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Abstract: Among multiple cytoprotective mechanisms, eukaryotic cells exhibit a complex transcrip-
tional program relying on the Nrf2 transcription factor, which is generally recruited upon biological
stressors including oxidative-stress-based cellular insults. The relevance of this master regulator has
remarkably emerged in recent years in several research fields such as cancer, inflammatory disorders
and age-related neurological diseases. Here, we document the generation and characterization of
a novel Nrf2/ARE pathway biosensor fish which exhibits a dynamic spatiotemporal expression
profile during the early developmental stages. The transgenic line is responsive to known Nrf2
pathway modulators but also to Edaravone, which direct activity on the Nrf2 pathway has never been
documented in a live transgenic fish model. We also show that the reporter is faithfully activated
during fin regeneration, and its degree of expression is slightly affected in a glucocerebrosidase (Gba1)
morphant zebrafish model. Therefore, this novel transgenic fish may represent a valuable tool to
be exploited for the characterization of zebrafish models of human diseases, as well as for primary
high-throughput drug screening.
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1. Introduction

During their life, cells experience many potential mechanical, physical and chemical
insults that may undermine their survival eventually leading to death. In multicellular
organisms, oxidative stress, which is induced by metabolic and environmental agents, ex-
poses cells to potentially progressive damage that often results in the onset of inflammation.
Particularly, the chronic loss of cellular redox balance underlies the dysregulation of the
immune system and the activation of pro-inflammatory cascades [1]. In non-pathological
conditions, cells under oxidative stress react by inducing an antioxidant response that is able
to rebalance their redox state and prevent the detrimental effects of reactive oxygen species
(ROS). One master regulator of this antioxidant response is the nuclear factor erythroid
2-related factor 2 (NRF2), which was discovered in 1994 [2]. Under basal physiological
conditions, NRF2 is kept at low levels due to its ubiquitination and degradation mediated
by Kelch-like ECH-associated protein 1 (KEAP1), an adaptor component of a Cullin3-based
ubiquitin E3 ligase complex [3]. In an unbalanced cellular redox state, when ROS levels
are overproduced, NRF2 detaches from KEAP1 and translocates into the nucleus, where
it heterodimerizes with one of the small musculoaponeurotic fibrosarcoma (MAF) onco-
gene homolog proteins, forming a transcriptional complex. This multi-protein complex
is able to bind target responsive elements (called AREs, antioxidant response elements)
in the regulatory regions of genes coding for proteins involved in redox balancing, cell
metabolism, detoxification, stress response and iron metabolism [4]. Since their discovery
in late 1980s, ARE sequences have been exploited for the generation of reporter constructs
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and in vitro/in vivo detection of oxidative stress induction [5–8], as well as for performing
analyses of the Nrf2/ARE pathway modulation in pathological conditions [9,10]. Since
then, no other novel in vivo Nrf2/ARE reporter transgenic systems have been created. In
this work, we describe the development and characterization of a new Nrf2/ARE reporter
transgenic zebrafish line. We provide a description of its early developmental expression
pattern and faithful responsiveness to known Nrf2 pathway modulators (agonists and
antagonists), including the recently approved FDA drugs Omaveloxolone (RTA-408) and
Edaravone (MCI-186). We also demonstrate, in agreement with results from a previous
investigation [11], that the reporter expression levels are slightly dysregulated in a Gba1
morphant zebrafish model. Using a fin amputation model, we finally provide evidence
that reporter activation is triggered upon injury, suggesting its potential application for
regeneration studies.

2. Results

2.1. Dynamic Spatiotemporal Reporter Expression in the Transgenic Line Tg(8XAORE:EGFP)ia201

While searching for candidate Nrf2/ARE-responsive elements in the promoter of
zebrafish genes and according to previously reported predicted consensus sequences [5],
we noticed that the TGAG/CNNNGC sequence was shared among ARE elements of
Homo sapiens, Mus musculus and Danio rerio. We therefore assumed that a previously
published Nrf2 reporter system, which harbors eight tandem repeated ARE sequences
(5′-GTGACAAAGCA-3′) derived from the mouse and rat Glutathione-S-Transferase Alpha
(Gsta) promoters [6], could also be used in zebrafish. We isolated the eight cis-elements
from the original plasmid pGL3-8xARE and cloned them into the 5′entry vector of the
Tol2 toolkit [12]. After R4/R3 recombination with an EGFP-carrying middle entry vector,
a polyA-SV40 3′ entry vector and the Tol2pA destination vector, we microinjected the final
destination pDest(8xAORE:EGFP) vector into one-cell-stage embryos. Several independent
founders were identified from the offspring obtained by outcrossing the microinjected
fish with wild-type mates. All the offspring derived from different founders displayed
a comparable fluorescence in the same body areas, ruling out potential genomic positional
and variegation effects. In stable Tg(8xAORE:EGFP)ia201 fish, fluorescence was barely
detectable in the earliest developmental stages (from 8 to 20 h post fertilization, hpf), while
from 24 hpf, discrete fluorescent regions were discernible in several body areas including
eyes, brain, and notochord (Figure 1A-C). At 48 hpf, novel fluorescent domains were
detectable, such as lens (Figure 1E, white arrow), dendritic cells of the skin, trunk blood
vessels and the caudal hematopoietic tissue (CHT; Figure 1F, white arrowhead). Using
confocal microscopy reconstructions of 120 hpf larvae, we were able to locate several
fluorescent positive neuromasts (nm, small inset on the bottom of Figure 1G), fluorescent
protrusion-bearing cells in the brain (Figure 1H, small inset on the top, and Video S1).
A strong fluorescence was also traceable in the gut regions, in muscle fibers along the
trunk and in more caudal regions (Figure 1J). At 7 days post-fertilization (dpf), we also
detected reporter fluorescence in motoneurons and in the heart and an increased number
of fluorescent muscle fibers along the trunk (Figure S1 and Video S2). Therefore, we
could conclude that in our novel transgenic line Tg(8xAORE:EGFP)ia201, shortly designated
Nrf2/ARE, reporter activity is dynamically detectable in several tissues and cell populations
during the first developmental stages.
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Figure 1. Dynamic spatiotemporal reporter expression in the Nrf2/ARE transgenic line. (A) 

Whole-mount fluorescence microscopy of a Tg(8xAORE:EGFP)ia201 larva 24 hpf, showing the 

widespread expression of reporter-expressing cells in both cephalic and more caudal regions. (B, C) 

Confocal Z-stack projection of the cephalic area (B) and trunk region (C) of a 24 hpf transgenic larva 

in which strong fluorescent cells are detectable in the brain, eye and notochord. (D) Whole-mount 

fluorescence microscopy of a 48 hpf Tg(8xAORE:EGFP)ia201 larva, showing the prolonged expres-

sion of the reporter in the cephalic and trunk regions. (E,F) Confocal Z-stack projection of the ce-

phalic area (E) and trunk regions (F) of the same 48 hpf transgenic larva exhibiting novel expression 

domains in the lens and inner eye (white arrow) and the caudal hematopoietic tissue (CHT) (white 

arrowhead). (G–J) Confocal Z-stack projection of the cephalic area (G-H) and trunk regions (I-J) of a 

120 hpf transgenic larva showing fluorescent neuromasts (nm) and protrusion-carrying brain cells 

(small inset in H), as well as muscle fibers along the trunk (I,J). All images are lateral views with 

anterior to the left. Scale bar in (A,D): 500 μm; in (B, C, E, F) and (G–J): 100 μm. 

2.2. The Tg(8xAORE:EGFP)ia201 Line Is Responsive to Nrf2 Pathway Modulators 

To verify whether the newly generated transgenic line is a bona fide Nrf2 pathway 

reporter, we performed several pharmacological tests based on the administration of 

well-known Nrf2 pathway agonists and antagonists. Toward this aim, we provided 8 hpf 

transgenic larvae with RTA-408 (Omaveloxone), a semi-synthetic oleanane triterpenoid 

with anti-inflammatory activity and pro-regenerative potential that is currently under 

clinical investigation in phase II clinical trials [13,14]. We also treated age-matched larvae 

at 8 hpf with the quassinoid Brusatol, which is isolated from the Brucea javanica plant and 

exhibits a sensitizing effect of cancer cells to chemotherapeutic drugs [15].  

As shown in Figure 2A,B, the Nrf2 transgenic reporter fish demonstrated increased 

and decreased fluorescence after treatment with the RTA-408 and Brusatol, respectively. 

The effects of these two drugs were also consistently maintained after 24 and 48 hours of 

treatment, although differences were less evident (Figure S2A,B). We also tested the 

known Nrf2 agonist dimethyl fumarate (DMF) [16] in 24 hpf transgenic larvae for 24 h 

and observed increased reporter activity in all treated fish (Figure S3A). We then pro-

vided 8 hpf reporter fish with the small molecule ML-385, which inhibits Nrf2 DNA 

binding [17], but we found that ML-385 inconsistently reduced reporter activity in the 

treated fish. Collectively, according to these data, we could conclude that the 

Tg(8xAORE:EGFP)ia201 line is sensitive to some of the well-known Nrf2 pathway agonists 

Figure 1. Dynamic spatiotemporal reporter expression in the Nrf2/ARE transgenic line. (A) Whole-
mount fluorescence microscopy of a Tg(8xAORE:EGFP)ia201 larva 24 hpf, showing the widespread
expression of reporter-expressing cells in both cephalic and more caudal regions. (B,C) Confo-
cal Z-stack projection of the cephalic area (B) and trunk region (C) of a 24 hpf transgenic larva
in which strong fluorescent cells are detectable in the brain, eye and notochord. (D) Whole-
mount fluorescence microscopy of a 48 hpf Tg(8xAORE:EGFP)ia201 larva, showing the prolonged
expression of the reporter in the cephalic and trunk regions. (E,F) Confocal Z-stack projection
of the cephalic area (E) and trunk regions (F) of the same 48 hpf transgenic larva exhibiting
novel expression domains in the lens and inner eye (white arrow) and the caudal hematopoi-
etic tissue (CHT) (white arrowhead). (G–J) Confocal Z-stack projection of the cephalic area (G,H)
and trunk regions (I,J) of a 120 hpf transgenic larva showing fluorescent neuromasts (nm) and
protrusion-carrying brain cells (small inset in H), as well as muscle fibers along the trunk (I,J). All
images are lateral views with anterior to the left. Scale bar in (A,D): 500 µm; in (B,C,E,F) and
(G–J): 100 µm.

2.2. The Tg(8xAORE:EGFP)ia201 Line Is Responsive to Nrf2 Pathway Modulators

To verify whether the newly generated transgenic line is a bona fide Nrf2 pathway
reporter, we performed several pharmacological tests based on the administration of well-
known Nrf2 pathway agonists and antagonists. Toward this aim, we provided 8 hpf
transgenic larvae with RTA-408 (Omaveloxone), a semi-synthetic oleanane triterpenoid
with anti-inflammatory activity and pro-regenerative potential that is currently under
clinical investigation in phase II clinical trials [13,14]. We also treated age-matched larvae
at 8 hpf with the quassinoid Brusatol, which is isolated from the Brucea javanica plant and
exhibits a sensitizing effect of cancer cells to chemotherapeutic drugs [15].

As shown in Figure 2A,B, the Nrf2 transgenic reporter fish demonstrated increased
and decreased fluorescence after treatment with the RTA-408 and Brusatol, respectively. The
effects of these two drugs were also consistently maintained after 24 and 48 h of treatment,
although differences were less evident (Figure S2A,B). We also tested the known Nrf2
agonist dimethyl fumarate (DMF) [16] in 24 hpf transgenic larvae for 24 h and observed
increased reporter activity in all treated fish (Figure S3A). We then provided 8 hpf reporter
fish with the small molecule ML-385, which inhibits Nrf2 DNA binding [17], but we
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found that ML-385 inconsistently reduced reporter activity in the treated fish. Collectively,
according to these data, we could conclude that the Tg(8xAORE:EGFP)ia201 line is sensitive
to some of the well-known Nrf2 pathway agonists and antagonists, and the changes
induced by these drugs are coherent with its function as a potential Nrf2 pathway readout.
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S4B). Therefore, we could infer that Nrf2 reporter fish are sensitive to drug manipulation 

to a different extent according to the small molecule used and the treatment duration.  

Figure 2. Pharmacological validation of Nrf2/ARE reporter fish. (A) Whole-mount bright field
and fluorescence microscopy acquisition of a 24 hpf transgenic larva treated with DMSO and the
Nrf2 pathway agonist, RTA-408, for 16 h. A significant increase in fluorescent cells is detected in
RTA-408-treated larvae when compared to DMSO-treated fish. (B) Whole-mount bright field and
fluorescence microscopy acquisition of a 24 hpf transgenic larva treated with DMSO and the Nrf2
pathway antagonist, Brusatol, for 16 h. A visible decrease in reporter fluorescent intensity is visible
in Brusatol-treated larvae. All images are lateral views with anterior to the left. The magnifications
of the trunk regions are confocal Z-stack acquisitions. The graphs reported on the right depict the
ImageJ-based quantification of the selected trunk region of 5 independently treated fish (* p < 0.05;
** p < 0.005, t-test). Scale bars in the panels with multiple fish: 500 µm; scale bars on the panels with
a single magnified larva: 100 µm.

2.3. The Nrf2 Reporter Transgenics Serve as a Platform for the Identification of Nrf2
Pathway-Mediated Biological Activity of Small Molecules

To assess whether the Nrf2 reporter line could be exploited for the detection of Nrf2
pathway modulation by additional small molecules, we provided the transgenic fish with
the known radical scavenger Edaravone (MCI-186), which has been already shown to
dampen the progression of amyotrophic lateral sclerosis (ALS) and exert antioxidant effects
in asthma and cerebral infarction through the Nrf2 pathway [18,19]. By treating 8 hpf
fish for 16 h (Figure 3A) or 48 h (Figure S4A), we detected a mean 1.4-fold increase of
fluorescence, with a particular evident increase in the eye and gut and ectopic expression of
the reporter EGFP. We also treated 8 hpf transgenic fish with the Glycogen Synthase Kinase
3 Beta (GSK3β) inhibitor CHIR99021 for 16 h (Figure 3B) and observed a mean 1.7-fold
reporter activity increase at 24 hpf, although we measured an inter-individual variability in
fluorescence and no evident differences at 48 hpf (Figure S4B). Therefore, we could infer
that Nrf2 reporter fish are sensitive to drug manipulation to a different extent according to
the small molecule used and the treatment duration.
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Figure 3. Pharmacological testing of Nrf2/ARE reporter fish. (A) Whole-mount bright field and
fluorescence microscopy acquisition of 48 hpf transgenic larvae treated with DMSO or the radical
scavenger Edaravone for 24 h. An evident increase in fluorescence is detected in the eye (e) and gut
(g) of Edaravone-treated larvae when compared to DMSO-treated control fish. (B) Whole-mount
bright field and fluorescence microscopy acquisition of 24 hpf transgenic larvae treated with DMSO or
the GSK3β antagonist, CHIR99021, for 16 h. Increased reporter fluorescence is observed throughout
the whole larvae when compared to the DMSO-treated control fish. The magnifications of the trunk
regions are confocal Z-stack acquisitions. The graphs reported on the right depict the ImageJ-based
quantification of the selected trunk region of 5 independent treated fish. (* p < 0.05, t-test) All images
are lateral views with anterior to the left. Scale bars in the panels with multiple fish: 500 µm; scale
bars on the panels with a single magnified larva: 100 µm.

2.4. Beta Glucocerebrosidase Knockdown Does Not Significantly Affect Nrf2 Reporter Activation
but Induces the Upregulation of a Restricted Number of Nrf2 Target Genes

We previously reported that the knockdown of Gba1 with antisense morpholinos
induces an early oxidative stress response in zebrafish larvae [11]. To verify whether
the Nrf2/ARE pathway could be modulated by Gba1 knockdown, we microinjected the
previously used Gba1 morpholino in one-cell stage Tg(8xAORE:EGFP)ia201 embryos and
performed confocal microscopy analyses on the morphants and age-matched controls. As
shown in Figure 4A, we observed a variable degree of ectopic expression of the reporter
transgene in 36 hpf morphants. We then performed a quantitative analysis of the reporter
(EGFP) and the known Nrf2 target genes’ mRNAs in microinjected fish and age-matched
controls via RQ-PCR (Figure 4B). While we could identify an apparent increase in mor-
phants for all tested markers, we measured only a significant difference for the nitric oxidase
(nqo1) and ferritin heavy polypeptide 1a (fth1a) mRNAs in morphants when compared to
age-matched controls. Therefore, we could conclude that while Gba1 knockdown was not
able to substantially increase the Nrf2/ARE reporter activation, it significantly induced the
expression of a restricted number of Nrf2 pathway-related target genes.
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measured in morphant and control fish RNA extracts. Data are mean ± SD of three independent 

biological replicates (each replicate consists of ten larvae per condition; * p < 0.05; t-test). 

2.5. Nrf2/ARE Pathway Is Induced upon Fin Amputation 

Considering the role of antioxidant response during larval fish fin amputation [20] 

and since the Nrf2/ARE pathway has been shown to play a key role during diabetic 

wound regeneration [21], we tested whether fin amputation in Tg(8XAORE:EGFP)ia201 

larvae could affect reporter expression. Toward this aim, we performed fin amputation in 

3 dpf and 6 dpf transgenic larvae and monitored reporter activity changes by confocal 

microscopy. As shown in Figure 5, after 24 h post amputation (hpa) we could detect in-

creased reporter activity in the wounded area, with protrusion-bearing fluorescent cells 

lining or moving along the amputated region. During a time-lapse recording, the same 

cells interacted by their protrusions (FigureS5 and Video S3). By performing the same fin 

clipping in double Tg(mpeg:mCherry)ump2/Tg(8XAORE:EGFP)ia201 fish and in double 

Tg(LysC: DsRED)nz50/Tg(8XAORE:EGFP)ia201, we were able to rule out that the same fluo-

rescent cells were macrophages (Figure S6). Therefore, we could conclude that fin am-

Figure 4. Beta glucocerebrosidase knockdown does not significantly increase Nrf2/ARE reporter
expression but does induce the upregulation of Nrf2-pathway-related targets. (A) Confocal Z-stack
projections of 30 hpf control and Gba1 morphant fish, showing increased reporter expression in both
cephalic and caudal regions of morphants. For comparison, three different morphant and control fish
are depicted. All images are lateral view with anterior to the left. Scale bar: 100 µm. (B) Bar graphs
showing the quantitative EGFP reporter and Nrf2 pathway-related genes expression measured in
morphant and control fish RNA extracts. Data are mean ± SD of three independent biological
replicates (each replicate consists of ten larvae per condition; * p < 0.05; t-test).

2.5. Nrf2/ARE Pathway Is Induced upon Fin Amputation

Considering the role of antioxidant response during larval fish fin amputation [20]
and since the Nrf2/ARE pathway has been shown to play a key role during diabetic
wound regeneration [21], we tested whether fin amputation in Tg(8XAORE:EGFP)ia201

larvae could affect reporter expression. Toward this aim, we performed fin amputation
in 3 dpf and 6 dpf transgenic larvae and monitored reporter activity changes by confocal
microscopy. As shown in Figure 5, after 24 h post amputation (hpa) we could detect
increased reporter activity in the wounded area, with protrusion-bearing fluorescent cells
lining or moving along the amputated region. During a time-lapse recording, the same cells
interacted by their protrusions (Figure S5 and Video S3). By performing the same fin clip-
ping in double Tg(mpeg:mCherry)ump2/Tg(8XAORE:EGFP)ia201 fish and in double Tg(LysC:
DsRED)nz50/Tg(8XAORE:EGFP)ia201, we were able to rule out that the same fluorescent cells
were macrophages (Figure S6). Therefore, we could conclude that fin amputation in Nrf2
transgenics increases the recruitment of reporter-expressing cells in the wounded area.
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Figure 5. Nrf2/ARE pathway activity increases in regenerating tail fins. Representative Z-stack
projection of a confocal fluorescence microscopy acquisition of unamputated and amputated tail
fin of representative 4 dpf and 7 dpf Nrf2/ARE transgenic fish after at 24 h post amputation (hpa),
showing fluorescent cells migrating along the stump (white arrowheads). Scale bar: 100 µm.

3. Discussion

When exposed to distinct biological stressors, including environmental insults and
oxidative stress, cells quickly respond with the activation of a complex cytoprotective
program based on the expression of genes involved in drug detoxification (phase I, II
and III enzymes), glutathione (GSH) metabolism and redox homeostasis [22]. Among the
potential molecular hubs of this coordinated program, the master transcription factor Nrf2
has received significant attention in the latest two decades [4].

To dynamically trace its related pathway activity (Nrf2/ARE), several tools have been
generated, including chimeric vectors that harbor a tandem array of synthetic ARE ele-
ments upstream of a luciferase coding sequence for use in vitro or in vivo analyses [6,8,23].
However, in these experimental systems, the qualitative and quantitative detection of the
Nrf2/ARE pathway activity by luciferase assays often required laborious approaches and
dedicated live imaging equipment with limited resolution. Our group and others have pre-
viously shown that live reporter zebrafish represent a valuable alternative model in which
the combination of fish optical transparency with the use of synthetic transgenes allows
for the fine tracing of target cellular pathway modulation [24,25]. In particular, we already
provided evidence that chimeric constructs containing synthetic cell-signaling responsive
elements and a minimal promoter (human, mouse or even lower-vertebrate-related) can be
integrated into the zebrafish genome, allowing for the generation of faithful and highly
sensitive transgenic reporter lines [24,26]. In this work we describe the characterization of
a novel Nrf2/ARE reporter fish line which, according to the preliminary data provided,
may represent a novel living model to detect the modulation of the Nrf2 pathway in space
and time. A previous zebrafish Nrf2/ARE reporter model exhibited limited sensitivity
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since low levels of mCherry expression could be detected only from 2 dpf [10]. Indeed,
our newly generated Nrf2/ARE reporter fish exhibit a high and tunable expression of
the reporter (EGFP) in several tissues, including the eye, brain, gut, muscle, notochord,
caudal hematopoietic tissue (CHT), heart and blood vessels, already from 24 hpf. While
for some of the reporter-expressing tissues, including the gut and CHT, the involvement
of Nrf2 pathway could be inferred from previous studies [10,27,28], the identification
of Nrf2/ARE pathway activation in the notochord and heart was unexpected. Indeed,
notochord formation is known to be finely regulated by Notch signaling [29], and ARE
elements have been found upstream of the Notch1 major transcription site [30], suggesting
that notochordal expression of the reporter may be indirectly associated to Notch signaling
developmental modulation by the Nrf2 pathway. Regarding the heart, while extensive
literature has provided evidence of the Nrf2 pathway role in cardiac remodeling [31],
a direct proof of its activation during the early developmental stages has not yet bee
provided. To establish the pharmacological responsiveness of the Nrf2/ARE transgenics,
we tested known Nrf2 pathway antagonists (ML385, Brusatol) and agonists (RTA-408),
including the fumaric acid ester dimethylfumarate [32], which was already able to induce
the activation of the reporter at an early developmental stage. We next preliminarily evalu-
ated the effects on the reporter of the small molecule CHIR99021 (Laduviglusib), a known
aminopyrimidine GSK3β inhibitor which selectively competes for the ATP binding site of
GSK3β [33]. The activation of the reporter activity by CHIR99021 may be consistent with
its inhibitory role on KEAP1-independent Nrf2 proteasomal degradation [34]. However,
the detected inter-individual variability among fish prevented us from confirming the Nrf2
reporter responsiveness to CHIR99021 treatment. We also included in our preliminarily
pharmacological tests the small molecule Edaravone, which has been recently under clin-
ical evaluation for amyotrophic lateral sclerosis (ALS) (Clinical trial:NCT04569084). The
induction of reporter activity in our transgenic line fits well with the knowledge that the
drug acts through the Nrf2 pathway by unknown mechanisms [35].

To verify whether any loss of gene function could impact the Nrf2 pathway activity,
we tested the transgenic line in a previously characterized glucocerebrosidase morphant ze-
brafish model [11]. Through previous transcriptomic analyses and assays, we demonstrated
that the Gba1 morphants exhibit increased oxidative stress induction and a significant de-
crease in gpx1b expression [11]. Increased oxidative stress with decreased Gpx1b mRNA
levels was already detected in a conditional knockout mouse model for the selenocysteine
tRNA gene [36]. Although the increase was not statistically significant for the reporter
EGFP and the target gene gclc, our data point to a likely increase in the Nrf2 pathway acti-
vation in the zebrafish Gba1 loss-of-function model. The lack of a significant quantitative
increase in the reporter EGFP might be due to the limited sensitiveness of RQ-PCRs on
RNAs derived from whole-embryo lysates. Alternatively, the extent of Nrf2/ARE pathway
modulation by Gba1 knockdown could be restricted to only few tissue domains. Further
tests will be required to confirm the former or the latter hypothesis.

We finally demonstrated that caudal fin amputation during larval stages triggers the
activation of the reporter transgene expression in the wounded area. In particular, we
observed that protrusion-carrying reporter-expressing cells were migrating and populating
the same area. Using two independent, macrophage-related transgenic lines crossed with
our reporter, we could rule out that these cells were indeed macrophages. Since the
Tg(LysC: DsRED)nz50 also labels a subpopulation of neutrophils [37], we suspect that the
protrusion-bearing cells might be a subpopulation of mature neutrophils recruited during
the regeneration process, but future investigations will enable to clarify this aspect.

In conclusion, in this work, we provide a preliminary description and characterization
of a new Nrf2/ARE transgenic model. While further extensive tests using genetic models
will be required to prove the robustness of this new reporter line, we envisage that our
novel transgenic fish will provide an alternative tool for Nrf2 pathway modulation in
high-throughput drug screenings.
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4. Materials and Methods

4.1. Generation Tg(8XAORE:EGFP)ia201 Fish

A cassette containing eight multimerized copies of the antioxidant responsive elements
(ARE) (5′-GTGACAAAGCA-3′), derived from the mouse glutathione S-transferase alpha
1 (Gsta1), was retrieved by KpnI-BglII digestion of the pGL-8XARE-lux plasmid kindly
provided by Prof. Roland Wolf (University of Dundee, Scotland). The 135 bp fragment
containing the ARE elements was next cloned into the Tol2-derived 5′-entry vector p5E-
MCS (http://tol2kit.genetics.utah.edu/index.php/P5E-MCS accessed on 16 June 2021)
digested with the KpnI-BamHI. The 8xARE-containing 5′entry vector was finally subjected
to R4-R3 recombination, together with the pME-EGFP and p3E-polyA vectors, into the final
destination vector pDestTol2pA [12].

A total of 250 pgs/embryo of Tol2 recombinant plasmid were coinjected with
350 pgs/embryo of in vitro synthesized transposase mRNA into one-cell stage zebrafish
embryos. Microinjected embryos were raised to adulthood and outcrossed with wild-type
fish. Almost 50% of the screened fish were identified as founders using an M165FCF1
dissecting microscope (Leica, Milan, Italy).

4.2. Drug Treatments

For drug screening tests, 8 hpf or 24 hpf embryos were treated for 12 and 24 h with
5 µM ML-385, 500 nM Brusatol, 10 µM dimethyl fumarate (DMF), 2 µg/mL Edaravone
(MCI-186) (Merck, Milan, Italy), 500 nM Omaveloxolone (RTA-408) (Medchemexpress, Dba,
Milan, Italy) and 5 µM CHIR99021 (Merck, Milan, Italy). The drugs were directly added
to the fish water in 24-well plates. For each treatment performed in triplicates, at least
10 embryos were used.

4.3. Morpholino Injection, RNA Extraction and RQ-PCR

Gba1 functional knockdown was obtained using the previously described morpholinos
(11). The MOs were dissolved in Danieau’s buffer (58 mM NaCl, 0.7 KCl, 0.4 mM MgSO4,
0.6 mM Ca(NO3)2 and 5 mM HEPES pH 7.6). Before the injection, MOs were denatured at
65 ◦C to avoid the formation of aggregates. Embryos at the one-cell stage were injected with
10 nl of a solution containing 12.5 ng/embryo of either targeting morpholino or its mis-
matched control. At 36 hpf, the microinjected embryos were collected and homogenized
in Trizol reagent (Thermofisher, Monza, Italy), and the total RNA was isolated using
the standard Trizol-chloroform-ethanol extraction procedure. RNA were resuspended in
20 µL of RNAse-free water. RNA sample concentrations and purity were measured by Nan-
odrop2000c (Thermofisher, Monza, Italy). A total of 2 µg of RNA was reverse-transcribed
into cDNA using a SuperScript III Reverse Transcriptase (Thermofisher, Monza, Italy),
according to standard procedures. The cDNA was subsequently subjected to SYBR Green-
based real-time PCR using a RotorGene 3000 (Qiagen, Milan, Italy) and amplified with
the oligonucleotides reported in Table S1. RT-PCR data were analyzed using a manually
set threshold, and the baseline was set automatically to obtain the threshold cycle (Ct)
value for each target. GAPDH was used as an endogenous housekeeping control gene for
normalization. Relative gene expression among samples was determined using the compar-
ative Ct method (2−∆∆Ct). Results are expressed as the mean relative expression ± SD of
three independent replicates.

4.4. Tail Fin Amputation

Fin amputations of zebrafish 3 days and 6 days post fertilization (dpf) were performed
as previously described (26). Following amputations, the fish were placed back in the fish
water, and after 4 h or 24 h post amputation (hpa), they were anesthetized with 0.03%
Tricaine and immobilized on 1.5% low-melting agarose-containing dish prior to confocal
microscopy acquisition.

To verify the identity of Nrf2-reporter-expressing cells in the caudal fin region, we performed
the fin clipping and confocal analyses on double Tg(mpeg:mCherryF)ump2/Tg(8XAORE:EGFP)ia201

http://tol2kit.genetics.utah.edu/index.php/P5E-MCS
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and Tg(LysC:DsRED)nz50/Tg(8XAORE:EGFP)ia201. The Tg(mpeg:mCherryF)ump2 was kindly provided
by G. Lutfalla.

4.5. Image Acquisition and Processing

For confocal microscopy, the PTU-treated larvae were embedded on 1.5% low-melting
agarose and placed on a Petri capsule filled with fish water. Confocal stacks were recorded,
using a low-intensity laser (20% intensity) to minimize laser-induced cell damage and
photobleaching. A Nikon C2 confocal system using a 20X or 40X immersion objective
(Nikon, Torino, Italy) was used. For time lapse imaging, a 1-h recording with a pause
every 5 min was carried out. All images were finally analyzed with ImageJ 1.53t software
(http://rsb.info.nih.gov/ij/ accessed on 12 October 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24076804/s1.
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