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Abstract: This study investigates the sensibility of Sentinel-1 C-band backscatter to the moisture
content of tree canopies over an area of about 500 km2 in north-western Portugal, with specific
analysis over burnt areas. Sentinel-1 C-VV and C-VH backscatter values from 276 images acquired
between January 2018 and December 2020 were assigned to five classes depending on the Drought
Code (DC) scenario over several unburned and burned sites with total (>90%) forest canopy cover.
Confounding variables such as tree cover and incidence angle were accounted for by masking using
specific thresholds. The following results are discussed: (a) C-VV and C-VH backscatter values
are inversely correlated (R2 = 0.324 to 0.438 −p < 0.001) with local incidence angle over canopies;
(b) correlation is significantly stronger over very wet scenarios (DC class = 0 to 1); (c) C-VV and
C-VH backscatter values can discriminate wet to dry forest environments, but they are less sensitive
to the transition between dry (DC classes = 1 to 10, 10 to 100) and extremely dry environments
(DC classes = 100 to 1000); (d) C-VH is more sensible than C-VV to capture burnt canopy; and (e) the
C-VH polarization captures post-fire recovery after an average minimum period of 360 days after
the fire event, although with less distinction for extremely wet soils. We conclude that C-band
VH backscatter intensity decreases from wet to dry canopy conditions, that this behavior of the
backscatter signal with respect to canopy dryness is lost after a fire event, and that after one year it
is recovered.

Keywords: Drought Code; Sentinel-1; fire danger; tree cover; canopy moisture; radar

1. Introduction

Forest fires are a significant disturbance affecting forest dynamics in several forested
ecosystems, particularly in the Mediterranean regions. Mediterranean Europe has been
highly susceptible to mega-fires due to drought and topography that promote fire igni-
tion [1,2]. Italy, France, and Spain typically have numerous fire events, with more than
100,000 ha burned annually [3]. In the Mediterranean region, fire danger is monitored
using the Canadian Forest Fire Danger Rating System (CFFDRS). One of its systems is the
Fire Weather Index (FWI), comprising fuel moisture codes and fire behavior sub-indexes
(Figure 1). The system estimates mid-afternoon fire danger based on weather variables
(temperature, wind speed, and relative humidity) observed at noon and rainfall intensity
measured over 24 h [4].
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Figure 1. Structure of the Canadian Forest Fire Weather Index (adapted from [4]). 

The FWI has several moisture codes. According to [5], the Fine Fuel Moisture Code 
(FFMC) is related to pine litter of 1.2 cm thickness and fuel weight of 0.25 kg/m2. The Duff 
Moisture Code (DMC) is the moisture of the top 7 cm of forest layers where decay occurs 
with a fuel load of 5 kg/m2. The (DC) is the moisture availability at 18 cm thickness of 
organic matter and fuel capacity of 25 kg/m2. These three codes are related to a different 
fuel that has a time-lag period or the time elapsed for two-thirds loss of soil moisture at 
20 °C and 40% RH [4,6]. FFMC has a time lag of 2/3 day, DMC has a time lag of 12 days, 
and DC has a time lag of 52 days. Furthermore, the drying rate of each fuel type 
significantly depends on the previous day's code values [4]. Fuel behavior indices include 
the Initial Spread Index (ISI), the Buildup Index (BUI), and the Fire Weather Index (FWI). 
The CFFDRS was developed over data acquired over mature jack pine (Pinus banksiana) 
and lodgepole pine (Pinus contorta) forests, with the hypothesis that these two pine species 
have similar structural arrangements and fire dynamics as all other forests [5]. The 
CFFDRS FWI codes have been tested abroad. Yang and Di [7] evaluated the applicability 
of the CFFDRS to monitor fire dangers in North-Eastern China, where climatic conditions 
are similar to Canadian boreal forests. Strong correlations were also derived between the 
DC and the number of fire occurrences in a Pinus halepensis forest in the Greek 
Mediterranean region, where the forest types differ from the Canadian boreal forests [8]. 

However, the accuracy of mapping fire danger with FWI is limited to small 
geographical areas, mainly when meteorological observations are collected at sparse 
weather stations [9]. For the Mediterranean regions, the EU Joint Research Center (JRC) 
uses Numerical Weather Prediction (NWP) and High Resolution (HRES) models for 
interpolating between the weather station data. As shown in [10], the HRES model 
operates at a horizontal resolution of 16 km and provides accurate weather prediction for 
ten days upfront. Another limitation of FWI is its standard configuration for only two pine 
species [5], and thus it might not be accurate when applied to other forest types.  

A suitable alternative is to use remote sensing techniques [11,12]. Among all the FWI 
codes, the Drought Code (DC) can be considered a reliable proxy in estimating fuel 
moisture. It is worth noting that DC is a useful indicator of seasonal drought effects on 
forest fuels [13]. Strong correlations were found between DC and optical data from the 
Advanced Very High-Resolution Radiometer (AVHRR) of National Oceanic and 
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The FWI has several moisture codes. According to [5], the Fine Fuel Moisture Code
(FFMC) is related to pine litter of 1.2 cm thickness and fuel weight of 0.25 kg/m2. The Duff
Moisture Code (DMC) is the moisture of the top 7 cm of forest layers where decay occurs
with a fuel load of 5 kg/m2. The (DC) is the moisture availability at 18 cm thickness of
organic matter and fuel capacity of 25 kg/m2. These three codes are related to a different
fuel that has a time-lag period or the time elapsed for two-thirds loss of soil moisture
at 20 ◦C and 40% RH [4,6]. FFMC has a time lag of 2/3 day, DMC has a time lag of
12 days, and DC has a time lag of 52 days. Furthermore, the drying rate of each fuel type
significantly depends on the previous day’s code values [4]. Fuel behavior indices include
the Initial Spread Index (ISI), the Buildup Index (BUI), and the Fire Weather Index (FWI).
The CFFDRS was developed over data acquired over mature jack pine (Pinus banksiana) and
lodgepole pine (Pinus contorta) forests, with the hypothesis that these two pine species have
similar structural arrangements and fire dynamics as all other forests [5]. The CFFDRS FWI
codes have been tested abroad. Yang and Di [7] evaluated the applicability of the CFFDRS
to monitor fire dangers in North-Eastern China, where climatic conditions are similar to
Canadian boreal forests. Strong correlations were also derived between the DC and the
number of fire occurrences in a Pinus halepensis forest in the Greek Mediterranean region,
where the forest types differ from the Canadian boreal forests [8].

However, the accuracy of mapping fire danger with FWI is limited to small geo-
graphical areas, mainly when meteorological observations are collected at sparse weather
stations [9]. For the Mediterranean regions, the EU Joint Research Center (JRC) uses Nu-
merical Weather Prediction (NWP) and High Resolution (HRES) models for interpolating
between the weather station data. As shown in [10], the HRES model operates at a hori-
zontal resolution of 16 km and provides accurate weather prediction for ten days upfront.
Another limitation of FWI is its standard configuration for only two pine species [5], and
thus it might not be accurate when applied to other forest types.

A suitable alternative is to use remote sensing techniques [11,12]. Among all the FWI
codes, the Drought Code (DC) can be considered a reliable proxy in estimating fuel moisture.
It is worth noting that DC is a useful indicator of seasonal drought effects on forest fuels [13].
Strong correlations were found between DC and optical data from the Advanced Very High-



Remote Sens. 2023, 15, 823 3 of 19

Resolution Radiometer (AVHRR) of National Oceanic and Atmospheric Administration
(NOAA) in Indonesia [14] and in Canadian boreal forests [9].

However, optical imagery has the drawback of limited availability to clear sky condi-
tions. This is not the case with active SAR sensors that can acquire images, whatever the
sky conditions. Synthetic Aperture Radar (SAR) sensors provide fine spatial resolution
data and allow for 24-hour image acquisition, even in meteorological situations perturbing
optical satellites’ efficacy [15,16].

Radar imageries were shown to be very suitable in several fire studies. Cross-polarized
(C-VH) backscatter is excellent for assessing the difference between bare land and forests,
while the C-HH co-polarization is best for detecting the backscatter sensitivity to soil
moisture after fire incidents [16,17]. DC values were shown to correlate well with SAR
C-band backscatter extracted from RADARSAT-1 and ERS (1 and 2) imagery in northern
boreal forests [6,18,19] and RADARSAT-2 polarimetric data [17]. However, according
to [20], SAR beams are also sensitive to terrain roughness and biomass build-up.

Among all the new SAR sensors, Sentinel-1 has several advantages. It is a constellation
system, i.e., two orbiting platforms (Sentinel-1A and -1B) that allow image acquisition at
10 m resolution with a 6-day repeat cycle in horizontal and vertical polarization modes
(VV and VH) [21]. Sentinel-1 C-VV and C-VH backscatter variations were linked to
meteorological events, forest floor moisture, and canopy moisture in a deciduous forest in
France [22]. Sentinel-1 C-VV imagery was used to estimate soil moisture in open sites in
India [23] and over a mixed forest in the United States [24].

The main objective of this study is to assess the capability of Sentinel-1 C-band vertical-
vertical (C-VV) and vertical-horizontal (C-VH) polarization radar backscatter signal in
delineating moisture regimes, as defined by DC values in north-western Portugal. As
a secondary objective, differences in the sensitivity of C-VV and C-VH backscatters for
mapping pre-fire and post-fire moisture conditions will also be assessed. Both variables
(backscatter and DC) were acquired from the 2018–2020 time series. The analysis will be
only done for sites with substantial tree cover to reduce the tree cover’s effects. In the study,
we will also consider the effect of the local incidence angle on the radar backscatter. In
particular, the analysis will be performed in three types of areas: (a) unburnt areas, (b) burnt
areas before the fire (pre-fire), and (c) burnt areas after the fire (post-fire). The relationship
between backscatter values and DC classes as a function of the Local Incidence Angle (LIA)
will be investigated with linear regression models. Corrected backscatter values will be
analyzed with box plots as a function of DC classes, satellite, and polarization.

The main points of interest of the current work are related to better understanding
the behavior of backscatter of C-band SAR with respect to canopies in different moisture
conditions, from drought to wet canopies, and what happens when fire events change the
canopy structure. We discuss results that show that wet canopies consistently provide a
stronger backscatter than dry canopies. We show that canopies after fire events lose this
type of response, likely due to the fire changing the composition of the canopy in terms of
the ratio between leaves, and small and larger branches.

2. Materials and Methods
2.1. Study Area

The study area of 502.42 km2 is located in the municipalities of Viana do Castelo and
Braga in north-western Portugal (41–42◦ North Latitude, 8–9◦ West Longitude) (Figure 2).
The area elevation ranges from 0 m above sea level (ASL) in the vicinity of Viana do Castelo
and Braga to 1500 m ASL at the bordering regions of Melgaço and Cabeceiras de Basto
(Figure 3). From the vegetation point of view, the study area includes broadleaf and conifer
tree species, mainly the maritime pine (Pinus pinaster) and eucalyptus (Eucalyptus globu-
lus) [25]. According to the Köppen–Geiger climate classification [26], both municipalities
are classified as CSB, meaning a warm temperate climate with dry and warm summers.
Between 1981 and 2010, the mean daily temperatures were the highest in August in Viana
do Castelo (20.8 ◦C) and Braga (21.4 ◦C) [27]. Over the same period, the mean precipitations
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were 38.5 mm (Viana do Castelo) and 21.4 mm (Braga). Such climatic conditions are related
to high land surface dryness and, thus, the susceptibility to fire incidences [28]. The EU
Joint Research Centre (JRC) reported that 70% of fire incidents in 2020 in Portugal occurred
in July, August, and September [29]. In 2006, fire events affected 15,706 ha in Viana do
Castelo and 10,265 ha in Braga [30].
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2.2. SAR Imagery

This study used SAR imagery acquired by the European Space Agency (ESA) Sentinel-1
(S1) satellite, with the TOPSAR (Terrain Observation with a Progressive Scanning SAR)
sensor. Sentinel-1 consists of a constellation of two satellites, A and B, each having a sensor
that operates in the C-band with a central frequency of 5.405 GHz and a wavelength of
5.6 cm [31]. The first Sentinel-1 platform was launched in April 2016. With a swath width of
250 km, it provides a return time of about six days. A total of 276 scenes covering the study
area were downloaded from Scihub Copernicus Hub, covering 181 days over the three
years (2018, 2019, and 2020) that are considered in this study. The image data consisted of
Level-1 Ground Range Detected (GRD) types in the high-resolution Interferometric Wide
(IW) swath mode. The scenes were from the same ascending orbit (147), thus having the
same incidence angles between 30.42 and 46.03◦ from one date to another. Furthermore,
local incidence angles ranging from 2.07 to 64.72◦ were constant from one date to another,
as the area’s topography does not change with time.

2.3. Fire Maps

Because the study aims to analyze the connection between DC values and C-band
backscatter values before and after fire events, we identified fire areas in the analysis.
They were extracted from the European Forest Fire Information System (EFFIS) [32]. The
maps provide the areas that were subjected to fire disturbance over the three-year study
period. The fire areas range from 2 ha to 675 ha. Vegetation in these fire-affected areas
includes broad leaves and conifers. According to [32], EFFIS uses the Rapid Damage
Assessment (RDA) technique to map fire events. The RDA involves the use of AQUA and
TERRA satellites of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
to map > 30 ha fire events, and Sentinel-2 imagery to map fire events < 30 ha.

2.4. Tree Cover Map

As shown in [17], the relationship between SAR backscatter and DC values highly
depends on the tree cover. In particular, the relationship between SAR backscatters and
DC values differs for burned and unburned areas. In addition, recovery mechanisms
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from fires in Mediterranean forests depend on the tree cover [33]. Therefore, the study
only considered unburnt and burnt (pre-fire periods) sites that are completely covered by
tree canopies. To define such sites, we used tree cover data that were extracted from a
Global Forest Cover (GFC) map [34]. The map provides values of tree cover in percentages,
starting from 2000 and updated to 2020, with values from 0% (no forest) to 100% (full tree
canopy cover). The map has a resolution of 30 m, as it was produced by classifying Landsat
images. The information from [34] also allowed us to map the areas with forest loss due to
disturbances. For example, Portugal lost a cumulative of 1.03 million ha from 2001 to 2019
of Mediterranean forests [35]. For this study, the GFC map was used to mask Sentinel-1
images to keep only cells falling inside areas that are covered >90% with tree canopies.

2.5. Drought Code Map

Drought Code maps of the study area from 2018 to 2020 were obtained from JRC [36].
They are produced by interpolating DC values from the European Centre for Medium-
Range Weather Forecast (ECMWF) network. The pixel resolutions of these maps are
approximately 0.07◦ (~7 km at the average latitude of the study area) for 2019 and 2020,
and 0.14◦ (~14 km at the average latitude of the study area) for 2018. According to [4]
and [37], DC is calculated from daily temperature and precipitation records. For rainfall
above 2.8 mm, DC is calculated based on rainfall values of the day (DCr) and the DC value
of the previous day (DCt−1) with the following equations:

DCr = 400 · ln
(

800
Qr

)
(1)

Qr = Qt−1 + 3.937 · rd (2)

Qt−1 = 800 · exp
−DCt−1

400
; rd= 0.83 · rt − 1.27 (3)

where DCr is the Drought Code from rainfall data of the day, Qr is the moisture equivalent
that is calculated from the moisture equivalent of the previous day, Qt−1, which is in turn
calculated from DCt−1, i.e., the DC code of the last day, and rt is the rainfall of the day
in mm.

In case of rainfall below 2.8 mm, DC is calculated based on the temperature at mid-day
and DCt−1, i.e., the DC code of the previous day with the following equations:

DCt = DCt−1 + 0.5 · V (4)

V = 0.36 (T12 + 2.8) . L f (5)

where V is the potential evaporation, T12 is the temperature at mid-day, and L f is the
seasonal day length adjustment.

Because the fire areas are much smaller than the DC map resolution, each DC value
results from a bilinear interpolation weighted with distance from the center of the four DC
cells. The resulting unitless DC values were classified as extremely low for values less than
256.1 and remarkably high for values greater than 749.4 [38].

2.6. Data Processing

Figure 3 presents the methodology used in the study. Dual-polarized images acquired
in the satellite’s ascending orbit were processed in the Sentinel Application Platform
(SNAP) to produce backscatter images—σ◦ in decibels (dB). σ◦ represents the illuminated
target’s target backscattering area (radar cross-section). The SNAP platform used the
following steps: subsetting, precise orbit file correction, thermal noise removal, radiometric
calibration, terrain correction, and conversion to dB. Multi-looking and speckle filtering
were skipped to ensure detail preservation and no repetition of the multi-looking process
usually done by the Sentinel-1 processing facility. The imagery was orthorectified to the
World Geodetic System (WGS) 1984 coordinate system using the Shuttle Radar Topography
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Mission (SRTM) 3Sec Digital Elevation Model (DEM). The resulting SAR imagery was
subjected to a series of masking as a function of the tree cover and local incidence angles to
minimize the effects of these confounding variables.
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2.6.1. Local Incidence Angle Masking

Local incidence angle (LIA) is defined as the angle of the incident radar beam to the
normal of the local surface [39]. SAR backscatter is highly related to LIA [40]. In this study,
we only considered areas with a LIA value below 65◦. To do so, we created a LIA map
using the data from the radar image geometry (look direction angle) and values of slope
and aspect angle derived from a digital elevation model (DEM) from the SRTM mission that
provides elevation values of the earth’s surface [41]. The resulting LIA map was cropped
and resampled to match the radar imagery. A LIA mask that keeps only areas with LIA
lower than 65◦ was created. As a result, the LIA value for each scene ranged from 2.07◦

to 64.72◦.

2.6.2. Tree Cover Masking

For this research, only burnt (pre-fire periods) and unburnt areas with tree cover
higher than 90% were considered, and the other regions were masked out. Such a mask
was created from the global scale tree cover of [34], a raster with global tree canopy cover
percentage values for each pixel. Values range from zero (no canopy in the pixel) to
100 percent (pixels fully covered with forest canopy).

2.6.3. Forest Loss Masking

Forest cover loss occurs through different disturbances, including forest fires. The
canopy cover map of Hansen et al., (2013) includes a loss and gain map. The former
provides estimated global forest loss information from 2000 to 2020. Values in the map are
integers from zero (no loss) to 20, with values above zero representing the loss year since
2000. Forest cover loss information was used to ensure that only areas without a loss (zero
value at a pixel) or with loss due to fire were selected for further processing. The pixels
with tree cover loss due to a fire event were defined as those with a loss value that spatially
and temporally overlapped the fire polygons. These pixels were not masked as they were
used in the analysis to assess backscatter behavior changes before and after the fire event.
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2.6.4. Cumulative Mask

A final mask was created by simple raster calculation that composited the three masks
described above using a multiplication operation. The final mask keeps pixels with forest
canopy cover above 90%, canopy loss equal to zero or only with fire loss, and LIA lower
than 65◦. The resulting pixels were defined as “processed” or “unprocessed” (Figure 4)
for reference in the following steps. Backscatter values corresponding to “processed"
pixels were further processed, while those corresponding to “unprocessed” pixels were
not considered. Backscatter values were further filtered to remove outliers by keeping only
backscatter values between −0.1 dB and −30 dB.
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incidence angle (LIA) lower than 65◦, and a forest loss of 0%.

2.6.5. Backscatter Values Extraction

Given that one of the study objectives is to analyze the connection between radar
backscatters and DC values, we used daily DC maps with a resolution of 0.14◦ in 2018
and 0.07◦ in 2019 and 2020. The study area corresponds to 60 cell centers for 2018 and 232
for 2019 and 2020. Cell centers of the DC rasters were buffered to a 500 m radius, and all
Sentinel-1 pixels falling in the buffer and belonging to the “processed” class (Figure 4) were
used to analyze the “Unburnt areas” dataset (Figure 5). Finally, bilinear interpolation was
used to assign DC values to SAR pixels in the fire polygons, as these maps are not centered
on buffers of DC maps. This last step created the “Burnt Areas Pre-Fire” and “Burnt Areas
Post-Fire” datasets.
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3. Results
3.1. Unburnt Areas

Our first research question is how DC class affects the backscatter/LIA relation.
Figure 6 presents the change of backscatter as a function of LIA values grouped by three
factors: (i) the DC class, (ii) the polarization (VV or VH), and (iii) the Sentinel satellite (A
or B). The DC values are divided in four classes using a log10-scale (0.1–1, 1–10, 10–100,
100–1000). The log10-scale was used to highlight the DC values of very wet canopy sce-
narios (0.1–1) from the dry (1–10, 10–100) and very dry (100–1000) scenarios. This choice
is because the area has a dry Mediterranean climate. Thus, wet canopy scenarios are
less frequent. The DC classes represent a transition between extremely wet and dry soil
conditions in unburned areas. Figure 6 shows that the backscatter decreases with LIA for
this study’s unburnt and burnt pixels. This result agrees with other studies [18,42].

Following [18], the extracted radar backscatters were normalized for the LIA with the
following formula:

σ
◦
= σ

◦
(dB)−

(
θinc ×

∆σ
◦

∆θinc

)
(6)

where:
σ◦ is the corrected backscatter for LIA dependence (dB);
σ◦(dB) is the uncorrected dependent backscatter (dB);
θinc is the local incidence angle (LIA) (degree);
∆σ◦/∆θinc is the regression slope provided in Table 1 as a function of the sensor,

polarization, and DC class.
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Table 1. Linear regression between C-VH backscatter values of unburnt pixels and LIA as a function
of the sensor, polarization, and DC class. All the regressions have p << 0.001. The colors replicate the
color scale in plots of Figure 6.

Sensor & Pol. _ DC-Class Mean (dB) Mean DC
Linear Regression Parameters

Equation R2 N
S1A 0 to 1 −13.61 0.58 y = −6.20 + −0.19(x) 0.408 83413
VV 1 to 10 −13.99 3.94 y = −7.55 + −0.17(x) 0.331 735476

10 to 100 −14.45 35.26 y = −8.07 + −0.17(x) 0.328 666649
100 to 1000 −14.98 346.90 y = −8.70 + −0.17(x) 0.324 1143507

S1B 0 to 1 −13.24 0.61 y = −6.14 + −0.19(x) 0.421 35631
VV 1 to 10 −14.14 4.48 y = −7.60 + −0.17(x) 0.344 703635

10 to 100 −14.77 35.75 y = −8.41 + −0.17(x) 0.326 772728
100 to 1000 −15.16 343.66 y = −8.91 + −0.17(x) 0.329 1114588

S1A 0 to 1 −8.51 0.58 y = −0.94 + −0.20(x) 0.438 83341
VH 1 to 10 −8.73 3.92 y = −2.11 + −0.18(x) 0.366 739908

10 to 100 −9.02 35.24 y = −2.48 + −0.17(x) 0.365 667006
100 to 1000 −9.17 342.10 y = −2.65 + −0.17(x) 0.356 1117419

S1B 0 to 1 −8.17 0.61 y = −0.99 + −0.19(x) 0.431 35537
VH 1 to 10 −8.76 4.49 y = −1.97 + −0.18(x) 0.377 702264

10 to 100 −9.23 35.75 y = −2.63 + −0.18(x) 0.364 771789
100 to 1000 −9.24 343.68 y = −2.70 + −0.17(x) 0.359 1113898

Table 1 shows the correlation between LIA and backscatter. We normalized for this
correlation in order to remove the confounding effect of LIA with respect to the factor that
we are testing, i.e., wet/dry canopy conditions proxied with DC values. It can be noted
that, especially on dryer scenarios, the coefficient of determination is lower than 0.4. This is
due to the fact that the effect of LIA on backscatter is abated by the structure of the canopy,
which has multiple small reflectors (leaves) that are not consistently oriented upwards, and
thus the LIA is the integrated value of multi-oriented surfaces. The resulting corrected
backscatters do not show any relationship with LIA (Figure 6–bottom). Huang et al. [43]
reported the same trend between these two variables but with a different normalization
method. Since all the other factors (tree cover and incidence angle) were removed by
masking, what is left is the effect of the weather conditions, which is here proxied by the
DC values assigned to the backscatter values depending on the day of sensing.
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Figure 6. Relationship between the LIA and backscatter values (top) and corrected backscatter values
(bottom) in unburnt pixels over canopy cover grouped by DC class.

Figure 7 reports the distribution of backscatter signal intensities aggregated by DC-
classes for the two polarizations (VV and VH) and for the cross-ratio (CR)-VH/VV and
normalized cross-ratio (nCR) (VV-VH)/(VV+VH)). It can be seen that VV and VH have a
higher sensitivity with respect to CR and nCR, outlining a decreasing trend with increasing
DC values (increasing dry conditions.) CR and nCR slightly increase and then decrease at
the higher DC values.
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Figure 7. Distribution of corrected backscatter values in unburnt pixels with the DC classes for the
two polarizations (VV and VH) and for the cross-ratio (CR)-VH/VV and normalized cross-ratio (nCR)
(VV-VH)/(VV+VH)). Red lines connect the average values, red whiskers are standard deviation,
boxplots are the medians and interquartile ranges, with whiskers corresponding to the 10th and
90th percentile.
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Table 2 shows the statistical significance of the differences of medians, which is quite
high, due to the very high number of samples (pixels) used in the test. It must be noted
that this gives us confidence with respect to the results, but the variance is not negligible.

Table 2. Pairwise differences between DC classes: A = 0 to 1, B = 1 to 10, C = 10 to 100, D = 100 to
1000. Adjusted p-Value << 0.001.

Polarization Sensor DC Class Pair Mean Backscatter
Difference.

Lower end
Confidence Interval

Upper end
Confidence Interval

VV

B-A −0.85 −0.92 −0.78
S1A C-B −0.42 −0.45 −0.39

D-C −0.12 −0.15 −0.09

B-A −0.97 −1.07 −0.86
S1B C-B −0.67 −0.70 −0.64

D-C −0.03 −0.06 0.00

VH

B-A −1.12 −1.19 −1.04
S1A C-B −0.58 −0.61 −0.55

D-C −0.57 −0.60 −0.54

B-A −1.45 −1.56 −1.34
S1B C-B −0.85 −0.88 −0.82

D-C −0.44 −0.47 −0.42

3.2. Burnt Areas

The second research question relates to the fire effect on the relationship between
corrected backscatter and DC classes. Results in this section represent observations over pre-
fire and post-fire periods. For the post-fire data, the C-VV polarization was not considered
because the C-VH polarization clearly provided better discrimination of DC classes than
the C-VV polarization (see Figures 6 and 7). To better understand the post-fire behavior of
radar backscatters, the post-fire period was divided into classes of the number of days after
the fire (0 to 30, 30 to 90, 90 to 180, 180 to 360, and 360 to inf.). Boxplots corresponding to
DC class (0 to 10) are missing for the 0 to 30 and 30 to 90 periods after fire for the S1-B case
because of a lack of imagery. Results before the fire are very similar to un-burned areas but
are quite different after the fire.

Figures 8 and 9 represent the situation on fire areas, before and after the fire. As noted,
the pre-fire situation is very similar to the results seen in un-burned areas, even if less
marked. Post-fire situation is very different, especially in the first months after the fire. This
is further discussed in the next section.
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4. Discussion

The response to canopy moisture of Sentinel-1 backscatter values over unburnt forest
areas in Figure 7 clearly showed an inverse correlation, as it decreased on DC classes
with higher values. This was more clearly visible over very low DC values, where results
showed that the backscatter intensity tends to be stronger when reflected by wet canopies
(DC class = 0.1 to 1). This is less clearly seen, even if still compatible with a decreasing
trend, in less wet (DC class = 1 to 10, 10 to 100) and extremely dry (DC class = 100 to 1000)
soils. C-VH polarization shows better discrimination of canopy moisture conditions with
respect to C-VV. The S1-B has a lower effect than the S1-A in terms of mean backscatter
values. The DC index was created to represent the wetness of the slow-drying deep layers
of the soil. DC values above 1 mean that the soils in that situation are drying up, and lower
values indicate that they are wet. DC values corresponding to dry conditions were only
observed in July, August, September, and October 2018.

For the unburnt areas, boxplots in Figure 8 shows that the backscatter average is
significantly different between all pairwise comparisons between DC classes (Table 2). It is
worth noting also that C-VH is more sensible with respect to C-VV, as can be noted in Table 2.
The C-VH backscatter difference between the lower DC class (0 to 1) and the next class (1
to 10) was 1.12 dB and 1.45 dB, respectively, for A and B sensors of Sentinel-1, compared
to 0.85 dB and 0.97 dB in C-VV (Table 2). This result is compatible with the work [44]
carried out over a Savannah ecosystem. The higher sensitivity of C-VH to the DC values
is likely linked to the fact that the relative scattering strength of C-VH is mainly volume
scattering, i.e., vegetation canopy ([45]—Table 1). Moreover, in VH biomass backscattering,
contributions from the surface and double-bounce scatterers are minimal [46], and therefore
high accuracy of volume scattering is expected in the pre-burn datasets. Co-polarized C-VV
scattering strength is mainly double bounce and rough surface scattering [45,46]. This is
also seen in [47], where dry conditions result in 1 to 2 dB lower backscatter in crops with
drought conditions with respect to normal conditions. Our work is on a different scenario,
forest canopy, but provides comparable results, adding that such a difference can be seen
also over a small change of wet to dry conditions, without having to compare very wet
conditions to drought conditions. With respect to [47], it is also worth noting that the
cross-ratio (CR, VH/VV) was tested (see Figure 7), but, differently from the other work, it
did not provide significant results as much as the single VV and VH polarizations did.

The analysis over the burnt areas shows that in the pre-fire observations, the relation-
ship between normalized backscattered intensity and DC classes is similar to that of the
unburnt areas (Figure 8), as would be expected. However, with respect to observations
over unburnt areas in Figure 7, the mean backscatter values in Figure 8 are less sensitive to
different DC scenarios. A reasonable explanation could be that the DC values in areas that
had a fire event were interpolated from the nearest four DC values. It must be noted that
DC values are created by interpolation of weather data and thus we can expect that the DC
value assigned to backscatter values recorded in the burnt areas is not as accurate as the
one assigned to the unburnt areas. It should be noted that DC values are interpolated by
a model and thus carry uncertainty. Undoubtedly DC values calculated with dedicated
climate sensors positioned at each cell node and at each burnt area would increase reliability
with respect to interpolated values, and also the results would benefit from higher quality
observed DC values, but this is an ideal scenario that was not available.

Figure 9 shows that in post-fire scenarios, the C-VH backscatter values lose the cor-
relation with DC classes that were observed over the unburned sites (Figure 7) and over
the burnt sites before the fire (Figure 8). This holds true for the period right after the fire
to ~360 days. After that date, the backscatter values behave, with respect to DC classes,
the same as the unburnt and pre-fire scenarios. One plausible explanation for this result is
the different dielectric properties of burnt branches and leaves that change the backscatter
values, as highlighted in [18]. After one year, i.e., 360 days, the backscatter-DC relation
returned to the one observed before the fire (Figure 8). A reasonable hypothesis for the loss
of the inverse correlation between C-VH and DC values right after a fire up to 360 days is
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the decrease of the volume scattering component, i.e., the leaves in the canopy crown. After
a fire event, the leaves are charred if not completely burned, thus not contributing to the
volume scattering as much as healthy leaves [48,49]. As explained in [50], diverging trends
in C-band post-fire backscattering can also be attributed to vegetation death changing the
structure of the canopy, leaving dry branches and a minimum number of dead leaves.

After 360 days from the fire event, the C-VH captured vegetation recovery but was
less sensitive in terms of distinction of extremely dry sites, as seen in pre-fire and un-
burnt observations. For instance, for the S1-B cases, the average corrected backscatter
corresponding to the 360 to Inf period (Figure 9) was −7.5 dB, compared to −5 dB for the
pre-fire observations in Figure 8. As already shown by [51], C-band backscatters used for
monitoring post-fire vegetation recovery are influenced by several factors. In particular,
post-fire C-band backscatters never returned to the pre-fire levels due to the disturbance of
the vegetation structure and density from the fire. Since the C-VH is sensitive to vegetation
structure, the C-VH backscatter also depends on the post-fire regeneration rate. By con-
trast, [52] reported that the L-band performed better than the C-band in change detection
of post-fire vegetation structure in a Mediterranean environment. Therefore, it is preferable
to use a combination of L and C bands [52,53]. An even better method is the synergistic use
of radar and optical images, given that they give different information over the surveyed
area [54–56].

5. Conclusions

Time series of 10 m Sentinel-1 C-VV and C-VH data, acquired from January 2018
to December 2020, were used to analyze the correlation between backscatter and canopy
wetness derived from using DC values as proxy. The study was carried out over 502.42 km2

in north-western Portugal. C-VH radar backscatters were found to be better related to
the DC values than C-VV radar backscatters. Low DC values, i.e., less than or equal to
1, have a median C-VH backscatter about 2 dB higher with respect to DC values above
10. As observed in the unburnt sites, the relationship between backscatter and DC was
monitored in the sites affected by fire events over the three years of satellite coverage.
Results show that right after a fire event the C-VH backscatter response is not correlated to
canopy wetness and that an average of 360 or more days from the fire date are necessary
for canopies to recover such response to pre-fire situations.

The study was done in a Mediterranean region of north-western Portugal with specific
tree species, and it is necessary to have this analysis conducted over other Mediterranean
regions with other tree species. In addition, bilinear interpolation was used to assign
DC values to the fire maps, as the sourced FWI-related weather records have low spatial
resolutions. Therefore, high-resolution DC data should ensure that spatially derived DC
values represent fine-scale soil moisture conditions.

The relationship between DC and backscatter of C-band VH polarization can help to
map moisture conditions across forest covers. This is an important asset that will be further
investigated. It must be noted though that the model is applicable to the same conditions
used in our data; therefore, a forest cover equal to or greater than 90%. Furthermore, the
post-fire sensitivity of radar backscatters to DC can highlight fuel readiness for another fire
ignition. As shown in Figure 9, the relationship between radar backscatters and DC, after a
recovery period of 360 days, behaved similarly to the pre-fire scenarios. As such, it can be
inferred that fire events have occurred after this recovery period.

Future work can include validation of the potential prediction power of VH backscatter
for defining a map of DC values, comparing it with values from official DC maps and
calculated from climate sensors. This validation process was not included in this work as
we focus on results regarding how backscatter changes with DC scenarios.
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42. Paluba, D.; Laštovička, J.; Mouratidis, A.; Štych, P. Land cover-specific local incidence angle correction: A method for time-series
analysis of forest ecosystems. Remote Sens. 2021, 13, 1743. [CrossRef]

43. Huang, W.; Sun, G.; Ni, W.; Zhang, Z.; Dubayah, R. Sensitivity of multi-source SAR backscatter to changes in forest aboveground
biomass. Remote Sens. 2015, 7, 9587–9609. [CrossRef]

44. Mathieu, R.; Main, R.; Roy, D.P.; Naidoo, L.; Yang, H. The Effect of Surface Fire in Savannah Systems in the Kruger National Park
(KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images. Fire 2019, 2, 37. [CrossRef]

45. Kellndorfer, J. Using SAR Data for Mapping Deforestation and Forest Degradation. In The SAR Handbook: Comprehensive
Methodologies for Forest Monitoring and Biomass Estimation; Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B., Cherrington, E.,
Eds.; NASA: Huntsville, AL, USA, 2019; p. 68.

http://doi.org/10.1016/j.rse.2011.05.028
http://doi.org/10.1016/j.jag.2021.102505
http://doi.org/10.30897/ijegeo.777434
http://doi.org/10.3390/rs11131568
http://ecofun.fc.ul.pt/Activities/Desertification2014/docs2/SousaUva_The%20Portuguese%20National%20Forest%20Inventory.pdf
http://ecofun.fc.ul.pt/Activities/Desertification2014/docs2/SousaUva_The%20Portuguese%20National%20Forest%20Inventory.pdf
http://doi.org/10.1127/0941-2948/2006/0130
http://www.ncbi.nlm.nih.gov/pubmed/16741223
https://www.ipma.pt/pt/oclima/normais.clima/1981-2010/normalclimate8110.jsp
http://doi.org/10.1016/j.agrformet.2004.12.007
http://doi.org/10.3390/rs9060607
http://doi.org/10.3390/f10121057
http://doi.org/10.3390/f12101341
http://doi.org/10.5194/nhess-20-2365-2020
https://effis.jrc.ec.europa.eu/about-effis/technical-background/fire-danger-forecast
http://doi.org/10.3390/land10070680
http://doi.org/10.1016/j.jag.2013.02.005
http://doi.org/10.3390/rs12111867
http://doi.org/10.3390/rs13091743
http://doi.org/10.3390/rs70809587
http://doi.org/10.3390/fire2030037


Remote Sens. 2023, 15, 823 19 of 19

46. Meyer, F. Spaceborne Synthetic Aperture Radar: Principles, Data Access, and Basic Processing Techniques. In The SAR Handbook:
Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B.,
Cherrington, E., Eds.; NASA: Huntsville, AL, USA, 2019; p. 28.

47. Shorachi, M.; Kumar, V.; Steele-Dunne, S.C. Sentinel-1 SAR Backscatter Response to Agricultural Drought in The Netherlands.
Remote Sens. 2022, 14, 2435. [CrossRef]

48. Imperatore, P.; Azar, R.; Calo, F.; Stroppiana, D.; Brivio, P.A.; Lanari, R.; Pepe, A. Effect of the Vegetation Fire on Backscattering:
An Investigation Based on Sentinel-1 Observations. IEEE J. Sel. Top. Appl. 2017, 10, 4478–4492. [CrossRef]

49. Tanase, M.A.; Santoro, M.; de La Riva, J.; Pérez-Cabello, F.; le Toan, T. Sensitivity of X-, C-, and L-Band SAR Backscatter to Burn
Severity in Mediterranean Pine Forests. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3663. [CrossRef]

50. Belenguer-Plomer, M.; Chuvieco, E.; Tanase, M. Temporal Decorrelation of C-Band Backscatter Coefficient in Mediterranean
Burned Areas. Remote Sens. 2019, 11, 2661. [CrossRef]

51. Zhou, Z.; Liu, L.; Jiang, L.; Feng, W.; Samsonov, S.V. Using long-term SAR backscatter data to monitor post-fire vegetation
recovery in tundra environment. Remote Sens. 2019, 11, 2230. [CrossRef]

52. Tanase, M.; de la Riva, J.; Santoro, M.; Pérez-Cabello, F.; Kasischke, E. Sensitivity of SAR data to post-fire forest regrowth in
Mediterranean and boreal forests. Remote Sens. Environ. 2011, 115, 2075–2085. [CrossRef]

53. Tanase, M.A.; Santoro, M.; Aponte, C.; de la Riva, J. Polarimetric Properties of Burned Forest Areas at C- and L-Band. IEEE J. Sel.
Top. Appl. 2014, 7, 267–276. [CrossRef]

54. Bernhard, E.-M.; Stein, E.; Twele, A.; Gähler, M. Synergistic use of optical and radar data for rapid mapping of forest fires in the
European Mediterranean. ISPRS Archives. 2012, 4, 27–32. [CrossRef]

55. LaRocque, A.; Phiri, C.; Leblon, B.; Pirotti, F.; Connor, K.; Hanson, A. Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1
PALSAR, and LiDAR Data in Southern New Brunswick, Canada. Remote Sens. 2020, 12, 2095. [CrossRef]

56. Vaglio Laurin, G.; Puletti, N.; Tattoni, C.; Ferrara, C.; Pirotti, F. Estimated Biomass Loss Caused by the Vaia Windthrow in
Northern Italy: Evaluation of Active and Passive Remote Sensing Options. Remote Sens. 2021, 13, 4924. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/rs14102435
http://doi.org/10.1109/JSTARS.2017.2717039
http://doi.org/10.1109/TGRS.2010.2049653
http://doi.org/10.3390/rs11222661
http://doi.org/10.3390/rs11192230
http://doi.org/10.1016/j.rse.2011.04.009
http://doi.org/10.1109/JSTARS.2013.2261053
http://doi.org/10.5194/isprsarchives-XXXVIII-4-W19-27-2011
http://doi.org/10.3390/rs12132095
http://doi.org/10.3390/rs13234924

	Introduction 
	Materials and Methods 
	Study Area 
	SAR Imagery 
	Fire Maps 
	Tree Cover Map 
	Drought Code Map 
	Data Processing 
	Local Incidence Angle Masking 
	Tree Cover Masking 
	Forest Loss Masking 
	Cumulative Mask 
	Backscatter Values Extraction 


	Results 
	Unburnt Areas 
	Burnt Areas 

	Discussion 
	Conclusions 
	References

