2𝑥𝑥1+𝑥𝑥2

 ,   (4.8) 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑡𝑡

= (𝑟𝑟 − 𝑢𝑢1 − 𝜃𝜃4)𝑥𝑥1 ,   (4.9) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑡𝑡

= −𝑟𝑟𝑥𝑥1
𝜃𝜃3

+ 𝑢𝑢1(𝑢𝑢2 − 𝑥𝑥1) .    (4.10) 

Some simplifying assumptions are made: the inputs u1 and u2 are constant in time, and the 

number of sampling points is fixed (𝑁𝑁sp = 3).  Therefore, the design vector becomes: 𝛗𝛗 = 𝐮𝐮 =

[𝑢𝑢1,𝑢𝑢2]; 𝑢𝑢1 is the dilution factor with range 0.05-0.20 h−1, while 𝑢𝑢2 is the substrate 

concentration in the feed with range 5.0-35.0 g/L. The two measured concentrations are the 

biomass concentration 𝑥𝑥1 [g/L] and the substrate concentration 𝑥𝑥2 [g/L].  

As in Section 4.3.1, model calibration data are obtained by using a simulated process: ‘true’ 

parameter vector 𝛉𝛉true is used in the model (Eqs. 4.8-4.10) to generate noise-free simulated 

responses for x1 and x2; then, gaussian noise with zero mean and a user-defined standard 

deviation 𝛔𝛔y (𝜎𝜎𝑦𝑦 =[1.0, 1.0]gL−1, see Table 4.3) is added in order to mimic measurement errors. 
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Model parameters can be estimated using the in-silico calibration data starting from a set of 

initial parameters values 𝛉𝛉0 within the ranges [𝛉𝛉LB,𝛉𝛉UB]. 

Details on settings and parameters and variables ranges are reported in Table 4.3. 
Table 4.3.  Model 2: initial settings. 

Model features Values 
Inputs 𝐮𝐮 = [𝑢𝑢1, 𝑢𝑢2]  

𝑢𝑢1 ∈ [0.05,0.20] 
𝑢𝑢2 ∈ [5.0, 35.0] 

Outputs 
standard deviation of measurement errors 
initial conditions 
sampling points 

𝐲𝐲 = [𝑥𝑥1, 𝑥𝑥2]  
𝛔𝛔y = [1.0, 1.0]gL−1 

𝒚𝒚0 = [𝑥𝑥1(0), 𝑥𝑥2(0)] = [1.0, 0.01] gL−1  
𝐭𝐭sp = [7,14, 21]h  

Parameters 
true values 
initial values 
lower bounds 
upper bounds 

 
𝛉𝛉true = [𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4] = [0.31, 0.18, 0.55, 0.05]  

𝛉𝛉0 = [5.0, 5.0, 5.0, 5.0]  
𝛉𝛉LB = [−20,−20,−20,−20]  

𝛉𝛉UB = [20,20,20,20,20]   

The same G-map based eMBDoE method applied to the algebraic model of Section 4.3.1 can 

be applied to this model, but a higher level of complexity is introduced here. In the system of 

Section 4.3.1, the algebraic model was simulated to get the value of a single response variable 

that corresponds to the single measurement in an experiment at a particular time instance, such 

as at steady state. However, in the system of this Section, the dynamic model is simulated to 

obtain output responses at different time points, which corresponds to a typical fed-batch 

experiment with multiple sampling points in time. Since 𝑁𝑁sp=3 is set, 6 values of model 

prediction variance can be calculated: 𝑉𝑉𝑦𝑦 of 𝑥𝑥1 at 𝐭𝐭sp = [7,14, 21] h and 𝑉𝑉𝑦𝑦 of 𝑥𝑥2 at 𝐭𝐭sp = [7,14, 

21] h. To summarise these results, the sum 𝐽𝐽𝐺𝐺  of all contributions 𝑉𝑉𝑦𝑦 is calculated as in Eq. (4.1), 

which is used in the G-map eMBDoE method to design the optimal and explorative 

experiments. More details on the single contributions 𝑉𝑉𝑦𝑦 can be found in Appendix D. 

As in Model 1, 4 different design of experiments techniques are compared: 

• an E-optimal MBDoE, which is Gmap eMBDoE with 𝐽𝐽𝐺𝐺,thr =0.00; 

• two explorative designs, namely LH and 42 full factorial DoE; 

• a G-map eMBDoE with E-optimal criterion and different threshold values 𝐽𝐽𝐺𝐺,thr ∈ {0.25, 

0.50, 0.65, 0.75, 0.85}. 

Three preliminary experiments are designed with LH in order to initialise all the four design of 

experiments methods. Then, the maximum number of experiments designed in each scenario is 

fixed to 20, providing a total number of experiments 𝑁𝑁𝑒𝑒=23. The extent of space exploration 

realised by each method can be deduced from Figure 4.11 and Table 4.4.  
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(a) 

 
(b) 
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(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.11. Design space with the experiments selected by: (a) MBDoE ; (b) G-map 
eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.25; (c) G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.50; (d) G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.65; (e) 
G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (f) G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.85;  (g) Latin Hypercube; (h) 42 
full factorial DoE. Red squares indicate preliminary experiments, blue squares indicate 
experiments designed with the method considered. 
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 Table 4.4.  Number of distinct design points for every scenario compared in the study. 

Scenario No. distinct design points  
MBDoE 2 

eMBDoE, thr:0.25 3 
eMBDoE, thr:0.50 2 
eMBDoE, thr:0.65 4 
eMBDoE, thr:0.75 4 
eMBDoE, thr:0.85 5 

LH 16 
DoE  16 

After 20 iterations of experiments design, MBDoE (Figure 4.11a) has selected replicates at 2 

different experimental conditions and design space exploration is very limited. Instead, 

eMBDoE (Figure 4.11b-f) is able to increase space exploration in such a way as the number of 

replicated points is reduced, i.e., more distinct experimental conditions are obtained. This is 

evident with 𝐽𝐽𝐺𝐺,thr ∈{0.65, 0.75, 0.85} (Figure 4.11d-f). In these cases, the distinct points 

increase to 3 or 4 (Table 4.4) instead of the 2 selected by the conventional E-optimal MBDoE.  

The control variable which is affected by the 𝐽𝐽𝐺𝐺,thr is 𝑢𝑢1, whereas the different optimal designs 

select the same value for  𝑢𝑢2 for all optimal experiments. 

Parameters precision is assessed through t-tests; Figure 4.12 shows the results of MBDoE (i.e., 

𝐽𝐽𝐺𝐺,thr = 0), eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 (the others are omitted for sake of conciseness), LH and 

factorial DoE. The G-optimality threshold 𝐽𝐽𝐺𝐺,thr=0.75 is selected since it has the best 

performance in terms of precise parameters estimation and in reduction of model prediction 

variance (for more details, see Appendix D).   

Parameters 𝜃𝜃�1 (Figure 4.12a) and 𝜃𝜃�3 (Figure 4.12c) pass the 𝑡𝑡-test with few experiments in 

every scenario, while the most critical parameters are 𝜃𝜃�2 (Figure 4.12b) and, especially, 𝜃𝜃�4 

(Figure 4.12d). Conventional E-optimal MBDoE requires 2 optimal experiments to estimate 

parameter 𝜃𝜃�2 (Figure 4.12b) and 12 experiments to estimate 𝜃𝜃�4 (Figure 4.12d). The performance 

is improved by enhancing space exploration through G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75, 

requiring 2 experiments to pass the 𝑡𝑡-test for 𝜃𝜃�2 (Figure 4.12b) and 11 experiments to pass the 

t-test for 𝜃𝜃�4 (Figure 4.12d). However, explorative designs such as factorial DoE and LH do not 

allow to precisely estimate 𝜃𝜃�4 (Figure 4.12d) within the experimental budget of 𝑁𝑁𝑒𝑒=23 

experiments. This suggests that a trade-off between space exploration and information 

maximisation provides the best results in terms of parameters precision.  

Additional details on parameter estimation accuracy (i.e. distance from the assumed true value) 

can be found in Appendix D; reproducibility of the LH results is shown in Appendix D. 
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(d) 

Figure 4.12. Profiles of t-values calculated with: MBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.00); G-map eMBDoE 
(𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); Latin Hypercube (LH); 42 full factorial DoE. The 𝑡𝑡-values are compared 
against the reference 𝑡𝑡-value (‘ref’ in the legend) for parameters 1-4 in figures (a)-(d), 
respectively.  

As indicated in Eq. (4.1), the G-map for the selection of eMBDoE experiment is built by 

summing the prediction variance contributions from the two model responses. More details of 

the contributions to the overall 𝐽𝐽𝐺𝐺  can be found in Appendix D. To compare quantitively the 

grids of G-optimality values obtained at every iteration of MBDoE, eMBDoE, factorial DoE 

and LH, scalar measures of G-optimality are calculated: minimum, mean and maximum values 

of the 𝐽𝐽𝐺𝐺  calculated for each point in the grid (Eqs. 4.4-4.6).  

Considering the minimum, mean and maximum values of G-optimality (Figures 4.13a-c), 

explorative designs such as LH and factorial DoE provide a slower reduction in model 

prediction variance at the beginning of the experimental campaign and they stabilise at higher 

values when the maximum experimental budget is reached. When 𝐽𝐽𝐺𝐺,mean and 𝐽𝐽𝐺𝐺,max are 

considered (Figure 4.13b-c), the explorative MBDoE has a better performance than 

conventional MBDoE and it is able to reduce the model prediction variance with the lowest 

number of experiments. This further suggests that the trade-off between space exploration and 
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information maximisation realised by eMBDoE leads to the best performance also in terms of 

prediction variance. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4.13. Profiles of scalar indices of G-optimality calculated with: MBDoE 
(𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.00); G-map eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); Latin Hypercube (LH); 42 full factorial DoE. 
Results are obtained by summing up the variance calculated for every response at every time 
point. Three different scalar measures are considered: (a) minimum G-optimality; (b) mean 
G-optimality; (c) maximum G-optimality.      

The different experimental design methods are compared in terms of G-maps and H-maps: 

• E-optimal MBDoE (Figure 4.14a, 4.15a, 4.16a and 4.17a); 

• eMBDoE, with E-optimal criterion and a threshold of 𝐽𝐽𝐺𝐺,thr = 0.75 (Figure 4.14b, 4.15b, 

4.16b and 4.17b); 

• LH (Figure 4.14c, 4.15c, 4.16c and 4.17c); 

• 42 full-factorial DoE (Figure 4.14d, 4.15d, 4.16d and 4.17d). 

Both maps are built at every iteration in order to calculate the optimal and explorative 

experiments as in Eq. (4.3). Here, only the results obtained in two iterations are shown for the 

sake of conciseness. This include results after 4 calibration experiments (Figures 4.14-4.16), to 

assess model prediction variance reduction and information gain after adding only one designed 

experiment besides the 3 preliminary ones; and results after 15 calibration experiments (Figure 

4.15 and 4.17), being the first iteration where G-map eMBDoE is able to reduce completely 
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model prediction variance in the entire design space (darkest blue in the whole design space, as 

shown in Figure 4.15).  

After calibrating the model with the data obtained from the fourth experiment (Figure 4.14), 

the G-map is characterised by high G-optimality values with 𝑢𝑢2 between 30 and 35 g/L  for 

MBDoE (Figure 4.14a) and eMBDoE (Figure 4.14b) and with 𝑢𝑢2 between 15 and 35 g/L in 

case of LH (Figure 4.14c) and factorial DoE (Figure 14d). Therefore, designs that take into 

account information content, such as MBDoE and eMBDoE, provide a better performance at 

the first iteration with respect to completely explorative designs, such as LH and factorial DoE.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.14. G-maps generated after 4 calibration experiments. Four methods are 
compared: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (c) LH; (d) 42 full factorial 
DoE. Orange squares indicate already measured data (namely, data used to calibrate the 
model); black dots indicate candidate design points; the red point indicates the experiment 
designed at the current iteration.      

When the number of experiments used in calibration increases to 15, G-map eMBDoE (Figure 

4.15b) is the only scenario able to reduce completely model prediction variance in the entire 

design space, confirming the results obtained with scalar indices of G-optimality (Figure 4.13). 
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(a) 

 
(b) 

 
(c) 

 

Figure 4.15. G-maps generated after 15 calibration experiments. Four methods are 
compared: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (c) LH; (d) 42 full factorial 
DoE. Orange squares indicate data already used to calibrate the model; black dots indicate 
candidate design points; the red point indicates the experiment designed at the current 
iteration.   

By analysing the distribution of information content throughout the design space with four 

calibration experiments, factorial DoE (Figure 4.16d) provides the smallest amount of 

information, while eMBDoE (Figure 4.16b) and MBDoE (Figure 4.16a) guarantee higher 

information levels. Unexpectedly, LH generates the highest values of information (Figure 

4.16c); this may be caused by the initialisation of the MBDoE and eMBDoE procedure with 

parameters estimates that are still quite far from the true values. In fact, with 15 experiments, 

the following rank of information content is found: MBDoE (Figure 4.17a) > eMBDoE (Figure 

4.17b) > LH (Figure 4.17c) > factorial DoE (Figure 4.17d). Therefore, conventional MBDoE 

generates the maximum amount of information content as expected, while eMBDoE provides 

an intermediate result between optimal (MBDoE) and explorative designs (LH, factorial DoE). 

Maps generated in the last experiment design iteration are shown in Appendix D. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.17. H-maps after 4 experiments: (a) MBDoE; (b) G-map eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); (c) LH; (d) DoE 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.17. H-maps after 15 experiments: (a) MBDoE; (b) G-map eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75); (c) LH; (d) DoE.   
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The computational time required to discretise the design space, characterise it in terms of 

information content and model prediction variance (i.e., to build H-maps and G-maps) and to 

calculate the optimal and/or explorative experiment is approximately 0.65 seconds for both 

MBDoE and eMBDoE.  

This suggests that building of both G-maps and H-maps does not lead to an excessive 

computational burden even though the model complexity is increased significantly with respect 

to Model 1.   

4.4 Conclusions and future work 

A novel exploratory MBDoE has been proposed in this paper with the objective of precisely 

estimating model parameters and minimising model prediction uncertainty in the whole domain 

of model utilisation, with the minimum experimental effort. The proposed method is based on 

a mapping of model prediction variance evaluated across the entire design space through a 

scalar measure of G-optimality (G-map), which is calculated based on the evaluation of Fisher 

information matrix and requires knowledge on model structure (set of equations) and estimated 

parameter values. Experimental conditions within the design space are then selected from the 

candidate design points, which are associated to a G-optimality value higher than a user-defined 

threshold. Therefore, the exploration of the space is pushed towards regions that are still not 

well-described by the model. The G-map based explorative MBDoE is compared against purely 

explorative methods, i.e. full factorial DoE and LH, and against a purely information-based 

exploitative method, i.e. MBDoE.  

These experimental design techniques are applied to two models of increasing complexity: 

Model 1, an algebraic model with one response and two control variables; Model 2, a nonlinear 

differential equation model of baker’s yeast fermentation in a fed-batch reactor with two 

response variables measured at three sampling points and two control variables. In both cases, 

the constraint on G-optimality enables an increase of space exploration: the larger the threshold 

on G-optimality, the more the designed experiments depart from the ones selected by MBDoE.  

Results from both case studies suggest that the trade-off between space exploration and 

information maximisation achieved by G-map eMBDoE allows to minimise the number of 

experiments required to precisely estimate model parameters and to minimise model prediction 

variance in the whole design space. In fact, with Model 1, 14 calibration experiments designed 

through G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 allow to estimate all model parameters with 

statistical precision and to reduce G-optimality to the minimum values among all considered 
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scenarios.  As regards Model 2, the experimental burden is minimised by eMBDoE with 

𝐽𝐽𝐺𝐺,thr=0.75: indeed, 15 calibration experiments are enough to precisely estimate model 

parameters and reduce G-optimality to a minimum value throughout the design space. Different 

simulations of the systems under study suggest that a good trade-off is found with a G-

optimality threshold of 0.65-0.85. Future work is focused on further validation of G-map 

eMBDoE through data generated by a physical system and on the development of a systematic 

method to determine the best G-optimality threshold. 

Finally, the additional step of candidate design points selection required by G-map eMBDoE 

leads to a negligible increase in computational time with respect to the state of the art MBDoE. 

Moreover, the time required to design a single experiment increases with model complexity, 

namely with the increase of the number of control variables, response variables and/or sampling 

points, but it is still negligible in the case studies analysed in this work: 0.12 seconds in case of 

Model 1 and 0.65 seconds with Model 2. Thanks to the satisfactory performance of the G-map 

eMBDoE with the two simulated processes and the limited computational burden, this method 

will be implemented in automated platforms for online model identification, in order to 

integrate and test the proposed experimental design method in an actual experimental system 

(see Chapter 5).   
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Chapter 5  
Exploratory optimal experimental 
design for the identification of total 

methane oxidation kinetics in automated 
microreactor platforms3  

In this Chapter, an explorative model-based design of experiments method based on G-

optimality mapping, G-map eMBDoE, is tested in an automated flow micropacked bed catalytic 

reactor platform for total methane oxidation on palladium-based catalyst. Differently from 

state-of-the-art MBDoE which selects the most informative experimental condition (namely, 

the one minimising parameters uncertainty), the proposed G-map eMBDoE seeks a trade-off 

between information maximisation and space exploration. This is done by restricting 

information maximisation to a subset of design points that satisfy a threshold on model 

prediction variance. A novel method to achieve the best trade-off is presented and tested in this 

work, but it can be easily extended to any process of interest. Thus, three scenarios are 

compared: purely optimal designs, namely MBDoE; explorative MBDoE with a user-defined 

threshold on model prediction variance; explorative MBDoE with the novel method to select 

the threshold.    

5.1 Introduction 

The development of automated platforms for chemical and biological applications is gaining 

attention both in academia and industry (Barz et al., 2022). These platforms are particularly 

appealing because of the possibility of assigning repetitive tasks to automated components, e.g. 

liquid handling robots, thus improving profitability, speed and reliability of a process and giving 

experimenters time for more demanding tasks (Cherkasov et al., 2018; Waldron et al., 2020).  

                                                           
3 Cenci, F., Pankajakshan, A., Bawa, S. G., Gavriilidis, A., Facco, P. and Galvanin, F.. Explorative optimal 

experimental design for the identification of total methane oxidation kinetics in automated microreactor 
platforms [in preparation]. 
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Both batch and flow reactors can be used in these automated systems. On one hand, batch 

reactors are suitable to kinetic studies thanks to the possibility of sampling at different time 

intervals, while flow reactors are typically operated at steady-state, therefore more time is 

needed to sequentially measure different experimental conditions (Waldron et al., 2020). 

Furthermore, setting up a fully automated flow chemistry platform is more challenging than a 

batch one (Cherkasov et al., 2018). However, flow reactors are promising since they can 

improve heat and mass transfer, ensure higher safety, reduce reagents consumption and increase 

productivity and product selectivity (Waldron et al., 2020; Cherkasov et al., 2018). Due to these 

advantages, recent research has tried to overcome some of the limitations of flow systems. For 

instance, if a rapid experimentation is required, transient experiments can be performed instead 

of waiting until steady-state (Hone et al., 2017; Waldron et al., 2019; Waldron et al., 2020; 

Taylor et al., 2021). Moreover, Cherkasov et al. (2018) developed an open access platform 

named OpenFlowChem to speed up the creation and/or modification of new automated flow 

systems, encouraging the spread of automated flow platforms.  

In automated flow platforms, LabView is one of the preferred software for hardware/software 

integration and to integrate customised Python or MATLAB algorithms (Cherkasov et al., 

2018). In turn, different algorithms can be implemented based on the purpose of 

experimentation; in literature, two major goals are found: 1) reaction systems self-optimisation; 

2) development of kinetic models. Self-optimising reactors are referred to as “black-box” 

optimisation systems because they aim at improving a specific key performance indicator, like 

yield or conversion, without having a deep knowledge of the reaction system. In this context, 

factorial Design of Experiments (DoE; Montgomery, 2013) can be used to screen several input 

factors and understand their effect on the response variable; experimental results are then used 

to build a response surface (namely, a linear regression model that acts as surrogate model) 

useful for operating the platform around optimal conditions (Reizman et al., 2016; Reizman 

and Jensen, 2016). Black-box optimisation systems can be used to scale up to a plug flow 

reactor (PFR), but they may be unsatisfactory when the objective of the optimisation changes 

(e.g., from yield to purity) or when the process is scaled up to a reactor different from a PFR 

(McMullen and Jensen, 2011).  

On the other hand, the availability of a kinetic model reduces scale up risks and costs and allows 

to simulate different optimisation scenarios and/or equipment configurations (Hone et al., 2017; 

Waldron et al., 2019; Reizman and Jensen, 2016). Kinetic models can be identified in automated 

chemical platforms with minimal consumption of time and resources through the 
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implementation of MBDoE (Espie and Macchietto, 1989), for example in form of Python or 

MATLAB codes integrated in LabView (Waldron et al., 2019; Pankajakshan et al., 2023). For 

instance, MBDoE can be used to calculate the optimal experimental conditions to compare 

different candidate structures and select the one that better fits the experimental data or to 

maximise parameters precision (see Chapter 2). This leads to a minimisation of the number of 

experiments needed to reduce parameters uncertainty. For this reason, MBDoE for parameters 

precision has been successfully implemented in automated chemical platforms. For instance, 

McMullen and Jensen (2011) applied the D-optimal criterion to maximise the parameters 

precision of the Diels-Alder reaction of isoprene and maleic anhydride in DMF. Reizman and 

Jensen (2012) studied the series- parallel nucleophilic aromatic substitution of morpholine onto 

2,4-dichloropyrimidine: first, they optimised the yield of a specific product and isolated 

intermediates; then, they minimised parameters uncertainty by 50% by means of a D-optimal 

MBDoE. Moreover, Echtermeyer et al. (2017) streamlined the identification of the Pd catalysed 

C-H activation model through MBDoE and they used that mechanistic model to train a 

surrogated one for optimisation purposes. Instead, Waldron et al. (2019) studied the 

esterification of benzoic acid with ethanol in a heterogeneous catalyst through a multi-step 

procedure made of: initial factorial DoE screening at steady-state; model discrimination through 

identifiability analysis and MBDoE; parameters estimation through MBDoE. The same reaction 

in a sulfuric acid homogeneous catalyst was investigated by means of three different designs of 

experiments by Waldron et al. (2019): factorial DoE at steady state; MBDoE at steady state; 

user-defined experiments at transient conditions. The possibility to maximise parameters 

precision while reducing time and resources using measurement of ramp transient experiments 

was confirmed by Waldron et al. (2020).  Finally, Pankajakshan et al. (2019) equipped an 

automated platform for the esterification of benzoic acid and ethanol with a Python code that 

automatically calculates the experimental conditions with the best trade-off between 

maximisation of parameters precision and minimisation of experimentation costs. More details 

on these and others applications in chemical and biochemical platforms can be found in Barz et 

al. (2022).  

To the author’s knowledge, optimal experimental designs in automated flow platforms have 

been implemented mainly with the aim of discriminating among candidate kinetic models, of 

estimating precise model parameters and/or reducing the resources employed. However, little 

efforts have been made to precisely estimate the parameters of a kinetic model with minimum 

model prediction variance across the whole design space, while keeping the experimental 
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burden at minimum. In fact, most works dealing with minimisation of model prediction 

variance focus on the reliability of the model in the restricted region of the optimal experimental 

conditions. For instance, Reizman et al. (2016) analysed and optimised Pd-catalyzed Suzuki–

Miyaura cross-coupling reactions by means of a DoE-based algorithm and considering both 

continuous (i.e., temperature, time, and loading) and discrete (i.e., precatalysts and ligand) 

variables. After initialising the procedure with preliminary experiments, response surface 

models were built for every precatalyst, thus allowing a comparison among them. Then, 

experiments were designed through a G-optimal criterion with the aim of minimising model 

prediction uncertainty in correspondence of the predicted optima for every precatalyst. While 

model prediction uncertainty was minimised in these conditions, unsuccessful precatalysts were 

eliminated from the list of candidates. Therefore, the experiments gradually focused on regions 

of optimal reaction performance and on the most promising precatalysts. As expected, this lead 

to a greater model prediction uncertainty in the regions scarcely selected by the DoE-based 

algorithm. However, the development of a kinetic model with a minimised model prediction 

uncertainty across the entire design space improves model reliability in a wider set of 

experimental conditions, thus increasing the usability of the model for future applications, such 

as reactor design for technology transfer and scale-up, reaction system optimisation and model-

based control.  

In this work, an explorative MBDoE method is implemented in an automated flow micropacked 

bed catalytic reactor platform for the total methane oxidation reaction on a 5% Pd/Al2O3 

catalyst, which is described by a Mars-van Krevelen mechanism (Pankajakshan et al., 2023). 

The explorative MBDoE method aims at minimising model prediction variance across the 

whole design space, while ensuring maximum parameters precision and reduced experimental 

burden. This is done through the use of G-optimality maps (G-map eMBDoE) as presented in 

Chapter 4 (Cenci et al., 2003): a trade-off between information maximisation and space 

exploration is found by the combined use of maps of G-optimality and maps of FIM-based 

scalar measures (namely, maps of model prediction uncertainty and maps of data information 

content, respectively). While Chapter 4 demonstrated the advantages of the G-map eMBDoE 

over conventional designs (DoE and standard MBDoE) by means of simulated case studies, 

here it is shown that this methodology can be beneficial to improve the efficiency of kinetic 

model identification in automated chemical platforms. Moreover, the original G-map eMBDoE 

optimal design problem is here reformulated to better handle the trade-off between experimental 

design space exploration and information maximisation for the system under study.  
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This Chapter is structured as follows: Section 5.2 describes experimental and modelling 

strategies, with details on: reaction and platform components; model calibration and results 

analysis; G-map eMBDoE description and practical implementation. Results in terms of 

experimental design, parameters precision and model prediction variance and accuracy are 

shown and discussed in Section 5.3, while conclusions are drawn in Section 5.4.  

5.2 Materials and methods 

A comparison between G-map eMBDoE and state-of-the-art MBDoE is performed in order to 

assess the advantages of a trade-off between space exploration and information maximisation 

over an approach (MBDoE) only targeting information optimisation. Figure 5.1 shows the 

experimental procedure adopted in this work: 

• Step 1: preliminary experiments are designed by a factorial DoE to initialise the procedure;  

• Step 2: the designed experiments are executed by the automated chemical platform; 

• Step 3: the kinetic model is calibrated and analysed; 

• Step 4: a user-defined criterion is assessed in order to decide whether to stop the 

experimental campaign or not. In this work, the experimental campaign is terminated when 

the budget of 𝑁𝑁𝑒𝑒=35 experiments overall is reached;  

• Step 5: if new experiments must be collected, they are designed though G-map eMBDoE 

(or MBDoE if 𝐽𝐽𝐺𝐺,thr=1). 

In the following Sections, Steps 2,3 and 5 are explained in detail. 
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Figure 5.1. Schematic representation of the proposed G-map eMBDoE-driven procedure for 
optimal experimental design in automated platforms. The representation of the automated 
platform is adapted from Bawa et al. (2022).  

5.2.1 Automated experimentation 

The main components of the platform (as shown in Figure 5.1) include: (i) mass flow controllers 

(Brooks, 5850TR; Hatfield, USA), which serve as the delivery system for the inlet streams; (ii) 

a packed bed microreactor made of silicon-glass; (iii) an online gas chromatography (GC) as 

measurement system; (iv) Lab View 2018, to interface between the hardware and Python 

programme for smooth integration process. The reaction is catalytic complete oxidation of 

methane over 5% Pd/Al2O3 catalyst. The average size of the catalysed reactor is 69 µm and 10 

mg of the catalyst is used for the catalytic reaction. The composition of the stream is nitrogen 

as an internal standard, oxygen and methane as the main reactants, while helium is part of the 

methane stream (5% methane in helium). The silicon-glass microreactor is fabricated using 

photolithography and deep reactive ion etching (DRIE) process. The silicon wafer, inscribed 

with the desired reactor pattern is sealed with glass cover using anodic bonding process 
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performed at 400 ⁰C and 500 V. The reaction channel dimensions are 2 mm and 420 µm in 

width and depth. A retainer for the catalyst bed is positioned at the end of the reaction channel. 

The pressure at both inlet and outlet of the micro packed bed are monitored by pressure sensors 

(Honeywell, 40PC, 100 psig), whereas the outlet pressure is held constant with the help of 

pressure controller (Brooks, 5866). The online GC (Agilent, 7890A) is equipped with sampling 

valve, sampling loop, GS-Carbon PLOT (Agilent) and HP-PLOT molecular sieve (Agilent) 

columns and thermal conductivity detector (TCD) and is used for effective online analysis of 

the reactor effluent. The computer contains the software that controls the GC as well as the Lab 

View and Python codes. 

5.2.2 Model calibration and results analysis 

Once experiments are generated with the experimental setup described in Subsection 5.2.1, 

model parameters 𝛉𝛉� are estimated by maximising Maximum Likelihood (Chapter 2); 

afterwards, FIM 𝐇𝐇𝛉𝛉� and parameters variance-covariance matrix 𝐕𝐕𝛉𝛉� can be recalculated as 

explained in Chapter 2. While the experimentation progresses, the different design methods 

employed are compared in order to assess the level of space exploration of eMBDoE with 

respect to state-of-the-art MBDoE (Subsection 5.2.2.1). Moreover, the performance of the 

calibrated model at the current iteration is assessed in terms of: parameters precision; model 

prediction variance; model prediction accuracy (Subsections 5.2.2.2-5.2.2.4). 

5.2.2.1 Designed experiments 

One of the objectives of G-map eMBDoE is to enhance space exploration with respect to 

conventional MBDoE. Therefore, the results of eMBDoE and MBDoE designs are compared 

in terms of calculated values of 𝛗𝛗 opt at every iteration. To qualitatively compare the level of 

space exploration, profiles of a given control variable calculated by different methods are 

plotted within the same figure. Figure 5.2 provides and illustrative example where the profile 

of eMBDoE with 𝐽𝐽𝐺𝐺,thr,1 is close to the profile of MBDoE, meaning that 𝐽𝐽𝐺𝐺,thr,1 does not 

considerably improve space exploration with respect to MBDoE, while eMBDoE with 𝐽𝐽𝐺𝐺,thr,2 

calculates values of the 𝑖𝑖-th control variable that are far from the ones of MBDoE, thus 

enhancing space exploration.  
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Figure 5.2. Illustration of a possible set of profiles of the generic control variable 𝑢𝑢𝑖𝑖. One 
profile is made of the values of  𝑢𝑢𝑖𝑖 calculated at every iteration by the same MBDoE or 
eMBDoE method. Different profiles are obtained with different design methods (MBDoE vs 
G-map eMBDoE with different thresholds, namely 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟,1 and 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟,2).  

To better evaluate the departure of a given G-map eMBDoE design from a conventional 

MBDoE one, the following index is calculated at every iteration of the sequential procedure in 

Figure 5.1: 

𝑑𝑑𝑖𝑖𝑖𝑖 =
�𝑢𝑢𝑖𝑖,𝑗𝑗−𝑢𝑢𝑖𝑖,MBDoE�
�𝑢𝑢𝑖𝑖,MBDoE�

 ,        𝑖𝑖 = 1, … ,𝑁𝑁𝑢𝑢 ; 𝑗𝑗 = 𝐽𝐽𝐺𝐺,thr 
  (5.1) 

where 𝑖𝑖 refers to the specific control variable, 𝑗𝑗 refers to the threshold 𝐽𝐽𝐺𝐺,thr used by the G-map 

eMBDoE method, 𝑢𝑢𝑖𝑖,MBDoE indicates the value of the 𝑖𝑖-th control variable designed through 

MBDoE. Considering the example in Figure 5.2, 𝑑𝑑𝑖𝑖𝑖𝑖 of 𝐽𝐽𝐺𝐺,thr,2 is expected to be higher than the 

one of 𝐽𝐽𝐺𝐺,thr,1 at every iteration.  

5.2.2.2 Parameters precision 

Parameters precision is assessed by means of 100(1-α) % confidence intervals and 𝑡𝑡-tests, as 

explained in Chapter 2. 

5.2.2.3 Model prediction variance using G-maps 

Every point of the discretisation of the design space is characterised in terms of G-optimality 

(namely, 𝐽𝐽𝐺𝐺  given by the sum of model prediction variance 𝑉𝑉𝑦𝑦 of every response at every time 

point), obtaining the G-maps (see Chapter 4 for more details). G-maps are then used to compare 

graphically and quantitatively the performance of different design methods in terms of 

reduction of model prediction variance in the whole design space.  

The visualisation of G-maps has the advantage of showing the regions where model prediction 

variance can still be improved and of highlighting in a graphical way the reduction of model 
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prediction variance throughout the experimentation. An example of G-map is in Figure 5.3. G-

maps are coloured such as high G-optimality values (i.e., high model prediction variance; worst 

performance) are found in yellow regions, while low G-optimality values (i.e., low model 

prediction variance; best performance) are in dark blue regions.  

 
Figure 5.3. Illustration of a G-map.   

A quantitative comparison is facilitated by the calculation of scalar measures of G-optimality 

𝐽𝐽𝐺𝐺 . Therefore, minimum (𝐽𝐽𝐺𝐺,min), mean (𝐽𝐽𝐺𝐺,mean) and maximum (𝐽𝐽𝐺𝐺,max) values of 𝐽𝐽𝐺𝐺  calculated 

across the entire design space are considered (as explained in Chapter 4).  

5.2.2.4 Model prediction accuracy 

Model prediction accuracy, namely the difference between predicted responses and 

experimentally measured values, is evaluated in terms of absolute error 𝐴𝐴𝐸𝐸𝑖𝑖 calculated as: 

𝐴𝐴𝐸𝐸𝑖𝑖 =  |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|                                                   (5.2) 

where 𝑦𝑦�𝑖𝑖 is the predicted value for the 𝑖𝑖-th response variable and 𝑦𝑦𝑖𝑖 is the corresponding 

measured value. To summarise such results through a scalar index at every iteration, the mean 

of 𝐴𝐴𝐸𝐸𝑖𝑖, indicated as 𝜇𝜇𝐴𝐴𝐴𝐴𝑖𝑖, is calculated for 𝑖𝑖 = CH4, O2, CO2. 

5.2.3 G-map eMBDoE 

A possibility to obtain explorative MBDoE (eMBDoE) experiments is to select of the most 

informative experiment 𝛗𝛗 opt among a subset 𝛗𝛗cand of candidate design points: 

𝛗𝛗 opt = arg min
𝛗𝛗cand

𝜓𝜓(𝐕𝐕𝛉𝛉�)                      (5.3) 

where 𝜓𝜓(𝐕𝐕𝛉𝛉�) can be one of the classical criteria described by Pukelsheim (1993). In the 

eMBDoE method based on mapping of G-optimality, named G-map eMBDoE, the candidate 

design points 𝛗𝛗cand satisfy a predefined condition on G-optimality 𝐕𝐕𝑦𝑦. Since G-optimality 𝐕𝐕𝑦𝑦 

is calculated for all 𝑁𝑁𝑦𝑦 response variables at all 𝑁𝑁sp,𝑖𝑖 sampling points, it is summarised by the 
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scalar 𝐽𝐽𝐺𝐺 calculated as the sum of every contribution (𝐽𝐽𝐺𝐺 = ∑ ∑ 𝐕𝐕𝑦𝑦�𝛉𝛉�,𝛗𝛗��
𝑖𝑖,𝑖𝑖

𝑁𝑁sp,𝑖𝑖
𝑖𝑖=1

𝑁𝑁𝑦𝑦
𝑖𝑖=1 , as 

explained in Chapter 4). The calculation of information content 𝜓𝜓(𝐕𝐕𝛉𝛉�) and model prediction 

variance 𝐽𝐽𝐺𝐺  for all experimental conditions in the design space leads to the so-called H-maps 

and G-maps, respectively. They can be used to solve Eq. (5.3) through a grid-search approach 

and to graphically visualise the results.  

The G-optimality constraint that must be satisfied by candidate design points 𝛗𝛗cand of Eq. (5.3) 

should be selected in such a way as eMBDoE experiments are more explorative than MBDoE 

ones, but without losing too much information. In order to select the most suitable constraint 

for the system under study, preliminary in silico experiments have been performed by exploiting 

prior knowledge on model structure and plausible initial parameters values retrieved from Bawa 

et al. (2022) and Pankajakshan et al. (2023). Those simulations suggest that space exploration 

is enhanced by the constraint:  

𝐽𝐽𝐺𝐺 ≤  𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max                       (5.4) 

where 𝐽𝐽𝐺𝐺,max  is the maximum value of 𝐽𝐽𝐺𝐺  in the whole design space, while 𝐽𝐽𝐺𝐺,thr  is a user-

defined fraction between 0 and 1. If 𝐽𝐽𝐺𝐺,thr =1, the entire design space is retained for information 

maximisation, therefore eMBDoE corresponds to conventional MBDoE. Instead, the closer 

𝐽𝐽𝐺𝐺,thr is to 0, the smaller the number of candidate design points. Considering Figure 4.2 of 

Chapter 4, the constraint of Eq. (5.4) is used to define the candidate design points indicated in 

blue, among which the most informative experiment is selected.  

The level of space exploration can be handled by the selection of the G-optimality threshold 

𝐽𝐽𝐺𝐺,thr . This value is case-dependent and it impacts on the final outcome of G-map eMBDoE. 

Due to its importance, two different methods to select 𝐽𝐽𝐺𝐺,thr  are tested with the experimental 

data generated by the platform:  

1. selection of a threshold 𝐽𝐽𝐺𝐺,thr,prior based on prior knowledge on the system (namely, model 

equations and preliminary values for 𝛉𝛉�); 

2. determination of the threshold 𝐽𝐽𝐺𝐺,thr,meas using the first set of experiments measured in the 

platform. The threshold value is selected in such a way as the first optimal design obtained 

through G-map eMBDoE is different from the one obtained through MBDoE.  

With the former method, the following procedure is adopted: (i) using prior knowledge on the 

system, different experimental campaigns are simulated considering multiple 𝐽𝐽𝐺𝐺,thr  values (as 

was done in Chapter 4 with Model 1 and 2); (ii) the range of 𝐽𝐽𝐺𝐺,thr providing the best results in 

terms of 𝑡𝑡-tests and reduction of model prediction variance is determined; (iii) a threshold 
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𝐽𝐽𝐺𝐺,thr,prior is selected within this range. In this work, preliminary simulations suggest that the 

range between 0.65-0.75 is suitable; therefore, a value within this range is selected for actual 

experiments in the platform (see Section 5.3). 

The latter method to select the threshold is implemented following a new procedure illustrated 

in Figure 5.3: 

• step 1: the set of preliminary experiments measured in the platform is used to estimate 

model parameters 𝛉𝛉�; 

• step 2: 𝐽𝐽𝐺𝐺,thr = 1 is set; state-of-the-art MBDoE is performed obtaining the optimal 

experimental condition 𝛗𝛗opt
∗ ; 

• step 3: 𝐽𝐽𝐺𝐺,thr = 𝐽𝐽𝐺𝐺,thr − 0.05 is set; G-map eMBDoE is performed obtaining the optimal 

and explorative condition 𝛗𝛗opt by solving Eq. (5.3); 

• step 4: the design of MBDoE, 𝛗𝛗opt
∗ , and the one of G-map eMBDoE, 𝛗𝛗opt, are compared. 

If the two designs are different, the procedure stops and the threshold 𝐽𝐽𝐺𝐺,thr of the current 

iteration is selected as 𝐽𝐽𝐺𝐺,thr,meas. If the two designs are equal, step 3 is iterated until a 𝛗𝛗opt 

such that 𝛗𝛗opt ≠ 𝛗𝛗opt
∗  is found.  

 
Figure 5.4. Steps to select the G-optimality threshold 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 through a comparison between 
the optimal experimental conditions 𝝋𝝋𝑜𝑜𝑜𝑜𝑡𝑡

∗  and  𝝋𝝋𝑜𝑜𝑜𝑜𝑡𝑡 calculated by, respectively, state-of-the-
art MBDoE and G-map eMBDoE. 

When 𝐽𝐽𝐺𝐺,thr,meas leading to 𝛗𝛗opt ≠ 𝛗𝛗opt
∗  is found, it is kept fixed until the end of the 

experimental campaign. The advantage of the proposed procedure to obtain 𝐽𝐽𝐺𝐺,thr,meas  is that it 
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does not require any prior knowledge on the system (differently from 𝐽𝐽𝐺𝐺,thr,prior ), therefore it 

can be calculated for completely new systems.  

5.2.3.1 Generation of H-maps and G-maps with multiple control variables 

To solve the optimisation in Eq. (5.3) through a grid-search approach, maps of G-optimality 

and of FIM-based can be built as described in Chapter 4. In fact, the procedure shown in Chapter 

4 describes maps built with two control variables 𝑢𝑢1 and 𝑢𝑢2 only, but it can be extended to any 

number of control variables. In this work, 𝛗𝛗 = 𝐮𝐮 = [𝑢𝑢1 ,𝑢𝑢2 ,𝑢𝑢3 ,𝑢𝑢4 ] (see Section 5.3 for more 

details) therefore the steps to build G-maps and H-maps are as follows (Figure 5.5): 

• initialise the procedure: (i) define the prior knowledge on the reaction system, namely 

model equations 𝐟𝐟, current parameters values 𝛉𝛉�, variance-covariance matrix of 

measurement errors 𝚺𝚺𝑦𝑦; control variables 𝐮𝐮 and their admissible ranges; (ii) discretise the 

ranges of all control variables 𝐮𝐮; (iii) naming 𝑖𝑖1 and 𝑖𝑖2 the indices of the current value 

within the discretisation of 𝑢𝑢1 and 𝑢𝑢2 ranges, respectively, set 𝑖𝑖1 = 1 and 𝑖𝑖2 = 1; 

• Step 1: consider the 𝑖𝑖1-th value of 𝑢𝑢1 and keep it fixed; 

• Step 2: consider the 𝑖𝑖2-th value of 𝑢𝑢2 and keep it fixed; 

• Step 3: at the fixed values of 𝑢𝑢1 and 𝑢𝑢2, build a grid with every combination of values of 

𝑢𝑢3 and 𝑢𝑢4;  

• Step 4: for every point of the grid determined in Step 3, calculate the G-optimality 𝐽𝐽𝐺𝐺  and 

the FIM-based information content 𝜓𝜓, providing the G-maps and H-maps, respectively;  

• Step 5: using the same 𝑖𝑖1, set 𝑖𝑖2 = 𝑖𝑖2 + 1 and repeat Steps 2-4; repeat this step until all 𝑢𝑢2 

values (namely, all 𝑖𝑖2) are used; 

• Step 6: set 𝑖𝑖1 = 𝑖𝑖1 + 1 and repeat Steps 1-5; repeat this step until all 𝑢𝑢1 values (namely, all 

𝑖𝑖1) are used.  
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Figure 5.5. Steps to build G-maps and H-maps with 4 control variables (𝑢𝑢1, …, 𝑢𝑢4). 

Once the G-maps and H-maps have been built and recorded for all the possible values of the 

control variables 𝐮𝐮, the optimal and explorative experiment 𝛗𝛗 opt is determined by solving 

Eq.(5.3).  This method can be applied to any number of control variables.  

5.2.4 Software implementation and experimental procedure 

The reaction platform for total catalytic methane oxidation (Section 5.2.1) performs the desired 

experiments in an automated way. This means that the experimenter only needs to specify the 

design vector 𝛗𝛗, while the platform sets the control variables accordingly and measures the 

corresponding output values. As regards the experimental design (i.e. the determination of the 

optimal design vector 𝛗𝛗), this is implemented in a separate code in Python 3.9 (Rossum and 

Drake, 2009). To perform the G-map eMBDoE experiments presented in this work and 

discussed in Section 5.3, experiment design and execution are operated sequentially as shown 

in Figure 5.1: first, the platform provides the results of the preliminary experiments; then, these 

are used by the experimenter to calibrate the model and design a new experiment; the new 

design is fed to the platform, whose input/output data are used by the Python code for model 

calibration until the maximum experimental budget is reached (or any other stop criterion is 

satisfied).  
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5.3 Results and discussion 

The experimental setup described in Section 5.2 was first used by Bawa et al. (2023), who 

experimentally assessed consistency in the control of input variables and good reproducibility 

of the results. Moreover, a subset of plausible candidate models to describe the system was 

selected and these models were deemed practically identifiable thanks to a full-rank FIM, even 

though not all model parameters were estimated with sufficient statistical precision. Afterwards, 

Pankajakshan et al. (2023) implemented a method to automatically discriminate candidate 

models and to improve parameters precision for the most probable model. The most promising 

kinetic models were Langmuir-Hinshelwood (Hurtado et al.,2004; Specchia et al., 2010) and 

Mars–van Krevelen (Hurtado et al.,2004; Specchia et al., 2010). The former considers a surface 

reaction between adsorbed methane and dissociatively chemisorbed oxygen, while the latter 

describes the surface reaction between adsorbed molecular oxygen and gas phase methane and 

slow desorption of the reaction products (Hurtado et al.,2004; Specchia et al., 2010; 

Pankajakshan et al., 2023). At the end of the MBDoE campaign, the most probable model was 

Mars–van Krevelen, consequently this kinetic model structure is considered in this work. 

Parameters 𝛉𝛉 = [𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3, 𝜃𝜃4, 𝜃𝜃5, 𝜃𝜃6] to be estimated are shown in Table 5.1; parameters lower 

and upper bounds are, respectively, 𝜃𝜃LB,𝑖𝑖=0 and 𝜃𝜃UB,𝑖𝑖=15 for 𝑖𝑖=1,…,6 (here, the total number 

of parameters is 𝑁𝑁𝜃𝜃=6). More details on kinetic modelling and model reparametrisation can be 

found in Appendix E.  
Table 5.1. Parameters of Mars–van Krevelen kinetic model. 

Original parameters Units of measure Parameters to be estimated 
𝑘𝑘1,ref  [mol bar-1 g-1 min-1] 𝜃𝜃1 = −log�𝑘𝑘1,ref�  
𝐸𝐸𝑎𝑎,1  [J mol-1] 𝜃𝜃2 =  𝐸𝐸𝑎𝑎,1/104  
𝑘𝑘2,ref  [mol bar-1 g-1 min-1] 𝜃𝜃3 = −log�𝑘𝑘2,ref�  
𝐸𝐸𝑎𝑎,2  [J mol-1] 𝜃𝜃4 =  𝐸𝐸𝑎𝑎,2/104  
𝑘𝑘3,ref  [mol bar-1 g-1 min-1] 𝜃𝜃5 = −log�𝑘𝑘3,ref�  
𝐸𝐸𝑎𝑎,3  [J mol-1] 𝜃𝜃6 =  𝐸𝐸𝑎𝑎,3/104  

The response variables predicted by the model are mole fractions of CH4, O2 and CO2 in the 

stream exiting from the reactor. Their standard deviations 𝛔𝛔𝑦𝑦 were calculated by Bawa et al. 

(2023) as pooled standard deviations: 𝛔𝛔𝑦𝑦 =[0.00043, 0.00202, 0.0005] [mol mol-1]. Their 

square values form the diagonal of the variance-covariance matrix of the measurement errors 

(𝚺𝚺𝑦𝑦) used for parameters estimation through Maximum Likelihood and for FIM calculation 

(Chapter 2).  
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Moreover, the control variables of the model are: reaction temperature [°C], flow rate of the 

feed [Nml min-1], inlet methane mole fraction [mol mol-1], oxygen to methane mole ration in 

the feed [mol mol-1]. They are indicated as 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 and 𝑢𝑢4, respectively, and they form the 

design vector 𝛗𝛗 to be optimised by G-map eMBDoE. The settings used to solve the constrained 

optimisation problem (Eq. 5.3) are shown in Table 5.2.  
Table 5.2. Constraints of the design vector for G-map eMBDoE. 

Control variable Constraints 
𝑢𝑢1: temperature [°C] [254, 355.5] 
𝑢𝑢2: flow rate of the feed [Nml min-1] [20.0,30.0] 
𝑢𝑢3: inlet methane mole fraction [mol mol-1] [0.005, 0.025] 
𝑢𝑢4: oxygen to methane mole ration in the feed [mol mol-1] [2.0, 4.0] 

The constraints in Table 5.2 are used to constrain the design variables when building G-maps 

and H-maps as described in Section 5.2. 

After the design and execution of 12 preliminary experiments through factorial DoE, three 

different model-based design methods are compared: 

• state-of-the-art MBDoE, i.e. G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr =1.00; 

• G-map eMBDoE with a threshold selected in the 0.65-0.75 range that was suggested by 

preliminary simulations of the system under study; thus, 𝐽𝐽𝐺𝐺,thr,prior =0.70 is chosen; 

• G-map eMBDoE with the threshold determined by using experimental data as described in 

Section 5.2: 𝐽𝐽𝐺𝐺,thr,meas =0.60. 

The computational time required to solve Eq. (5.3) through the grid-search approach 

implemented in Python 3.9 and using an Intel® Core™ i7-10875H CPU, @ 2.30 GHz processor 

with 64.0 GB RAM is about 85 seconds. 

5.3.1 Designed experiments 

The design of input variables made by MBDoE and G-map eMBDoE is qualitatively compared 

in Figure 5.6, where profiles of each control variable 𝑢𝑢𝑖𝑖, 𝑖𝑖=1,..,4 are shown.  
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
Figure 5.6. Design of the four control variables 𝑢𝑢𝑖𝑖, 𝑗𝑗=1,…,4.  

The profiles of Figure 5.6 show that the major differences are found with 𝑢𝑢1 (Figure 5.6a-c) 

and 𝑢𝑢4 (Figure 5.6j-l), especially within the first 25 experiments: indeed, G-map eMBDoE with 

JG,thr=0.60 explores more the values of 𝑢𝑢1 below 300°C and the intermediates values of 𝑢𝑢4 

(namely, 𝑢𝑢4 different from the two extreme values 2 and 4 molmol-1) with respect to 

conventional MBDoE and G-map eMBDoE with JG,thr=0.70.   

To facilitate the comparison among the three methods, the difference between G-map eMBDoE 

and MBDoE designs are calculated as in Eq. (5.1). The results for 𝐽𝐽𝐺𝐺,thr=0.70, 0.60 calculated 
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et every iteration are summarised in Table 5.3 as number of occurrences of equal designs 

between conventional MBDoE and G-map eMBDoE.  
Table 5.3. Distance between the designs of the four control variables calculated by 
MBDoE and G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.70 and with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.60. The number of 
iterations where a certain d𝑖𝑖,j is equal to zero (no. 𝑑𝑑𝑖𝑖,𝑖𝑖 = 0, i=1,2,3,4 and j=0.70, 0.60) 
is calculated.  

G-map 
eMBDoE No. 𝒅𝒅𝟏𝟏,𝒋𝒋 = 𝟎𝟎 No. 𝒅𝒅𝟐𝟐,𝒋𝒋 = 𝟎𝟎 No. 𝒅𝒅𝟑𝟑,𝒋𝒋 = 𝟎𝟎 No. 𝒅𝒅𝟒𝟒,𝒋𝒋 = 𝟎𝟎 No.  𝒅𝒅𝟏𝟏,𝒋𝒋 =  𝒅𝒅𝟐𝟐,𝒋𝒋 =

𝒅𝒅𝟑𝟑,𝒋𝒋 = 𝒅𝒅𝟒𝟒,𝒋𝒋 = 𝟎𝟎 
𝐽𝐽𝐺𝐺,thr=0.70 7 12 4 10 3 
𝐽𝐽𝐺𝐺,thr=0.60 7 11 1 4 0 

If the four control variables are considered singularly, the number of iterations in which the G-

map eMBDoE and MBDoE values are equal is not negligible, neither with 𝐽𝐽𝐺𝐺,thr=0.70 neither 

with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.60, even though the number of occurrencies is always smaller in the latter case. 

However, if all the four control variables are considered together, only 𝐽𝐽𝐺𝐺,thr=0.70 has some 

identical experiments with MBDoE: they are the first three experiments. The results of the 

following sections reveal that this is sufficient to get very different results in terms of 

parameters precision and model prediction variance.  

5.3.2 Parameters precision and estimates 

Figure 5.7 shows the results carried out at every iteration of the sequential procedure; the same 

𝑡𝑡-values are explicitly shown in Appendix F. The most critical parameters to estimate are 𝜃𝜃�1 

and 𝜃𝜃�2: state-of-the-art MBDoE requires 15 optimal experiments to precisely estimate 𝜃𝜃�1 and 

23 optimal experiments to estimate 𝜃𝜃�2; instead, G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.70 requires 12 

optimal experiments to estimate 𝜃𝜃�1, while 23 eMBDoE experiments are not enough to estimate 

𝜃𝜃�2 precisely. The best performance is achieved through G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60: 

using this approach, 5 optimal experiments are enough to obtain a statistically precise 

estimation of the full set of model parameters. This suggests that the increase of space 

exploration achieved through a threshold of 𝐽𝐽𝐺𝐺,thr=0.60 does not lead to a loss of information 

content for parameters estimation purposes.  
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(a) 

 

 
(b) 

  
(c) 

 
(d) 

 
(e)    

(f) 
Figure 5.7. Profiles of t-values calculated at every iteration of the sequential G-map 
eMBDoE experimentation, considering 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟={1.00, 0.70, 0.60} as shown in the legend. All 
model parameters are considered: (a) t-values of 𝜃𝜃�1; (b) t-values of 𝜃𝜃�2; (c) t-values of 𝜃𝜃�3; (d) 
t-values of 𝜃𝜃�4; (e) t-values of 𝜃𝜃�5; (f) t-values of 𝜃𝜃�6.  

Since the G-map eMBDoE method with 𝐽𝐽𝐺𝐺,thr=0.60 provides the best performance in terms of 

maximisation of parameters precision, its parameters estimates and their 95% C.I. obtained at 

the last iteration are shown in Table 5.4. 
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Table 5.4. Parameters estimates and 95%C.I. obtained with 23 optimal experiments 
obtained with G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.60. 

Parameters to be 
estimated Estimated value 95% C.I. 

𝜃𝜃1  5.51 0.27 
𝜃𝜃2  8.22 2.78 
𝜃𝜃3  5.64 0.23 
𝜃𝜃4  10.26 2.48 
𝜃𝜃5  10.41 0.09 
𝜃𝜃6  8.53 1.25 

5.3.3 Scalar indices of model prediction variance 

Scalar indices summarising 𝐽𝐽𝐺𝐺  in the whole design space are shown in Figure 5.8: minimum 

(Figure 5.8a), mean (Figure 5.8b) and maximum (Figure 5.8c) G-optimality.  

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.8. Scalar indices of G-optimality at every iteration of the G-map eMBDoE 
experimentation with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=1.00, 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.70 and 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.60. Minimum, mean and 
maximum G-optimality values calculated in the whole design space are shown in (a), (b) and 
(c), respectively.   

The minimum 𝐽𝐽𝐺𝐺  obtained by G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60 is always smaller than the one 

calculated by 𝐽𝐽𝐺𝐺,thr=0.70, which in turn is smaller by the one of conventional MBDoE from the 

21st experiment onward. The same rank of G-optimality reduction is found with 𝐽𝐽𝐺𝐺,mean from 
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the 18th experiment onward and with 𝐽𝐽𝐺𝐺,max after the 25th experiment. Therefore, all of the three 

indices suggest that G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60 has the best performance in terms of 

reduction of model prediction variance.    

Since the scalar value of G-optimality 𝐽𝐽𝐺𝐺  is calculated by using the contributions of three 

response variables, namely 𝑉𝑉𝑦𝑦1, 𝑉𝑉𝑦𝑦2 and 𝑉𝑉𝑦𝑦3, the profiles of their mean values are analysed in 

Figure 5.9 in order to check whether the rank of G-optimality reduction found in Figure 5.8 is 

confirmed by every single response or not.    

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.9. Mean values of the single contributions to 𝐽𝐽𝐺𝐺 provided by the three response 
variables: (a) mean 𝑉𝑉𝑦𝑦1; (b) mean 𝑉𝑉𝑦𝑦2; (c) mean 𝑉𝑉𝑦𝑦3. 

Figure 5.9a-c shows that all response variables are characterised by a greater G-optimality 

reduction with G-map eMBDoE. More specifically, the rank is: 

MBDoE> G-map eMBDoE (𝐽𝐽𝐺𝐺,thr = 0.70) > G-map eMBDoE (𝐽𝐽𝐺𝐺,thr = 0.60). 

Therefore, all the three responses confirm the behaviour found in Figure 5.8. 

Finally, the y-axis of Figures 5.9a-c shows that the contribution to 𝐽𝐽𝐺𝐺  given by 𝑉𝑉𝑦𝑦2 is one order 

of magnitude higher than the one of 𝑉𝑉𝑦𝑦1 and 𝑉𝑉𝑦𝑦3. 
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5.3.4 Maps of model prediction variance 

Even though the design space is defined by four control variables, two-dimensional maps allow 

an easier visualisation of the results: for this reason, the G-maps of Figures 5.10 and 5.11 are 

built by fixing the values of two control variables, namely temperature (𝑢𝑢1) and total flowrate 

(𝑢𝑢2) (as explained in Section 5.2). Preliminary visualisations of several G-maps revealed that 

high model prediction variance is found at medium-high values of temperature and low values 

of total flowrate, therefore 𝑢𝑢1=321.67°C and 𝑢𝑢2=20.00 Nml min-1 are chosen to be conservative. 

Two interesting iterations are considered: after 1 optimal experiment (Figure 5.10a-c), to see 

the difference in G-optimality caused by one eMBDoE experiment; after 15 optimal 

experiments (Figure 5.11a-c), because this is the first iteration where the maximum G-

optimality obtained by eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60 is the smallest among the three design 

methods in the whole design space (as shown in Figure 5.8c). 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.10. G-maps obtained after 1 optimal experiment (besides the 12 preliminary ones) 
calculated by: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.70; (c) G-map eMBDoE with 
𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.60. Fixed control variables: 𝑢𝑢1=321.67°C and 𝑢𝑢2=20.00 Nml min-1. 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.11. G-maps obtained after 15 optimal experiments (besides the 12 preliminary 
ones) calculated by: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.70; (c) G-map eMBDoE 
with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.60. Fixed control variables: 𝑢𝑢1=321.67°C and 𝑢𝑢2=20.00 Nml min-1. 

After measuring one optimal experiment, MBDoE (Figure 5.10a) and G-map eMBDoE with 

JG,thr=0.70 (Figure 5.10b) have an identical distribution of model prediction variance, as 

expected by the fact that their design is the same at that iteration. Model prediction variance is 

slightly improved by G-map eMBDoE with JG,thr=0.60 (Figure 5.10c), as indicated by a slightly 

wider region characterised by low model prediction variance where 𝑢𝑢3 is between 0.015 and 

0.018 molmol-1 and 𝑢𝑢4 is between 2.4 and 3 molmol-1 (dark blue regions). After measuring 15 

optimal experiments (Figures 5.11a-c), model prediction variance is greatly reduced by all of 

the three methods across the entire design space. Only a small region at 𝑢𝑢3 close to 

0.025molmol-1 has still a slightly higher G-optimality with conventional MBDoE (Figures 

5.11a).  

Therefore, G-maps confirm the results obtained with scalar indices of G-optimality (Subsection 

5.3.3): G-map eMBDoE with JG,thr=0.60 has the best performance in terms of model prediction 
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variance reduction. The corresponding H-maps (namely, maps of information content) are 

shown in Appendix F.   

5.3.5 Model prediction accuracy 

The overall model performance in terms of model prediction accuracy is assessed by using: 

• 12 preliminary DoE experiments; 

• 23 MBDoE experiments, i.e., G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=1.00; 

• 23 G-map eMBDoE experiments with 𝐽𝐽𝐺𝐺,thr=0.70; 

• 23 G-map eMBDoE experiments with 𝐽𝐽𝐺𝐺,thr=0.60. 

Therefore, 81 experiments are used to calculate the mean absolute error (as described in Section 

5.2); results are shown in Figures 5.12 a-c for the predicted mole fractions of CH4, O2 and CO2, 

respectively.  

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.12. Profiles of mean absolute error 𝜇𝜇𝐴𝐴𝐴𝐴𝑖𝑖: (a)  𝑖𝑖 =  𝐶𝐶𝐻𝐻4; (b)  𝑖𝑖 = 𝑂𝑂2; (c) 𝑖𝑖 = 𝐶𝐶𝑂𝑂2. 

Considering the mean of the absolute error, eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60 has the best predictions 

of all three responses in the first five iterations. Then, it predicts CH4 and CO2 molar fractions 

better than MBDoE from the 26th and 20th experiment onwards, respectively. The mean absolute 

error of O2 is higher than the ones with 𝐽𝐽𝐺𝐺,thr={1, 0.70} between the 18th and 29th experiments, 

then it reduces to values that are comparable to those of the other two design methods. 
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Therefore, the good results of eMBDoE in terms of model prediction variance (Subsections 

5.3.3-5.3.4) are coherent with the good results in terms of prediction accuracy.  

5.4 Conclusions 

The explorative MBDoE method based on G-maps enhances the capability of the automated 

flow micropacked bed catalytic reactor platform to save time and resources to identify the 

kinetics of total methane oxidation. Indeed, conventional MBDoE is able to get statistically 

sound parameters estimates within the experimental budget of 23 optimal experiments, but 5 

optimal experiments are sufficient with G-map eMBDoE with a proper G-optimality threshold, 

thus reducing the number of experiments of 78%. Moreover, the novel method proposed to 

select the G-optimality threshold based on the difference between eMBDoE and MBDoE 

designs has proved to be effective in achieving a good trade-off between space exploration and 

information maximisation: it provides both the highest parameters precision achieved and the 

minimum model prediction variance in the whole design space. Results are satisfactory also 

when measured and predicted values of the response variables are compared for all 81 collected 

experiments, thus confirming the adequacy of the identified kinetic model in predicting a 

variety of experimental conditions within the design space.  

In addition, graphical visualisation of maps of model prediction variance is effective in showing 

regions of the design space where the kinetic model is more reliable and in showing the 

progressive reduction of model prediction uncertainty as soon as new experiments are collected 

by the platform. Ongoing work consists in the integration of the Python code for G-map 

eMBDoE into LabView software in order to achieve a fully autonomous execution of 

experiments design, measurement and analysis in the microreactor platform.  
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Chapter 6  
Autonomous adaptation of the trade-off 

between space exploration and 
information maximisation for 

exploratory MBDoE4 
In this Chapter, a novel method, named adaptative G-map eMBDoE, is developed in order to 

select the G-optimality constraint without human intervention, thanks to the analyses the 

overlap between maps of information content and maps of G-optimality. To make a fair 

comparison, the adaptative G-map eMBDoE is applied to Model 1 and 2 used in Cenci et al. 

(2023; Chapter 4), using the same simulation settings and comparing its results to the ones 

previously obtained by MBDoE, G-map eMBDoE with thresholds 0.25 and 0.75, LH and 

factorial DoE. The reduction of model prediction variance achieved by the novel method is 

intermediate between the one of eMBDoE with threshold 0.25 (worse performance) and with 

threshold 0.75 (best performance) and more marked than the one of MBDoE. Moreover, the 

novel method leads to precise parameters with an experimental burden that is comparable to 

the one of MBDoE and G-map eMBDoE with threshold 0.75. This suggests that the adaptative 

G-map eMBDoE allows to find a proper trade-off between space exploration and information 

maximisation, having the advantage with respect of G-map eMBDoE of requiring no prior 

information on the suitable G-optimality constraint for the system under study.  

6.1 Introduction  

Mathematical models are employed at all steps of pharmaceutical R&D and they should be built 

in a rigorous way for QbD-based submissions. In fact, some key aspects highlighted in ICH 

Points to Consider (R2) to guide modellers in the pharmaceutical industry are: i) the importance 

of data collection to identify model equations and parameters; ii) the necessity to assess model 

                                                           
4 Cenci, F., Pankajakshan, A., Bawa, S. G., Gavriilidis, A., Facco, P. and Galvanin, F.. Novel algorithm for the 

autonomous execution of G-map eMBDoE experiments by means of automated chemical platforms [in 
preparation]. 
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prediction uncertainty and to periodically update the model in order to always ensure model 

reliability. Both goals can be achieved with model-based design of experiments, since it is an 

optimisation problem where the objective function can be formulated in order to discriminate 

among candidate model structures, to precisely identify model parameters or to minimise model 

prediction uncertainty (Espie and Macchietto, 1989; Asprey and Macchietto, 2000; Kiefer and 

Wolfowitz, 1959). Specifically, the G-map eMBDoE method proposed in Chapter 4 (Cenci et 

al., 2023) and Chapter 5 have the advantage of minimising model prediction uncertainty in the 

whole design space with reduced experimental burden, while obtaining statistically precise 

parameters values. This is achieved through a trade-off between space exploration and 

information maximisation handled by means of a constraint on model prediction variance 

(calculated as G-optimality 𝐽𝐽𝐺𝐺; Kiefer and Wolfowitz, 1959; Kiefer and Wolfowitz, 1960; 

Wong, 1995) that must be satisfied by candidate design points. However, the best G-optimality 

constraint, namely the inequality type (i.e., 𝐽𝐽𝐺𝐺 ≥  𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max or  𝐽𝐽𝐺𝐺 ≤ 𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max ) and the 

threshold value itself, i.e. 𝐽𝐽𝐺𝐺,thr, is case-dependent, meaning that it may vary based on the 

mathematical model and the preliminary parameters values used. In Chapter 4, different 

threshold values are compared for the constraint 𝐽𝐽𝐺𝐺 ≥  𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max and the most suitable one, 

𝐽𝐽𝐺𝐺,thr=0.75, is identified at the end of the simulated experimental campaigns. In Chapter 5, the 

most suitable inequality type is selected based on preliminary simulations of the system, 

resulting to be 𝐽𝐽𝐺𝐺 ≤ 𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max, and two thresholds are used: a) 0.70, which provides 

satisfactory results in preliminary simulations performed with initial parameters values; b) 0.60, 

based on a method proposed in Chapter 5 that selects the first threshold (from 𝐽𝐽𝐺𝐺,thr=1 to 

𝐽𝐽𝐺𝐺,thr=0, with steps of 0.05) leading to a designed experiments that is different from the one 

designed by MBDoE. In both cases, the threshold is kept fixed throughout the experimentation. 

However, it may be convenient to have a method that automatically selects the most suitable 

inequality type and threshold without requiring preliminary experiments and/or human 

intervention. In fact, it would be beneficial in case of completely new systems where the 

plausible range of parameters [𝛉𝛉�LB, 𝛉𝛉�UB] is large and little to no information is available on the 

most suitable initial parameters values 𝛉𝛉�0. Moreover, it may aid the exploitation of the full 

potential of Industry 4.0 technologies in a variety of industrial sectors, including the 

(bio)pharmaceutical one. In fact, Frank et al., (2019) reviewed the application of Industry 4.0 

technologies in 92 manufacturing companies from machinery and equipment sector and 

concluded that the highest complexity in the implementation is represented by the full flexibility 
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of Smart Manufacturing, for instance the adoption of flexible lines that automatically adjust the 

manufacturing to multiple product types and/or to changing conditions without human 

intervention. Similarly, Barz et al. (2022) reviewed the applications of automated continuous 

flow platforms and bioreactor platforms and concluded that automated technology is available 

in the (bio) pharmaceutical industry, but expensive laboratories providing scarcely informative 

experiments are still used due to a lack of proper experimental plan.  

In this Chapter, a novel G-map eMBDoE method to automatically select the most suitable G-

optimality constraint is presented. It is based on the analysis of the overlap between maps of 

information content, H-maps, and maps of model prediction variance (estimated in terms of G-

optimality), G-maps: if the most informative experiments have the highest model prediction 

variance, space exploration is enhanced with respect to state-of-the-art MBDoE by selecting 

candidate design points having lower model prediction variance (namely, by setting a constraint 

of the type 𝐽𝐽𝐺𝐺 ≤ 𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max); if they have the lowest model prediction variance, space 

exploration is enhanced by favoring points with higher model prediction variance (namely, by 

setting 𝐽𝐽𝐺𝐺 ≥ 𝐽𝐽𝐺𝐺,thr 𝐽𝐽𝐺𝐺,max). This procedure is completely general, since it does not depend on the 

specific model type and/or current parameters values, and the calculated G-optimality 

constraint can be adapted as soon as a new calibration experiment is measured. Therefore, the 

proposed method is referred to as adaptative G-map eMBDoE; more details are provided in 

Section 6.2. To be able to make direct comparisons with the performance of the original G-map 

eMBDoE method (Cenci et al., 2023; Chapter 4), the proposed method is applied to Model 1 

and 2 used in Chapter 4, using the same simulation settings. Sections 6.3.1 and 6.3.2 show the 

results of the adaptative G-map eMBDoE applied to Model 1 and 2, respectively, comparing 

them to the ones of MBDoE, G-map eMBDoE, LH and factorial DoE. Finally, conclusions and 

future work are explained in Section 6.5.  

6.2 Mathematical methods  

The proposed method assumes that the most suitable model structure 𝐟𝐟 has already been selected 

among a set of candidates and that experiments must be collected to to minimise model 

prediction variance in the whole design space, while ensuring statistically sound model 

parameters and a reduced experimental burden. As explained in Chapter 5, an explorative 

MBDoE can be obtained by defining a set of candidate design points 𝛗𝛗cand over which the 

objective function of MBDoE can be optimised. In G-map eMBDoE (Cenci et al., 2023), the 

set of candidates 𝛗𝛗cand is given by the points satisfying a constraint on G-optimality, while the 
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objective function can be one of the classical ‘alphabetical’ criteria for parameters precision 

(Pukelsheim, 1993). To determine 𝛗𝛗cand, a scalar index 𝐽𝐽𝐺𝐺  of G-optimality is calculated for 

every possible experimental condition. In this Dissertation, 𝐽𝐽𝐺𝐺  is given by the sum of the 

contributions of model prediction variance given by all responses at all sampling points. Then, 

candidate design points are selected based on a specific constraint: in Chapter 4, the most 

suitable constraints for Model 1 and 2 were given by 𝐽𝐽𝐺𝐺 ≥  𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max; in Chapter 5, the most 

suitable constraints for the kinetic model of total methane oxidation was given by 𝐽𝐽𝐺𝐺 ≤

 𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max. Also, the most suitable threshold 𝐽𝐽𝐺𝐺,thr was case-dependent. 

In fact, both inequality types (≥ and ≤) may be suitable to enhance space exploration with 

respect to state-of-the-art MBDoE. The main rationale is illustrated in Figure 6.1 (consider that 

the state-of-the-art MBDoE would select the point with maximum information content 𝜓𝜓max, 

namely the white point in Figure 6.1): 

• if the region with the highest information content (namely, 𝜓𝜓max) overlaps with the region 

having the maximum model prediction variance (Figure 6.1a), space exploration can be 

achieved by selecting candidate experimental conditions having lower values of G-

optimality. This is equivalent of choosing candidate design points 𝛗𝛗cand satisfying the 

following condition:  

𝐽𝐽𝐺𝐺 ≤  𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max. (6.1) 

• if the region with the highest information content (namely, 𝜓𝜓max) overlaps with the region 

having the minimum model prediction variance (Figure 6.1b), space exploration can be 

achieved by favoring the experiments with higher model prediction variance 𝐽𝐽𝐺𝐺 . In other 

terms, the candidate design points 𝛗𝛗cand of the G-map eMBDoE problem should be of the 

form: 

𝐽𝐽𝐺𝐺 ≥  𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max; (6.2) 

 
                            (a)                                                            (b) 

Figure 6.1. Illustrative examples of H-maps (red-green maps with values from 𝜓𝜓min to 𝜓𝜓max) 
and G-maps (blue-yellow maps with values from 0 to 𝐽𝐽𝐺𝐺,max). 

In this work, a method to automatically select the G-optimality constraint (both inequality type 

and threshold value) is developed. Moreover, the constraint is adapted as soon as a new 
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experiment is performed; therefore, the proposed method will be referred to as adaptative G-

map eMBDoE (Figure 6.2) from now on. 

 
Figure 6.2. Scheme of the adaptative G-map eMBDoE.  

As shown in Figure 6.2, the proposed method is made of the following steps: 

• Step 1. Initialisation of the procedure, namely in the definition of: model equations f; 

parameters bounds and initial values 𝛉𝛉�LB, 𝛉𝛉�UB, 𝛉𝛉�0; response measurement errors 𝝈𝝈𝑦𝑦; 

control variables 𝐮𝐮 and their bounds 𝐮𝐮LB, 𝐮𝐮UB. 

• Step 2. Generation of G-maps and H-maps with the current parameters values and 

considering the whole design space. 

• Step 3. Analysis of the overlap of H-maps and G-maps. First, the range of values of 

information content calculated in the entire H-map, namely [𝜓𝜓min, 𝜓𝜓max] is divided into 

10 equally spaced intervals, thus intervals with length 1
10

(𝜓𝜓max − 𝜓𝜓min). Then, the points 

having the highest information content, i.e. the ones with 𝜓𝜓 ∈ [ 9
10

(𝜓𝜓max − 𝜓𝜓min),𝜓𝜓max], 
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indicated as 𝛗𝛗𝜓𝜓≫ and represented by grey squares in Figure 6.2, are characterised: i) the 

𝐽𝐽𝐺𝐺  values of all highly informative points 𝛗𝛗𝜓𝜓≫ are considered (considering Figure 6.2, the 

𝐽𝐽𝐺𝐺  values of the grey squares in the G-map) and their minimum, mean and maximum values 

(respectively, 𝐽𝐽𝐺𝐺,min
𝜓𝜓≫ , 𝐽𝐽𝐺𝐺,mean

𝜓𝜓≫ , 𝐽𝐽𝐺𝐺,max
𝜓𝜓≫ ) are calculated; ii) minimum, mean and maximum 

values of G-optimality of  𝛗𝛗𝜓𝜓≫ are compared to the 𝐽𝐽𝐺𝐺  values of the rest of the G-map by 

calculating the following fractions:  

𝐹𝐹𝐺𝐺,min
𝜓𝜓≫ =

𝐽𝐽𝐺𝐺,min
𝜓𝜓≫

𝐽𝐽𝐺𝐺,max
; 

(6.3) 

𝐹𝐹𝐺𝐺,mean
𝜓𝜓≫ =

𝐽𝐽𝐺𝐺,mean
𝜓𝜓≫

𝐽𝐽𝐺𝐺,max
; 

(6.4) 

𝐹𝐹𝐺𝐺,max
𝜓𝜓≫ =

𝐽𝐽𝐺𝐺,max
𝜓𝜓≫

𝐽𝐽𝐺𝐺,max
. 

(6.5) 

These indices are useful for the following steps. 

• Step 4. Selection of the inequality type: a) if 𝐹𝐹𝐺𝐺,mean
𝜓𝜓≫ > 70%, it means that the regions with 

highest information content overlap with regions with the highest model prediction 

variance, therefore the inequality type 𝐽𝐽𝐺𝐺 ≤  𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max is used and the threshold is 

selected as in Step 5a; b) if 𝐹𝐹𝐺𝐺,mean
𝜓𝜓≫ ≤ 70%, it means that the regions with highest 

information content overlap with regions with lower model prediction variance, therefore 

the inequality type 𝐽𝐽𝐺𝐺 ≥  𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max is used and the threshold is selected as in Step 5b. 

• Step 5. Selection of the G-optimality threshold 𝐽𝐽𝐺𝐺,thr. If 𝐹𝐹𝐺𝐺,mean
𝜓𝜓≫ > 70%, space exploration 

is favoured by the following threshold (Step 5a): 

𝐽𝐽𝐺𝐺, thr = 𝐹𝐹𝐺𝐺,min
𝜓𝜓≫ − 10%

�𝐽𝐽𝐺𝐺, min−𝐽𝐽𝐺𝐺,min
𝜓𝜓≫ �

𝐽𝐽𝐺𝐺, max
  

(6.6) 

If 𝐹𝐹𝐺𝐺,mean
𝜓𝜓≫ ≤ 70%, space exploration is favoured by the following threshold (Step 5b): 

𝐽𝐽𝐺𝐺, thr = 𝐹𝐹𝐺𝐺,max
𝜓𝜓≫ + 10%

�𝐽𝐽𝐺𝐺, max−𝐽𝐽𝐺𝐺,max
𝜓𝜓≫ �

𝐽𝐽𝐺𝐺, max
  

(6.7) 

In the procedure explained, the use of G-optimality values referring to the set of points 𝛗𝛗𝜓𝜓≫ 

(namely, 𝐽𝐽𝐺𝐺,min
𝜓𝜓≫ , 𝐽𝐽𝐺𝐺,mean

𝜓𝜓≫ , 𝐽𝐽𝐺𝐺,max
𝜓𝜓≫ , 𝐹𝐹𝐺𝐺,min

𝜓𝜓≫ , 𝐹𝐹𝐺𝐺,mean
𝜓𝜓≫ ,𝐹𝐹𝐺𝐺,max

𝜓𝜓≫  ) and to the whole H-map (𝜓𝜓min, 𝜓𝜓max) 

and G-map (𝐽𝐽𝐺𝐺, max) are necessary in order to obtain a general procedure that can be applied at 

any model at any step of the experimental campaign. For instance, in Chapter 4 G-optimality 

values are of the order of 10 for Model 1 of and of the order of 1 for Model 2, therefore a 

constraint like, e.g., 𝐽𝐽𝐺𝐺 ≥  𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max=8 would be meaningful for Model 1, but useless with 

Model 2.  
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The method illustrated in Figure 6.2 can be applied iteratively, as soon as a new experiment is 

used to update model parameters. Since it does not require user-defined settings, it is suitable 

for the integration in an automated chemical platform. Ongoing work is focusing on the 

integration of a Python 3.9 (Rossum and Drake, 2009) script into the LabView program of the 

platform for total methane oxidation presented in Chapter 5. In this Chapter, the adaptative G-

map eMBDoE is evaluated in silico by comparing its results to the ones obtained in Chapter 4 

with the original G-map eMBDoE method. Specifically, the results of G-map eMBDoE, 

MBDoE, factorial DoE and LH in terms of experiments design, parameters precision and model 

prediction variance (Section 4.3, Chapter 4) are directly compared to the ones of the new 

method applied to Model 1 and Model 2. For sake of comparison, two different G-optimality 

thresholds are used for the original G-map eMBDoE: 𝐽𝐽𝐺𝐺,thr=0.25 and 𝐽𝐽𝐺𝐺,thr=0.75.  

6.3 Results 

To test the performance of the adaptative G-map eMBDoE method proposed in this work, the 

same models used to test the original G-map eMBDoE are used: (i) Model 1, represented by 

the algebraic equation and simulation settings (e.g., control variables ranges, parameters bounds 

and initial values; preliminary experiments; E-optimal criterion) used in Section 4.3.1 of 

Chapter 4; (ii) Model 2, represented by the differential equations and simulation settings (e.g., 

control variables ranges, parameters bounds and initial values; sampling points; preliminary 

experiments; E-optimal criterion) used in Section 4.3.2 of Chapter 4. Similarly to Chapter 4, 

the experiments designed through the adaptative G-map eMBDoE are simulated according to 

the following procedure: 

• model equations and true parameter vector 𝛉𝛉true (the same as in Tables 4.1 and 4.3 of 

Chapter 4) are used to generate the exact value of the model responses 𝑦𝑦exact at the selected 

experimental condition; 

• a gaussian error with zero mean and standard deviation 𝜎𝜎𝑦𝑦 (the same 𝜎𝜎𝑦𝑦 used in Chapter 4 

for Model 1 or 2) is then added to 𝑦𝑦exact to obtain a “noisy” measurement 𝑦𝑦noisy. 

Finally, the results are analysed in terms of: (i) experiments design; (ii) parameters precision as 

𝑡𝑡-tests; (iii) profiles of scalar indices of G-optimality; (iv) G-maps at specific iterations.  
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6.3.1 Model 1 

The experimental budget for Model 1 is made of 𝑁𝑁𝑒𝑒=21 experiments, with 5 preliminary LH 

experiments equal for all methods considered. Figure 6.3 shows the 16 experiments designed 

by means of the different methods. The experiments designed through MBDoE (Figure 6.3a) 

focus in the central region of the design space, namely around 𝑢𝑢1 = 0 and 𝑢𝑢2 = 0, while an 

increasing threshold such as 𝐽𝐽𝐺𝐺,thr=0.25 (Figure 6.3b) and 𝐽𝐽𝐺𝐺,thr=0.75 (Figure 6.3c) tend to 

favour experimental conditions towards the boundary of the design space, namely 𝑢𝑢1 and 𝑢𝑢2 

around −10 and 10. The outcome of the adaptative G-map eMBDoE is an intermediate situation 

between the two G-map eMBDoE considered: in fact, it selects points that are more away from 

the center of the design space with respect to G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25 (and, especially, 

with respect to MBDoE), but less points laying on the boundary of the design space with respect 

to G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 6.3. Design space with the experiments selected by: (a) MBDoE; (b) G-map eMBDoE 
𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.25; (c) G-map eMBDoE 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (d) Latin Hypercube; (e) 42 full factorial DoE; 
(f) adaptative G-map eMBDoE. Red squares indicate the 5 preliminary experiments.  

Table 6.1 shows the number of distinct design points for every method used. The adaptative G-

map eMBDoE selects 13 distinct points, therefore also in this case the outcome is an 

intermediate situation between G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25 (12 distinct points) and G-

map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 (16 distinct points).  

Table 6.1.  Number of distinct design points for each scenario compared in the study. 

Scenario No. distinct design points  
MBDoE 7 

eMBDoE, thr:0.25 12 
eMBDoE, thr:0.75 16 

LH 16 
DoE  16 

Adaptative eMBDoE 13 

Table 6.2 shows the G-optimality constraints selected in the 16 optimal designs. The two 

inequality types ≥ and ≤ are used with the same frequency, while the thresholds JG,thr selected 

are all between 0.50 and 0.90. 

Table 6.2.  Constraint selected by the adaptative G-map eMBDoE. “L” stands for “lower” 
and indicates the inequality ≤; “H” stands for “higher” and indicates the inequality ≥. 

Inequality type 𝑱𝑱𝑮𝑮,𝒕𝒕𝒕𝒕𝒕𝒕  
L 0.89 
H 0.76 
L 0.50 
L 0.76 
H 0.89 
H 0.72 
H 0.82 
H 0.72 
H 0.65 
L 0.50 
H 0.90 
L 0.57 
L 0.84 
L 0.83 
L 0.81 
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L 0.81 

Parameters precision is assessed in terms of t-tests, as shown in Figure 6.4. The parameter 
requiring a higher number of calibration experiments to be precisely estimated is 𝜃𝜃5 (Figure 
6.4e). MBDoE and G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟={0.25, 0.75} require 10 experiments (5 
preliminary and 5 optimal) to pass the t-test, LH requires 17 experiments, while DoE is not able 
to pass the t-test within the experimental budget. The adaptive G-map eMBDoE method is able 
to estimate the parameter with 11 experiments, therefore its performance is similar to the ones 
of state-of-the-art MBDoE for parameters precision.   

 

 
(a) 

  
(b) 

 

  
(c) 

 

  
(d) 

 

 
(e) 

  

Figure 6.4. Profiles of t-values calculated with: MBDoE; G-map eMBDoE 
(𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟={0.25;0.75}); Latin Hypercube (LH); 42 full factorial DoE; adaptative MBDoE. 
Figures (a)-(e) show results of parameters 1-5, respectively; t-values are compared against 
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the reference t-value (‘ref’ in the legend). Only t-values referred to the 16 optimal/explorative 
data are shown.  

The performance of the different methods are compared in terms of reduction of model 

prediction variance in the whole design space, represented by scalar measures of G-optimality 

(mean and maximum 𝐽𝐽𝐺𝐺  as explained in Chapter 4).  The closer 𝐽𝐽𝐺𝐺,mean and 𝐽𝐽𝐺𝐺,max to zero, the 

better the performance. Therefore, the following ranking is obtained considering Figure 6.5: 

• mean G-optimality 𝐽𝐽𝐺𝐺,mean, from the 11th experiment onwards (Figure 6.5a): 

MBDoE > eMBDoE ( 𝐽𝐽𝐺𝐺,thr=0.25) > DoE > LH, adaptative eMBDoE > eMBDoE 

(𝐽𝐽𝐺𝐺,thr=0.75); 

• maximum G-optimality  𝐽𝐽𝐺𝐺,max (Figure 6.5b): 

MBDoE > eMBDoE (𝐽𝐽𝐺𝐺,thr=0.25) > DoE, LH, adaptative eMBDoE > eMBDoE 

(𝐽𝐽𝐺𝐺,thr=0.75). 

The minimum G-optimality 𝐽𝐽𝐺𝐺,min is equal to zero for all methods, therefore it is omitted. 

Therefore, profiles of both 𝐽𝐽𝐺𝐺,mean and 𝐽𝐽𝐺𝐺,max indicate that space exploration allows to reduce 

model prediction variance of Model 1 with respect to conventional MBDoE. The greatest 

reduction of model prediction variance with respect to MBDoE is achieved by G-map eMBDoE 

with 𝐽𝐽𝐺𝐺,thr=0.75, while the smallest one is achieved by G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25. 

Although the performance of the adaptative G-map eMBDoE is not as good as the one of G-

map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75, it is still much better than the one of conventional MBDoE or 

of a G-map eMBDoE with an inappropriate threshold (here, 𝐽𝐽𝐺𝐺,thr=0.25). These results suggest 

that the use of the proposed adaptative eMBDoE is advantageous in cases where it is not 

possible to determine the most suitable 𝐽𝐽𝐺𝐺,thr beforehand.  

 
(a) 

 
(b) 

Figure 6.5. Profiles of scalar indices of G-optimality including (a) mean G-optimality; (b) 
maximum G-optimality calculated for: MBDoE; G-map eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟={0.25;0.75}); Latin 
Hypercube (LH); full factorial DoE; adaptative G-map eMBDoE.     
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Moreover, Figure 6.6 shows the G-maps obtained with 20 calibration experiments, namely the 

maps used to select the last point of the simulated experimental campaign. Already measured 

experiments are indicated as orange squares, while the red point indicates the experiment 

designed at the current iteration. MBDoE (Figures 6.6a) and G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25 

(Figures 6.6b) have similar G-maps: the smallest model prediction variance (represented by 

blue regions) is found around the center of the design space, namely with 𝑢𝑢0 and 𝑢𝑢1 close to 

zero, while the highest model prediction variance (represented by yellow regions) are found at 

the boundary of the design space. A better performance is found with factorial DoE, although 

not uniformly in the design space: in fact, model prediction variance is smaller in 

correspondence of the levels of 𝑢𝑢1 selected by the design and higher in between. A greater and 

more homogeneous reduction of model prediction variance is obtained with LH, adaptative G-

map eMBDoE and G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75, further confirming that the adaptative 

eMBDoE method allows to considerably improve model predictions in the whole design space 

without requiring human intervention.  

  
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) (f) 

Figure 6.6. G-maps generated after 20 calibration experiments designed with: (a) MBDoE, 
(b) eMBDoE and 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.25; (c) eMBDoE and 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75, (d) LH, (e) 42 full factorial DoE; 
(f) adaptative G-map eMBDoE. The already measured experiments are indicated with 
orange squares, while the red point indicates the experiment selected at this iteration.    

The computational times to build G-maps and H-maps (with E-optimal criterion) and to design 

one experiment with Python 3.9 in an Intel® Core™ i7-10875H CPU, @ 2.30 GHz processor 

with 64.0 GB RAM are: 0.12 seconds with G-map eMBDoE; 0.12 seconds with MBDoE; 0.27 

seconds with adaptative G-map eMBDoE. Therefore, the calculation of the best G-optimality 

constraint trough the overlap of G-maps and H-maps increases the computational time with 

respect to the original G-map eMBDoE method, but overall the time required is negligible.  

6.3.2 Model 2 

As in Section 4.3.2, the same 3 LH preliminary experiments are used for all methods and then 

20 experiments are designed, thus reaching a total experimental burden of 𝑁𝑁𝑒𝑒=23 experiments. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.7. Designs: (a) MBDoE; (b) eMBDoE, 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.25; (c) eMBDoE, 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (d) 
LH; (e) factorial DoE; (f) adaptative.   

Table 6.3.  Number of distinct design points for every scenario compared in the study. 

Scenario No. distinct design points  
MBDoE 2 

eMBDoE, thr:0.25 3 
eMBDoE, thr:0.75 4 

LH 16 
DoE  16 

Adaptative eMBDoE 7 
The experiments designed for Model 2 by MBDoE (Figure 6.7a) are concentrated in two 

distinct points: (𝑢𝑢1,𝑢𝑢2)=(0.05 h-1, 35 g/L) and (𝑢𝑢1,𝑢𝑢2)=(0.125 h-1, 35 g/L). The methods looking 

for a trade-off between space exploration and information maximisation, namely G-map 

eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25 (Figure 6.7b) and with 𝐽𝐽𝐺𝐺,thr=0.75 (Figure 6.7c) and adaptative G-

map eMBDoE (Figure 6.7f), select experiments that are clustered around the two optimal 

conditions selected by MBDoE. Among the three G-map eMBDoE methods, the adaptative one 

selects the highest number of distinct design points (Table 6.3): 7 distinct points, thus more than 

4 and 3 selected by G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 and 𝐽𝐽𝐺𝐺,thr=0.25, respectively. Moreover, 

as shown in Table 6.4, 13 out of 20 designed experiments have the “≤” inequality type and all 

thresholds are between 0.50 and 0.90. 

Table 6.4.  Constraint selected by the adaptative G-map eMBDoE. “L” stands for “lower” 
and indicates the inequality ≤; “H” stands for “higher” and indicates the inequality ≥. 
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Inequality type 𝑱𝑱𝑮𝑮,𝒕𝒕𝒕𝒕𝒕𝒕  
L 0.89 
H 0.76 
L 0.50 
L 0.76 
H 0.89 
H 0.72 
H 0.82 
H 0.72 
H 0.65 
L 0.50 
H 0.90 
L 0.57 
L 0.84 
L 0.83 
L 0.81 
L 0.81 
L 0.51 
L 0.79 
L 0.50 
L 0.78 

Parameters precision is evaluated in terms of t-tests in Figure 6.8. The most critical parameter 

is 𝜃𝜃�4, since a higher number of experiments is required to precisely estimate it. In fact, 

completely exploratory procedures such as factorial DoE and LH are not able to estimate it 

within the experimental budget. On the other side, state-of-the art E-optimal MBDoE requires 

12 optimal experiments to estimate 𝜃𝜃�4 (Figure 6.7d), while G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75, 

requires 11 experiments. The adaptative G-map eMBDoE is able to estimate 𝜃𝜃�4 with 14 optimal 

experiments, therefore the experimental burden is not considerably increased with respect to 

the previous two methods and it is reduced with respect to G-map eMBDoE with an 

unfavourable threshold such as 𝐽𝐽𝐺𝐺,thr=0.25. 

  

 
(a) 

   
(b) 



Autonomous adaptation of the trade-off between space exploration and information maximisation for 
exploratory MBDoE  139 

  2023, Francesca Cenci, University of Padova (Italy)   

 
(c) 

  
(d) 

Figure 6.8. Profiles of t-values calculated with: MBDoE; G-map eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟={0.25; 
0.75}); Latin Hypercube (LH); 42 full factorial DoE; adaptative G-map eMBDoE. The 𝑡𝑡-
values are compared against the reference 𝑡𝑡-value (‘ref’ in the legend) for parameters 1-4 in 
figures (a)-(d), respectively.  

Then, the different design methods are compared in terms of model prediction variance. As 

shown in Figure 6.9, minimum, mean and maximum G-optimality calculated in the whole 

design space decrease with MBDoE and G-map eMBDoE methods with respect to the values 

found with completely explorative methods like factorial DoE and LH. Moreover, 𝐽𝐽𝐺𝐺,mean and 

𝐽𝐽𝐺𝐺,max are smaller with adaptative G-map eMBDoE and G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 with 

respect to the values obtained with MBDoE and G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25. This 

suggests that the adaptative method proposed in this work is able to lead to a minimisation of 

model prediction variance in the whole design space without the need to manually select the 

most convenient threshold of G-optimality.  

 
(a) 

 
(b) 
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(c) 

 

Figure 6.9. Profiles of scalar indices of G-optimality calculated with: MBDoE; G-map 
eMBDoE (𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟={0.25;0.75}); Latin Hypercube (LH); 42 full factorial DoE; adaptative G-
map eMBDoE. Three different scalar measures are shown: (a) minimum G-optimality; (b) 
mean G-optimality; (c) maximum G-optimality.      

As in Chapter 4, G-maps at after 15 calibration experiments are visualised (Figure 6.10), since 

it is the first iteration where G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 is able to reduce completely 

model prediction variance in the entire design space (darkest blue in the whole design space, 

Figure 6.10a). The only other method that is able to reduce completely model prediction 

variance in the entire design space is the adaptative G-map eMBDoE proposed in this work 

(Figure 6.10f), while all the others have a higher model prediction variance at 𝑢𝑢2 close to 35g/L. 

Therefore, the performance of the adaptable G-map eMBDoE in terms of model prediction 

variance is equivalent to the one of G-map eMBDoE with the most favorable threshold (namely, 

𝐽𝐽𝐺𝐺,thr=0.75).   

 
(a) 

 
(b) 
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(c) (d) 

 
(e) (f) 

Figure 6.10. G-maps generated after 15 calibration experiments. Four methods are 
compared: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.25;(c) G-map eMBDoE with 
𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (d) LH; (e) 42 full factorial DoE; (f) adaptative G-map eMBDoE. Orange 
squares indicate data already used to calibrate the model, while the red point indicates the 
experiment designed at the current iteration.   

The computational times to build G-maps and H-maps (with E-optimal criterion) and to design 

one experiment with Python 3.9 in an Intel® Core™ i7-10875H CPU, @ 2.30 GHz processor 

with 64.0 GB RAM are: 0.65 seconds with G-map eMBDoE; 0.65 seconds with MBDoE; 0.85 

seconds with adaptative G-map eMBDoE. Therefore, similarly to Model 1 (Section 6.3.1), the 

computational time required by the adaptative G-map eMBDoE is higher than the one required 

by MBDoE and G-map eMBDoE, but it is still negligible.     

6.4  Conclusions and future work 

Model-based design of experiments methods allow to maximise the information content of the 

experiments, therefore the modelling objectives such as discrimination among model equations 

or estimation of precise model parameters can be achieved with a reduced experimental burden. 

However, MBDoE aims only at optimising information content of the experiments and this may 
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lead to a scarce exploration of the design space; in turn, this may result in regions of the design 

space characterised by high model prediction variance. The G-map eMBDoE method proposed  

by Cenci et al. (2023; Chapter 4) allows to find a trade-off between space exploration and 

information maximisation thanks to a mapping of G-optimality (a measure of model prediction 

variance): first, G-optimality is calculated for every possible condition in the design space; then, 

candidate design points are selected based on a threshold on G-optimality that is selected by the 

user at the beginning and kept fixed throughout the experimental campaign; finally, the 

experimental condition having the highest information content among the candidates is selected 

as the experiment to be performed. The G-map eMBDoE method reduces model prediction 

variance and parameters uncertainty with respect to conventional information-based methods, 

such as MBDoE, and exploration-based methods, such as LH and factorial DoE, but the quality 

of the results depends on the selection of the G-optimality threshold selected by the user. In this 

work, a novel G-map eMBDoE method is proposed in order to automatically select the most 

suitable constraint on G-optimality for the system under study. The main rationale is that space 

exploration can be enhanced with respect to state-of-the-art MBDoE by considering the overlap 

between maps of information content, H-maps, and maps of model prediction variance, G-

maps. For instance, if the regions of the design space having the highest information content 

correspond to the regions with the highest model prediction variance, experiments design 

should be moved toward regions with lower model prediction variance. On the other side, if the 

points having the highest information content have the lowest model prediction variance, space 

exploration can be favored by selecting points with a higher model prediction variance. The 

analysis of the overlap between H-maps and G-maps allows to adapt the G-optimality constraint 

at every iteration, therefore the overall design method is referred to as adaptative G-map 

eMBDoE. To directly compare the performance of the adaptative G-map eMBDoE with respect 

to the original G-map eMBDoE with fixed threshold, the new method is applied to Model 1 and 

Model 2 of Cenci et al. (2023) and compared to the results previously obtained with MBDoE, 

LH, factorial DoE and G-map eMBDoE with two different thresholds, namely 𝐽𝐽𝐺𝐺,thr=0.25 and 

𝐽𝐽𝐺𝐺,thr=0.75. Results show that the proposed adaptative G-map eMBDoE provides a satisfactory 

level of space exploration, which may be less evident than the one obtained with 𝐽𝐽𝐺𝐺,thr=0.75 

but still enhanced with respect to the one with 𝐽𝐽𝐺𝐺,thr=0.25. Moreover, both inequality types, 

namely 𝐽𝐽𝐺𝐺 ≤ 𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max and 𝐽𝐽𝐺𝐺 ≥ 𝐽𝐽𝐺𝐺,thr𝐽𝐽𝐺𝐺,max, are selected by the adaptative G-map eMBDoE, 

proving that there was no contradiction in the use of different inequality types in Chapter 4 and 

5 since both can contribute to enhance space exploration. Parameters precision is achieved with 
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a number of experiments which is close to the one required by state-of-the-art MBDoE, thus 

reducing the experimental burden with respect to 𝐽𝐽𝐺𝐺,thr=0.25, LH and factorial DoE. Moreover, 

the proposed adaptative G-map eMBDoE has a smaller reduction of model prediction variance 

with respect to 𝐽𝐽𝐺𝐺,thr=0.75 with Model 1, but the reduction is comparable to the one of 

𝐽𝐽𝐺𝐺,thr=0.75 with Model 2 and it is always more marked than the one of MBDoE or G-map 

eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25. Considering that the advantage of fixing 𝐽𝐽𝐺𝐺,thr=0.75 with respect to 

fixing 𝐽𝐽𝐺𝐺,thr=0.25 is case-dependent, namely it depends on the system under study, and that it 

cannot be predicted beforehand, the proposed adaptative procedure provides satisfactory results 

in terms of trade-off between space exploration and information maximisation without 

requiring human intervention. For this reason, the adaptative G-map eMBDoE is suitable for 

integration into automated chemical platforms used in the pharmaceutical industry, regardless 

of the specific mathematical model used. To prove this statement, ongoing work is focusing on 

the implementation of this method in the automated chemical platform for total methane 

oxidation (the same used in Chapter 5), with the aim of achieving autonomous operation of the 

platform from the beginning to the end of the experimental campaign.  
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Chapter 7  
Prediction of drug solubility in organic 

solvent mixtures through machine-
learning on group contributions5 

In this work, a PLS model is proposed to make solubility predictions knowing: temperature, 

mixture composition before API dissolution and solvents structure in the form of UNIFAC 

(UNIQUAC Functional-group Activity Coefficients) subgroups.  The PLS model is tested with 

experimental data of a real drug substance and 14 organic solvents typically employed for 

crystallisation. Model predictions are accurate and precise with single solvents, binary mixtures 

and ternary mixtures at different compositions and temperature: 𝑅𝑅2 is equal to 0.92 and 0.90 

with calibration and validation data, respectively.The adequacy of the modelling approach 

proposed is confirmed by the satisfactory results obtained with 9 literature datasets on organic 

solubility of drug and drug-like compounds: the majority of validation and calibration data have 

𝑅𝑅2 between 0.95 and 0.99.  

7.1 Introduction  

Crystallisation is a critical operation in the pharmaceutical industry, since more than 90% of 

Active Pharmaceutical Ingredients (APIs) are synthesised as crystalline products (Orehek et al., 

2021) and crystallisation is used to separate and purify them. Crystallisation has a direct or 

indirect effect on the manufacturability and quality of the product (Orehek et al., 2021; Lemmer 

and Liebenberg, 2023): for instance, drug crystalline properties have an impact on downstream 

processes, such as filtration, drying and dissolution testing (Lemmer and Liebenberg, 2023). 

Moreover, solution crystallisation determines the solid-state modification of the API (Miller et 

al., 2007), which impacts on the final product performance, such as solubility, dissolution rates 

                                                           
5 Cenci, F., Diab, S., Harabajiu, K., Ferrini, P., Barolo, M., Bezzo, F. and Facco, P.. Machine-Learning approach 

based on group contributions for the prediction of solubility of drug and drug-like molecules in organic 
solvent mixtures [in preparation]. 
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and tablet hardness (Gao et al., 2017). Therefore, proper design and operation of the 

crystallisation units is crucial.  

One of the most important properties for the production and purification of APIs by 

crystallisation is solubility (Ruether and Sadowski, 2009; Bouillot et al., 2011). In fact, solvents 

selection relies on the knowledge of pharmaceuticals solubility in multiple organic solvents 

and/or solvents mixtures (Ruether and Sadowski, 2009; Papadakis et al., 2016; Ye and Ouyang, 

2021). Moreover, solid solubility in the crystallisation solvent is a key parameter for process 

design purposes: it determines the crystallisation configuration (cooling, evaporation, 

antisolvent) and the amount of cooling for a desired product yield (Bouillot et al., 2011).  

Due to the high number of potential solvents and their mixtures, it would be unfeasible to 

experimentally measure solubility in all of them (Cysewski et al., 2022). In addition, 

experimental solvents screening is hampered by the fact that solubility experiments are 

generally laborious and costly (Ruether and Sadowski, 2009; Ye and Ouyang, 2021) and API 

availability may be limited at the early stages of drug development (Bouillot et al., 2011). For 

this reason, the experimental screening should be supported by a theoretical screening 

(Cysewski et al., 2022); in other words, a model built with a small amount of experimental data 

should allow for solubility predictions in solvents systems not explored experimentally 

(Ruether and Sadowski, 2009). 

However, solubility prediction is still an open challenge (Boobier et al., 2020; Ye and Ouyang, 

2021). Different approaches have been proposed in literature to predict solid-liquid equilibrium 

(SLE) and they can be grouped into two main categories: thermodynamic models and data-

driven (or “black-box” or “empirical”) models (Ruether and Sadowski, 2009; Gharagheizi et 

al., 2011).  

For instance, thermodynamic models based on activity coefficients define solid-liquid 

equilibrium as the equality of the chemical potential of the solute in both the solid phase and 

the liquid phase. Then, the chemical potential of the solute in the saturated liquid is expressed 

in terms of activity coefficients, which in turn are calculated in different ways based on the 

thermodynamic model employed. A detailed explanation of these methods can be found in 

Elliott and Lira (2012). In general, thermodynamic models have the advantage of requiring a 

smaller amount of data to identify model parameters than data-driven ones (Ruether and 

Sadowski, 2009), but the choice of the best model for SLE is not trivial since they have been 

developed and used mainly for vapor-liquid or liquid-liquid equilibria (Bouillot et al., 2011). 

Bouillot et al. (2011) compared predictions accuracy of different thermodynamic models, 
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namely UNIFAC, UNIFAC mod., COSMO-SAC and NRTL-SAC. They employed five drug 

or drug-like molecules containing common functional groups (alcohols, ketones, amines), 

Ibuprofen, Acetaminophen, Benzoic acid, Salicylic acid and 4-aminobenzoic acid, together 

with a simple molecule, anthracene. The best results were obtained with UNIFAC and NRTL-

SAC, which were able to catch the correct order of magnitude of solubility. However, 

predictions were not accurate enough to obtain quantitative results. Moreover, the modified 

Apelblat equation (Apelblat et al., 1997; Apelblat et al., 1999) and the λh equation (Buchowski, 

1980) have been employed to correlate solubility experiments of several drug and drug-like 

molecules in organic solvents (Li et al., 2020; Wu et al, 2020; Hu et al., 2021; Zhou et al., 2021; 

Zhang et al., 2019; Huang et al., 2015; Wang et al, 2021). They are semi-empirical 

thermodynamic models that allow to accurately represent the dependence of solubility on 

temperature. However, neither the modified Apelblat equation nor the λh equation include 

molecular descriptors among the input variables, therefore the effect of different solvents 

cannot be represented by means of the same model and the model must be re-calibrated for 

every different solvent type. Furthermore, such models do not explicitly represent the 

dependence of solubility on the composition of the organic solvents mixture, therefore the 

model must be re-calibrated if, for instance, the same two organic solvents are mixed in 

different proportions.  

Data-driven models relate drug solubility to physico-chemical properties and/or molecular 

structure of drugs and solvents. The theory-based quantitative structure property relationship 

(QSPR) models are well-known empirical models, which relate the property of interest (e.g., 

solubility) to molecular descriptors like topological and geometric indices, quantum-

mechanical and thermodynamic quantities or group contributions. Moreover, QSPR models can 

relate input and output variables through either multivariate linear regression models, such as 

multivariate linear regression (MLR) and partial least squares (PLS), or nonlinear models, such 

as artificial neural network (Borhani et al., 2019). For instance, Duchowicz and Castro (2009) 

reviewed different QSPR models developed for the prediction of aqueous solubility of drug-

like compounds, with special attention on linear approaches which have the advantage of 

limiting the over-fitting of data and of facilitating the interpretation of possible cause/effect 

relationships with respect to non-linear approaches. Moreover, Enciso et al. (2016) developed 

an open-source software with linear QSPR models for the prediction of three key properties for 

drug development: solubility in water, Caco-2 cell permeability and brain-blood barrier 

permeation. However, there are still some limitations in the adoption of QSPR to model solid-
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liquid equilibria. First of all, the majority of studies consider solubility in water (Boobier et al., 

2020; Ye and Ouyang, 2021; Cysewski et al., 2022), while few models have been developed 

for solubility in organic solvents. For instance, Balakin et al. (2004) considered only one 

organic solvent, DMSO, widely used in the pharmaceutical industry for its high solvent power 

and relatively low chemical reactivity and toxicity. They considered solubility data of diverse 

drug-like compounds and developed a neural network model to classify new compounds as well 

soluble (+) or poorly soluble (-) in DMSO. Moreover, Boobier et al. (2020) aimed at developing 

a model for the prediction of organic solubility of new compounds; to do so, they compared 

different machine learning models calibrated with diverse compounds. However, due to the 

limited availability of organic solubility data in literature, they restricted the study to solubility 

data of neutral solutes in three single solvents: ethanol, benzene, acetone. Benzene is included 

besides its limited use in modern chemistry due to the adequate amount of available data. A 

larger amount of organic solvents was included in the work of Yu and Ouyang (2021), where 

different machine learning models, including light gradient boosting machine (lightGBM) and 

deep neural networks, were developed to predict the organic solubility at different temperatures. 

Literature data on 266 compounds in 123 organic solvents (single solvents) were employed for 

the purpose. This work contributed to the free web server FormulationAI 

(www.formulationai.computpharm.org), where a user-friendly interface allows to specify the 

compound of interest in the form of SMILES string or chemical formula and the software 

containing lightGBM and RandomForest algorithms predicts the compound solubility in 27 

different organic solvents. Another relevant example is the modelling approach proposed by 

Vermeire et al. (2022), where thermodynamic and machine learning models are combined to 

predict solubility of neutral solutes in different organic solvents and at different temperatures. 

This model was calibrated with three large solubility databases and lead to the development of 

a web service for the prediction of solubility for new compounds. The user must specify only 

three pieces of information, namely temperature and SMILES string or InChI of solutes and 

solvent, and solubility is predicted by the software. Besides these remarkable advances, such 

approaches based on single solvents are not exhaustive for crystallisation design and operation, 

where binary or ternary mixtures of organic solvents are typically present either as the main 

solvent system or after antisolvent addition. Some improvements in this regard were made by 

Cysewski et al (2022), who considered drug solubility in aqueous binary mixtures of 4-

formylmorpholine, DMSO and DMF, and by Przybyłek et al. (2021), who included aqueous 

binary mixtures of acetonitrile, 1,4-dioxane, DMF, DMSO, methanol, but more organic 
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mixtures should be included to have a comprehensive understanding of organic drug solubility. 

Additional limitations of QSPR are related to modelling aspects. In many cases, the dependence 

of solubility on temperature is not explicitly defined and the range of applicability of the model 

is not clearly specified, making generalisation more difficult (Cysewski et al., 2022). Moreover, 

a large number of descriptors (>100) is available to build QSPR models, thus complicating 

model interpretability and the selection and/or decorrelation of regressors for the system of 

interest (Chinta and Rengaswamy, 2019; Boobier et al., 2020; Cysewski et al., 2022). Moreover, 

complex modelling approaches, such as deep machine learning models, have been recently 

employed, but they require a considerable number of data thus limiting their applicability to 

solvents and solvents mixtures not already explored (Cysewski et al., 2022).  

In this Chapter, we propose a machine-learning approach to predict the solubility of drug and 

drug-like molecules in complex mixtures of organic solvents commonly employed for 

crystallisation design and operation.  The input variables (or regressors) of the model explicitly 

include temperature and do not rely on the experts’ knowledge, but are inspired to the UNIFAC 

theory: the solvents composing the mixture are represented in terms of functional groups as in 

Gmehling et al. (1978). Model regressors include both functional groups taken individually and 

interactions between pairs of functional groups. A PLS model is used to automatically handle 

correlation among regressors; moreover, PLS is a linear model, therefore less prone to over-

fitting (Duchowicz and Castro, 2009).  The model is tested with solubility data of real drug 

substance measured in 14 organic solvents; single solvents, binary and ternary mixtures are 

measured at different temperatures with a high-throughput technology employing 96-vials 

plates. The adequacy of the modelling approach proposed is further tested with 9 literature 

datasets on solubility of drug and drug-like molecules in organic solvents. More details on 

materials, experimental setup, literature datasets and modelling approach can be found in 

section 2. Results obtained with experimental and literature data are shown in section 3, while 

conclusions and future work are explained in section 4. 

7.2 Materials and methods 

This section illustrates experimental and modelling strategies adopted to predict drug and drug-

like molecules solubility. First, the experimental setup to generate solubility experiments is 

explained in Subsection 7.2.1, by specifying the materials used and the experimental protocol 

employed. Then, Subsection 7.2.2 focuses on mathematical modelling and explains the novel 
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modelling approach proposed, together with the indices calculated to evaluate model 

performance with calibration and validation data.   

7.2.1 Experimental setup 

In this section, the materials employed are described (Subsection 7.2.1.1), as well as the 

experimental procedures and the equipment used to perform the experiments (Subsections 

7.2.1.2-7.2.1.4).  

7.2.1.1 Materials  

 The solute for solubility experiments is a real drug substance produced in house with a 

molecular weight of 823.18 g/mol and a purity of 98.3% by w/w. It will be named API #1 from 

now on.  

The following solvents (commercially available) are used in the solubility screens without 

additional purification or analysis: 1-butanol (99.8% purity, Sigma Aldrich, USA), n-propanol 

(≥99.9%, Honeywell), 2MeTHF (BioRenewable, anhydrous ≥99.0%, contains 250 ppm BHT 

as inhibitor, Sigma Aldrich, USA), isopropanol (ACS reagent, ≥99.8% (GC), Sigma Aldrich, 

France), 3-pentanone (99%, Alfa Aeser, Germany), acetonitrile (for HPLC, gradient grade, 

≥99.9%, Sigma Aldrich, France), cyclohexane (Chromasolv® for HPLC, ≥99.7%, Sigma 

Aldrich, Israel), ethanol (absolute, ≥99.8% (GC), Sigma Aldrich, UK), ethyl acetate (≥99.7%, 

Sigma Aldrich), GVL (ReagentPlus® 99%, Sigma Aldrich, China), isopropyl acetate (≥99.6%, 

Sigma Aldrich, USA), methanol (LChrosolv® for LC-MS hypergrade, Sigma Aldrich, 

Germany), propionitrile (99%, Sigma Aldrich), n-butyl acetate (anhydrous ≥99%, Sigma 

Aldrich, USA). Two datasets, one for calibration and one for validation, are generated with a 

high-throughput technology employing 96-vials plates; more details on the experimental 

procedures are found in Subsections 7.2.1.2-7.2.1.4. All measurements are replicated, therefore 

48 different experimental conditions are available in one plate and the two replicates should not 

be split into calibration and validation data. With the abovementioned 14 organic solvents, one 

plate is filled using all single solvents and 34 binary mixtures to have calibration experiments. 

Solvent types are chosen to form binary mixtures as explained in Subsection 7.2.2.3; as in the 

industrial practice, the same plate is measured at two temperatures, namely 20 and 40°C. Some 

vials do not provide valid measurements, therefore 176 calibration experiments are obtained. 

Instead, validation data are chosen in order to test the model in new experimental conditions, 

such as binary mixtures of different compositions and/or solvent types, ternary mixtures, 
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experiments at a higher temperature, 50°C. The main features of the two datasets are 

summarized in Table 7.1. Notice that measurements of single solvents at 20 and 40°C have 

been repeated in validation and this is useful to assess inter-plate variability; moreover, among 

the 14 solvents, only cyclohexane is not included in calibration as single solvent because of 

non-valid measurements, but binary mixtures containing this solvent are present. If the standard 

deviation 𝜎𝜎𝑦𝑦 of the measured solubility (as molar fraction) is calculated for every pair of 

replicated measurements, an average 𝜎𝜎𝑦𝑦 equal to 5.73∙ 10−5 is found; if the same experimental 

condition is considered (repeated experimental conditions including measurements in different 

plates), an average 𝜎𝜎𝑦𝑦 of 7.20∙ 10−5 is found. Especially if compared to the overall range of 

measured solubility, namely 0.0077, the difference between the two 𝜎𝜎𝑦𝑦 suggests that the inter-

plate variability is just a very limited fraction of the overall variability.  

Table 7.1. Description of the datasets generated in this work using API #1 and 14 
organic solvents. “No. cal.” stands for “number of calibration experiments”; “No. 
val.” stands for “number of validation experiments” 

Solute Solvents  T[°C] No. cal. No. val. 

API #1 

1-butanol,  
n-propanol, 2MeTHF, 
isopropanol,  
3-pentanone, 
acetonitrile, 
cyclohexane, ethanol, 
ethyl acetate, GVL, 
isopropyl acetate, 
methanol, propionitrile,  
n-butyl acetate  

20, 
40, 
50 

Single solvents:  
26 (at 20°C) + 26 (at 
40°C) = 52 
Binary mixtures:  
64 (at 20°C) + 60 (at 
50°C) = 124 
Ternary mixtures:  
0 
 
Total: 176 

Single solvents:  
56 (at 20°C)+24 (at 
40°C)+28 (at 50°C) =108 
Binary mixtures:  
69 (at 20°C)+8 (at 
40°C)+61 (at 50°C) =138 
Ternary mixtures:  
22 (at 20°C)+14 (at 
40°C)+6 (at 50°C) =42 
Total: 288 

Further assessment of the adequacy of the modelling approach proposed is performed with 

literature data on solubility of drug and drug-like molecules in organic solvents commonly 

employed in crystallization units are considered. The retrieved datasets include the following 

solutes: 1) N,N-Dibenzylhydroxylamine (DBHA), which is mainly used in polymers to inhibit 

inhibiting aging and degradation (Li et al., 2020), but is included in this study since arylamines 

constitute the core structure of many therapeutic agents (Svejstrup et al., 2017); 2) Fenofibrate, 

which is a hypolipidemic medication administered to patients with hypertriglyceridemia or type 

2 diabetes (Sadeghi Rasmuson, 2020; Jung et al., 2018); 3) Benorilate, which has anti-

inflammatory, analgesic and antipyretic properties (Wu et al., 2020); 4) L-Arginine L-

pyroglutamate, which has positive effects on the immune capacity of humans and animals (Hu 

et al., 2021); 5) 2-chloro-4-amino-6,7-dimethoxyquinazoline, which is one of the key 

intermediates in the production on some cardiovascular drugs (Zhou et al., 2021); 6) 

Tetramethylpyrazine, which has physiological activity on cardiovascular and cerebrovascular 
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diseases (Zhang et al., 2019) 7) Coumarin, whose derivatives have several therapeutic 

applications, from antitumor and anti-HIV therapies to the production of stimulants for central 

nervous system, antibacterials, anti-inflammatory and anti-coagulants (Huang et al., 2015; 

Musa et al., 2008); 8) 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), which is 

used as organic semiconductor (Wang et al., 2021); 9) Nicotinamide, used to treat diabetes 

mellitus, stroke, bullous pemphigoid, and psoriasis vulgaris (Khajir et al., 2024).  

Table 7.2. Description of the datasets retrieved from Krasnov et al., (2022)  

Solute Solvents  T[°C] No. exp. No. cal. No. val. 

1) Dibenzylhydroxy
lamine 

2) C14H15NO  
3) 621-07-8 

1-Butanol, Acetone, 
Acetonitrile, DCM, 
Ethanol, Ethyl acetate, 
Isopropanol, Methanol, 
Toluene, n-Propanol 

approx. 0, 
5, 10, 15, 
20, 25, 30, 
35, 40, 45, 
50 

108 21 3 

1) Fenofibrate 
2) C20H21ClO4    
3) 49562-28-9 

Acetone, Acetonitrile, 
Ethanol, Ethyl acetate, 
Methanol 
 

−30,−25, 
−20,−15, 
−10,−5, 0, 
5, 10, 15, 
20, 25, 30, 
35 

42 14 5 

1) Benorilate 
2) C17H15NO5    
3) 5003-48-5 
  

1-Butanol, Acetonitrile, 
Ethanol, Ethyl acetate, 
Isopropanol, Methanol, 
Toluene, Water, n-
Propanol 

5, 10, 15, 
20, 25, 30, 
35, 40, 45 
 

99 19 3 

1) Arginine PCA 
2) C11H21N5O5    
3) 56265-06-6 
 

Acetone, Acetonitrile, 
DCM, Ethanol, Ethyl 
acetate, Isopropanol, 
Methanol, Water 
 

10, 15, 20, 
25, 30, 35, 
40, 45 
 

40 19 3 

1) Doxazosin 
Related 
Compound C 

2) C10H10ClN3O2  
3) 23680-84-4  
 

1-Butanol, DMF, 
Ethanol, Ethyl acetate, 
Isopropanol, Methanol, 
Toluene, n-Propanol 

0, 5, 10, 
15, 20, 25, 
30, 35, 40 
 

72 18 4 

1) Tetramethylpyra
zine 

2) C8H12N2  
3) 1124-11-4 

1-Butanol, Acetone, 
Acetonitrile, Ethanol, 
Ethyl acetate, 
Isopropanol, Methanol, 
n-Propanol 

0, 5, 10, 
15, 20, 25, 
30, 35, 40 
 

72 17 3 

1) Coumarin 
2) C9H6O2  
3) 91-64-5 
 

Cyclohexane, Ethanol, 
Isopropanol, Methanol, 
n-Propanol 
 

5, 10, 15, 
20, 25, 30, 
35, 40, 45 
 

44 11 3 

1) TPBi 
2) C45H30N6    
3) 192198-85-9 
 

1-Butanol, Acetonitrile, 
Cyclohexane, DMSO, 
Ethanol, Ethyl acetate, 
Isopropanol, Methanol 

10, 20, 30, 
40, 50 
 

44 18 3 

Notice that they are all related to pharmaceutical applications, except for TPBi which is 

nevertheless included because its complex molecular structure is useful to further test the 
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modelling approach proposed. The first 8 datasets are retrieved from BigSolDB solubility 

dataset of Krasnov et al. (2022), while the last one is retrieved from Khajir et al. (2024). Their 

chemical formula is shown in Figures G.2 and G.3, respectively, of Appendix G. The first 8 

datasets (Table 7.2) are made of solubility values in single solvents only; the majority of data 

points considered employ the same solvents used in the new generated data, namely 1-butanol, 

acetonitrile, cyclohexane, ethanol, ethyl acetate, isopropanol, methanol, n-propanol. Additional 

solvents that may be used for crystallization design are considered: water, dimethyl sulfoxide 

(DMSO), toluene, acetone, dimethylformamide (DMF) and dichloromethane (DCM). In this 

work, literature datasets are divided into calibration and validation datasets (Table 7.2): the 

calibration dataset is made of one measurement for every solvent at minimum and maximum 

temperature. Only calibration dataset 7 (Coumarin) also includes other two temperature values 

foe every solvent in order to have smaller 95%CIs and this is likely needed due to the smaller 

set of regressors available with this dataset (results are shown in section 7.3). 

As regards the ninth literature dataset (Table 7.2), it includes solubility measurements in ethanol 

and acetonitrile, both as single solvents and as binary mixtures. These solvent systems were 

selected by Khajir et al. (2024) because they are frequently employed in extractions and high-

pressure liquid chromatography, thus they are involved in crystallization procedures. Different 

molar fractions of ethanol are considered in the binary mixtures before solute dissolution, 

namely 𝑥𝑥ethanol ={0, 0.10, 0.20, 0.40, 0.50, 0.60, 0.7, 0.8, 0.9, 1.0}, and every level of 𝑥𝑥ethanol 

is measured at 5 temperature values, namely 𝑇𝑇={20.05, 25.05, 30.05, 35.05, 40.05}°C. The 

standard deviation of such experimental measurements ranges between 0.01 and 0.38; the mean 

value of the replicates at a given experimental condition is used to test the prediction accuracy 

of the model proposed (see section 7.3). For comparison purposes, this dataset is split into 

calibration and validation data as in Khajir et al. (2024): data of single solvents and of binary 

mixtures with 𝑥𝑥ethanol ={0.30, 0.50, 0.7} measured at minimum and maximum temperatures 

are used to calibrate the model, the rest is used to validate it. 

Table 7.3. Description of the datasets retrieved from Khajir et al. (2024)  

Solute Solvents  T[°C] No. exp. No. cal. no. val. 
1) Nicotinamide 
2) C6H6N2O  
3) 98-92-0 

Ethanol, Acetonitrile,   
Ethanol + Acetonitrile 

20.05, 25.05, 
30.05, 35.05, 
40.05  

55 10 45 

7.2.1.2 Solvent Mixture Preparation 

Water used for preparation of solvent mixtures is purified via the Milli-Q IQ Water System. 

The following mixtures are prepared by in-house laboratory support groups: backing solvent 



Prediction of drug solubility in organic solvent mixtures through machine-learning on group 
contributions  153 

  2023, Francesca Cenci, University of Padova (Italy)   

(acetonitrile:tetrahydrofuran:water, 62.5:25:12.5% by v/v), mobile phase A (water + 0.05% 

TFA by v/v) and mobile phase A (acetonitrile + 0.05% TFA by v/v).  

All other binary or ternary solvent mixtures are prepared using the commercial solvents listed 

above. Those solvent mixtures are prepared volumetrically by adding the desired volumetric 

solvent fraction in 8 mL glass vials to obtain 4 mL nominal volume. For example, 50/50 %v/v 

binary mixtures are prepared by mixing 2 mL of each solvent. After stirring the binary and 

ternary mixtures, images of the vials are taken using the Freeslate CM3 platform (now Big 

Kahuna, Unchained Labs, California – USA).  

The actual volume of the mixtures (i.e., to account for any volume changes occurring due to 

non-ideal solvent mixing) is determined by using a modified version of a MATLAB® (The 

MathWorks, Inc, Massachusetts – USA) image analysis algorithm. A detailed explanation of 

the image analysis algorithm is described in Duffield et al. (2021). Volumes after mixing are 

employed in the analysis of Appendix I.  

7.2.1.3 Solubility Screen 

Solubility screens of API #1 are performed in 1 mL glass shell vials placed in a 96-well metal 

plate. In each vial, 50 mg of API are dispensed though a Labman MultiDose™ (Labman, UK) 

powder dispensing platform. After addition of micro stir bars and 500 µL of solvent or solvent 

mixture in each well, the plate is closed with a PTFE sheet to ensure chemical compatibility, 

two rubber mats to ensure gas-tight sealing, and a metal lid. The sealed plate is then stirred on 

a temperature-controlled tumble stirrer at 550 rpm at the desired temperature (20, 40, or 50 °C) 

until equilibrium is ensured (18 h at 20 °C; 6 h at high temperature). After that time, the plate 

is centrifuged (3500 rpm, 5 min, 20 or 40 °C, Sorvall Lynx 4000, Thermo Fisher Scientific, Inc, 

Massachusetts – USA) to compact any insoluble API on the bottom of the vials. The lid and 

covering mats are then removed, and each vial is visually inspected to determine if the solutions 

are saturated or the API is fully dissolved, and to annotate any peculiar characteristic (e.g., 

formation of a gel or phase splitting). Finally, the supernatant is sampled and diluted for UPLC 

analysis. Sampling and dilution are performed on an CyBio Felix (Analytik Jena AG, Germany) 

liquid handling platform, equipped with a 250/96 head. 10x and 100x serial dilution are 

performed by sampling 40 µL of solution and adding 360 µL of diluent (acetonitrile:THF:water 

62.5:25:12.5 vol%). 
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7.2.1.4 Ultra Performance Liquid Chromatography (UPLC) analysis 

The diluted samples are analysed by UPLC on an 1290 Infinity II (Agilent Technologies, Inc, 

California – USA) system equipped with a Waters XSelect CSH C18 30 mm (ID 2.1 mm, 

particle size 2.5 um) column kept at 40 °C. The mobile phases are water + 0.05 % TFA (A) and 

acetonitrile + 0.05 % TFA (B). The following gradient is used: t = 0 min, 97 % A; t = 0.5 min, 

2 % A; t = 0.6 min, 2 % A; t = 0.61 min, 97 % A; analysis time = 0.8 min. The flow rate is 2.2 

mL/min, and the injection volume is 2 µL. The chromatograms are collected at 220 nm (80 Hz) 

and quantitative analysis of the API in solution is carried out by comparison with a calibration 

curve built between 15.6 and 1000 µg/mL. 

7.2.2 Mathematical models 

A machine learning approach is developed in order to predict API solubility based on 

temperature, mixture composition and solvents structure. Several molecular descriptors have 

been proposed in literature to represent molecular structure, but there is no consensus on the 

best selection. To overcome this limitation, the consolidated UNIFAC theory is used as a 

reference. This section briefly summarises the main principles of the UNIFAC theory and 

explains the model proposed.   

7.2.2.1 UNIFAC theory for solid-liquid equilibrium 

As in Gmehling et al. (1978), let’s assume that a solid can dissolve into the liquid phase, while 

the liquid does not enter into the solid phase. Solvent and solute species are indicated by the 

subscripts 1 and 2, respectively. Solid and liquid phases are indicated by the superscripts S and 

L, respectively. The phase equilibrium for the solid solute can be expressed as equality of 

fugacity in the solid phase (𝑓𝑓2S) and in the liquid phase (𝑓𝑓2L):  

𝑓𝑓2S = 𝑓𝑓2L . (7.1) 

Since there is no solubility of compound 1 in the solid phase, the left-hand side of Eq. (7.1) 

becomes equal to the fugacity of the pure compound: 

𝑓𝑓2S = 𝑓𝑓2,pure
S  . (7.2) 

Instead, the right-hand side can be expressed in terms of the activity coefficient (𝛾𝛾2) as: 

𝑓𝑓2L =  𝛾𝛾2𝑥𝑥mol,2𝑓𝑓2,pure
L  , (7.3) 

where 𝑥𝑥mol,2 is the mole fraction and 𝑓𝑓2,pure
L  is the fugacity of the pure subcooled liquid 2 at 

system temperature.  
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UNIFAC calculates the activity coefficient 𝛾𝛾2 in Eq. (7.3) by considering two contribution: a 

combinatorial one, related to differences in size and shape, and a residual one, related to 

differences in intermolecular forces of attraction. Moreover, being a group-contribution 

method, it considers the set of functional groups in the mixture instead of considering molecules 

as a whole. Thus, the activity coefficient of the 𝑖𝑖-th component in a multicomponent mixture is 

given by: 

ln(𝛾𝛾𝑖𝑖) = ln�𝛾𝛾𝑖𝑖𝐶𝐶� + ln(𝛾𝛾𝑖𝑖𝑅𝑅), (7.4) 

where 𝛾𝛾𝑖𝑖𝐶𝐶 and 𝛾𝛾𝑖𝑖𝑅𝑅 denote combinatorial and residual contributions, respectively. The former is 

a function of composition expressed as molar fractions, while the latter depends on both 

composition and temperature. Moreover, 𝛾𝛾𝑖𝑖𝑅𝑅 is calculated with binary-interaction parameters 

𝑎𝑎𝑙𝑙𝑚𝑚 which must be estimated with experimental data for every pair of functional groups 𝑙𝑙 and 

𝑚𝑚 in the mixture. Finally, the definition of main groups (e.g., Methyl) and sub-groups (e.g., 

𝐶𝐶𝐻𝐻3, 𝐶𝐶𝐻𝐻2, 𝐶𝐶𝐻𝐻 and 𝐶𝐶) and their corresponding parameters are available in the literature, for 

instance in Dortmund Data Bank (http://www.ddbst.com/). 

This theory is employed as starting point to develop the machine learning model described in 

Subsection 7.2.2.2. 

7.2.2.2 Machine learning model for solid-liquid equilibrium 

An empirical model 𝐟𝐟 for the prediction of API solubility in organic solvents at different 

temperatures and composition is developed. It can be expressed by the general form:  

𝑦𝑦 = 𝐟𝐟(𝐮𝐮), (7.5) 

where 𝑦𝑦 is the response variable, 𝐮𝐮 is the vector of 𝑉𝑉 regressors and 𝐟𝐟 is a set of algebraic 

equations (the model is not dynamic since solubility is measured at equilibrium).  

In this case, the response variable is the logarithm of the API molar fraction 𝑥𝑥API in the liquid 

phase at equilibrium: 

𝑦𝑦 = log (𝑥𝑥API), (7.6) 

where 𝑥𝑥API  is the same as 𝑥𝑥2 in Eq. (7.3).   

The UNIFAC theory (Subsection 7.2.2.1) is employed to define the basic components of the 

vector of regressors 𝐮𝐮: a) temperature 𝑇𝑇; b) solvent types; c) molar composition.  

Solvent types are identified through their subgroups as defined by the UNIFAC theory 

(http://www.ddbst.com/). Therefore, given a pool of 𝑁𝑁𝑘𝑘 subgroups for all organic solvents, the 
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𝑖𝑖-th solvent is identified by a vector 𝛖𝛖𝑖𝑖[1× 𝑁𝑁𝑘𝑘] containing the number of occurrences υ𝑖𝑖𝑘𝑘 of 

each of the 𝑘𝑘 subgroup in the 𝑖𝑖-th solvent: 

𝛖𝛖𝑖𝑖 = [υ𝑖𝑖,1, … , υ𝑖𝑖,𝑘𝑘, … , υ𝑖𝑖,𝑁𝑁𝑘𝑘] . (7.7) 

For instance, the 14 organic solvents employed in this work for solubility experiments have 

𝑁𝑁𝑘𝑘=11 subgroups overall: CH3, CH2, CH,  OH, CH3OH, CH2CO, CH3COO, CH2COO, THF, 

CH3CN, CH2CN . Table 7.4 shows the numeric labels used to indicate all subgroups in the 

following sections. Moreover, Table 7.5 shows the 𝛖𝛖𝑖𝑖 vectors used to represent every solvent 

type used in this work.    
Table 7.4. Numerical label for every subgroup. The main group of every subgroup is shown. 

No.  Main group Subgroup  
1  Methyl CH3 
2  Methyl CH2 
3  Methyl CH 
4  Alcohol OH 
5  Methanol CH3OH 
6  Ketone CH2CO 
7  Acetate CH3COO 
8  Acetate CH2COO 
9  Ether THF 
10  Nitrile CH3CN 
11  Nitrile CH2CN 

Table 7.5. Number of occurrences of the 11 subgroups in the 14 organic solvents employed 
for solubility experiments.  

Solvent 𝜐𝜐𝑖𝑖,1 𝜐𝜐𝑖𝑖,2 𝜐𝜐𝑖𝑖,3 𝜐𝜐𝑖𝑖,4 𝜐𝜐𝑖𝑖,5 𝜐𝜐𝑖𝑖,6 𝜐𝜐𝑖𝑖,7 𝜐𝜐𝑖𝑖,8 𝜐𝜐𝑖𝑖,9 𝜐𝜐𝑖𝑖,10 𝜐𝜐𝑖𝑖,11 
1-Butanol 1 3 0 1 0 0 0 0 0 0 0 
2MeTHF 1 2 1 0 0 0 0 0 1 0 0 
3-Pentanone  2 1 0 0 0 1 0 0 0 0 0 
Acetonitrile 0 0 0 0 0 0 0 0 0 1 0 
Cyclohexane 0 6 0 0 0 0 0 0 0 0 0 
Ethanol 1 1 0 1 0 0 0 0 0 0 0 
Ethyl acetate 1 1 0 0 0 0 1 0 0 0 0 
GVL 1 1 1 0 0 0 0 1 0 0 0 
Isopropanol 2 0 1 1 0 0 0 0 0 0 0 
Isopropyl acetate 2 1 1 0 0 0 1 0 0 0 0 
Methanol 0 0 0 0 1 0 0 0 0 0 0 
Propionitrile 1 0 0 0 0 0 0 0 0 0 1 
n-propanol 1 2 0 1 0 0 0 0 0 0 0 
n-butyl acetate 1 3 0 0 0 0 1 0 0 0 0 

Considering a mixture with 𝑁𝑁𝐿𝐿 organic solvents, the presence of the 𝑘𝑘-th subgroup is due to the 

contributions of all solvents in the mixture; moreover, the contribution of every solvent is 

proportional to its molar fraction in the mixture. Therefore, the input factor g𝑘𝑘 representing the 

effect of the 𝑘𝑘-th subgroup in the mixture is obtained by the following weighted sum: 

𝑔𝑔𝑘𝑘 = ∑ υ𝑖𝑖𝑘𝑘𝑥𝑥mol,𝑖𝑖
𝑁𝑁𝐿𝐿
𝑖𝑖=1 . (7.8) 



Prediction of drug solubility in organic solvent mixtures through machine-learning on group 
contributions  157 

  2023, Francesca Cenci, University of Padova (Italy)   

The molar fractions 𝑥𝑥mol,𝑖𝑖, 𝑖𝑖=1,…, 𝑁𝑁𝐿𝐿, of Eq. (7.8) refer to the organic solvents in the mixture, 

before the dissolution of API and assuming no volumetric effects due to mixing of liquids.  This 

type of molar fractions are useful in extrapolation, since mixing effects and API solubility 

cannot be known before performing experiments. The effect of these assumptions on the final 

model are analysed in Appendix I.  

Similarly to the UNIFAC theory, also binary interactions 𝑔𝑔𝑙𝑙𝑔𝑔𝑚𝑚 between subgroups are 

considered. Temperature, subgroups and interactions among subgroups for all observations 𝑁𝑁 

are collected in the input matrix 𝐔𝐔 [𝑁𝑁 × 𝑉𝑉]: 

𝐔𝐔 =

⎣
⎢
⎢
⎢
⎡
𝐮𝐮1
⋮
𝐮𝐮𝑛𝑛
⋮
𝐮𝐮𝑁𝑁⎦
⎥
⎥
⎥
⎤
 ,   (7.9) 

where the 𝑛𝑛-th observation is represented by the  𝐮𝐮𝑛𝑛 vector [1 × 𝑉𝑉] of input variables (or 

regressors): 

𝐮𝐮𝑛𝑛  = �𝑢𝑢𝑛𝑛,1, , … ,𝑢𝑢𝑛𝑛,𝑉𝑉 � = [𝑇𝑇,𝑔𝑔1, … ,𝑔𝑔𝑁𝑁𝑘𝑘 ,𝑔𝑔1𝑔𝑔2, … ,𝑔𝑔𝑁𝑁𝑘𝑘−1𝑔𝑔𝑁𝑁𝑘𝑘] �
𝑛𝑛
 ; (7.10) 

in other terms, the first regressor is temperature, the next 𝑁𝑁𝑘𝑘 regressors represent the single 

subgroups 𝑔𝑔𝑘𝑘 (Eq. 7.8) and the remaining (𝑉𝑉 − 𝑁𝑁𝑘𝑘 − 1)  regressors represent the binary 

interactions 𝑔𝑔𝑙𝑙𝑔𝑔𝑚𝑚 between subgroups.  

Finally, the PLS model explained in section 2.2.1 is applied to handle regressors correlations 

and to relate 𝐔𝐔 to the corresponding vector of response variables y [𝑁𝑁 × 1]. The performance 

of the PLS model in calibration and validation is assessed in terms of sample diagnostics, model 

prediction uncertainty, variable diagnostics and model diagnostics as explained in section 

2.2.1.1. 

7.2.2.3 Selection of binary mixtures 

The aim of the experimental screening is to calibrate a solubility model with measurements of 

single solvents and a few binary mixtures in such a way as to use it for solubility predictions in 

different conditions, e.g. binary mixtures with different solvent types and/or composition and 

ternary mixtures, correctly representing also the temperature dependence. Binary mixtures 

should be selected in order to have non-zero entries for every subgroup 𝑔𝑔𝑖𝑖 and subgroup 

interaction 𝑔𝑔𝑖𝑖𝑔𝑔𝑖𝑖 (as defined in section 7.2.2.2). To do so, the procedure illustrated in Figure 7.1 

is adopted:  

• step 1: the list of solvents of interest is defined; 
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• step 2a: all single solvents are selected for the experiments;   

• step 2b: the list of possible binary mixtures is made using the solvents included in step 1; 

• step 3: mixtures affected by miscibility issues are excluded; 

• step 4: mixtures having a boiling temperature 𝑇𝑇𝑏𝑏 too close to the maximum temperature for 

the experiments are excluded; 

• step 5: binary mixtures are selected from the available ones in such a way as the effect of 

all subgroups 𝑔𝑔𝑖𝑖 and subgroups interaction 𝑔𝑔𝑖𝑖𝑔𝑔𝑖𝑖 in Eq. (7.10) can be represented by 

measured data.  

• step 6: binary mixtures are added following the rationale of step 5 until the 96-vial plate is 

filled. 

 

Figure 7.1. Schematic representation of the method used to select experimental conditions 
to calibrate the PLS model.  

Selecting candidate solvent systems that are single phase liquid mixtures is required to facilitate 

the measurement of a reliable solubility value. Single phase systems are also generally more 

desirable for manufacturability purposes in reaction and crystallisation systems. Moreover, 

boiling temperatures too close to the maximum experimental temperature of 50°C should be 
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avoided in order to prevent solvent systems from evaporating excessively during the 

experiments; this improves the accuracy of the measured solubility values. Therefore, a 

minimum boiling temperature of 55°C is accepted. Explanation of the procedure to study 

miscibility and evaporation issues for steps 3 and 4 are provided in Appendix H. Once the 

procedure shown in Figure 7.1 is completed, the preparation of the 96-vial plate remains the 

same as in the common industrial practice: binary mixtures are prepared by adding specified 

volumes of each solvent; the 96 vials are measured at two temperatures (in this work, 20°C and 

40°C or 20° and 50°C, see section 7.2.1).   

7.3 Results and discussion 

In this section, the performance of the proposed PLS model is analysed. Subsection 7.3.1 shows 

the results obtained with calibration data, while Subsection 7.3.2 shows the results with 

validation data, also distinguishing specific subsets of validation data (as defined in Subsection 

7.2.1.1). The most influential regressors on the PLS model are analysed and discussed in 

Subsection 7.3.1.1, in order to provide a physical interpretation of the functional groups that 

may have a considerable effect on drug solubility. 

Finally, the proposed methodology is validated using benchmark datasets from the literature in 

Subsection 7.3.3. 

7.3.1 Calibration data 

The 𝐔𝐔 and 𝐘𝐘 calibration data (Table 7.1, Subsection 7.2.1.1) are used to build the PLS model 

after being autoscaled. The selected number of LVs is chosen following the “eigenvalue-

greater-than-one” rule (Mardia et al., 1979). The first 5 latent variables are retained for the 

model, thus greatly reducing the initial input dimensionality (i.e., 52 regressors 𝑢𝑢𝑖𝑖). Even if 5 

LVs represent a limited amount of 𝐔𝐔 variability, approximately 32%, they represent the 92% 

of variability of the response 𝐘𝐘, which is absolutely adequate for predictive purposes.   

Sample diagnostic for the obtained PLS model is performed by comparing Hotelling 𝑇𝑇2 and 

SPE statistics with the corresponding 95% confidence limits (Figure 7.2).  
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Figure 7.2. Calibration results of the PLS model: SPE vs T2 plot with 95% confidence limits 
(dotted lines).      

As shown in Figure 7.2, the majority of observations have a 𝑇𝑇2 and SPE statistics below the 

95% confidence limit, suggesting that the model is able to represent average behaviour and 

correlation structure of the data.  

Predictions of API solubility with the respective 95% CI are compared to the corresponding 

measured values in the parity plot of Figure 3. 

 
Figure 7.3. Calibration results of the PLS model: parity plot of predicted and measured API 
solubility, in the original scale (mole fractions) and with 95% confidence intervals.      

The points in Figure 7.3 are close to the diagonal and have sufficiently small 95% CIs, 

suggesting that model predictions are in accordance with experimental data and their precision 

is satisfactory. Coherently, calibration measurements have 𝑅𝑅2 close to 1, 0.92, and a small 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸, 4. 67 ∙ 10−4. Moreover, 94% of the observations have a 95%CI that crosses the 

diagonal, namely their prediction errors are statistically equivalent to zero.   
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7.3.1.1 Most impactful regressors 

The most influential regressors on the PLS model are analysed through 𝛃𝛃 regression coefficients 

(Eq. 19) and VIP indices (Eq. 2.28). In Figure 7.4, the length of the bars refer to the values of 

the VIPs, while filled and hatched bars indicate positive and negative values of 𝛃𝛃, respectively.  

 

Figure 7.4. VIP scores of the variables used to build the PLS model calibrated with API #1 
experimental data. Filled bars represent positive 𝜷𝜷, hatched bars represent negative 𝜷𝜷 . The 
red dotted line represents the threshold of 1 for the VIPs.  

Based on Figure 7.4 and considering also VIP>0.9 (to include regressors with high impact but 

slightly smaller than 1), the following regressors have a considerable impact on the PLS model: 

• temperature; 

• subgroups (sorted): 7(CH3COO) > 5 (CH3OH) > 4 (OH)> 2(CH2); 

• interactions among subgroups (sorted): 4*6 (OH *CH2CO) >4*10 (OH *CH3CN) 

> 1*7 (CH3*CH3COO) > 2*7  (CH2*CH3COO) > 4*9 (OH * THF) > 2*5 (CH2*CH3OH) 

>5*6 (CH3OH* CH2CO) >2*4 (CH2*OH) > 5*10 (CH3OH *CH3CN) > 4*7 (OH 

*CH3COO) > 1*5(CH3*CH3OH) > 7*10 (CH3COO*CH3CN) >1*4 (CH3* OH) 

 > 3*7 (CH*CH3COO) > 4*5 (OH*CH3OH) > 1*2 (CH3*CH2) 

> 5*7 (CH3OH*CH3COO) > 5*9(CH3OH* THF).  

Therefore, mainly interactions of 1 (CH3), of 4 (OH) and of 5 (CH3OH) with other 

subgroups. 
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The significant effect of temperature on solubility is expected, since solubility increase with 

temperature is evident also experimentally. As regards the relevant influence of CH3 and CH2, 

as single regressors and/or in binary interactions, it can be explained by the fact that they are 

very common functional groups, therefore they impact model parametrization. The influence 

of OH and CH3OH is likely due to the possibility of forming hydrogen-bounds. Moreover, 

CH3COO has a polar oxygen due to the double bond C = O and this polarity likely induces 

interactions with other groups in the mixture, hence impacting solubility. 

Among the 6 regressors having VIP>1 and a negative 𝛽𝛽, 5 of them involve subgroup 7 

(CH3COO): CH3COO as single subgroup and in the binary interaction parameters 1*7  

(CH3*CH3COO),  2*7  (CH2*CH3COO), 3*7 (CH *CH3COO) and 7*10 (CH3COO*CH3CN). This 

suggests that the descrease of solubility of the tested drug is mainly correlated with the presence 

of subgroup 7 (CH3COO). 

Finally, subgroups 6 (CH2CO), 9 (THF) and10 (CH3CN), involved in significant interactions, 

likely owe their influence to polarity, as well: CH2CO has a polar oxygen due to the C = O bond; 

ethers like THF have polar oxygens and nitriles like CH3CN have triple bond on CN, thus a 

polar nitrogen. Such polarity is likely responsible for the interaction with other functional 

groups, with an impact on solid solubility.  

7.3.2 Validation of the model on new unknown binary and ternary mixtures   

After autoscaling, the validation dataset of 288 data points (see Table 7.1 in section 7.2.1.1) is 

projected onto the PLS model calibrated with the data of Subsection 7.3.1. Sample diagnostics 

are shown in Figure 7.5 in terms of Hotelling 𝑇𝑇2 and SPE statistics.  

 
Figure 7.5. Validation results of the PLS model: SPE vs T2 plot with 95% confidence limits.      
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As shown, Hotelling 𝑇𝑇2 and SPE statistics are below their 95% confidence limits for the 

majority of the observations, with no observation with both statistics above the limits. These 

results are analogous to the ones obtained with calibration data (Figure 7.2).  

Model predictions with 95% CI are compared against the corresponding measured values in 

Figure 7.6. 

 
Figure 7.6. Validation results of the PLS model: parity plot of measured versus predicted 
solubilities, in the original scale (mole fractions) and with 95% CI.      

Figure 7.6 shows that model predictions are precise and in accordance with the experimental 

measurements. This result is confirmed by 𝑅𝑅2 = 0.90, thus close to 1, and by the small 𝑅𝑅𝑆𝑆𝑀𝑀𝐸𝐸 

equal to 4. 90 ∙ 10−4. Moreover, 93% of the predictions have a prediciton error that is 

statistically equivalent to 0, because their 95%CI crosses the diagonal. Therefore, model 

predictions of validation experiments have an accuracy and a precision that is comparable to 

the one of calibration experiments.  

Validation experiments can be divided into subgroups having similar features, such as 

temperature and number and types of solvents employed. They are analysed in a separate way 

in Subsection 7.3.2.1.  

7.3.2.1 Specific types of validation data 

Validation data are divided into the following subgroups: a) single solvents; b) binary mixtures; 

c) subset of binary mixtures in b) that have a pair of organic solvents not employed in 

calibration; d) ternary mixtures; e) validation data (single solvents, binary mixtures, ternary 

mixtures) at 50°C only. Prediction and accuracy of model predictions for those subgroups are 

shown in Figure 7.7; the corresponding 𝑅𝑅2 and RMSE are shown in Table 7.6.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 7.7. Validation results of the PLS model: a) measurements of single solvents not used 
in calibration; b) all binary mixtures selected for validation; c) binary mixtures with mixing 
of solvent types not used in calibration; d) ternary mixtures; e) all validation measurements 
at 50°C. Predicted values of the response variable are shown with their 95% CI.       
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Table 7.6. Validation results of the PLS model: R2 and RSME calculated with 
predicted and measured response values in the original scale (molar fractions). 

Type of validation experiment 𝑹𝑹𝟐𝟐  𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹  
single solvents 0.71 3.80∙ 10−4 
all binary mixtures 0.89 5.73∙ 10−4 
binary mixtures with solvent types not used in calibration 0.66 3.02∙ 10−4 
ternary mixtures 0.94 4.35∙ 10−4 
measurements at 50°C 0.88 6.64∙ 10−4 

By comparing the measured solubilities of single solvents (Figure 7.7a), binary mixtures 

(Figure 7.7b) and ternary mixtures (Figure 7.7d) it can be seen that mixtures allow to reach 

higher values of drug solubility with respect to single solvents. Moreover, there is not an 

increase of drug solubility by using such ternary mixtures rather than the binary mixtures.  

Figure 7.7 shows also that model predictions are precise and accurate for every subgroup of 

validation experiments, even though the experimental conditions are outside the temperature 

range explored in calibration (Figure 7.7e) and/or mixtures with different number and types of 

organic solvents are used (Figures 7.7d and c, respectively). Satisfactory results are found with 

respect to the coefficient of determination (Table 7.6), since binary mixtures (Figure 7.7b), 

ternary mixtures (Figure 7.7d) and measurements at 50°C (Figure 7.7e) have a 𝑅𝑅2 close to or 

higher than 0.90. Single solvents and binary mixtures not used in calibration (Figures 7.7a, and 

7.7c, respectively) have a smaller 𝑅𝑅2, approximately 0.70, but this is likely due to the smaller 

average solubility values that determine a smaller denominator in Eq. (2.14). In fact, the average 

values of the solubility data shown in Figure 7.7a-e are, respectively: a) 6.58∙ 10−4; b) 0.0019; 

c) 9.12∙ 10−4; d) 0.0024; e) 0.0021. This explanation is further supported by the fact that RMSE 

of single solvents and binary mixtures are small, 3.81∙ 10−4 and 3.02∙ 10−4 respectively, even 

smaller than the one obtained with calibration experiments. Overall, the RMSE in validation 

ranges between 3.02∙ 10−4 and 6.64∙ 10−4, therefore it is considerably smaller than the overall 

variation of measured solubility, namely 0.0077.   

7.3.3 Literature data 

Some free web services for organic solubility predictions are available, such as Formulation AI 

and RMG - Reaction Mechanism Generator, thanks to the contributions of Ye and Ouyang 

(2021) and Vermeire et al. (2022), respectively. However, a direct quantitative comparison 

between the results of sections 7.3.1-7.3.2 and the predictions of these online models cannot be 

made: first, the online models allow to predict solid solubility only in single solvents (no binary 

or ternary mixtures); moreover, SMILES strings are required as inputs, but SMILES strings 
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typically refer to the freebase molecules (such as the API of the drug substance indicated as 

API#1), while in this work the mesylate salt of the freebase is employed. 

Therefore, the adequacy of the proposed PLS method is assessed in a different way, namely by 

using 9 benchmark datasets from the Literature, as introduced in Section 7.2.1.1. Table 7.7 and 

7.8 refer to, respectively, the 8 datasets of organic solubility in single solvents retrieved from 

Zenodo (Krasnov et al., 2022) and the dataset of organic solubility in single solvents and binary 

mixtures retrieved from Khajiret al. (2024). Tables 7.7 and 7.8 include also information on the 

PLS model: the number of original variables 𝑢𝑢𝑖𝑖  defined as in Eq. (7.10); the number of latent 

variables of the PLS model; the accuracy of models predictions calculated as 𝑅𝑅2 and RMSE. 

The corresponding parity plots are shown in Figures 7.8 and 7.9.  
Table 7.7. Description of the datasets retrieved from Krasnov et al., (2022) and used 
to build PLS models to predict SLE. Solvent types different from the ones employed in 
the experimentation of section 3.1-3.2 are indicated in bold. 

Dataset No. exp. cal. No. exp. val. No. 𝒖𝒖𝒋𝒋 No. LV 𝑹𝑹𝟐𝟐 calib. 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 cal. 𝑹𝑹𝟐𝟐 val.  𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 val. 
1 20 88 21 4 0.98 0.0035 0.99 0.0014 
2 10 32 14 4 0.99 0.0067 0.99 0.0041 
3 22 77 19 3 0.82 3.49∙ 10−4 0.87 1.99∙ 10−4 
4 16 24 19 3 0.94 0.0172 0.99 0.0056 
5 16 56 18 4 0.995 1.91∙ 10−4 0.998 8.20∙ 10−5 
6 16 56 17 3 0.97 0.0205 0.97 0.0121 
7 20 24 11 3 0.95 0.0355 0.95 0.0109 
8 16 23 16 3 0.92 2.4∙ 10−4 0.96 1.33∙ 10−4 

As shown in Figure 7.8, the 95% CIs of model predictions are always smaller than the overall 

variation of the measured solubility values, suggesting that model predictions are sufficiently 

precise. Besides being close to the diagonal, the majority of prediction have a 95% CI that 

crosses the bisector, meaning that the prediction error is statistically negligible; more 

specifically, the percentages of predictions whose 95%CIs contain the corresponding measured 

value are: 99% (Figure 7.8a); 100% (Figure 7.8b); 98% (Figure 7.8c); 98% (Figure 7.8d); 99% 

(Figure 7.8e); 100% (Figure 7.8f); 100% (Figure 7.8g); 97% (Figure 7.8h). Coherently,  𝑅𝑅2 is 

≥0.90, thus very close to 1, for all the considered datasets, except for borylate (Figure 7.8c) 

which nonetheless has  𝑅𝑅2 equal to 0.82 and 0.87 in calibration and validation, respectively, 

therefore still indicating a good prediction accuracy. Notice that the model performance in 

validation is not degraded with respect to the calibration one, with  𝑅𝑅2 ≥0.99 for DBHA (Figure 

7.8a), Fenofibrate (Figure 7.8b), L-Arginine L-pyroglutamate (Figure 7.8d) and 2-chloro-4-

amino-6,7-dimethoxyquinazoline (Figure 7.8e). 

 



Prediction of drug solubility in organic solvent mixtures through machine-learning on group 
contributions  167 

  2023, Francesca Cenci, University of Padova (Italy)   

 
(a) 

 

 
(b) 

(c) 

 

(d) 
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(h) 
Figure 7.8. Parity plots of data from Krasnov et al. (2022) versus the corresponding 
predictions. Model predictions are displayed with their 95% confidence intervals.        
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The PLS model structure is appropriate also at temperature values very different from the range 

of 20-50°C explored with API #1 (Subsections 7.3.1-7.3.2): for instance, Fenofibrate solubility 

(Figures 7.8b) is measured at much lower temperatures, namely -30,-25, -20,-15, -10,-5 °C, but 

the determination coefficient is still very high in both calibration and validation, namely 

𝑅𝑅2=0.99. 
Table 7.8. Description of the datasets retrieved from Khajir et al. (2024)       

No. exp. cal. No. exp. val. No. 𝒖𝒖𝒋𝒋 no. LV 𝑹𝑹𝟐𝟐 cal. 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 cal. 𝑹𝑹𝟐𝟐 val.  𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 val. 
10 45 11 3 0.99 0.0023 0.99 0.0018 

 

Figure 7.9. Parity plots of measured literature data from Khajir et al. (2024) versus the 
corresponding predictions obtained with the PLS model. Model predictions are displayed 
with their 95% confidence intervals.             

Even though only 10 experimental points over 55 measured overall are employed in calibration 

(Table 7.8), the PLS model is able to accurately and precisely predict solubility: predictions are 

very close to the diagonal (Figure 7.9) and their 95%CI are much smaller than the overall range 

of variation of solubility and they always (100% of the times) cross the diagonal itself (Figure 

7.9). This holds with both calibration and validation data, with  𝑅𝑅2=0.99 (Table 7.8).  

Overall, the 9 literature datasets further prove that the proposed modelling approach is adequate 

with a variety of solid molecules and organic solvents commonly employed in crystallization 

units. Notice that the 9 datasets (Table 7.7 and 7.8) span 2 order of magnitude of organic 

solubility: indeed, organic solubility of Benorilate (Figure 7.8c) and TPBi (Figure 7.8h) have 

an order of magnitude of 10−3;  2-chloro-4-amino-6,7-dimethoxyquinazoline (Figure 7.8e) has 

an order of magnitude of 10−2,  while the remaining ones (Figure 7.8a-b,d,f-g,i; Figure 7.9) 

have an order of magnitude of 10−1. This suggests that the proposed modelling approach holds 
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also with higher organic solubility values than the ones explored with the tested drug of sections 

7.3.1-7.3.2. 

As regards the first 8 literature datasets (Table 7.7), it is not possible to directly compare 

performance of the PLS models calibrated in this section with the one of the models calibrated 

in the original publication. In fact, they employed semi-empirical thermodynamic models such 

as Apelblat equation (Zhou et al., 2021; Wang et al., 2021; Yu et al., 2021; Li et al., 2020; Wu 

et al., 2020; Zhang et al., 2019;Huang et al., 2015), 𝜆𝜆h equation (Zhou et al., 2021; Li et al., 

2020; Wu et al., 2020; Zhang et al., 2019; Huang et al., 2015), van’t Hoff model (Sadeghi and 

Rasmuson, 2020), which need re-calibration for every solvent type. Instead, the model proposed 

in this work allows to identify solvent types based on their functional groups, therefore one PLS 

model is calibrated with the solubility data of one solute in multiple solvents. Moreover, the 

abovementioned models were calibrated with the entire experimental dataset and were used to 

fit data; instead, in this section a small fraction of the literature datasets are used to calibrate the 

model and the rest is used for validation: the 8 dataset used for calibration are reduced of 81%, 

76%, 78%, 60%, 78%, 78%, 55% and 64% (considering the datasets a-h of Table 7.7, 

respectively).  

As regards the ninth literature dataset (Table 7.8), Khajir et al. (2024) used it to calibrate 

different cosolvency models. Two of them, namely Combined Nearly Ideal Binary Solvent 

(CNIBS)/Redlich-Kister model and modified Wilson equation, cannot be directly compared 

with the results of this section: they model the effect of mixture composition on solubility, but 

not the effect of temperature, therefore they must be re-calibrated for the 5 different 

temperatures. Moreover, the Jouyban-Acree-van’t Hoff model was employed and it is able to 

represent both composition and temperature effects (for the same binary mixture ethanol-

acetinitrile), therefore it can be compared with the PLS model proposed in this work. Khajir et 

al. (2024) calibrated the Jouyban-Acree-van’t Hoff model with the same calibration data 

indicated in Table 7.8 (as anticipated in section 7.2.1) and they obtained a mean relative 

deviation (%𝑀𝑀𝑅𝑅𝐷𝐷 = 100
𝑁𝑁

(∑ (|𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑛𝑛|/𝑦𝑦𝑛𝑛)𝑁𝑁
𝑛𝑛=1 ) equal to 4.3% for the overall dataset. The same 

index is calculated with the PLS model proposed in this work and a MRD of 3.6% is obtained, 

therefore the accuracy of solubility predictions is improved. This further confirms the 

advantages of the proposed PLS model, besides the fact that it can be used to predict a much 

wider range of organic mixtures types and compositions.   
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7.4 Conclusions  

A novel machine learning model to predict solubility of drug and drug-like molecules in 

mixtures of organic solvents has been proposed. Little information is required to predict 

solubility, namely temperature, solvent types and mixture composition. Solvent types are 

identified through their molecular structure and the issue of selecting proper molecular 

descriptors is overcome by the employment of the consolidated UNIFAC theory as a reference. 

In fact, solvents molecules are broken down into their subgroups defined as in UNIFAC model 

and both single subgroups and interactions among subgroups are used to define the matrix of 

regressors. Temperature effect is explicitly included in the model, too. These regressors are 

correlated among each other, but their correlation is handled through PLS regression.  

The PLS model is calibrated with experimental data of a real drug substance, namely the 

mesylate salt of a real drug substance, with 14 organic solvents commonly employed in the 

pharmaceutical industry to design and operate crystallisation units. Both single solvents and 

binary mixtures are measured to calibrate the model. The time and resources employed to 

calibrate the model have been reduced by combining the usage of high-throughput technology 

with a proper selection of organic mixtures to fill one 96-vials plate.  

Experiments at single solvents, binary mixtures and ternary mixtures at 20, 40 and 50°C are 

used to validate the model, supporting the adequacy of model predictions for crystallisation 

design and/or optimisation. In fact, 94% and 93% of calibration and validation data, 

respectively, have a prediction error statistically equivalent to 0 due to a measured solubility 

value falling between the limits of predicted 95%CIs. The accuracy of model predictions are 

further confirmed by 𝑅𝑅2 equal to 0.92 and 0.90 for calibration and validation, respectively.  

To further verify the adequacy of the modelling approach proposed, 9 literature datasets of 

organic solubility have been employed. Such datasets are selected because they use pharma-

related compounds and/or for the diverse chemical structures involved, as well as for the variety 

of conditions explored. Accurate results have been obtained, with 𝑅𝑅2 between 0.82 and 0.998 

and a percentage of 97-100% of model predictions having a prediction error equivalent to 0 due 

to corresponding measured values between the predicted 95%CIs. This prediction accuracy is 

achieved using a calibration dataset made of only 19-45% of the overall data available, 

suggesting that the experimental burden can be more than halved while keeping satisfactory 

performance. 
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Further work will focus on the application of the proposed modelling approach to new organic 

solvents. Moreover, the representation of phenomena that may occur in experimental screening 

of organic solubility, such as solid form changes in solvents (e.g., formation of hydrates or 

solvates), boiling out or gelling, is not currently taken into account in the modelling approach 

and it will be tackled in future work.  
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Chapter 8  
Prediction of intestinal solubility: food 

effects and inter- and intra- subject 
variability6 

In this work, a Gaussian Process model is developed in order to improve the prediction of 

biorelevant solubility data measured in vitro and to improve the overall PBPK simulations 

performed with the commercial software Simcyp® (Simcyp Simulator V20TM, Certara, UK). 

The model is calibrated and validated with recently published data on the solubility of a real 

drug substance. Prediction accuracy is greatly improved with respect to the conventional model 

implemented in Simcyp, thanks to a coefficient of determination 𝑅𝑅2 equal to 0.97 and a root-

mean-squared-error RMSE equal to 0.33mM, thus comparable to the standard deviation of 

measurement errors that can reach up to 0.10mM in the fasted state and 0.77mM in the fed state. 

These satisfactory results suggest that the proposed model can be used to substitute the 

conventional solubility model in Simcyp to improve the representation of inter- and intra-

subject variability of intestinal solubility.       

8.1 Introduction  

Intestinal solubility is one of the key properties for an Oral Solid Dosage form. In fact, the 

efficacy and safety of an orally administered drug is related to its bioavailability (Abrahamsson 

et al., 2020), defined as the fraction of drug that enters the systemic circulation. To be available 

in the bloodstream, a solid form entering the Gastrointestinal (GI) tract must be absorbed, 

namely it must permeate across the gut wall. In turn, intestinal absorption is the result of an 

interplay of several phenomena, including: release of drug particles; dissolution; precipitation 

                                                           

6 Cenci, F., Stamatopoulos, K. , Diab, S., Ferrini, P., Barolo, M., Bezzo, F. and Facco, P.. Machine-Learning 
approach to represent food effect and inter- and intra-subject variability of intestinal solubility 
[preparation]. 
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(if solubility is exceeded); resolubilisation of precipitated particles; ionisation, based on drug 

acid-base properties; partition to micelles, based on drug lipophilicity, leading to an enhanced 

solubilisation (Stamatopoulos, 2022; see Appendix J for more details). As a consequence, 

solubility is a crucial property for intestinal absorption: if it is too low, it limits intestinal 

absorption; even when it is not the rate-limiting step, it can influence dissolution rate and 

precipitation (Augustijns et al., 2014). 

Poor solubility is an issue in drug substance discovery, as well as in early and late phases of 

development, therefore solubility must be assessed from the early stages of compounds design 

and optimisation (Stegemann et al., 2007). This need is also in line with the QbD approach, 

which consists in focusing on product quality at the initial stage of the development. Solubility 

studies are especially important with recent molecules discovered through combinatorial 

chemistry and high throughput screening, which lead to increasing molecular weight and 

lipophilicity, thus decreasing aqueous solubility (Stegemann et al., 2007; Lipinski, 2000; 

Lipinski et al., 1997). Moreover, intestinal solubility cannot be determined uniquely through 

studies of aqueous solubility, because it has a high level of variability that depends on three 

main types of factors: physico-chemical properties of the drug molecule; properties of the 

formulation; the environment in the intestine (Abrahamsson et al., 2020). Relevant drug 

properties for intestinal solubility include chemical structure, lipophilicity and acidic, basic or 

neutral properties (Stamatopoulos, 2022; Ainousah et al., 2017). Moreover, formulation can 

enhance solubilisation through a proper design of excipients and/or solid-state form of the drug 

(Abrahamsson et al., 2020). Finally, different physiological and pathophysiological factors can 

alter intestine solubility and they may vary among different subjects, due to individual 

characteristics such as age, sex, race and diseases, and/or within the same subjects, e.g., location 

in the GI tract, fed or fasted state and/or meal composition (Abrahamsson et al., 2020; Salehi et 

al., 2021; Jamei et al., 2009). As a consequence, intestinal solubility is a range, not a single 

value (Abuhassan et al., 2022).  

To assess intestinal solubility, both experimental and modelling approaches have been 

developed. The final aim is to characterise Human Intestinal Fluids (HIFs; Rosenberger et al., 

2018; de la Cruz-Moreno et al., 2017), which change within the same individual and among 

individuals. As regards the single individual, HIFs can change in space (e.g., at different 

locations of the gastrointestinal tract) and in time (e.g., at the same point in different time 

instants), for instance due to changes of pH and of concentrations of the compounds deriving 

from endogenous excretions or food digestion (Pyper et al., 2020). As regards the differences 
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in HIFs samples coming from different individuals, they are mainly due to differences in 

physiological factors and in the different food, drink, and sampling protocols adopted. Although 

experimental data of HIFs are considered as the “gold standard”, they cannot be used routinely 

because their extraction from human volunteers is difficult, invasive and expensive (Silva et 

al., 2022; Dahlgren et al., 2021). Therefore, Simulated Intestinal Fluids (SIFs) have been 

developed: they are biorelevant media used for in vitro experiments mimicking the behavior of 

HIFs. Several options for SIFs representing the fasted conditions have been proposed in the 

Literature, from the simplest ones made of a buffer, bile salt and lecithin, to more complex ones 

containing free fatty acid, monoglyceride and enzyme components. Similarly, different 

alternatives can be proposed for media representing fed conditions, for instance by changing 

buffers, composition and ratio of bile salts and lecithin and/or by adding monoglycerides or 

fatty acids. More details on fasted and fed media employed in the Literature can be found in 

Abuhassan et al. (2022) and Zhou et al., (2017), respectively. There is still no consensus on the 

most appropriate composition for biorelevant media to mimic HIFs in vitro. However, the main 

goal of SIFs should be representing the solubilising effects of HIFs on drugs, rather than their 

exact composition (Augustijns et al., 2014).  

Since it is not feasible to experimentally test all the conditions that can be encountered in the 

human body of one or more individuals, mathematical models are useful to support drug 

development. A certain amount of experimental data is still needed to identify model equations 

and/or parameters (see Chapter 1), but the overall experimental effort can be reduced by means 

of a reliable model. For instance, PK profiles provide crucial information on drug 

bioavailability and clearance (Heller et al., 2018) and they are employed from drug discovery 

to drug development: in pre-clinical trials, to assess drug safety and dosing metrics (Heller et 

al., 2018); in drug development, to study a variety of aspects such as drug–drug interactions, 

targeted tissue exposure and disease effect (Yuan et al., 2022).  Plasma-concentration profiles 

can be obtained through physiologically-based pharmacokinetic models, which represent 

different organs as compartments linked by the bloodstream. PBPK models allow to simulate 

the four main steps of body’s interaction with drugs, namely absorption, distribution, 

metabolism and excretion, thanks to a combination of three key contributions: (i) data on drugs 

and formulations; (ii) parameters on species physiology; (iii) good understanding of the 

processes affecting drug properties (Zhuang and Lu, 2016). Complete PBPK simulations can 

be performed with commercial software like Simcyp. In particular, the Simcyp Population-

based ADME Simulator allows to study not only the average individual, but populations with 
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inter-subject variability: the user can select healthy and diseased populations, as well as specific 

ethnic populations, and the software generates different virtual subjects in the population by 

varying demographic, genetic, anatomical and physiological factors within plausible ranges 

(Zhuang et al.,2016; Jamei et al., 2009). However, the current Simcyp model representing the 

solubility in biorelevant media considers only two input variables, namely pH and total bile 

salts concentration (BSs), while more variables should be included to represent the complex 

interactions within HIFs in fasted and fed conditions. In fact, some attempts have been made in 

the Literature to investigate the effects of multiple factors in vitro, mainly by designing the 

composition of biorelevant media through statistical design of experiments (DoE; Montgomery 

2013). For instance, Zhou et al. (2017) collected 92 experiments by varying 8 factors based on 

a factorial DoE: pH, bile salt, lecithin, sodium oleate, monoglyceride, buffer, salt and 

pancreatin. Ainousah et al. (2017) selected 20 conditions among the ones designed by a factorial 

DoE with 8 factors: bile salt, lecithin, sodium oleate, monoglyceride, cholesterol, pH, and bile 

salt phospholipid molar ratio. Moreover, Zhou et al. (2017) considered a media containing a 

fixed total concentration of 4 amphiphiles and performed a 4 components Mixture Design to 

variate their ratio in the experiments. A similar approach was applied by Dunn et al. (2019), 

who performed 4 components Mixture Designs at 3 pH values and 3 total amphiphile 

concentrations, providing 351 experimental points. However, few attempts have been made to 

develop models that are able to accurately represent the effects of multiple components besides 

pH and BSs. This holds with respect to both mechanistic (or first-principles) models and data-

driven (or black-box) models. As regards the former type of models, Henderson–Hasselbalch 

equations allow to predict solubility for monoprotic acids, monoprotic basis or ampholytes, but 

they express the dependence of solubility on pH only. Moreover, equations relating solubility 

to bile salts concentration are available, too, as described in Stamatopoulos (2022). However, 

such models do not distinguish among bile salts types and do not consider food digestion 

products. As regards data-driven approaches, several studies analyse data through statistical 

indices and/or tests without developing a proper model for solubility prediction. Statistical 

analysis often involves:  tests to assess data normality or to compare the means of two groups;  

scalar indices, like median and percentiles, to represent viability of measured and/or simulated 

bioavailability; standardised effects values, to evaluate the statistical significance of every 

factor included in the study (Silva et al., 2023; Inês Silva et al., 2022; Pyper et al., 2020; Dunn 

et al., 2019; Perrier et al., 2018; Ainousah et al., 2017; Zhou et al., 2017; Jamei et al., 2009). 

Moreover, data-driven approaches have been applied by Augustijns et al., (2014), who 
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correlated solubility to one specific factor at a time, namely pH, total concentration of 

phospholipids or total concentration of bile acids, and by Rabbie et al. (2015), who calibrated 

a liner regression model to relate measured solubility to pH and buffer capacity. Fagerberg et 

al. (2015) developed a PLS model for solubility prediction using measured solubility values of 

86 lipophilic drugs in fasted SIFs (FaSSIFs), HIFs and a phosphate buffer at pH 6.5. The 

original list of input variables (or regressors) was obtained considering molecular descriptors 

of the compounds chemical structure; then, only significant regressors were retained, namely 

only regressors having a significant variable importance in projection and impacting on model 

prediction accuracy. The proposed model provided a coefficient of determination 𝑅𝑅2 between 

0.69 and 0.86; the highest accuracy of solubility predictions in HIFs and FaSSIF was obtained 

by adding pH-dependent solubility as a descriptor, which is commonly available at early stages 

of drug development. However, this type of model has not been used within the PBPK 

modelling framework of Simcyp to predict PK profiles for all the virtual subjects of a simulated 

population.   

In this work, a novel machine-learning model for the prediction of intestinal solubility is 

proposed. The aim is to improve the representation of the solubilising effects of human 

intestinal fluids in fasted and fed conditions, to allow the determination of inter- and intra-

subject variability and to allow the validation of model predictions with human data commonly 

available at the early stages of drug development. To better represent the interactions 

encountered in vivo, solubility measurements of a real Active Pharmaceutical Ingredient, 

indicated as API A in this Chapter, in the biorelevant media proposed by Stamatopoulos et al. 

(2023) are considered. In this dataset, four different types of bile salts are considered to reflect 

inter-subject differences in the composition of human duodenal aspirates (De la Cruz Moreno 

et al., 2006; Riethorst et al., 2016). Moreover, oleic acid and cholesterol in fasted and fed levels 

are included to mimic food effects; finally, different values of pH are employed in the 

experiments. Besides the improved representation of food effects on solubility, the 

experimental data do not cover completely some conditions that may be encountered in vivo. 

Consequently, Gaussian Process regression is used since it inherently provides an estimation of 

prediction uncertainty. The GP model represents the dependence of solubility on bile salts, 

lecithin, oleic acid, cholesterol and pH and to have an estimation of prediction uncertainty. 

Besides the accuracy of the model in predicting in vitro solubility measurements, also the 

accuracy with respect to in vivo performance should be assessed. The GP model built with in 

vitro data cannot be validated directly with HIFs solubility data of the same API, since this type 
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of data is not available. However, plasma-concentration profiles of API A in healthy volunteers 

are available (Spinner et al., 2022; Johnson et al., 2022; Joshi et al., 2020; Riedmaier et al., 

2020). Therefore, the GP model is defined in such a way as it can be integrated within the 

overall PBPK model implemented in the Simcyp simulator, thus allowing the prediction of 

plasma-concentration profiles. This integration gives also the opportunity to use the proposed 

GP model to improve the representation of virtual subjects in a population, therefore to improve 

the representation of inter- and intra-subject variability of the absorption of a drug. In this work, 

the GP model is built and analysed using the in vitro experiments in biorelevant media; ongoing 

work focuses on its final implementation and validation in Simcyp.  

Section 8.2 illustrates the literature dataset considered and the solubility model developed. In 

Section 8.3, the performance of the proposed GP model is discussed and compared to the one 

of the conventional solubility model implemented in Simcyp. Finally, conclusions and future 

work are explained in Section 8.4.   

8.2 Materials and methods 

In this Section, the literature dataset employed to build and validate the solubility model is 

explained (Subsection 8.2.1). Moreover, the mathematical modelling approach developed to 

assess biorelevant solubility is explained (Subsection 8.2.2).  

8.2.1 Intestinal solubility: in vitro experiments in biorelevant media 

API A is poorly soluble and poorly permeable . Moreover, it is a zwitterionic drug, therefore 

its intestinal solubility depends on its ionisation state in the pH range encountered in the GI 

tract and on the charge (or zeta potential) of the micelles (Takács-Novák et al., 2013; 

Stamatopoulos et al., 2023). Due to the poor solubility in water, volunteers involved in clinical 

trials ingested a moderate-fat meal before drug administration to increase its absorption; more 

details on the API and its clinical trials can be found in Joshi et al. (2020) and Spinner et al. 

(2022). 

The in-vitro experimentation of Stamatopoulos et al. (2023) was performed using different 

solution types for both fasted and fed states, as shown in Table 8.1 and 8.2, respectively. The 

levels of bile salts (BS), lecithin (namelu, L-alpha-phosphatidylcholine from egg yolk, 

indicated as PC), oleic acid (OA) and cholesterol (CH) in the fasted state are equal to, 

respectively: 3 mM, 0.75 mM, 0.53 mg/mL, 0.027 mg/mL. In the fed state they are equal to, 

respectively: 15 mM, 3.75 mM, 6.50 mg/mL and 0.72 mg/mL. Notice that pairs of solution 
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types indicated by the same number and the letters “a” and ”b”  (i.e., solutions 6-10 in the fasted 

state, Table 8.1, and solutions 3-4 in the fed state, Table 8.2) have equal amounts of total BS, 

PC, OA and CH, but they have different proportions of the four BS types: namely sodium 

taurocholate hydrate (TC), sodium taurochenodeoxycholate (TCDC), sodium glycocholate 

hydrate (GLC), sodium glycodeoxy-cholate (GDC).  
Table 8.1. Description of the dataset of API A solubility in biorelevant media representing 
the fasted state. All data points are measured at a nominal pH of 6.5 (Stamatopoulos et al., 
2023).  

Solution 
Total 
BS 
(mM) 

TC 
(%) 

TCDC 
(%) 

GLC 
(%) 

GDC 
(%) 

PC 
(mM) 

OA 
(mg/mL) 

CH 
(mg/mL) 

1 3 100.0 0.0 0.0 0.0 0.000 0.000 0.000 
2 3 100.0 0.0 0.0 0.0 0.750 0.000 0.000 
3 3 100.0 0.0 0.0 0.0 0.750 0.000 0.027 
4 3 100.0 0.0 0.0 0.0 0.750 0.530 0.027 
5 3 100.0 0.0 0.0 0.0 0.750 0.530 0.000 
6a 3 14.9 15.1 45.1 24.9 0.000 0.000 0.000 
6b 3 47.1 8.8 24.6 19.5 0.000 0.000 0.000 
7a 3 14.9 15.1 45.1 24.9 0.750 0.000 0.000 
7b 3 47.1 8.8 24.6 19.5 0.750 0.000 0.000 
8a 3 14.9 15.1 45.1 24.9 0.750 0.000 0.027 
8b 3 47.1 8.8 24.6 19.5 0.750 0.000 0.027 
9a 3 14.9 15.1 45.1 24.9 0.750 0.530 0.027 
9b 3 47.1 8.8 24.6 19.5 0.750 0.530 0.027 
10a 3 14.9 15.1 45.1 24.9 0.750 0.530 0.000 
10b 3 47.1 8.8 24.6 19.5 0.750 0.530 0.000 

Table 8.2. Description of the dataset of SPI A solubility in biorelevant media representing 
the fed state. All the solutions are measured at three nominal pH values: 5, 6.5 and 7. The 
asterisk (*) indicate the solutions that do not contain PC in the measurements at nominal pH 
equal to 5 (Stamatopoulos et al., 2023). 

Solution 
Total 
BS 
(mM) 

TC 
(%) 

TCDC 
(%) 

GLC 
(%) 

GDC 
(%) 

PC 
(mM) 

OA 
(mg/mL) 

CH 
(mg/mL) 

1 15 100.0 0.0 0.0 0.0 3.75 0.00 0.00 
2 15 100.0 0.0 0.0 0.0 3.75 6.50 0.72 
3a* 15 14.9 15.1 45.1 24.9 3.75 0.00 0.00 
3b* 15 47.1 8.8 24.6 19.5 3.75 0.00 0.00 
4a 15 14.9 15.1 45.1 24.9 3.75 6.50 0.72 
4b 15 47.1 8.8 24.6 19.5 3.75 6.50 0.72 

Biorelevant media representing the fasted state (Table 8.1) are measured at a nominal pH equal 

to 6.5; three replicates are measured for every experimental condition. Therefore, 45 data points 

are available. Instead, every solution type of the fed state (Table 8.2) is measured at three 

nominal pH values: 5, 6.5 and 7. During the experimentation, in the time lapse between the 

addition of the liquid to the vial with the solid and the achievement of solid-liquid equilibrium, 

pH may be subjected to variations, thus the actual pH slightly oscillates around the 

abovementioned nominal values (the variance of the measured pH values around the same 
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nominal value are between 0 and 10−3). The pH values at equilibrium are measured for the 

fasted conditions and they are the ones used to build the GP model (Section 8.2.2). Also in the 

fed dataset, three replicates are performed for every condition; one experiment does not have a 

valid measurement. Therefore, 53 data points are available.  

Both fasted and fed experiments are performed with a high-throughput technology that uses 24-

vials plate, therefore it allows to measure 24 experimental conditions in parallel. During the 

experiments, the automated powder dispensing platform dispenses a controlled weight of solid 

powder in each vial; the liquid medium is added manually, but the rest of the experiment is 

carried out by an automated liquid handling platform: it mixes samples, it controls the system 

temperature and it performs the sampling at the scheduled time points. More details on the 

materials and experimental setup employed can be found in Stamatopoulos et al. (2023).  

8.2.2 Mathematical modelling to predict intestinal solubility 

This section illustrates the mathematical models that are compared and discussed in Section 

8.3. First, the state-of-the-art model for intestinal solubility implemented in Simcyp is 

explained, focusing on the types of input and output variables that can be simulated in Simcyp. 

Then, the features of the GP model proposed in this work are presented.  

8.2.2.1 State-of-the-art solubility model 

The model implemented in Simcyp to predict intestinal solubility considers the sum of different 

contributions:  

𝑆𝑆𝑇𝑇 = 𝑆𝑆pH + 𝑆𝑆BS,u + 𝑆𝑆BS,i, (8.1) 

where 𝑆𝑆pH is the drug solubility in the luminal fluids depending on pH,  𝑆𝑆BS,u and 𝑆𝑆BS,i represent 

the bile-salt mediated enhancement of solubility for unionised and ionised species, respectively, 

while 𝑆𝑆𝑇𝑇 is the total solubility (namely, intestinal solubility). 

The solubility 𝑆𝑆pH of the drug in the lumen is calculated as:  

𝑆𝑆pH = 𝑆𝑆pH,i + 𝑆𝑆0, (8.2) 

where 𝑆𝑆0 indicates the intrinsic solubility of the drug, while 𝑆𝑆pH,i is the pH-dependent solubility 

of ionised species. The API considered is an ampholyte, namely it may act as an acid or as a 

base, therefore the expression of 𝑆𝑆pH,i corresponds to: 

𝑆𝑆pH,i = 𝑆𝑆0(10pH−pK𝑎𝑎,1 + 10pK𝑎𝑎,2−pH + 10pK𝑎𝑎,2−pK𝑎𝑎,1), (8.3) 
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where pK𝑎𝑎,1 and pK𝑎𝑎,2 are the two dissociation constants (see Appendix J), while pH changes 

in different segments of the GI tract.  

The bile-salt mediated enhancement of solubility 𝑆𝑆BS,u and 𝑆𝑆BS,i are calculated as: 

𝑆𝑆BS,u = [BS] 𝑆𝑆0
[H2O]

𝐾𝐾𝑚𝑚:𝑤𝑤,𝑢𝑢 , (8.4) 

𝑆𝑆BS,i = [BS] 𝑆𝑆0
[H2O]

𝐾𝐾𝑚𝑚:𝑤𝑤,𝑖𝑖 , (8.5) 

where [∙] indicates the concentration, thus [BS] is the bile salts concentration and [H2O] is water 

concentration, namely 55560mM. Moreover, 𝐾𝐾𝑚𝑚:𝑤𝑤,𝑢𝑢 and 𝐾𝐾𝑚𝑚:𝑤𝑤,𝑖𝑖 are the water-to-micelle 

partition coefficients of unionised and ionised species, respectively (see Appendix J for more 

details). However, if [BS] is below the critical micelles concentration (CMC) of 1 mM, 𝑆𝑆BS,u 

and 𝑆𝑆BS,i (Eq.s 8.4, 8.5) are set equal to 0.  

The values of  𝑆𝑆0, pK𝑎𝑎,1, pK𝑎𝑎,2, 𝐾𝐾𝑚𝑚:𝑤𝑤,𝑢𝑢 and 𝐾𝐾𝑚𝑚:𝑤𝑤,𝑖𝑖 depend on the system under study; the most 

suitable values for API A (Sub-section 8.2.1), are retrieved from Stamatopoulos et al. (2023) 

and shown in Table 8.3.  

Table 8.3. Properties of API A used to predict total solubility in Simcyp (Stamatopoulos et 
al., 2023).  

Drug properties Value 
𝑆𝑆0(mg/mL)  0.00015 
pK𝑎𝑎,1  4.63 
pK𝑎𝑎,2  8.65 
𝐾𝐾𝑚𝑚:𝑤𝑤,𝑢𝑢  0.019 
𝐾𝐾𝑚𝑚:𝑤𝑤,𝑖𝑖  4.559 

As introduced in Section 8.1, only two inputs are included in the model of Eq. (8.1): pH and 

[BS]. These are the variables that change across the GI tract or at the same location in different 

time instants during Simcyp simulations. Therefore, the GP model developed in this work 

should adapt to these possibilities, as explained in Sub-subsection 8.2.2.2. 

8.2.2.2 Proposed GP model 

The experimental dataset of API A contains 8 different input variables: pH and concentrations 

of TC, TCDC, GLC, GDC, PC, OA, CH. To model their effects and, at the same time, have a 

model suitable for PBPK simulations in Simcyp, an apparent bile salts concentration is 

considered: 

[BS]app = [TC] + [TCDC] + [GLC] + [GDC] + [PC] + [OA] + [CH] , (8.6) 
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where all concentrations are expressed as mM. Consequently, [BS]app ranges between 3 mM 

and 43.6 mM: experimental points representing fasted conditions are between 3 and 5.7 mM, 

while those of fed conditions are between 15 and 43.6 mM.  

Therefore, pH and [BS]app (in mM) are the two inputs of the model, while the output of the 

model is the API solubility expressed as mM.  

In turn, these input-output data are used to calibrate a GP model characterised by the mean 𝐟𝐟∗̅ 

and covariance cov(𝐟𝐟∗) functions of Eq. (2.36, 2.37), considering the squared-exponential 

function (Eq. 2.34) as kernel function. The best parameters 𝛉𝛉∗ = {𝜎𝜎SE2 , ℓ,𝜎𝜎𝑦𝑦2}   are obtained by 

using the GPy package (Sheffield machine learning group, 2020); the marginal likelihood (Eq. 

2.40) is optimised by using the default algorithm of GPy, i.e., L-BFGS-B (Byrd et al., 1995).  

If a prior mean equal to zero is assumed for the GP model (as common practice), the results 

may be unsatisfactory in interpolation, especially at experimental conditions relatively far from 

the ones explored in vitro. Figure 8.1 shows the mean solubility values [mM] predicted by the 

GP model having a prior mean equal to zero and built with a training dataset made of all data 

of fasted and fed states. Results are not as expected in the range of [BS]app between 0 and 50 

mM: the solubility is expected to increase with [BS]app, but the values predicted by the GP 

model between (approximately) 5 and 15 mM and between 20 and 40 mM (thus, between the 

levels explored experimentally) are close to 0 mM.  

  
Figure 8.1. Mean solubility values predicted by the GP model having prior mean equal to 
zero. Blue dots represent experimental data of API A in fasted and fed states. 

To improve the model performance, a prior mean function is specified. A simple linear model 

is sufficient to express the increasing or decreasing trend of solubility with respect to pH and 
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[BS]app, while possible non-linearities are represented by the posterior mean of the GP model. 

The step-by-step procedure to calibrate the GP model with a specified prior mean function is: 

• step 1: calibrate a multi-linear regression model to approximate the dependence of 

solubility on pH and [BS]app; the approximated solubility values predicted by the linear 

regression model are indicated as 𝐲𝐲�LR; 

• step 2: rescale the measured solubility values by subtracting the values predicted by the 

linear model; 

• step 3: use the rescaled solubility values, namely 𝐲𝐲 − 𝐲𝐲�LR, to calibrate a Gaussian Process 

model. Use the assumption of prior mean function equal to zero and find the best 

hyperparameters 𝛉𝛉 = {𝜎𝜎SE2 ,ℓ,𝜎𝜎𝑦𝑦2} by maximising the maximum likelihood of Eq. (2.40). 

Then, the mean and covariance functions can be calculated (Eq.s 2.36, 2.37). The mean 

solubility value predicted by the GP model is indicated as 𝐲𝐲�GP from now on; 

• step 4: make predictions of drug solubility 𝐲𝐲� summing up the two contributions (as in Eq. 

(2.41)), namely: 

 𝐲𝐲� = 𝐲𝐲�LR + 𝐲𝐲�GP (8.7) 

The multi-linear regression model considered for this purpose is: 

𝑦𝑦�LR = 𝛽𝛽1pH + 𝛽𝛽2[BS]app , (8.8) 

The linear model leading to the most reliable GP model is retained, as discussed in Subsection 

8.3.1. 

Finally, the performance of the GP model is evaluated in terms of prediction precision and 

accuracy. Prediction precision is estimated in terms of 95% confidence intervals (CIs) using the 

posterior covariance function cov(𝐟𝐟∗) (see Chapter 2). Moreover, model prediction accuracy is 

calculated through the coefficient of determination 𝑅𝑅2 (Eq. 2.14) and the root mean squared 

error (RMSE, Eq. 2.12). 

8.3 Results and discussion 

In this section, the GP model is calibrated using biorelevant solubility experiments in fasted 

and fed conditions. Section 8.3.1 compares the performance of the conventional solubility 

model implemented in Simcyp with the one of the proposed GP model. Ongoing work focuses 

on the validation of the proposed GP model with new experiments; in this work, the modelling 

approach proposed is validated by calibrating the model with a subset of the in vitro 
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experiments available and evaluating the performance with the remaining ones (Section 8.3.2). 

The implementation in Simcyp is preliminarily discussed in Section 8.3.3. and will be 

concluded in future work. 

8.3.1 Model calibration 

The GP model described in Subsection 8.2.2 is built with in vitro solubility experiments of API 

A in fasted and fed states (Tables 8.1 and 8.2, Subsection 8.2.1). First, the most suitable linear 

approximation of the system must be chosen between Eq. (8.8) and (8.9). A basic requirement 

for the overall GP model is that the mean predicted solubility (namely, 𝐲𝐲� = 𝐲𝐲�LR + 𝐲𝐲�GP) is non-

negative. Table 8.4 shows the parameters obtained. Parameters of the linear models are obtained 

through Maximum Likelihood Estimation (MLE, Eq. (2.2)) and the optimisation is carried out 

in Python 3.9 by using the Nelder-Mead algorithm of the scipy.m package. Parameters of the 

GP regression are optimised with the default method of the GPy package.  
Table 8.4. Parameters estimated for the overall multi-linear regression and GP model. 

Model 𝛽𝛽1   𝛽𝛽2 𝜎𝜎𝑆𝑆𝐴𝐴2   ℓ  𝜎𝜎𝑦𝑦2  
𝐲𝐲� = 𝐲𝐲�LR + 𝐲𝐲�GP 0.010 0.085 1.516 0.604 0.126 

The GP model obtained (Table 8.4) is used to predict solubility at pH values between 4 and 8 

and at [BS]app values between 0 and 50 mM. The contour plots of Figure 8.3 show the results 

in terms of mean predicted values obtained with Eq. (8.7), namely 𝐲𝐲� = 𝐲𝐲�LR + 𝐲𝐲�GP. 

 
(a) 

Figure 8.3. Contour plots representing the predicted values of drug solubility [𝒚𝒚�, mM] with 
the overall GP model:  𝒚𝒚� = 𝒚𝒚�𝐿𝐿𝑅𝑅 + 𝒚𝒚�𝐺𝐺𝐺𝐺. Blue dots represent experimental conditions of API 
A in fasted and fed states. 

Figure 8.3 shows that the predicted solubility is always positive, therefore the basic requirement 

of the model is satisfied. 
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The performance of the conventional model (Eq. 8.1) and of the proposed GP model (Eq. 8.7) 

are compared in Figure 8.4 with data in the fasted state and in Figure 8.5 with data in the fed 

state. In the latter case, vertical dotted lines are used to separate the 6 solution types presented 

in Table 8.2 (section 8.2.1); for the same solution type, the measures obtained at the three 

nominal pH values (namely, 5, 6.5 and 7) are included.  

 
(a) 

 
(b) 

Figure 8.4. Comparison between measured solubility values y and predicted solubility values 
𝒚𝒚� obtained with: (a) conventional solubility model (Eq. 8.1); (b) proposed GP model (Eq.s 
8.7). Only the fasted state is considered.   

As shown in Figure 8.4a, the prediction of biorelevant solubility in fasted conditions are, on 

average, 7 times higher than the predicted values if the conventional model is employed. Hence, 

the proposed GP model considerably improves the prediction accuracy, as proved by the 

predicted points very close to the measured ones in Figure 8.4b. This is further confirmed by 

the fact that the RMSE obtained with the GP model is equal to 0.065 mM in the fasted state, 

thus comparable to or even smaller than the standard deviation of the measurement errors which 

can reach up to 0.101 mM in the fasted state. 

 
(a) 

 
(b) 

Figure 8.5. Comparison between measured solubility values y and predicted solubility values 
𝒚𝒚� obtained with: (a) conventional solubility model (Eq. 8.1); (b) proposed GP model (Eq. 
8.7). Only the fed state is considered. Vertical dotted lines separate different solution types 
(see Table 8.2). 



Prediction of intestinal solubility: food effects and inter- and intra- subject variability  185 

  2023, Francesca Cenci, University of Padova (Italy)   

As shown in Figure 8.5a, the conventional solubility model does not have a satisfactory 

accuracy. Even the trend of solubility is not well represented. For instance, solution type 2 

(namely, calibration experiments no. 55-63) is measured at three nominal pH values, each of 

which has three replicates. The first three points of this solution (i.e., calibration experiments 

no. 55-57), which are measured at the smallest pH, are characterised by a relatively small 

solubility value (𝑦𝑦 <1 mM), while the remaining 6 points at higher pH have higher measured 

solubility (𝑦𝑦 >4 mM). However, solubility predictions through the conventional model of Eq. 

(8.1) display an opposite behaviour: the highest predicted solubility (𝑆𝑆𝑇𝑇 ≅3.2 mM) is found at 

the smallest pH and then it decreases (𝑆𝑆𝑇𝑇 ≅2.2 mM) at higher pH values. Analogous results are 

found with the subsequent 4 solution types. 

Instead, the GP model is able to represent the correct trend of solubility variation based on pH 

and [BS]app for all solution types (Figure 8.5b). Similarly to the results in the fasted state, the 

RMSE is comparable to or smaller than the standard deviation of the experimental replicates: 

in fact, the RMSE in the fed state is equal to 0.45mM, while the standard deviation of the 

measurement errors can reach up to 0.77mM. 

Considering both fasted and fed data, GP model predictions have a coefficient of determination 

𝑅𝑅2 equal to 0.97 and RMSE equal to 0.33 mM, therefore prediction accuracy is satisfactory and 

the model is expected to improve the overall PBPK simulation in Simcyp. Besides the improved 

accuracy, the GP model has the advantage of providing an estimation of model prediction 

uncertainty through the calculation of the covariance function (Eq. 2.37). The predicted 95%CIs 

for the fasted and fed states are shown in Figure 8.6. 

 
Figure 8.6. Comparison between measured solubility values y and predicted solubility values 
𝒚𝒚� obtained with the proposed GP model (Eq. 8.7) in both fasted and fed states. Blue shaded 
areas represent 95%CIs (Eq. 2.38), vertical dotted lines delimit solution types of fed state 
having three nominal pH values each.  
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Results in Figure 8.6 show that the uncertainty of model predictions contains the majority of 

measured data (93% of the data), especially in the fasted state, meaning that prediction errors 

are statistically negligible. A few points in the fed state exceed the 95%CIs, but this happens 

only at experimental conditions having high variability within replicates.  

Based on this result, the proposed GP model is deemed adequate for the integration into the 

Simcyp PBPK model. At first, the predicted mean solubility (Eq. 8.7) will be used in the 

simulations; in a second step, the predicted covariance function will be used to simulate random 

variations in solubility. For visualisation purposes, the mean function (Eq. 8.7) that will be 

implemented in Simcyp is displayed in Figure 8.7 as a 3-D surface.  

 
Figure 8.7. Mean predicted solubility values obtained with the proposed GP model (Eq. 8.7) 
in the range [4,8] for pH and [0,50] mM for the apparent [BS]. Blue dots represent in vitro 
data in fasted and fed states.  

As shown in Figure 8.7, non-linearities are present, especially when the effect of pH on 

solubility is considered (as can be seen in the surface representing the model at pH between 4 

and 8 in the Figure). This non-linearity cannot be predicted in regions quite far from the in vitro 

data, such as [BS]app between 20 and 40 mM, but the predicted values are higher than 0 and an 

increasing trend is predicted for solubility at increasing values of [BS]app, as expected. 

Therefore, model predictions in these regions are greatly improved with respect to the ones 

obtained with the GP model without prior mean function (see Figure 8.1, section 8.2.2.2).  

A validation of the proposed modelling approach based on GP regression is discussed in section 

8.3.2. 
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8.3.2 Model validation  

To further assess the adequacy of the proposed GP model, future work will consist in the 

collection of new measurements in unexplored experimental conditions, such as in the region 

with [BS]app between 20 and 40mM.  

Before performing new experiments, the modelling approach proposed in Figure 8.2 (Sub-

subsection 8.2.2.2) is validated with the available literature data, by calibrating the model with 

a subset of data points. The fasted dataset is reduced by considering only the following solution 

types for calibration: a) BS+PC; b) BS+PC+OA+CH. The former is selected because bile salts 

and lecithin are often encountered in literature as biorelevant media; the latter is chosen because 

it includes all the novel elements of the chosen dataset, namely the species mimicking food 

effects. Therefore, the number of data points of the fasted state used in calibration is 18 over 

45. The fed dataset, which contains a smaller number of solution types (see Table 8.2) with 

respect to the fasted one, is reduced considering all solution, types but excluding data at the 

intermediate value of pH. Therefore, 35 data points over the 53 representing fed conditions are 

used for calibration. Overall, 54% of the literature data are used to calibrate the GP model (Eq. 

8.7) and the remaining 46% is used to validate it.  

Table 8.5 shows the parameters optimised for the linear model and the GP regression, while 

predicted and measured data are compared in Figure 8.8 considering both calibration and 

validation data.   

Table 8.5. Parameters estimated for the overall GP model calibrated with the reduced 
dataset.  

𝛽𝛽1 𝛽𝛽2 𝜎𝜎𝑆𝑆𝐴𝐴2  ℓ 𝜎𝜎𝑛𝑛2 
0.010 0.085 1.895 0.616 0.051 

  
Figure 8.8. Mean predicted solubility values obtained with the proposed GP model (Eq. 8.7) 
calibrated with the reduced dataset. Both calibration and validation data are shown. 
Different solutions in the fed state are delimited by vertical dotted lines.  
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As shown in Figure 8.8, the accuracy in validation is still satisfactory besides the reduction of 

the calibration dataset. This is further confirmed by a 𝑅𝑅2 close to 1 and RMSE comparable to 

or smaller than the standard deviation of the measurement errors (up to 0.101mM in the fasted 

state and up to 0.77mM in the fed state): 𝑅𝑅2 and RMSE are respectively equal to 0.985 and 

0.208 in calibration and they are respectively equal to 0.905 and 0.657 in validation.  

Considering intermediate pH values in the fed state, the model is able to correctly represent the 

measured variation in solubility. For instance, the first solution type (calibration experiments 

no. 46-54; see Table 8.2) has higher solubility values in the first 3 measurements, then it 

decreases in the remaining 6 and this is well predicted by the model. Moreover, solution types 

2, 4a, 4b (calibration experiments no. 55-63, 81-89, 90-98, respectively; see Table 8.2) have 

small solubility values in the first 3 experiments, then it considerably increases in the remaining 

6 points and also in this case the model is able to represent this variation appropriately. The GP 

model tends to slightly overpredict the mean of the solubility values at intermediate pH values 

of solution types 3a and 3b (calibration experiments no. 64-72, 73-80, respectively; see Table 

8.2), however the performance is still satisfactory: in fact, the measured values are within the 

predicted 95% confidence intervals; moreover, the predicted solubility at intermediate pH is 

higher than the one predicted at the smallest pH (first 3 experiments of the specific solution 

type) and smaller than one predicted at the highest pH value (last 3 experiments), thus coherent 

with the increasing trend of solubility encountered with in vitro data.  

Overall, this validation is satisfactory and suggests that the modelling approach proposed allows 

to appropriately represent the dependence of solubility on pH, bile salts and food components 

also at experimental conditions not used for calibration.  

8.3.3 Discussion of the implementation in Simcyp 

The GP model calibrated with the entire fasted and fed dataset is suitable for the implementation 

in Simcyp, because it predicts mean values having an accuracy comparable to the measurement 

errors and its 95% confidence intervals contain the majority of experimental measurements. 

Moreover, only two input variables are used, therefore the model can be integrated without 

requiring modifications of the conventional PBPK simulations with Simcyp. Therefore, 

ongoing work is focusing on the implementation of the proposed GP model in Lua 

(Ierusalimschy et al., 2005; PUC-Rio, Brazil), which is the programming software available in 

Simcyp to customise mathematical models.  
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Based on the results discussed in Subsections 8.3.1 and 8.3.2, the GP model is expected to 

provide more reliable solubility estimation with respect to the conventional model. On the other 

side, a possible limitation may be the fact that [BS]app used to calibrate the model ranges 

between 3 mM and 43.62 mM. In fact, that range is physiologically meaningful, since HIFs 

samples extracted from 20 volunteers displayed BS concentrations between 0 and 100 mM in 

the work of Riethorst et al. (2016); however, PBPK simulations usually consider [BS] values 

in the small intestine between 0 and 15 mM. The the higher values for the [BS]app used in 

calibration may have a negative impact on the final PBPK predictions. If this is the case 

(ongoing work is focusing on the verification of this aspect), a modification to the proposed GP 

model can be done: instead of considering  [BS]app as defined in Eq. (8.6), the GP model can 

be built following the procedure of Figure 8.2 (Sub-subsection 8.2.2.2), but using [BS] only, 

namely the sum of the 4 bile salts types TC, TCDC, GLC and GDC. Figure 8.9 compares the 

pH and bile salts concentrations used as input of the GP models and simulated by Simcyp in 

the first segment of the small intestine, namely Duodenum.  

 
(a) 

 
(b) 

Figure 8.9. Input values: pH and bile salts concentration. In the legend, ‘IV’ stands for ‘in 
vitro’ data, while ‘S1’ stands for ‘segment 1’ of the small intestine. In vitro data used to 
calibrate the GP models are displayed: a) apparent bile salts concentration, namely 
[TC]+[TCDC]+[GLC]+[GDC]+[PC]+[OA]+[CH]; b) total bile salts concentration, 
namely [TC]+[TCDC]+[GLC]+[GDC]. 

As shown in Figure 8.9b, the concentration made by the sum of bile salts only is closer to the 

values typically encountered in PBPK simulations. However, if [BS] only is used to build the 

GP model, the second input variable has only two levels with the selected literature data, namely 

3 mM for the fasted state (Table 8.1) and 15 mM for the fed state (Table 8.2), regardless of the 

fact other solubilising factors such as OA and CH are present. This leads to a considerable 

increase of solubility variability associated to a given level of [BS]: for instance, the variance 

𝜎𝜎𝑦𝑦2 of the solubility measurements in the fed state (namely, at [BS]=15mM) at pH≅6.2 is equal 
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5.507 mM2 (i.e., 𝜎𝜎𝑦𝑦 =2.35 mM). Even though the mean change of solubility values due to the 

presence of PC, OA and CH cannot be predicted with this type of input variables, the GP model 

can still account for their effect on solubility through the estimation of the covariance function 

(Eq. 2.37). This can be seen in Figure 8.10, where solubility values are predicted at BS 

concentrations of 3 mM and 15 mM for a range of pH values equal to [4,8]. To better represent 

the variability of this dataset, the variance of the experimental data is fixed in the GP model 

(namely 𝜎𝜎𝑦𝑦2 is set equal to 5.507 mM2 in Eq.s 2.37, 2.41), and only the hyperparameters 𝜎𝜎SE2  and 

ℓ are optimised to obtain the GP model of Figure 8.10.  

 
(a)  

 
(b) 

 Figure 8.10. Solubility predictions in the (a) fasted and (b) fed states obtained with the GP 
model calibrated with pH and [BS]= [TC]+[TCDC]+[GLC]+[GDC]. The black line 
represents the posterior mean function of the GP model; the light-blue shaded area 
represents the predicted 95%CI; the blue dots represent in vitro measurements in (a) fasted 
and (b) fed states.  

As shown in Figure 8.10, the GP model represents the variability of the fed state correctly at 

different values of pH (Figure 8.10b), but the uncertainty in the fasted state reaches values that 

are quite higher than the measured ones (Figure 8.10a). However, the mean predicted values 

(black line) are able to catch the correct order of magnitude of measured solubility at both fasted 

and fed states, therefore this GP model still improves the prediction with respect to the 

conventional solubility model implemented in Simcyp (see section 8.3.1). Consequently, the 

GP model proposed in Sub-subsection 8.2.2.2 and discussed in Subsection 8.3.1 remains the 

first choice for the implementation in Simcyp, but the variation proposed in this section can be 

taken into account if the results are not as expected due to apparent bile salts concentrations 

that are higher than the [BS] values simulated in the GI tract. 



Prediction of intestinal solubility: food effects and inter- and intra- subject variability  191 

  2023, Francesca Cenci, University of Padova (Italy)   

8.4 Conclusions and future work 

Intestinal solubility is a crucial property to assess the bioavailability of oral solid dosage forms. 

Different biorelevant media have been proposed in literature to mimic the solubilizing effects 

of human intestinal fluids, but there is no consensus on the best composition. Moreover, 

commercial software like Simcyp are widely used in the pharmaceutical industry to simulate 

drug efficacy and safety besides inter- and intra-subject variations of demographic, genetic 

and/or physiological factors, but solubility models currently employed in such software are not 

suitable to represent the complex interactions occurring in HIFs, especially after food intake.  

In this work, a novel machine-learning approach has been developed to accurately represent 

drug solubility in fasted and fed conditions. To do so, a recently published dataset on a real API 

is used; besides common factors such as pH, bile salts (BS) and lecithin (PC), this dataset allows 

to study food effects, thanks to the presence of oleic acid (OA) and cholesterol (CH), and the 

effects of different proportions of 4 bile salts species. This dataset is used to calibrate a Gaussian 

Process (GP) model with a prior mean function made of a linear model. The GP model is built 

in such a way as it can be integrated within Simcyp simulator: since only pH and total BS 

concentration are simulated in the PBPK model, an apparent BS concentration is considered as 

input of the GP model (besides pH) by summing up the concentrations of BS, PC, OA and CH. 

The integration into Simcyp is important for two main reasons: (1) validation with 

bioavailability data from human volunteers in clinical trials; (2) representation of inter- and 

intra-subject variability in intestinal solubility.  As regards the former, comparing simulated 

and in vivo data is important during drug development, but samples of HIFs are often scarce, 

therefore intestinal solubility cannot be measured directly in an extensive way. On the other 

side, plasma-concentration profiles are often retrieved from human volunteers in clinical trials, 

therefore they can be used as a reference to assess the reliability of the plasma-concentration 

profiles predicted by Simcyp after simulating a variety of phenomena occurring in the human 

body, including the drug solubilisation in the luminal fluid. Moreover, plasma-concentration 

profiles simulated with Simcyp can vary in different virtual subjects or within the same subject 

in time due to different simulated conditions in the GI tract and the solubility model should be 

able to make reliable predictions despite this high level of variability.  

The results obtained with in vitro data suggest that the proposed GP model can improve 

considerably the accuracy of the PBPK simulations performed in Simcyp. In fact, the GP model 

outperforms the conventional solubility model in terms of solubility prediction, giving a 
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coefficient of determination 𝑅𝑅2 equal to 0.97 and a root-mean-squared-error RMSE equal to 

0.33 mM, thus comparable to the standard deviation of measurement errors that can reach up 

to 0.10 mM in the fasted state and 0.77 mM in the fed state. Moreover, the GP model provides 

an estimation of model prediction uncertainty that is not provided by conventional solubility 

models; the estimated prediction uncertainty contains the majority of the experimental points, 

therefore the prediction error is statistically negligible. Moreover, the GP model is validated by 

using approximately half of the solubility dataset in calibration and the remaining half in 

validation and the satisfactory results are confirmed with 𝑅𝑅2=0.985 and RMSE=0.208mM in 

calibration and 𝑅𝑅2=0.905 and RMSE=0.657mM in validation.  

Thanks to these satisfactory results, future work will consist in: (i) further validation of the 

proposed model with new data at experimental conditions not used in calibration; (ii) final 

implementation in Simcyp. The plasma-concentration profiles obtained with the PBPK model 

will be compared with profiles of API A administered to human volunteers in clinical trials for 

validation purposes. If the satisfactory results obtained in this work with in vitro data are 

confirmed by the PBPK simulations, the proposed modelling approach will aid the 

identification of poorly soluble oral dosage forms from the early stages of drug discovery and 

development, thus reducing waste of time and resources on drugs that will be unsuccessful later 

on in the development. Moreover, it will allow to improve the representation of inter- and intra-

subject variability in different populations, thus ensuring safer and more efficient drugs to 

patients in a reduced timeline.  
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Conclusions and future perspectives 

This Dissertation proposed model-based methods that streamline pharmaceutical R&D, while 

at the same time improving product and process understanding and ensuring product quality 

and process robustness. Two main approaches were used: model-based design of experiments; 

data-driven modelling. The methods developed in this work aimed at: 

• streamlining the design of tablets lubrication; 

• minimising model prediction uncertainty in the whole design space, while ensuring 

parameters precision and minimum experimental burden; 

• achieving autonomous decision-making in continuous-flow microreactor platforms for the 

minimisation of model prediction variance; 

• accurately predicting drug solubility in mixtures of organic solvents for the design and/or 

optimisation of crystallisation processes; 

• predicting the effects of food and population variability on drug solubility in human 

intestinal fluids, to improve the understanding of drug absorption in the intestine. 

Streamlining the design of tablets lubrication 

In the pharmaceutical industry, the extended Kushner and Moore model proposed by Nassar et 

al. (2021) is often used to design the best tablets lubrication. In fact, this model allows to predict 

tablets tensile strength (TS) based on tablets solid fraction (SF, related to compression pressure) 

and lubrication extent (K, related to blending time). However, it is an algebraic model with 5 

correlated parameters in one equation, with one parameter having a small influence on the 

response variable. Therefore, a considerable number of experiments is required to precisely 

estimate model parameters, involving the preparation and compression of multiple powder 

blends, each one with a different lubrication extent. This leads to time-consuming experiments 

and, especially, to an excessive usage of API, which is the most expensive compound involved 

and may be scarcely available at early stages of drug development. Therefore, a novel MBDoE 

method to design highly informative experiments was developed. Being an MBDoE method, 

the model equation was used to calculate the sensitivities of the response variable (TS) with 

respect to every model parameter, which in turn was used to calculate the Fisher information 

matrix. However, the state-of-the-art MBDoE would select a different (SF,K) point at every 

optimal design, but it is not feasible with the equipment available for lubrication experiments. 
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In fact, to calibrate the lubrication model, a tablet press is used to compress the same blend at 

𝑁𝑁SF different compression pressures, thus obtaining a set of 𝑁𝑁SF tablets with the same 

lubrication extent and different solid fractions (named “profile”). Therefore, the method 

proposed in this Dissertation consisted in modifying the mathematical structure of the FIM in 

order to design optimal profiles instead of optimal points: this was achieved by imposing that 

𝑁𝑁SF subsequent rows of the sensitivity matrix used to calculate the FIM had the same lubrication 

extent, while only SF could change. Moreover, two MBDoE procedures were compared: 1) a 

sequential one, consisting in designing one optimal profile at a time and having the advantage 

of updating model parameters, thus updating the estimation of experiments information content, 

as soon as a new profile was measured; 2) a parallel one, consisting in the design of multiple 

optimal profiles at once and having practical advantages such as the possibility to prepare 

different blends in advance and to better organise the experimentation schedule. The proposed 

MBDoE method was tested with two placebo blends with different lubrication sensitivity and 

the results showed that 3-4 optimal profiles designed through the proposed MBDoE were 

sufficient to precisely estimate model parameters instead of the 7-9 profiles typically used in 

the pharmaceutical industry, thus reducing the experimental burden of 60-70%. The results 

were similar between sequential and parallel designs, therefore the parallel one can be applied 

with great practical benefits and without losing valuable information. This conclusion was 

further supported by the accuracy of model predictions: in fact, the model predicted with 3-4 

optimal experiments allowed to predict tablets TS with an absolute error below 0.25 MPa, 

which is the maximum threshold tolerated in industrial applications.  

Minimising model prediction uncertainty in the whole design space, while ensuring 

parameters precision and minimum experimental burden 

A novel exploratory MBDoE method was proposed in order to minimise model prediction 

variance in the whole design space with minimum experimental burden, also ensuring 

statistically sound parameters estimates. This was done through a mapping of G-optimality: 

first, a map of information content, H-map, and a map of G-optimality, G-map, were built 

considering the whole design space; then, points having a G-optimality 𝐽𝐽𝐺𝐺  higher than a user-

defined threshold 𝐽𝐽𝐺𝐺,thrwere retained as candidate design points; finally, the candidate design 

point having maximum information content was selected as the experiment to be performed.  

This optimisation of the information content in a subset region of the design space determined 

based on G-optimality allowed to find a trade-off between information maximisation and space 
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exploration. In turn, this trade-off was handled by means of the threshold 𝐽𝐽𝐺𝐺,thr. The proposed 

G-map eMBDoE method was tested in silico with two models of increasing complexity: 1) an 

algebraic model with two control variables and one output; 2) a differential equation model 

with two constant control variables and two dynamic outputs sampled at three sampling points. 

In both cases, G-map eMBDoE allowed to increase space exploration with respect to state-of-

the-art MBDoE. Moreover, in both cases G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 allowed to minimise 

model prediction variance in the whole design space, as shown by the fastest reduction of the 

mean and maximum 𝐽𝐽𝐺𝐺  and by the visualisation of G maps. Although space exploration was 

increased, experiments information content was still adequate for parameters estimation, since 

G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 allowed to pass all 𝑡𝑡-tests with a number of experiments that 

was equal to or less than the one required by state-of-the-art MBDoE.  

Since in silico results showed the advantages of the proposed G-map eMBDoE over 

conventional information-based methods, like MBDoE, and over exploration-based methods, 

like LH and factorial DoE, the novel eMBDoE method was validated with experimental data. 

The platform employed allowed to perform catalytic reactions of total methane oxidation, but 

the method proposed can be applied to any type of automated platforms, including those used 

in the (bio)pharmaceutic industry. Accordingly, the G-map eMBDoE method was adapted to 

the kinetic model representing Mars-van Krevelen mechanism. First, the G-optimality 

constraint was selected as suggested by preliminary simulations: candidate design points had a 

G-optimality value below a user-defined threshold  𝐽𝐽𝐺𝐺,thr. Then, three different designs were 

compared: MBDoE; G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.70; G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60. The 

experiments were carried out with the following procedure: (i) the G-map eMBDoE method 

was used to design experimental conditions off-line; (ii) the design was sent to the platform, 

which set the control variables to the designed values in an automated way and automatically 

measured and recorded the composition of the outlet stream from the reactor; (iii) the input-

output data measured by the platform were used to design the new experiment and send it to 

the platform; and so on until the experimental budget was reached. Results showed that the 

exploration of the design space was enhanced by the G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60. 

However, this did not translate into a loss of information: in fact, MBDoE required 23 optimal 

experiments to have statistically precise model parameters, while G-map eMBDoE with 

𝐽𝐽𝐺𝐺,thr=0.60 required only 5 optimal experiments, thus reducing the experimental burden of 78%. 
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Moreover, G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60 was able to reduce model prediction variance 

more efficiently among the three methods considered.  

Implementing autonomous decision-making in continuous-flow microreactors for the 

minimisation of model prediction variance 

 As an improvement of the first versions of the G-map eMBDoE method, a novel method was 

proposed  to automatically select the best G-optimality constraint during the experimentation 

without needing any prior knowledge on the system. This is especially useful for completely 

new systems for which plausible initial parameters values may not be available. Furthermore, 

the lack of human intervention in the determination of the G-optimality constraint allows to 

implement autonomous decision-making in Industry 4.0 technologies, such as automated 

chemical platform.  

The novel method was named adaptative  G-map eMBDoE because it automatically adapted 

the G-optimality constraintonly based on the overlap between H-maps and G-maps. In fact, if 

(a) the points located in the regions of the H-map with highest information content overlapped 

with the regions of the G-map with highest model prediction variance, then space exploration 

was favored by selecting candidate design points having lower G-optimality; instead, if (b) they 

overlapped with the regions of the G-map with lowest model prediction variance, then space 

exploration was favored by selecting candidate design points having higher G-optimality. To 

have a fair comparison, the adaptative G-map eMBDoE method was applied to the two 

simulated systems used with the first version of G-map eMBDoE, namely the algebraic model 

with two inputs and one output and the differential equation model with two inputs and two 

dynamic outputs. Also the same simulation settings were used: preliminary experiments; 

parameters initial values and upper/lower bounds; measurement errors; ranges for the control 

variables; E-optimal objective function. Then, the adaptative G-map eMBDoE was compared 

to the results previously obtained by means of MBDoE, G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr={0.25, 

0.75} (with 𝐽𝐽𝐺𝐺,thr=0.75 having a better performance than 𝐽𝐽𝐺𝐺,thr=0.75 in terms of space 

exploration, parameters precision and minimisation of model prediction variance); LH and 

factorial DoE. First of all, both inequality types (i.e., ≤ and ≥) for the G-optimality constraints 

were selected by the adaptative G-map eMBDoE during the simulated experimental campaigns, 

proving that there was no contradiction in the use of the two inequality types in the previous 

works. Moreover, the results showed that the adaptative G-map eMBDoE increased space 

exploration with respect to information-based methods, namely MBDoE, and it improved 
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parameters precision with respect to exploration-based methods, like LH and factorial DoE. As 

regards the comparison between the adaptative G-map eMBDoE and the original G-map 

eMBDoE, the former one achieved a level of space exploration that is intermediate between the 

one of eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.25 and the one of eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75. Moreover, the 

reduction of model prediction variance of the algebraic model achieved by the adaptative G-

map eMBDoE was lower than the one obtained with a fixed threshold of 0.75, but it was 

considerably more marked than the one achieved with 𝐽𝐽𝐺𝐺,thr=0.25. With the differential 

equation model, G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.75 and the adaptative method achieves the 

greatest reduction of model prediction variance among all the methods involved. Finally, with 

both models, the adaptative G-map eMBDoE required a number of experiments to precisely 

estimate parameters that was comparable to the one of MBDoE and G-map eMBDoE with 

𝐽𝐽𝐺𝐺,thr=0.75. Therefore, these results suggested that the proposed adaptative procedure was able 

to find a satisfactory trade-off between space exploration and information maximisation without 

requiring human intervention.  

 

Accurately predicting drug solubility in mixtures of organic solvents for the design and/or 

optimisation of crystallisation processes 

A novel data-driven model was proposed to predict drug solubility in a variety of single 

solvents, binary mixtures and ternary mixtures at different temperatures and compositions. To 

overcome the issue of selecting the most suitable molecular descriptors among the several 

possibilities available in the Literature, the UNIFAC theory was used as a reference: the entities 

identified within the organic mixtures corresponded to UNIFAC subgroups. Overall, a few 

input variables were needed to make predictions: temperature, mixture composition before API 

dissolution, UNIFAC subgroups. Correlation can be present among these inputs, but it was 

automatically handled through the use of a PLS model. The proposed modelling approach was 

validated experimentally using a real drug substance and 14 organic solvents typically 

employed in crystallisation units. The calibration dataset was made of the 14 single solvents 

and a few binary mixtures at two temperatures, 20 and 40°C, while the validation dataset 

included: (i) binary mixtures with the same pairs of solvents used in calibration but different 

composition and/or temperature; (ii) binary mixtures with pairs of solvents not mixed in 

calibration; (iii) ternary mixtures; (iv) systems (single solvents, binary mixtures and ternary 

mixtures) at 50°C, thus a temperature higher than the range used in calibration. The results 
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showed that the PLS model proposed was able to accurately predict API solubility in all the 

conditions explored, with 93% of the predictions of validation data having a prediction error 

statistically equivalent to zero, with a coefficient of determination 0.90. To further test the 

proposed modelling approach, 9 literature solubility datasets involving organic solvents were 

used (mainly single solvents and a few binary mixtures, due to the scarcity of published datasets 

of drug solubility in binary and ternary mixtures of organic solvents). The results confirmed the 

good prediction accuracy achieved with the PLS model built with the experimental data: the 

majority of validation data had a coefficient of determination between 0.95 and 0.99; moreover, 

a percentage of 97-100% of the measured solubility values had a prediction error statistically 

equivalent to zero.  

Predicting the effects of food and population variability on drug solubility in the human 

intestine 

A data-driven model was proposed to improve the prediction of intestinal solubility measured 

in vitro (with biorelevant media mimicking human intestinal fluids) and to facilitate the study 

of intra- and inter-subject variability. Based on the fact that solubility is highly variable in 

humans and that in vitro data cover only a restricted set of possible scenarios, a Gaussian 

Process model was selected, because it inherently provides an estimation of model prediction 

uncertainty. The Gaussian Process model should be able to represent the effects of all 

compounds in the biorelevant media, but among them only variations of pH and bile salts can 

be simulated with Simcyp. Nevertheless, the aim was to integrate the Gaussian Process model 

into Simcyp, in order to improve the description of drug absorption while still being able to 

study intra- and inter-subject variability through dynamic simulations of virtual populations. 

Therefore, two inputs were considered for the Gaussian Process model: (1) pH and (2) an 

apparent bile salts concentration, given by the sum of the concentrations of the 4 bile salts, 

lecithin, oleic acid and cholesterol. This model was able to improve considerably the predictions 

of all in-vitro data: the coefficient of determination was equal to 0.97 (thus, close to 1) and the 

root mean squared error RMSE equal to 0.33 mM, thus comparable to the standard deviation 

of measurement errors that could reach up to 0.10 mM in the fasted state and 0.77 mM in the 

fed state. Therefore, this Gaussian Process model is expected to improve the predictions of 

PBPK phenomena in Simcyp. Moreover, the improved representation of intestinal solubility is 

expected to give a valuable support to drug development: even though the intestinal absorption 

of a drug is the result of a complex interplay of several phenomena, solubility directly influences 
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dissolution rate and precipitation and, if too low, it can limit absorption itself. In turn, a proper 

intestinal absorption is required for the drug to reach the bloodstream and, consequently, to 

have the desired effect on the patients.  

Future perspcetives to extend the usefulness of the methods proposed in this Dissertation are:  

• Based on the results of MBDoE applied to the lubrication unit (Chapter 3), MBDoE can be 

applied to different units of pharmaceutical manufacturing processes and adapted based on 

the specific features of the equipment involved. This will improve robustness of the 

processes developed, while simultaneously reducing time, labour, and costs for process 

development.  

• The satisfactory results obtained with exploratory MBDoE, both in silico and 

experimentally, support the conclusion that the adaptative G-map eMBDoE is ready to be 

implemented in a fully autonomous platform. Ongoing work is focusing on its application 

to the kinetic model of Chapter 5 for total methane oxidation and on its integration within 

LabView. This will allow to experimentally confirm the advantages of the adaptative 

procedure in terms of space exploration, parameters precision and minimisation of model 

prediction variance without the need for human intervention. Besides this specific 

application, the adaptative G-map eMBDoE procedure can be applied to any type of 

automated (bio)chemical platform employed in the pharmaceutical industry, thus 

exploiting the full potential of Industry 4.0 technologies;  

• The PLS model to predict drug solubility in organic mixtures (Chapter 3) has shown its 

good performance both in calibration and validation with a real drug substance and with 9 

literature datasets on drug and drug-like molecules. Therefore, future work may focus on 

the systematic application of this modelling approach to drugs of different physico-

chemical properties, in order to identify possible deviations of specific systems from the 

expected behaviour and to identify possible causes of such deviations;    

• The accurate predictions of biorelevant solubility achieved by the GP model (Chapter 8) 

suggest that this solubility model is ready for the integration into the available commercial 

software for PBPK simulations. This will allow to predict plasma-concentration profiles in 

all the subjects of a virtual population, which in turn can be compared to the profiles 

experimentally measured in human volunteers. The GP model improves the prediction of 

the in vitro solubility data, therefore it is expected to improve the overall PBPK simulation. 

A possible limitation may be the fact that the apparent BS concentration reaches values up 
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to 43 mM, which is not unfeasible since BS measured in human volunteers can reach up to 

100 mM, but it is still higher than the average values typically simulated in the intestine, 

which range between 0 and 15 mM. In case this degrades the predictions of plasma-

concentration profile, a different version of the GP model that uses only pH and BS as 

inputs can be considered. The GP model leading to the most accurate prediction of the 

plasma concentration profiles, besides patients’ variability, will be implemented in the 

PBPK software for future development of drugs alongside clinical trials.  
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Appendix A 
Lubrication model 

The following strategy is proposed to solve 𝐒𝐒�𝛉𝛉�,𝛗𝛗� ill-conditioning:  

1. the sensitivity matrix (𝐒𝐒�𝛉𝛉�,𝛗𝛗�) is evaluated with currently available experiments and its 

condition number (𝜅𝜅cond) is calculated; 

2. if 𝜅𝜅cond ≥ 𝜅𝜅cond,max, 𝐒𝐒�𝛉𝛉�,𝛗𝛗� is deemed ill-conditioned and a regularization technique 

must be applied, as suggested by Grah (2004), we set 𝜅𝜅cond,max =1000; 

3. data points of the form [𝑆𝑆𝐹𝐹reg,𝐾𝐾reg]𝑙𝑙
𝑇𝑇, 𝑙𝑙 = 1, …, 𝑁𝑁reg, are selected in their domain and they 

are used to calculate additional rows 𝐬𝐬reg,𝑙𝑙(𝛉𝛉�), 𝑙𝑙 = 1, … ,𝑁𝑁reg: 

𝐒𝐒�𝛉𝛉�,𝛗𝛗� =

⎝

⎜
⎜
⎜
⎜
⎛

𝐬𝐬11(𝛉𝛉�,𝛗𝛗)
⋮

𝐬𝐬𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝐾𝐾(𝛉𝛉�,𝛗𝛗)
___________
𝐬𝐬reg,1(𝛉𝛉�,𝛗𝛗)

⋮
𝐬𝐬reg,𝑁𝑁reg(𝛉𝛉�,𝛗𝛗)⎠

⎟
⎟
⎟
⎟
⎞

                                                                                                          (A.1) 

 

4. the condition number of the regularized 𝐒𝐒(𝛉𝛉�,𝛗𝛗) is evaluated in order to verify that 

𝜅𝜅cond < 𝜅𝜅cond,max; if this is not the case, repeat points 3., 4., otherwise stop. 

The resulting well-conditioned sensitivity matrix is used to calculate the FIM and to solve the 

optimisation problem (Eq. 2.5, section 2). However, the 𝑁𝑁reg random experiments are never 

measured experimentally and they are removed from the sensitivity matrix as soon as the 

optimal experiment (𝛗𝛗opt) is designed; for this reason, they are named ghost data. 

We empirically observed that this strategy is able to efficiently solve ill-conditioning with a 

limited number of ghost data. 
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Appendix B 
G-map eMBDoE: selection of the 

threshold and results reproducibility 

Appendix B shows additional results for case study 1 (algebraic model of Chapter 4) including 

the rationale for the selection of G-optimality threshold (Section B.1) and parameters accuracy 

(difference between estimated and true parameters values) and precision (confidence intervals) 

evaluated at each iteration of the sequential procedure (Section B.2); reproducibility of the LH 

results besides random variations in the LH designs when this method is simulated in different 

runs (Section B.3) 

B.1 Selection of G-optimality threshold  

Graphical visualisation of the designed experiments shows that space exploration increases with 

a threshold 𝐽𝐽𝐺𝐺,thr between 0.50 and 0.85 with respect to classical MBDoE (see main text, 

Section 4.3.1). Moreover, Figure B.1 shows that eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.85 reduced the 

maximum G-optimality calculated across the entire design space more than all the other 

methods.  

 

Figure B.1 Maximum G-optimality calculated across the whole design space. Different 
curves represent different methods: classical MBDoE (i.e., eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0); G-map 
eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 ∈{0.25, 0.50, 0.65,0.75,0.85}; Latin Hypercube (LH) and factorial DoE.  

However, Figure B.2 shows that eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.85 increases the number of calibration 

experiments to precisely estimate parameter 𝜃𝜃�5 with respect to all the other eMBDoE scenarios. 
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The remaining parameters are omitted for sake of conciseness, since 𝜃𝜃�5 is the one requiring 

more calibration data to be estimated.  

 
Figure B.2 Parameters precision of parameter 5 in terms of t-tests for all the scenarios 
considered: classical MBDoE (i.e., eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0); 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 ∈{0.25, 0.50, 
0.65,0.75,0.85}; Latin Hypercube (LH) and factorial DoE. 

By analysing the results from Figure B.1 and B.2, a threshold 𝐽𝐽𝐺𝐺,thr=0.75 is selected: it reduces 

significantly model prediction variance across the whole design space (Figure B.1) without 

increasing the number of experiments to precisely estimate model parameters (Figure B.2).  

B.2 Parameters accuracy and precision 

Parameters accuracy is evaluated by comparing the true parameter values, which are the values 

used to generate data in silico, to the estimated parameter values at every iteration.  

Figures B.3-B.7 show that a good accuracy is achieved in all scenarios as the point estimate is 

close to the true parameter value, which in turn lies in the range delimited by the 95% C.I.. 
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(a) 

 
(b) 

  
(c) 

 
(d) 

Figure B.3 Analysis of the accuracy of parameter 1: the true parameter value (red line) is 
compared against the point estimate together with their 95% CI  (black vertical lines). Four 
methods are compared: (a) MBDoE (blue squares); (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 
(lilac hexagons); (c) LH (pink stars); (d) 42-level full factorial DoE (grey triangles). 

 
(a) 

 
(b) 

  
(c) 

  
(d) 

Figure B.4 Analysis of the accuracy of parameter 2: the true parameter value (red line) is 
compared against the point estimate together with their 95% confidence intervals (95% CI; 
black vertical lines). Four methods are compared: (a) MBDoE (blue squares); (b) G-map 
eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 (lilac hexagons); (c) LH (pink stars); (d) 42-level full factorial 
DoE (grey triangles). 
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(a) 

 

  
(b) 

 
(c) 

 
(d) 

Figure B.5 Analysis of the accuracy of parameter 3: the true parameter value (red line) is 
compared against the point estimate together with their 95% confidence intervals (95% CI; 
black vertical lines). Four methods are compared: (a) MBDoE (blue squares); (b) G-map 
eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 (lilac hexagons); (c) LH (pink stars); (d) 42-level full factorial 
DoE (grey triangles). 

 
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure B.6 Analysis of the accuracy of parameter 4: the true parameter value (red line) is 
compared against the point estimate together with their 95% confidence intervals (95% CI; 
black vertical lines). Four methods are compared: (a) MBDoE (blue squares); (b) G-map 
eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 (lilac hexagons); (c) LH (pink stars); (d) 42-level full factorial 
DoE (grey triangles). 
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(a) 

  
(b) 

 
(c) 

  
(d) 

Figure B.7 Analysis of the accuracy of parameter 5: the true parameter value (red line) is 
compared against the point estimate together with their 95% confidence intervals (95% CI; 
black vertical lines). Four methods are compared: (a) MBDoE (blue squares); (b) G-map 
eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 (lilac hexagons); (c) LH (pink stars); (d) 42-level full factorial 
DoE (grey triangles). 

 

B.3 Reproducibility of the LH results 

For a fixed design space, different runs of the LH method can lead to randomly different 

designs. However, the conclusions drawn in the main text are general and not strictly related to 

a particular realization of the LH design. As a proof, Figure A.8 shows the results in terms of 

parameters precision obtained with 5 different LH runs. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
Figure A.8 Parameters precision tests performed with 5 different LH designs. Figures (a)-
(e) show results of parameters 1-5, respectively. 

Figure A.8 shows that the LH performance in terms of number of experiments needed to pass 

the t-tests is not strictly dependent on the singular realisation of the LH design. Moreover, the 

number of experiments needed to estimate all parameters is always higher to the one required 

by G-map eMBDoE and MBDoE (which need 10 experiments, as shown in Section 4.3.1 of the 

main text), therefore the conclusions on the comparison among the explorative and/or optimal 

methods remains unchanged. 
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Appendix C 
G-map eMBDoE: additional results 

with Model 2 

Additional results for the Model 2 (baker’s yeast fermentation model) of Chapter 4 are 

presented: Section C.1 illustrates the rationale for selection of the G-optimality threshold; 

Section C.2 shows the results in terms of parameter accuracy (i.e., difference between estimated 

and true values) and precision (through confidence intervals) at each iteration of the sequential 

procedure; Section C.3 shows the reproducibility of the LH results when the method is 

simulated several times; Section C.4 shows the contributions to 𝐽𝐽𝐺𝐺  given by both responses 𝑥𝑥1 

and 𝑥𝑥2 at all time points 𝑡𝑡1, 𝑡𝑡2 and 𝑡𝑡3; section C.5 shows G-maps and H-maps at the last iteration 

of experiments design.  

C.1 Selection of the G-optimality threshold 

The maximum G-optimality calculated in the whole design space is shown in Figure C.1. The 

figure suggests that completely explorative methods such as DoE and LH show higher values 

of 𝐽𝐽𝐺𝐺,max in the whole experimental campaign, followed by MBDoE, i.e., eMBDoE with 

𝐽𝐽𝐺𝐺,thr=0. Instead, 𝐽𝐽𝐺𝐺,thr=0.85 has the best performance in terms of model prediction variance 

reduction, followed by 𝐽𝐽𝐺𝐺,thr=0.75, which has the second-best performance.  

 

Figure B.1 Maximum G-optimality in the whole design space. Different methods: classical 
MBDoE (i.e., eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0); G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 ∈{0.25, 0.50, 
0.65,0.75,0.85}; Latin Hypercube (LH) and factorial DoE.  

However, eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.85 requires a higher number of calibration experiments to 

precisely estimate the model parameters. Figure C.2 shows that the two eMBDoE methods that 
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allow to estimate parameter 𝜃𝜃�4 (the most critical model parameters in terms of experiments 

required for estimation) with the minimum number of experiments have  𝐽𝐽𝐺𝐺,thr ∈{0.50, 0.75}.  

 
Figure C.2 Parameters precision in terms of t-tests for all the scenarios considered: classical 
MBDoE (i.e., eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0); 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟 ∈{0.25, 0.50, 0.65,0.75,0.85}; Latin Hypercube 
(LH) and factorial DoE. 

Therefore, to find a trade-off between reduction of model prediction variance and maximisation 

of parameters precision, a threshold of 0.75 is selected for this case study.  

C.2 Parameters accuracy and precision 

Besides the differences in terms of precision (as shown in the 𝑡𝑡-tests), a satisfactory accuracy 

is achieved in all scenarios and all the 4 parameters do not depart considerably from the assumed 

true values for the 4 methods (Figure C.3-6).  

 
(a) 

  
(b) 

  
(c) 

 
(d)  

Figure C.3 Analysis of the accuracy of parameter 1: true value (red line) compared against 
the point estimate with 95% CI (black vertical lines). Methods are compared: (a) MBDoE 
(blue squares); (b) G-map eMBDoE, 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 (lilac hexagons); (c) LH (pink stars); (d) 
DoE (grey triangles). 
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(a) 

  
(b) 

  
(c) 

 
(d) 

Figure C.4 Analysis of the accuracy of parameter 2: the true parameter value (red line) is 
compared against the point estimate (squares, hexagons, stars, triangles for MBDoE, 
eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75, LH and 42-level full-factorial DoE, respectively) together with 
their 95% confidence intervals (95% CI; black vertical lines). 

 
(a) 

  
(b) 

 
(c) 

  
(d) 

Figure C.5 Analysis of the accuracy of parameter 3: the true parameter value (red line) is 
compared against the point estimate   together with their 95% confidence intervals (95% CI; 
black vertical lines). Four methods are compared: (a) MBDoE (blue squares); (b) G-map 
eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 (lilac hexagons); (c) LH (pink stars); (d) 42-level full factorial 
DoE (grey triangles). 
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(a) 

  
(b) 

  
(c) 

 
(d) 

Figure C.6 Analysis of the accuracy of parameter 4: the true value (red line) is compared 
against the point estimate with itd 95% CI (black vertical lines). Methods compared: (a) 
MBDoE (blue squares); (b) G-map eMBDoE, 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 (lilac hexagons); (c) LH (pink 
stars); (d) 42-level full factorial DoE (grey triangles). 

C.3 Reproducibility of the LH results 

Different runs of LH method lead to random variations in the corresponding LH designs.  

Therefore, 5 different runs are analysed in term of parameters precision tests (Figure C.7) in 

order to assess reproducibility of the results shown in the main text (Section 4.3.2).  

Figure C.7 shows that the number of experiments required to estimate a given model parameter 

does not change considerably with random variations in the LH design: indeed, a maximum 

difference of two experiments is found with parameters 2 and 3, while parameter 4 is never 

statistically sound for all considered scenarios. These results are analogous to the ones shown 

in the main text, thus proving reproducibility of the LH results 
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(a) 

 
(b) 

 
(c) 

 
(d)  

Figure C.7 Parameters precision tests performed with 5 different LH designs. Figures (a)-
(d) show results of parameters 1-4, respectively. 

C.4 Single contributions to the scalar measures of G-optimality 

In the G-map eMBDoE, each point of the grid covering the design space is characterised in 

terms of both G-optimality and information content (i.e., a FIM-based metric). However, 

dynamic models such as the one of Model 2 presents a higher level of complexity: each point 

of the grid corresponds not only to a scalar value, but to an entire dynamic profile for each 

response variable. In this case, 2 response variables (𝑥𝑥1 and 𝑥𝑥2) are measured at 3 different 

sampling points (𝑡𝑡1, 𝑡𝑡2 and 𝑡𝑡3). The model prediction variance 𝐕𝐕𝑦𝑦 can be calculated as in 

Chapter 2 for 𝑥𝑥1 at 𝑡𝑡1, 𝑡𝑡2 and 𝑡𝑡3 and for 𝑥𝑥2 at 𝑡𝑡1, 𝑡𝑡2 and 𝑡𝑡3; this holds for every point in the grid. 

To summarise this information, mean and maximum values of the 𝐕𝐕𝑦𝑦 estimated for every point 

in the design space are calculated for the 6 time contributions of model prediction variances; 

here, only maximum values are shown in Figure C.5 for sake of conciseness, but similar results 

hold for the mean values. 

Considering both responses 𝑥𝑥1 and 𝑥𝑥2, the maximum model prediction variances increase from 

time point 𝑡𝑡1 (Figure C.8a,b) to 𝑡𝑡2 (Figure C.8c,d) to 𝑡𝑡3 (Figure C.8e,f). Moreover, at the same 

time point, 𝑥𝑥2 has a higher model prediction variance with respect to 𝑥𝑥1 (Figure C.8b,d,f 

compared to Figure C.8a,c,e, respectively). The advantage of G-map eMBDoE in terms of 

model prediction variance reduction is most evident when the highest G-optimality values are 

found, namely with 𝑥𝑥2 at 𝑡𝑡3 and with 𝑥𝑥1 at 𝑡𝑡3. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 Figure C.8 Maximum values of the single contributions to 𝐽𝐽𝐺𝐺 at every iteration; comparison 
among MBDoE, G-map eMBDoE, LH and 42-level full factorial DoE. All sampling points, 
are considered for both responses, namely 𝑥𝑥1 and 𝑥𝑥2: (a)-(b) 𝑡𝑡1; (c)-(d) 𝑡𝑡2; (e)-(f) 𝑡𝑡3. 

C.5 G-maps and H-maps at the last experiment design iteration 

When 22 experiments are used in calibration and the 23rd experiment must be designed, the G-

maps in Figure C.9 are obtained: completely explorative methods like LH and factorial DoE 

have still higher values of G-optimality at 𝑢𝑢2 between 30 and 35 g/L; instead, MBDoE and 

eMBDoE have reduced considerably G-optimality values in the whole design space.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.9 G-maps generated after 22 calibration experiments. Four methods are 
compared: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (c) LH; (d) 42-level full 
factorial DoE. Orange squares indicates already measured data (namely, data used to 
calibrate the model); black dots indicate candidate design points; the red point indicates the 
experiment designed at the current iteration.   

Finally, the corresponding maps of information content are shown in Figure C.10: as expected, 

completely explorative methods like LH and factorial DoE lead to the smallest information 

content, while standard MBDoE ensures the highest information content. Explorative MBDoE 

with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75 provides the second best performance in terms of information maximization.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.10 H-maps generated after 22 calibration experiments. Four methods are 
compared: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.75; (c) LH; (d) 42-level full 
factorial DoE. Orange squares indicates already measured data (namely, data used to 
calibrate the model); the red point indicates the experiment designed at the current iteration.   
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Appendix D 
G-map eMBDoE: supplementary 

material 

In this Appendix, two aspects regarding the robustness of the results are considered: in Section 

D.1, the effect of different sampling points for the dynamic system (Model 2 in Subsection 4.3.2 

of the main text); in Section D.2, the effect of different realisations of measurement noise for 

both Model 1 and 2 (Subsections 4.3.1 and 4.3.2 of the main text, respectively).  

D.1 Effect of sampling points selection 

In Model 2 of Chapter 4, 3 equally spaced sampling points 𝑁𝑁spare selected within the 

experiments duration of 21h. In this Appendix, we show that the results obtained in the main 

text are general and different choices of sampling points do not change significantly the 

conclusions on the comparison among model-based design of experiments (MBDoE), 

explorative model-based design of experiments (eMBDoE), Latin Hypercube (LH), factorial 

design of experiments (DoE).  

To show this, different number of sampling points, equally distributed in the fixed experiments 

duration of 21h, are considered: 

• 4 sampling points in Section D.1.1; 

• 20 sampling points in section D.1.2. 

The remaining settings of the simulations are the same as in the main text of the paper. Two 

keys analyses are performed for each scenario: 

• t-tests for parameters precision; 

• profiles of scalar indices of G-optimality. 

D.1.1. Small increase of sampling points: 𝑁𝑁sp=4 

Figure D.1 shows that purely explorative designs such as LH and DoE are not able to estimate 

parameter 4 within the experimental budget. Both MBDoE and eMBDoE are able to estimate 

all model parameters, but the latter reduces the number of experiments required (Figure D.1.d).  
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(a) 

 
(b) 

   
(c) 

 
(d) 

Figure D.1 Parameters precision through t-tests: parameters 1-4 in figures a-d, respectively. Results 
obtained with 4 sampling points of the response variable. 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure D.2 Scalar indices of G-optimality: (a) minimum, (b) mean and (c) maximum G-
optimality calculated in the whole design space at every iteration. 4 sampling points are used 
in the dynamic profiles.  

Figures D.2a-c show that optimal designs such as MBDoE and eMBDoE reduce G-optimality 

in the whole design space more efficiently than purely explorative ones like LH and DoE. 
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Moreover, eMBDoE has the smallest values of mean and maximum G-optimality from the fifth 

iteration onwards. 

This is analogous of what is shown in the paper with 3 sampling points for the dynamic profiles, 

suggesting that the results are not impacted in a relevant way by the 𝑁𝑁sp considered. 

D.1.2. Large increase of sampling points: 𝑁𝑁sp=20 

Figure D.3d shows that there is not a clear difference in the number of experiments needed to 

estimate the most critical parameter (𝜃𝜃4); this is likely due to the fact that a very large number 

of sampling points is selected, therefore one experiment provides large information. However, 

all parameters have a smaller parameters precision (namely, smaller t-values in Figures D.3a-

d) when experiments are designed with purely explorative methods such as LH and factorial 

DoE.  

Figure D.4 shows that the G-optimality of purely explorative methods (LH and DoE) is always 

higher than the one of optimal methods. Moreover, eMBDoE has a smaller G-optimality than 

MBDoE; the fact that the between the two difference is less evident is likely due to the large 

information provided by the high number of sampling points in every dynamic profile. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure D.3 Parameters precision through t-tests: parameters 1-4 in figures a-d, respectively. 
Results obtained with 20 sampling points of the response variables.  
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(a) 

 
(b) 

 
(c) 

 
 

Figure 4 Scalar indices of G-optimality: (a) minimum, (b) mean and (c) maximum G-
optimality calculated in the whole design space at every iteration. 20 sampling points are 
used in the dynamic profiles. 

To conclude, both scenarios explored (namely, 𝑁𝑁sp=4 and 𝑁𝑁sp=20) confirm that G-map 

eMBDoE finds the best trade-off between space exploration and information maximisation and 

the advantages with respect to conventional design methods is not affected by the choice of the 

sampling points.   

D.2. Effect of different noise realisations  

In this Section, a study on the effect of measurement noise on the performance evaluation of 

different experimental campaigns, namely eMBDoE, MBDoE, factorial Doe and LH, is 

presented. Therefore, eMBDoE, MBDoE, DoE and LH experiments for Model 1 and 2 are 

simulated 10 times by using the same settings as in Section 4.3.1 and 4.3.2, respectively, of the 

main text. More specifically, the settings set equal to those of the main text are: set of 

preliminary experiments; initial parameters values; ranges of control variables; ranges of 

parameters estimates; standard deviation of the randomly generated gaussian noise; optimality 

criterion; G-optimality threshold; experimental budget.  In every simulation, the results in terms 

of mean and maximum G-optimality are stored and their mean and standard deviations are 

plotted in Figures D.5 and D.6. Notice that in case of DoE and LH, not only the noise of 
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response variables change for different simulations of the entire experimental campaign, but 

also the order in which single experiments are added may change in a random way. In fact, 

there is no systematic method to select the best order to execute DoE or LH experiments 

sequentially throughout the experimental campaign.   

 
(a) 

 
(b) 

Figure D.5 Scalar indices of G-optimality for case study 1: (a) mean and (b) maximum G-
optimality calculated in the whole design space at every iteration. In the plot, symbols 
indicate the mean value calculated with 10 different simulations (namely, 10 different noise 
realisations), while vertical bars indicate the calculated standard deviation.   

 
(a) 

 
(b) 

Figure D.6 Scalar indices of G-optimality for case study 2: (a) mean and (b) maximum G-
optimality calculated in the whole design space at every iteration. In the plot, symbols 
indicate the mean value calculated with 10 different simulations (namely, 10 different noise 
realisations), while vertical bars indicate the calculated standard deviation.   

As shown in Figures D.5 and D.6, the highest variability is found with DoE and LH, but this is 

partially due to random noise and partially to the different order with which experiments are 

progressively added to the calibration dataset. Instead, the variability of the G-optimality 

obtained with MBDoE and G-map eMBDoE is very low with respect to the mean value. 

Despite the variability of DoE and LH, the same conclusions can be made on the reduction of 

model prediction variance as in the main text: as regards Model 1 (Figure D.5), explorative 

designs such as LH and DoE reduce G-optimality with respect to MBDoE, but the best 
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performance is found with eMBDoE with a threshold of 0.75; as far as Model 2 is concerned, 

explorative designs have always higher G-optimality with respect to MBDoE and eMBDoE 

(Figure D.6) and the latter one has, overall, the best performance. This proves that the better 

performance of eMBDoE over conventional design methods is robust and not bound to specific 

noise realisations.  
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Appendix E 
Kinetic model of total methane 

oxidation 

The reaction of total methane oxidation over Pd/Al2O3 catalyst (Chapter 5) is assumed to be 

unaffected by mass transfer resistances and isothermal within the catalyst particle. Moreover, 

axial dispersion is negligible in the packed bed reactor. More details can be found in Bawa et 

al. (2022) and in Pankajakshan et al. (2023). The reactor, modelled as an isothermal plug flow 

reactor (PFR), can then be described by the equations: 
d𝑥𝑥1
d𝑤𝑤

= 𝑅𝑅𝑢𝑢1
𝑢𝑢2𝐺𝐺avg

(−𝑟𝑟) ,    𝑥𝑥1(0) =  𝑢𝑢3 , 

(E.1) 

d𝑥𝑥2
d𝑤𝑤

= 𝑅𝑅𝑢𝑢1
𝑢𝑢2𝐺𝐺avg

(−2𝑟𝑟) ,    𝑥𝑥2(0) =  𝑢𝑢3𝑢𝑢4 , 

d𝑥𝑥3
d𝑤𝑤

= 𝑅𝑅𝑢𝑢1
𝑢𝑢2𝐺𝐺avg

(𝑟𝑟) , 

d𝑥𝑥4
d𝑤𝑤

= 𝑅𝑅𝑢𝑢1
𝑢𝑢2𝐺𝐺avg

(2𝑟𝑟) , 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 ,   𝑖𝑖 = 1,2,3 

where 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 and 𝑥𝑥4 represent the steady-state mole fractions [molmol-1] of CH4, O2, CO2 

and H2O, while 𝑢𝑢𝑖𝑖 with 𝑖𝑖 = 1, … ,4 represent the control variables described in Chapter 5. 

Moreover, 𝑅𝑅 [J mol-1 K-1] is the universal gas constant, 𝑤𝑤 [g] is the catalyst mass along the 

reactor, 𝑃𝑃avg [bar] is the average pressure along the reactor, calculated using an empirical 

pressure drop model based on the Ergun equation (Bawa et al., 2023). Finally, the reaction rate 

𝑟𝑟 [mol g-1 min-1] is given by Mars-van Krevelen kinetic mechanism: 

𝑟𝑟𝐶𝐶𝐻𝐻4 =
𝑘𝑘1𝑘𝑘2𝑃𝑃𝐶𝐶𝐻𝐻4𝑃𝑃𝑂𝑂2

𝑘𝑘1𝑃𝑃𝑂𝑂2 + 2𝑘𝑘2𝑃𝑃𝐶𝐶𝐻𝐻4 + (𝑘𝑘1𝑘𝑘2/𝑘𝑘3)𝑃𝑃𝑂𝑂2𝑃𝑃𝐶𝐶𝐻𝐻4
 

(E.2) 

Moreover, reaction rate constants 𝑘𝑘𝑖𝑖 [mol bar-1 g-1 min-1] and adsorption equilibrium constants 

𝐾𝐾𝑖𝑖 [bar-1] are expressed by Eq. E.3 and A.4, respectively: 

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑖𝑖,ref exp �−𝐴𝐴𝑎𝑎,𝑖𝑖
𝑅𝑅

�1
𝑇𝑇
− 1

𝑇𝑇ref
�� ,        𝑖𝑖 = 1, … ,𝑁𝑁𝑟𝑟 , (E.3) 

𝐾𝐾𝑖𝑖 = 𝐾𝐾𝑖𝑖,ref exp �−Δ𝐻𝐻𝑖𝑖
𝑅𝑅

�1
𝑇𝑇
− 1

𝑇𝑇ref
�� ,       𝑖𝑖 = 1, … ,𝑁𝑁𝑟𝑟 , (E.4) 
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where 𝑘𝑘𝑖𝑖,ref  [mol bar-1 g-1 min-1] is the rate constant at reference temperature, chosen as the 

average temperature used, 𝐸𝐸𝑎𝑎,𝑖𝑖 [J mol-1] is the activation energy, 𝑇𝑇 [K] is the reaction 

temperature; 𝑇𝑇ref [K] is the reference temperature, chosen as the mean temperature, 𝐾𝐾𝑖𝑖,ref       

[bar-1] is the adsorption constant at reference (namely, mean) temperature, Δ𝐻𝐻𝑖𝑖 [J mol-1] is the 

heat of adsorption, 𝑁𝑁𝑟𝑟 is the number of reactions.  

Both Eq. E.3 and E.4 are reparametrised to facilitate model estimation by reducing parameters 

correlation (Bawa et al., 2022), obtaining Eq. E.5-E.6, respectively: 

𝑘𝑘𝑖𝑖 = exp �𝜃𝜃1,𝑖𝑖 −
𝜃𝜃2,𝑖𝑖104

𝑅𝑅
�1
𝑇𝑇
− 1

𝑇𝑇ref
��  

(E.5) 
𝜃𝜃1,𝑖𝑖 = ln(𝑘𝑘𝑖𝑖,ref) ,        𝜃𝜃2,𝑖𝑖 = 𝐴𝐴𝑎𝑎,𝑖𝑖

104
 

𝐾𝐾𝑖𝑖 = exp �𝜃𝜃3,𝑖𝑖 −
𝜃𝜃4,𝑖𝑖104

𝑅𝑅
�1
𝑇𝑇
− 1

𝑇𝑇ref
��  

(E.6) 
𝜃𝜃3,𝑖𝑖 = ln(𝐾𝐾𝑖𝑖,ref) ,        𝜃𝜃4,𝑖𝑖 = Δ𝐻𝐻𝑖𝑖

104
 

The reparametrised forms are the ones used during parameters estimation.  
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Appendix F 
G-map eMBDoE on total methane 

oxidation 

In this Appendix, more details are found on parameters precision and distribution of information 

content in the whole design space.   

F.1 Tables of t-values 

Tables of 𝑡𝑡-values calculated at every iteration of the G-map eMBDoE procedure are shown in 

Tables F.1, F.2 and F.3: the best performance is achieved by G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60, 

since 5 eMBDoE experiments are enough to estimate all parameters. Instead, conventional 

MBDoE is able to estimate all parameters at the 23rd experiment, while G-map eMBDoE with 

𝐽𝐽𝐺𝐺,thr=0.70 would need a higher number of experiments.  

Table F.1. Parameters precision tests for conventional MBDoE.  

No. MBDoE t-value 
𝜽𝜽�𝟏𝟏 

t-value 
𝜽𝜽�𝟐𝟐 

t-value 
𝜽𝜽�𝟑𝟑 

t-value 
𝜽𝜽�𝟒𝟒 

t-value 
𝜽𝜽�𝟓𝟓 

t-value 
𝜽𝜽�𝟔𝟔 

t-ref 

0 17.0274 2.4840 1.0130 1.2404 29.8692 5.2055 1.6973 
1 9.8928 1.3272 5.8495 1.9975 9.7777 1.8016 1.6924 
2 10.2600 1.8029 1.1586 1.0581 41.6467 4.8258 1.6883 
3 12.1550 1.8100 1.6893 1.3893 100.3264 8.2836 1.6849 
4 9.2607 1.3432 7.4699 1.6677 75.6153 6.0163 1.6820 
5 10.9329 1.5101 10.6955 1.9421 71.0188 5.6149 1.6794 
6 2.4819 0.6322 22.0141 3.5922 40.5772 4.1540 1.6772 
7 1.1809 0.9197 23.0338 3.9051 34.5474 3.3905 1.6753 
8 2.1422 0.6194 23.9950 4.1141 37.0895 4.1222 1.6736 
9 2.2709 0.8274 24.4454 4.2008 35.6524 3.9355 1.6720 
10 1.3865 0.7427 25.4787 4.3154 34.7234 3.6920 1.6706 
11 0.9967 0.8506 25.4751 4.6044 34.9845 4.1152 1.6694 
12 2.2084 1.1035 24.2316 4.0237 38.4493 3.9361 1.6683 
13 1.9788 1.3179 25.1187 4.4170 37.7544 4.3245 1.6672 
14 1.1914 0.5619 27.5534 4.7412 34.4522 3.4104 1.6663 
15 3.0797 1.3280 26.6527 4.5932 34.1011 3.8504 1.6654 
16 1.7564 1.1041 25.8311 4.2298 41.8158 3.9606 1.6646 
17 3.2979 0.9710 26.6492 4.5013 38.0398 3.9767 1.6639 
18 5.5333 1.3498 26.6730 4.1703 38.8337 3.6279 1.6632 
19 6.0389 1.2272 26.0571 4.1996 39.7109 3.9137 1.6626 
20 6.5573 1.4326 26.1222 4.3342 39.8329 3.5705 1.6620 
21 6.0102 1.1389 27.2243 4.4628 37.9242 3.7648 1.6614 
22 6.1984 1.1398 26.9772 4.4274 39.4925 3.7996 1.6609 
23 8.2387 1.7800 26.1796 4.0127 42.0700 3.9031 1.6604 
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Table F.2. Parameters precision tests for G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.70 

No. eMBDoE t-value 
𝜽𝜽�𝟏𝟏 

t-value 
𝜽𝜽�𝟐𝟐 

t-value 
𝜽𝜽�𝟑𝟑 

t-value 
𝜽𝜽�𝟒𝟒 

t-value 
𝜽𝜽�𝟓𝟓 

t-value 
𝜽𝜽�𝟔𝟔 

t-ref 

0 17.0274 2.4840 1.0130 1.2404 29.8692 5.2055 1.6973 
1 9.8928 1.3272 5.8495 1.9975 9.7777 1.8016 1.6924 
2 10.2600 1.8029 1.1586 1.0581 41.6467 4.8258 1.6883 
3 12.1550 1.8100 1.6893 1.3893 100.3264 8.2836 1.6849 
4 8.6500 1.6603 6.3686 1.5475 92.7433 7.3826 1.6820 
5 10.8325 1.6554 9.4718 2.0946 73.2537 5.6790 1.6794 
6 0.4798 1.5191 22.5975 4.0740 43.0235 3.8311 1.6772 
7 1.9526 0.5055 26.7579 4.5806 35.5143 3.7515 1.6753 
8 0.9430 0.8003 27.5418 4.6295 35.6747 3.5501 1.6736 
9 3.4051 1.0652 27.0508 4.4380 31.5154 3.2857 1.6720 

10 2.1596 0.7598 26.2992 4.3142 42.3413 4.0461 1.6706 
11 1.1153 0.8331 28.3421 4.6323 35.9922 3.1995 1.6694 
12 2.8823 1.1303 27.1236 4.2035 41.5440 3.6986 1.6683 
13 3.4449 1.2278 25.1008 3.8696 48.6858 4.1606 1.6672 
14 3.9144 1.0686 24.8123 4.1482 53.4494 4.1493 1.6663 
15 4.0856 1.0854 25.1671 4.1913 58.0273 5.8025 1.6654 
16 2.9337 1.0418 26.3870 4.2927 53.3763 4.5749 1.6646 
17 2.0566 1.0898 26.7288 4.5988 60.2529 4.7745 1.6639 
18 2.2161 0.8676 27.7055 4.8070 54.3127 5.5972 1.6632 
19 4.5330 1.6150 22.7255 3.8079 81.0074 6.3587 1.6626 
20 2.8178 1.2192 28.3806 4.5119 63.1830 5.6179 1.6620 
21 4.7328 1.2561 26.4000 4.1211 68.4597 5.9146 1.6614 
22 6.6201 1.2250 25.8597 4.0436 68.6939 6.4150 1.6609 
23 4.3769 1.3604 26.2679 4.0969 83.8053 6.5734 1.6604 

Table F.3. Parameters precision tests for G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.60 

No. eMBDoE t-value 
𝜽𝜽�𝟏𝟏 

t-value 
𝜽𝜽�𝟐𝟐 

t-value 
𝜽𝜽�𝟑𝟑 

t-value 
𝜽𝜽�𝟒𝟒 

t-value 
𝜽𝜽�𝟓𝟓 

t-value 
𝜽𝜽�𝟔𝟔 

t-ref 

0 17.0274 2.4840 1.0130 1.2404 29.8692 5.2055 1.6973 
1 15.2018 2.5630 5.2642 2.0054 13.0288 1.6326 1.6924 
2 0.2557 1.0591 18.2675 3.4300 21.5058 2.4591 1.6883 
3 23.5655 3.5975 2.8862 1.6873 42.0451 3.6741 1.6849 
4 22.5605 3.5281 6.3270 1.4909 43.1566 3.4588 1.6820 
5 21.9537 3.3424 6.9861 1.7224 56.0482 4.0992 1.6794 
6 19.0756 2.7389 8.8858 2.0907 60.3679 3.9570 1.6772 
7 19.8097 3.5308 14.0504 2.5956 59.9215 3.8347 1.6753 
8 19.1960 3.1453 13.7473 2.7305 60.8739 4.0752 1.6736 
9 22.2704 3.5130 13.6123 2.7935 55.0802 3.7608 1.6720 

10 20.4348 3.0920 12.3087 2.4451 64.4571 5.3062 1.6706 
11 28.2268 4.3460 14.2304 2.5749 58.9940 4.3630 1.6694 
12 19.7636 2.9611 21.0222 3.4707 57.7133 4.7714 1.6683 
13 22.8066 3.6937 22.2314 3.6977 51.2748 3.8319 1.6672 
14 21.0258 3.4867 23.3802 3.6796 69.6797 4.8195 1.6663 
15 16.3236 2.6964 22.9846 3.7232 96.9638 6.1995 1.6654 
16 18.0052 2.7700 23.3649 3.8769 97.6486 5.9891 1.6646 
17 18.7089 2.8850 25.3435 4.0612 93.7648 5.9024 1.6639 
18 17.3838 2.6607 23.1809 3.8085 111.4196 7.1495 1.6632 
19 17.0912 2.6597 22.9867 3.7590 119.3977 7.1632 1.6626 
20 17.9229 2.7546 22.2085 3.7286 122.3977 7.2531 1.6620 
21 20.6074 3.0560 22.6773 3.9009 116.0847 6.6831 1.6614 
22 19.9154 2.9464 23.2681 4.0798 119.2387 6.9285 1.6609 
23 20.2832 2.9576 24.3938 4.1423 113.9940 6.8429 1.6604 

 



226   Appendix F 

 2023, Francesca Cenci, University of Padova (Italy) 

F.2 H-maps at different iterations 

G-map eMBoE uses H-maps (namely, maps of information content) to select the most 

informative experiment among the candidates that satisfy the G-optimality constraint, as 

described in Chapter 6 of the main text. Figure F.1 shows the H-maps obtained with 1 optimal 

experiment and it can be used to compare the distribution of information with the distribution 

of model prediction variance (Chapter 6) in the design space.  

 
(a) 

 
(b) 

 
(c) 

 

Figure F.1. H-maps (maps of information content) obtained with 1 optimal experiment 
(besides the 12 preliminary ones) calculated by: (a) MBDoE; (b) G-map eMBDoE with 
𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.70; (c) G-map eMBDoE with 𝐽𝐽𝐺𝐺,𝑡𝑡ℎ𝑟𝑟=0.60. 

The comparison between H-maps in Figures F.1a-c and G-maps in Chapter 6 of the main text 

suggests that there is not necessarily a correspondence between regions of high information 

content and regions of small model prediction variance. For instance, considering the results of 

conventional MBDoE and G-map eMBDoE with 𝐽𝐽𝐺𝐺,thr=0.70 after one optimal experiment, the 

region with 𝑢𝑢3 less than 0.015 molmol-1 and 𝑢𝑢4 less than 2.8 molmol-1 is characterised by high 

information content (Figure B.1a-b) and low model prediction variance (Figure in Chapter 6), 

but the region with 𝑢𝑢3 higher than 0.018 molmol-1 and 𝑢𝑢4 higher than 3 molmol-1 has high 

information content (Figure B.1a-b) but also medium-high values of model prediction variance 

(Figure in Chapter 6). Similarly, G-map eMBDoE with JG,𝑡𝑡ℎ𝑟𝑟=0.60 after one optimal 

experiment has a high information where 𝑢𝑢3 is higher than 0.015 molmol-1 (Figure B.1c), which 

is also where the highest model prediction variance values are found (Figure in Chapter 6).  
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Appendix G 
Drug and drug-like molecules to 

develop the organic solubility model  
This appendix shows the chemical formula of the solutes employed to test the PLS model 

proposed in Chapter 7.   

 
1) N,N-Dibenzylhydroxylamine (DBHA) 
2) C14H15NO   
3) 621-07-8 

 
1) Fenofibrate 
2) C20H21ClO4    
3) 49562-28-9 

 
1) Benorilate 
2) C17H15NO5    
3) 5003-48-5 

 
1) L-Arginine L-pyroglutamate 
2) C11H21N5O5    
3) 56265-06-6 

 
1) 2-chloro-4-amino-6,7-dimethoxyquinazoline 
2) C10H10ClN3O2  
3) 23680-84-4  

 
 

1) Tetramethylpyrazine 
2) C8H12N2  
3) 1124-11-4 

 

 
 

1) Coumarin 
2) C9H6O2  
3) 91-64-5 

 
1) 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-

yl)benzene (TPBi) 
2) C45H30N6    
3) 192198-85-9 

Figure G.1. Solutes of the datasets retrieved from Krasnov et al., (2022): 1) name; 2) chemical 
formula; 3) CAS number.      
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1) Nicotinamide 
2) C6H6N2O  
3) 98-92-0 
 

Figure G.2. Chemical structure of the solute of the dataset retrieved from Khajir et al. 
(2024). The molecule is identified through: 1) name; 2) chemical formula; 3) CAS number.      
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Appendix H 
In silico screening of miscibility and 

evaporation issues 
As explained in Section 7.2 of the main text, separated phases as well as excessive solvent 

evaporation should be avoided during solubility experiments. The purpose of this appendix is 

to explain how candidate binary mixtures are retained based on in silico predictions of their 

miscibility and evaporation issues. In order to screen those solvent pairs where immiscibility 

may arise under the conditions of interest, different binary solvent pairs are simulated at 𝑇𝑇 = 

{20, 50} °C, 𝑃𝑃 = 1 atm and molar fraction 𝑥𝑥 = 0–100 mol% from the candidate solvent list 

using UNIFAC (Fredenslund et al., 1975), NRTL (Renon et al., 1978), UNIFAC Modified 

(Gmehling et al., 1993), UNIFAC LLE (Magnussen et al., 1981) and UNIQUAC (Abrams et 

al., 1975) activity coefficient models via the Vapour-Liquid and Liquid-Liquid Equilibrium 

utility in DynoChem® by Scale-up Systems Ltd. (https://www.scale-up.com/). Those solvent 

pairs where immiscibility issues are flagged by any of the considered activity coefficient models 

are not proposed as experiments in the workflows. The same models are used to screen those 

solvent pairs where evaporation issues may arise under the conditions of interest at 𝑃𝑃 = 1 atm 

and 𝑥𝑥 = 0–100 mol%. If a given binary solvent mixture is not predicted to form an azeotrope, 

the maximum and minimum boiling points (and the corresponding mixture compositions) are 

those of each of the pure components in the mixture. If a given binary solvent mixture is 

predicted to form an azeotrope, the maximum or minimum boiling point (depending if a 

maximum or minimum azeotrope is formed, respectively) and the corresponding mixture 

composition is the azeotrope point. Those solvent pairs whose minimum boiling point is equal 

to or less than 55°C (i.e., within 5°C of the upper temperature of 50 °C at which solubility is 

measured) are not proposed as experiments in the workflows.
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Appendix I 
Effect of non-ideal mixing of organic 

solvents 
Mixtures of two or three organic solvents are prepared in practice by handling specified 

volumes, as explained in section 7.2 of Chapter 7. Therefore, the molar fractions 𝑥𝑥𝑖𝑖 to build 𝐔𝐔 

(see Eq.s 7.8, 7.9 of the main text) must be calculated starting from the volumetric quantities 

employed experimentally.  

Results of section 7.3.1-7.3.2 of the main text consider molar fractions of organic mixtures 

before API dissolution, under the assumption of no volumetric effects due to liquids mixing. 

Therefore, volumetric fractions are considered: 

𝑥𝑥𝑖𝑖𝑉𝑉 = 𝑉𝑉𝑖𝑖/𝑉𝑉tot,0,            𝑖𝑖=1,…, 𝑁𝑁𝐿𝐿, (I.1) 

where 𝑉𝑉𝑖𝑖 is the volume of the i-th solvent added to the mixture, while 𝑉𝑉tot,0 is the total nominal 

volume 𝑉𝑉tot,0 = 𝑉𝑉1 +…+𝑉𝑉𝑁𝑁𝐿𝐿. In turn, volumetric fractions are used to calculate the number of 

moles 𝑛𝑛𝑖𝑖 of solvents in the vial: 

𝑛𝑛𝑖𝑖 ≅ 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑉𝑉𝑉𝑉vial/𝑀𝑀𝑊𝑊𝑖𝑖,            𝑖𝑖=1,…, 𝑁𝑁𝐿𝐿, (I.2) 

where 𝑁𝑁𝐿𝐿 is the number of organic solvents in the mixture, 𝑉𝑉vial is the volume of liquid mixture 

in the vial, 𝜌𝜌𝑖𝑖 and 𝑀𝑀𝑊𝑊𝑖𝑖 are density and molecular weight of the 𝑖𝑖-th solvent, respectively.  

Therefore, molar fractions of organic mixture before API dissolution and assuming no 

volumetric effects become: 

𝑥𝑥𝑖𝑖 ≅  𝑛𝑛𝑖𝑖/∑ 𝑛𝑛𝑖𝑖
𝑁𝑁𝑜𝑜
𝑖𝑖=1             𝑖𝑖=1,…, 𝑁𝑁𝐿𝐿, (I.3) 

Molar fractions of Eq.I.3 are used to obtain the results in the main text.  

In this appendix, the same modelling approach is applied to 𝐔𝐔 matrices built with molar 

fractions obtained removing the assumption of absence of volumetric effects and considering 

the presence of API. The total volume after mixing 𝑉𝑉tot,meas is experimentally measured for 

every solution (as explained in section 7.2 of the main text) and used to calculate volumetric 

concentrations for every solvent in the mixture as 𝑐𝑐𝑖𝑖𝑉𝑉 = 𝑉𝑉𝑖𝑖/𝑉𝑉tot,meas . Therefore, molar fractions  

of solvents in the vial are calculated as: 
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𝑛𝑛𝑖𝑖
eq = 𝜌𝜌𝑖𝑖𝑐𝑐𝑖𝑖𝑉𝑉𝑉𝑉vial/𝑀𝑀𝑊𝑊𝑖𝑖,            𝑖𝑖=1,…, 𝑁𝑁𝐿𝐿 . (I.4) 

API solubility is measured as mass concentration 𝑐𝑐API
eq  [mg/mL] in the liquid solution at 

equilibrium, therefore it is converted into number of moles in the vial 𝑛𝑛API
eq : 

𝑛𝑛API
eq ≅ 𝑐𝑐API

eq  𝑉𝑉vial/𝑀𝑀𝑊𝑊API,            𝑖𝑖=1,…, 𝑁𝑁𝐿𝐿 . (I.5) 

Eq. (I.5) assumes that 𝑉𝑉vial is the same as in Eq. (I.4), namely it assumes that API dissolution 

does not change total volume considerably.  

This results in the following molar fractions for the organic solvents:  

𝑥𝑥𝑖𝑖
eq ≅  𝑛𝑛𝑖𝑖

eq/(∑ 𝑛𝑛𝑖𝑖
eq𝑁𝑁𝑜𝑜

𝑖𝑖=1 + 𝑛𝑛API
eq )            𝑖𝑖=1,…, 𝑁𝑁𝐿𝐿, (I.6) 

Figure I.1a-b shows the results of model calibration and validation with the same datasets 

employed in section 3.1-3.2 of the main text, but using molar fractions of Eq. (I.6) to build 𝐔𝐔. 

 
(a) 

 
(b) 

Figure I.1. Results of the PLS model with: a) calibration experiments; b) all validation 
experiments. Molar fractions at equilibrium are used to build the matrix of regressors, 
removing the assumptions of ideal mixing of liquid solvents.  

The results obtained with molar fractions 𝑥𝑥𝑖𝑖
eq (Eq. I.6) calculated considering mixing effects 

and the dissolution of API are almost identical to the ones obtained with approximated molar 

fractions 𝑥𝑥𝑖𝑖 (Eq. I.3) in the main text. This is confirmed by the determination coefficient: 

𝑅𝑅2=0.92 and 𝑅𝑅2=0.90 for calibration and validation data, respectively, exactly as it was in 

sections 7.3.1-7.3.2 of the main text. 
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Appendix J 
Intestinal absorption in PBPK 

studies 
In this Appendix, more details on the biological phenomena leading to intestinal absorption are 

provided, in order to contextualise the PBPK models discussed in Chapter 8.  After providing 

a general overview of the main modelling framework, the attention focuses on the interplay of 

phenomena that can favor or limit the drug absorption at intestinal level. The role of drug 

physico-chemical properties and of food digestion products is explained, too.  

J.1 PBPK modelling 

PBPK models are made of a series of differential equations that describe several phenomena 

involved in ADME (Figure J.1): 

• Absorption, i.e. the movement of the drug from the administration site to the bloodstream; 

• Distribution, i.e. the journey of the drug through the bloodstream to the different tissues; 

• Metabolism, i.e. the process that breaks down the drug; 

• Excretion, i.e. the removal of the drug from the body.  

 
Figure J.1. Illustration of ADMDE (adapted from www.toolbox.eupati.eu) 
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In a PBPK model, the different organs or tissues of the human body are represented as different 

compartments linked by blood flows. In turn, a compartment can be divided into different 

segments: for instance, the gut is further compartmentalised into 9 segments in order to 

represent the variations in physiological conditions that characterise every segment (Figure J.2). 

 
Figure J.2. Schematic of the compartments of the human body represented in PBPK models. 
The 9 segments of the gut compartment are shown, too (adapted from Stamatopoulos, 2022).  

The differential equations of every compartment combine physiological conditions (e.g., pH, 

bile salts concentrations, transit time, etc.) with drug properties (e.g., solubility, diffusion 

coefficient, water to micelle partition coefficient, etc.). When intestinal absorption (which is of 

main interest for this Dissertation) is considered, solubility is one of the key drug properties.  

Figure J.3 shown the main steps involved in drug absorption from the administration site to the 

bloodstream (Figure J.3a), focusing the attention to the luminal environment (Figure J.3b; 

Stamatopoulos, 2022; Abrahamsson et al., 2020): 

• once the oral solid dosage form is ingested by the patient, it reaches the gastrointestinal 

tract and it starts disintegrating, releasing its particles to the human intestinal fluid (step 1 

in Figure J.3a-b); 

• the released drug particles are dissolved into the human intestinal fluid (step 2 in Figure 

J.3a-b). Based on the dissociation constant 𝐾𝐾𝑎𝑎 (or its logarithm  log(𝐾𝐾𝑎𝑎)) of the drug, 

ionisation of the dissolved molecules can take place; consider that the dissociation constant 

must be considered for acidic species (𝐾𝐾𝑎𝑎,1), basic species (𝐾𝐾𝑎𝑎,2) and ampholytes (both 𝐾𝐾𝑎𝑎,1 

and 𝐾𝐾𝑎𝑎,2); 
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• if the concentration of the drug overcomes the maximum concentration that can be 

dissolved in that fluid, precipitation occurs (step 3 in Figure J.3a-b); 

• the precipitated particles can be resolubilised (step 4 in Figure J.3a-b); 

• based on the lipophilicity of the drug, partitioning into the micelles can take place (step 5 

in Figure J.3a-b), thus enhancing drug solubilisation. The drug partitioning into micelles is 

characterised through the micelle-water partition coefficient 𝐾𝐾𝑚𝑚:𝑤𝑤, which can be calculated 

for both unionised 𝐾𝐾𝑚𝑚:𝑤𝑤,𝑢𝑢 and ionised 𝐾𝐾𝑚𝑚:𝑤𝑤,𝑖𝑖 drug particles;  

• drug molecules, both free and bound to micelles, diffuse through the mucus layer on the 

surface of the enterocytes, then free molecules (if coming from micelles, they must be 

released) permeate the membrane of the enterocytes (step 6 in Figure J.3a-b);  

• then, excluding particles subjected to degradation, drug particles can reach liver (step 7 in 

Figure J.3a) and, ultimately, the bloodstream (step 8 in Figure J.3a).  

 
(a) 

 
(b) 

Figure J.3. Illustration of the main phenomena leading to drug absorption: (a) from 
administration to bloodstream; (b) in the luminal environment (adapted from Stamatopoulos, 
2022; Abrahamsson et al., 2020).    
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In the human intestinal fluids, bile salts form micelles that can enhance the solubilisation of the 

drug. This effect is further enhanced by the presence of lecithin. Moreover, food intake has 

usually a positive effect on drug solubility: i) bile salts and lecithin concentrations increase in 

the fed condition with respect to the fasted one; ii) food digestion products, such as lipid 

degradation products, form mixed micelles together with bile salts and lecithin, enhancing the 

overall solubilising effect (Clarysse et al., 2011).  

Finally, the plasma-concentration profiles that are commonly measured during clinical trials 

concern the concentration of the drug that reaches the bloodstream (step 8) after all the 

abovementioned phenomena (from step 1 to 8). Predicted plasma-concentration profiles can be 

obtained by the simulator, for instance by Simcyp, by modelling every aspect of intestinal 

absorption. In other terms, all the phenomena are described by mathematical mdoels, including 

the properties of the drug and of the luminal environment. In this Dissertation, only the 

solubility model is analysed in order to be improved, while the remaining mathematical 

framework of Simcyp is retained. In fact, ongoing work is focusing on the implementation of 

the proposed solubility model within the set of equations implemented in Simcyp to describe 

all the other properties or phenomena, with the aim of improving the final prediction of plasma-

concentration profiles.   
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