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Abstract
In previous works, the authors investigated the relationships between linear stability of a 
generated linear series |V| on a curve C, and slope stability of the syzygy vector bundle 
M

V ,L ∶= ker(V ⊗O
C
→ L) . In particular, the second named author and L. Stoppino con-

jecture that, for a complete linear system |L|, linear (semi)stability is equivalent to slope 
(semi)stability of M

L
 . The first and third named authors proved that this conjecture holds in 

the two opposite cases: hyperelliptic and generic curves. In this work we provide a counter-
example to this conjecture on any smooth plane curve of degree 7.

Keywords Vector bundle · Stability · Syzygy bundles · Butler’s conjecture · Mistretta-
Stoppino conjecture

1 Introduction

Let C be a smooth projective curve over ℂ , and let L be a globally generated line bun-
dle on C, with deg L = d and dimL = h0(C, L) − 1 , let V ⊆ H0(C, L) a subspace of dimen-
sion r + 1 generating L. Then MV ,L ∶= ker(V ⊗OC → L) is a rank r vector bundle, which 
appears in different ways and has been given different names in the literature (cf. [4, 6, 7, 
9, 11–13]).

Slope semistability of MV ,L for a generic linear subsystem of a generic generated line 
bundle on a generic curve was conjectured by Butler in (cf. [7]) and proven in (cf. [4]). An 
analogue conjecture is still open for higher rank vector bundles.

In [15] the second named author and L. Stoppino investigate the relationships between 
linear (semi)stability of the linear series |V| ⊆ |L| , and slope (semi)stability of MV ,L . In par-
ticular, it is immediate to show that slope (semi)stability of MV ,L implies linear (semi)sta-
bility of |V| (cf. Lemma 2.3 below), and they prove that the two conditions are equivalent in 
some cases and give some examples when they aren’t. Furthermore they conjecture that for 
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complete linear systems, the two conditions are always equivalent. The only evidence on 
that conjecture lied in the fact that the conjecture seemed likely to hold on general curves.

In fact the first and third named authors showed in [8] that the conjecture holds when C 
is a hyperelliptic curve or a Brill-Noether-Petri general curve.

The purpose of this work is to show that this conjecture does not hold for smooth plane 
curves. In particular, we prove it does not hold on any smooth plane curve of degree 7:

Theorem 1.1 Let C be a smooth plane curve of degree d = 7 . Then W2
15
(C) is non-empty 

and a general element L in any of its components satisfies: 

 i. The complete linear series |L| is linearly stable.
 ii. The vector bundle ML is not semistable.

2  Notations and previous results

Throughout this work, C will denote a smooth projective curve of genus g ⩾ 2 over the field 
of complex numbers. We will denote � = �(C) the gonality of C, i.e. � is the smallest integer 
such that there exists a degree � map to ℙ1 . Another invariant that we make use of, closely 
related to gonality, is the Clifford Index of curve, it defined for a curve C of genus g ⩾ 4 as

it is defined to be Clif f(C) = 0 when g = 2 and Clif f(C) = 0 or 1 for g = 3 , according to 
whether C is hyperelliptic or not. The Clifford Index satisfies the following inequalities 
with respect to the gonality:

the case Clif f(C) ⩽ �(C) − 2 holding for general �(C)-gonal curves in the moduli space 
Mg of smooth curves of genus g. Furthermore the equality Clif f(C) = 0 holds if and only 
if C is hyperelliptic.

We will denote Pic(C) the Picard group of line bundles, and Picd(C) those of degree d. For 
L ∈ Pic(C) we will denote |L| = ℙ(H0(C, L)∗) the complete linear series of effective divisors 
linearly equivalent to L, and |V|, with V ⊂ H0(C, L) , a linear subseries of |L|.

To simplify some of the notations we will use divisors (up to linear equivalence) and the 
additive notation instead of line bundles, writing |D| for |OC(D)| , h0(D) for h0(C,OC(D)) , and 
so on. We will denote �C the canonical line bundle and KC a canonical divisor.

We will denote as usual the Brill-Noether loci by

When the expected dimension of Wr
d
(C) is greater than or equal to 0, this locus is non-

empty and every component of such a locus has dimension greater than or equal to this 
expected dimension, which is the Brill-Noether number

Let E be a vector bundle on C, the slope of E is

Clif f(C) ∶= min{deg(L) − 2(h0(L) − 1) | L ∈ Pic(C) , h0(L) ⩾ 2 , h1(L) ⩾ 2} ,

�(C) − 3 ⩽ Clif f(C) ⩽ �(C) − 2 ,

Wr
d
(C) = {P ∈ Picd(C) | h0(C,P) ⩾ r + 1} .

�(d, r, g) = g − (r + 1)(g − d + r) .
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Definition 2.1 We say that the vector bundle E is stable (respectively semistable) if any 
subbundle 0 ≠ F ⊊ E satisfies

Let L be a line bundle on C, and let V ⊆ H0(C, L) a linear subspace. We say that the lin-
ear series |V| generates the line bundle L′ , if L′ is the image of the map V ⊗OC → L . The 
dimension of a linear series |V| is dim |V| = dimV − 1.

We say that a linear series |V|, with V a linear subspace in H0(C, L) , is a gr
d
 if deg L = d 

and dimV ⩾ r + 1.
Similarly, we say that a line bundle L is a gr

d
 if deg L = d and h0(C, L) ⩾ r + 1 . We say 

that L is a complete gr
d
 if deg L = d and h0(C, L) = r + 1.

We denote MV ,L ∶= ker(V ⊗OC → L) and ML ∶= MH0(L),L . If V generates L then

Definition 2.2 We say that a pair (L, V), where L is a line bundle and V ⊆ H0(C, L) , is a 
generating pair if the global sections in V generate L. We say the linear series |V|, or the 
generating pair (L, V), is linearly stable (respectively linearly semistable) if for any sub-
space W ⊊ V  with dimW ⩾ 2 , the line bundle L′ generated by W satisfies

The following lemma is proven in [15]:

Lemma 2.3 If a generating pair (L, V) is such that MV ,L is a (semi)stable vector bundle, 
then (L, V) is linearly (semi)stable.

Proof This is Remark 3.2 of [15]. The main point is that for any subspace 0 ≠ W ⊊ V  gen-
erating L′ ⊆ L we have the following diagram:

 where �(MV ,L) = −
degL

dim |V|
 and �(MW,L� ) = −

degL�

dim |W|
 , therefore (semi)stability of MV ,L 

implies linear (semi)stability of (L, V).

The second named author and L. Stoppino investigate the reverse implication of the 
above Lemma in [15], in particular they conjecture that equivalence holds in the following 
cases:

�(E) ∶=
degE

rkE
.

𝜇(F) < 𝜇(E) (respectively𝜇(F) ⩽ 𝜇(E)).

�(MV ,L) = −
deg L

dim |V|

deg L�

dim |W|
>

deg L

dim |V|
(respectively

deg L�

dim |W|
⩾

deg L

dim |V|
).

(1)
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Conjecture 2.4 If (L, V) is a generating pair on C, such that

then linear (semi)stability of (L, V) is equivalent to (semi)stability of MV ,L.

In the same work, the authors prove that the conjecture above holds if V = H0(C, L) is 
a complete linear series, and they apply this to prove the stability of some syzygy bundles 
ML . They remark that in general the equivalence does not hold, and observing the counter-
examples they can construct, they state the stronger conjecture:

Conjecture 2.5 If (L, V) is a generating pair on C, such that

then linear (semi)stability of (L, V) is equivalent to (semi)stability of MV ,L.

Concerning complete linear series, they conjecture that equivalence always holds in this 
case.

Conjecture 2.6 If V = H0(C, L) is a complete base point free linear series, then linear 
(semi)stability of the linear series |L| is equivalent to (semi)stability of ML.

The first and third named author proved in [8] that Conjecture 2.6 does hold in the two 
opposite cases: when C is a hyperelliptic curve and when C is a Brill-Noether-Petri general 
curve.

The aim of this work is to show that Conjecture 2.6 does not hold in general: we can 
give counterexamples on any smooth plane curve of degree 7 (so genus 15 and gonality 6). 
In particular we will show that on such a curve C a generic line bundle in any component 
of the (non-empty) Brill-Noether locus W2

15
(C) is globally generated, has h0(C, L) = 3 , is 

linearly stable, but ML is a rank 2 vector bundle which is not semistable, hence not stable.
These constructions do not contradict Conjecture 2.5 however, as they provide line bun-

dles L with deg L = 15 > 𝛾(C) ⋅ dim |V| = 12.

3  Dimension 2 linear series on higher gonality curves

In this section we construct dimension 2 complete linear series on curves with high gonal-
ity, and show that they are linearly stable. Most of the results we will make use of are 
stated in Voisin’s work [18].

The main results are obtained as consequences of the following lemmas, to be found in 
[17] and [10] (cf. [1], Chapter IV, for more details):

Lemma 3.1 (Mumford) Let C be a non-hyperelliptic curve of genus g ⩾ 4 . Let d, r be two 
integers such that 2 ⩽ d ⩽ g − 2 and 0 < 2r ⩽ d . If dimWr

d
(C) ⩾ d − 2r − 1 then C is trig-

onal or bielliptic or a smooth plane quintic. In particular �(C) ⩽ 4.

deg L ⩽ 2 dim |V| + Clif f(C)

deg L ⩽ �(C) ⋅ dim |V|
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Lemma 3.2 (Keem) Let C be a curve of genus g ⩾ 11 . Let d, r be two integers such that 
4 ⩽ d ⩽ g + r − 4 and r > 0 . If dimWr

d
(C) ⩾ d − 2r − 2 ⩾ 0 then �(C) ⩽ 4.

We give the complete proof of the following theorem and of the constructions provided 
in [18], we think it is worthwhile to go over all details in the proof, for clarity of the expo-
sition, for better understanding of the proofs involved later, and for the the interest in itself 
of the proof.

Theorem 3.3 (Voisin) Let C be a curve of genus g ⩾ 11 and gonality � ⩾ 5 . Then a general 
element D in any component of W1

g−2
(C) satisfies: 

 i. |D| is base point free and h0(D) = 2.
 ii. |KC − D| is base point free and h0(KC − D) = 3.

Proof The expected dimension of W1
g−2

(C) is �(g − 2, 1, g) = g − 6 , and according to Mum-
ford’s Lemma 3.1 above, as the gonality of the curve is � ⩾ 5 , no component has dimen-
sion greater than or equal to g − 5.

Applying Keem’s Lemma 3.2 above, dimW1
g−3

(C) ⩽ g − 8 . Therefore if we denote

then W1
g−3

+ (C) has empty interior in W1
g−2

(C) by a dimensional count.
Now an element L ∈ W1

g−2
(C) lies in W1

g−3
+ (C) if either it has h0(C, L) ⩾ 3 or it has a 

base point. Therefore a general element of a component of W1
g−2

(C) is base point free and 
has h0(C, L) = 2 , and this proves the first point.

In order to prove the second point, we prove the following
Claim every component of W2

g−1
(C) has dimension at most g − 8.

If the Claim holds, then we can proceed as above: set

then, as every component of W2
g
(C) has dimension at least �(g, 2, g) = g − 6 , W2

g−1
+ (C) 

has empty interior in W2
g
(C) as it has smaller dimension. Therefore a generic point F in 

a component of W2
g
(C) does not lie in W2

g−1
+ (C) so it is a base point free 2 dimensional 

linear series.
As the map P ↦ P∗ ⊗𝜔C is an isomorphism Picg(C) → Picg−2(C) which restricts to an 

isomorphism W2
g
(C) → W1

g−2
(C) , then a generic point in a component of W1

g−2
(C) corre-

spond to a generic point in a component of W2
g
(C) and the second point is proven.

Proof of the Claim. By contradiction, suppose there is a component X of W2
g−1

(C) of 
dimension greater than or equal to g − 7 . Then a general element of such a component 
does not lie in W2

g−2
+ (C) , as by Keem’s Lemma (Lemma 3.2 above) dimW2

g−2
⩽ g − 9 . 

Therefore a general L ∈ X is base point free and has h0(C, L) = 3 . By same argument, as 
L∗ ⊗𝜔C varies in a component of W2

g−1
 of dimension at least g − 7 as well, then for a gen-

eral such L we have that L∗ ⊗𝜔C is base point free with h0(C, L∗ ⊗𝜔C) = 3.
Now, let us consider the morphism �L ∶ C → ℙ2 induced by L. It cannot be an 

immersion, otherwise its image would be a plane curve of degree g − 1 and genus 
g, which is impossible for g ⩾ 11 . Therefore there is a couple (p, q) ∈ C2 such that 
H0(C, L(−p − q)) = H0(C, L(−p)) = H0(C, L(−q)) ≅ ℂ2 . In the following, we choose 

W1
g−3

+ (C) ∶= {P ∈ Picg−2(C) | P = Q⊗OC(p) , Q ∈ W1
g−3

(C) , p ∈ C}

W2
g−1

+ (C) ∶= {P ∈ Picg(C) | P = Q⊗OC(p) , Q ∈ W2
g−1

(C) , p ∈ C} ,
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divisor notation. Let us choose a divisor Δ ∈ |L| and let us denote Δ� ∶= Δ − p − q , then 
OC(Δ

�) = L(−p − q) ∈ W1
g−3

.
As both |Δ| and |KC − Δ| are base point free, we can see that |KC − Δ�| = |KC − Δ + p + q| 

is base point free as well: in fact the only base points could be p, q ∈ C , however, as 
h0(C, L(−p − q)) = h0(C, L(−p)) = h0(C, L(−q)) = 2 , applying Riemann-Roch we have 
that h0(KC − Δ + p) = h0(KC − Δ + q) = 3 , and h0(KC − Δ + p + q) = 4.

Therefore we have a base point free linear series KC − Δ� , let us consider the induced 
map:

then either this map is birational, and therefore there is a finite number of couples 
(x, y) ∈ C2 such that

and so

or the map is a degree m morphism

and in this case there are infinite couples (x, y) satisfying h0(Δ� + x + y) = 3 = h0(Δ�) + 1 , 
these are all the couples contained in the fibers of �KC−Δ

� . However, as 
|KC − Δ� − p − q| = |KC − Δ| is base point free, we see that such fibers cannot contain 
more than two points (counted with multiplicity), so the degree of �KC−Δ

� must be m = 2 if 
it is not a birational map, and the set of such couples (x, y) has dimension 1.

Now, let us consider the following scheme:

and the two maps:

According to the argument above, there must be a component Y0 dominating X ⊂ W2
g−1

(C) 
by the morphism � , and the fibers of pr1 ∶ Y0 → W1

g−3
 have dimension at most 1. Now 

as dimX ⩾ g − 7 by hypothesis, and dimW1
g−3

⩽ g − 8 by Lemma 3.2, then we deduce 
that pr1(Y0) must contain an open dense subset U0 of a (g − 8)-dimensional component 
W ⊂ W1

g−3
 , and the general fibers of pr1 must be 1-dimensional.

According to the description above, for Δ� ∈ U0 the residual linear series KC − Δ� is a 
complete and base point free g3

g+1
 on C, inducing a degree 2 map

Let us consider the normalization � ∶ C̃ → C , and the map �̃ ∶ C → C̃ . Then C̃ has a com-
plete linear series of dimension 3 and degree g+1

2
 therefore it is not a rational curve. Then 

when Δ� varies in U0 the curve C̃ and the map �̃ are fixed.

�KC−Δ
� ∶ C → ℙ3 ,

h0(KC − Δ� − x − y) = h0(KC − Δ� − x) = 3

h0(Δ� + x + y) = 3 = h0(Δ�) + 1 ;

𝜑KC−Δ
� ∶ C → C ⊂ ℙ3 ,

Y ∶={(Δ�, x, y) | |Δ�| is a complete g1
g−3

, |Δ� + x + y| and |KC − Δ� − x − y|

are complete and base point free g2
g−1

} ,

pr1 ∶ Y → W1
g−3

(C) and � ∶ Y → W2
g−1

(C), (Δ�, x, y) ↦ Δ� + x + y .

𝜑KC−Δ
� ∶ C → C ⊂ ℙ3 .
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Now for a general point KC − Δ in KC − X , we have KC − Δ = KC − (Δ� + x + y) , where 
x, y are points in a fiber of �̃ . Therefore KC − Δ is the pull back through �̃ of a g2

(g−1)∕2
 on 

C̃ . So we have

By the Riemann-Hurwitz formula, the genus g� = g(C̃) satisfies g� ⩽ (g + 1)∕2 . So we have 
the following inequalities:

and therefore we have that g is odd and satisfies 11 ⩽ g ⩽ 15 and C̃ is a curve of genus g′ 
such that g − 7 ⩽ g� ⩽ (g + 1)∕2 and that dimW2

(g−1)∕2
(C̃) ⩾ g − 7.

We can show that these inequalities cannot hold, and so we have proven the claim. In 
fact, according to the inequalities above, we have the following cases: 

 i. if g = 15 then g� = 8 and dimW2
7
(C̃) ⩾ 8 which is impossible, as it would imply that 

W2
7
(C̃) = Pic7(C̃);

 ii. if g = 13 then g� = 7 or g� = 6 and dimW2
6
(C̃) ⩾ 6 which is impossible, as the case 

g� = 6 would imply that W2
6
(C̃) = Pic6(C̃) , and the case g� = 7 would imply that 

W2
6
(�C) ⊆ Pic6(�C) has codimension at most 1 and is therefore equal to the theta divisor;

 iii. if g = 11 then g� = 6 or g� = 5 or g� = 4 and dimW2
5
(C̃) ⩾ 4 which is impossible for 

similar arguments.

This completes the proof of the Claim and therefore of the Theorem.
We need the following Lemma proven in [15, Proposition 8.1]:

Lemma 3.4 Let V ⊆ H0(C, L) be a dimension 2 linear series on C, generating L, such that

is a birational morphism.

Then |V| is linearly (semi)stable if and only if all the points p ∈ C have multiplicity 
mp(C) < deg L∕2 (or mp(C) ⩽ deg L∕2 for semistability).

Now we can prove the following:

Theorem 3.5 Let C be a curve of genus g ⩾ 11 and gonality � ⩾ 5 . Then a general element 
L in any component of W2

g
(C) satisfies: 

 i. The complete linear series |L| is base point free and h0(C, L) = 3.
 ii. The complete linear series |L| induces a birational morphism 𝜑L ∶ C → C ⊂ ℙ2 , 

where C ⊂ ℙ2 is a singular curve of degree g.
 iii. The complete linear series |L| is linearly stable.

Proof The first point follows from Theorem 3.3 above. We have to show that such a general 
element induces a birational map to its image and is linearly stable.

dimW2
(g−1)∕2

(C̃) ⩾ dimX ⩾ g − 7 .

g − 7 ⩽ g� ⩽ (g + 1)∕2

𝜑|V| ∶ C → C ⊂ ℙ2



98 A. Castorena et al.

1 3

Let us prove that for a general divisor D ∈ W2
g
 in an irreducible component of W2

g
 , the 

linear series |D| induces a birational morphism 𝜑D ∶ C → C ⊂ ℙ2 . Let us observe that by 
the first point the linear series |D| and |KC − D| are complete and base point free g2

g
 and g1

g−2

.
As �D cannot be an embedding, then there exist p, q ∈ C such that 

H0(D − p) = H0(D − q) = H0(D − p − q) ≅ ℂ2 . So the divisor D� ∶= D − p − q satisfies: 

 i. |D′| is a complete g1
g−2

;
 ii. |KC − D�| is a complete base point free g2

g
;

 iii. |D� + p + q| is a complete base point free g2
g
;

 iv. |KC − D� − p − q| is a complete base point free g1
g−2

.

Furthermore, two points p, q ∈ C satisfy �D(p) = �D(q) if and only if the divisor 
D� = D − p − q satisfies the conditions above.

Now let us consider the following scheme:

and the two maps:

According to the description above, the morphism � is dominant on every component 
of W2

g
(C) , and the fiber of the morphism � , over a general divisor D in a component of 

W2
g
(C) , is the set of all triples (D − x − y, x, y) such that �D(x) = �D(y) . Remark that the 

fiber over a divisor D� ∈ Im(pr1) of pr1 ∶ Y → W2
g
(C) is the set of all triples (D�, x, y) such 

that �KC−D
� (x) = �KC−D

� (y).
Therefore, in order to prove point (ii) in the statement of the theorem, let us suppose 

by contradiction that for a general divisor D in a component X of W2
g
(C) the morphism 

�D ∶ C → ℙ2 is not birational to its image. Then the fibers of � have positive dimension, 
so there is a component Y0 ⊆ Y  such that dimY0 > dimX = g − 6 . That component Y0 
must be dominant through pr1 onto a component W0 of W1

g−2
(C) as well, otherwise the 

generic fiber of pr1 would have dimension 2 which is impossible. Then we deduce that for 
a general element D� ∈ W0 , the morphism 𝜑KC−D

� ∶ C → C ⊂ ℙ2 is not birational, and has 
degree m > 1 . With the same argument as in the proof of Theorem 3.3, as we know that 
|KC − D� − x − y| is a complete base point free g1

g−2
 for some x, y ∈ C , we see that in fact it 

must be of degree 2 in this case.
Then we proceed as in the proof of Theorem  3.3, considering the normalization 

� ∶ C̃ → C , and the map �̃ ∶ C → C̃ . Then C̃ has a complete linear series of dimension 2 
and degree g

2
 therefore it is not a rational curve. And so when D′ varies in W0 the curve C̃ 

and the map �̃ are fixed. Let us call g� = g(C̃) its genus.
The divisor KC − D� is the pull back through �̃ of a g2

g∕2
 on C̃ . So we have

Y ∶= {(D�, x, y) | |D�| is a complete g1
g−2

,

|D� + x + y| is a complete and base point free g2
g
,

|KC − D� − x − y| is a complete and base point free g1
g−2

} ,

pr1 ∶ Y → W1
g−2

(C) and � ∶ Y → W2
g
(C), (D�, x, y) ↦ D� + x + y .

(g + 1)∕2 ⩾ g� ⩾ dimW2
g∕2

(C̃) ⩾ dimW0 = g − 6 ,
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the first inequality following from Riemann-Hurwitz formula. As g ⩾ 11 by hypothesis, 
and even, then we must have g = 12 , g� = g∕2 = 6 , and dimW2

g∕2
(C̃) = g − 6 = g� which is 

impossible. So this completes the proof of point (ii).
So we have proven that for a general divisor D in a component of W2

g
 the linear series |D| 

and |KC − D| are base point free, and the map 𝜑D ∶ C → C ⊂ ℙ2 is birational. Let us prove 
that the multiplicity of any point p ∈ C is at most 2.

Consider the scheme defined above:

and the two maps:

We claim that every component of Y dominating a component of W2
g
 through � , dominates 

through pr1 a component of W1
g−2

 as well.
If the claim holds, we can show that the multiplicity mp(C) , of any point of 

p ∈ C = 𝜑D(C) ⊂ ℙ2 , is at most 2. In fact in that case, for a general D in a component of W2
g
 , 

we have that for any couple (x, y) ∈ C2 such that H0(D − x) = H0(D − y) = H0(D − x − y) , 
the divisor D� = D − x − y is general in a component of W1

g−2
 so it is a base point free divi-

sor, therefore the image �D(x) = �D(y) cannot have multiplicity higher than 2.
Let us prove now that the claim above holds: we have to show that any component Y0 of 

Y that dominates through � a component of W2
g
 dominates a component of W1

g−2
 through p1.

Recall that by Mumford’s Lemma 3.1 all components of W1
g−2

 have dimension g − 6 
(hence all components of W2

g
 as well).

Suppose by contradiction that there is a component Y0 of Y, dominating a component of 
W2

g
 , which does not dominate any component in W1

g−2
 . Then the component Y0 has dimen-

sion g − 6 , as the fiber �−1(D) of a generic divisor D ∈ W2
g
 is finite. The image pr1(Y0) is 

then a locus strictly contained in a component of W1
g−2

 , and therefore of dimension g − 7 , 
as the fibers cannot have dimension greater than 1.

Now, for a given D� ∈ pr1(Y0) , the divisor KC − D� is base point free and induces a map 
𝜑KC−D

� ∶ C → C ⊂ ℙ2 . As the fiber pr−1
1
(D�) is positive dimensional, the morphism �KC−D

� 
is not birational, and as |KC − D� − x − y| is complete and base point free, then �KC−D

� is a 
degree 2 morphism.

Proceeding as in the previous proofs, we see that the normalization C̃ of C and the mor-
phism �̃ ∶ C → C̃ do not vary when D′ varies in pr1(Y0) , and that the divisor KC − D� is 
the pull back �̃∗E of a divisor E ∈ W2

g∕2
(C̃).

Let us call g� = g(C̃) the genus of C̃ , then we have the following inequalities:

Then g must be even and we have the following cases: 

 i. g = 12 and 5 ⩽ g′ ⩽ 6;
 ii. g = 14 and g� = 7.

Y ∶= {(D�, x, y) | |D�| is a complete g1
g−2

,

|D� + x + y| is a complete and base point free g2
g
,

|KC − D� − x − y| is a complete and base point free g1
g−2

} ,

pr1 ∶ Y → W1
g−2

(C) and � ∶ Y → W2
g
(C), (D�, x, y) ↦ D� + x + y .

(g + 1)∕2 ⩾ g� ⩾ dimW2
g∕2

(C̃) ⩾ g − 7 .



100 A. Castorena et al.

1 3

The first case would have either g� = 5 and dimW2
6
(C̃) = 5 , which is impossible; or 

g� = 6 and dimW2
6
(C̃) = 5 which is impossible as well.

The second case satisfies g = 14 , g� = 7 , and dimW2
6
(C̃) = 7 , which is impossible again.

Therefore we have shown the claim that every component of Y dominating a component 
of W2

g
 through � , dominates through pr1 a component of W1

g−2
 as well, and we have seen 

that this implies that for a generic D ∈ W2
g
(C) the morphism �D ∶ C → C is birational and 

its image C has points of multiplicity at most 2. Now to complete the proof of point (iii) in 
the theorem we just have to apply Lemma 3.4.

Remark 3.6 Theorem 3.5 is a consequence of Voisin’s work in [18]. Most of the statements 
we present here are not proven in that work, (they make use of similar techniques as in 
previous results in the same article i.e. as in the proof of Theorem  3.3). We think it is 
worthwhile giving a full presentation of those results and of the proof of Theorem 3.3 here, 
remarking that the originality of the argument is due to Voisin.

We remark that linear stability was introduced by Mumford as it implies Chow stability 
of the corresponding point in the Hilbert scheme (cf. [2, 6]). We will not use Chow stabil-
ity in this work, however we notice that we have the following:

Corollary 3.7 Let C be a curve of genus g ⩾ 11 and gonality � ⩾ 5 , and let L be a general 
element in any component of W2

g
(C) . Then the curve C is Chow stable with respect to L.

4  Counterexamples on plane curves

In this section we show that any smooth plane curve of degree 7 admits counterexamples to 
Conjecture 2.6.

Theorem 4.1 Let C be a smooth plane curve of degree d = 7 . Then a general element L in 
any component of W2

15
(C) satisfies: 

 i. The complete linear series |L| is base point free and linearly stable.
 ii. The vector bundle ML is not semistable.

Proof The first point is given by Theorem 3.5 above, as the curve has genus g = 15 and 
gonality � = 6 . We have to exhibit a destabilization of ML in this case.

Let us consider the line bundle B = Oℙ2 (1)|C , it is a line bundle of degree 7 with 
h0(C,B) = 3 . Using the exact sequence

and passing to cohomology, we have:

Now, let us call W = W0
6
(C) ⊂ Pic6(C) the locus of effective divisors of degree 6, then 

clearly dimW = 6 , so the locus

0 → ML ⊗ B → H0(C, L)⊗ B → L⊗ B → 0

0 → H0(C,ML ⊗ B) → H0(C, L)⊗ H0(C,B) → H0(C, L⊗ B) .
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has dimension 6 as well. As every component of W2
15
(C) has dimension at least g − 6 = 9 , 

then a general line bundle L in such a component is not contained in (𝜔C ⊗ B∗) −W . 
Therefore for a general element L of a component of W2

15
(C) we have:

so by Riemann-Roch we have

Therefore H0(C,ML ⊗ B) ≠ 0 and we have an injection:

which provides a destabilization as 𝜇(B∗) = −7 > 𝜇(ML) = −15∕2.

Remark 4.2 For a line bundle L as above we have the following diagram:

where F ∶= ker(H0(C,B)⊗OC ↠ B)∗ is a rank 2 vector bundle. However we cannot 
have a diagram as in (2) which would provide a linear destabilization; in particular, the line 
bundle L, being generic, does not admit an injection B ↪ L.

5  Applications, further questions, and remarks

We have proven that all smooth plane curves of degree 7 admit counterexamples to Con-
jecture 2.6.

Remark 5.1 As smooth plane curves of degree 7 are not generic in the moduli space M15 
of smooth genus 15 curves, and as all of them do not satisfy Conjecture 2.6, it would be 
interesting to describe the locus in M15 of curves not satisfying Conjecture 2.6 and its 
numerical properties, and in general, it would be interesting to investigate the locus in Mg 
of curves not satisfying Conjecture 2.6.

Question 5.2 We remark the techniques in Sect. 3 provide linearly stable complete base 
point free complete linear series of dimension 2 on all curves with genus g ⩾ 11 and gonal-
ity � ⩾ 5 . However the very same techniques cannot be applied to find other counterex-
amples on plane curves with different degrees, in fact their numerical properties do not 
allow us to construct destabilizations in a similar way. Therefore we have counterexamples 
to Conjecture 2.6 only on smooth plane curves of degree 7. We would have to use other 
techniques to investigate on syzygy stability for plane curves in other degrees. It would be 
interesting to find other counterexamples in higher degrees.

(𝜔C ⊗ B∗) −W ∶= {L ∈ W2
15
(C) | L = 𝜔C ⊗ B∗ ⊗ F∗ , F ∈ W}

H0(C,𝜔C ⊗ B∗ ⊗ L∗) ≅ H1(C,B⊗ L)∗ = 0 ,

h0(C,B⊗ L) = deg(B⊗ L) + 1 − g = 8 < dimH0(C, L)⊗ H0(C,B) = 9 .

B∗
↪ ML

(2)
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A consequence of Theorem 4.1 is the following

Corollary 5.3 Let C be a smooth plane curve of degree 7, let B(n, d, r) be the moduli space 
of semistable vector bundles E on C with rank n, degree d, and such that h0(C,E) ⩾ r . 
Then all components of B(2, 15, 3) consist of non generated bundles.

Proof Suppose by contradiction that there exists a globally generated vector bundle 
E ∈ B(2, 15, 3) , then there is a vector space V ⊂ H0(C,E) of dimension 3 that generates E. 
Then we have the following exact sequence

with L = detE which lies in a component of W2
15
(C) . As having a semistable syzygy bundle 

is an open property, we would have that a general line bundle in that component is base 
point free and with semistable syzygy bundle, which is a contradiction to Theorem 4.1.

Remark 5.4 It would be interesting to describe the space B(2, 15, 3) for a smooth plane 
curve C of degree 7, for example its dimension, the number of components etc., knowing 
that it is nonempty by [5], and it consists of non generated bundles by the corollary above.

Remark 5.5 In a similar way, we know that there is a stable globally generated vector bun-
dle in B(2, 7, 3). Namely it is easy to see that the vector bundle M∗

B
 , where MB is the syzygy 

bundle fitting in the exact sequence

with B = Oℙ2 (1)|C is the degree 7 divisor on C, is a stable bundle in B(2, 7, 3): in fact a 
destabilization would be a line bundle S ⊂ MB such that deg S ⩾ �(MB) = −7∕2 ; then S∗ 
would be a base point free line bundle with deg S∗ ⩽ 3 , which is impossible as the curve C 
has gonality 6.

Furthermore M∗
B
 is the unique globally generated semistable vector bundle in B(2, 7, 3). 

It would be interesting to describe for d ⩾ 8 the spaces B(2, d, 3) and the locus of globally 
generated vector bundles inside any of those spaces, knowing that they are nonempty for 
d ⩾ 15 by [5].

Remark 5.6 In the recent works [3, 14, 16] the second named author considers stable base 
loci, augmented and restricted base loci for vector bundles. It would be interesting to com-
pute explicitly the base loci in these cases for the unstable bundles M∗

L
 constructed above. 

In fact these are globally generated vector bundles, therefore they are nef vector bundles, 
however they are not semistable, and need not be ample.
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