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ABSTRACT This paper investigates the use of non-linear autoregressive exogenous (NARX) artificial neural
networks (ANNs) to achieve black-box average dynamic models of dc-dc converters capable of capturing the
main converter non-linearities. Non-linearities may include, for example, dynamic behavior variations due to
changes of operating point or operating mode (e.g., discontinuous conduction mode, continuous conduction
mode). This paper presents design guidelines for determining the NARX-ANN architecture and the dataset to
be used in the training process. Dataset definition includes the choice of the perturbations for stimulating the
aimed system behaviors and optimizations for dataset size reduction. The proposed approach is first derived
for a dc-dc boost converter. To verify the generality of the proposed method, the same methodology is also
applied to a Ćuk converter. In both cases, the proposedNARX-ANNmodeling provided accurate results, with
only limited deviations observed in the time-domain responses to step variations of duty-cycle and output
current. The proposed model provided accurate small-signal behavior under different operating conditions.
The validity of the approach is evaluated experimentally by considering a boost converter prototype.

INDEX TERMS Non-linear autoregressive exogenous (NARX), artificial neural network (ANN), black-
box average model of power converters, discontinuous conduction mode (DCM), continuous conduction
mode (CCM).

I. INTRODUCTION
Recently, broad interest has been growing in the applica-
tion of artificial intelligence (AI) in numerous scientific and
industrial fields [1], [2]. Power electronic conversion cir-
cuits and powerful digital controllers offer many compelling
scenarios in which AI methods may unleash unprecedented
performances, new features, and potential breakthrough
applications [3].

Modern power systems, such as smart microgrids, com-
prise a large number of electronic power converters (EPCs)
from different manufacturers. Typically, a system designer
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disposes of no or insufficient details on the converters (e.g.,
due to intellectual property issues), making the application of
classical modeling based on the knowledge of the converter
parameters impractical. This is a substantial limitation for
stability assessments and faults analyses at a system level
considering interactions among different converters. To over-
come these issues, it is necessary to estimate the static and
dynamic performance of the EPC by directly identifying its
parameters or by determining an equivalent structure that can
emulate its behavior [4].

Several approaches for power converters modeling are
reported in the literature [5].White-boxmodels are derived by
applying physics principles and aim at accurately represent-
ing the inner behavior of the system, under the assumption
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that all the parameters needed for the modeling are known.
Switching models fall into this category. Grey-box methods
are used when white-box modeling is only partially possi-
ble, and the final system model is completed by using data
collected from the operation of the system. Notably, both
approaches rely on prior knowledge about the system, which
information is not always available.

Black-box modeling is instead a model-free approach that
overcomes these limitations. The parameters of the black-box
model do not necessarily have a physical meaning: they are
definedwith the sole objective of matching stimulus/response
relationships. Therefore, input-output experiments can be
used as a main source of data for these types of data-driven
approaches.

In the literature, black-box analytical methods are clas-
sified based on the type of behavior to reproduce: linear,
static non-linear, and dynamic non-linear [6]. In the linear
case, models are built to replicate the small-signal behavior
of the EPC at a specific operating point [7]. In the static
non-linear case, the Wiener-Hammerstein approach is the
most common method. The dynamic behavior of the system
is described using a passive network (i.e., a combination
of capacitors, inductors, and resistors), while the non-linear
behavior is described using voltage or current sources con-
trolled by non-linear functions [8], [9]. As a disadvantage
of the approach, the complexity of the network that models
the linear behavior increases linearly with its complexity
(e.g., number of poles and zeros). In the dynamic non-linear
case, polytopic functions [6] are widely used. This approach
describes the behavior of non-linear systems by obtaining
small-signal models at different operating points and com-
bining them into a non-linear structure using weighting func-
tions [10]. In order to achieve an accurate model of the EPC,
including non-linear effects, a large number of transfer func-
tions is needed, leading to an increase of model complexity.

A modern possibility described in the literature for mod-
eling is the use of AI methods. In [11], a NARX-ANN is
used to model in simulation a synchronous boost converter
operating in continuous conduction mode (CCM). The mod-
eling of a synchronous boost converter considered in the time
domain that operates in CCM is reported in [12] and [13].
A different approach for modeling both the DCM and CCM
operatingmodes of a converter using long short-termmemory
(LSTM) networks is presented in [14]. The dataset used
in [14] consists of distinct windows, each containing a step
change in the load, and the network is trained to predict
the response of the converter to a specific window. The
effectiveness of this architecture for the prediction of outputs
considering different input signals (e.g, sinusoidal) is not
discussed, and the capability of the approach of modeling fre-
quency domain performances is left unexplored. Moreover,
as a limit of LSTM-ANNs, they present a more complex
structure with a greater number of parameters as compared
with NARX-ANN [15].

This paper is investigates the use of ANN-based
approaches for EPCsmodeling. To this end, an averagemodel

of a boost converter is pursued by the use of a NARX-ANN
capable of replicating the converter dynamic behavior at
several different operating points. The use of NARX-ANN
to model the CCM operation has already been applied with
good results [11], [12], [13], while its use including the DCM
operation is not reported. Furthermore, an extensive anal-
ysis of the modeling accuracy considering the small-signal
response of the ANN-based model and the expected transfer
functions in DCM and CCM has not been analyzed. Remark-
ably, the proposed model can compute the predicted output
of the modeled system in response to an input signal on
a sample-by-sample basis. This feature is advantageous for
implementing digital twins fed by signals acquired from the
physical application and operated in real-time [16].

This paper extends the studies preliminarily reported
in [17] where a NARX-ANN model was employed to model
a buck converter operating at 30 kHz. Specifically, this paper
discusses the design guidelines for the derivation of the
NARX-ANN, accesses the accuracy of the model in the time
and frequency domains, demonstrates the method consider-
ing the Ćuk converter, and presents the experimental vali-
dation of the proposal. In the following, Section II outlines
the main theoretical concepts of NARX-ANNs. Section III
describes the boost converter used as test-case and shows
the performance of the NARX-ANN varying the topology of
the dataset. Information about the architecture of the ANN
and how the dataset is designed is also provided. Section IV
shows the effectiveness of the proposed method when applied
for the modeling of a Ćuk converter. SectionV describes the
experimental setup used for the training of the NARX-ANN
and verifies the effectiveness of the proposed solution in the
time and frequency domains.

II. BASICS OF NARX-ANN
To model the EPC dynamics, an ANN with memory should
be considered, in analogy with the state equation of clas-
sical state-space models. NARX-ANNs belong to the class
of recursive neural networks (RNNs), allowing this property,
commonly exploited for time series predictions [18].

NARX-ANNs can be used to model a wide variety of
non-linear dynamic systems and they have been applied in
various applications, including time-series modeling [19],
[20]. Unlike other types of RNNs, such as the LSTM-ANNs,
where the memory effect is implemented directly by
the neurons, NARX-ANNs are composed of two blocks,
as shown in Fig. 1. A multilayer perceptron artificial neu-
ral network (MLP-ANN) is used to implement an internal
static input-output relation F(·). The basic elements of an
MLP-ANN are i) the number of layers, ii) the number of
neurons in each layer, iii) the activation function of each
layer, iv) the algorithm used during the training process [21].
MLP-ANNs are constitute of the input, the output, and the
shallow layers. Additional internal layers, called hidden lay-
ers, can be included between the input and the output lay-
ers. Commonly, the higher the complexity of the relation
F(·), the higher the number of neurons and hidden layers

43258 VOLUME 11, 2023



A. Zilio et al.: Black-Box Large-Signal Average Modeling of DC-DC Converters Using NARX-ANNs

required. Each neuron returns its output via a non-linear
function, called activation function [22], that processes the
linear combination of its inputs with a bias added. In this
work, the sigmoid activation function and the rectified linear
unit (ReLU) function are used for the hidden layers and the
output layer, respectively.

In the following, the NARX-ANN is adopted to obtain
the output ŷ, prediction of the actual output y of the system
to be modeled, in response to the exogenous input u. The
MLP-ANN inputs are composed of the exogenous inputs
plus the outputs of the modeled system. The modeled system
outputs given as input to the MLP-ANN can either be the
actual ones y or their predicted version ŷ, depending on
whether the NARX-ANN is operated in open-loop or closed-
loop, respectively [23]. This latter is displayed in Fig. 1 and
considered herein.

The static input-output relation describing the behavior of
the NARX-ANN in open-loop is

ŷ(k)= F [u(k), . . . ,u(k−n), y(k−1), . . . , y(k−m) ] (1)

where ŷ(k) is the predicted vector of the outputs at the
k-th instant, u(·) and y(·) are the input and output vectors,
respectively, n and m are the input and output delays, respec-
tively, and F(·) is the non-linear function implemented by the
MLP-ANN. The equation that describes the behavior of the
NARX-ANN in closed-loop operation is

ŷ(k) = F
[
u(k), . . . ,u(k−n), ŷ(k−1), . . . , ŷ(k−m)

]
(2)

where the predicted output ŷ(k) is a function of the input vec-
tor u(·) and its own predicted outputs ŷ, ignoring the previous
outputs of the system y(·). Remarkably, the non-linear map-
ping function F(·) is initially unknown and is approximated
during the training process.

In the methodology proposed here, the open-loop config-
uration is considered during the training processes fed by
the inputs u(·) and the actual outputs y(·). Then, the error
obtained from the comparison between the actual output and
the predicted one is used to update the network weights. After
the training of the ANN in the open-loop configuration, the
predicted output is fed back to the ANN, thus forming a
closed-loop architecture.

III. TEST CASE: BOOST CONVERTER
The approach outlined in the previous section is now demon-
strated considering the modeling of a boost converter, dis-
played in Fig. 2. In the presented theoretical framework
the load current is modeled using a current source. This
choice preserves the generality of the presented results, as the
NARX-ANN is trained to discern the relationship between
the inputs and the outputs. In fact, the proposed methodology
was also successfully verified and validated considering a
variable resistive load at the converter output.

A. DESIGN OF THE NARX-ANN
In a black-box modeling approach, only the input and output
terminals of a system are available for observation; in this

case, they are iIN , VIN , iO, and vO. Furthermore, when the
converter operates in an open-loop configuration, there is also
a control terminal, usually represented by the duty-cycle δ.
In the following, the input voltage VIN is considered fixed
while the duty-cycle and the output current iO are considered
as inputs. The duty-cycle allows the control of the converter
output, while the output current accounts for a variable exter-
nal load. Finally, the considered outputs are the input current
(i.e., the inductor current iL for the considered topology)
and output voltage vO. If needed, the model can be easily
extended to include the input voltage VIN as an additional
input variable.

The input to the MLP-ANN, that is, the argument of F(·),
is composed of the elements

δ(k), . . . , δ(k − n),

iO(k), . . . , iO(k − n),

iL(k − 1), . . . , iL(k − m),

vO(k − 1), . . . , vO(k − m), (3)

while the MLP-ANN gives as output

iL(k)

vO(k) (4)

The complexity of a NARX-ANN, in addition to the num-
ber of layers and neurons, is also given by the number of
delays applied to the exogenous inputs and the outputs, that is,
the sum of (n+ 1) ·Nu with m ·Ny, respectively. Considering
a second-order system, it can be described by a state update
equation that includes state variables delayed up to two steps
and input variables delayed up to one. On this basis, consid-
ering a second-order system to be modeled, m is set equal
to 2 while n is set to 1, to retain and feed the MLP-ANN
with the information related to all the produced outputs and
exogenous inputs and their potentially relevant past values.
Additional tests were carried out to verify the operation of the
network with a greater number of delays, but no significant
improvements were recorded.

The NARX-ANN is developed using the library Tensor-
flow 2.8 on Python, and the training phase is carried out in an
NVIDIA GeForce RTX 3070 Ti.

Accuracy evaluations of the proposed method are per-
formed, on the test-set, by calculating the normalized root
mean square error (RMSE) and reported as a percentage using

RMSEi =

√
1
K

∑K
k=1

(
iL,k − îL,k

)2
inomO

· 100(%)

RMSEv =

√
1
K

∑K
k=1

(
vO,k − v̂O,k

)2
VIN

· 100(%) (5)

where iL,k and vO,k are the true values of iL and vO at the
k-th instant, îL,k and v̂O,k are the estimated values, and K is
the number of samples. The current inomO is the nominal (i.e.,
maximum) output current.
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FIGURE 1. Closed-loop configuration of NARX-ANN model.

FIGURE 2. Schematic of the boost converter.

TABLE 1. Boost converter parameters.

B. DATASET DEFINITION
The validity of the proposed solution is first verified by sim-
ulation. The boost converter shown in Fig. 2 is implemented
in Matlab/Simulink and exploited to generate the required
dataset. Aiming at an average model, the switching frequency
components on iL , vO, and iO can be disregarded by using,
for example, a moving average filter with window-length
Tma multiple of the switching period Tsw. In our case, Tma
is 100 µs and the sampling frequency is 10 kHz. Converter’s
parameters are listed in Table 1.
To address the problem analyzed in this paper, the dataset

must be designed to include information on both static and
dynamic conditions in several operating conditions.

For linear systems, the ac-sweep test is a commonly used
identification method in power electronics. For example,
a method for measuring the loop gain frequency response
experimentally through an ac-sweep test is presented in [24].
In [25], the small-signal frequency response is obtained by
applying Fourier analysis on the impulse response using a
pseudo-random binary signal as an approximation of the
white noise. Using this method, the required time for char-
acterization is drastically reduced in comparison to the
conventional ac-sweep. Another method for fast character-
ization of the control-to-output frequency response is the
use of a multi-sine excitation in combination with Fourier
analysis [26].

Nevertheless, EPCs are non-linear systems as the relation-
ships between input and output variables, in general, vary
with the operating point.When themodel is aimed to describe
the converter over its whole operating range, it is necessary to
consider that classical small-signal analysis is not sufficient,
because its validity is only local, at a specific operating point.
Therefore, previous approaches are in general valid for linear
or linearised systems at a specific operating point but not for
large-signal analyses.

To address these issues, a systematic analysis of the type
of dataset to be used for the training is carried out in order
to evaluate the impact on the ANN performance. The signal
employed to construct the dataset is sourced from the signal
presented in [27], which has been previously utilized for the
identification of non-linear dynamic systems as described
in [20]. The signal used for constructing the dataset is com-
posed of a sequence of square waves, which enables the
identification of the system’s behavior in steady state and,
due to the step changes in the input signal, also allows for
the examination of the dynamic behavior between different
operating points.
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FIGURE 3. Comparison between the spectra, computed on the entire
dataset, for the input signal iO and the output signal vO.

The number of operating points used to train the network
depends on the problem at hand and the accuracy required.
For the design of the dataset, 100 random duty-cycle δ values
and 750 for the output current iO were chosen, generating a
dataset with a total number of 75,000 operating conditions.
Afterward, they were divided into training (80%), validation
(10%), and testing (10%).

The characteristics of the datasets are reported as follows:
i. Step signals: The system is stimulated by staircase

waves. Each operating point is applied for a fixed
amount of time that depends on the dynamic of the
systems, in this case 2ms.

ii. Step signals with superimposed chirp waves: In addi-
tion to the staircase stimulus, a chirp signal with a
frequency spanning from 1 to 5 kHz and an amplitude
between 1% and 4% for the δ and 80mA and 120mA
for the iO is applied to the system. The staircase waves
are applied for a longer amount of time, equal to 10ms.

iii. Step signals with white noise: The white noise is added
to the input staircase waves using a Simulink block
named Band-Limited white noise with a power spec-
trum density of −92 dB for the δ and −57 dB for the iO
with a sampling frequency of 50 kHz. Each operating
point is applied for 2ms. The contribution of the white
noise to the iO and vO spectra is shown in Fig. 3.
Notably, the spectrum at high frequencies is richer, with
a negligible effect at low frequencies.

The hyperparameters of the NARX-ANN are chosen using
a manual research algorithm, aiming at a trade-off between
accuracy and amount of time required for the training. The
parameters used are reported in Table 2. During the devel-
opment phase, a thorough examination of several activation
functions frequently used in ANN models was conducted.
The activation functions evaluated included sigmoid, ReLU,
and hyperbolic tangent. The examination revealed that the
use of sigmoid activation function for the inner layers of the
NARX-ANN results in optimal performance in terms of error
and they are reported in Table 3.
The architecture of the ANN is kept constant for the three

tests in order to avoid biases given by different combinations
of hyperparameters. The performances of each dataset are
evaluated in both time and frequency domains. In the time
domain, the accuracy is computed using (5). Instead, for the
frequency domain, the RMSE and the standard deviation of
the magnitude of selected representative transfer functions
are evaluated in four cases:

TABLE 2. NARX-ANN hyperparameters of simulation test.

TABLE 3. Time domain performance with different activation functions
using step signals. The normalized RMSE is reported for each
combination. Colors indicate best (green) and worst (red) indices.

TABLE 4. Time domain performance with different datasets, normalized
RMSE reported for each combination.

TABLE 5. Frequency domain performance with different datasets, RMSE
and standard deviation (in brackets) are reported for each combination.

1) DCM: Gio,il - Gio,vo with δ = 30% and iO = 1A,
2) DCM: Gδ,il - Gδ,vo with δ = 20% and iO = 0.9A,
3) CCM: Gδ,il - Gδ,vo with δ = 20% and iO = 2A,
4) CCM: Gδ,il - Gδ,vo with δ = 15% and iO = 2.25A,

where the transfer function Gx,y is such that Gx,y(s) =

y(s)/x(s). The comparison is carried out between 3Hz and
the Nyquist frequency of 5 kHz.
The obtained results are summarized in Table 4 and

Table 5, for the time and the frequency domain, respectively.
Notably, the dataset with step signals shows the best overall

performances in time domain for both the output signals.
It was observed that the ANN fails to predict the output of
the system when it is exposed to fast variations in the input
signals during the steady-state phase. This issue is more pro-
nounced in the dataset that utilizes chirp signals, as opposed
to the dataset that utilizes noise, thus explaining the lower
error observed in the latter dataset.
Instead, in the frequency domain, the dataset with a

richer spectrum shows best performances in terms of RMSE
and standard deviation. The errors at operating point 1 are
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FIGURE 4. Effect on the RMSE dataset reduction, for the inductor current
iL and output voltage vO.

generally higher than at other points because the converter
operates in DCM and, therefore, has a transfer function
that varies significantly depending on the operating point,
which is not the case in CCM. Additionally, as the operating
point is highly dependent on the value of the output current
iO, even small variations in iO result in fluctuations in the
operating point, leading to a more complex identification
process.

Since negligible differences are observed by the use of the
three different datasets in the frequency domain, the dataset
with step signals is used for the next evaluations.

C. DATASET REDUCTION
This section discusses the performance of the NARX-ANN,
in terms of normalized RMSE computed in the test-set,
depending on the number of points in the dataset.

The starting dataset of 75,000 points of operation is grad-
ually reduced, to 10% (i.e., 7,500 points) of its initial size,
by removing points by random choices. The ANN architec-
ture and the partition of the dataset into training, validation,
and testing are kept unchanged (see Table 2). The calculation
of errors is done on the test-sets produced after each reduction
step.

The findings presented in Fig. 4 indicate that the reduction
of operating points within the dataset has a notable impact
on the error of iL and vO. However, it is noteworthy that
up to a reduction rate of 60%, the error in these parameters
remains almost constant. Therefore, it can be inferred from
the results that there is no definitive dataset size, but rather
the appropriate size is contingent upon the desired level of
accuracy in accordance with the specific application at hand.

D. SIMULATION RESULTS
The NARX-ANN is evaluated in the time domain first.
To visualize the performance of the model, the normalized
RMSE is computed on the test-set obtaining an error of 0.77%
for the current iL and 0.18% for the voltage vO.

Furthermore, in order to demonstrate the performance of
the ANN in estimating the behavior of the boost converter
in both DCM and CCM operation, a small set of operating
points in DCM and CCM are chosen from the test-set and
evaluated in Fig. 5(a) for DCM operation and in Fig. 5(b) for
CCM operation.

As visible in Fig. 5, the ANN is able to accurately estimate
the inductor current iL and the output voltage vO in both con-
verter operating modes, even during transitions between two
working points, as shown in Fig. 6. The obtained results show

FIGURE 5. ANN predictions iL, vO confronted with the simulation model
outputs for the boost converter. From top to bottom: input signals δ, iO,
output signals iL, vO.

FIGURE 6. Transition of the iL and vO between two operating points in
CCM operation.

comparable accuracy with those obtained by the black-box
modeling in [6], discussed in Section I. To further improve
the accuracy of the network and fit the requirements of spe-
cific applications, the dataset may be adjusted as mentioned
in Section III-D.

In order to verify the stability of the NARX-ANN model
performance throughout the operation domain, an additional
analysis is conducted in Fig. 7. Within the training region,
50 values are defined for duty-cycle and current, which,
combined, result in 2,500 operating points. Each operating
point is applied to the simulation model and the NARX-ANN
in order to evaluate the error during the steady-state phase.
Then, a step change of the input variables, equal to 10%
of the initial value, is applied to assess the behavior of the
NARX-ANN during the transient phase.

Two metrics are employed to evaluate the model perfor-
mance: the maximum absolute value of the error with respect
to the nominal current inomO , in Fig. 7(a)-(b), and the nor-
malized RMSE, in Fig. 7(c)-(d). For better legibility, errors
greater than 4% are saturated. Themaximum recorded error is
14%.As illustrated, the proposedmodel exhibits a limited and
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FIGURE 7. Error distribution in the operation domain. (a)-(b) maximum
error values; (c)-(d) normalized RMSE.

consistent error throughout the operation domain, with errors
comparable with those computed in the test-set. The most
challenging operating point is represented by the minimum
current andmaximum duty-cycle values. This is a limited part
of the DCM operating region and, due to the step changes in
the input signals, the converter operates with output voltages
higher than themaximum value for which the ANN is trained.

To show the performance of the NARX-ANN in modeling
the small-signal behavior of an EPC, a transfer function
for each operating mode is shown in Fig. 8. The transfer
functions are obtained over a total of 20 points between 3Hz
and the Nyquist frequency of 5 kHz.

In general, the small-signal analysis obtained by
NARX-ANN shows a good correlation with the expected
results and an error that increases as the Nyquist frequency is
approached. The increased deviation observed approaching
the Nyquist frequency can be attributed to the nature of the
signals utilized to generate the dataset. As the dataset is con-
stituted of a sequence of stepped signals, the power of these
signals decreases inversely proportional to the frequency,
resulting in a lower energy contribution of the signals at the
Nyquist frequency.

NARX-ANN also presents similar results for other work-
ing points that have not been reported in Fig. 8.

IV. TEST CASE: ĆUK CONVERTER
To verify the generality of the proposed approach, a fourth-
order Ćuk converter is considered in this section. The Ćuk
parameters are reported in Table 6 and the schematic in Fig. 9.
Aiming at black-box modeling, only the input and output

variables are assumed to be available. Also in this case,
the duty-cycle δ and the output current iO are excited using
staircase waves. The output variables are the input current iIN
and the output voltage vO.
The features of the dataset and the architecture of the

ANN are the same considered in the previous sections, with

FIGURE 8. Comparison of frequency responses between simulation
model and ANN for different operating points. (a) DCM: Gδ,v0

with
δ = 30% and iO = 1 A. (b) CCM: Gδ,il

with δ = 20% and iO = 2 A. The
black dotted lines denotes the Nyquist frequency.

TABLE 6. Ćuk converter parameters.

FIGURE 9. Schematic of the Ćuk converter.

unchanged assumptions for the normalization. Each operat-
ing point is applied for 10ms, the moving average is per-
formed over a window of 50µs and the sampling frequency
is 20 kHz.
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FIGURE 10. ANN predictions iIN , vO confronted with the simulation
model outputs for the Ćuk converter. From top to bottom: input signals δ,
iO, output signals iIN , vO.

FIGURE 11. Comparison of frequency responses of Gδ,iin
between

simulation modeling and ANN in CCM with δ = 20% and iO = 1.8 A for
the Ćuk converter.

Since the Ćuk converter is a fourth-order system, the num-
ber of delays for the inputs is set to n = 3while for the outputs
it is set to m = 4.

The resulting ANN has 1,767 parameters, the training
time is 10,800 s and the normalized RMSE computed on
the test-set is 0.8% for the current iIN and 0.69% for the
output voltage vO. The simulation results in the time domain
are shown in Fig. 10 in DCM and CCM, while in Fig. 11,
the performance of the NARX-ANN is verified in frequency
domain only in a CCM operating point between 3Hz and the
Nyquist frequency of 10 kHz. Similar results are obtained for
different working points.

V. EXPERIMENTAL RESULTS
To verify the performance of the proposed approach using
experimental data, the prototype of Fig. 12 is used. The

FIGURE 12. Experimental architecture: (a) the schematic of the boost
converter and the current-controlled current source; (b) the experimental
setup.

FIGURE 13. Experimental results reporting the input signals δ and iO,
in the top-half, and the comparison between the output signals iL, vO
provided by the converter model and the predictions provided by the
ANN trained using experimental measurements, in the bottom-half.

converter has the same parameters used in the simulation
model and reported in Table 1.
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FIGURE 14. Transition of the iL and vO between two operating points in
CCM operation using experimental data.

FIGURE 15. Comparison of frequency responses between experimental
modeling and ANN for different operating points. (a) DCM: Gδ,v0

with
δ = 30% and iO = 1 A (b) CCM: Gδ,il

with δ = 20% and iO = 2 A. The black
dotted lines denotes the Nyquist frequency.

The output current source in Fig. 2 is replaced with a
current-controlled half-bridge converter switching at 50 kHz
connected to an active load in a constant-voltage mode at
VDC = 380V. In this case, each of the 75,000 operating
points is applied for 10ms. This time is longer than the one
adopted in the simulation verification to cope with the settling
time of the current-controlled load. Both power converters
are implemented on a laboratory rapid prototyping system
embedding an Imperix B-Board as digital controller.

As shown in Fig. 12(a), four variables are acquired using
the cRIO FPGA environment by National Instruments, with a
sampling frequency of 10 kHz. The filtering and acquisition
of variables are carried out using the same methodology as
described in the simulation part.

The hyperparameters of the ANN are the same used for
the experimental results shown in Table 2. In this case, the

time required by the training phase is 8,500 s for a number of
epochs equal to 3,201.

In Fig. 13 the response of theNARX-ANN, trainedwith the
experimental dataset, is evaluated versus the true output of
the system. While Fig. 14 shows a zoom-in of Fig. 13 during
the change of operating point for current iL and voltage vO in
CCM.

As for the simulation tests, the comparison between the
experimental frequency response and the one obtained using
the ANN model is provided in Fig. 15. Despite of the noise
present in the experimental measurements, the conclusions
drawn considering the simulation tests keep valid. The nor-
malized RMSE on the experimental test-set is 2.46% for iL
and 0.65% for vO.

VI. CONCLUSION
An approach based on the application of a NARX-ANN
for the black-box average modeling of open-loop dc-dc
converters is presented. The paper addresses several chal-
lenges and design criteria for model derivation, including
i) NARX-ANN design, ii) derivation of the dataset, iii) model
verification. The proposed modeling has been demonstrated
considering a boost converter and a Ćuk converter. In both
cases, the results showed good accuracy in the time domain,
considering input step variations, and in the frequency
domain, considering small-signal transfer functions. Exper-
imental results were presented for the dc-dc boost converters
to verify the validity of the proposed approach. Several chal-
lenges have been outlined; the main ones can be summarized
as i) need of a large number of operating conditions, ii) need
of applying a heuristic tuning of some parameters during
the ANN training, iii) presence of noise in the experimental
setup. Prospective future research developments may include
the modeling of digitally controlled systems, the modeling of
dc/ac converters like grid-tied inverters, and the exploration
of other potentially valuable AI methods, like recursive net-
works, for the modeling of dynamic non-linear systems.
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