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“Prediction had become a privilege now lost to her. 

Never mind the outside world, she could not even guess her own actions, 

or the course of her thoughts. 

Was this the true nature of emotion? she wondered. 

The great defier of logic, of control—the whims of being human. 

What lay ahead?” 

 

Steven Erikson 
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OVERVIEW 

Emotions have been recently reconsidered as interoceptive predictive models, “constructed” 

by the brain on the basis of contextual information and prior experience, with the aim to predict 

relevant stimuli or events, and to provide the organism with optimal resources for survival. 

Nevertheless, the specific mechanisms underlying the construction of affective predictions both at 

the neural and subjective experience level remain unclear. More specifically, both the role played by 

contextual information and prior experience on the one hand, and the potential interactions with 

dispositional characteristics such as Intolerance of Uncertainty (IU), which is considered a trans-

diagnostic risk factor for affective disorders, on the other hand, have yet to be unraveled. The present 

thesis aimed to answer these open questions. As a first aim, we investigated how contextual 

information of different predictive value modulates the neural correlates of affective predictions 

construction. Second, we explored how prior probabilistic experience affects the construction of 

affective predictions at the subjective experience level. Third and last, we studied how individual 

differences in IU impact on the construction of affective predictions as a function of contextual 

information and prior experience. 

In Chapter 1, a description of the predictive coding theoretical framework (Clark, 2013; 

Friston, 2010), and of its recent application to the emotion domain will be provided. More in detail, 

predictive coding will be introduced and discussed as a domain-general theory of brain functioning, 

and its application to the emotion domain, as conceptualized within the theory of constructed emotion 

(Barrett, 2017), will be presented. A detailed analysis on affective cueing paradigms (and the results 

they have collected) as useful tools for investigating affective predictions will follow. Finally, 

conceptual and empirical links between IU, its associated behavioral patterns and its shared features 

with affective psychopathology on the one hand, and affective prediction construction on the other 

hand will be reviewed. 
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The experimental body of this thesis will be presented in the following chapters. Chapter 2 

will focus on the first research aim, by presenting results from a high-density EEG (hd-EEG) study 

(Study 1) investigating the neural correlates of affective predictions as constructed in presence of 

contextual information of different predictive value. In Chapter 3 we will focus on the second aim, 

as tackled by a set of studies (Studies 2 to 5) in which we manipulated prior experience in terms of 

affective contingency between stimuli, and we measured subjective affective ratings to subsequent 

affective predictions, both within and across sensory modalities. Last, in Chapter 4, the third aim will 

be covered investigating IU links with both the neural correlates of affective predictions as a function 

of contextual information (Study 6), and the subjective affective ratings to new predictions depending 

on previous experience (re-analysis of Studies 2 to 5 in relation to IU variable). 

Taken together, this thesis contributes to untangling the dynamics of affective prediction 

construction at the neural and subjective experience level, as summarized in the General Discussion. 

Contextual information and prior experience were found to differently influence (depending on their 

predictive value), and to interact with IU, in shaping the neural correlates and the subjective 

experience of emotion along the construction of affective predictions. Thus, this work offers both a 

theoretical contribution to predictive models of emotion, by better clarifying the mechanisms 

subtending prediction construction at the neural and subjective experience levels, and potential 

clinical implications for the prevention and treatment of anxiety disorders, given the trans-diagnostic 

nature of IU as a risk factor for the development of affective psychopathology. 

 

Keywords: Emotion, predictive coding, hd-EEG, affective cueing paradigm, Intolerance of 

Uncertainty 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

“Predicting the future is a mug’s game, but any game is improved when you 

can actually keep the score.” 

Douglas Adams 

 

Imagine you are sitting in a café, in front of a person you don’t find particularly attractive but 

who has asked you out on a date several times before you finally accepted. You suddenly realize 

you’re blushing, your stomach is fluttering, your body is shaking, and you seem unable to stay focused 

on the conversation. You might think that all of these signs prove that, despite your initial resistance 

to dating this person, you are actually attracted to them as a potential partner. But, what if you come 

home from your date, with that exciting feeling that only the beginning of a love story can leave you 

with, and you realize you have a high fever? The same signs that made you think of a potential 

attraction to your date will suddenly take on a whole new meaning as you dial your GP’s number to 

get a prescription for acetaminophen. Such things happen very often in our everyday lives, although 

we are not always aware of them. We continuously and spontaneously predict and make meaning of 

stimuli (coming from both inside and outside our bodies) based on the information available in the 

present context, and on previous experience that may guide our expectations and reactions; and this 

applies as much to sensory stimuli as to affective stimuli. These concepts, however, have rarely been 

brought into the focus of investigation by the prevailing theories in affective neuroscience, until the 

recent application of the predictive coding framework to the emotion domain. 
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1.1 THE PREDICTIVE CODING FRAMEWORK 

During the last decade a growing interest has been raised towards the predictive coding 

framework (Bar, 2007; Clark, 2013; Friston, 2009, 2010; Friston & Kiebel, 2009; Huang & Rao, 

2011; Knill & Pouget, 2004; Shipp, 2016). Predictive coding has been proposed as a domain-general 

theory of brain functioning, based on the assumption that the human brain evolved as a self-

organizing system with the aim to ensure an efficient allostatic balance between the organism and its 

environment (Friston, 2010; McEwen & Wingfield, 2010; Sterling, 2012; Sterling & Laughlin, 2015). 

In order to continuously provide the human body with optimal resources for growth, survival and 

reproduction, the brain relies on a core mechanism: prediction construction. According to predictive 

coding, the brain does not merely react to stimuli at the time of their occurrence, but, as its 

spontaneous activity, it constantly and actively predicts future inputs starting from its internal models 

of inner and outer milieu (Clark, 2013; Friston, 2010; Pezzulo et al., 2021). Internal models are 

essential for every complex system to (self-)regulate, i.e., to achieve desirable outcomes (allostatic 

balance) net of all the potential disturbances (perturbations of allostasis) (Conant & Ross Ashby, 

1970). In fact, they enable the brain to construct predictions in a dynamic and flexible way (Friston, 

2005). Internal models are generative, in the sense that they generate predictions, and their modelling 

capacity generalizes across sensory modalities, contexts, and time (Friston, 2010; Shipp, 2016). They 

are probabilistic, which means that they encode the statistical structure of observed inputs, namely 

the likelihood (i.e., the probability of an input, given its causes) and the prior (i.e., the a-priori 

probability of the causes of an input) (Clark, 2013; Friston, 2010; Shipp, 2016). They are also 

hierarchical, i.e., every input is specified at multiple levels of representation, and the best internal 

models available at higher levels of the hierarchy are used as the source of priors for models at 

subordinate levels (Clark, 2013; Friston, 2005; Shipp, 2016). The intrinsically generated internal 

models are therefore used to construct predictions approximating relevant features of future inputs in 

the service of homeostasis and allostasis (Bar, 2007; Friston, 2010; Shipp, 2016). 
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Prediction construction develops along three distinct neurocomputational stages (see Figure 

1.1): prediction generation, in which currently available sensory and contextual information is 

extracted from the environment, and integrated with prior experience to construct predictions; 

prediction implementation, in which representations of potentially relevant inputs are pre-sensitized 

to facilitate perception and cognition, the best action plans to deal with the predicted situation are 

simulated, and the correspondent motor programs are prepared; prediction updating, in which 

predictions are tested against incoming inputs, with a possible match or mismatch (Bar, 2007; Knill 

& Pouget, 2004; Shipp, 2016). When the prediction is incomplete, or incompatible with actual inputs, 

the difference between predicted and observed input is encoded as a prediction error, and it is used 

to adjust the generative model by minimizing the error at every level of the hierarchy until the pan-

hierarchical overall representation is refined (Bar, 2009; Friston, 2005, 2009; Shipp, 2016). Prediction 

errors can be minimized either by changing sensory input selectively sampling data conforming to 

predictions (i.e., through action), or by changing predictions so that they conform to actual input (i.e., 

through perception). Furthermore, the prediction error is weighted according to precision: attention 

modulates the magnitude of the prediction error by assigning greater weights to more reliable and 

informative prediction errors, thus leading them to a greater impact on the adjustment of generative 

models (Clark, 2013; Friston, 2009, 2010; Kok et al., 2019; Shipp, 2016; Yon & Frith, 2021). The 

generation-implementation-updating cycle occurs mostly implicitly, potentially emerging into 

awareness only in case of a mismatch (Bar, 2007). Moreover, it occurs iteratively, so that by means 

of the continuous exchange of information between top-down predictions and bottom-up prediction 

errors the system might efficiently pursue error minimization and generative models optimization, 

eventually ensuring survival and a flexible adaptation to the environment (Friston & Kiebel, 2009; 

Shipp, 2016; Sterling, 2012; Sterling & Laughlin, 2015). 
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Figure 1.1 Schematic representation of the three stages of prediction construction. 

During prediction generation (continuous-lined boxes) predictions are generated on the basis of prior experience and the available (sensory and contextual) information. During 

the implementation stage (dotted-lined boxes), representations of potentially relevant inputs are pre-sensitized, and action plans and correspondent motor programs are prepared. 

During prediction updating (dashed-lined boxes), the actual input is compared with predictions, and in case of mismatch a prediction error is encoded, minimized, and used to 

adjust future predictions. 
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All the neurocomputational stages of prediction construction are implemented within the 

structural and functional architecture of human brains, thanks to the bidirectional hierarchical 

organization of the cerebral cortex, and to the laminar differentiation between cortical layers. 

Pyramidal neurons encode the three core components of predictive coding in separate units: 

prediction units, which code for predictions; error units, encoding prediction errors; and precision 

units, which represent the reliability of predictions (Friston, 2010; Kok et al., 2019; Shipp, 2016). 

Moreover, the hierarchical organization of cortico-cortical connections ensures an optimal flow of 

top-down and bottom-up information, thanks to which prediction generation, implementation and 

updating are iteratively deployed. Backward connections from higher to lower levels of the hierarchy 

carry multimodal predictions, which are originated within cortical layers characterized by less 

laminar differentiation (agranular cortex, layer V), and propagate to areas with a greater laminar 

differentiation (dysgranular and granular cortex, layers I/II/III) changing the firing rates of their 

neurons (Barbas, 2015; Barbas & García-Cabezas, 2015; Barbas & Rempel-Clower, 1997; Barrett & 

Simmons, 2015; Friston, 2005; Rao & Ballard, 1999; Shipp, 2016). In this way, top-down predictions 

can shape the ongoing pattern of neural activity within lower levels of the hierarchy, anticipating 

sensory input through the pre-sensitization of potentially relevant representations, and preparing 

action (Bar, 2007; Barrett & Simmons, 2015). Forward connections from lower to higher levels of 

the hierarchy carry prediction errors, computed in more differentiated granular cortical areas, and 

projected back to less differentiated agranular layers, so that errors can be minimized, and the 

generative predictive models can be updated in a data-driven fashion according to new, bottom-up 

information (Barbas, 2015; Barbas & García-Cabezas, 2015; Barbas & Rempel-Clower, 1997; Barrett 

& Simmons, 2015; Friston, 2005; Rao & Ballard, 1999; Shipp, 2016). What needs to be passed 

forward along the system is only the unpredicted portion of information (i.e., the prediction error), 

because, according to the principle of efficient coding, the flow of information within the brain tends 

to a parsimonious encoding, and to redundancy reduction between sensory input and its representation 

(Clark, 2013; Friston, 2010). Last, lateral connections between precision units within the same 
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hierarchical level mediate the influence of error units on prediction units, by dynamically modifying 

the synaptic gain of neurons computing the prediction error, eventually reducing or increasing the 

weight given to inputs as a function of the confidence put either in top-down predictions or in the 

reliability of bottom-up incoming stimuli (Barbas, 2015; Barbas & García-Cabezas, 2015; Barbas & 

Rempel-Clower, 1997; Barrett & Simmons, 2015; Friston, 2005). 

It is thus easy to understand why predictive coding has emerged as a domain-general, coherent 

and neurobiologically plausible theoretical scaffolding (Hutchinson & Barrett, 2019). First, it relies 

on well-validated neuroanatomical pathways of information flow in the brain (Barbas, 2015; Barbas 

& Rempel-Clower, 1997; Friston, 2005). Second, it offers a parsimonious unified explanation for 

different phenomena, re-framing attention, perception and action as emergent properties of prediction 

construction (Friston, 2009). Third, it proved to be able to account for both explicit and implicit 

processes within several cognitive domains, such as visual perception (Alink et al., 2010; Friston, 

2005; Huang & Rao, 2011; Kok et al., 2019; Rao & Ballard, 1999; Spratling, 2010; Stefanics et al., 

2018), motor control (Duma et al., 2020; Kilner et al., 2007; Mento & Vallesi, 2016; Shipp et al., 

2013), memory (Bar, 2009; Barron et al., 2020), auditory perception (Baldeweg, 2006; Carbajal & 

Malmierca, 2018; Denham & Winkler, 2020; Heilbron & Chait, 2018; Kumar et al., 2011), 

multisensory integration (Apps & Tsakiris, 2014; Shi & Burr, 2016; Talsma, 2015), language (Lewis 

et al., 2016; Lewis & Bastiaansen, 2015; Lupyan & Clark, 2015; Shain et al., 2020; Ylinen et al., 

2017), interoception and emotion (Ainley et al., 2016; Barrett, 2017; Barrett & Simmons, 2015; 

Kleckner et al., 2017; Owens et al., 2018; Seth, 2013; Seth & Friston, 2016), and even 

psychopathology (Barrett et al., 2016; Brewer et al., 2021; Gerrans & Murray, 2020; Pang et al., 2019; 

Paulus et al., 2019; Smith et al., 2020; Sterzer et al., 2018, 2019; van de Cruys et al., 2014). 

Of particular interest is the recent application of the predictive coding framework to the 

emotion domain, according to which emotions have been reconsidered as specific types of generative 

predictive models, based on interoception and developing along the three abovementioned 

neurocomputational stages (Barrett, 2017; Barrett & Simmons, 2015; Lee et al., 2021; Seth, 2013; 
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Seth & Friston, 2016). This approach dramatically shifted the perspective on the study of emotion. 

Extant emotion theories, in fact, traditionally considered emotions as innate response tendencies, 

eliciting autonomic and behavioral responses to salient stimuli or appraisals within a stimulus-

response (S-R) pattern (Anderson & Adolphs, 2014; Damasio, 1994, 1998; Ekman, 1992b; Ekman & 

Cordaro, 2011; Izard, 2007, 2010, 2011; Levenson, 2011; Panksepp & Watt, 2011; Roseman, 2011; 

Russell, 2003; Scherer, 2009). According to the basic emotion perspective, in particular, each emotion 

had been assumed to be subtended by dedicated neural circuits and patterns of physiological 

correlates, which were considered as unique, universal, and relatively stable across time, cultures, 

and contexts (Ekman, 1992a, 1992b; Ekman et al., 1987; Ekman & Cordaro, 2011; Levenson, 2011; 

Panksepp & Watt, 2011). Predictive models of emotion, instead, have gone beyond the S-R 

conceptualization proposing an innovative approach: emotions are no longer considered as 

“reactions” to the world, triggered by eliciting stimuli and/or appraisals, and subtended by emotion-

specific neural and physiological correlates; rather, they are reconceptualized as context-dependent 

“constructions” of the world, built by the brain within domain-general large-scale circuits, with the 

aim to make meaning of bodily sensations in relation to the inner and outer context (Barrett, 2017; 

Barrett & Satpute, 2019). One of the most prominent theories within predictive models of emotion is 

the theory of constructed emotion (Barrett, 2017), which will be presented in detail in the next section. 

1.2 THE THEORY OF CONSTRUCTED EMOTION 

The theory of constructed emotion (Barrett, 2017) is a brain-based, context-sensitive 

computational theory of emotion. It stands on the idea that emotions can be considered as particular 

types of predictive models, based on interoceptive signals (Barrett, 2017). Interoception is defined as 

the overall process of representing and making use of the sensations derived from the statistical 

regularities inferred from the internal milieu (Craig, 2015). In line with the assumptions of predictive 

coding, the theory of constructed emotion agrees that human brains, as their spontaneous activity, 

constantly generate-implement-update predictions (Pezzulo et al., 2021; Sterling, 2012), with the aim 
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to identify (and categorize) inputs, to infer their causes, and to drive action. When the internal models 

refer to an emotion concept to make meaning of actual inputs, the resulting affective prediction is 

subjectively appraised as an instance of emotion (Barrett, 2017). Thus, conscious emotional 

experience, in the form of subjective feeling states, arises from affective predictive models about the 

likelihood and the priors of interoceptive signals (i.e., the most likely internal and/or external causes 

of observed changes in the physiological condition of the body) (Seth, 2013; Seth & Friston, 2016). 

Affective prediction errors are presumably computed out of awareness, until they are used to update 

the internal models eventually emerging in consciousness (Lee et al., 2021). In this light, emotional 

valence has been reconsidered as reflecting the degree of prediction updating, with a consequent 

effect on the learning rate needed to adjust internal models on the basis of new evidence: if sensory 

input fulfils predictions, this results in a positive valence, and in a decreasing of the learning rate; 

when sensory data violate predictions, emotional valence is negative, and the learning rate is 

increased (Joffily & Coricelli, 2013). Thus, in a broader perspective, valence may represent an index 

of the changes in the reliability of internal models: negatively-valenced states reduce reliance on prior 

expectations, while positively-valenced states increase reliance on prior expectations (Hesp et al., 

2021). 

The theory of constructed emotion developed from neuroscientific evidence that challenged 

the main tenets of traditional emotion theories, as it failed to find a consistent one-to-one mapping 

between each emotion and its neural and physiological correlates (Barrett & Satpute, 2013; Guillory 

& Bujarski, 2014; Lindquist et al., 2012; Siegel et al., 2018; Touroutoglou et al., 2015). The observed 

patterns of activation within the central and the peripheral nervous system did not clearly and 

univocally distinguish one emotion from another, and variability within emotion categories emerged 

as a core feature (Barrett, 2009, 2017; Barrett et al., 2014; Herschbach & Bechtel, 2014; Siegel et al., 

2018). Variability might be a consequence of degeneracy, a property of complex systems (i.e., the 

human brain) thanks to which structurally distinct mechanisms (i.e., different sets of neurons) are 

able to perform the same function (i.e., give rise to the same instance of emotion) (Barrett, 2017; 
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Edelman & Gally, 2001). Therefore all instances within an emotion category are unlikely to share a 

common neural substrate, rather they result from the context-dependent activation of multiple 

spatiotemporal patterns in distributed neural populations (Barrett, 2017; Barrett & Satpute, 2019). 

The domain-general large-scale brain circuits supporting homeostasis, allostasis and 

interoception (see Figure 1.2), and their hierarchical structural and functional architecture, have been 

suggested as the neural substrates for the construction of affective predictions (Barrett, 2017; Seth & 

Friston, 2016). Interoceptive predictions arise within agranular cortical regions such as the anterior 

cingulate cortex (ACC), the ventromedial prefrontal cortex (vmPFC), the orbitofrontal cortex (OFC), 

the anterior insula (aINS), the supplementary motor area (SMA), and the subgenual cortex (SGC), 

and they are projected to both primary sensory areas and (mostly subcortical) regions implementing 

homeostasis, such as the hypothalamus, the brainstem, and spinal cord nuclei (Barrett, 2017; Barrett 

& Simmons, 2015; Paulus et al., 2019; Seth & Friston, 2016). Within the latter areas the predicted 

metabolic requirements of the body (based on prior experience and on the estimation of necessary 

resources) are computed, eventually determining an allostatic adjustment; while the expected 

consequences of allostatic adjustments themselves, expressed in terms of interoceptive signals, are 

transmitted to the former sensory areas (Barrett & Simmons, 2015). Interoceptive prediction errors 

are computed in the granular cortex within mid- and posterior insula (mINS, pINS), amygdala, ventral 

striatum (which also carries information about rewards with an unexpected impact on homeostasis), 

and cerebellum (which also carries visceromotor information), and they are propagated back to the 

cortex in order to be minimized (Barrett, 2017; Barrett & Simmons, 2015; Seth & Friston, 2016). The 

regions involved in interoceptive predictions construction belong to three main brain networks. The 

vmPFC, together with the dorsomedial PFC (dmPFC) and the posterior cingulate cortex (PCC), is 

part of the default mode network (DMN) (Raichle, 2015). The vmPFC supports a sensory-

visceromotor linking activity, by collecting sensory and interoceptive input from inside and outside 

the body, and by conveying it to subcortical structures (e.g., hypothalamus, amygdala, periaqueductal 

grey) (Raichle, 2015). The dmPFC is associated with subjective judgements about emotionally-
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valenced stimuli (Raichle, 2015). The PCC, thanks to its connections with the hippocampal-parietal 

memory network, is involved in the recollection of prior experience (Raichle, 2015). Cortical regions 

as the aINS, the OFC and the temporal pole are part of the salience network, which supports 

interoceptive-autonomic processing by identifying relevant inputs, and by integrating this 

information with visceral and autonomic cues (Seeley et al., 2007). Last, areas such as the dorsolateral 

prefrontal cortex (dlPFC) and the intraparietal sulcus (IPS) are involved in the frontoparietal control 

network (Dosenbach et al., 2007). They build and maintain simulations, inhibiting those with low 

priors, and they tune internal models with prediction errors by supporting top-down control activity 

in response to feedback (Dosenbach et al., 2007). All these regions and networks, and the functions 

they subtend, play a pivotal role in upholding the constant cycle of generation-implementation-

updating of affective predictions (Barrett, 2017). 

 

 

Figure 1.2 Neural circuits involved in interoceptive prediction construction. 

Brodmann areas (BA) 24, 25, 32 = cingulate cortex, BA 14c = ventromedial prefrontal cortex (vmPFC), BA 13a = 

orbitofrontal cortex (OFC), AC = anterior cingulate, PL = prelimbic cortex. From “Interoceptive predictions in the brain”, 

by L. F. Barrett and W. K. Simmons, 2015, Nature Reviews Neuroscience, 16(7), p. 423. 
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Plentiful evidence from the last 10 years of neuroscience research seems to support the theory 

of constructed emotion. Task-related functional magnetic resonance imaging (fMRI) studies 

highlighted that (i) brain activations within the same emotion category differ as a function of the 

situation (e.g., internal vs. external focus, circumstances eliciting physical threat vs. social evaluation, 

typical vs. atypical instances of an emotion category) in which the emotion itself is experienced, 

eliciting context-specific (but not emotion-specific) neural activity (Oosterwijk et al., 2015; Wilson-

Mendenhall et al., 2011, 2015); (ii) emotions (as induced through experimental paradigms involving 

scenario immersion) are subtended by variable patterns of activations within domain-general large-

scale brain networks (Oosterwijk et al., 2012; Wilson-Mendenhall et al., 2011); (iii) emotional states 

are represented multimodally in the brain, independently of the specific sensory cues (e.g., faces, 

body movements, voices) from which they are perceived (Peelen et al., 2010). Moreover, resting-

state functional connectivity MRI (rs-fc MRI) studies investigating brain’s intrinsic activity 

demonstrated that (i) the existence of emotion-specific brain networks is poorly supported; rather, 

different emotional experiences seem to share common and distributed networks (Raz et al., 2016; 

Touroutoglou et al., 2015); (ii) connectivity patterns within large-scale networks might account for 

variability in the subjective experience of emotion, such as intensity ratings (Raz et al., 2016), or 

interoceptive accuracy (i.e., the level of concordance between objective and subjective measures of 

interoceptive signals) (Kleckner et al., 2017). Finally, several meta-analyses and reviews of 

neuroimaging data failed to find a coherent one-to-one mapping between each emotion category and 

the subtending activation patterns within the central nervous system (CNS) (Barrett & Satpute, 2013; 

Barrett & Wager, 2006; Clark-Polner et al., 2017; Lindquist et al., 2012; Wager et al., 2015), the 

autonomic nervous system (ANS) (Siegel et al., 2018), and even cortical electrical activity as recorded 

from intracranially implanted electrodes (Guillory & Bujarski, 2014). More specifically, no sound 

evidence has emerged on either consistency (i.e., increased activity within certain brain regions in 

association with every instance of an emotion category) or specificity (i.e., activation within certain 
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brain regions in association with instances of only one emotion category) of brain activations, contrary 

to the predictions of the traditional locationist accounts (Lee et al., 2021; Lindquist et al., 2012). 

Thus, taken together, recent evidence supports some of the main claims of the theory of 

constructed emotion: emotions are “constructions” deriving from context-specific, multimodal 

interoceptive predictions; they are subtended by neural activity within domain-general, distributed 

brain networks, which are not emotion-specific nor consistent; and they are, together with other 

mental processes, the “by-product” of the brain’s core task of continuously and implicitly 

constructing predictions in the service of homeostasis and survival (Barrett, 2017). As a main 

consequence, thus, and in line with predictive coding (see Figure 1.1), both contextual information 

(i.e., the combination of sensory input from inside and outside the body, and the associated 

probabilistic structure) and prior experience (i.e., the knowledge deriving from the extraction of 

repeating patterns and statistical regularities from the environment) emerge as crucial factors in 

shaping the process of affective prediction construction. Previous learning experiences and context-

specific inputs constantly interact in constraining and refining the pool of information used to 

generate affective predictions, eventually causing a cascade effect also on the implementation and 

updating stages. Nevertheless, despite the contribution of contextual information in modulating 

affective predictions is viewed as fundamental at the theoretical level, the specific role played by 

contextual information and prior experience in the construction of affective predictions has scarcely 

been studied at the empirical level. Research, instead, has typically focused on the experimental 

investigation of the anticipation of emotional stimuli. This literature draws mainly on traditional 

theoretical accounts, highlighting how the function of emotion is not only restricted to the generation 

of responses, but it also involves the anticipation of relevant stimuli in the environment, by promoting 

behavioral approach/avoidance of potential rewards/threats, and by pre-organizing adaptive bodily 

changes before the actual stimulus delivery (Castelfranchi & Miceli, 2011; van Boxtel & Böcker, 

2004). Even though this line of evidence does not directly refer to predictive models of emotion, and 

it largely preceded the recent formalization of the theory of constructed emotion (Barrett, 2017), its 
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results and experimental paradigms can still be informative in unraveling the influential role of (at 

least some) contextual factors on the construction of affective predictions. For this reason, in the next 

section the extant literature investigating emotional anticipation will be reviewed, particularly 

focusing on a specific type of experimental paradigm, the affective cueing paradigm. This paradigm, 

by allowing to separately investigate the three stages of affective predictions, and requiring the 

probabilistic manipulation of affective contingencies (see § 1.3), might represent a valuable tool for 

the empirical investigation of the construction of affective predictions within a predictive theoretical 

framework. 

1.3 THE AFFECTIVE CUEING PARADIGM 

In the last 20 years several studies investigated emotional anticipation with event-related 

potentials (ERPs), fMRI, magnetoencephalography (MEG), and/or peripheral psychophysiological 

measures (see Table 1.1). Authors mostly employed affective cueing paradigms (e.g., S1-S2 

paradigm, threat-of-shock paradigm), in which a sequential presentation of two stimuli is typically 

implemented. The S1 (or cue) is a warning stimulus, which signals with strong or weak certainty the 

imminent delivery of a relevant stimulus; while the S2 (or target) is an emotional stimulus, such as 

affective pictures or faces, or painful stimuli (see Mercado et al., 2008 for a review). The relationship 

between specific S1 types and the emotional valence of S2s or the probability of painful S2s (i.e., 

affective contingency) is typically manipulated so that in a certain (i.e., fully predictive) experimental 

condition each S1 type is always paired with the same S2’s emotional valence or probability; in an 

uncertain (i.e., non-predictive) condition, S1s are absent or not informative about S2’s valence or 

probability. Although it has been originally developed for different purposes, the affective cueing 

paradigm is particularly suited to effectively investigate the construction of affective predictions. 

First, it allows to target the three stages of prediction construction separately, and to explore their 

reciprocal relationships, with S1-processing reflecting prediction generation, the processes 

developing in the inter-stimulus interval (ISI) between S1 and S2 representing the implementation 
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stage, and S2-processing indexing the updating stage. Second, it might allow to grasp the generative, 

probabilistic and hierarchical nature of affective predictive models: by employing different types of 

stimuli (e.g., visual, auditory), contexts, and/or stimulus timing it is possible to study how predictive 

models generalize across sensory modalities, contexts, and time; while by manipulating probabilistic 

relationships between S1 and S2 at a global (block-wise) or local (trial-by-trial) level (as commonly 

done in S1-S2 paradigms within other cognitive domains; see Braem et al., 2019 for an example) it 

becomes possible to explore whether and how the statistical structure of inputs is extracted, and used 

for the construction of current or future affective predictions. 
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Table 1.1 Studies investigating emotional anticipation and relative details about experimental stimuli, tasks, and manipulations. 

Affective contingency is expressed in terms of percentage of experimental trials in which S1 was paired with the same S2 valence: 100% represents the certain condition, between 

80% and 70% a moderately predictive condition, and 50% the uncertain condition. The last column shows which paradigm stages (S1, ISI, S2) and ERP/ERF/psychophysiological 

indices have been analyzed. CMV = contingent magnetic variation, CNV = contingent negative variation, EMG = electromyography, EPN = early posterior negativity, ERD = 

event-related desynchronization, ERF = event-related field, ERP = event-related potential, HR = heart rate, LPP = late positive potential, MRCPs = movement related cortical 

potentials, NEG = negative, NEU = neutral, POS = positive, SCR = skin conductance response, SPN = stimulus preceding negativity, VEF = visual evoked magnetic fields, VPP 

= vertex positive potential. 

ERPs 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective 

contingency 

Experimental 

paradigm 

Stages investigated 

(and ERP components 

targeted for each) 

(Brown et al., 

2008) 

Cue words Laser heat 

stimuli 

NEG, uncertain NEG 100% vs. 50% Threat of shock ISI (SPN), S2 (P2) 

(Buodo et al., 

2012) 

Affective words Affective 

pictures 

POS, NEG, NEU POS, NEG, 

NEU 

100% S1-S2 S1 (P3), ISI (SPN), S2 

(P3, LPP) 

(Casement et al., 

2008) 

Symbolic visual 

cues 

Affective 

adjectives 

POS, NEG, NEU, 

uncertain 

POS, NEG, 

NEU 

100% (and 50%, 

not analyzed) 

S1-S2 ISI (CNV) 

(Dieterich et al., 

2016) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 S2 (P2, LPP) 

(Gole et al., 2012) Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 S1 (P2), S2 (P2, N2, 

LPP) 

(Jin et al., 2013) Geometric shapes Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 20% S1-S2 S2 (N1, P2, N2) 

(Johnen & 

Harrison, 2019) 

Symbolic visual 

cues 

Affective 

pictures 

POS, NEG, uncertain POS, NEG 70% vs. 50% S1-S2 S1 (P2, EPN), ISI 

(SPN), S2 (P2, N2, 

EPN, LPP) 

(Johnen & 

Harrison, 2020) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs 70% vs 

50% 

S1-S2 ISI (SPN), S2 (P2, 

EPN, LPP) 

(Klorman & Ryan, 

1980) 

Acoustic tones Affective 

pictures 

NEG, NEU NEG, NEU 100% S1-S2 S1 (N1, P2, P3), ISI 

(CNV) 

(Lin et al., 2012) Symbolic visual 

cues 

Affective 

pictures 

POS, NEG POS, NEG 100% vs. no cue S1-S2 S2 (P2, N2, LPP) 

(Lin, Gao, et al., 

2014) 

Symbolic visual 

cues 

Affective 

pictures 

POS, NEG, uncertain POS, NEG 100% vs. 50% S1-S2 S1 (N2), ISI (CNV) 

(Lin, Liang, et al., 

2014) 

Symbolic visual 

cue 

Affective 

pictures 

POS, NEG, no cue POS, NEG 100% vs. no cue S1-S2 S2 (N2, LPP) 

(Lin, Jin, et al., 

2015) 

Symbolic visual 

cues 

Affective 

pictures 

POS, NEG, uncertain POS, NEG 100% vs. 50% S1-S2 S2 (P2, N2, LPP) 
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(Lin, Xiang, et al., 

2015) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, no cue NEG, NEU 100% vs. no cue S1-S2, followed by a 

old/new recognition 

task 

S2 (P2, P3) 

(Lin, Schulz, et al., 

2015) 

Symbolic visual 

cues 

Affective facial 

expressions 

NEG, NEU NEG, NEU 75% S1-S2 S2 (N170, P3) 

(Lin et al., 2016) Symbolic visual 

cues 

Affective facial 

expressions 

NEG, NEU NEG, NEU 75% S1-S2 S2 (N2, EPN, LPP) 

(Lin et al., 2017) Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2, followed by a 

old/new recognition 

task 

S2 (P2, N2, P3, LPP) 

(Lin et al., 2018) Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain  NEG, NEU 100% vs. 50% S1-S2 S2 (P2, N2, LPP) 

(Lin et al., 2020) Affective vs. 

scrambled facial 

expressions 

Affective 

pictures 

POS, NEG, 

NEU/uncertain 

POS, NEG 100% vs 50% S1-S2 S2 (60-1000 ms) 

(Lin & Liang, 

2020) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU NEG, NEU 75% S1-S2, followed by a 

old/new recognition 

task 

S2 (P2, LPP) 

(Nelson et al., 

2015) 

Acoustic probes Electric shocks Predictable (P), 

unpredictable (U), no 

probe (N) 

NEG, no 

shock 

/ Threat of shock S1 (N1, P3) 

(Nelson & Hajcak, 

2017) 

Acoustic probes Electric shocks 

vs. affective 

pictures 

Predictable (P), 

unpredictable (U), no 

probe (N) 

NEG, no S2 / Threat of shock S1 (N1, P3), S2 (P3, 

LPP) 

(Peng et al., 2012) Affective words Affective facial 

expressions 

NEG, NEU NEG, NEU 75% vs. 50% S1-S2 ISI (SPN), S2 (N1, P1, 

P2, N3, P3, N170) 

(Perri et al., 2014) Keypress Affective picture POS, NEG, NEU, 

scrambled 

POS, NEG, 

NEU, 

scrambled 

100% Self-paced exposure 

task 

ISI (MRCPs), S2 (P2, 

N2, LPP) 

(Poli et al., 2007) Affective words Affective 

pictures 

POS, NEG, NEU POS, NEG, 

NEU 

100% S1-S2 S1 (P3, LPP), ISI (SPN) 

(Qiao et al., 2018) Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 ISI (SPN), S2 (P2, LPP) 

(Recio et al., 2014) Affective facial 

expressions 

Affective facial 

expressions 

(displayed) 

NEG, POS NEG, POS 80% vs. 20% Display an emotional 

facial expression 

ISI (CNV), S2 (P2, N2, 

P3, LPP) 

(Takeuchi et al., 

2005) 

Geometric shapes Affective 

pictures 

POS, NEG, NEU POS, NEG, 

NEU 

100% S1-S2 ISI (SPN) 

(Vallet et al., 2019) Geometric shapes Affective 

pictures 

POS, NEG, NEU POS, NEG, 

NEU 

100% Time perception task S1 (P1, N1, N150, N2, 

P3), ISI (CNV, LPP) 
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(Yang et al., 2012) Affective pictures Affective facial 

expressions 

NEG, NEU, no cue NEG, NEU 100% vs. no cue S1-S2 S1 (P3-like, LPP-like), 

S2 (N1, P2/VPP, 

N2/N3) 

MEG 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective 

contingency 

Experimental 

paradigm 

Stages investigated 

(and ERF components 

targeted for each) 

(Onoda et al., 

2006) 

Geometric shapes Affective 

pictures 

POS, NEG, uncertain, 

no cue 

POS, NEG 100% vs. 50% vs. 

no cue 

S1-S2 ISI (CMV), S2 (VEF) 

(Onoda et al., 

2007) 

Geometric shapes Affective 

pictures 

POS, NEG, uncertain, 

no cue 

POS, NEG 100% vs. 50% vs. 

no cue 

S1-S2 ISI (ERD) 

fMRI 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective 

contingency 

Experimental 

paradigm 

Stages investigated 

(Bermpohl et al., 

2006a) 

Symbolic visual 

cues 

Affective 

pictures 

Emotional, NEU, no 

cue 

POS, NEG, 

NEU 

100% S1-S2 ISI, S2 

(Bermpohl et al., 

2006b) 

Symbolic visual 

cues 

Affective 

pictures 

Emotional, NEU, no 

cue 

POS, NEG, 

NEU 

100% S1-S2 ISI, S2 

(Greenberg et al., 

2015) 

Symbolic visual 

cues 

Affective movie 

clips 

POS, NEG, NEU, 

uncertain 

POS, NEG, 

NEU 

100% vs. 50% S1-S2 ISI 

(Grupe et al., 

2013) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 ISI 

(Herwig, 

Kaffenberger, et 

al., 2007) 

Symbolic visual 

cues 

Affective 

pictures 

POS, NEG, NEU, 

uncertain 

POS, NEG, 

NEU 

75% vs. 50% S1-S2 ISI 

(Herwig, Abler, et 

al., 2007) 

Symbolic visual 

cues 

Affective 

pictures 

POS, NEG, NEU POS, NEG, 

NEU 

100% S1-S2 ISI 

(Kaffenberger et 

al., 2010) 

Symbolic visual 

cues 

Affective 

pictures 

POS, NEG, NEU, 

uncertain 

POS, NEG, 

NEU 

100% vs. 50% S1-S2 S2 

(Motzkin et al., 

2014) 

Symbolic visual 

cue 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 ISI 

(Nitschke et al., 

2006) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU NEG, NEU 100% S1-S2 ISI, S2 

(Onoda et al., 

2008) 

Acoustic tone Affective 

pictures 

NEG, POS, uncertain POS, NEG 100% vs. 50% S1-S2 ISI 

(Ran et al., 2016) Affective words Affective facial 

expressions 

POS, NEG, uncertain POS, NEG 100% vs. 50% S1-S2 S2 

(Sarinopoulos et 

al., 2010) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 ISI, S2 
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(Schienle et al., 

2010) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 S2 

(Simmons et al., 

2004) 

Auditory tones Affective 

pictures 

NEG NEG 100% S1-S2 contemporary 

to a discrimination 

task 

ISI 

(Ueda et al., 2003) Geometric shapes Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 ISI 

(M. Walter et al., 

2009) 

Symbolic visual 

cues 

Affective 

pictures 

POS, NEG, NEU, no 

cue 

POS, NEG, 

NEU 

100% S1-S2 ISI 

Peripheral psychophysiological indices 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective 

contingency 

Experimental 

paradigm 

Stages investigated 

(and peripheral 

indices targeted for 

each) 

(Chen & 

Lovibond, 2016) 

Symbolic visual 

cue 

Affective 

pictures 

NEG, NEU, 

uncertain, ambiguous 

NEG, NEU 100% vs. 50% S1-S2 ISI (SCR) 

(Grupe & 

Nitschke, 2011) 

Symbolic visual 

cues 

Affective 

pictures 

NEG, NEU, uncertain NEG, NEU 100% vs. 50% S1-S2 S2 (SCR) 

(Klorman & Ryan, 

1980) 

Acoustic tones Affective 

pictures 

NEG, NEU NEG, NEU 100% S1-S2 ISI (HR) 

(Nelson et al., 

2015) 

Acoustic probes Electric shocks Predictable (P), 

unpredictable (U), no 

probe (N) 

NEG, no 

shock 

/ Threat of shock S1 (startle) 

(Nelson & Hajcak, 

2017) 

Acoustic probes Electric shocks 

vs. affective 

pictures 

Predictable (P), 

unpredictable (U), no 

probe (N) 

NEG, no S2 / Threat of shock S1 (startle) 

(Poli et al., 2007) Affective words Affective 

pictures 

POS, NEG, NEU POS, NEG, 

NEU 

100% S1-S2 ISI (HR) 

(Schumacher et al., 

2015) 

Symbolic visual 

cue 

Affective 

pictures 

POS, NEG, NEU, 

uncertain 

POS, NEG, 

NEU 

100% vs. 50% S1-S2 ISI (SCR, HR, EMG), 

S2 (SCR, HR, EMG) 

(Vanderhasselt et 

al., 2014) 

Cue words Affective 

pictures 

POS, NEG POS, NEG 100% S1-S2 ISI (pupillary dilation) 
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A heterogeneous set of central and peripheral psychophysiological indices, as well as fMRI 

blood-oxygen-level-dependent (BOLD) signal within specific regions of interest (ROIs) have been 

targeted to explore emotional anticipation within affective cueing paradigms. Amongst ERPs, both 

early (< 250 msec) and late (> 250 msec) components, as well as S1- and S2-locked ERPs have been 

investigated. The P1 and N1 components have been mostly analyzed as indices of early visual and 

perceptual processing: both are typically distributed over lateral occipital sites, with a latency of 100-

150 msec, and they can be modulated by selective attention and subjective arousal, and by spatial 

attention, respectively (Hillyard et al., 1998; Hopf et al., 2002; Luck et al., 2000; Luck, 2005; 

Mangun, 1995; Ritter et al., 1979; Vogel & Luck, 2000). The N1 has been recently proven to be also 

modulated by unexpected perceptual events, showing dose-dependent sensitivity to expectancy 

violation (Robinson et al., 2018). 

The P2 component is distributed over anterior/central sites, and peaks around 200 msec from 

stimulus onset; it is sensitive to simple perceptual features of target stimuli and their frequency, with 

larger amplitudes to target and infrequent stimuli (Luck, 2005; Luck & Hillyard, 1994), and it also 

signals the degree of updating of internal models after experiencing a novel event (Gómez et al., 

2019; Kimura & Takeda, 2015). 

Face-specific ERPs, such as the N170 and the Vertex Positive Potential (VPP), have also been 

investigated in studies employing face stimuli: they reflect structural encoding and a coarse emotional 

processing of facial expressions, and they can be considered as the opposite sides of the same dipole, 

both peaking around 170 msec, with the first component distributed over lateral (typically right) 

occipital sites, and the second over central midline sites (Bentin et al., 1996; Blau et al., 2007; 

Jeffreys, 1989; Luck, 2005; Robinson et al., 2018; Rossion et al., 2003). As the N1, the N170 has 

shown a dose-dependent modulation as a function of expectancy violation (Robinson et al., 2018). 

As an early index of conflict monitoring and selective attention, sensitive to mismatching 

attended stimuli, studies often targeted the anterior N2 component, distributed over frontocentral sites 

and peaking around 200 msec from stimulus onset (Folstein & Petten, 2008; Luck, 2005). As a further 
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index, distributed over frontocentral midline sites, peaking between 160 and 220 msec, and sensitive 

to mismatching stimuli, the Mismatch Negativity (MMN) has been widely employed, indexing 

violations of statistical regularities during perceptual learning and their associated prediction error 

(Chennu et al., 2013; Luck, 2005; Stefanics et al., 2018). Within the same time range, the Early 

Posterior Negativity (EPN), distributed over occipital sites, has been frequently studied as an index 

of additional recruitment of perceptual processing resources, specific for emotion-inducing 

(especially positive) stimuli (Luck, 2005; Schupp et al., 2003; Weinberg & Hajcak, 2010). 

Another widely investigated component is the P3, which represents a family of 

distinguishable ERP sub-components, showing either a frontal or a parietal distribution, and peaking 

around 300 msec. The P3 is assumed to reflect the allocation of resources for categorization/working 

memory updating processes; it is sensitive to stimulus probability (showing a larger amplitude to 

infrequent stimuli), and it has recently been reconceptualized as an index of prediction error encoding 

(Chennu et al., 2013; Donchin, 1981; Luck, 2005; Polich, 2012). 

Last, three slow cortical potentials have been targeted as indices of sustained processing: (i) 

the Stimulus Preceding Negativity (SPN), typically measured as the mean amplitude over 200 msec 

before a relevant and expected stimulus, and reflecting affective-motivational anticipation processes 

(Brunia et al., 2011; Brunia & Van Boxtel, 2001; van Boxtel & Böcker, 2004); (ii) the Contingent 

Negative Variation (CNV), typically measured in S1-S2 paradigms as the mean amplitude of the slow 

wave developing during the ISI, which reflects attention orienting towards motivationally relevant 

stimuli (early CNV) and motor preparation for a required or possible action (late CNV), as well as 

being sensitive to the probabilistic and temporal structure of the experimental task (Chennu et al., 

2013; Gómez et al., 2019; Mento, 2013; Mento et al., 2015; W. G. Walter et al., 1964); (iii) the Late 

Positive Potential (LPP), an index of sustained motivated attention to emotional stimuli, also sensitive 

to stimulus predictability (Hajcak et al., 2010; Johnen & Harrison, 2019; Lin et al., 2020; Schupp et 

al., 2000). 



23 

Amongst peripheral indices, skin conductance response (SCR), heart rate (HR) acceleration, 

and pupil diameter dilation have been employed as indices of arousal, since they show increased 

activity in association with emotional stimuli, independently from valence (Bradley et al., 1990, 2008; 

Greenwald et al., 1989; Lang et al., 1993). As valence-specific indices, instead, zygomaticus muscle 

electromyographic (EMG) activity is typically increased in response to positive stimuli; while HR 

deceleration and corrugator EMG activity are larger, and startle eyeblink reflex is potentiated, in 

association to negative stimuli eliciting defensive motivation (Bradley et al., 1990; Cacioppo et al., 

1986; Dimberg, 1982, 1986; Gomez et al., 2009; Greenwald et al., 1989; Hare et al., 1970; Libby et 

al., 1973; Reynaud et al., 2012, 2012). The startle reflex has proven to be sensitive also to threat 

predictability, showing potentiation in anticipation of unpredictable relative to predictable threat 

(Gorka et al., 2016; Nelson et al., 2015). 

This rich literature (see Table 1.1) has yielded inconsistent results. Concerning the prediction 

generation stage, some studies found emotional (especially negative) S1s to elicit a greater processing 

(subtended by larger P2, N2, P3 and LPP amplitudes), and a heightened defensive motivation (as 

indexed by startle reflex potentiation to negative stimuli), than neutral S1s (Johnen & Harrison, 2019; 

Klorman & Ryan, 1980; Poli et al., 2007; Vallet et al., 2019; Yang et al., 2012), and to a greater extent 

in the uncertain condition (Lin, Gao, et al., 2014) or in conditions of unpredictable threat (Nelson et 

al., 2015; Nelson & Hajcak, 2017). Other studies, instead, found no effects of emotional valence or 

predictive meaning of cues on S1-ERPs amplitudes (Buodo et al., 2012; Gole et al., 2012). 

Interestingly, none of the fMRI studies focused on S1-related brain activations. 

Moving to prediction implementation, anticipatory resources as indexed by both ERPs/event-

related fields (ERFs) and peripheral indices were found to be modulated by (i) the emotional valence 

of S2s, with a larger pre-allocation before highly arousing (Poli et al., 2007) and emotional (Buodo 

et al., 2012; Perri et al., 2014; Vanderhasselt et al., 2014) stimuli, especially when fully predicted and 

negatively-valenced (Brown et al., 2008; Chen & Lovibond, 2016; Klorman & Ryan, 1980; Lin, Gao, 

et al., 2014; Onoda et al., 2007; Peng et al., 2012; Qiao et al., 2018; Schumacher et al., 2015; Takeuchi 
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et al., 2005; Vallet et al., 2019); and (ii) stimulus predictability, with a larger pre-allocation within 

the fully predictive condition (Johnen & Harrison, 2020). Some isolated studies found a larger pre-

allocation of resources also towards positively-valenced stimuli (Casement et al., 2008; Schumacher 

et al., 2015), while others found null results (Johnen & Harrison, 2019; Onoda et al., 2006; Recio et 

al., 2014). 

The anticipation of emotional stimuli seems to be subtended by neural activity within the 

following ROIs: right aINS, dlPFC, parahippocampal gyrus, ACC, SMA, parieto-occipital sulcus, 

bilateral OFC, thalamus, caudate nucleus, inferior parietal cortex, inferior prefrontal cortex (PFC), 

amygdala (Bermpohl et al., 2006b; Greenberg et al., 2015; Grupe et al., 2013; Nitschke et al., 2006; 

Sarinopoulos et al., 2010; Simmons et al., 2004). Valence-specific activations have been found within 

left dlPFC, medial prefrontal cortex (mPFC), right cerebellum, and nucleus accumbens when 

anticipating positively-valenced stimuli (Greenberg et al., 2015; Ueda et al., 2003); and within 

parahippocampal gyrus, right inferior PFC, right mPFC, right amygdala, left ACC, bilateral visual 

cortex, mINS, thalamus, hypothalamus, and striatum when anticipating negatively-valenced stimuli 

(Greenberg et al., 2015; Herwig, Abler, et al., 2007; Simmons et al., 2004; Ueda et al., 2003). 

Moreover, expecting a negative stimulus with high certainty (certain condition) was found to be 

associated with increased activation in ACC, ventrolateral PFC (vlPFC), insula and amygdala (Onoda 

et al., 2008). Predictive context-specific neural activations have also been found, with activity in the 

mPFC, inferior PFC, dlPFC, and dmPFC associated with certain experimental conditions (Ueda et 

al., 2003; M. Walter et al., 2009); and activity in the bilateral insula, right inferior frontal gyrus (IFG), 

thalamus and red nucleus linked to uncertain anticipation (i.e., non-predictive condition), 

independently from the emotional valence of subsequent S2 (Herwig, Kaffenberger, et al., 2007; 

Motzkin et al., 2014). 

As for the prediction updating stage, most studies replicated the well-known effect of 

enhanced sensory and attentional processing, as indexed by ERPs/ERFs and peripheral indices, for 

emotional than neutral stimuli (Buodo et al., 2012; Perri et al., 2014), with a valence-specific 
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advantage of negative stimuli (Brown et al., 2008; Gole et al., 2012; Johnen & Harrison, 2019; Lin et 

al., 2012, 2017; Lin, Jin, et al., 2015; Lin, Liang, et al., 2014; Lin, Schulz, et al., 2015; Lin, Xiang, et 

al., 2015; Peng et al., 2012; Qiao et al., 2018; Schumacher et al., 2015); while only a few studies 

found a valence-specific advantage also for positive over negative and neutral S2s (Lin et al., 2012; 

Lin, Jin, et al., 2015; Lin, Liang, et al., 2014; Schumacher et al., 2015). S2 emotional processing in 

affective cueing paradigms seems to be subtended by activity within the following ROIs: amygdala, 

aINS, ACC, mPFC, lateral PFC (lPFC), right dlPFC, right OFC, cerebellum, and occipitotemporal 

areas (Bermpohl et al., 2006b, 2006a; Nitschke et al., 2006). Regarding the predictive context-specific 

effects, evidence is highly controversial: some studies found enhanced attentional engagement 

towards S2s, independently from emotional valence, in the certain condition (Gole et al., 2012; 

Johnen & Harrison, 2020; Lin et al., 2012, 2017; Lin, Jin, et al., 2015; Lin, Liang, et al., 2014; Lin, 

Schulz, et al., 2015); whereas other studies found the opposite (Dieterich et al., 2016; Gole et al., 

2012; Johnen & Harrison, 2019; Lin, Schulz, et al., 2015; Lin & Liang, 2020; Qiao et al., 2018; Recio 

et al., 2014), especially in females (Jin et al., 2013), with processing under uncertainty supported by 

dlPFC, ACC, and mPFC activity (Schienle et al., 2010). 

Last, when considering the interactions between predictive context and S2 emotional valence, 

results remain controversial: there is evidence of enhanced processing of either negative (Lin et al., 

2016, 2020; Lin, Jin, et al., 2015; Lin, Liang, et al., 2014; Lin, Schulz, et al., 2015; Lin, Xiang, et al., 

2015; Peng et al., 2012) or positive (Recio et al., 2014; Schumacher et al., 2015) S2s in the certain 

than in the uncertain condition, but also opposing results suggesting a greater allocation of processing 

resources to either negative (Grupe & Nitschke, 2011; Lin et al., 2016, 2017, 2018; Lin, Jin, et al., 

2015; Nelson & Hajcak, 2017; Onoda et al., 2006; Peng et al., 2012; Recio et al., 2014; Yang et al., 

2012) or positive (Lin et al., 2020; Lin, Jin, et al., 2015) S2s in the uncertain as compared to the 

certain condition. Unexpected negative stimuli (i.e., negative S2s in the uncertain condition) seem to 

be processed by a brain network including the insula, the amygdala, and the right dlPFC (Ran et al., 

2016; Sarinopoulos et al., 2010); while the processing of positive stimuli is subtended by left dlPFC 
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activity in the certain condition (Ran et al., 2016), and by vlPFC, caudate nucleus, premotor and 

temporal cortex activity in the uncertain condition (Kaffenberger et al., 2010). 

Of all the studies, only a few investigated the reciprocal relationships either between the three 

stages of generation-implementation-updating, or between neural activity and subjective affective 

experience, mood ratings, or personality traits. It emerged that neural activity during the generation 

stage, as indexed by N2 amplitude, positively predicted CNV amplitude during the implementation 

stage (Vallet et al., 2019); while the relationship between implementation and updating might be 

either direct, with ISI-SPN amplitude positively predicting S2-P2 in the certain condition (Brown et 

al., 2008), or inverse, with ISI-locked pupil dilation and ACC activation negatively predicting S2-

locked pupil dilation and insula/amygdala activations, respectively (Sarinopoulos et al., 2010; 

Vanderhasselt et al., 2014). Moreover, concerning the implementation-related neural activity, ISI-

SPN amplitude has been found to positively predict subjective mood ratings (Qiao et al., 2018); right 

dlPFC and OFC activity positively predicted levels of positive and negative affect (Nitschke et al., 

2006); and brain areas associated with uncertain anticipation positively predicted participants’ 

depressiveness and neuroticism scores in the uncertain condition (Herwig, Kaffenberger, et al., 2007). 

Finally, updating-related left amygdala activity was found to positively predict subjective arousal 

ratings in response to emotional stimuli (Bermpohl et al., 2006a), while no significant relationship 

between S2-LPP amplitude and subjective valence ratings emerged (Johnen & Harrison, 2019). 

Overall, this large body of evidence can be re-interpreted within the predictive framework, 

offering some important insights about the neurocomputational processes developing along the three 

stages of the construction of affective predictions. In line with predictive coding, the data suggest that 

during prediction generation contextual information is extracted, presumably within unimodal and 

domain-specific sensory neural circuits under the top-down influence of multimodal agranular 

cortical regions. This process particularly favors the processing of negative stimuli, because of their 

motivational salience: negative valence, in fact, impacts on internal models’ adjustment more than 

positive valence (Joffily & Coricelli, 2013), decreasing confidence on priors (Hesp et al., 2021). 
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Furthermore, more processing effort is required to generate affective predictions when the predictive 

context conveys uncertain/unreliable probabilistic information. Since the available evidence lacks 

statistical regularity, more effort is needed to infer and encode the statistical structure of the observed 

inputs, in order to generate reliable and effective predictive models. The depth of information 

processing during prediction generation also influences the following implementation stage, 

coherently with predictive coding assumptions: predictions are used to predispose action, thus the 

more (and the more precisely) features are extracted from environmental cues during the generation 

stage, the more anticipatory resources are allocated during implementation. 

In the implementation stage the brain is kept busy with the pre-sensitization of relevant 

representations and with action preparation, consistently with predictive coding predictions: 

expecting an emotional stimulus with high certainty brings to a maximization of the pre-allocation of 

anticipatory resources, in order to “stay ready” to face the predicted scenarios. This process is 

coherently supported by the activation of brain areas involved in motor preparation, 

homeostasis/interoceptive adjustments, and cognitive control, and located both within the salience 

and the frontoparietal control networks. The amount of resources pre-allocated during the 

implementation stage is also related to the subjective experience of emotion, with a larger pre-

allocation of resources resulting in a more intense reported experience. 

Lastly, during prediction updating, emotional stimuli (especially negative) are prioritized, 

thus eliciting greater allocation of attentional resources, independently from stimuli being predicted 

or not. This is coherent with their motivational relevance, their potential impact on survival, and the 

subtended neural activation of the salience network; and it is correlated with subjective affective 

experience, since a larger neural activity during the updating stage predicts higher arousal ratings to 

stimuli. Nonetheless, when coming to differences between affective stimuli that match or mismatch 

predictions, the evidence is controversial. On the one hand, stimuli that match predictions have been 

found to elicit heightened processing, supported by activity of the salience network: this might be the 

consequence of the pre-sensitization of potentially relevant stimuli accomplished during the 



28 

implementation stage, which can leave some representations active, eventually facilitating their 

subsequent processing if they actually occur. This interpretation is supported by studies reporting a 

positive correlation between the amount of anticipatory resources during implementation and the 

depth of information processing during updating. On the other hand, stimuli that match predictions 

have been found to elicit reduced processing, a phenomenon known as “silencing” (Kok et al., 2019): 

predicted sensory signals are attenuated, and a good match between predictions and actual inputs 

results in less neural activity than a mismatch, where instead a prediction error arises, which must be 

minimized and projected back to higher levels of the hierarchy in order to update the internal models. 

This interpretation is supported by the coherent activation of the frontoparietal control network, and 

by evidence of a negative correlation between the amount of anticipatory resources during the 

implementation stage and the depth of information processing during updating. 

Despite its potentially crucial contribution, deriving from critically re-interpreting the body of 

evidence within a predictive coding framework, the literature on the anticipation of emotional stimuli 

presents some important gaps and methodological flaws. First, there is a huge variability in the kind 

of stimuli (some of which are not even emotional per se) and experimental tasks/paradigms, making 

it hard to compare results between studies. Second, studies mostly employed visual stimuli (with 

some exceptions using auditory tones as S1s), thus the construction of affective predictions within 

other sensory modalities, as well as potential cross-modality generalization effects, have never been 

investigated. Third, only extreme predictive contexts (certain vs. uncertain) have been typically 

implemented, while experimental conditions conveying more realistic, moderately predictive 

probabilistic information are rare. Fourth, studies investigating the whole process of construction of 

affective predictions, including all the three stages, their reciprocal relationships, and their potential 

correlation with subjective affective experience, are also rare. Fifth, affective contingency has been 

manipulated only at a global (block-wise) level, and never at a local (trial-by-trial) level. Sixth, 

affective cueing paradigms are typically instructed, i.e., participants are explicitly told the exact 

probabilistic ratio of affective contingencies prior to the experiment, leading to potential concerns 
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about the generalizability of results. In daily life, in fact, people automatically and implicitly learn 

contingencies from the environment, and infer the subtending statistical structure, by means of mere 

exposure. Seventh, the impact of prior experience on new affective predictions has never been 

investigated by directly manipulating it, although it is a crucial factor in prediction generation. Last, 

it is still under-investigated whether and how individual differences in potentially relevant behavioral, 

temperamental, and/or personality traits might interact with the construction of affective predictions. 

Amongst these traits, Intolerance of Uncertainty (IU) may be particularly influential in shaping 

affective predictions under various conditions of uncertainty, as it can interfere with the ability to 

assess levels of uncertainty in the present environment, and thus to extract the statistical regularities 

needed to build reliable internal models. Moreover, IU is increasingly viewed as a trans-diagnostic 

risk factor for a wide range of affective disorders, amongst which anxiety disorders (Carleton, 2016a, 

2016b; Einstein, 2014; Shihata et al., 2016; Tanovic, Gee, et al., 2018). For these reasons, the next 

paragraph will focus on IU, its relationships with peculiar behavioral patterns and psychopathology, 

and the experimental evidence investigating IU within affective cueing paradigms. 

1.4 INTOLERANCE OF UNCERTAINTY 

Intolerance of uncertainty (IU) is the dispositional characteristic that reflects individual 

differences in tolerating and adapting to uncertain situations (Carleton, 2012, 2016a, 2016b). It is 

defined as the inability to tolerate the aversive state triggered by a perceived lack of sufficient or 

salient information, sustained by the related perception of uncertainty (Carleton, 2016a, 2016b). In 

order to get a clearer definition of IU a distinction must be made between uncertainty and ambiguity: 

net of their partial conceptual overlaps (see Grenier et al., 2005 for a review), ambiguity is more 

focused on the here and now, thus it refers to situations characterized by ambiguous or equivocal 

features; while uncertainty is more focused on future events, i.e., situations eliciting potentially 

negative outcomes (Carleton, 2012). Two different components, involving separate psychological 

factors, are assumed to equally contribute to IU: a prospective component, subtended by a cognitive 
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factor of desire for predictability and for threat appraisal, and an inhibitory component, subtended by 

a behavioral factor of uncertainty-related action inhibition (Einstein, 2014; Shihata et al., 2016). IU 

builds upon the latent fear of the unknown (FOTU), a fundamental dispositional fear, expressed as 

the propensity to experience feelings of fear about the perceived absence of information at any level 

of information processing (Carleton, 2016a, 2016b). FOTU represents a common substrate shared by 

IU and several other higher-order constructs (see Carleton, 2016a for a comprehensive review), and 

it is assumed to be inherent, since uncertainty is appraised as intrinsically aversive without any need 

of a-priori learning, and evolutionarily supported, since a certain amount of fear when facing 

unknown situations might be adaptive for survival (Carleton, 2016a). 

IU is characterized by several cognitive, behavioral, psychophysiological, and neural facets 

that may broadly impact on affective experience at both implicit and explicit levels. Amongst the 

cognitive facets, individuals high in IU show increased attention to, and hypervigilance for, 

threatening and uncertain stimuli (Grupe & Nitschke, 2013; Shihata et al., 2016; Tanovic, Gee, et al., 

2018); they tend to appraise uncertainty as threatening irrespective of its probability and outcomes, 

and to consider the possibility of the occurrence of a negative event as unacceptable (Carleton, 2012, 

2016a; Dugas et al., 2005; Einstein, 2014; Grupe & Nitschke, 2013; Pepperdine et al., 2018; Shihata 

et al., 2016; Tanovic, Gee, et al., 2018); they systematically overestimate threat probability and cost 

(Grupe & Nitschke, 2013; Shihata et al., 2016; Tanovic, Gee, et al., 2018); they report heightened 

subjective certainty when anticipating the possible negative outcomes of an uncertain situation 

(Miranda et al., 2008; Shihata et al., 2016); they show deficient safety learning (Tanovic, Gee, et al., 

2018), and a reduced ability to use their safety appraisals (when accomplished) in order to inhibit 

anxiety (Cupid et al., 2021); they use avoidance and information seeking as coping strategies to face 

uncertainty (Carleton, 2016b; Grupe & Nitschke, 2013; Shihata et al., 2016; Tanovic, Gee, et al., 

2018); they typically engage more in worry and ruminations (Carleton, 2012; Koerner & Dugas, 

2008; Shihata et al., 2016; Tanovic, Gee, et al., 2018); they are characterized by a reduced distress 

tolerance (Fergus et al., 2013); and they show an intensified subjective affective experience and an 
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increased fear response to uncertain situations (Einstein, 2014), with potential impact on problem-

solving skills and cognitive tasks’ performance (Carleton, 2012). 

At the behavioral level, IU is associated with the activation of the behavioral inhibition system 

(BIS) and the fight-flight-freeze defensive response (Carleton, 2016b); the tendency to prefer 

immediate rather than delayed rewards (Shihata et al., 2016); reduced confidence towards risky 

decisions, and reduced propensity to change a decision in front of new information (Shihata et al., 

2016); slower decision times (Shihata et al., 2016); and uncertainty avoidance (Carleton, 2016a; 

Grupe & Nitschke, 2013; Tanovic, Gee, et al., 2018). 

At the psychophysiological level, higher IU is related to heightened physiological arousal 

(Shihata et al., 2016); either reduced or increased amplitudes in ERP components related to error or 

reward processing, and startle potentiation in conditions of uncertain threat (Carleton, 2016a; 

Tanovic, Gee, et al., 2018); reduced heart rate variability (HRV) during worry (Tanovic, Gee, et al., 

2018); increased SCRs to both safety and threat cues (Tanovic, Gee, et al., 2018); reduced emotional 

modulation of the LPP (MacNamara, 2018). 

Last, individuals high in IU have shown atypical neural activity within some brain areas: 

hyperactivation of amygdala, hippocampus, insula, ACC, OFC, vmPFC, dlPFC, right superior 

temporal sulcus (STS), and increased gray matter volume in the right superior temporal pole 

(Carleton, 2016a; Einstein, 2014; Shihata et al., 2016; Tanovic, Gee, et al., 2018). 

In addition to the abovementioned facets, IU has been recently shown to be able to account 

for statistically significant variance in several higher-order personality and temperamental traits (e.g., 

neuroticism, pessimism, anxiety sensitivity, trait anxiety, and negative affectivity), as well as in 

symptoms of affective psychopathology (e.g., anxiety disorders, depressive disorders, obsessive-

compulsive disorders, trauma- and stressor-related disorders, eating disorders, substance-use 

disorders) (Carleton, 2012, 2016a, 2016b; Einstein, 2014; Pepperdine et al., 2018; Shihata et al., 

2016). Thus, IU is increasingly considered as a broad trans-diagnostic cognitive vulnerability and 

maintaining factor for a wide range of affective disorders (Carleton, 2012; Einstein, 2014; Hong & 
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Cheung, 2015; Shihata et al., 2016). This paved the way for some interesting clinical implications, 

proposing IU as a potential early marker to identify people at risk of developing psychopathology, as 

well as a potential outcome measure to assess treatments’ effectiveness. Teaching people at risk how 

to minimize perceived uncertainty and/or how to increase their ability to tolerate uncertainty seems 

to be effective in supporting a significant reduction in clinically relevant symptoms of affective 

disorders, especially anxiety (Carleton, 2012, 2016b; Einstein, 2014; Shihata et al., 2016). 

Despite its prominent role as a clinically relevant risk factor, and despite its associated 

cognitive, behavioral, psychophysiological and neural patterns suggesting the presence of an altered 

underlying mechanism in the construction of affective predictions, a clear understanding of how 

individual differences in IU may interact with the assessment of environmental uncertainty in 

modulating affective predictions is far from being fully addressed by the literature. The studies that 

investigated the effects of IU within affective cueing paradigms are few (see Table 1.2), and even 

more scarce are the theoretical contributions that attempted to explain some typical IU facets by 

adopting concepts from the predictive coding framework (Tanovic, Gee, et al., 2018). Amongst the 

existing studies, IU has been mainly measured through the Intolerance of Uncertainty Scale (IUS), 

either in its original (27-item) (Freeston et al., 1994) or short (12-item) (Carleton et al., 2007) forms. 

Furthermore, as a common practice when dealing with continuous variables (see Iacobucci et al., 

2015 for more details), authors mostly divided their samples into two groups (high- vs. low-IU) 

according to the IUS scores distribution. 
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Table 1.2 Studies investigating IU with affective cueing paradigms and relative details about experimental stimuli, tasks, and manipulations. 

Affective contingency is expressed in terms of percentage of experimental trials in which S1 was paired with the same S2 valence: 100% represents the certain condition, between 

80% and 70% a highly predictive condition, and 50% the uncertain condition. The last column shows which paradigm stages (S1, ISI, S2) and ERPs/psychophysiological indices 

have been analyzed. EMG = electromyography, LPP = late positive potential, NEG = negative, NEU = neutral, POS = positive, SCR = skin conductance response, SPN = stimulus 

preceding negativity. 

ERPs 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective contingency 

Experimental 

paradigm 

Stages investigated (and 

ERP components targeted 

for each) 

(Gole et al., 2012) Symbolic 

visual cues 

Affective 

pictures 

NEG, NEU, 

uncertain 

NEG, NEU 100% vs. 50% S1-S2 S1 (P2), S2 (P2, N2, LPP) 

(Tanovic, 

Pruessner, et al., 

2018) 

Card Electric 

shocks 

Certain shock, 

certain no-shock, 

uncertain 

NEG from 0% to 100% Threat of shock S1 (P2), ISI (SPN) 

fMRI 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective contingency 

Experimental 

paradigm 

Stages investigated 

(Morriss et al., 

2021) 

Symbolic 

visual cue 

Electric 

shocks 

Certain shock, 

certain no-shock, 

uncertain 

NEG 100% vs 50% Threat of shock S1 

(Schienle et al., 

2010) 

Symbolic 

visual cues 

Affective 

pictures 

NEG, NEU, 

uncertain 

NEG, NEU 100% vs. 50% S1-S2 S2 

(Simmons et al., 

2008) 

/ / / / / Wall of faces ISI 

Peripheral psychophysiological indices 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective contingency 

Experimental 

paradigm 

Stages investigated (and 

peripheral indices targeted 

for each) 

(Bennett et al., 

2018) 

Acoustic 

tones 

Electric 

shocks 

Certain shock, 

certain no-shock, 

uncertain 

NEG 100% vs 50% Threat of shock S1 (startle) 

(Chen & 

Lovibond, 2016) 

Symbolic 

visual cue 

Affective 

pictures 

NEG, NEU, 

uncertain, ambiguous 

NEG, NEU 100% vs. 50% S1-S2 ISI (SCR) 

(Chin et al., 2016) Symbolic 

visual cues 

Electric 

shocks 

/ NEG 50% vs 75% 

reinforcement rate 

Fear conditioning S1 (startle) 

(Grupe & 

Nitschke, 2011) 

Symbolic 

visual cues 

Affective 

pictures 

NEG, NEU, 

uncertain 

NEG, NEU 100% vs. 50% S1-S2 S2 (SCR) 

(Morriss, 2019) Symbolic 

visual cue 

Affective 

pictures 

NEG, NEU, 

uncertain 

NEG, NEU 100% vs 50% S1-S2 S1 (SCR, EMG), S2 (SCR, 

EMG) 
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(Morriss et al., 

2020) 

Symbolic 

visual cue 

Electric 

shocks,  

Certain shock, 

certain no-shock, 

uncertain 

NEG 100% vs 50% Threat of shock S1 (SCR, pupil dilation, 

EMG) 

(Morriss et al., 

2021) 

Symbolic 

visual cue 

Electric 

shocks 

Certain shock, 

certain no-shock, 

uncertain 

NEG 100% vs 50% Threat of shock S1 (SCR) 

(Nelson & 

Shankman, 2011) 

Acoustic 

tones 

Electric 

shocks 

Certain shock, 

certain no-shock, 

uncertain 

NEG 100% vs 50% Threat of shock S1 (startle) 

(Nelson et al., 

2016) 

Acoustic 

tones 

Electric 

shocks 

Certain shock, 

certain no-shock, 

uncertain 

NEG 100% vs 50% Threat of shock S1 (startle) 

Behavioral indices 

Study S1/cue S2/target S1/cue emotional 

valence  

S2/target 

emotional 

valence  

S1-S2/cue-target 

affective contingency 

Experimental 

paradigm 

Stages investigated 

(Kirschner et al., 

2016) 

Symbolic 

visual cues 

Affective 

pictures 

NEG, POS, uncertain NEG, POS, 

ambiguous 

100% vs 50% S1-S2 S2 

(Ranney et al., 

2019) 

/ Affective 

film clips 

/ NEG / Affective clips 

viewing 

Anticipation period, S2 
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The results reported in this literature (see Table 1.2) are fragmentary and sometimes in conflict 

with what can be reasonably predicted according to the theoretical models of IU (Carleton, 2016a; 

Einstein, 2014; Grupe & Nitschke, 2013; Shihata et al., 2016). Regarding the generation stage, higher 

IU was found to be associated with either heightened defensive system activation, early automatic 

attentional allocation, and negative mood in conditions of uncertain threat (Chen & Lovibond, 2016; 

Chin et al., 2016; Gole et al., 2012; Nelson et al., 2016); or attenuated processing and aversive 

response to uncertain threat (Morriss et al., 2020; Nelson & Shankman, 2011; Tanovic, Pruessner, et 

al., 2018). Other studies, instead, found no differences between high- and low-IU participants in S1-

locked psychophysiological responses (Bennett et al., 2018; Morriss, 2019). The S1-derived 

estimation of threat, based on instructed uncertain contingencies, was subtended by an increased 

phasic activation of mPFC and dmPFC in high-IU individuals (Morriss et al., 2021). 

Focusing on prediction implementation, some studies found no significant effects of IU on 

neural processing and expectancy ratings during the ISI (Grupe & Nitschke, 2011; Morriss et al., 

2021; Tanovic, Pruessner, et al., 2018); while others found that high-IU participants showed increased 

threat expectancy (Chen & Lovibond, 2016), heightened distress and worry (Ranney et al., 2019), 

and increased insula activation (Simmons et al., 2008) during the anticipation period. 

As for prediction updating stage, some evidence suggest that IU might be associated with 

either dampened processing of affective uncertain stimuli (Gole et al., 2012); or intensified threat 

appraisal, retrospective estimation of threat occurrence, and subjective affective ratings, subtended 

by an increased activity in the amygdala and a reduced activity in dlPFC, mPFC and ACC (Chen & 

Lovibond, 2016; Kirschner et al., 2016; Schienle et al., 2010). Other studies, instead, failed to find 

significant effects of IU on S2-locked psychophysiological responses (Grupe & Nitschke, 2011; 

Morriss, 2019). Evidence suggesting an attenuated processing of both cues and targets in uncertain 

conditions is in contrast with the assumption that uncertainty is aversive per se and is associated with 

a more intense subjective affective experience and a heightened physiological reactivity, as predicted 
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by the theoretical models of IU (Carleton, 2016a; Einstein, 2014; Grupe & Nitschke, 2013; Shihata 

et al., 2016). 

Altogether, re-interpreting results within a predictive framework, data suggest that during 

prediction generation individuals with high IU levels deploy more processing resources towards 

environmental cues conveying uncertain/unreliable (and thus, potentially threatening) probabilistic 

information, due to their attentional bias prioritizing threat and activation of the defensive system. At 

a qualitative level, the processes involved in the generation stage seem to be unaffected by IU, since 

they are the same as those previously found in affective cueing paradigms independently from 

individual differences in IU (cf. § 1.3); but at the quantitative level the amount of processing resources 

allocated seems to differ as a function of IU, increasing with higher levels of IU. Nevertheless, the 

estimation of uncertainty levels and threat probability which should be derived from environmental 

cues is likely disrupted in individuals with high IU levels, since they show a systematic 

overestimation of threat and a consequent heightened deployment of resources (in the attempt to solve 

the perceived uncertainty) during the subsequent implementation stage. Thus, it seems that higher IU 

results in a less efficient use of contextual information (inferred during the generation stage) in top-

down regulating the processes developing during implementation (i.e., pre-sensitization of relevant 

stimuli representations, simulation of action plans, motor preparation; cf. Figure 1.1). Finally, the 

evidence supports an overall affect intensification effect in high-IU individuals (both at the neural 

and subjective levels) during prediction updating, coherently with what predicted by theoretical 

models of IU (Einstein, 2014). Furthermore, people characterized by high IU levels might show also 

a disrupted prediction error signaling during prediction updating (Paulus & Stein, 2006; Tanovic, 

Gee, et al., 2018). This disruption could be subtended by altered connectivity patterns between the 

dorsal portion of the ACC (responsible of the initial comparison and mismatch detection between 

predicted and actual incoming signal) and the rostral portion of the ACC (allocating later attentional 

control resources) on the one hand, and the insula (which integrates information transmitted by the 

ACC with somatic arousal states and threat expectancy estimates) on the other hand (Einstein, 2014). 
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A persistent alteration in prediction error signaling might evolve in a chronic inability to effectively 

reduce perceived uncertainty, and thus in an increased allostatic load, which can eventually contribute 

to systemic and neural damage or malfunction, making high-IU individuals more likely to develop 

(psycho)pathologies (Peters et al., 2017). 

Hence, from the literature review it emerged that the mechanisms underlying the interaction 

between IU and the construction of affective predictions are still unclear. A better understanding of 

how individual differences in IU might impact on the construction of affective predictions could 

therefore represent a valuable contribution not only to advancing knowledge about the mechanisms 

of affective predictions per se, but also to unraveling whether high-IU individuals may be 

characterized by specific alterations in affective predictions (thus, predisposing to psychopathology), 

eventually leading to promising clinical implications. As a further critical element, dichotomizing 

IUS scores into groups (a common practice in research dealing with continuous variables) might have 

contributed to the flattening of individual differences and to loss of information and statistical power 

(Royston et al., 2006), thus calling into question the generalizability and effective theoretical 

contribution of existing results. 

Then, considering the affective cueing literature published to date, future research should try 

to overcome the limitations of existing studies by reframing extant paradigms within a predictive 

coding framework. If predictions are a constitutive feature of affective experience, then it could be 

beneficial to develop new experimental designs that systematically investigate whether stimuli 

(un)predictability contribute to subjective affective experience and its neural correlates (Lee et al., 

2021). In doing so, new research might take advantage of the potential strengths offered by affective 

cueing paradigms in validly and flexibly approximating the process of construction of affective 

predictions (including all the stages and their reciprocal relationships), and in allowing to potentially 

manipulate several crucial modulating factors (e.g., contextual probabilistic information, sensory 

modality involved, prior experience). The present research project was purposely designed to 

implement novel applications of (and to develop some modifications to) the existing affective cueing 
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paradigms, with the aim to unravel the neural and subjective mechanisms underlying the construction 

of affective predictions as a function of either contextual information or prior experience, and 

individual differences in IU. 

1.5 THE RESEARCH PROJECT 

The present research project aimed to answer three main research questions: 

RQ1. How does contextual information of different predictive value modulate the neural 

correlates of affective predictions construction? 

RQ2. How does prior experience affect the construction of new affective predictions, both 

within and across sensory modalities, at the subjective experience level? 

RQ3. How do individual differences in Intolerance of Uncertainty modulate the construction 

of affective predictions as a function of contextual information and prior experience? 

To answer these questions we ran two hd-EEG studies (Study 1, Study 6), and four behavioral 

studies pre-registered on the Open Science Framework (OSF) (Study 2, Study 3, Study 4, Study 5) 

(see Table 1.3). In Studies 1 and 6 we measured cortical activity during an uninstructed, passive 

viewing S1-S2 paradigm, in which unbeknownst to participants we manipulated the predictive value 

of S1 in terms of certain (100%), moderately predictive (75%), and uncertain (50%) affective 

contingency between S1 and S2. We manipulated emotional valence at three levels, employing 

standardized affective faces and pictures with positive (POS), negative (NEG), or neutral (NEU) 

valence as S1s and S2s, respectively. In Study 6 we also measured individual differences in IU 

through the IUS. In Studies 2 to 5, instead, we employed two different S1-S2 paradigms as a learning 

and a test phase, respectively. We used colored circles as S1s. We manipulated emotional valence at 

two levels, employing NEG or NEU standardized affective pictures (Studies 2, 4 and 5) or sounds 

(Study 3) as S2s. Participants were randomly assigned to the certain (CG) or the uncertain (UG) 

experimental groups, and the learning phase was either uninstructed (Studies 2, 3, 4) or implicit 

(Study 5). During the learning phase participants in the CG were presented with a certain (100%) S1-
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S2 affective contingency, while the UG experienced an uncertain (50%) affective contingency. 

During the test phase both groups were presented with a new S1-S2 paradigm with a more realistic 

75% affective contingency, ambiguous (Study 4) or unambiguous (Studies 2, 3 and 5) S1s, and visual 

(Studies 2, 4 and 5) or auditory (Study 3) S2s. In Studies 2 to 5 we also collected IUS scores. We 

focused on the subjective affective experience reported during the test phase, as assessed in terms of 

the expected valence of the upcoming S2s (i.e., expectancy ratings) and the experienced valence and 

intensity of S2s (i.e., valence and arousal ratings).  

Study 1 aimed to answer RQ1, by investigating the modulating role of contextual information 

on the neural correlates of affective predictions construction. Studies 2 to 5 aimed to answer both 

RQ2, by directly manipulating prior experience in terms of certain vs. uncertain affective 

contingency, and RQ3, by analyzing how individual differences in IU might affect these processes. 

Study 6 aimed to answer RQ3, by exploring if IU predicted the neural correlates of affective 

predictions’ construction depending on contextual uncertainty levels. 
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Table 1.3 Studies of the research project. 

For each study we report the research question (RQ) tackled, the type (hd-EGG vs. behavioral), the sample size (N), the type of stimuli employed as S1s and S2s, the main variables 

measured, and the permanent links to data repository and/or OSF pre-registration. 

Study RQ Type N S1 S2 Main variables measured Data/OSF link 

Study 1 RQ1 hd-EEG 31 Affective faces Affective pictures ERPs, brain sources activity https://doi.org//10.6084/m9.figshare.12951782 

Study 2 RQ2, 

RQ3 

Behavioral 200 Colored circles Affective pictures Expectancy ratings, valence 

ratings, arousal ratings, IUS 

https://osf.io/ef9q7/ 

Study 3 RQ2, 

RQ3 

Behavioral 200 Colored circles Affective pictures 

(learning phase) and 

affective sounds 

(test phase) 

Expectancy ratings, valence 

ratings, arousal ratings, IUS 

https://osf.io/wcy9r/ 

Study 4 RQ2, 

RQ3 

Behavioral 125 Colored circles 

(ambiguous vs. 

unambiguous in 

the test phase) 

Affective pictures Expectancy ratings, valence 

ratings, arousal ratings, IUS 

https://osf.io/gdr3b/ 

Study 5 RQ2, 

RQ3 

Behavioral 125 Colored circles Affective pictures Expectancy ratings, valence 

ratings, arousal ratings, IUS 

https://osf.io/z5esb/ 

Study 6 RQ3 hd-EEG 36 Affective faces Affective pictures ERPs, brain sources activity, IUS https://doi.org//10.6084/m9.figshare.13560569 

https://doi.org/10.6084/m9.figshare.12951782
https://osf.io/ef9q7/
https://osf.io/wcy9r/
https://osf.io/gdr3b/
https://osf.io/z5esb/
https://doi.org/10.6084/m9.figshare.13560569
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CHAPTER 2 

THE ROLE OF CONTEXTUAL INFORMATION 

 

“Oft expectation fails, and most oft there / 

Where most it promises” 

William Shakespeare 

 

2.1 INTRODUCTION 

Imagine you see a masked person running towards you at night. If you are walking down a 

lonely street, where you do not expect to meet anyone, you will likely experience a feeling of fear. If 

it is Halloween night, instead, you probably will not even notice the masked man, since you 

reasonably expect to see a lot of masked people. You may therefore make meaning of the same 

sensory input (i.e., a masked person) tapping into different conceptual knowledge. This can eventually 

lead to opposite affective experiences (i.e., fear vs. enjoyment), depending on the available contextual 

probabilistic information (i.e., how likely it is to encounter certain kind of stimuli in a specific 

context). 

This example suggests how affective experience can remarkably change depending on what 

you expect to face. Recently, the role of expectancy has been redescribed within predictive models 

of emotion (Barrett, 2017; Seth & Friston, 2016), according to which the brain, starting from its 

internal models, builds predictions about incoming (affective) stimuli, and continuously tests them 

against inputs. Events that meet predictions are silenced, and their processing is inhibited; while 

unpredicted information is encoded as a prediction error, and used to adjust future predictions (see § 

1.2). Prediction construction, thus, requires three neurocomputational stages: prediction generation, 

implementation, and updating (see Figure 1.1). 
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The brain system supporting allostasis and interoception has been suggested as the neural 

substrate for the construction of affective predictions (Barrett, 2017; Seth & Friston, 2016) (see § 

1.2). This system includes several cortical regions, which are part of three main networks: the DMN 

(Raichle, 2015), the salience network (Seeley et al., 2007), and the frontoparietal control network 

(Dosenbach et al., 2007). All these networks, and the functions they subtend, play a pivotal role in 

upholding the constant cycle of generation-implementation-updating of emotional predictions (Bar, 

2007; Knill & Pouget, 2004). Nevertheless, it is still unclear how this neurocomputational model 

displays in the construction of affective predictions across conditions of different predictive value. 

Therefore, in Study 1 we aimed to unravel how different probabilistic contextual information 

can modulate the neural correlates of affective predictions construction (see RQ1, § 1.5). We built on 

the logic of extant affective cueing paradigms (cf. § 1.3) by implementing a novel S1-S2 paradigm, 

in which we manipulated the predictive value of S1 in terms of certain (100%), moderately predictive 

(75%), and uncertain (50%) affective contingency between S1 and S2. Furthermore, we employed 

standardized emotional faces and pictures, with positive (POS), negative (NEG), or neutral (NEU) 

valence, as S1s and S2s, respectively. This paradigm allowed us to separately investigate the three 

stages of prediction construction, with S1 processing reflecting prediction generation, the ISI between 

S1 and S2 the implementation stage, and S2 the updating stage (see § 1.3). 

Extant ERP literature investigating emotional anticipation (see Table 1.1) is controversial. 

Some studies found emotional (especially negative) S1s eliciting a greater attentional engagement 

than neutral S1s (Johnen & Harrison, 2019; Klorman & Ryan, 1980; Poli et al., 2007; Yang et al., 

2012), and to a greater extent in the uncertain condition (Lin, Gao, et al., 2014); while other studies 

found no effects of emotional valence on S1 processing (Buodo et al., 2012; Gole et al., 2012). 

Focusing on ISI, anticipatory resources were found to be modulated by (i) the emotional valence of 

upcoming S2s, with a larger pre-allocation before highly arousing (Poli et al., 2007) and emotional 

(Buodo et al., 2012) stimuli, especially when expected and negatively-valenced (Klorman & Ryan, 

1980; Lin, Gao, et al., 2014; Peng et al., 2012; Qiao et al., 2018; Takeuchi et al., 2005); and (ii) stimuli 
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predictability, with a larger mobilization within the certain condition (Johnen & Harrison, 2020). As 

for S2 processing, some studies found an attention enhancement towards expected S2s (Gole et al., 

2012; Johnen & Harrison, 2020; Lin et al., 2012), while others found the opposite (Dieterich et al., 

2016; Johnen & Harrison, 2019; Qiao et al., 2018; Recio et al., 2014). Emotional valence seemed to 

interact with stimuli predictability, leading attention to an enhancement towards positive and to a 

reduction towards negative S2s within the certain condition (Lin et al., 2020). 

Amongst the fMRI studies investigating emotional anticipation (see Table 1.1), the bilateral 

insula and the ACC were found to be consistently associated with the anticipation of unexpected 

(especially negative) stimuli (Greenberg et al., 2015; Motzkin et al., 2014; Sarinopoulos et al., 2010), 

while the PFC was involved in the anticipation of expected (negative) stimuli (Onoda et al., 2008; 

Ueda et al., 2003). Nevertheless, these studies suffered from the fMRI coarse temporal resolution, 

due to which it is difficult to disentangle the temporal dynamics of the processes developing within 

the various stages of prediction construction. For these reasons, in Study 1 we chose to employ hd-

EEG. Due to its optimal compromise between spatial and temporal resolution (Michel & Murray, 

2012), it allowed to provide a compelling comprehensive evidence on affective prediction 

construction, narrowing the gap between low-density ERP and fMRI studies. 

Based on extant ERP research employing affective cueing paradigms (see Table 1.1), we 

chose to target the following ERP components for each stage of prediction construction. Covering 

the prediction generation stage, we focused on S1-N170 component, which is sensitive to stimuli 

predictability, and reflects structural encoding and a coarse processing of emotional facial expressions 

(Bentin et al., 1996; Blau et al., 2007; Robinson et al., 2018; Wieser & Brosch, 2012). Concerning 

prediction implementation, we targeted the CNV (W. G. Walter et al., 1964), which reflects the 

orientation of attention towards motivationally relevant stimuli (early CNV) and the motor 

preparation for a required or possible action (late CNV), and it is sensitive to predictive complexity 

or temporal expectancy (Chennu et al., 2013; Gómez et al., 2019; Mento, 2013; Mento et al., 2015). 

Regarding prediction updating, we marked both early and late S2-ERPs, such as the MMN, indexing 
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the early automatic processing of stimulus deviance and its associated prediction error (Chennu et al., 

2013; Stefanics et al., 2018); the P2, signaling the degree of updating of internal models after 

experiencing a new event (Gómez et al., 2019; Kimura & Takeda, 2015); and the LPP, an index of 

motivated and sustained attention to emotional stimuli, also sensitive to stimulus predictability 

(Hajcak et al., 2010; Johnen & Harrison, 2019, 2020; Lin et al., 2020; Schupp et al., 2000). 

Consistently with previous ERP literature (cf. § 1.3), in the prediction generation stage we 

hypothesized (H1a) emotional (especially negative) S1s to elicit a larger N170 (Bentin et al., 1996; 

Blau et al., 2007; Johnen & Harrison, 2019; Klorman & Ryan, 1980; Poli et al., 2007; Yang et al., 

2012), with (H1b) stronger effects in less predictable conditions (Lin, Gao, et al., 2014; Robinson et 

al., 2018). In the implementation stage we expected to find (H2) a larger CNV in the certain condition 

(100%) (Johnen & Harrison, 2020), especially for negative stimuli (Klorman & Ryan, 1980; Lin, 

Gao, et al., 2014; Peng et al., 2012; Qiao et al., 2018; Takeuchi et al., 2005). Lastly, within the 

updating stage we hypothesized (H3a) incongruent S2s in moderately predictive (75%) and uncertain 

(50%) conditions to elicit lager P2/MMN amplitudes, signaling the prediction error (Chennu et al., 

2013; Kimura & Takeda, 2015; Stefanics et al., 2018). We also expected (H3b) LPP to be larger in 

the certain (100%) condition (Johnen & Harrison, 2020) and, (H3c) within this condition, to find 

larger amplitudes to positive and smaller amplitudes to negative S2s (Lin et al., 2020). 

STUDY 1 

2.2 METHODS 

2.2.1 PARTICIPANTS 

Italian-speaking volunteer undergraduates at the University of Padua completed an online 

survey evaluating inclusion criteria for the study: absence of neurological/psychiatric disorders; 

normal or corrected-to-normal vision; no medication taken; right-handedness, as assessed by the 

Edinburgh Handedness Inventory (Oldfield, 1971); no high blood-injection-injury fear, as assessed 
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by the Fear Survey Schedule (Wolpe & Lang, 1964). Since some stimuli depicted gory scenes, we 

included the last criterion for ethical reasons, to discard highly fearful participants who scored 4 on 

items concerning blood, injuries, weapons (0-4 score). 

Among the students screened, 31 participants met the inclusion criteria and took part in the 

study. The sample size was based on previous ERP research using affective cueing paradigms (Johnen 

& Harrison, 2020; Lin et al., 2020). Data from 5 participants were discarded after Emotional 

Recognition Task scoring (see § 2.2.2). 

The final sample included 26 participants (10 males, age: M = 23.42, SD = 2, range = 20-29). 

All participants signed an informed consent; the study was approved by the Ethical Committee for 

the Psychological Research of the University of Padua (protocol no. 2859) and was conducted in 

accordance with the Declaration of Helsinki. 

2.2.2 STIMULUS MATERIAL AND PROCEDURE 

Upon arrival, participants seated in a dimly lit room, at a viewing distance of 90 cm from a 

computer screen. They received information about EEG montage and the experimental task. Then, 

an elastic 128-channel EEG net was applied. 

A computerized S1-S2 paradigm was presented on a 24-inch monitor (1280 × 1024 pixel 

resolution). Emotional faces from the NimStim Set of Facial Expressions (Tottenham et al., 2009) 

were employed as S1s, and affective pictures from the International Affective Picture System (IAPS) 

(Lang et al., 2008) as S2s. S1s were 24 different colored pictures depicting 4 male and 4 female 

Caucasian models, each posing fearful, happy and neutral expressions. Each facial expression 

(fearful, happy, and neutral) was presented four times with the male faces, and four times with the 

female faces. Every picture was repeated 15 times within the whole experiment. S2s were 120 colored 

pictures: 40 high-arousing negative, 40 high-arousing positive, and 40 low-arousing neutral pictures. 

Every picture was repeated 3 times within the whole experiment. Two additional S1s (1 male and 1 

female, posing angry and surprised expressions) and 4 additional S2s (2 low-arousing positive and 2 
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low-arousing negative) were selected for practice trials. NimStim and IAPS pictures numbers, sorted 

by emotional valence, are listed in Table 2.1. Positive and negative pictures did not differ for mean 

arousal standardized ratings (mean (M) = 6.43 and 6.44, standard deviation (SD) = 0.46 and 0.62, 

respectively; t(93) = 0.12, p = .9). S1s and S2s were presented pseudo-randomly (no more than 3 

subsequent same-valence couplings) in their original size, in the center of the screen against a black 

background, through E-prime software (Schneider et al., 2010). 

 

Table 2.1 List of NimStim and IAPS picture numbers used as S1s and S2s in Studies 1 and 6, sorted by valence. 

POS = positive, NEG = negative, NEU = neutral 

Valence NimStim IAPS 

POS 

01F_HA_O; 03F_HA_O; 

06F_HA_O; 09F_HA_O; 

28M_HA_O; 33M_HA_O; 

34M_HA_O; 36M_HA_O 

4647; 4651; 4652; 4653; 4656; 4658; 4659; 4664; 4666; 4669; 

4670; 4672; 4680; 4683; 4687; 4690; 4694; 4695; 4800; 4810; 

5621; 8021; 8030; 8031; 8034; 8040; 8080; 8160; 8161; 8178; 

8179; 8180; 8185; 8186; 8193; 8200; 8210; 8370; 8400; 8490 

NEG 

01F_FE_O; 03F_FE_O; 06F_FE_O; 

09F_FE_O; 28M_FE_O; 

33M_FE_O; 34M_FE_O; 

36M_FE_O 

3000; 3010; 3015; 3030; 3051; 3053; 3060; 3068; 3071; 3080; 

3100; 3102; 3110; 3120; 3130; 3140; 3150; 3400; 3550; 6190; 

6200; 6210; 6211; 6213; 6230; 6242; 6243; 6250; 6260; 6300; 

6312; 6313; 6315; 6350; 6360; 6510; 6530; 6540; 6550; 9405 

NEU 

01F_NE_O; 03F_NE_O; 

06F_NE_O; 09F_NE_O; 

28M_NE_O; 33M_NE_O; 

34M_NE_O; 36M_NE_O 

7000; 7002; 7004; 7006; 7009; 7010; 7020; 7025; 7030; 7031; 

7034; 7035; 7036; 7037; 7039; 7040; 7041; 7050; 7052; 7056; 

7060; 7080; 7090; 7100; 7110; 7130; 7140; 7150; 7170; 7175; 

7211; 7217; 7224; 7233; 7234; 7235; 7491; 7495; 7500; 7510 

 

At the beginning of the task participants read the on-screen instructions at their own pace. 

They were told that they would see a face followed by a picture and that they only had to look at the 

screen, trying to move as little as possible. Practice session began as they pressed the spacebar, and 

it included 2 congruent (i.e., same-valence S1-S2 pairs) and 2 incongruent (i.e., different-valence S1-

S2 pairs) trials. 

Each S1 was presented for 500 msec, followed by a fixed ISI of 2000 msec, in which the 

screen remained black. Then S2 was presented for 1500 msec. The inter-trial interval (ITI) – a white 

fixation cross against a black background – randomly varied between 800 and 1200 msec. The total 

number of trials was 360. 
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S1-S2 affective contingency was manipulated through 3 blocks of 120 trials each. In 100% 

block, S1 and S2 were always congruent, that is S1 was fully predictive of S2 valence. In 75% block, 

S1 and S2 were congruent in the 75% of the trials, that is S1 was moderately predictive of S2 valence. 

In 50% block, S1 was randomly followed by a positive, negative, or neutral S2, that is S1 was 

unpredictive of S2 valence. Blocks were presented seamlessly, with brief random breaks and a 

between-subjects counterbalanced order. No explicit information was given to participants about the 

different between-blocks S1-S2 probabilistic ratio. 

After the S1-S2 paradigm, participants completed a self-paced computerized Emotional 

Recognition Task. For each S1, presented in random order, participants had to select which emotion 

best represented the facial expression, choosing between anger, disgust, fear, happiness, sadness, 

surprise, and no emotion. The order of choice options was random to avoid automaticity in 

responding. Percentage of correct responses was computed for each participant. The Emotional 

Recognition Task was used to check whether S1 valence was correctly recognized by all participants, 

and participants who scored less than 60% accuracy were discarded. 

At the end of the task, the experimenter orally asked each participant if during the S1-S2 

paradigm they had caught any relationship between the face and the picture. Participants answers 

were verbatim written down by the experimenter, and qualitatively analyzed after the experiment. 

This interview aimed to ensure that the exact S1-S2 probabilistic ratio had remained implicit for each 

participant, and to discard those who might have caught the experimental manipulation. Participants 

only reported to have caught a general within-trials affective congruency/incongruency, but none of 

them reported the precise probabilistic ratios of the blocks. At the end of the session each participant 

was given information about the research and thanked for the participation (see Figure 2.1 for a 

schematic representation of the experimental paradigm). 
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Figure 2.1 Schematic representation of Study 1 experimental paradigm. 

Example sequence of events and their duration for a trial, according to the block (100%, 75%, 50%), S1 valence (POS, 

NEG, NEU) and S2 valence (POS, NEG NEU). In 100% block the face (S1) was followed by a picture (S2) of the same 

valence in 100% of the trials; in 75% block the face (S1) was followed by a picture (S2) of the same valence in 75% of 

the trials, and of different valence in 25% of the trials; in 50% block the face (S1) was followed by a picture (S2) of the 

same valence in 50% of the trials, and of different valence in the other 50% of the trials. Participants were asked to 

passively view the stimuli while their EEG signal was recorded. 

ISI = inter-stimulus interval, ITI = inter-trial interval. The text is not drawn to scale. 

 

2.2.3 ELECTROPHYSIOLOGICAL RECORDINGS, BRAIN SOURCE MODELLING AND DATA ANALYSIS 

The study has a 3 (block: 100%, 75% and 50%) × 3 (S1 or S2 valence: POS, NEG, NEU) 

within-subjects design. Trials of the 75% and 50% blocks in which the S1 and the S2 had the same 

valence were coded as congruent, whereas trials in which the S1 and the S2 had different valence 

were coded as incongruent (S2 congruency, within-subjects: congruent vs. incongruent). 

During the S1-S2 paradigm, EEG was continuously recorded using a Geodesic hd-EEG 

System (EGI® GES-300), through a pre-cabled 128-channel HydroCel Geodesic Sensor Net 

(HCGSN-128). All electrodes were referenced online to the vertex. Scalp voltages were amplified 

through a 24-bit DC amplifier. The sampling rate was 500 Hz. The impedance was kept below 60 kΩ 

for each sensor. EEG recordings were preprocessed using the MATLAB toolbox EEGLAB 14.1.2b 

(Delorme & Makeig, 2004). EEG signal was downsampled at 250 Hz and filtered with a digital band-

pass filter (0.01-40 Hz, -6dB) using a Hamming windowed sinc finite impulse response filter (filter 

order = 82500). To compute ERPs, continuous EEG was segmented into 4500 msec epochs from 500 
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msec before to 4000 msec after S1 onset. Signal was then baseline-corrected from 500 msec before 

to S1 onset for S1-locked ERP analysis, and from 200 msec before to S2 onset for S2-locked ERP 

analysis. Epochs were digitally inspected through the TBT EEGLAB plug-in, applied to electrodes 

from E40 to E100. The TBT algorithm performed an automatic rejection of epochs and interpolation 

of channels on an epoch-by-epoch basis: channels that exceeded a differential average amplitude of 

±150 μV on more than 30% of all epochs were marked as bad, excluded and subsequently interpolated 

with the spherical spline interpolation method (Ferree, 2006; Perrin et al., 1989). Epochs having more 

than 10 bad channels were also excluded. Artifact-reduced data were then subjected to Independent 

Component Analysis (ICA) (Stone, 2002) using the Infomax algorithm (Bell & Sejnowski, 1995). 

All independent components were visually inspected to discard those related to eye blinks, eye 

movements, heartbeat, and muscular signals, according to their morphology and scalp distribution. 

The remaining components were projected back to the electrode space. Epochs were further visually 

inspected and residual artifact-contaminated trials were rejected. Experimental conditions did not 

differ for final number of epochs, except for S2 congruency, which necessarily implies a different 

numerosity between congruent and incongruent trials (see Table 2.2). Data were finally re-referenced 

to the average of all electrodes. Individual average and grand average ERPs were computed for all 

experimental conditions, applying a weighted average in order to control for any potential unbalanced 

number of epochs per condition (Kotowski et al., 2019; Leski, 2002). 
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Table 2.2 Means (M), standard deviations (SD), test statistics (F), and associated p-values (p) of the final number of 

epochs accepted for each experimental condition in Study 1. 

Results showed no significant differences between conditions, except for S2 congruency. 

Block 100% 75% 50% F(2,75) p 

 M SD M SD M SD 

1.53 .22 

114.5 5.8 116.73 3.24 115.58 4.4 

S2 congruency Congruent Incongruent F(1, 102) p 

 M SD M SD 

101.7 < .001 

72.71 15.12 43.44 14.46 

Valence POS NEG NEU F(2, 75) p 

S1 

M SD M SD M SD 

0.6 .55 

115.12 4.3 116.23 3.18 115.46 3.73 

S2 

M SD M SD M SD 

0.58 .56 

115.15 4.07 116.23 3.05 115.42 4.04 

 

The ERPs statistical analysis was performed via Brainstorm software, using the Fieldtrip 

functions (Oostenveld et al., 2011; Tadel et al., 2011). Given the amount of spatiotemporal data of 

hd-EEG, a whole-brain paired two-tailed t-test (α = .05) permutation approach (Fields & Kuperberg, 

2020; Groppe et al., 2011) was used, performing 1000 Monte-Carlo cluster-based corrected 

permutations over all 128 channel locations. This approach allows to effectively control the 

familywise error rate, and it can be used also for complex factorial designs, since providing greater 

statistical power than traditional spatiotemporal averaging approaches when applied to a-priori 

defined time windows (Fields & Kuperberg, 2020; Groppe et al., 2011; Luck & Gaspelin, 2017). The 

permutations were computed over 7 a-priori time windows, corresponding to 5 distinguishable ERP 

components: S1-locked N170 (140-180 msec) for prediction generation; S1-locked early (1500-2000 

msec) and late CNV (2000-2500 msec) for prediction implementation; S2-locked MMN (100-250 

msec), P2 (200-300 msec), early (400-600 msec) and late LPP (600-800 msec) for prediction 

updating. Interaction effects were tested through a difference-based strategy widely used in the 

literature, which allowed to further reduce the familywise error rate (Luck & Gaspelin, 2017). 
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All the planned pairwise comparisons performed are summarized as follows: 

- to test for the presence of overall block effects, we performed the pairwise comparisons 

100% vs. 75%, 100% vs. 50%, 50% vs. 75% blocks, collapsing emotional valence across 

blocks; 

- to test for the presence of overall valence effects, we performed the pairwise comparisons 

POS vs. NEU, NEG vs. NEU, NEG vs. POS on both S1 and S2 valence, collapsing blocks 

across emotional valence; 

- to test for the presence of S2 congruency effects, we performed the pairwise comparison 

incongruent vs. congruent S2s, separately per block (75%, 50%) and S2 valence; 

- in order to assess the interaction effects between S1 and S2 valence, congruency and 

block, the same contrasts (POS vs. NEU, NEG vs. NEU, NEG vs. POS) were performed 

separately per block (100%, 75%, 50%) and S2 congruency (congruent, incongruent). 

Furthermore, for both S1- and S2-ERPs difference waves were computed (POS-NEU, 

NEG-NEU, and NEG-POS) and compared between blocks. 

To investigate the relationships between the stages of affective prediction construction, linear 

mixed-effects models (LMMs) (R package: lme4; Bates et al., 2015) with individual random intercept 

were estimated separately per block and S2 congruency, with N170, early and late CNV, and their 

interaction with S2 valence as fixed factors; P2, early and late LPP as dependent variables (DVs). 

The maximum likelihood method was employed to analyze the contribution of each factor within the 

model, and the strength of their evidence was estimated as the difference in AIC between the model 

with and the model without the parameter (ΔAIC). 

Cortical sources of ERP activity were reconstructed via Brainstorm (Tadel et al., 2011). 

ICBM152 anatomical template (Evans et al., 2012) was used for the approximation of individual 

anatomies and warped to the EEG channel positions through rigid rotations and translations of 

digitized landmarks. Conductive head volume was modelled according to the realistic forward model 

OpenMEEG BEM (Gramfort et al., 2010). Solution space was constrained to the cerebral cortex and 
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modelled as a 3D grid of 15002 fixed dipole triplets normally oriented to cortical surface. Inverse 

modelling was based on sLORETA (standardized low-resolution brain electromagnetic tomography 

algorithm), implemented with default parameters. Noise covariance matrix was computed from the 

average of EEG baselines. For each participant, sources were projected to a standard anatomical 

template (MNI) and their activity was transformed in absolute z scores relative to baselines. Cortical 

activations were located according to the anatomical Destrieux atlas (Destrieux et al., 2010) adapted 

for cortical space solution. Finally, a spatial smooth with a FWHM of 3 mm, was applied to each 

source. 

2.3 RESULTS 

2.3.1 ERPS AND CORTICAL SOURCES RECONSTRUCTION 

2.3.1.1 Prediction generation stage – N170 (140-180 msec) to S1 onset 

A significant negative parietal-occipital cluster, reflecting a larger N170, was found in 100% 

block when comparing fearful with neutral faces, and in 75% block when comparing fearful with 

positive and neutral faces. No significant differences were found in 50% block, nor on difference 

waves (see Table 2.3 and Figure 2.2, panel A). 

N170 source reconstruction highlighted an emotional modulation on the right STS, showing 

a maximum pattern of activation after fearful faces (see Figure 2.2, panel B). This pattern replicated 

consistently in 100% and 75% blocks. 
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Table 2.3 ERP results from Study 1 during the prediction generation stage in the N170 time window (140-180 msec). 

Means (M), standard deviation (SD), cluster statistic (c), cluster size (s), and the associated p-values for each planned 

comparison (POS vs. NEU, NEG vs. NEU, NEG vs. POS) within each block (100%, 75%, 50%) are reported. 

Block N170 

 
POS NEU 

c s p 
M SD M SD 

100% 2.21 0.39 2.76 0.39 -356 125 .08 

75% 2.39 0.55 2.61 0.55 -94 42 .432 

50% 2.12 0.23 2.52 0.23 -263 108 .134 

 NEG NEU 
c s p 

 M SD M SD 

100% 2.00 0.39 2.76 0.39 -711 204 .004 

75% 1.56 0.55 2.61 0.55 -1194 318 .002 

50% 2.13 0.23 2.52 0.23 -219 88 .148 

 NEG POS 
c s p 

 M SD M SD 

100% 2.00 0.39 2.21 0.39 -146 54 .214 

75% 1.56 0.55 2.39 0.55 -527 193 .018 

50% 2.13 0.23 2.12 0.23 -129 51 .318 
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Figure 2.2 Modulation of ERPs and brain sources during prediction generation stage in Study 1. 

Panel A. On the left, grand average ERP waveforms following NEG (red lines), POS (green lines) and NEU (blue lines) faces (S1) in the (a) 100%, (b) 75% and (c) 50% blocks. 

Waveforms are plotted from a parietal-occipital cluster of electrodes (E70, E71, E73, E74, E75, E76, E81, E82, E83, E88). Shaded areas denote standard error (SE). The N170 was 

computed between 140 and 180 msec from S1 onset (time 0). On the right, cluster-based N170 ERP activity averaged across the electrodes exceeding the critical t-score threshold 

for statistical significance for the contrasts (d) 100% block – NEG vs. NEU, (e) 75% block – NEG vs. NEU, and (f) 75% block – NEG vs. POS. Panel B. On the top, cortical maps 

reconstruction of the (a) POS-NEU and (b) NEG-NEU differences in brain activations in the N170 temporal window (140-180 msec), regardless of blocks. On the bottom, time 

course of (c) right STS activations to POS (green lines), NEG (red lines), and NEU (blue lines) faces, regardless of blocks. r-STS = right superior temporal sulcus. 
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2.3.1.2 Prediction implementation stage – early (1500-2000 msec) and late (2000-2500 msec) 

CNV to S1 onset 

A significant negative left-central cluster indexed a larger early and late CNV in 50% than in 

75% block (cluster statistic (c) = -6075, cluster size (s) = 2071, p = .014) (see Figure 2.3, panel A). 

No other significant effects were found when comparing valence and congruency levels, and 

difference waves. 

CNV source analysis showed the involvement of a left network, extending over the ACC, the 

SMA, and an area in between dorsal PCC (dPCC) and the subparietal sulcus (sbps), showing larger 

activity in 50% than in 75% block (see Figure 2.3, panel B). 
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Figure 2.3 Modulation of ERPs and brain sources during prediction implementation stage in Study 1. 

Panel A. On the left, (a) grand average ERP waveforms during prediction implementation in the 100% (continuous black 

line), 75% (continuous grey line), and 50% (dashed black line) blocks. Waveforms are plotted from a central cluster of 

electrodes (E39, E40, E41, E42, E45, E46, E47). Shaded areas denote SE. CNV was computed between 1500 and 2500 

msec from S1 onset (time 0). For visualization purposes, waveforms were low-pass re-filtered at 10 Hz. On the right, (b) 

cluster-based CNV ERP activity averaged across the electrodes exceeding the critical t-score threshold for statistical 

significance for the contrast 50% vs. 75% block. Panel B. On the top, cortical maps reconstruction of the (a) 50%-100% 

block and (b) 50%-75% block differences in brain activations in the total CNV temporal window (1500-2500 msec). On 

the bottom, time course of (c) left SMA, (d) left ACC and (e) left dPCC/l-sbps activations to 100% (continuous black 

lines), 75% (continuous grey lines), and 50% (dashed black lines) blocks. l-SMA = left supplementary motor area, l-ACC 

= left anterior cingulate gyrus and sulcus, l-dPCC = left posterior-dorsal part of cingulate gyrus, l-sbps = left subparietal 

sulcus.
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2.3.1.3 Prediction updating stage – MMN (100-200 msec), P2 (200-300 msec), early (400-600 

msec) and late LPP (600-800 msec) to S2 onset 

No significant effects were found in MMN window. 

A significant negative centro-parietal cluster was found, signaling a reduced positivity to 

positive and negative, and so a larger P2 to neutral pictures in all the blocks and S2 congruency levels 

(see Table 2.4 and Figure 2.4, panel A). No significant effects were found on difference waves. 

P2 source reconstruction highlighted a larger activation of bilateral temporo-parietal junction 

(TPJ) and an area in between paracentral gyrus and precuneus to neutral than emotional pictures in 

all the blocks and S2 congruency levels (see Figure 2.4, panel B). 

A significant positive centro-parietal cluster was found, confirming the effect of S2 valence 

on LPP: positive and negative pictures elicited a larger early and late LPP than neutral pictures in all 

the blocks and S2 congruency levels (see Table 2.4 and Figure 2.4, panel A). The analysis of 

difference waves revealed that the emotional modulation of late LPP was larger in 100% than in 50% 

block (NEG-NEU: c = 2028, s = 868, p = .041; POS-NEU: c = 2074, s = 909, p = .048). Finally, a 

larger late LPP was found comparing positive congruent vs. incongruent pictures in 50% block (c = 

1746, s = 692, p = .036). 

LPP source analysis showed that, as compared with neutral, emotional stimuli elicited a larger 

activation of the right OFC and the right temporal pole in all the blocks and S2 congruency levels 

(see Figure 2.4, panel C). Modelling the sources of difference waves (NEG-NEU, POS-NEU), the 

same areas showed a between-blocks modulation within the right hemisphere, with larger activation 

in 100% than in 50% block. Interestingly, regardless of emotional valence, in 50% block, incongruent 

S2s elicited a larger activation than congruent S2s in the above-mentioned areas of the right 

hemisphere, while in the left hemisphere OFC showed a larger activation to congruent than 

incongruent S2s. 
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Table 2.4 ERP results from Study 1 during the prediction updating stage in the P2 (200-300 msec) and LPP (400-800 msec) time window. 

Means (M), standard deviation (SD), cluster statistic (c), cluster size (s), and the associated p-values for each planned comparison (POS vs. NEU, NEG vs. NEU, NEG vs. POS) 

within each block (100%, 75%, 50%) and congruency level (congruent, incongruent) are reported. 

Block P2 LPP 

 
POS NEU 

c s p 
POS NEU 

c s p 
M SD M SD M SD M SD 

100% 6.23 0.32 6.85 0.32 -2874 778 .002 8.07 1.51 5.62 1.51 25807 5260 .002 

75% (congruent) 6.22 0.15 7.23 0.22 -3498 927 .002 8.40 0.13 5.86 0.10 22117 4543 .002 

75% (incongruent) 6.43 0.15 7.53 0.22 -1418 546 .028 8.22 0.13 6.00 0.10 14544 4109 .002 

50% (congruent) 6.43 0.22 6.88 0.25 -1913 665 .004 7.97 0.37 6.01 0.24 16375 4122 .002 

50% (incongruent) 6.12 0.22 6.53 0.25 -994 372 .034 7.46 0.37 5.66 0.24 20110 4851 .002 

 NEG NEU 
c s p 

NEG NEU 
c s p 

 M SD M SD M SD M SD 

100% 6.40 0.32 6.85 0.32 -4342 1057 .002 8.37 1.51 5.62 1.51 29890 5574 .002 

75% (congruent) 6.40 0.19 7.23 0.22 -4635 1004 .002 8.42 0.20 5.86 0.10 29128 5838 .002 

75% (incongruent) 6.66 0.19 7.53 0.22 -1965 743 .002 8.16 0.20 6.00 0.10 15072 4276 .002 

50% (congruent) 6.22 0.22 6.88 0.25 -1940 645 .006 8.00 0.04 6.01 0.24 19069 4649 .002 

50% (incongruent) 5.91 0.22 6.53 0.25 -2435 779 .006 7.95 0.04 5.66 0.24 27657 5564 .002 

 NEG POS 
c s p 

NEG POS 
c s p 

 M SD M SD M SD M SD 

100% 6.40 0.32 6.23 0.32 -754 250 .348 8.37 1.51 8.07 1.51 891 342 .28 

75% (congruent) 6.40 0.19 6.22 0.15 -269 97 .344 8.42 0.20 8.40 0.13 1117 466 .228 

75% (incongruent) 6.66 0.19 6.43 0.15 112 43 .723 8.16 0.20 8.22 0.13 no clusters found 

50% (congruent) 6.22 0.22 6.43 0.22 -123 53 .629 8.00 0.04 7.97 0.37 477 184 .509 

50% (incongruent) 5.91 0.22 6.12 0.22 123 49 .378 7.95 0.04 7.46 0.37 1536 535 .15 
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Figure 2.4 Modulation of ERPs and brain sources during prediction updating stage in Study 1. 

Panel A. On the left, grand average ERP waveforms following NEG (red lines), POS (green lines), and NEU (blue lines) pictures (S2) in the (a) 100%, (b, c) 75%, and (d, e) 50% 

blocks for congruent and incongruent S2s. Waveforms are plotted from a central cluster of electrodes (E60, E61, E62, E67, E72, E77, E78, E85). Shaded areas denote SE. P2 was 

computed between 200 and 300 msec, and LPP between 400 and 800 msec from S2 onset (time 0). On the right, cluster-based (f, g) P2 and (h, i) LPP ERP activity averaged across 

the electrodes exceeding the critical t-score threshold for statistical significance for the contrasts (f, h) NEG vs. NEU and (g, i) POS vs. NEU. Panel B. On the top, cortical maps 

reconstruction of the (a) NEU-POS and (b) NEU-NEG differences in brain activations in the P2 temporal window (200-300 msec). On the bottom, time course of (c) left TPJ, (d) 

right TPJ, (e) left paracentral gyrus/precuneus, (f) right paracentral gyrus/precuneus activations to POS (green lines), NEG (red lines), and NEU (blue lines) pictures, regardless of 

blocks. l-TPJ = left temporoparietal junction, r-TPJ = right temporoparietal junction. Panel C. On the top, cortical maps reconstruction of the (a) POS-NEU and (b) NEG-NEU 

differences in brain activations in the total LPP temporal window (400-800 msec). On the bottom, time course of (c) right OFC and (d) right temporal pole activations to POS 

(green lines), NEG (red lines), and NEU (blue lines) pictures, regardless of blocks. r-OFC = right orbitofrontal cortex. 
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2.3.2 MIXED-EFFECTS MODELS 

No significant effects of the predictors were found on S2-P2 amplitude, and only weak effects 

were found including the S1-N170 predictor. In fact, the inclusion of S1-N170 amplitude as predictor 

improved the model fit for the late S2-LPP in 100% block (χ2 (14) = 12.684, p = .005, ΔAIC = -

0.864), and for the early and late S2-LPP in 50% block for congruent S2s (early LPP: χ2 (14) = 10.977, 

p = .012, ΔAIC = -1.198; late LPP: χ2 (14) = 10.918, p = .012, ΔAIC = -1.336). Furthermore, including 

the S1-N170 × S2 valence interaction, an improvement of the model fit for early and late S2-LPP 

emerged in 75% block for congruent S2s (early LPP: χ2 (14) = 6.382, p = .041, ΔAIC = -2.374; late 

LPP: χ2 (14) = 6.375, p = .041, ΔAIC = -1.935). Nevertheless, ΔAIC values were small and negative, 

so the actual fit improvements reported are weakly supported. For this reason, the results of these 

models, suggesting a negative correlation between S1-N170 and S2-LPP amplitudes, will not be 

further commented. 

The late CNV predictor improved the model fit for the early and late S2-LPP in 50% block 

for congruent S2s (early LPP: χ2 (14) = 8.996, p = .03, ΔAIC = 7.952; late LPP: χ2 (14) = 9.522, p = 

.023, ΔAIC = 8.507), suggesting a positive correlation between late CNV and S2-LPP, regardless of 

S2 valence. 

2.4 DISCUSSION 

Study 1 aimed to explore the temporal dynamics and the underlying neural signatures of the 

construction of affective predictions as a function of contextual information of different predictive 

value (see RQ1, § 1.5). To our knowledge, this was the first study in the literature using an 

uninstructed experimental task, in which participants could implicitly construct their own predictive 

models. As a further element of novelty, we analyzed the relationships between the three stages of 

prediction construction (generation-implementation-updating). 

As expected (H1a), during prediction generation S1 valence modulated the N170, leading to 

a processing advantage for fearful faces. This effect was subtended by a higher cortical activity in the 
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right STS, consistent with the estimated brain sources of N170 and signaling the perceptual coding 

of changeable facial properties, among which emotional facial expression (Haxby et al., 2000). In 

contrast with our hypothesis (H1b), however, the emotional modulation on N170 was apparent in 

presence of sufficiently reliable predictive information (100% and 75% blocks), maybe due to the 

different (highly social) nature of face stimuli as compared to the symbolic cues used in other studies 

(Lin, Gao, et al., 2014). It seems that in the uncertain condition (50%), where the face (and the 

emotional information it conveyed) was not helpful to construct a valid prediction, the generation 

stage was replaced by a process of resources saving, in line with a general cognitive economy 

principle proposed by predictive coding (Clark, 2013). The N170/right STS modulation could signal 

the extraction of sensory (i.e., perceptual and affective) and contextual (i.e., predictive) information 

from the environment, subtended by domain-specific brain circuits, and crucial to continuously 

generate predictions (Bar, 2007; Knill & Pouget, 2004). 

In the implementation stage, a between-blocks modulation emerged on CNV, regardless of 

valence. The 50% block elicited the maximum allocation of anticipatory resources, as reflected by a 

larger CNV and a higher activation within a left-lateralized domain-general network composed by 

ACC, SMA, dPCC/sbps. This result, though in conflict with our hypothesis (H2), is in line with 

previous studies suggesting that valence-independent anticipatory neural activity increases with 

uncertainty, both at the scalp and at the source level (Catena et al., 2012; Greenberg et al., 2015; 

Sarinopoulos et al., 2010). ACC activation is also coherent with previous EEG and fMRI evidence, 

in which ACC has been found to be involved in the anticipation of unexpected stimuli during the 

implementation stage (Duma et al., 2020; Greenberg et al., 2015; Onoda et al., 2008; Sarinopoulos et 

al., 2010; Ueda et al., 2003). Thus, in the uncertain condition, where a stable expectancy is impossible 

to generate because of the unavailability of reliable predictive models, the valence-independent pre-

allocation of anticipatory resources served at tuning the implementation stage with all the potential 

forthcoming environmental demands. This interpretation is supported by the functional meaning of 

the neural network subtending the CNV. ACC, SMA and dPCC/sbps are all areas involved in the 
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large-scale brain system which supports allostasis (Barrett, 2017), and they partially overlap with the 

DMN (Raichle, 2015). They are implied in integrating sensory and visceromotor information with 

prior experience, thus supporting the selection of appropriate action plans and the pre-allocation of 

resources necessary to anticipate all the relevant features of forthcoming events (Barrett, 2017; 

Raichle, 2015). Moreover, the absence of a detectable emotional modulation on CNV in sufficiently 

predictive conditions (100%, 75%) is consistent with some previous studies (Recio et al., 2014; Tamm 

et al., 2014), and it can be explained according to the cognitive economy principle (Clark, 2013): it 

might be a useless effort to allocate wide anticipatory resources in conditions in which all the 

information needed to prepare to S2 is already extracted as S1 processing ends. 

Finally, during prediction updating, and in contrast with our hypothesis (H3a) no effects were 

found on the MMN, probably due to the complexity of the stimuli employed as S2s, and to the large 

overlapping positive activity. A strong emotional modulation emerged instead on the P2 and LPP 

components across all the blocks and S2 congruency levels: larger LPPs were found for emotional 

than neutral pictures, whereas the opposite was observed for P2s. The latter effect could index the 

infrequency of neutral S2s, and the consequent updating of the overall predictive model. Since in all 

blocks the number of emotional stimuli was twice the number of neutral ones, neutral S2s could 

represent unexpected stimuli requiring an updating of the predictive model. This could have elicited 

a larger P2 and a coherent modulation both in the TPJ, an area involved in contextual updating (Geng 

& Vossel, 2013; Gómez et al., 2019), and in the paracentral gyrus/precuneus, areas belonging to the 

frontoparietal control network (Dosenbach et al., 2007) and subtending the top-down adjustment of 

predictions. The LPP modulation replicated a well-established effect in the literature, signaling a 

greater motivated attention towards emotional stimuli, supported by domain-specific neural circuits 

responsible for the interoceptive-autonomic integration performed by the salience network (Hajcak 

et al., 2010; Schupp et al., 2000; Seeley et al., 2007). Difference waves revealed that the effect of 

emotion, coherently with our hypothesis (H3b) and previous ERP findings (Johnen & Harrison, 2020; 

Lin et al., 2018; Lin, Jin, et al., 2015), was stronger with a fully predictive ratio. A larger late LPP 
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and higher corresponding brain activations emerged when comparing difference waves between 

100% and 50% blocks. This result suggests that in presence of fully predictive cues the emotional 

evaluation of congruent forthcoming stimuli is enhanced, resulting in greater motivated attention 

towards them. This could seem in contrast with predictive coding (Clark, 2013; Friston, 2010), 

according to which an expected stimulus processing should be silenced, and it could represent a 

peculiar specificity of implicit affective expectancy (cf. Lin et al., 2018). 

Interestingly, when comparing congruent with incongruent pictures, contrasting results 

emerged from ERPs and source analyses. In the moderately predictive condition (75%) no processing 

difference between congruent and incongruent S2s was found, thus violating our hypothesis (H3a) 

and predictive coding assumptions (Clark, 2013; Friston, 2010). This controversial result might be 

explained by the inevitably different number of trials between congruent and incongruent S2s in 75% 

block. Over the 120 trials, only 30 were incongruent and their number might be too low to allow 

prediction errors to exert a strong (and statistically detectable) influence. In the uncertain condition 

(50%), instead, a larger late LPP was found to positive congruent than positive incongruent S2s, 

whereas a higher cortical activation was found in the right hemisphere for incongruent S2s, and in 

the left OFC for congruent S2s regardless of emotional valence. These results can reflect two 

complementary processes: a greater motivated attention towards expected positive S2s, partially 

consistent with some ERP studies (Gole et al., 2012; Lin et al., 2012, 2020) (cf. H3c); and a later 

detection of residual prediction error, signaled by a right-hemisphere activation, and consistent with 

predictive coding models (Clark, 2013; Friston, 2010). Therefore, two different processes seemed to 

develop during prediction updating: at early neurocomputational stages, in all conditions a coarse 

expectancy updating (subtended by the P2/TPJ-precuneus modulation) allowed to signal infrequent 

neutral stimuli; while at later processing stages, the residual prediction error related to incongruent 

S2s (signaled by the right OFC activity) was detected in the uncertain condition. 

Lastly, it is worth noting that the uncertain (50%) was the only condition in which a reliable 

relationship was found between the implementation and the updating stages. The late CNV amplitude 
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positively predicted the LPP amplitude to congruent S2s, regardless of emotional valence (cf. Brown 

et al., 2008). Thus, it seems that in absence of reliable predictive models the valence-independent 

anticipatory resources may be relocated to a facilitation of the subsequent information processing 

when a congruent S2 occurs by chance. 

 

To summarize, results of Study 1 contributed to unveil the neural correlates of affective 

predictions constructed under different probabilistic contextual information (see RQ1, § 1.5). During 

prediction generation, the emotional information conveyed by faces was extracted by domain-

specific neural circuits in presence of certain or moderately predictive contextual information. During 

the implementation stage, the unavailability of a reliable predictive model in the uncertain context led 

to a valence-independent pre-allocation of anticipatory resources, subtended by neural activity within 

domain-general cortical networks. During prediction updating, besides the preferential processing of 

emotional stimuli which consistently replicated across all the contexts (but to a greater extent in the 

certain one), higher-order association cortices signaled both an early and late detection of prediction 

error in the presence of uncertain contextual information. 

Concluding, some limitations of Study 1 must be addressed. First, a passive viewing task 

might have contributed to an overall decrease of ERP amplitudes, thus preventing some weaker 

modulations to reach statistical significance (Gaillard & Perdok, 1980). Second, a “congruent” S2 

does not necessarily correspond to a “predicted” S2, even though it is likely that S1-S2 congruency 

results in a stronger predictive model than incongruency. Third, due to the peculiarities of EEG spatial 

resolution, any further speculation on brain sources must be treated with caution. Last, in the present 

paradigm only the currently available contextual information was manipulated between-blocks. 

Nevertheless, affective contingencies experienced in the past (i.e., prior experience, see Figure 1.1) 

may impact on the construction of affective predictions, too. 

Therefore, building on the latter limitation, and given that the literature has not yet answered 

how affective predictions can be modulated by more or less reliable prior experience (see RQ2, § 



65 

1.5), in Studies 2 to 5 we decided to focus on the role of previous learnings. In particular, we targeted 

subjective affective experience and we developed an experimental design combining the emotional 

S1-S2 paradigm with a learning component, with the aim to investigate the impact of (un)certain prior 

experience in constructing affective predictions in a new, moderately certain predictive context. 
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CHAPTER 3 

THE ROLE OF PRIOR EXPERIENCE 

 

“The best predictor of future behavior is past behavior, which I find very 

depressive” 

Lisa Feldman Barrett 

 

3.1 INTRODUCTION 

Past experience can influence our subjective reactions to future affective stimuli. Let us 

imagine a person who is celebrating their birthday, and is about to unwrap their presents. From 

previous parties, they know that their parents often give very nice gifts. They will therefore predict a 

joyful experience when they unwrap their parent’s present, and they will be particularly pleased if the 

present meets their expectation. Their aunt, however, has previously given both terrible and awesome 

gifts. Thus, they will not have any reliable previous experience about the likelihood of receiving cool 

or awful items from their aunt. As a result, it will be difficult to predict their subjective reaction when 

unwrapping their present, and maybe they will be particularly upset if the gift turns out to be an old-

fashioned knitted sweater. This example highlights how being exposed to prior certain vs. uncertain 

scenarios could affect people’s expectancies and subjective reactions to new affective events. 

According to predictive models of emotion (Barrett, 2017; Seth & Friston, 2016), people use 

their prior experience to construct affective predictions. Affective predictive models are generative, 

probabilistic, and mostly implicit (see § 1.1 and 1.2). Thus, the continuous cycle of generation-

implementation-updating of (affective) predictions allows to (i) extract relevant information from the 

environment, (ii) combine it with previously acquired knowledge, (iii) pre-allocate resources to face 

all the potential future scenarios, and (iv) consistently adjust future predictions (Barrett, 2017; 
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Sterling, 2012). When applied to the subjective experience of emotion, Barrett (2017) proposes that 

the brain actively constructs meaning in the present moment by predicting and categorizing incoming 

stimuli and sensations based on prior experience (see § 1.2). When conceptual emotion knowledge is 

used to make meaning of actual inputs, the resulting prediction and the associated affective reaction 

can be subjectively experienced as an instance of emotion (Barrett, 2017; Barrett et al., 2014; Seth, 

2013). 

Since subjective experience of emotion emerges from the meaning making of prediction 

construction (Barrett, 2017; Barrett et al., 2007), and (affective) predictive models are probabilistic 

(Clark, 2013; Friston, 2010; Shipp, 2016), it follows that subjective experience may be crucially 

affected by the degrees of uncertainty experienced in the past, and thus by the degree of confidence 

on the derived predictive models. In fact, we do not live in a stable world. Human organisms are 

embedded in constantly changing multisensory environments, experiencing different types of stimuli 

(e.g., visual, auditory), with different degrees of uncertainty (i.e., carrying more or less reliable 

information). Therefore, tapping into internal models which are based on prior multimodal experience 

is crucial to our brains in order to construct predictions in a dynamic and flexible way (Barrett, 2017; 

Friston, 2005; Peelen et al., 2010). Nevertheless, there are still some open questions in the literature. 

First, it is unclear how (un)certain prior experience may affect future affective predictions at the level 

of subjective experience. Second, it is yet to be unraveled to what extent the construction of affective 

predictions in one sensory modality actually relies on (and integrates) information in another sensory 

modality, previously experienced in (un)certain environments. Third, it is still unknown if (un)certain 

prior experience interacts with environmental cues ambiguity in shaping new affective predictions. 

Last, it is unclear whether the influence of prior experience may act at an implicit level (i.e., without 

an explicit focus of attention) in shaping subjective expectancies and reactions to new affective 

stimuli. Studies 2 to 5 aimed to answer the abovementioned open questions. As a first goal (Study 2) 

we wanted to examine if being exposed to certain vs. uncertain probabilistic relationships between 

stimuli would lead to an intensification of subjective reactions during future predictions. Our second 
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goal (Study 3) was to examine whether new affective predictions developed similarly across the 

visual and auditory sensory modalities. The third goal (Study 4) was investigating if (un)certain prior 

experience might influence the subjective expectancies and reactions to new affective stimuli as a 

function of cues ambiguity. As the fourth goal (Study 5), we investigated whether people were able 

to implicitly extract (un)certain probabilistic information from the environment, and use it later to 

predict new affective events. Last, at the exploratory level, in all the studies we wanted to examine 

whether individual differences in IU could modulate the subjective affective experience as a function 

of prior (un)certain learnings (this latter goal is presented and discussed in Chapter 4). 

Most studies in the extant literature have not manipulated prior experience directly, but have 

focused on how explicit contextual probabilistic information (based on the instructed meaning of 

cues) may impact emotional processing. These studies mostly employed affective cueing paradigms 

in the visual modality (see § 1.3). They focused on the role of currently available contextual 

information, by manipulating explicitly labeled certain (100%) vs. uncertain (50%) affective 

contingency between S1 and S2. Thus, in existing paradigms participants are explicitly instructed 

about the probabilistic ratios they will be exposed to. Such paradigms do not implement the role of 

actual prior experience in generating future predictions. Furthermore, they do not resemble more 

realistic everyday contexts, in which people automatically learn contingencies from their 

environments, and infer probabilistic information to use in their affective predictions, by means of 

exposure (Bar, 2007). 

The literature employing such paradigms (see Table 1.1) led to fragmentary evidence on 

subjective experience. Focusing on expectancy measures related to the generation-implementation 

stages (i.e., either trial-by-trial expectancy ratings about the expected valence of the upcoming S2, or 

post-experiment estimation of the percentage of uncertain cues followed by a negative S2), it was 

consistently shown that the uncertain condition was associated with negatively-biased expectancies 

about the forthcoming S2 valence, which means an overestimation of negative S2s occurrence 

following uncertain S1s (Dieterich et al., 2016; Grupe & Nitschke, 2011; Lin et al., 2018, 2020; Qiao 
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et al., 2018; Sarinopoulos et al., 2010). Moreover, the only study manipulating cue ambiguity found 

that ambiguous cues (i.e., cues with uninstructed 50% predictive value) elicited less negative 

expectancy ratings than unambiguous (i.e., instructed) cues (Chen & Lovibond, 2016). 

Regarding the updating stage, some inconsistencies emerged when considering the 

modulating effects of the probabilistic information on S2-subjective ratings. Some studies found more 

pleasant valence ratings to certain positive as compared to uncertain positive S2s, and more 

unpleasant ratings to certain negative as compared to uncertain negative S2s (Johnen & Harrison, 

2019; Lin et al., 2020; Lin, Jin, et al., 2015; Lin, Xiang, et al., 2015); one study reported more 

unpleasant ratings to uncertain negative as compared to certain negative S2s (Lin et al., 2017); and 

still others found no significant interactions between probabilistic information and subjective valence 

ratings (Bermpohl et al., 2006a; Dieterich et al., 2016; Greenberg et al., 2015; Grupe & Nitschke, 

2011; Lin et al., 2018; Qiao et al., 2018). Ambiguous cues were found to elicit more unpleasant post-

experiment mood ratings than unambiguous cues (Chen & Lovibond, 2016). The only study assessing 

emotional intensity found a stronger self-reported arousal after certain as compared to uncertain 

emotional S2s (Bermpohl et al., 2006a). Two studies investigated how experiencing a certain vs. 

uncertain anticipation pattern (acquired through the emotional S1-S2 paradigm during an encoding 

phase) could influence the subsequent recognition and the neural correlates of S2 processing during 

an unexpected old/new recognition task (Lin et al., 2017; Lin, Xiang, et al., 2015). At the neural level, 

it emerged that a certain anticipation pattern led to an enhanced processing of negative S2s (Lin, 

Xiang, et al., 2015), while an uncertain anticipation pattern led to a reduced recognition of neutral 

S2s features (Lin et al., 2017). However, it is still not clear if experiencing different degrees of 

(un)certainty during the encoding phase could influence subsequent subjective reactions, since the 

authors did not measure S2-affective ratings during the recognition phase. 

A last S1-S2 study is worth to be commented on, since it compared an explicit anticipation 

condition (in which participants were asked to give their expectancy ratings during the ISI) with an 

implicit anticipation condition (in which participants were asked to indicate a colored target number 
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during the ISI) (Lin et al., 2018). Concerning the target detection task presented during the ISI in the 

implicit condition, no effects of cue predictive meaning (100% vs. 50%) emerged on performance 

accuracy, whereas faster reaction times (RTs) were found in the certain condition. Finally, authors 

did not find any significant effect of cue predictive meaning (100% vs. 50%) nor anticipation pattern 

(explicit vs. implicit) on S2-valence ratings. 

Overall, these results are in contrast with the literature suggesting that uncertainty intensifies 

affective experience, by pushing towards a polarization of both positive and negative affect, and thus 

leading to increased attention and emotional engagement towards uncertain events (Bar-Anan et al., 

2009; Carleton, 2016a, 2016b; Einstein, 2014). Nevertheless, they can be explained within predictive 

models of emotion (Barrett, 2017; Seth & Friston, 2016). In certain contexts, the brain can generate 

reliable affective predictions based on previously learned contingencies, thus pre-activating the 

expected affective experience, which in turn could lead to an intensification of subjective reactions. 

Within uncertain contexts, instead, reliable affective predictions (and correspondent experience pre-

activation) cannot be constructed, and the brain’s resources are deployed in prediction error detection 

and encoding, thus potentially leading to dampened subjective reactions. 

This brief literature review unveils some important gaps that Studies 2 to 5 of the present 

project aim to fill. First, the impact of prior experience on new affective predictions has never been 

systematically investigated. Second, subjective affective ratings in the extant paradigms have mainly 

assessed the valence dimension, while arousal is under-represented, despite being an equally 

important dimension of affective experience. Third, affective cueing paradigms are typically 

instructed: participants are explicitly informed about the probabilistic ratios between S1 and S2 prior 

to the experiment. Fourth, cross-modality effects have never been studied within the extant literature. 

Last, little is known yet about the potential effects of cue ambiguity on new affective predictions, nor 

on the actual possibility to learn environmental contingencies implicitly. 

In the light of these considerations, in Studies 2 to 5 we proposed a novel online experimental 

design, which combined traditional emotional S1-S2 paradigms with a learning component. In our 
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paradigm, we implemented a direct manipulation of prior experience in terms of uninstructed 

affective contingency between stimuli. The paradigm aimed to investigate the impact of (un)certain 

previous experience in constructing new affective predictions in a new, moderately certain 

probabilistic context, both within and across sensory modalities. A first S1-S2 paradigm was 

employed as a learning phase, in which prior experience was manipulated via uninstructed (Studies 

2, 3, and 4) or implicit (Study 5) certain vs. uncertain S1-S2 affective contingency. Participants were 

assigned to the certain (CG) or uncertain group (UG), in which they were presented with a 100% vs. 

50% probabilistic ratio between visual stimuli (i.e., colored dots as S1s, and affective negative or 

neutral pictures as S2s), respectively. A second S1-S2 paradigm with a fixed 75% S1-S2 affective 

contingency, unambiguous (Study 2, 3, and 5) or ambiguous (Study 4) S1s, and visual (Studies 2, 4, 

and 5) or auditory (Study 3) stimuli as S2s, was then employed as a test phase. Here, we investigated 

the effects of previously learned probabilistic relationships on subjective affective experience in a 

new, moderately certain (75%) probabilistic context. Participants were asked to rate the expected 

valence of upcoming S2s (expectancy ratings), or the experienced valence and arousal to S2s (valence 

and arousal ratings). Through this purposely developed paradigm, Studies 2 to 5 aimed to investigate 

the role of prior experience on the subjective reactions to new affective predictions, within and across 

sensory modalities (see RQ2, § 1.5). 

STUDY 2 

Study 2 focused on how being exposed to certain vs. uncertain probabilistic relationships 

between visual stimuli may influence subjective affective experience to new affective predictions in 

the same (i.e., visual) sensory modality. 

We performed confirmatory analyses to test three a-priori formulated hypotheses (as pre-

registered on OSF, https://osf.io/ef9q7/). The first hypothesis (H1) was that participants in the UG 

would show more negative expectancy ratings (Dieterich et al., 2016; Grupe & Nitschke, 2011; 

Herwig, Kaffenberger, et al., 2007; Qiao et al., 2018; Schumacher et al., 2015), as compared to 

https://osf.io/ef9q7/
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participants in the CG. The second hypothesis (H2a) was that participants in the UG would show 

higher arousal and more unpleasant valence ratings to S2s (Bar-Anan et al., 2009; Carleton, 2016a, 

2016b; Einstein, 2014; Lin et al., 2017) than participants in the CG. The third hypothesis (H2b), 

opposed to H2a, was that participants in the CG would show higher arousal and more unpleasant 

valence ratings to S2s (Bermpohl et al., 2006a; Johnen & Harrison, 2019; Lin et al., 2020; Lin, Jin, 

et al., 2015; Lin, Xiang, et al., 2015), as compared to participants in the UG. 

We also explored whether S2 congruency played a modulating role on S2-subjective reactions, 

by comparing valence and arousal ratings of congruent trials (i.e., trials of the test phase in which 

the S1-S2 pairing was more likely, i.e., 75%) with ratings of incongruent trials (i.e., trials of the test 

phase in which S1-S2 pairing was less likely, i.e., 25%). 

3.2 METHODS 

3.2.1 PARTICIPANTS 

We recruited 200 adult English-speaking participants through the provider platform Prolific 

(Prolific, Oxford, UK; www.prolific.co). The sample size was estimated through an a-priori pre-

registered (https://osf.io/ef9q7/) simulation-based power analysis for generalized linear mixed-effects 

models (GLMMs) (R package: simr; Green & MacLeod, 2016), estimating parameters from pilot data 

(N = 27). Data from 8 participants were discarded according to the following pre-registered exclusion 

criteria (https://osf.io/ef9q7/): scoring lower than 75% accuracy on attention check items (see § 

3.2.2.2), reporting experienced technical issues in more than 25% of the experimental trials. 

The final sample included 192 participants (73 males, age: M = 33.07, SD = 11.46, range = 

18-62). All participants gave their informed consent before starting the experiment and were paid 

£2.50 for their participation. All experimental procedures were approved by the Ethical Committee 

for the Psychological Research of the University of Padua (protocol no. 4012) and were conducted in 

accordance with the Declaration of Helsinki. 

http://www.prolific.co/
https://osf.io/ef9q7/
https://osf.io/ef9q7/
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3.2.2 STIMULUS MATERIAL AND PROCEDURE 

3.2.2.1 Stimuli and rating scales 

Two emotional S1-S2 paradigms were employed as learning and test phase, respectively. 

Colored red and blue 1 cm diameter circles were employed as S1s. An additional yellow 1 cm 

diameter circle was used as S1 in attention check trials. Colored 800 × 600 px pictures (60 negative, 

60 neutral) from Nencki Affective Picture System (NAPS) (Marchewka et al., 2014) were employed 

as S2s. NAPS pictures names, sorted by emotional valence, are listed in Table 3.1. Negative and 

neutral pictures did not differ in terms of luminance, contrast, complexity, and color space (see Table 

3.2). An additional 800 × 600 px picture, depicting a pattern of black stripes on a transparent 

background, was used as S2 in attention check trials. 

A Visual Analogue Scale (VAS) assessed expectancy ratings (i.e., the expected valence of 

upcoming S2s), ranging from 0% (“I definitely expect to see a neutral picture”) to 100% (“I definitely 

expect to see a negative picture”), with 50% representing not knowing what to expect. Two more 

VASs were used to collect valence and arousal ratings to S2s. The valence scale ranged from 0% 

“very negative” to 100% “very positive”, with 50% representing “neutral”. The arousal scale ranged 

from 0% “relaxed” to 100% “aroused”, with 50% representing an intermediate level of activation. 

The English short form (12-item) of the Intolerance of Uncertainty Scale (IUS) (Carleton et 

al., 2007) was used to measure IU. 
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Table 3.1. List of NAPS picture names used as S2s in Studies 2, 4, and 5, sorted by valence. 

NEG = negative, NEU = neutral 

Valence NAPS pictures names 

NEG 

Animals_001_h; Animals_024_h; Animals_025_h; Animals_027_h; Animals_033_h; Animals_038_h; 

Animals_054_h; Animals_068_h; Animals_071_h; Animals_074_h; Animals_077_h; Animals_078_h; 

Faces_146_h; Faces_150_h; Faces_152_h; Faces_170_h; Faces_271_h; Faces_272_h; Faces_285_h; 

Faces_290_h; Faces_291_h; Faces_293_h; Faces_294_h; Faces_302_h; Landscapes_002_h; 

Landscapes_004_h; Landscapes_005_h; Landscapes_007_h; Landscapes_010_h; Landscapes_011_h; 

Landscapes_014_h; Landscapes_017_h; Landscapes_022_h; Landscapes_026_h; Landscapes_139_h; 

Landscapes_177_h; Objects_001_h; Objects_002_h; Objects_003_h; Objects_007_h; Objects_011_h; 

Objects_022_h; Objects_125_h; Objects_132_h; Objects_139_h; Objects_149_h; Objects_283_h; 

Objects_285_h; People_001_h; People_008_h; People_020_h; People_022_h; People_118_h; 

People_127_h; People_136_h; People_140_h; People_200_h; People_215_h; People_225_h; 

People_226_h 

NEU 

Animals_109_h; Animals_114_h; Animals_122_h; Animals_125_h; Animals_126_h; Animals_136_h; 

Animals_165_h; Animals_169_h; Animals_170_h; Animals_197_h; Animals_202_h; Animals_206_h; 

Faces_184_h; Faces_186_h; Faces_188_h; Faces_282_h; Faces_304_h; Faces_314_h; Faces_316_h; 

Faces_326_h; Faces_329_h; Faces_331_h; Faces_335_h; Faces_343_h; Landscapes_009_h; 

Landscapes_041_h; Landscapes_048_h; Landscapes_050_h; Landscapes_089_h; Landscapes_100_h; 

Landscapes_107_h; Landscapes_127_h; Landscapes_143_h; Landscapes_149_h; Landscapes_163_h; 

Landscapes_172_h; Objects_025_h; Objects_033_h; Objects_041_h; Objects_069_h; Objects_075_h; 

Objects_078_h; Objects_079_h; Objects_103_h; Objects_254_h; Objects_262_h; Objects_263_h; 

Objects_270_h; People_069_h; People_089_h; People_099_h; People_101_h; People_109_h; 

People_153_h; People_162_h; People_167_h; People_173_h; People_178_h; People_194_h; 

People_250_h 

 

Table 3.2. Means (M), standard deviations (SD), test statistics (t) and associated p-values (p) of NAPS pictures employed 

as S2s in Studies 2, 4, and 5. 

Results of two-tailed t-tests assuming unequal variance in luminance, contrast, complexity indices (i.e., JPEG size, 

entropy), and color space indices (i.e., LABL, LABA, LABB), referred to negative (NEG) vs. neutral (NEU) S2s revealed 

no significant results. 

Measure 
NEG NEU 

t(118) p 
M SD M SD 

luminance 114.149 27.503 116.943 27.615 -0.555 .58 

contrast 65.682 11.569 66.225 11.490 -0.258 .797 

complexity       

jpeg_size 350012.367 118541.318 331739.683 120579.766 0.837 .404 

entropy 7.579 0.338 7.608 0.311 -0.489 .626 

color space       

LABL 47.078 11.035 48.411 11.090 -0.66 .511 

LABA 1.684 4.6 0.541 7.901 0.969 .335 

LABB 7.444 9.766 7.492 11.416 -0.025 .980 
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3.2.2.2 Learning phase 

Before the learning phase, participants were randomly assigned to one of two experimental 

groups: the CG, and the UG. At the beginning of the learning phase, participants were instructed to 

look at the computer screen and pay attention to the relationship between S1 color and S2 valence. 

Furthermore, they were instructed to press the ‘spacebar’ as fast as they could each time they saw a 

yellow circle (attention check trials). The instructions were followed by a practice session (4 trials) 

in which participants received feedback on their performance to one attention check trial. Then, the 

learning session started. Each trial was displayed on a grey background, and it began with S1, 

presented for 250 msec. A fixed ISI of 1000 msec followed, in which the screen remained grey, then 

S2 was presented for 1000 msec. The ITI, in which a white fixation cross was displayed in the center 

of the screen, randomly varied between 800 and 1200 msec. The total number of trials was 40. The 

order of the trials was random. 

During the learning phase, participants in the CG were presented with a 100% S1-S2 affective 

contingency: each S1 color was paired with the same S2 valence in 100% of the trials, thus they 

learned a highly predictive relationship between S1 and S2. The UG, instead, experienced a 50% 

affective contingency: each S1 color was paired with negative S2s in 50% of the trials, and with 

neutral S2s in the other 50%, thus they learned an uncertain relationship. Color-valence pairings were 

counterbalanced between subjects. Participants were left uninstructed about the S1-S2 probabilistic 

ratio. 

3.2.2.3 Test phase 

At the end of the learning phase participants were asked to wait and relax for 1 minute, after 

which they were introduced to the test phase, identical for both the experimental groups. At the 

beginning of the test phase participants were instructed about the second S1-S2 paradigm: they were 

asked to look at the computer screen and pay attention to S1 color, trying to predict S2 emotional 

valence. Participants were explained that, in some trials, they would be asked to rate how much they 
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expected to see a negative picture after the S1, by answering a 0-100% rating scale; while in other 

trials they would be asked to assess the subjective valence and arousal elicited by the S2, by answering 

a 0-100% rating scale for each dimension. They were also instructed to press the ‘spacebar’ as fast as 

they could each time they saw the yellow circle (attention check). Instructions were followed by a 

practice session (4 trials) in which participants trained themselves to give their ratings, and they 

received feedback on their performance to one attention check trial. Then, the test session started. 

Trial structure and timing were the same as the learning phase. The total number of trials was 80. S1-

S2 affective contingency was fixed at 75%, that is S1 color was moderately predictive of S2 valence 

(same S1 color-S2 valence pairings in 75% of the trials). Color-valence pairings were 

counterbalanced between subjects. Participants were left uninstructed about the S1-S2 probabilistic 

ratio in the test phase. 

Participants were asked to answer the VASs either during the ISI for half of the trials 

(expectancy ratings), or right after the S2 for the other half of the trials (valence and arousal ratings). 

The order of the trials was random. Response time for the VASs was self-paced. The expectancy 

ratings and the valence/arousal ratings were presented in different trials to prevent the two ratings 

from influencing each other (see Figure 3.1 for a schematic representation of the experimental 

paradigm). 

3.2.2.4 S2 congruency 

In the test phase, trials in which the pairing between S1 color and S2 valence was more likely 

(i.e., 75%) were coded as congruent, while trials in which the pairing between S1 color and S2 valence 

was less likely (i.e., 25%) were coded as incongruent. Thus, congruent trials are those trials in which, 

according to the new 75% probabilistic ratio, a stronger expectancy about the valence of the 

forthcoming S2 should be generated and implemented, leading to an expectancy confirmation when 

updating the internal model to the actual S2. In incongruent trials, instead, the lower likelihood of the 

S1-S2 association should determine an expectancy violation when updating the internal model to the 
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actual S2. Therefore, the S2 congruency factor allowed us to investigate if ratings were different 

between expected and unexpected S2s, combining the new contingencies with the contingencies 

learned in the learning phase. Notably, the 75% ratio implied participants in the CG to transition from 

a fully reliable predictive context (100%, experienced during the learning phase), to a new, less 

predictive context in which the predictive models they had previously learned were confirmed in the 

congruent trials and disconfirmed in the incongruent trials. Participants in the UG, instead, 

transitioned from a fully unreliable predictive context (50%), to a more predictive one. Importantly, 

the 75% ratio is equidistant from the probabilistic relationships experienced both by the CG and the 

UG, laying exactly in the middle between 100% and 50%. 

3.2.2.5 Procedure 

The experiment was run online, through OpenSesame (Mathôt et al., 2012) and the JATOS 

hosting server (Lange et al., 2015). Participants were instructed to ensure that their environment was 

optimal for participation: they were asked to sit alone in a silent and private room, and to avoid all 

potential distractions and interruptions. Furthermore, they were asked to perform the study on a 

computer, and to ensure that no one else could view the computer screen during the experiment due 

to the involvement of emotionally evocative material. 

At the end of the test phase, participants were redirected to a Qualtrics survey (Qualtrics, 

Provo, UT; www.qualtrics.com). They were asked to fill a few demographic questions (age, gender), 

and the IUS. They were also asked whether and in how many trials they had experienced any issues 

with the internet connection and/or with pictures uploading. At the end of the survey, all participants 

were thanked for their participation, and redirected to Prolific to complete the study submission and 

receive their payment. 

 

http://www.qualtrics.com/
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Figure 3.1 Schematic representation of Study 2 experimental paradigm. 

Example sequence of events and their duration for a trial, according to the phase (learning, test), and the group (CG, UG). 

During the learning phase participants experienced a 100% (CG) vs. 50% (UG) affective contingency between S1s (red 

or blue circles) and S2s (NEG or NEU pictures), according to the group. During the test phase the S1-S2 affective 

contingency was fixed at 75% for both groups. Participants were asked to answer the VASs either during the ISI for half 

of the trials (expectancy ratings), or right after the S2 for the other half of the trials (valence and arousal ratings). 

Response times were self-paced. ISI = inter-stimulus interval, ITI = inter-trial interval, VAS = visual analogue scale. The 

text is not drawn to scale. 

 

3.2.3 DATA ANALYSIS 

The study has a 2 (group, between-subjects: CG vs. UG) × 2 (S2 valence, within-subjects: 

NEG vs. NEU) mixed design. The analysis plan was pre-registered on OSF (https://osf.io/ef9q7/). 

We ran an additional analysis to investigate if expectancy ratings in the two groups differed as a 

function of the S1 color (within-subjects: red vs. blue). In fact, based on the way the paradigm is 

constructed, the color of the circle had a different (uninstructed) predictive value depending on the 

group. Each color had an actual predictive meaning for participants in the CG, since they experienced 

a fully reliable S1-S2 affective contingency during the learning phase (for example, they learned that 

a red circle always preceded a negative picture, and a blue one always preceded a neutral picture). 

For participants in the UG, instead, the color of the circle had no predictive value, since during the 

https://osf.io/ef9q7/
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learning phase each color was paired equally often with either negative or neutral pictures. To 

compensate for the counterbalancing of S1 color-S2 valence pairings, in the analysis we re-coded as 

red all the trials in which the circle preceded a negative picture, and as blue all the trials in which the 

circle preceded a neutral picture, independently from the actual circle’s color. 

Outliers were detected through Median Absolute Deviation values (MAD > 3) when 

univariate (i.e., expectancy ratings), and through the Mahalanobis-Minimum Covariance 

Determinant (MMCD, breakdown point 0.25) when multivariate (i.e., valence and arousal ratings) 

(R package: Routliers; Leys et al., 2019). Data from 7 participants were detected as univariate outliers. 

From visual inspection of their ratings, it emerged that these participants had reversed the poles of 

the rating scale (“error outliers”, cf. Leys et al., 2019), thus they were removed from data analysis. 

Data from 68 participants were detected as multivariate outliers. From visual inspection of their 

ratings, it emerged that these participants were characterized by a slightly flattened or steeper 

relationship between valence and arousal ratings as compared to other participants. Thus, since none 

of them significantly impacted the models’ estimates (as assessed through Cook’s distance, see 

below), we chose not to discard them (“potentially interesting outliers”, cf. Leys et al., 2019). Data 

from 185 participants entered data analysis. 

In order to test our a-priori hypotheses (H1, H2a, H2b), for each DV we fitted the following 

LMMs (R package: lme4; Bates et al., 2015): 

- expectancy ratings (H1): group, S1 color and their interaction as fixed factors, random 

slopes for S1 color within participant; 

- valence and arousal ratings (H2a vs. H2b): group, S2 valence and their interaction as fixed 

factors, random slopes for S2 valence within participant. 

Furthermore, to assess the differences between expected and unexpected S2s, we ran the 

following exploratory analysis: we added S2 congruency (within-subjects: congruent vs. 

incongruent), and its interaction with group and S2 valence as fixed factors to the confirmatory 

models for valence and arousal ratings. 

https://www.zotero.org/google-docs/?60AnQN
https://www.zotero.org/google-docs/?9jtibW
https://www.zotero.org/google-docs/?9jtibW
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Influential cases for each confirmatory model were evaluated through Cook’s distance (>1). 

No influential cases emerged. Models effects were evaluated using F-test and p-values, calculated 

via Satterthwaite's degrees of freedom method (α = .05, R package: lmerTest; Kuznetsova et al., 

2017). For each model we reported the estimated parameters with 95% confidence intervals (CI). We 

also reported marginal and conditional R2 (estimated as in Nakagawa et al., 2017), that represent the 

variance explained by fixed effects and by fixed plus random effects, respectively. 

3.3 RESULTS 

All confirmatory models are summarized in Table 3.3 and Figure 3.2. For the expectancy 

model (R2
marginal = 0.216, R2

conditional = 0.496), we found a main effect of S1 color (F(1, 183) = 90.2, 

p < .001) and an interaction between S1 color and group (F(1, 183) = 65.30, p < .001). In line with 

the assumption that participants learned probabilistic relationships in the learning phase, we found 

that participants in the CG reported significantly more negative expectancy ratings after the red color 

(i.e., circles preceding negative pictures) as compared to the blue color (i.e., circles preceding neutral 

pictures) (blue vs. red = -35.2, t(183) = -13.12, p < .001, 95% CI = [-40.54, -29.94]), whereas in the 

UG no differences in expectancy ratings as a function of the S1 color emerged (blue vs. red = -2.8, 

t(183) = -0.96, p = .34, 95% CI = [-8.72, 3.03]). Contrary to H1, however, we did not find any 

significant main effect of group (F(1, 183) = 0.02, p = .9). Thus, the expectancy model does not 

support the hypothesis of more negative expectancy ratings in the UG as compared to the CG (H1). 

For both valence (R2
marginal = 0.622, R2

conditional = 0.723) and arousal (R2
marginal = 0.293, 

R2
conditional = 0.556) models testing H2a vs. H2b, we found a main effect of S2 valence, with both 

groups reporting significantly greater unpleasantness (F(1, 183) = 1393, p < .001; NEG vs. NEU = -

47.55, t(183) = -37.32, p < .001, 95% CI = [-50.06, -45.03]) and higher arousal (F(1, 183) = 332.68, 

p < .001; NEG vs. NEU = 26.69, t(183) = 18.24, p < .001, 95% CI = [23.79, 29.57]) towards negative 

pictures. However, in contrast with H2a and H2b, we found no evidence for the interaction effect 

between S2 valence and group both for valence (F(1, 183) = 0.07, p = .799) and arousal ratings (F(1, 
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183) = 0.82, p = .364). Thus, neither valence nor arousal models support the hypothesis of an affect 

intensification in the UG (H2a) or in the CG (H2b) as compared to the other group. 

Exploratory models are summarized in Table 3.4. 

 

Table 3.3 Results of confirmatory LMMs on expectancy, valence and arousal ratings in Study 2. 

For each model, we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Expectancy ratings 

Intercept 52.96 0.57 93.46 183.00 < .001 51.84 54.08 

UG - CG -0.15 1.13 -0.13 183.00 .897 -2.38 2.09 

blue - red -19.04 2.00 -9.50 182.99 < .001 -23.00 -15.09 

color × group -32.40 4.01 -8.08 182.99 < .001 -40.31 -24.49 

σ ID 6.98       

σ color 26.37       

σ residual 20.04       

Valence ratings 

Intercept 45.49 0.40 112.42 183.00 < .001 44.69 46.28 

UG - CG -0.73 0.81 -0.90 183.00 .369 -2.33 0.87 

NEG - NEU -47.55 1.27 -37.32 183.00 < .001 -50.06 -45.04 

valence × group 0.65 2.55 0.26 183.00 .799 -4.38 5.68 

σ ID 4.87       

σ valence 16.49       

σ residual 15.87       

Arousal ratings 

Intercept 47.67 0.63 75.12 183.00 < .001 46.42 48.93 

UG - CG 0.17 1.27 0.13 183.00 .894 -2.33 2.67 

NEG - NEU 26.69 1.46 18.24 183.00 < .001 23.80 29.57 

valence × group -2.66 2.93 -0.91 183.00 .364 -8.44 3.11 

σ ID 8.19       

σ valence 19.11       

σ residual 16.37       
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Table 3.4 Results of exploratory LMMs investigating the effect of S2 congruency on valence and arousal ratings in Study 

2. 

For each model, we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Valence 

ratings 

Intercept 46.44 0.42 111.05 208.84 < .001 45.62 47.27 

UG - CG -0.52 0.84 -0.62 208.84 .535 -2.17 1.13 

NEG - NEU -45.60 1.29 -35.30 193.21 < .001 
-

48.14 

-

43.05 

congruent - incongruent -3.83 0.42 -9.06 7,026.01 < .001 -4.66 -3.00 

valence × group 1.10 2.58 0.43 193.21 .669 -3.99 6.20 

group × congruency -0.84 0.85 -0.99 7,026.01 .322 -2.50 0.82 

valence × congruency -7.82 0.85 -9.24 7,026.01 < .001 -9.47 -6.16 

group × valence × 

congruency 
-1.82 1.69 -1.07 7,026.01 .283 -5.14 1.50 

σ ID 4.88       

σ valence 16.51       

σ residual 15.68       

Arousal 

ratings 

Intercept 47.33 0.64 73.48 194.20 < .001 46.06 48.60 

UG - CG 0.17 1.29 0.13 194.20 .893 -2.37 2.71 

NEG - NEU 25.53 1.48 17.26 191.40 < .001 22.62 28.45 

congruent - incongruent 1.36 0.44 3.09 7,026.00 .002 0.50 2.23 

valence × group -2.47 2.96 -0.83 191.40 .405 -8.31 3.37 

group × congruency -0.01 0.88 -0.02 7,026.00 .987 -1.74 1.71 

valence × congruency 4.61 0.88 5.22 7,026.00 < .001 2.88 6.33 

group × valence × 

congruency 
-0.77 1.76 -0.44 7,026.00 .663 -4.22 2.69 

σ ID 8.19       

σ valence 19.11       

σ residual 16.33       
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Figure 3.2 Box-plot of expectancy, valence and arousal ratings in Study 2. 

Points represent the mean value for each participant according to the group (CG vs. UG), and the S1 color (red vs. blue, 

for expectancy ratings) or the S2 valence (NEG vs. NEU, for valence and arousal ratings). 

 

3.4 DISCUSSION 

Study 2 demonstrated that within the visual sensory modality prior probabilistic information 

shaped the subjective experience of the expected valence of future stimuli (i.e., the generation-

implementation stages), but not of their experienced valence and intensity (i.e., the updating stage). 

Participants in the CG – who during the learning phase were exposed to fully reliable S1-S2 

relationships – during the test phase reported more negative expectancy ratings after the cues whose 

color was previously paired with negative pictures, whereas expectancy ratings of participants in the 

UG were not modulated by the color of the cue. This suggests that, within the visual modality, 

experiencing a past environment conveying certain contextual information leads people’s subjective 

expectancies to subsequently rely on previous experience to consistently generate and implement new 

affective predictions. Having learned that a specific environmental cue reliably predicts a negative 

stimulus will thus coherently modulate subjective expectancies towards a more negative valence. 
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Contrary to our hypothesis (H1), however, we did not find any evidence of negatively-biased 

expectancy ratings in the UG. This unexpected result can be explained by the differences between 

our experimental paradigm and the extant literature from which we derived our hypothesis (Dieterich 

et al., 2016; Grupe & Nitschke, 2011; Herwig, Kaffenberger, et al., 2007; Qiao et al., 2018; 

Schumacher et al., 2015). The latter measured expectancy in relation to currently available, instructed 

probabilistic information; whereas in our experimental paradigm participants previously learned 

uninstructed certain or uncertain contingencies, and only in a subsequent moment they were asked to 

express their expectancy ratings within a different probabilistic context. It is possible that 

experiencing a high uncertainty level (i.e., 50%) in the here and now may push subjective experience 

towards a negative bias (as it has been found in the literature), while this effect may be dampened 

when uncertain past experience is used at a later time to generate and implement new predictions (as 

it happens in our paradigm). 

Regarding the updating stage, we found no evidence for an affect intensification effect strictly 

related to prior experience. In fact, no significant group differences emerged on valence and arousal 

ratings. This result is in contrast with our hypotheses (H2a and H2b), which were derived from the 

literature assessing subjective experience with regard to currently available, instructed probabilistic 

information (Johnen & Harrison, 2019; Lin et al., 2017, 2020; Lin, Jin, et al., 2015; Lin, Xiang, et al., 

2015). It is however consistent with some extant evidence of null interactions between contextual 

information and subjective valence ratings (Bermpohl et al., 2006a; Dieterich et al., 2016; Greenberg 

et al., 2015; Grupe & Nitschke, 2011; Lin et al., 2018; Qiao et al., 2018). Thus, subjective reactions 

during the updating stage do not seem to be affected by previous (un)certain learnings, showing only 

a valence-dependent modulation, with both groups reporting greater unpleasantness and higher 

arousal towards negative stimuli. This can be partially ascribed to a ceiling effect, such that the 

intrinsic differences in valence between negative and neutral visual stimuli were so prominent that 

they might have eventually captured most of the variance in the valence and arousal ratings. 
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Thus, given that results of Study 2 suggested that previous experience shaped the subjective 

reactions to new affective predictions only with regards to the generation-implementation stages, in 

Study 3 we tested if these results hold when previous experience and new predictions tap into different 

sensory modalities. 

STUDY 3 

Study 3 investigated how being exposed to certain vs. uncertain probabilistic relationships 

between stimuli in one sensory modality (i.e., visual) might influence the subjective affective 

experience to new affective predictions when it crosses over to a different sensory modality (i.e., 

auditory). In fact, if previously learned visual contingencies effectively generalize to novel auditory 

stimuli, then we can expect to find similar patterns of results in Study 2 (visual to visual) and Study 

3 (visual to auditory). 

We tested the same a-priori and pre-registered (https://osf.io/wcy9r/) hypotheses as in Study 

2 (H1, H2a, H2b). Furthermore, we explored whether the influence of previous experience on 

subjective affective ratings differed between Study 2 and Study 3. 

3.5 METHODS 

3.5.1 PARTICIPANTS 

According to an a-priori power-analysis (see § 3.2.1), we recruited 200 adult English-speaking 

participants through Prolific (Prolific, Oxford, UK; www.prolific.co). In order to be included in Study 

3, participants must not have taken part in Study 2. Data from 17 participants were discarded 

according to the pre-registered exclusion criteria (https://osf.io/wcy9r/) (see § 3.2.1). Furthermore, 

data from 3 participants were incomplete because of data collection failure, and 1 participant reported 

to be affected by hearing impairment, thus they were excluded from data analysis. 

The final sample included 179 participants (97 males, age: M = 26.05, SD = 7.86, range = 18-

59). All participants gave their informed consent before starting the experiment and were paid £2.67 

https://osf.io/wcy9r/
http://www.prolific.co/
https://osf.io/wcy9r/
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for their participation. All experimental procedures were approved by the Ethical Committee for the 

Psychological Research of the University of Padua (protocol no. 4012) and were conducted in 

accordance with the Declaration of Helsinki. 

3.5.2 STIMULUS MATERIAL AND PROCEDURE 

The experiment was run online through OpenSesame (Mathôt et al., 2012), and hosted in 

JATOS (Lange et al., 2015). Two S1-S2 paradigms were employed as a learning and a test phase, 

respectively. S1s were the same as in Study 2 (see § 3.2.2.1). NAPS pictures (20 negative, 20 neutral) 

(Marchewka et al., 2014) were employed as S2s for the learning phase. Affective sounds (40 negative, 

40 neutral) from International Affective Digitized Sounds (IADS-2) (Bradley & Lang, 2007) were 

employed as S2s for the test phase. NAPS pictures names, and IADS-2 sounds numbers, sorted by 

valence, are listed in Table 3.5. Negative and neutral pictures, and sounds did not differ in terms of 

physical properties (i.e., luminance, contrast, complexity, and color space for pictures; max dB, min 

dB, and peak dB for sounds) (see Table 3.6). During attention check trials, a white noise sound was 

used as S2 for the test phase. Three VASs were used to collect expectancy (from 0% “I definitely 

expect to hear a neutral sound” to 100% “I definitely expect to hear a negative sound”), valence (from 

0% “very negative” to 100% “very positive”) and arousal (from 0% “relaxed” to 100% “aroused”) 

ratings. The English short form of the IUS (Carleton et al., 2007) was used to measure IU. 
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Table 3.5 List of NAPS pictures names and IADS-2 sounds numbers used as S2s in Study 3, sorted by valence. 

NEG = negative, NEU = neutral 

Valence NAPS pictures names IADS-2 sounds numbers 

NEG 

Animals_074_h, Animals_077_h, Animals_078_h, 

Animals_024_h, Faces_293_h, Faces_290_h, Faces_302_h, 

Faces_152_h, Landscapes_139_h, Landscapes_005_h, 

Landscapes_026_h, Landscapes_002_h, Objects_139_h, 

Objects_125_h, Objects_149_h, Objects_003_h, People_226_h, 

People_022_h, People_140_h, People_127_h 

105, 106, 115, 116, 241, 242, 244, 

255, 276, 277, 279, 283, 285, 286, 

289, 290, 292, 293, 295, 296, 420, 

422, 423, 424, 501, 502, 600, 611, 

624, 625, 626, 703, 709, 711, 712, 

713, 714, 719, 730, 732 

NEU 

Animals_170_h, Animals_206_h, Animals_125_h, 

Animals_109_h, Faces_304_h, Faces_316_h, Faces_331_h, 

Faces_326_h, Landscapes_127_h, Landscapes_149_h, 

Landscapes_163_h, Landscapes_107_h, Objects_262_h, 

Objects_254_h, Objects_263_h, Objects_078_h, People_194_h, 

People_099_h, People_173_h, People_101_h 

107, 109, 113, 120, 132, 150, 152, 

170, 171, 172, 206, 225, 254, 262, 

270, 355, 360, 361, 363, 364, 365, 

370, 374, 375, 377, 378, 400, 403, 

601, 602, 610, 698, 704, 705, 716, 

721, 724, 725, 726, 808 

 

Table 3.6 Means (M), standard deviations (SD), test statistics (t), and associated p-values (p) of NAPS pictures and IADS-

2 sounds employed as S2s in Study 3. 

Results of two-tailed t-tests assuming unequal variance in luminance, contrast, complexity indices (i.e., JPEG size, 

entropy), and color space indices (i.e., LABL, LABA, LABB) for affective pictures, and in physical properties (i.e., min 

dB, max dB, peak dB) for affective sounds, referred to negative (NEG) and neutral (NEU) S2s showed no significant 

results. 

Measure 
NEG NEU 

t(38) p 
M SD M SD 

luminance 110.232 23.168 121.242 24.168 -1.471 .150 

contrast 65.834 10.017 61.919 10.617 1.199 .238 

jpeg_size 345480.200 115725.462 357945.550 111068.563 -0.348 .730 

entropy 7.623 0.399 7.663 0.216 -0.394 .695 

LABL 45.552 9.136 50.539 9.667 -1.677 .102 

LABA 2.089 4.294 -1.576 10.822 1.408 .167 

LABB 5.316 5.992 6.630 15.278 -0.358 .722 

Measure 
NEG NEU 

t(78) p 
M SD M SD 

min dB -0.673 0.058 -0.657 0.094 -0.916 .362 

max dB 0.668 0.052 0.681 0.116 -0.638 .526 

peak dB -93.125 566.920 -3.582 1.347 -0.999 .321 

 

Before the learning phase participants were randomly assigned to the CG or the UG. They 

were instructed to ensure silent and private environmental conditions for participation: they were 



89 

asked to avoid potential distractions and interruptions, and to perform the study alone, where no one 

else could view the computer screen nor hear the sounds due to the involvement of emotionally 

evocative material. The learning phase was identical to Study 2 (see § 3.2.2.2). 

At the end of the learning phase participants were asked to wait and relax for 1 minute, and 

then they were introduced to the test phase, identical for both groups. Instructions, practice trials, and 

trial number and structure of the test phase were the same as in Study 2 (adapting the wording from 

visual to auditory modality, see § 3.2.2.3). S1, ISI, and ITI timings were unchanged, whereas S2s 

were presented in their full length of 6000 msec (see Figure 3.3 for a schematic representation of the 

experimental paradigm). 

At the end of the test phase, participants were redirected to the Qualtrics survey (see § 3.2.2.5), 

and then back to Prolific to complete the study submission and receive their payment. 

 

 

Figure 3.3 Schematic representation of Study 3 experimental paradigm. 

Example sequence of events and their duration for a trial, according to the phase (learning, test), and the group (CG, UG). 

During the learning phase participants experienced a 100% (CG) vs 50% (UG) affective contingency between S1s (red 

or blue circles) and S2s (NEG or NEU pictures), according to the group. During the test phase S2s were negative or 

neutral sounds, and the S1-S2 affective contingency was fixed at 75%. Participants were asked to answer the VASs either 

during the ISI for half of the trials (expectancy ratings), or right after the S2 for the other half of the trials (valence and 

arousal ratings). Response times were self-paced. ISI = inter-stimulus interval, ITI = inter-trial interval, VAS = visual 

analogue scale. The text is not drawn to scale. 
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3.5.3 DATA ANALYSIS 

The study has a 2 (group, between-subjects: CG vs. UG) × 2 (S2 valence, within-subjects: 

NEG vs. NEU) mixed design. The analysis plan was pre-registered on OSF (https://osf.io/wcy9r/). 

Data from 11 participants were detected as univariate outliers (MAD > 3). From visual 

inspection of their ratings, 7 of them were identified as “error outliers” (cf. Leys et al., 2019) and 

excluded from data analysis. Data from 54 participants were detected as multivariate outliers 

(MMCD, breakdown point 0.25). From visual inspection of their ratings, 1 of them was identified as 

an “error outlier” and removed from data analysis. The remaining 57 were characterized by a slightly 

flattened or steeper relationship between valence and arousal ratings as compared to other 

participants. Thus, since none of them significantly impacted the models’ estimates (as assessed 

through Cook’s distance), we chose to keep them into data analysis as “potentially interesting 

outliers” (cf. Leys et al., 2019). Data from 171 participants entered data analysis. 

In order to test our a-priori hypotheses (H1, H2a, H2b), for each DV we fitted the following 

LMMs (R package: lme4; Bates et al., 2015): 

- expectancy ratings (H1): group, S1 color and their interaction as fixed factors, random 

slopes for S1 color within participant; 

- valence and arousal ratings (H2a vs. H2b): group, S2 valence and their interaction as fixed 

factors, random slopes for S2 valence within participant. 

Furthermore, we ran some exploratory analyses. To assess the differences between expected 

and unexpected S2s, we added S2 congruency, and its interaction with group and S2 valence as fixed 

factors to the confirmatory models for valence and arousal ratings. To compare results from Study 2 

and Study 3, we merged the two datasets, and added the study (between-subjects: Study 2 vs. Study 

3) as a fixed factor to the confirmatory LMMs. 

For each confirmatory model no influential cases emerged, as evaluated through Cook’s 

distance (>1). Models effects were evaluated using F-test and p-values, calculated via Satterthwaite's 

degrees of freedom method (α = .05, R package: lmerTest; Kuznetsova et al., 2017). For each model 

https://osf.io/wcy9r/
https://www.zotero.org/google-docs/?9jtibW
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we reported the estimated parameters with 95% CI, marginal and conditional R2 (estimated as in 

Nakagawa et al., 2017). 

3.6 RESULTS 

All confirmatory models are summarized in Table 3.7 and Figure 3.4. For the expectancy 

model (R2
marginal = 0.145, R2

conditional = 0.468) replicating the finding from Study 2, we found a main 

effect of S1 color (F(1, 183) = 73.25, p < .001), and an interaction between S1 color and group (F(1, 

183) = 18.45, p < .001). In particular, we found that participants reported significantly more negative 

expectancy ratings after the red color (i.e., circles preceding negative sounds) as compared to the blue 

one (i.e., circles preceding neutral sounds), both in the CG (blue vs. red = -27.97, t(183) = -8.86, p < 

.001, 95% CI = [-34.20, -21.73]) and in the UG (blue vs. red = -9.28, t(183) = -3.09, p = .002, 95% 

CI = [-15.19, -3.36]) condition. To better understand these two contrasts we computed a standardized 

effect size, dividing the mean difference between blue and red cues within each group by the total 

estimated variability from the LMM (Westfall et al., 2014). The blue vs. red standardized difference 

was -0.81 in the CG and -0.269 in the UG. Thus, despite both contrasts being statistically significant, 

the standardized difference between red and blue cues is clearly greater (and therefore of relevant 

interest for the purposes of an interpretation) in the CG. Contrary to H1, we did not find any 

significant main effect of group (F(1, 183) = 0.35, p = .56). Therefore, the expectancy model does 

not support the hypothesis of more negative expectancy ratings in the UG as compared to the CG 

(H1). 

For both valence (R2
marginal = 0.471, R2

conditional = 0.540) and arousal (R2
marginal = 0.274, 

R2
conditional = 0.398) models testing H2a vs. H2b, we found a main effect of S2 valence, with both 

groups reporting significantly greater unpleasantness (F(1, 169) = 1490.65, p < .001; NEG vs. NEU 

= -37.67, t(183) = -38.61, p < .001, 95% CI = [-39.59, -35.74]) and higher arousal (F(1, 169) = 870.40, 

p < .001; NEG vs. NEU = 25.24, t(183) = -37.32, p < .001, 95% CI = [23.55, 26.93]) towards negative 

sounds. We also found evidence for interaction between S2 valence and group on both valence (F(1, 
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169) = 4.72, p = .031) and arousal models (F(1, 169) = 5.30, p = .022), as hypothesized (H2a and 

H2b). However from post-hoc contrasts we did not find evidence for significant differences between 

the CG and the UG within each S2 valence level for both valence (NEU: CG vs. UG = 2.54, t(169) = 

1.92, p = .056, 95% CI = [-0.06, 5.14]; NEG: CG vs. UG = -1.70, t(169) = -1.39, p = .166, 95% CI = 

[-0.22, 0.03]) and arousal ratings (NEU: CG vs. UG = -2.07, t(169) = -1.58, p = .117, 95% CI = [-

4.67, 0.52]; NEG: CG vs. UG = 1.86, t(169) = 1.19, p = .235, 95% CI = [-1.22, 4.97]). Thus, neither 

valence nor arousal models support the hypothesis of an affect intensification in the UG (H2a) or in 

the CG (H2b) as compared to the other group. 

Study 3 exploratory models are summarized in Table 3.8. 
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Table 3.7 Results of confirmatory LMMs on expectancy, valence and arousal ratings in Study 3. 

For each model we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Expectancy 

ratings 

Intercept 53.40 0.54 99.62 169 < .001 52.34 54.46 

UG - CG 0.63 1.07 0.59 169 .557 -1.48 2.75 

blue - red -18.62 2.18 -8.56 169 < .001 -22.92 -14.33 

color × group -18.69 4.35 -4.30 169 < .001 -27.28 -10.10 

σ ID 6.28       

σ color 27.73       

σ residual 19.56       

Valence 

ratings 

Intercept 41.46 0.41 101.44 169 < .001 40.65 42.26 

UG - CG 0.42 0.82 0.51 169 .609 -1.19 2.03 

NEG - NEU -37.67 0.98 -38.61 169 < .001 -39.59 -35.74 

valence × group -4.24 1.95 -2.17 169 .031 -8.09 -0.39 

σ ID 4.45       

σ valence 11.30       

σ residual 18.59       

Arousal 

ratings 

Intercept 59.94 0.58 102.68 169 < .001 58.79 61.09 

UG - CG -0.10 1.17 -0.09 169 .931 -2.41 2.20 

NEG - NEU 25.24 0.86 29.50 169 < .001 23.55 26.93 

valence × group 3.94 1.71 2.30 169 .022 0.56 7.32 

σ ID 7.03       

σ valence 9.48       

σ residual 18.68       
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Table 3.8 Results of exploratory LMMs investigating the effect of S2 congruency on valence and arousal ratings in Study 

3. 

For each model, we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Valence 

ratings 

Intercept 42.13 0.43 98.30 204.39 < .001 41.29 42.98 

UG - CG 0.44 0.86 0.52 204.39 .607 -1.25 2.13 

NEG - NEU -35.69 1.01 -35.36 193.50 < .001 -37.68 -33.70 

congruent - incongruent -2.70 0.52 -5.22 6,494.00 < .001 -3.71 -1.69 

valence × group -3.52 2.02 -1.74 193.50 .083 -7.50 0.46 

group × congruency -0.09 1.03 -0.09 6,494.00 .929 -2.12 1.93 

valence × congruency -7.93 1.03 -7.68 6,494.00 < .001 -9.96 -5.91 

group × valence × congruency -2.87 2.07 -1.39 6,494.00 .165 -6.92 1.18 

σ ID 4.47       

σ valence 11.32       

σ residual 18.47       

Arousal 

ratings 

Intercept 59.48 0.60 99.45 186.22 < .001 58.30 60.66 

UG - CG -0.15 1.20 -0.12 186.22 .903 -2.51 2.21 

neg - neu 23.85 0.89 26.67 201.72 < .001 22.09 25.61 

congruent - incongruent 1.83 0.52 3.52 6,494.00 < .001 0.81 2.86 

valence × group 3.40 1.79 1.90 201.72 .058 -0.12 6.93 

group × congruency 0.18 1.04 0.17 6,494.00 .866 -1.87 2.22 

valence × congruency 5.56 1.04 5.34 6,494.00 < .001 3.52 7.60 

group × valence × congruency 2.15 2.08 1.03 6,494.00 .303 -1.94 6.23 

σ ID 7.03       

σ valence 9.49       

σ residual 18.62       
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Figure 3.4 Box-plot of expectancy, valence and arousal ratings in Study 3. 

Points represent the mean value for each participant according to the group (CG vs. UG), and the S1 color (red vs. blue, 

for expectancy ratings) or the S2 valence (NEG vs. NEU, for valence and arousal ratings). 

 

Exploratory models comparing results of Study 2 and 3 are summarized in Figure 3.5. For the 

expectancy model (R2
marginal = 0.184, R2

conditional = 0.483) we found evidence for a three-way 

interaction (F(1, 352) = 5.385, p = .021) between study, group and S1 color. However, none of the 

post-hoc comparisons between Study 2 and Study 3 emerged as statistically significant. For the 

valence model (R2
marginal = 0.559, R2

conditional = 0.645) we found an interaction between study and S2 

valence (F(1, 352) = 37.09, p < .001). In particular, neutral sounds were rated as more unpleasant 

than neutral pictures (NEU: Study 2 vs. Study 3 = 8.969, z = 8.508, p < .001)1. Finally, for arousal 

model (R2
marginal = 0.327, R2

conditional = 0.512) we only found a main effect of study (F(1, 352) = 202.64, 

p < .001), with sounds rated overall as more arousing than visual stimuli independently from valence 

(Study 2 vs. Study 3 = -12.3, z = -14.16, p < .001)1. Thus, none of the exploratory comparisons 

 
1 We are using z-test for post hoc-comparison given that the computation of degrees of freedom is memory intensive due 

to the LMM computed on data from two experiments. 
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between Study 2 and Study 3 yielded evidence in favor of a different effect of previous experience as 

a function of the sensory modality involved. 

 

 

Figure 3.5 Box-plots of the comparison of expectancy, valence and arousal ratings between Study 2 and Study 3. 

Top: Points represent the mean value of expectancy ratings for each participant according to the study (Study 2 vs. Study 

3), the group (CG vs. UG), and the S1 color (red vs. blue). Middle: Points represent the mean value of valence ratings 

for each participant according to the study (Study 2 vs. Study 3), and S2 valence (NEG vs. NEU). Bottom: Points represent 

the mean value of arousal ratings for each participant according to the study (Study 2 vs. Study 3). 
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3.7 DISCUSSION 

Study 3 (visual to auditory) demonstrated that prior visual probabilistic information shaped 

the subjective experience of the expected valence of future auditory stimuli (i.e., generation-

implementation stages), but not of their experienced valence and intensity (i.e., updating stage), 

similarly as it occurred in Study 2 (visual to visual). In Study 3 we replicated the results of Study 2, 

with participants in the CG showing more negative expectancy ratings after the cues whose color was 

previously paired with negative stimuli. Surprisingly, more negative expectancy ratings were found 

to follow red cues also in the UG. Nevertheless, since the effect size for the red-blue contrast within 

the CG (-0.81) is three times the effect within the UG (-0.269), this last result should be interpreted 

with caution. In fact, in the UG the cue color had no real predictive value, because during the learning 

phase each color was paired equally often with either negative or neutral stimuli, thus participants 

could not learn any reliable S1-S2 relationship. Therefore, considering the effect sizes of both 

contrasts and the absence of an actual predictive meaning of cues in the UG, the red vs. blue contrast 

within this group may be considered of negligible significance. Overall, according to our results, 

experiencing a past certain environment in one sensory modality (i.e., visual) leads people’s 

subjective expectancies to subsequently rely on previous experience to consistently generate and 

implement new affective predictions also in a different sensory modality (i.e., auditory). 

Regarding the updating stage, as in Study 2 we found no evidence of an affect intensification 

effect related to previous experience. Even though we found a significant group by valence interaction 

in both valence and arousal models, post-hoc comparisons between groups did not reach statistical 

significance. Therefore, subjective reactions during the updating stage do not seem to be affected by 

previous (un)certain learning also when the learning occurs in a different sensory modality (i.e., 

visual) from the one involved in the present moment (i.e., auditory). 

Last, no evidence of a difference between sensory modalities in the influence of previous 

experience on subjective reactions emerged. No meaningful group by study interaction was found in 

the exploratory models run on the merged dataset (Study 2 + Study 3). Thus, consistently with the 
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predictive framework (Barrett, 2017; Friston, 2010; Seth & Friston, 2016; Shipp, 2016), the claim 

that affective predictions develop similarly across sensory modalities seems to be supported by our 

results. Only a general effect of sensory modality emerged with regards to the updating stage, with 

neutral sounds eliciting more unpleasant valence ratings than neutral pictures, and sounds eliciting 

higher arousal ratings than pictures regardless of valence. These effects may be due to the heightened 

ambiguity of affective sounds as compared to pictures (Shinkareva et al., 2014), which can produce 

a greater allocation of processing resources towards sounds, and which can thus eventually turn into 

a more intense subjective reaction. Alternatively, they may be ascribed to the longer presentation 

length of auditory stimuli (i.e., 6 sec) as compared to visual ones (i.e., 1 sec). 

Summarizing, Studies 2 and 3 suggested that relying on a certain prior experience can shape 

subjective expectancies toward a coherent labeling of the predicted valence of future stimuli, and that 

this process generalizes across sensory modalities. However, affective predictions must generalize 

also from the specific features of the learning context (from which they are constructed) to new, and 

potentially ambiguous, contextual features (in which they are implemented), in order to be effective 

in promoting survival and allostatic balance with our environment (cf. § 1.1 and 1.2). Therefore, we 

implemented a follow-up study (Study 4) in which we investigated how (un)certain prior experience 

may influence new affective predictions, as a function of cues ambiguity. 

STUDY 4 

Study 4 investigated how being exposed to certain vs. uncertain probabilistic relationships 

between stimuli might influence the subjective reactions to new affective stimuli, as a function of S1s 

ambiguity. 

We performed confirmatory analyses to test two a-priori formulated hypotheses 

(https://osf.io/gdr3b/). The first hypothesis (H1) was that ambiguous cues would elicit less negative 

expectancy ratings (Chen & Lovibond, 2016). The second hypothesis (H2) was that ambiguous cues 

would elicit more unpleasant valence ratings (Chen & Lovibond, 2016), since ambiguity can 

https://osf.io/gdr3b/
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contribute to a heightened anxious reaction to potential threats (cf. MacLeod & Mathews, 2012). As 

exploratory analyses, we tested whether S1 color modulated expectancy ratings, and whether cue 

ambiguity modulated arousal ratings. 

3.8 METHODS 

3.8.1 PARTICIPANTS 

We recruited 125 adult English-speaking participants through Prolific (Prolific, Oxford, UK; 

www.prolific.co). The sample size was estimated through an a priori pre-registered 

(https://osf.io/gdr3b/) power analysis (see § 3.2.1), estimating parameters from data of Study 2 (N = 

185). In order to be included in Study 4 participants must not have taken part in Studies 2 and 3. One 

participant was discarded according to the pre-registered exclusion criteria (https://osf.io/gdr3b/) (see 

§ 3.2.1). Data from 3 participants were discarded because of data collection failure. 

The final sample included 121 participants (58 males, age: M = 25.03, SD = 7.67, range = 18-

58). All participants gave their informed consent before starting the experiment and were paid £1.93 

for their participation. All experimental procedures were conducted in accordance with the 

Declaration of Helsinki and approved by the Ethical Committee for the Psychological Research of 

the University of Padua (protocol no. 4177). 

3.8.2 STIMULUS MATERIAL AND PROCEDURE 

Two S1-S2 paradigms were employed as learning and test phase, respectively. S1s in the 

learning phase were identical to the ones employed in Study 2 (see § 3.2.2.1). In the test phase, new 

ambiguous S1s were added: same-sized reddish and bluish (i.e., coral- and turquoise-colored) circles. 

In both learning and test phases, S2s were the same negative or neutral NAPS pictures employed in 

Study 2 (see Tables 3.1 and 3.2). As in Study 2 (see § 3.2.2.1), the yellow circle and the striped pattern 

picture were used as S1 and S2, respectively, in attention check trials. Three VASs were used to 

http://www.prolific.co/
https://osf.io/gdr3b/
https://osf.io/gdr3b/
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collect expectancy, valence and arousal ratings (see § 3.2.2.1). The English short form of the IUS 

(Carleton et al., 2007) was used to measure IU. 

The experiment was run online through OpenSesame (Mathôt et al., 2012), and hosted in 

JATOS (Lange et al., 2015). Before the learning phase participants were randomly assigned to the 

CG or the UG. The learning phase was identical to Study 2 (see § 3.2.2.2). At the end of the learning 

phase participants were asked to wait and relax for 1 minute, and then they were introduced to the 

test phase, identical for both groups. Instructions, practice trials, and trial number, structure and 

timing of the test phase were the same as in Study 2 (see § 3.2.2.3). S1 color was manipulated within 

participants at four levels: red, blue, coral, and turquoise. Cue ambiguity was manipulated at two 

levels: ambiguous vs. unambiguous. In trials with unambiguous cues (N = 40) we employed the same 

S1 colors as the learning phase (i.e., red and blue), whereas in trials with ambiguous cues (N = 40) 

we employed the new reddish and bluish colors (i.e., coral and turquoise). Participants were not 

warned about the exposure to new colors (see Figure 3.6 for a schematic representation of the 

experimental paradigm). At the end of the test phase, participants were redirected to the Qualtrics 

survey (see § 3.2.2.5), and then back to Prolific to complete the study submission and receive their 

payment. 
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Figure 3.6 Schematic representation of Study 4 experimental paradigm. 

Example sequence of events and their duration for a trial, according to the phase (learning, test), and the group (CG, UG). 

During the learning phase participants experienced a 100% (CG) vs. 50% (UG) affective contingency between S1 color 

(red or blue) and S2 valence (NEG or NEU), according to the group. During the test phase all participants were presented 

with unambiguous (i.e., red or blue) or ambiguous (i.e., coral or turquoise) S1s, and the S1-S2 affective contingency was 

fixed at 75%. Participants were asked to answer the VASs either during the ISI for half of the trials (expectancy ratings), 

or right after the S2 for the other half of the trials (valence and arousal ratings). Response times were self-paced. ISI = 

inter-stimulus interval, ITI = inter-trial interval, VAS = visual analogue scale. The text is not drawn to scale. 

 

3.8.3 DATA ANALYSIS 

The study has a 2 (group, between-subjects: CG vs. UG) × 2 (cue, within-subjects: ambiguous 

vs. unambiguous) × 2 (S2 valence, within-subjects: NEG vs. NEU) mixed design. The analysis plan 

was pre-registered on OSF (https://osf.io/gdr3b/). 

We detected 12 univariate outliers (MAD > 3). We visually inspected their ratings, we 

identified them as “error outliers” (cf. Leys et al., 2019), and we chose to remove them from data 

analysis. We also detected 21 multivariate outliers (MMCD, breakdown point 0.25). We visually 

inspected their ratings, and it emerged that they showed a slightly flattened or steeper relationship 

between valence and arousal ratings as compared to other participants. Nevertheless, none of them 

significantly impacted the models’ estimates (as assessed through Cook’s distance). Thus, we chose 

https://osf.io/gdr3b/
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to keep their data into the analysis (“potentially interesting outliers”, cf. Leys et al., 2019). Data from 

109 participants were included into data analysis. 

To test our hypotheses (H1, H2), we fitted the following LMMs for each DV (R package: 

lme4; Bates et al., 2015): 

- expectancy ratings (H1): group, cue and their interaction as fixed factors, random slopes 

for cue within participant; 

- valence ratings (H2): group, cue, S2 valence and their interaction as fixed factors, random 

slopes for S2 valence within participant. 

As exploratory analyses, to investigate the effects of S1 color (within subjects: red, blue, coral, 

turquoise) on expectancy ratings, we fitted a LMM with group, S1 color and their interaction as fixed 

factors, and random slopes for S1 color within participants. To investigate the effects of cue ambiguity 

on subjective arousal, we fitted the H2 model on arousal ratings. 

For each model, we evaluated influential cases through Cook’s distance (>1). No influential 

cases emerged. Models effects were evaluated using F-test and p-values, calculated via 

Satterthwaite's degrees of freedom method (α = .05, R package: lmerTest; Kuznetsova et al., 2017). 

For each model we reported the estimated parameters with 95% CI, marginal and conditional R2 

(estimated as in Nakagawa et al., 2017). 

3.9 RESULTS 

Study 4 models are summarized in Table 3.9 and Figure 3.7. For the expectancy model 

(R2
marginal = 0.006, R2

conditional = 0.056) testing H1, we found a main effect of cue (F(1, 107) = 13.19, 

p < .001): ambiguous cues elicited less negative expectancy ratings than unambiguous ones 

(ambiguous - unambiguous = -4.08, t(107) = -3.63, p < .001, 95% CI = [-6.28, -1.88]). Thus, the 

expectancy model supports the hypothesis of less negative expectancy ratings to ambiguous cues (H1) 

within both groups. Moreover, for the exploratory expectancy model testing the effect of S1 color 

(R2
marginal = 0.155, R2

conditional = 0.453) we found a significant interaction between group and S1 color 

https://www.zotero.org/google-docs/?9jtibW


103 

(F(3, 107) = 9.49, p < .001). Post-hoc contrasts showed that, in the CG only, red S1s elicited more 

negative expectancy ratings than blue (blue - red = -34.33, t(107) = -8.37, p < .001), turquoise (red - 

turquoise = 32.28, t(107) = 7.54, p < .001), and coral (coral - red = -7.71, t(107) = -3.67, p = .002); 

coral S1s elicited more negative ratings than blue (blue - coral = -26.63, t(107) = -7.85, p < .001), and 

turquoise (coral - turquoise= 24.57, t(107) = 7.09, p < .001); and no difference emerged between blue 

and turquoise S1s (blue - turquoise = -2.05, t(107) = -1, p = .75). Thus, we replicated our previous 

results (cf. § 3.3 and 3.6), finding more negative expectancy ratings in the CG after the unambiguous 

cues (i.e., red) which were previously paired with negative stimuli. We also found evidence in the 

CG for a generalization effect of the learned predictive meaning of cues to new, ambiguous ones (i.e., 

coral). 

For the valence model (R2
marginal = 0.621, R2

conditional = 0.704) testing H2, we found a main 

effect of cue (F(1, 4138) = 8.26, p = .004), and a main effect of S2 valence (F(1, 107) = 997.35, p < 

.001), better specified by a significant interaction effect between cue and S2 valence (F(1, 4138) = 

7.45, p = .006). In particular, we found evidence for more unpleasant valence ratings to neutral 

pictures presented after unambiguous cues as compared to ambiguous ones (NEU: ambiguous vs. 

unambiguous = 2.74, t(4138) = 3.96, p < .001, 95% CI = [1.38, 4.09]), while valence ratings to 

negative pictures were not affected by cue ambiguity (NEG: ambiguous vs. unambiguous = 0.071, 

t(4138) = 0.103, p = .918, 95% CI = [-1.28, 1.43]). Thus, cue ambiguity actually modulated valence 

ratings in both groups, but in the opposite direction as hypothesized (H2), with unambiguous cues 

leading subsequent neutral pictures to elicit more unpleasant subjective ratings. 

For the exploratory arousal model (R2
marginal = 0.325, R2

conditional = 0.566) we only found a 

main effect of cue (F(1, 4138) = 8.85, p = .003): unambiguous cues elicited higher arousal ratings 

than ambiguous ones (ambiguous vs. unambiguous = -1.52, t(4138) = -2.98, p = .003, 95% CI = [-

2.53, -0.52]). 
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Table 3.9 Results of LMMs on expectancy, valence and arousal ratings in Study 4. 

For each model, we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Expectancy 

ratings 

Intercept 52.17 0.61 85.91 107.00 < .001 50.97 53.38 

UG - CG -0.39 1.21 -0.32 107.00 .746 -2.80 2.01 

ambiguous - 

unambiguous 
-4.08 1.12 -3.63 107.00 < .001 -6.31 -1.85 

group × cue 2.51 2.25 1.12 107.00 .266 -1.94 6.97 

σ ID 4.62       

σ cue 7.89       

σ residual 27.27       

Valence 

ratings 

Intercept 44.67 0.49 90.57 107.53 < .001 43.70 45.65 

UG - CG 0.98 0.99 0.99 107.53 .322 -0.97 2.94 

ambiguous - 

unambiguous 
1.40 0.49 2.87 4,138.00 .004 0.45 2.36 

NEG - NEU -46.35 1.47 -31.58 107.23 < .001 -49.26 -43.44 

group × cue 0.85 0.98 0.87 4,138.00 .383 -1.06 2.77 

valence × group -5.50 2.94 -1.87 107.23 .064 -11.32 0.32 

cue × valence -2.67 0.98 -2.73 4,138.00 .006 -4.58 -0.75 

group × cue × 

valence 
-2.40 1.95 -1.23 4,138.00 .219 -6.23 1.43 

σ ID 4.47       

σ valence 14.43       

σ residual 16.03       

Arousal 

ratings 

Intercept 49.59 0.86 57.89 107.19 < .001 47.89 51.29 

UG - CG -1.62 1.71 -0.95 107.19 .346 -5.02 1.78 

ambiguous - 

unambiguous 
-1.52 0.51 -2.97 4,138.00 .003 -2.53 -0.52 

NEG – NEU 28.71 1.83 15.68 107.17 < .001 25.08 32.34 

group × cue -0.35 1.02 -0.34 4,138.00 .733 -2.36 1.66 

valence × group 4.67 3.66 1.27 107.17 .205 -2.59 11.93 

cue × valence -1.66 1.02 -1.62 4,138.00 .105 -3.67 0.35 
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group × cue × 

valence 
1.69 2.05 0.83 4,138.00 .409 -2.32 5.70 

σ ID 8.53       

σ valence 18.34       

σ residual 16.80       

 

 

Figure 3.7 Box-plot of expectancy, valence and arousal ratings in Study 4. 

Points represent the mean value for each participant according to the group (CG vs. UG), the cue (ambiguous vs. 

unambiguous), and S2 valence (NEG vs. NEU, for valence and arousal ratings only). 

 

3.10 DISCUSSION 

Results of Study 4 suggested that cue ambiguity per se (regardless of cue predictive meaning) 

did not interact with uncertainty of previous experience in shaping subjective expectancies and 

reactions to new affective stimuli. In fact, no significant group by cue interaction was found in any 

of the models. We found instead that ambiguous cues elicited less negative expectancy ratings in the 

generation-implementation stage (coherently with H1), less unpleasant valence ratings (contrary to 

H2) and lower arousal during the updating stage, regardless of previous experience. Thus, cue 
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ambiguity appears to be associated at all stages with a dampened subjective experience of emotion. 

With regards to subjective expectancy (i.e., expectancy ratings) these results are consistent with our 

hypotheses (H1, Chen & Lovibond, 2016), with regards to subjective reactions to new stimuli (i.e., 

valence and arousal ratings) they are instead partially in contrast (H2, Chen & Lovibond, 2016). It 

must be noted, however, that in our paradigm we asked for a trial-by-trial rating of experienced 

valence (and arousal) to S2s, whereas Chen and Lovibond (2016) asked for a post-experiment mood 

rating. Thus, the different nature of the ratings requested to participants may be accountable for the 

opposing effects found. Moreover, another S1-S2 study manipulating ambiguity of the target affective 

pictures, found that ambiguous pictures were rated as less unpleasant and less arousing than 

unambiguous pictures (Kirschner et al., 2016), coherently with what we found following ambiguous 

cues. These effects can be explained in light of the time-related distinction between ambiguity and 

uncertainty (as proposed in Grenier et al., 2005). Ambiguity, on the one hand, refers to a static feature 

of the here and now, embedded in the present moment: an ambiguous situation or stimulus is 

characterized by novelty, unpredictability and also uncertainty (Grenier et al., 2005). Uncertainty, on 

the other hand, refers to a future-oriented feature, characterized by unpredictability but not necessarily 

also by ambiguity (Carleton, 2012; Grenier et al., 2005). In Study 4, we manipulated uncertainty 

during the learning phase (where participants were not asked for any rating), and ambiguity during 

the test phase (where we asked for subjective affective ratings). As a consequence, it might be that 

when it comes to evaluating environmental ambiguity current (i.e., ambiguous vs. unambiguous) 

information prevailed over past information (i.e., certain vs. uncertain) in shaping subjective affective 

experience. When presented with unambiguous cues (for which one might have formerly constructed 

a reliable internal model), indeed, people showed more intense subjective ratings, probably due to a 

pre-activation of the expected affective experience (as it might be supposed according to Barrett, 

2017; Seth & Friston, 2016). When faced with ambiguous cues (for which no reliable internal model 

could have been constructed from previous experience), instead, subjective affective experience was 
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dampened, since it could not have been coherently pre-activated on the basis of the available 

information. 

Moreover, when testing the effects of cue predictive meaning (S1 color) on expectancy 

ratings, an interesting result emerged: CG participants - who had previously been exposed to a reliable 

S1-S2 relationship - reported more negative expectancy ratings both after unambiguous cues whose 

same color had previously been paired with negative images (e.g., red), and after ambiguous cues 

whose color resembled (but was not identical to) that previously paired with negative images (e.g., 

coral). Thus, it seems that previous reliable learnings (i.e., the certain association between 

unambiguous cue color and picture valence experienced during the learning phase) may be used in a 

future moment to give meaning not only to the same cues, but also to new, ambiguous ones. This 

result supports the idea that (affective) predictions can indeed generalize from the specific features of 

past contexts, to new and potentially ambiguous contextual features, as hypothesized within the 

predictive framework (Barrett, 2017; Friston, 2010; Shipp, 2016). 

Thus, Study 4 suggested that subjective affective experience under ambiguity is dampened in 

all the stages, and that previous reliable learnings may be used in a later moment to predict and give 

meaning both to unambiguous and ambiguous environmental cues. Finally, as a last investigation, in 

Study 5 we explored whether it is possible to extract (un)certain probabilistic information from the 

environment at an implicit level (i.e., without explicitly focusing attention) and use this information 

to predict/react to new affective events. 

STUDY 5 

Study 5 investigated whether experiencing implicit certain vs. uncertain probabilistic 

relationships between stimuli might influence the subjective reactions to new affective predictions. 

More specifically, to ensure an implicit exposure to the S1-S2 affective contingency, during the 

learning phase we engaged participants in a distracting task (a parity judgement task, see § 3.11.2). 

Then, we tested if they were able to implicitly extract the (un)certain probabilistic information 



108 

available during the learning phase, and to use it in the test phase to rate the expected valence of new 

affective events, or the subjective valence and arousal to new affective stimuli. 

We performed confirmatory analyses to test seven a-priori pre-registered 

(https://osf.io/z5esb/) hypotheses. The first two hypotheses concerned the behavioral performance to 

the parity judgement task. We hypothesized to find (H1a) faster RTs in the CG as compared to the 

UG, and (H1b) no differences in accuracy between the groups (Lin et al., 2018). The remaining 

hypotheses regarded the subjective ratings during the test phase. As third hypothesis (H2a), we 

expected to find more negative expectancy ratings in the UG as compared to the CG (Dieterich et al., 

2016; Grupe & Nitschke, 2011; Herwig, Kaffenberger, et al., 2007; Qiao et al., 2018; Schumacher et 

al., 2015). The fourth hypothesis (H2b), opposed to H2a, was that participants in the CG would show 

more negative expectancy ratings after the cues which were previously paired with a negative picture 

during the learning phase (as previously found in Studies 2 and 3). The fifth hypothesis (H3a) was 

that participants in the UG would show higher arousal and more unpleasant valence ratings to S2s 

(Lin et al., 2017) than participants in the CG. The sixth hypothesis (H3b), opposed to H3a, was that 

participants in the CG would show higher arousal and more unpleasant valence ratings to S2s 

(Bermpohl et al., 2006a; Johnen & Harrison, 2019; Lin et al., 2020; Lin, Jin, et al., 2015; Lin, Xiang, 

et al., 2015), as compared to participants in the UG. The last hypothesis (H3c), opposed to both H3a 

and H3b, was to find only a main effect of S2 valence, with significantly higher arousal and more 

unpleasant valence ratings to negative S2s independently from the group (Lin et al., 2018). 

3.11 METHODS 

3.11.1 PARTICIPANTS 

We computed the required sample size through an a priori pre-registered (https://osf.io/z5esb/) 

power analysis for GLMMs (see § 3.2.1), estimating parameters from pilot data (N = 18). We 

recruited 126 adult English-speaking participants through Prolific (Prolific, Oxford, UK; 

www.prolific.co). In order to be included in Study 5, participants must not have taken part in Studies 

https://osf.io/z5esb/
https://www.zotero.org/google-docs/?00L62Q
https://osf.io/z5esb/
http://www.prolific.co/
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2, 3, and 4. Data from 10 participants were discarded according to the pre-registered exclusion criteria 

(https://osf.io/z5esb/): scoring lower than -2 SD from the mean accuracy in the parity judgement task, 

reporting internet/uploading issues in more than 25% of the experimental trials, reporting to have 

caught the exact probabilistic ratio between S1 color and S2 valence during the learning phase. The 

final sample included 116 participants (58 males, age: M = 25.06, SD = 7.63, range = 18-55). All 

participants gave their informed consent before starting the experiment, and were paid £2.13 for their 

participation. All experimental procedures were conducted in accordance with the Declaration of 

Helsinki, and approved by the Ethical Committee for the Psychological Research of the University 

of Padua (protocol no. 4177). 

3.11.2 STIMULUS MATERIAL AND PROCEDURE 

Two S1-S2 paradigms were employed as a learning and a test phase, respectively. S1s and 

S2s were the same as in Study 2 (see § 3.2.2.1). During the learning phase, single digits from 1 to 9 

were employed as stimuli for the parity judgment task. Three VASs were used to collect expectancy, 

valence and arousal ratings during the test phase (see § 3.2.2.1). The English short form of the IUS 

(Carleton et al., 2007) was used to measure IU. 

The experiment was run online through OpenSesame (Mathôt et al., 2012), and hosted in 

JATOS (Lange et al., 2015). Before the learning phase participants were assigned to the CG or the 

UG. The learning phase was the same as in Study 2 (see § 3.2.2.2), except for the introduction of the 

parity judgement task. Participants were informed that they would see a sequence of stimuli on the 

screen: a colored circle, followed by a picture, and then a number. They were instructed to look at the 

screen and judge if the number was odd or even, by pressing the ‘Z’ or ‘M’ keys. Response keys were 

counterbalanced between subjects. A practice session (3 trials) followed the instructions. Here, 

participants trained themselves to give their parity judgments, and they received feedback on their 

performance. Then, the learning session started, with the same trial structure, timing and number as 

in Study 2 (see § 3.2.2.2). After the S2, a second ISI with a random duration between 500 and 800 

https://osf.io/z5esb/
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msec followed, in which the screen remained grey. Then, a random digit between 1 and 9 was 

presented in the center of the screen for 200 msec, and participants had up to 1500 msec to judge the 

digit’s parity by pressing the ‘Z’ or ‘M’ keys. Participants were left uninstructed about the S1-S2 

ratios they were exposed to. 

At the end of the learning phase participants were asked to wait and relax for 1 minute, and 

then they were introduced to the test phase, identical for both groups. Instructions, practice trials, and 

trial number and structure of the test phase were the same as in Study 2 (see § 3.2.2.3). In Figure 3.8 

a schematic representation of the experimental paradigm is displayed. At the end of the test phase, 

participants were directed to the Qualtrics survey (see § 3.2.2.5). Here, we added a manipulation 

check question: participants were asked whether they have caught any relationship between the color 

of the circle and the emotional valence of the pictures during the learning phase. Participants were 

then redirected back to Prolific to complete the study submission and receive their payment. 
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Figure 3.8 Schematic representation of Study 5 experimental paradigm. 

Example sequence of events and their duration for a trial, according to the phase (learning, test), and the group (CG, UG). 

During the learning phase participants experienced a 100% (CG) vs 50% (UG) affective contingency between S1 color 

(red or blue) and S2 valence (NEG or NEU), according to the group. Then, after the S2, they were presented with the 

parity judgement task. During the test phase the S1-S2 affective contingency was fixed at 75%. Participants were asked 

to answer the VASs either during the ISI for half of the trials (expectancy ratings), or right after the S2 for the other half 

of the trials (valence and arousal ratings). Response times were self-paced. ISI = inter-stimulus interval, ITI = inter-trial 

interval, VAS = visual analogue scale. The text is not drawn to scale. 

 

3.11.3 DATA ANALYSIS 

The study has a 2 (group, between-subjects: CG vs. UG) × 2 (S2 valence, within-subjects: 

NEG vs. NEU) mixed design. The analysis plan was pre-registered on OSF (https://osf.io/z5esb/). 

During data pre-processing, participants’ verbatim responses to the manipulation check 

question (see § 3.11.2) were qualitatively analyzed by the experimenter, and coded as “yes” or “no” 

according to their content. No response was coded as “yes”, suggesting that no participants reported 

to have caught the probabilistic relationship between S1 and S2. 

We detected 4 univariate outliers (MAD > 3), which had reversed the poles of the rating scale 

(“error outliers”, cf. Leys et al., 2019). Thus, they were excluded from data analysis. We also detected 

36 multivariate outliers (MMCD, breakdown point 0.25). From visual inspection of their ratings, 2 

https://osf.io/z5esb/
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of them emerged as “error outliers” (cf. Leys et al., 2019), and they were therefore removed from 

data analysis. The remaining multivariate outliers showed a slightly flattened or steeper relationship 

between valence and arousal ratings as compared to other participants. Thus, we chose to keep them 

into data analysis (“potentially interesting outliers”, cf. Leys et al., 2019), since none of them 

impacted the models’ estimates (as assessed through Cook’s distance). Data from 110 participants 

were included into data analysis. 

Before performing the analyses, we pre-processed RTs to the parity judgement task according 

to the following pre-registered steps (https://osf.io/z5esb/): (i) trimming RTs between 100 and 1500 

msec (Ratcliff, 1993); (ii) discarding RTs of incorrect trials; (iii) adjusting RTs for the speed-accuracy 

trade off by means of Inverse Efficiency Score (IES) transformation (Vandierendonck, 2017); (iv) 

log-transforming IES to account for their skewed distribution (Ratcliff, 1993; Wilcox et al., 2018). 

In order to test our a-priori hypotheses (H1a and H1b on parity judgement task; H2a, H2b, 

H3a, H3b and H3c on test phase subjective ratings), for each DV we fitted the following (G)LMMs 

(R package: lme4; Bates et al., 2015): 

- log-transformed IES (H1a): group as fixed factor, random intercept for participant; 

- accuracy (H1b): logistic regression with group as fixed factor, random intercept for 

participant; 

- expectancy ratings (H2a, H2b): group, S1 color and their interaction as fixed factors, 

random slopes for S1 color within participant; 

- valence and arousal ratings (H3a, H3b, H3c): group, S2 valence and their interaction as 

fixed factors, random slopes for S2 valence within participant. 

For each model no influential cases emerged, as evaluated through Cook’s distance (>1). 

LMMs effects were evaluated using F-test and p-values, calculated via Satterthwaite's degrees of 

freedom method (α = .05, R package: lmerTest; Kuznetsova et al., 2017), GLMMs effects were 

evaluated through Type II Analysis of Deviance (R package: car; Fox & Weisberg, 2019). For each 

https://www.zotero.org/google-docs/?nIOfVa
https://osf.io/z5esb/
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model we reported the estimated parameters with 95% CI (for the IES models parameters are reported 

in the logit scale), marginal and conditional R2 (estimated as in Nakagawa et al., 2017). 

3.12 RESULTS 

Study 5 models are summarized in Table 3.10 and Figure 3.9. For the IES model (R2
marginal = 

0.018, R2
conditional = 0.818) testing H1a, we did not find any effect of group (F(1, 104) = 2.42, p = 

.123). Thus, the IES model does not support the hypothesis of faster RTs in the CG as compared to 

the UG (H1a). We found the same result for the accuracy model (R2
marginal = 0.012, R2

conditional = 0.506) 

testing H1b, with no significant effect of group emerging (χ2 = 2.409, p = .121). Therefore, we 

confirmed our hypothesis (H1b) of not finding group differences in accuracy scores to the parity 

judgement task. 

For the expectancy model (R2
marginal = 0.033, R2

conditional = 0.273) testing H2a vs. H2b, we found 

a main effect of S1 color (F(1, 108) = 11.89, p < .001) and an interaction between S1 color and group 

(F(1, 108) = 10.02, p = .002). In particular we found evidence for the difference between blue (i.e., 

circles preceding neutral pictures) and red (i.e., circles preceding negative pictures) colors within the 

CG group, which reported significantly more negative expectancy ratings after the red color as 

compared to the blue one (blue vs. red = -14.43, t(108) = -4.68, p < .001, 95% CI = [-20.55, -8.31]), 

whereas in the UG no differences in expectancy ratings as a function of the S1 color emerged (blue 

vs. red = -0.618, t(108) = -0.2, p = .842, 95% CI = [-6.73, 5.5]). Thus, the expectancy model supports 

the hypothesis of more negative expectancy ratings in the CG after the cues which were previously 

paired with negative stimuli (H2b). 

For both valence (R2
marginal = 0.593, R2

conditional = 0.669) and arousal (R2
marginal = 0.351, 

R2
conditional = 0.517) models testing H3a vs. H3b vs. H3c, we found a main effect of S2 valence, with 

both groups reporting significantly greater unpleasantness (F(1, 108) = 1113.46, p < .001; NEG vs. 

NEU = -47, t(108) = -33.37, p < .001, 95% CI = [-49.8, -44.2]) and higher arousal (F(1, 108) = 391.67, 

p < .001; NEG vs. NEU = 30.9, t(108) = 19.79, p < .001, 95% CI = [27.8, 34]) towards negative 
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pictures. Thus, valence and arousal models support the hypothesis of significantly higher arousal and 

more unpleasant valence ratings to negative S2s independently from the experimental group (H3c). 

 

 

Table 3.10 Results of confirmatory (G)LMMs on IES, accuracy, expectancy, valence and arousal ratings in Study 5. 

For each model we reported the unstandardized regression coefficients, SE, 95% CI, and the associated statistics (t-test 

for LMMs, z-test for GLMMs). 

Model Parameter Estimate SE statistics DF p 95% CI 

IES 

Intercept 6.33 0.03 211.83 104.62 < .001 6.27 6.39 

UG - CG -0.09 0.06 -1.55 104.62 .123 -0.21 0.03 

σ ID 0.31       

σ residual 0.15       

Accuracy 

Intercept 2.32 0.19 12.41  < .001 1.95 2.69 

UG - CG 0.58 0.37 1.55  0.12 -0.15 1.30 

σ ID 1.81       

Expectancy 

ratings 

Intercept 53.05 0.90 59.08 108.00 < .001 51.27 54.83 

UG - CG 0.45 1.80 0.25 108.00 .801 -3.11 4.01 

blue - red -7.52 2.18 -3.45 108.01 < .001 -

11.85 

-3.20 

color × 

group 

-13.81 4.36 -3.17 108.01 .002 -

22.46 

-5.16 

σ ID 8.62       

σ color 21.59       

σ residual 24.01       

Valence 

ratings 

Intercept 44.95 0.54 83.00 108.01 < .001 43.88 46.02 

UG - CG 0.31 1.08 0.29 108.01 .772 -1.83 2.46 

neg - neu -47.01 1.41 -33.37 108.00 < .001 -

49.80 

-

44.22 

valence × 

group 

0.61 2.82 0.22 108.00 .83 -4.98 6.19 

σ ID 4.96       

σ valence 13.69       

σ residual 17.56       
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Arousal 

ratings 

Intercept 49.02 0.75 65.22 107.95 < .001 47.53 50.51 

UG - CG -0.62 1.50 -0.41 107.95 .679 -3.60 2.36 

neg - neu 30.89 1.56 19.79 107.98 < .001 27.79 33.98 

valence × 

group 

1.42 3.12 0.46 107.98 .65 -4.77 7.61 

σ ID 7.34       

σ valence 15.33       

σ residual 18.12       

 

 

Figure 3.9 Box-plot of expectancy, valence and arousal ratings in Study 5. 

Points represent the mean value for each participant according to the group (CG vs. UG), and the S1 color (red vs. blue, 

for expectancy ratings) or the S2 valence (NEG vs. NEU, for valence and arousal ratings). 

 

3.13 DISCUSSION 

Study 5 demonstrated that contextual probabilistic information can be extracted from the 

environment at an implicit level, and that this information is then used to coherently generate and 

implement (but not to update) new affective predictions, as it happens when the same information is 

extracted at an explicit level (cf. § 3.4 and 3.7). As hypothesized (H2b), experiencing a fully reliable 
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S1-S2 affective contingency during the learning phase led participants in the CG to subsequently rely 

on the implicitly learned associations to accordingly generate and implement new predictions about 

the valence of the upcoming stimuli. In fact, the CG reported more negative expectancy ratings to the 

cues formerly paired with a negative picture, while the UG did not show any expectancy modulation 

depending on the cue color. Moreover, consistently with our previous findings (cf. § 3.3 and 3.6) and 

with the S1-S2 study employing an implicit anticipation pattern (Lin et al., 2018), implicit previous 

experience was ineffective in influencing the subjective reactions during the updating stage, in which 

both valence and arousal ratings showed only the hypothesized (H3c) valence-dependent modulation. 

These results cannot be explained by any potential difference in the way implicit affective 

learning occurred in the two groups. In fact, no significant group effects emerged on the performance 

in the parity judgment task, as measured through RTs (cf. H1a) and accuracy (cf. H1b), suggesting 

that the distracting task acted similarly in the two groups. Moreover, from the post-experiment 

manipulation check question (see § 3.11.2), it was confirmed that none of the participants actually 

caught the exact probabilistic ratio they were exposed to during the learning phase. Thus, it can be 

concluded that the results of Study 5 reflect the effects of actual implicit previous experience, and 

that they must be specifically ascribable to the different contextual probabilistic information (100% 

vs. 50%) formerly experienced by the two groups. 

 

To summarize, Studies 2 to 5 represent an attempt to empirically investigate the role of actual 

prior experience in the construction of new affective predictions, with a specific focus on subjective 

ratings. In these studies, we employed a purposely developed experimental paradigm, filling some of 

the gaps in the existing literature (see § 3.1). First, our experimental design combined the logic of 

emotional S1-S2 paradigms with a learning component. This allowed us to implement the role of 

actual prior experience in constructing new predictions, by manipulating the (un)certain probabilistic 

relationships between stimuli experienced in the past (i.e., learning phase), and measuring the effects 

on subjective ratings in a subsequent moment (i.e., test phase). Second, it targeted all the stages of 
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(affective) prediction construction (generation-implementation-updating). Third, it allowed to study 

cross-modality generalization between the visual and auditory modalities. Fourth, it allowed to 

explore the effects of cue ambiguity on subjective affective ratings. Last, by leaving the S1-S2 

affective contingencies uninstructed (Studies 2, 3, 4) or implicit (Study 5), our paradigm allowed us 

to specifically target subjective experience more similarly to how it spontaneously develops in 

everyday life contexts. 

Overall, we found that being exposed to certain vs. uncertain previous experience affected the 

generation-implementation stages of future prediction construction, but not the updating stage. In all 

the Studies, participants who had previously experienced a certain affective contingency, reported 

more negative expectancy ratings after the specific cues which were formerly paired with negative 

stimuli. Interestingly, this process emerged to develop similarly (and thus, to be generalizable) across 

the visual and auditory sensory modalities (cf. Studies 2 and 3). Furthermore, we demonstrated that 

previous reliable learnings may be used in a later moment to predict and give meaning both to 

unambiguous and ambiguous environmental cues (cf. Study 4). Last, we confirmed that statistical 

knowledge can be actually inferred from the environment also at an implicit level (cf. Study 5). 

Surprisingly, we found no evidence in any Study about an intensification of subjective 

reactions during the updating stage as a function of the uncertainty degrees previously experienced. 

According to predictive models of emotion (Barrett, 2017; Seth & Friston, 2016), it could be expected 

that having at one’s disposal a reliable predictive model would lead to a pre-activation of the expected 

affective experience, with the consequence of producing an intensification of subjective reactions 

when the expected stimuli actually occur. Our results, however, only partially support this claim. In 

fact, in all the studies we did not find any evidence of an affect intensification effect strictly related 

to previous experience (i.e., the two experimental groups did not significantly differ in terms of their 

valence and arousal ratings during the test phase). However, an interesting result emerged from 

exploratory models of Studies 2 and 3, assessing the differences between expected and unexpected 

S2s by comparing affective ratings between congruent and incongruent test trials (see Tables 3.4 and 
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3.8). In both the groups, congruent negative stimuli (i.e., negative stimuli more strongly expected) 

were rated as more unpleasant and more arousing than incongruent (i.e., negative stimuli violating 

expectancies), thus leading to an intensification of subjective experience. It is possible that 

experiencing a sufficient certainty level in the here and now (i.e., contingencies experienced during 

the test phase, 75%) might drive subjective reactions towards an affect intensification, whereas this 

effect is dampened when referring to the uncertainty degrees experienced in the past (i.e., 

contingencies experienced during the learning phase, 100% vs. 50%). Thus, subjective experience in 

the updating stage may be more prominently modulated by currently available contextual information 

rather than by past learnings. This explanation is further supported considering the evolutionary value 

of emotions (and affective predictions) as “tools” to promote survival and adaptation to the 

environment (see § 1.2). 

Concluding, some limitations of the present set of studies must be addressed. First, we 

employed unimodal affective stimuli as S2s. Although this choice makes our paradigm similar to (and 

thus, comparable with) the existing affective cueing paradigms, it remains quite artificial as compared 

to daily environments. Employing multimodal or dynamic affective stimuli, and/or different 

surrounding environments might allow future paradigms to reach a better ecological validity. Second, 

prior experience is manipulated only in terms of (un)certain probabilistic relationships between 

stimuli (i.e., S1-S2 affective contingency). However, other characteristics of prior experience, such 

as the frequency of exposure, or the familiarity with the physical environment in which the stimuli 

are embedded, may be of interest, too. Last, in this group of studies we only focused on subjective 

experience, as overtly rated by participants, but more subtle modulations may be caught by measuring 

also covert processing indices (e.g., psychophysiological measures, neural activity). 

Hence, studies 1 to 5 contributed to elucidate the neural and subjective mechanisms involved 

in the construction of affective predictions, as they are influenced by currently available contextual 

information or prior experience (see RQ1 and RQ2, § 1.5). As a final goal of this project, in the next 
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Chapter we will focus on the role of IU as a potential (and still understudied) modulating factor on 

the construction of affective predictions (see RQ3, § 1.5). 
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CHAPTER 4 

THE MODULATION OF INTOLERANCE OF UNCERTAINTY 

 

“The oldest and strongest emotion of mankind is fear, and the oldest and 

strongest kind of fear is fear of the unknown” 

Howard Phillips Lovecraft 

 

4.1 INTRODUCTION 

The world is an uncertain place, and the uncertainty we experience in everyday life can have 

a dramatic influence on our emotional life. For example, the COVID-19 pandemic outbreak, and the 

associated risk of contracting the virus, carried a huge amount of uncertainty, substantially impacting 

over the affective experience and mental health of people worldwide. Or else, not knowing how the 

plot is going to develop while watching a new TV series usually increases the rewarding value of the 

series itself (that’s why we all hate spoilers!). From both examples, it is clear how dealing with 

uncertainty can intensify affective experience. 

The literature has suggested that uncertainty pushes to a polarization of the impact of positive 

and negative affect, leading to increased attention and emotional engagement towards uncertain 

events (Einstein, 2014). Individual differences in the subjective predisposition to tolerate uncertainty 

may play a non-negligible role in shaping emotional processing within uncertain environments. 

Intolerance of uncertainty (IU) is the dispositional characteristic that reflects individual differences 

in tolerating and adapting to uncertain situations (Carleton, 2016a). It has been defined as the inability 

to tolerate the aversive reaction triggered by a perceived lack of sufficient or salient information, 

sustained by the correlated perception of uncertainty (Carleton, 2016b). IU is characterized by 

cognitive, affective, and behavioral facets that may have a broad influence on affective experience 
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(see § 1.4), e.g., inflated estimates of threat probability, increased attention to threat and 

hypervigilance, deficient safety learning, behavioral and cognitive avoidance of uncertainty, 

heightened physiological reactivity to threat uncertainty (Grupe & Nitschke, 2013). Moreover, the 

fear of the unknown (FOTU, which is assumed to be the key feature at the basis of IU) has been 

proved to be a lower-order construct able to account for several higher-order constructs (Carleton, 

2012, 2016a; Hong & Cheung, 2015). Indeed, it is positively associated with neuroticism (Carleton, 

2016b; Mahoney & McEvoy, 2012), and with symptoms of different anxiety disorders (see Carleton, 

2016b for a review); and it can act as a trigger for the activation of the behavioral inhibition system 

(BIS) (Carleton, 2016a, 2016b), and the fight-flight-freeze defensive response (Carleton, 2016a, 

2016b). For these reasons, IU has been proposed as a trans-diagnostic risk and maintaining factor, 

potentially crucial for vulnerability assessment and/or as a target for clinical treatment, for a wide 

range of emotional traits and disorders (Carleton, 2016a, 2016b; Einstein, 2014; Shihata et al., 2016; 

Tanovic, Gee, et al., 2018) (see § 1.4). 

In the last years, the degree of uncertainty conveyed by contextual information has been 

targeted as an influential feature in shaping affective prediction construction (see § 1.2). According 

to predictive models of emotion (Barrett, 2017; Seth & Friston, 2016), in fact, emotions have been 

redescribed as interoceptive predictive models, developing across the stages of generation, 

implementation, and updating (see Figure 1.1). Contextual differences in the relative balance of the 

amount of information between certain and uncertain situations are assumed to be crucial in 

determining whether uncertainty is appraised as threatening (Carleton, 2016b). Moreover, it has been 

proposed that biases in the anticipation of affective stimuli (e.g., inflated threat estimates) 

characterizing high-IU individuals could result from a disrupted prediction error signaling, which 

turns in a failure to update affective predictions (Grupe & Nitschke, 2013). For these reasons and 

given the significance of IU as a trans-diagnostic risk factor, a better understanding of how individual 

differences in IU may affect affective predictions construction could represent a valuable contribution 

to advancing knowledge in the field, leading to promising clinical and preventive implications. 
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Assessing the neural and subjective correlates of individual differences in IU across the different 

neurocomputational stages of affective prediction construction would allow to identify potential 

targets to treat, or to early intervene on, thus preventing high-IU from developing into clinically 

relevant conditions. 

Nevertheless, experimental studies investigating the effects of IU on emotional processing as 

a function of contextual information are still scarce (see Table 1.2) and provided conflicting results. 

Moreover, no study to our knowledge has investigated how IU may interact with (un)certainty of 

prior experience in shaping subjective reactions to new affective predictions. Finally, as a further 

potential flaw, extant studies typically split their samples into two groups (high- vs. low-IU) 

according to the IUS (Carleton et al., 2007; Freeston et al., 1994) scores distribution, risking some 

slighter IU individual differences to be lost in a dichotomization of the variable (Royston et al., 2006). 

As stated above, extant literature collected fragmentary results, sometimes in conflict with the 

predictions formulated by the theoretical models of IU (Carleton, 2016a; Einstein, 2014; Grupe & 

Nitschke, 2013; Shihata et al., 2016). Regarding the generation stage, some studies found no 

differences between high- and low-IU participants in S1-locked SCR and corrugator EMG activity as 

a function of cue predictive meaning (Chen & Lovibond, 2016; Morriss, 2019). Other studies found 

that high-IU participants showed a larger P2 to S1s irrespective of their predictive meaning (Gole et 

al., 2012; Tanovic, Pruessner, et al., 2018), reflecting a heightened early automatic attention 

allocation towards cues and their potential threatening meaning. Focusing on prediction 

implementation, most of the studies found no significant effects of IU on ERPs amplitude, SCR, EMG 

activity, and expectancy ratings measured during the ISI (Grupe & Nitschke, 2011; Morriss et al., 

2020; Tanovic, Pruessner, et al., 2018). Contra, other studies reported that high-IU participants 

showed higher threat expectancy ratings following uncertain cues (Chen & Lovibond, 2016); that IU 

predicted higher self-reported anxiety when expecting an electrical shock (Nelson & Shankman, 

2011); and that higher IU was associated with heightened certainty in anticipating the negative 

outcomes of a future event (Miranda et al., 2008; Pepperdine et al., 2018). These latter results are 
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consistent with the overestimation of threat predicted by the theoretical models of IU (Grupe & 

Nitschke, 2013). As for the prediction updating stage, some studies failed to find significant effects 

of IU on S2-locked SCR (Grupe & Nitschke, 2011; Morriss, 2019). Other studies found that in the 

uncertain condition IU negatively predicted neural activity within posterior frontomedian cortex 

(PFMC) (Schienle et al., 2010), and the magnitude of the startle response (Nelson & Shankman, 

2011), thus unexpectedly suggesting that as IU increases, the aversive reactions to uncertain threat 

attenuate, probably due to the perceived lack of controllability typical of uncertain contexts. 

Furthermore, in high-IU participants uncertain negative S2s were found to elicit smaller LPP 

amplitudes, reflecting a dampening effect on the emotional processing of uncertain stimuli (Gole et 

al., 2012). Finally, IU was found to be associated with either no effects on S2-valence and arousal 

ratings (Gole et al., 2012; Morriss et al., 2020, 2021); or with more unpleasant valence ratings, higher 

arousal and more negative mood/self-reported anxiety in uncertain or threatening conditions (Chen 

& Lovibond, 2016; Chin et al., 2016; Kirschner et al., 2016; Morriss et al., 2021). Altogether, results 

regarding the updating stage are mixed: ERPs and psychophysiological indices suggest a dampened 

physiological reactivity to uncertain threat, contrary to theoretical models of IU (Carleton, 2016a; 

Einstein, 2014; Grupe & Nitschke, 2013; Shihata et al., 2016); whereas subjective ratings support the 

hypothesis that uncertainty is associated with affect intensification, as predicted by theoretical models 

of IU (Carleton, 2016a; Einstein, 2014; Grupe & Nitschke, 2013; Shihata et al., 2016). 

Therefore, as the last aim of the present project (see RQ3, § 1.5), we investigated the 

relationships between IU and two distinct facets of affective predictions construction, thus helping to 

untangle the mixed pattern of results shown in the literature. More in detail, we ran a hd-EEG study 

(Study 6) in which we targeted the neural activity developing in conditions of different contextual 

information, and we investigated whether IU could predict it. Further, we re-analyzed Studies 2 to 5 

focusing on IU, investigating whether subjective affective experience could be differently predicted 

by individual differences in IU as a function of (un)certainty of prior experience. 
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STUDY 6 

Study 6 investigated through hd-EEG whether and how IU predicted the neural activity, both 

at the scalp and at the source level, which develops in presence of contextual information of different 

predictive value along the generation, implementation and updating stages. We employed the same 

experimental paradigm as in Study 1 (see § 2.2). In the analyses, we used IU scores as a continuous 

predictor rather than dichotomizing participants into two groups. This allowed us to avoid flattening 

individual differences in IU and losing information and power (Royston et al., 2006). 

For each neurocomputational stage of affective prediction construction, we targeted specific 

ERP components, which in Study 1 have shown to respond to our experimental manipulation (see § 

2.3.1). We focused on S1-N170 for prediction generation; on the CNV for the implementation stage; 

and on the P2 and the LPP as regards prediction updating. 

We hypothesized higher IU scores to predict (H1) a larger N170 irrespective of the predictive 

context (Gole et al., 2012; Tanovic, Pruessner, et al., 2018) during prediction generation; (H2) larger 

early and late CNV amplitudes following negative S1s (reflecting the anticipatory processes elicited 

by inflated threat estimates, cf. (Chen & Lovibond, 2016)) in uncertain contexts (75% and 50%) 

during the implementation stage; either (H3a) smaller (according to ERP findings, e.g., (Gole et al., 

2012)) or (H3b) larger (according to IU theories, e.g., (Einstein, 2014)) P2 and LPP amplitudes to 

emotional S2s in uncertain contexts (75% and 50%) during prediction updating. 

4.2 METHODS 

4.2.1 PARTICIPANTS 

A total of 294 Italian-speaking undergraduates at University of Padua were initially screened 

for participation through an online survey evaluating the inclusion criteria for the study, which were 

the same as in Study 1 (see § 2.2.1). Thirty-six right-handed participants met the inclusion criteria, 

and took part in the study as volunteers (16 males, age: M = 23.25, SD = 1.85, range = 20-29). The 

sample size was based on previous ERP research measuring IUS within S1-S2 paradigms (Gole et 
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al., 2012). All participants signed an informed consent. All experimental procedures were approved 

by the Ethical Committee for the Psychological Research of the University of Padua (protocol no. 

2859) and were conducted in accordance with the Declaration of Helsinki. 

4.2.2 STIMULUS MATERIAL AND PROCEDURE 

The stimulus material and experimental procedures were the same of Study 1 (see § 2.2.2). 

The IUS, in its Italian 12-item validated adaptation (Bottesi et al., 2019; Carleton et al., 2007), was 

administered online to all participants, before their arrival. Participants were instructed to answer the 

survey alone, in a silent room, taking all the time needed. 

4.2.3 ELECTROPHYSIOLOGICAL RECORDINGS, BRAIN SOURCE MODELLING AND DATA ANALYSIS 

The study has a 3 (block: 100%, 75% and 50%) × 3 (S1 or S2 valence: POS, NEG, NEU) 

within-subjects design. 

EEG recordings and signal pre-processing were performed as in Study 1 (see § 2.2.3). 

Experimental conditions did not differ for final number of epochs accepted (see Table 4.1). 

 

Table 4.1 Means (M), standard deviations (SD), test statistics (F), and associated p-values (p) of the final number of 

epochs accepted for each experimental condition in Study 6. 

Results showed no significant differences between conditions. 

Block 100% 75% 50% F(2,105) p 

 M SD M SD M SD 

0.42 .66 

113.33 5.87 114.56 6.39 114.17 5.07 

Valence POS NEG NEU F(2, 105) p 

S1 

M SD M SD M SD 

0.52 .6 

113.64 4.87 114.67 4.34 113.75 4.90 

S2 

M SD M SD M SD 

0.26 .78 

113.72 4.93 114.47 4.62 113.86 4.64 
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The ERPs statistical analysis was performed via Brainstorm software, using the Fieldtrip 

functions (Oostenveld et al., 2011; Tadel et al., 2011). A whole-brain paired two-tailed t-test (α = .05) 

permutation approach (Fields & Kuperberg, 2020; Groppe et al., 2011) was used, performing 1000 

Monte-Carlo cluster-based corrected permutations over all 128 channel locations (see § 2.2.3). The 

permutations were computed over 6 a-priori time windows, corresponding to 4 distinguishable ERP 

components: S1-locked N170 (140-180 msec) for prediction generation; S1-locked early CNV 

(eCNV, 1500-2000 msec) and late CNV (lCNV, 2000-2500 msec) for prediction implementation; S2-

locked P2 (200-300 msec), early LPP (eLPP, 400-600 msec) and late LPP (lLPP, 600-800 msec) for 

prediction updating. Interaction effects were tested through difference waves (see § 2.2.3). To test for 

the presence of overall predictive effects, we performed the pairwise comparisons 100% vs. 75%, 

100% vs. 50%, 50% vs. 75% blocks, collapsing emotional valence across blocks. In order to assess 

the interaction effect between S1/S2 valence and blocks, the contrasts POS vs. NEU, NEG vs. NEU, 

and NEG vs. POS were performed separately per blocks (100%, 75%, 50%). Furthermore, for both 

S1- and S2-ERPs, difference waves were computed (POS-NEU, NEG-NEU, and NEG-POS) and 

compared between blocks. Based on the results of the permutation analysis, ERPs were extracted as 

the mean voltage amplitude in the abovementioned time windows from the following electrode 

clusters: an occipital cluster (E70, E74, E75, E81, E82, E83) for the N170, a left-central cluster (E40, 

E41, E42, E46, E47) for eCNV and lCNV, a parietal cluster (E67, E71, E72, E75, E76, E77) for the 

P2, and a slightly different parietal cluster (E60, E61, E62, E67, E72, E77, E78, E85) for eLPP and 

lLPP. 

Brain source analysis was performed as in Study 1 (see § 2.2.3). Based on each ERP source 

reconstruction, source map vertices were clustered in the following ROIs: right STS for the N170; 

left ACC, SMA, and dPCC for the CNV; bilateral TPJ for the P2; right OFC and temporal pole for 

the LPP. Absolute values of each ROI were time-averaged from the pertaining ERP time windows, 

extracted for each participant, and transformed using a natural logarithm. 
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To assess whether IUS score predicted the neural activity during the task both at the scalp and 

at the source level, separate LMMs (R package: lme4 (Bates et al., 2015) with individual random 

intercept were estimated, with each averaged ERP and ROI activity as DVs, IUS as a fixed continuous 

predictor, S1/S2 valence, block, and the interaction IUS × S1/S2 valence × block as fixed factors. 

Models effects were evaluated using F-test and p-values, calculated via Satterthwaite's degrees of 

freedom method (α = .05, R package: lmerTest; (Kuznetsova et al., 2017). For each model we reported 

both marginal and conditional R2 (as estimated in (Nakagawa et al., 2017). The slopes of the IUS 

trend for each level of the factors (block, S1/S2 valence) were estimated, and their pairwise differences 

were tested by means of post-hoc Tukey test (R package: emmeans; (Lenth, 2020). 

4.3 RESULTS 

4.3.1 ERPS AND CORTICAL SOURCES RECONSTRUCTION 

4.3.1.1 Prediction generation stage – N170 (140-180 msec) to S1 onset 

A significant negative occipital cluster, reflecting a larger N170, was found in 100% block 

when comparing emotional with neutral faces (POS vs. NEU: c = -476, s = 153, p = .024; NEG vs. 

NEU: c = -871, s = 246, p = .004), in 75% block when comparing fearful with positive and neutral 

faces (NEG vs. NEU: c = -1080, s = 306, p = .002; NEG vs. POS: c = -455, s = 178, p = .018), and 

in 50% block when comparing positive with neutral faces (POS vs. NEU: c = -413, s = 164, p = .03) 

(see Figure 4.1, panel A). No significant effects were found when comparing difference waves 

between blocks. 

N170 source reconstruction highlighted an emotional modulation on the right STS, showing 

a maximum pattern of activation after fearful faces (see Figure 4.1, panel B). This pattern replicated 

consistently across blocks. 
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Figure 4.1 Modulation of ERPs and brain sources during prediction generation stage in Study 6. 

Panel A. Grand average ERP waveforms following NEG (red lines), POS (green lines) and NEU (blue lines) faces (S1) in the (a) 100%, (b) 75% and (c) 50% blocks. Waveforms 

are plotted from an occipital cluster of electrodes (E70, E74, E75, E81, E82, E83). Shaded areas denote SE. The N170 was computed between 140 and 180 msec from S1 onset 

(time 0). Panel B. On the top, cortical maps reconstruction of the (a) POS-NEU and (b) NEG-NEU differences in brain activations in the N170 temporal window (140-180 msec), 

regardless of blocks. On the bottom, time course of (c) right STS activations to POS (green lines), NEG (red lines), and NEU (blue lines) faces, regardless of blocks. r-STS = right 

superior temporal sulcus. 
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4.3.1.2 Prediction implementation stage – eCNV (1500-2000 msec) and lCNV (2000-2500 msec) 

to S1 onset 

Permutation analyses showed no significant effects of block, nor interaction effects with S1 

valence on both early and late CNV. Nevertheless, visual inspection of grand average ERP waveforms 

from a central-left cluster of electrodes showed some amplitude differences, suggesting that a slightly 

larger CNV could have been elicited in the 50% block as compared to the others. However, since this 

result is not supported by statistics, it will not be further discussed. 

CNV source analysis showed the involvement of a left network, extending over the ACC, the 

SMA, and the dPCC. 

4.3.1.3 Prediction updating stage – P2 (200-300 msec), eLPP (400-600 msec), and lLPP (600-800 

msec) to S2 onset 

A significant negative parietal cluster was found, signaling a reduced positivity to positive 

and negative, and so a larger P2 to neutral pictures in all the blocks. Furthermore, a larger P2 was 

found in 100% block comparing negative to positive pictures (see Table 4.2 and Figure 4.2, panel A). 

No significant effects were found when comparing difference waves between blocks. 

P2 source reconstruction highlighted a larger activation of bilateral TPJ to neutral than 

emotional pictures in all the blocks (see Figure 4.2, panel B). 

A significant positive parietal cluster was found, confirming the effect of S2 valence on LPP: 

positive and negative pictures elicited a larger early and late LPP than neutral pictures in all the 

blocks. Furthermore, a larger lLPP was found in 100% block comparing negative with positive 

pictures (see Table 4.2 and Figure 4.2, panel A). No significant effects were found when comparing 

difference waves between blocks. 

LPP source analysis showed that, as compared with neutral, emotional stimuli elicited a larger 

activation of the right OFC and temporal pole in all the blocks (see Figure 4.2, panel C). 
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Table 4.2 ERP results from Study 6 during the prediction updating stage in the P2 (200-300 msec), eLPP (400-600 msec) and lLPP (600-800 msec) time windows. 

Means (M), standard deviations (SD), cluster statistic (c), cluster size (s), and associated p-values for each planned comparison (POS vs. NEU, NEG vs. NEU, NEG vs. POS) within 

each block (100%, 75%, 50%) are reported. 

 P2 eLPP lLPP 

 
POS NEU 

c s p 
POS NEU 

c s p 
POS NEU 

c s p 
M SD M SD M SD M SD M SD M SD 

100% 7.64 4.02 8.58 3.81 -3075 754 .002 8.46 3.89 6.24 3.44 14375 2712 .002 6.34 3.23 4.14 2.71 13257 2567 .002 

75% 7.45 4.33 8.73 4.18 -3989 958 .002 8.41 4.23 5.98 3.46 15735 2673 .002 6.390 3.73 4.31 3.24 12491 2385 .002 

50% 7.64 3.91 8.35 3.81 -2931 842 .002 8.15 3.37 6.15 3.46 13251 2711 .002 6.022 3.12 4.55 3.12 12987 2525 .002 

 NEG NEU 
c s p 

NEG NEU 
c s p 

NEG NEU 
c s p 

 M SD M SD M SD M SD M SD M SD 

100% 7.46 3.91 8.58 3.81 -4745 1088 .002 8.57 3.99 6.24 3.44 15813 2782 .002 6.87 3.43 4.14 2.71 16155 2770 .002 

75% 7.66 3.92 8.73 4.18 -4642 1036 .002 8.34 3.91 5.98 3.46 16376 2928 .002 6.72 3.48 4.31 3.24 16235 2930 .002 

50% 7.40 3.67 8.35 3.81 -3285 915 .002 8.269 3.685 6.154 3.458 15592 2980 .002 6.64 3.28 4.55 3.12 16310 2951 .002 

 NEG POS 
c s p 

NEG POS 
c s p 

NEG POS 
c s p 

 M SD M SD M SD M SD M SD M SD 

100% 7.46 3.91 7.64 4.02 -1926 571 .002 8.57 3.99 8.46 3.89 670 287 .228 6.87 3.43 6.34 3.23 1701 657 .04 

75% 7.66 3.93 7.45 4.33 -215 85 .382 8.34 3.91 8.41 4.23 391 161 .414 6.72 3.48 6.39 3.73 268 105 .545 

50% 7.40 3.67 7.64 3.91 -441 176 .158 8.27 3.69 8.15 3.37 774 297 .194 6.64 3.28 6.02 3.12 1132 434 .08 
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Figure 4.2 Modulation of ERPs and brain sources during prediction updating stage in Study 6. 

Panel A. Grand average ERP waveforms following NEG (red lines), POS (green lines), and NEU (blue lines) pictures (S2) in the (a) 100%, (b) 75%, and (c) 50% blocks. Waveforms 

are plotted from a parietal cluster of electrodes (E60, E61, E62, E67, E71, E72, E75, E76, E77, E78, E85). Shaded areas denote SE. P2 was computed between 200 and 300 msec, 

and LPP between 400 and 800 msec from S2 onset (time 0). Panel B. On the top, cortical maps reconstruction of the (a) NEU-POS and (b) NEU-NEG differences in brain activations 

in the P2 temporal window (200-300 msec). On the bottom, time course of (c) left TPJ, and (d) right TPJ activations to POS (green lines), NEG (red lines), and NEU (blue lines) 

pictures, regardless of blocks. l-TPJ = left temporoparietal junction, r-TPJ = right temporoparietal junction. Panel C. On the top, cortical maps reconstruction of the (a) POS-NEU 

and (b) NEG-NEU differences in brain activations in the total LPP temporal window (400-800 msec). On the bottom, time course of (c) right OFC and (d) right temporal pole 

activations to POS (green lines), NEG (red lines), and NEU (blue lines) pictures, regardless of blocks. r-OFC = right orbitofrontal cortex. 
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4.3.2 MIXED-EFFECTS MODELS 

4.3.2.1 Prediction generation stage – N170 and right STS activity (140-180 msec to S1 onset) 

LMMs on prediction generation stage DVs are summarized in Table 4.3. No significant main 

nor interaction effects of the predictors (IUS, S1/S2 valence, block, and their interaction) were found 

for N170 and right STS activity. 

Table 4.3 Results of LMMs on the prediction generation stage DVs in Study 6. 

F-values (F), degrees of freedom (DF) and p-values (p) for each main and interaction effects of predictors on N170, and 

r-STS activity are reported. 

DVs Predictors F DF p R2
marginal R2

conditional 

N170 

block 0.68 2, 272 .505 0.016 0.872 

valence 2.27 2, 272 .106 

IUS 0.08 1, 34 .777 

block × 

valence 
0.41 4, 272 .798 

block × IUS 1.00 2, 272 .369 

valence × IUS 0.55 2, 272 .580 

block × 

valence × IUS 
0.20 4, 272 .940 

r-STS 

block 0.04 2, 272 .959 0.012 0.566 

valence 0.25 2, 272 .778 

IUS 0.05 1, 34 .832 

block × 

valence 
0.97 4, 272 .425 

block × IUS 0.08 2, 272 .919 

valence × IUS 0.35 2, 272 .704 

block × 

valence × IUS 
1.23 4, 272 .300 
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4.3.2.2 Prediction implementation stage – early (1500-2000 msec to S1 onset) and late (2000-

2500 msec to S1 onset) CNV, left ACC, SMA, and dPCC activity 

LMMs on prediction implementation stage DVs are summarized in Table 4.4. In the early 

time window (1500-2000 msec), a significant main effect of IUS was found for eCNV amplitude 

(F(1, 34) = 4.4, p = .044; see Figure 4.3 A) and early left ACC activity (F (1, 34) = 6.29, p = .017; 

see Figure 4.3 B): higher IUS score predicted larger eCNV negativity and smaller early left ACC 

activity regardless of block and S1 valence. No other significant main effects or interactions were 

found for eCNV, and early left ACC, SMA and dPCC activity. 

As for the late time window (2000-2500 msec), analysis of lCNV showed significant main 

effects of IUS (F (1, 34) = 6.92, p = .013) and block (F (2, 272) = 4.07, p = .018), better explained by 

a significant IUS × block interaction (F (2, 272) = 3.48, p = .032; see Figure 4.3 C): a statistically 

significant difference in the relationship between IUS and lCNV was found between blocks, 

regardless of S1 valence. The slope analysis revealed that the slope of the relationship between IUS 

score and lCNV amplitude was statistically different from 0 only in the 75% block (b = -0.061, bSE = 

0.017, 95% CI = [-0.0940, -0.0286]), suggesting that higher IUS score predicted larger lCNV 

amplitude only in the 75% block, regardless of S1 valence. Post-hoc contrasts showed a significant 

difference between the slopes in the 75% vs 100% block (t(272) = -2.42, p = .043), with more negative 

values in the first. A significant main effect of IUS was found for late left ACC (F(1, 34) = 4.69, p = 

.037; see Figure 4.3 D) and left SMA activity (F(1, 34) = 4.17, p = .049; see Figure 4.3 E): higher 

IUS score predicted smaller late left ACC and SMA activity regardless of block and S1 valence. No 

other significant main effects or interactions were found for lCNV, and late left ACC, SMA and dPCC 

activity. 
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Table 4.4 Results of LMMs on the prediction implementation stage DVs in Study 6. 

F-values (F), degrees of freedom (DF) and p-values for each main and interaction effects of predictors on early and late 

CNV amplitude, early and late left ACC, SMA, and dPCC activity are reported. 

DVs Predictors F DF p R2
marginal R2

conditional 

eCNV 

block 1.73 2, 272 .179 0.063 0.147 

valence 0.58 2, 272 .560 

IUS 4.40 1, 34 .044 

block × valence 0.51 4, 272 .732 

block × IUS 1.68 2, 272 .189 

valence × IUS 0.63 2, 272 .534 

block × valence × IUS 0.51 4, 272 .728 

early left ACC 

block 1.12 2, 272 .328 0.085 0.318 

valence 0.02 2, 272 .976 

IUS 6.29 1, 34 .017 

block × valence 0.77 4, 272 .545 

block × IUS 0.48 2, 272 .618 

valence × IUS 0.07 2, 272 .929 

block × valence × IUS 0.61 4, 272 .654 

early left SMA 

block 2.38 2, 272 .094 0.057 0.236 

valence 0.32 2, 272 .724 

IUS 3.59 1, 34 .067 

block × valence 0.74 4, 272 .563 

block × IUS 1.86 2, 272 .158 

valence × IUS 0.36 2, 272 .695 

block × valence × IUS 0.56 4, 272 .691 

early left dPCC 

block 0.27 2, 272 .767 0.046 0.311 

valence 0.39 2, 272 .674 

IUS 3.84 1, 34 .058 

block × valence 0.35 4, 272 .847 

block × IUS 0.45 2, 272 .641 

valence × IUS 0.41 2, 272 .662 

block × valence × IUS 0.48 4, 272 .750 
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lCNV 

block 4.07 2, 272 .018 0.101 0.187 

valence 0.54 2, 272 .584 

IUS 6.92 1, 34 .013 

block × valence 0.81 4, 272 .519 

block × IUS 3.48 2, 272 .032 

valence × IUS 0.75 2, 272 .475 

block × valence × IUS 0.71 4, 272 .587 

late left ACC 

block 1.27 2, 272 .283 0.075 0.333 

valence 0.37 2, 272 .691 

IUS 4.69 1, 34 .037 

block × valence 0.57 4, 272 .686 

block × IUS 0.32 2, 272 .725 

valence × IUS 0.42 2, 272 .659 

block × valence × IUS 0.48 4, 272 .749 

late left SMA 

block 1.89 2, 272 .153 0.060 0.276 

valence 0.84 2, 272 .431 

IUS 4.17 1, 34 .049 

block × valence 0.60 4, 272 .665 

block × IUS 1.51 2, 272 .223 

valence × IUS 0.76 2, 272 .467 

block × valence × IUS 0.66 4, 272 .618 

late left dPCC 

block 0.48 2, 272 .620 0.038 0.311 

valence 1.40 2, 272 .249 

IUS 1.59 1, 34 .215 

block × valence 1.05 4, 272 .384 

block × IUS 0.33 2, 272 .716 

valence × IUS 1.33 2, 272 .265 

block × valence × IUS 1.02 4, 272 .399 
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Figure 4.3 Regression plots in the two time windows of the prediction implementation stage in Study 6. 

Relationships between IUS scores and (A) early CNV amplitude, (B) early left ACC activity, (C) late CNV amplitude in 

100% (in red), 75% (in green), and 50% (in blue) blocks, (D) late left ACC and (E) late left SMA activity are displayed. 

Shaded areas denote the 95% CI. 
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4.3.2.3 Prediction updating stage – P2 and bilateral TPJ (200-300 msec to S2 onset), early (400-

600 msec to S2 onset) and late (600-800 msec to S2 onset) LPP, right OFC and temporal pole 

activity 

LMMs on prediction updating stage DVs are summarized in Table 4.5. In the first time 

window (200-300 msec), analysis of P2 showed a significant main effect of block (F(2, 272) = 4.12, 

p = .017), better explained by the significant IUS × block interaction (F(2, 272) = 3.98, p = .02; see 

Figure 4.4 A), and a significant IUS × S2 valence interaction (F(2, 272) = 4.45, p = .013; see Figure 

4.4 B): a statistically significant difference in the relationship between IUS and P2 amplitude was 

found between blocks regardless of S2 valence, and between S2 valence levels regardless of block. 

Nevertheless, the slope analysis revealed that the slopes of the relationship between IUS score and 

P2 amplitude were not statistically different from 0 in any of the block and S2 valence levels. Post-

hoc contrasts showed significant differences between the slopes in the 75% vs 100% block (t(272) = 

-2.72, p = .019), and between POS vs. NEU S2 valence levels (t(272) = -2.9, p = .011), with more 

negative slope values for the former. Furthermore, a significant main effect of block (F(2, 272) = 

3.44, p = .034) was found for left TPJ activity. Nevertheless, since overall predictive effects have 

already been tested by means of permutation analyses, and no effects of block were found on P2 

amplitude and its corresponding neural sources, this result will not be further commented. No other 

significant main effects or interactions were found for P2, and bilateral TPJ activity. 

In the second time window (400-600 msec), analysis of the eLPP showed a significant main 

effect of block (F(2, 272) = 3.82, p = .023), better explained by the significant IUS × block interaction 

(F(2, 272) = 4.69, p = .01; see Figure 4.4 C), and a main effect of S2 valence (F(2, 272) = 17.15, p < 

.001): a statistically significant difference in the relationship between IUS and eLPP amplitude was 

found between blocks regardless of S2 valence, while the main effect of S2 valence replicates the 

results of the permutation analysis suggesting a larger eLPP for emotional as compared to neutral 

S2s. Nevertheless, the slope analysis revealed that the slopes of the relationship between IUS score 

and eLPP amplitude were not statistically different from 0 in any of the blocks. Post-hoc contrasts 



139 

showed significant differences between the slopes in the 75% vs 100% block (t(272) = -2.92, p = 

.011), with more negative slope values for the former. Furthermore, a significant main effect of S2 

valence (F(2, 272) = 23.15, p < .001), better explained by the significant IUS × S2 valence interaction 

(F(2, 272) = 8.77, p < .001; see Figure 4.4 D) was found for the early right OFC activity: a statistically 

significant difference in the relationship between IUS and early right OFC activity was found between 

S2 valence levels regardless of blocks. Nevertheless, the slope analysis revealed that the slopes of the 

relationship between IUS score and early right OFC activity were not statistically different from 0 in 

any of the S2 valence levels. Post-hoc contrasts showed significant differences between the slopes in 

the POS vs. NEU and NEG vs. NEU S2 valence levels (t(272) = -3.89 and -3.29, p < .011 and = .003, 

respectively), with more negative slope values for the emotional as compared to the neutral S2 

valence levels. Lastly, a significant main effect of S2 valence (F(2, 272) = 4.74, p = .01) was found 

for right temporal pole activity, replicating the larger activation to emotional stimuli already shown 

by LPP source reconstruction. No other significant main effects or interactions were found for eLPP, 

and early right OFC and temporal pole activity. 

In the third time window (600-800 msec), analysis of the late right OFC activity showed a 

significant main effect of S2 valence (F(2, 272) = 19.12, p < .001), better explained by a significant 

IUS × S2 valence interaction (F(2, 272) = 6.45, p = .002; see Figure 4.4 E): a statistically significant 

difference in the relationship between IUS and late right OFC activity was found between S2 valence 

levels regardless of blocks. Nevertheless, the slope analysis revealed that the slopes of the relationship 

between IUS score and late right OFC activity were not statistically different from 0 in any of the S2 

valence levels. Post-hoc contrasts showed significant differences between the slopes in the POS vs. 

NEU and NEG vs. NEU S2 valence levels (t(272) = -3.14 and -3.08, p = .005 and .006, respectively), 

with more negative slope values for the emotional as compared to the neutral S2 valence levels. A 

significant main effect of S2 valence was found for lLPP (F(2, 272) = 13.11, p < .001) and right 

temporal pole activity (F(2, 272) = 9.47, p < .001), replicating results already shown by permutation 
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analyses and corresponding source reconstruction. No other significant main effects or interactions 

were found for lLPP, and late right OFC and temporal pole activity. 

 

Table 4.5 Results of LMMs on the prediction updating stage DVs in Study 6. 

F-values (F), degrees of freedom (DF) and p-values for each main and interaction effects of predictors on P2, early and 

late LPP amplitude, bilateral TPJ, early and late right OFC and temporal pole activity are reported. 

DVs Predictors F DF p R2
marginal R2

conditional 

P2 

block 4.12 2, 272 .017 0.025 0.905 

valence 2.15 2, 272 .119 

IUS 0.17 1, 34 .68 

block × 

valence 
0.97 4, 272 .423 

block × IUS 3.98 2, 272 .02 

valence × IUS 4.45 2, 272 .013 

block × 

valence × IUS 
1.01 4, 272 .405 

right TPJ 

block 2.53 2, 272 .082 0.041 0.702 

valence 0.92 2, 272 .401 

IUS 0.06 1, 34 .805 

block × 

valence 
0.27 4, 272 .897 

block × IUS 2.11 2, 272 .124 

valence × IUS 1.68 2, 272 .188 

block × 

valence × IUS 
0.63 4, 272 .64 

left TPJ 

block 3.44 2, 272 .034 0.038 0.636 

valence 0.83 2, 272 .436 

IUS 0.07 1, 34 .787 

block × 

valence 
1.76 4, 272 .138 

block × IUS 2.33 2, 272 .099 

valence × IUS 2.22 2, 272 .111 

block × 

valence × IUS 
1.87 4, 272 .116 
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eLPP 

block 3.82 2, 272 .023 0.086 0.882 

valence 17.15 2, 272 < .001 

IUS 0.29 1, 34 .596 

block × 

valence 
0.53 4, 272 .715 

block × IUS 4.69 2, 272 .01 

valence × IUS 2.06 2, 272 .13 

block × 

valence × IUS 
0.78 4, 272 .537 

early right 

OFC 

block 1.18 2, 272 .308 0.157 0.636 

valence 23.15 2, 272 < .001 

IUS 1.13 1, 34 .296 

block × 

valence 
0.75 4, 272 .56 

block × IUS 1.01 2, 272 .367 

valence × IUS 8.77 2, 272 < .001 

block × 

valence × IUS 
0.5 4, 272 .738 

early right 

temporal pole 

block 0.94 2, 272 .392 0.100 0.649 

valence 4.74 2, 272 .01 

IUS 1.2 1, 34 .28 

block × 

valence 
1.85 4, 272 .119 

block × IUS 0.51 2, 272 .603 

valence × IUS 0.65 2, 272 .523 

block × 

valence × IUS 
1.55 4, 272 .189 

lLPP 

block 1.28 2, 272 .281 0.098 0.843 

valence 13.11 2, 272 < .001 

IUS 0.11 1, 34 .748 

block × 

valence 
0.41 4, 272 .798 

block × IUS 1.26 2, 272 .285 

valence × IUS 1.94 2, 272 .145 
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block × 

valence × IUS 
0.58 4, 272 .681 

late right OFC 

block 0.97 2, 272 .382 0.184 0.514 

valence 19.12 2, 272 < .001 

IUS 0.96 1, 34 .335 

block × 

valence 
0.84 4, 272 .503 

block × IUS 0.87 2, 272 .418 

valence × IUS 6.45 2, 272 .002 

block × 

valence × IUS 
0.62 4, 272 .649 

late right 

temporal pole 

block 0.83 2, 272 .438 0.149 0.536 

valence 9.47 2, 272 < .001 

IUS 1.57 1, 34 .219 

block × 

valence 
2.16 4, 272 .073 

block × IUS 0.47 2, 272 .625 

valence × IUS 2.75 2, 272 .066 

block × 

valence × IUS 
1.94 4, 272 .103 
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Figure 4.4 Regression plots in the three time windows of the prediction updating stage in Study 6. 

Relationships between IUS scores and (A) P2 amplitude in 100% (in red), 75% (in green), and 50% (in blue) blocks, (B) P2 amplitude to NEU (in blue), POS (in green), and NEG 

(in red) S2s, (C) early LPP amplitude in 100% (in red), 75% (in green), and 50% (in blue) blocks, (D) early and (E) late r ight OFC activity to NEU (in blue), POS (in green), and 

NEG (in red) S2s are displayed. Shaded areas denote the 95% CI. 
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4.4 DISCUSSION 

To our knowledge, Study 6 represents the first attempt to investigate the modulating role of 

IU on the neural activity elicited during the generation, implementation, and updating stages of 

affective prediction construction, as a function of contextual information with certain (100%), 

moderately valid (75%), or uncertain (50%) predictive value. 

Contrary to what hypothesized (H1), but in line with some previous evidence (Chen & 

Lovibond, 2016; Morriss, 2019), individual differences in IU did not affect the prediction generation 

stage, either at the ERP or at the source level, suggesting that the extraction of emotional and 

contextual information conveyed by the faces develops in a similar manner along the different IU 

levels. 

During the implementation stage, IU exerted a modulating role both on ERPs and sources 

activity, in partial consistency with our hypothesis (H2), and with interesting differences as a function 

of time. In the early implementation stage, a higher IU was associated with a context- and valence-

independent decrease of neural activity within the left ACC, an area assumed to subtend the 

behavioral and cognitive avoidance of uncertainty exposure (Grupe & Nitschke, 2013), and the 

continuous assessment of environmental uncertainty levels (Peters et al., 2017). Net of the needed 

caution in interpreting brain sources activity as reconstructed from EEG, a reduced left ACC 

activation to increasing IU levels could signal a disrupted environmental assessment of uncertainty. 

This could in turn translate into a heightened deployment of anticipatory resources, as reflected in 

larger eCNV amplitudes, in order to try to solve uncertainty (Paulus & Stein, 2006). In the late 

implementation stage, instead, higher IU levels were found to predict a context- and valence-

independent decrease of neural activity within both the left ACC and SMA. So, as the implementation 

stage proceeds, the disrupted environmental uncertainty assessment, subtended by ACC decreased 

activity, seems to match an inhibition in action plans programming, as suggested by the reduced SMA 

activity, thus potentially contributing to the behavioral inhibition typical of high-IU individuals 

(Shihata et al., 2016) (cf. Carleton, 2016a, 2016b for potential relationships with BIS activation). 
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Furthermore, the heightened deployment of anticipatory resources, subtended by a larger CNV and 

reflecting an attempt to solve uncertainty, specialized into a context-specific effect: IU scores were 

found to negatively predict larger lCNVs only within the moderately predictive (75%) as compared 

to the certain (100%) context. It can be suggested that, as IU increases more anticipatory resources 

are pre-allocated only in those contexts in which the amount of uncertainty is perceived as “solvable” 

(i.e., 75%), while in more certain contexts (i.e., 100%) it could be metabolically effective to save 

resources, since there is no uncertainty to solve. This interpretation is consistent with IU models 

suggesting that neural, cognitive and behavioral peculiarities of high-IU individuals are aimed to 

increase perceived certainty and to reduce uncertainty exposure (Shihata et al., 2016; Tanovic, Gee, 

et al., 2018). 

Within prediction updating, results were partially consistent with our hypotheses (H3a, H3b): 

higher IU levels were found to be associated both with valence-specific effects, such as smaller P2s 

to positive S2s and smaller right OFC activity to emotional S2s, and with context-specific effects, 

such as smaller P2s and eLPPs to S2s in the moderately predictive (75%) context. Although slope 

analyses failed to find significant differences, and so these results should be considered with caution, 

some explanations could still be suggested. The valence-specific decrease of P2 amplitude to positive 

as compared to neutral S2s, reflecting a reduced automatic attention allocation, could represent an 

early neural correlate of the deficient safety learning which characterizes high-IU individuals (Grupe 

& Nitschke, 2013). This, in turn, could prevent emotional predictive models from being efficiently 

updated, by integrating environmental safety cues, because of the reduced attention allocation 

towards them. Furthermore, higher IU was found to be associated with a context-specific decrease in 

P2s and eLPPs when comparing the moderately predictive (75%) with the certain (100%) contexts. 

This result, suggesting a dampening in S2 processing both at early and later stages, could reflect the 

uncertainty avoidance and a disrupted prediction error signaling typical of high-IU individuals (Grupe 

& Nitschke, 2013). Moreover, this result specifically arises in a context in which the updating of 

emotional predictive models is required (i.e., 75%), as compared to a context in which there is no 
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need to update internal models since no expectancy violation occurs (i.e., 100%). Lastly, both in the 

early and late stages of prediction updating, IU was found to be associated with a smaller right OFC 

activity to emotional as compared to neutral S2s. Since OFC is involved in emotion regulation 

(Goldin et al., 2008; Golkar et al., 2012), its reduced activity may subtend a limited access to emotion 

regulation strategies, which is assumed to be a peculiar facet of high-IU traits (Ouellet et al., 2019), 

and which seems to spread across positive and negative valence and also across all predictive 

contexts. 

Thus, in Study 6 we have covered the first facet of affective predictions construction (see § 

4.1), by exploring IU influence on the neural activity which develops in conditions of different 

contextual information. We then re-analyzed Studies 2 to 5 in relation to IU to cover the second facet, 

i.e., prior experience. 

STUDIES 2 TO 5 

4.5 METHODS 

Studies 2 to 5 aimed to investigate primarily the impact of prior experience on subjective 

affective ratings to new affective predictions (cf. Chapter 3). As exploratory pre-registered analyses 

(see Table 1.3), we re-analyzed data in relation to IUS scores to investigate whether individual 

differences in IU could affect the subjective affective experience as a function of prior (un)certain 

learnings. 

Participants, stimulus material and procedures are described in Chapter 3. In order to 

investigate the relationships between IU and the DVs (expectancy, valence and arousal ratings), in 

each Study and for each DV we fitted separate LMMs (R package: lme4; Bates et al., 2015) with 

individual random intercept, adding IUS total score (mean centered) as a continuous predictor, and 

the group (CG vs. UG) and its interaction with IUS scores as fixed factors. 

Influential cases for each model were evaluated through Cook’s distance (>1). No influential 

cases emerged. Models effects were evaluated using F-test and p-values, calculated via 
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Satterthwaite's degrees of freedom method (α = .05, R package: lmerTest; Kuznetsova et al., 2017). 

For each model we reported the estimated parameters with 95% CI, marginal and conditional R2 

(estimated as in Nakagawa et al., 2017). Post-hoc pairwise comparisons between the slopes of the 

IUS scores trend for each level of the fixed factors (CG vs. UG) were tested by means of estimated 

marginal means (EMMs) contrasts (R package: emmeans; Lenth, 2020), Tukey adjusted for multiple 

comparisons. 

4.6 RESULTS 

Study 2 models are summarized in Table 4.6 and Figure 4.5. For the expectancy model 

(R2
marginal = 0.002, R2

conditional = 0.051), we found interactions between IUS total score and group (F(1, 

180) = 4.27, p =.04): a statistically significant difference in the relationship between IUS and 

expectancy ratings was found between groups. The slope analysis revealed that the slope of the 

relationship between IUS score and expectancy ratings was statistically different from 0 only in the 

CG (CG: b = 0.167, bSE = 0.077, 95% CI = [0.014, 0.32]; UG: b = -0.075, bSE = 0.088, 95% CI = [-

0.249, 0.099]), suggesting that higher IUS total scores predicted more negative expectancy ratings 

only in participants in the CG. Post-hoc contrasts showed a significant difference between the slopes 

in the CG as compared to the UG (t(180) = 2.07, p = .04), with higher values in the CG. 

For the valence model (R2
marginal = 0.003, R2

conditional = 0.009), we found a main effect of IUS 

total score (F(1, 180) = 5.83, p =.017), better explained by a significant interaction with group (F(1, 

180) = 8.41, p =.004): a statistically significant difference in the relationship between IUS total scores 

and valence ratings was found between groups. The slope analysis revealed that the slope of the 

relationship between IUS total scores and valence ratings was statistically different from 0 only in 

the CG (CG: b = -0.216, bSE = 0.054, 95% CI = [-0.322, -0.11]; UG: b = 0.02, bSE = 0.061, 95% CI = 

[-0.101, 0.14]), suggesting that higher IUS total scores predicted more unpleasant valence ratings 

only in participants in the CG. Post-hoc contrasts showed a significant difference between the slopes 

in the CG as compared to the UG (t(180) = -2.9, p = .004), with lower values in the CG. 
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For the arousal model (R2
marginal = 0.004, R2

conditional = 0.101), we did not find any significant 

effect. However, from the visual inspection of the regression plot (see Figure 4.5) it can be noticed 

that the trend of the slopes seems to suggest that higher IUS scores are associated with higher arousal 

ratings in the CG. 

Studies 3, 4 and 5 models are summarized in Tables 4.7, 4.8 and 4.9, respectively. No 

significant effects of IUS scores emerged in any of these models. 

 

Table 4.6 Results of LMMs investigating IU effect on expectancy, valence and arousal ratings in Study 2. 

For each model we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Expectancy 

ratings 

Intercept 53.09 0.57 93.54 180 < .001 51.97 54.21 

UG - CG -0.12 1.14 -0.10 180 .918 -2.36 2.12 

IUS 0.05 0.06 0.78 180 .435 -0.07 0.16 

group × IUS 0.24 0.12 2.07 180 .04 0.01 0.47 

σ ID 6.25       

σ residual 27.54       

Valence 

ratings 

Intercept 45.36 0.39 115.34 180 < .001 44.58 46.13 

UG - CG -0.84 0.79 -1.07 180 .288 -2.39 0.71 

IUS -0.10 0.04 -2.41 180 .017 -0.18 -0.02 

group × IUS -0.24 0.08 -2.90 180 .004 -0.40 -0.08 

σ ID 2.29       

σ residual 30.08       

Arousal 

ratings 

Intercept 47.73 0.63 75.32 180 < .001 46.48 48.98 

UG - CG 0.43 1.27 0.34 180 .735 -2.07 2.93 

IUS 0.13 0.07 1.93 180 .055 0.00 0.26 

group × IUS 0.18 0.13 1.41 180 .16 -0.07 0.44 

σ ID 7.66       

σ residual 23.34       
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Table 4.7 Results of LMMs investigating IU effect on expectancy, valence and arousal ratings in Study 3. 

For each model we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Expectancy 

ratings 

Intercept 53.41 0.54 98.76 162 < .001 52.35 54.48 

UG - CG 0.73 1.08 0.68 162 .5 -1.40 2.87 

IUS 0.10 0.07 1.47 162 .145 -0.03 0.23 

group × IUS -0.09 0.13 -0.70 162 .484 -0.35 0.17 

σ ID 5.57       

σ residual 26.18       

Valence 

Ratings 

Intercept 41.45 0.42 98.49 162 < .001 40.62 42.29 

UG - CG 0.40 0.84 0.47 162 .639 -1.27 2.06 

IUS -0.07 0.05 -1.32 162 .189 -0.17 0.03 

group × IUS 0.06 0.10 0.61 162 .543 -0.14 0.27 

σ ID 3.26       

σ residual 27.24       

Arousal 

ratings 

Intercept 60.15 0.59 102.40 162 < .001 58.99 61.31 

UG - CG 0.12 1.17 0.10 162 .92 -2.20 2.44 

IUS 0.14 0.07 1.95 162 .053 0.00 0.28 

group × IUS 0.19 0.14 1.30 162 .194 -0.10 0.47 

σ ID 6.59       

σ residual 23.18       
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Table 4.8 Results of LMMs investigating IU effect on expectancy, valence and arousal ratings in Study 4. 

For each model we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Expectancy 

ratings 

Intercept 52.10 0.63 82.22 104 < .001 50.85 53.36 

UG - CG -0.70 1.27 -0.55 104 .582 -3.21 1.81 

IUS 0.12 0.07 1.69 104 .093 -0.02 0.25 

group × IUS -0.09 0.14 -0.69 104 .489 -0.37 0.18 

σ ID 4.83       

σ residual 27.60       

Valence ratings 

Intercept 44.62 0.51 88.36 104 < .001 43.62 45.62 

UG - CG 0.98 1.01 0.97 104 .332 -1.02 2.99 

IUS 0.01 0.05 0.10 104 .924 -0.10 0.11 

group × IUS -0.08 0.11 -0.69 104 .489 -0.29 0.14 

σ ID 2.34       

σ residual 29.30       

Arousal ratings 

Intercept 49.52 0.87 56.96 104 < .001 47.80 51.24 

UG - CG -1.85 1.74 -1.06 104 .29 -5.30 1.60 

IUS 0.13 0.09 1.41 104 .162 -0.05 0.32 

group × IUS 0.18 0.19 0.96 104 .34 -0.19 0.55 

σ ID 8.08       

σ residual 24.03       
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Table 4.9 Results of LMMs investigating IU effect on expectancy, valence and arousal ratings in Study 5. 

For each model we reported the unstandardized regression coefficients, SE, 95% CI, and the associated t-test. 

Model Parameter Estimate SE t DF p 95% CI 

Expectancy 

ratings 

Intercept 53.34 0.91 58.65 99.00 < .001 51.53 55.14 

UG - CG 0.00 1.82 0.00 99.00 .998 -3.61 3.60 

IUS 0.03 0.13 0.24 99.00 .814 -0.22 0.29 

group × IUS -0.03 0.26 -0.11 99.00 .915 -0.54 0.48 

σ ID 8.10       

σ residual 26.79       

Valence 

ratings 

Intercept 44.97 0.58 76.87 99.02 < .001 43.81 46.13 

UG - CG 0.14 1.17 0.12 99.02 .904 -2.18 2.46 

IUS 0.06 0.08 0.79 99.04 .434 -0.10 0.23 

group × IUS 0.08 0.17 0.48 99.04 .633 -0.25 0.41 

σ ID 3.41       

σ residual 30.30       

Arousal 

ratings 

Intercept 48.89 0.80 60.82 98.91 < .001 47.29 50.48 

UG - CG -0.47 1.61 -0.29 98.91 .77 -3.66 2.72 

IUS 0.06 0.11 0.55 98.92 .587 -0.16 0.29 

group × IUS -0.16 0.23 -0.68 98.92 0.496 -0.61 0.30 

σ ID 7.04       

σ residual 25.01       
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Figure 4.5 Regression plots of expectancy, valence and arousal ratings in Study 2. 

Lines represent the mean estimated slope of the relationship between IUS scores and the DVs (expectancy, valence and 

arousal ratings) according to the group (CG vs. UG). Shaded areas denote 95% CI. 

 

4.7 DISCUSSION 

Re-analyzing Studies 2 to 5 with regards to IUS scores allowed us to investigate whether 

individual differences in IU could affect the subjective experience developing along new affective 

predictions as a function of certain vs. uncertain prior experience. We found significant results only 

in Study 2 (visual to visual). Here, IU predicted more negative expectancy ratings during the 

generation-implementation stage, and more unpleasant valence ratings (and a slight tendency to 

higher arousal ratings) in the updating stage, within CG participants only. So, it seems that higher IU 

levels are associated with an intensification of the subjective affective experience during all the stages 

of affective prediction construction (generation-implementation-updating), as it might be expected 

according to theoretical models of IU (Carleton, 2016a; Einstein, 2014; Grupe & Nitschke, 2013; 

Shihata et al., 2016). Interestingly, this effect was present only in the CG, where participants 

transitioned from a fully certain context (100%, experienced during the learning phase) to an 
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uncertain context (75%, experienced during the test phase), thus implying a shift from certainty to 

uncertainty. In the UG, instead, participants moved from an extremely uncertain context (50%, 

experienced during the learning phase) to another uncertain (although less extreme) context (75%, 

experienced during the test phase), thus implying only an adjustment to a different level of uncertainty 

(see § 3.2.2.4). As a result, CG participants may have experienced a sudden perception of uncertainty 

when they moved from learning to test phase, as their previously learned predictive models were 

sometimes disconfirmed during the test phase. This may have led to an increased anxious reaction, 

which eventually cascaded into a general affect intensification effect (Einstein, 2014). In contrast, 

UG participants may have experienced a decrease in perceived uncertainty when they transitioned 

from learning to test phase, potentially becoming able to develop a new, slightly reliable (75%) 

predictive model during the test phase. This may have contributed to a greater perceived 

controllability, which in turn may have diluted the anxious feelings triggered by uncertainty per se, 

and may have served as an efficient coping strategy to mitigate the adverse reaction (and thus the 

associated subjective experience) to the levels of uncertainty in the present moment (i.e., 75%, test 

phase) (Carleton, 2016b). 

Oddly enough, IU did not exert a statistically significant modulation in any other study 

(Studies 3 to 5). If Study 5 null results can be explained by the differential effects of explicit vs. 

implicit uncertainty, with only the first being associated with a detectable effect (cf. Reuman et al., 

2015); null results of Studies 3 and 4 are more tricky to interpret. In both studies, the common factor 

is that ambiguity of either S1s (Study 4) or S2s (Study 3, see § 3.7) was introduced in the test phase. 

Therefore, potential interactions between uncertainty and ambiguity may have contributed to 

complicating the full picture, ultimately pushing the focus more on the here and now (due to the need 

to process and disambiguate novelty in the present environment), and thus dampening the impact of 

IU on subjective ratings. According to some extant evidence (Chen & Lovibond, 2016), it might be 

expected the opposite of what we have found, since ambiguity should prevail over uncertainty, 

eliciting in turn a stronger affective response (either in terms of biased expectancies and negative 
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affective reactions). However, Chen and Lovibond (2016) manipulated both ambiguity and 

uncertainty in the present moment (where they also collected participants’ ratings); whereas in our 

paradigm we manipulated uncertainty in the past moment (i.e., during the learning phase, where 

participants were not asked any rating), and ambiguity in the present moment (i.e., during the test 

phase, where we asked for subjective affective ratings). Moreover, Chen and Lovibond (2016) split 

participants into high- and low-IU according to IUS scores distribution, while we treated IU as a 

continuous variable. These methodological differences may explain the opposite results found, 

suggesting a more complex relationship (and therefore worthy of further investigation in the future) 

between uncertainty and ambiguity, as they differently develop in the past vs. present moment. 

 

To summarize, we found that IU may actually impact on the construction of new affective 

predictions (see RQ3, § 1.5), predicting both the neural activity developing in conditions of different 

contextual information (Study 6), and the subjective affective ratings subsequent to (un)certain prior 

experience (Study 2). Prediction generation stage was not affected at the neural level by individual 

differences in IU. During the implementation stage, instead, higher IU was associated with (i) a 

disrupted environmental uncertainty assessment, indexed by a reduced activity of the ACC; (ii) a 

consequent inhibition in anticipatory action plans programming, as signaled by a decreased activity 

in the SMA; and (iii) a facilitation in the deployment of computational resources, reflected by a larger 

CNV amplitude. These processes may serve to solve uncertainty, specifically arising in moderately 

predictive contexts (75%) in which uncertainty is perceived as solvable. Moreover, and only in the 

case of a fully reliable (100%) previous experience, higher IU was associated with more negative 

expectancy ratings during the generation-implementation stage. As regards the updating stage, at the 

neural level IU predicted (i) a context-dependent uncertainty avoidance in the moderately predictive 

context (75%), reflected by reduced P2 and LPP amplitudes; (ii) a context-independent reduced 

attention to safety cues, signaled by a reduced P2 to positive S2s; and (iii) disrupted access to emotion 

regulation strategies, as supported by decreased activity within the right OFC. Also, and again in the 



155 

case of a fully reliable (100%) previous experience, higher IU was associated with more unpleasant 

valence ratings during updating. Net of the due caution in comparing results from different studies 

using different methodologies and measuring different DVs, it is nevertheless interesting to note that 

during prediction updating higher IU levels were found to be associated with apparently opposing 

results (as already emerged in the literature, cf. § 4.1): a dampened neural processing of affective 

stimuli, and an intensified subjective experience. This may suggest the existence of a potential 

dissociation in the effects of IU on overt (e.g., self-reported subjective experience) vs. covert (e.g., 

neural or peripheral physiological indices) affective processing, worth of further investigation. 

Implications of our results are promising. First, our results contribute to move further our level 

of understanding about the mechanisms by which both contextual information and prior experience 

interact with IU in shaping the neural and subjective correlates of affective prediction construction. 

When assessing the relationships between IU and affective predictions, probabilistic contextual 

information should be taken into more careful account, since its amount has proved to have an impact 

on neural activity (cf. Study 6). Moreover, our results highlighted the importance of perceived (rather 

than actual) uncertainty levels, and of prior experience in shaping uncertainty perception (cf. Study 

2). In fact, both CG and UG participants actually experienced the same exact amount of uncertainty 

(i.e., 25%) when giving their ratings in the present moment (i.e., test phase), but their previous 

learnings were different: only in case of a reliable prior experience IU exerted a modulation on 

subjective ratings (see § 4.7). Therefore, decreasing the perceived uncertainty from past to present 

moment may eventually contribute to reducing the aversive reaction triggered by uncertainty, and the 

associated affective experience intensification. These results support (and integrate well within) those 

clinical perspectives that propose treating anxiety-related psychopathology through the progressive 

minimization of perceived uncertainty (Carleton, 2016b; Shihata et al., 2016). 

Second, given the conceptual relationships between IU, emotional traits and disorders (e.g., 

neuroticism, anxiety), and the activation of the associated behavioral patterns (e.g., BIS, fight-flight-

freeze response), and being IU considered as the lower-order construct accounting for them (Carleton, 
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2016a, 2016b), it can be hypothesized that such emotional traits might share similar correlates of 

affective predictions construction. Thus, our results encourage broader considerations, useful for 

preventive and clinical applications within the domain of affective psychopathology. For instance, 

the CNV component and its neural sources, as well as the P2, the LPP and the right OFC activity 

could be considered as potential neural markers to assess, or to (early) intervene on, when developing 

preventive and treatment measures for clinical and subclinical populations. 

Third and last, our results further support the hypothesized link between IU and a disrupted 

prediction updating, as proposed within the predictive framework (Barrett, 2017; Paulus & Stein, 

2006; Seth & Friston, 2016; Tanovic, Gee, et al., 2018). This may encourage the development of 

future treatments for anxiety-related psychopathology, in which to target specifically the updating 

stage both at the neural (e.g., through biofeedback) and subjective experience level (e.g., through 

teaching/empowering cognitive reappraisal strategies). 

In conclusion, besides the limitations of our studies that we have already discussed above, our 

paradigms brought several elements of novelty to the literature. First, we used fully uninstructed 

experimental tasks, in which participants were left free to implicitly construct their own predictive 

models. Second, IU was modeled as a continuous predictor, thus better approximating the construct, 

and preventing some slight individual differences to be lost in a dichotomization of the variable. 

Third, pleasant stimuli were included in Study 6, thus allowing to isolate valence-specific effects. 

Fourth, hd-EEG allowed to investigate both the scalp and, with due caution, the source level, thus 

conveying a comprehensive neurocomputational evidence. Fifth and last, combining the logic of 

emotional S1-S2 paradigms with an uninstructed learning component in Studies 2 to 5 allowed us to 

target the role of actual previous experience and its interaction with IU in constructing new 

predictions. 
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GENERAL DISCUSSION 

SUMMARY OF THE FINDINGS 

The present research project aimed to elucidate some underlying mechanisms of affective 

prediction construction at the neural and subjective experience level. We investigated the role of 

contextual information of different predictive value on the neural correlates of affective predictions 

construction (see RQ1, § 1.5); the role of prior experience on the subjective ratings to new affective 

predictions, within and across sensory modalities (see RQ2, § 1.5); and how individual differences in 

IU modulate this processes (see RQ3, § 1.5). 

First, we demonstrated that the neural activity developing along affective prediction 

construction is differently modulated by the predictive value of contextual information (Study 1). 

When this latter conveys a certain probabilistic structure, it leads to the construction of a reliable 

predictive model. This model is used to generate predictions within domain-specific neural circuits, 

allowing to early detect emotional information in the present environment, prioritizing negatively-

valenced stimuli because of their salience. Predictions allow to pre-sensitize the expected affective 

stimuli, in turn facilitating their subsequent neural processing during the updating stage. When 

contextual information conveys an uncertain probabilistic structure, it is impossible to construct a 

reliable predictive model. As a consequence, when generating predictions, emotional information in 

the present environment is silenced because it is unreliable; while, in the implementation stage, action 

plans selection and programming become crucial (and therefore they are assigned heightened 

anticipatory resources), in order to provide the organism with optimal resources for an efficient 

adaptation to the (unknown) environmental requests. Furthermore, it is also crucial to achieve an 

efficient prediction error signaling, thanks to which adjusting the generative model coherently. 

Second, regarding the role of prior experience, we found that it shapes the subjective 

expectancies about the valence of future stimuli (Studies 2 to 5). When prior experience is certain, it 

leads future expectancies to accordingly label the predicted valence of future stimuli. This process is 
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consistently replicated within and across sensory modalities, in presence of new ambiguous 

environmental cues, and in conditions of implicit prior learning. When prior experience is uncertain, 

instead, it exerts no modulation on subjective affective ratings in any of the stages of future prediction 

construction. 

Third and last, individual differences in IU have been found to predict both context- and 

prior experience-specific effects (Studies 2 to 6). With regards to context-specific effects, when 

contextual information is moderately reliable, present uncertainty levels can be perceived as 

manageable (and thus, potentially solvable), leading individuals with higher IU to deploy more 

anticipatory resources in the implementation stage, and to a dampened affective processing 

(presumably serving an avoidance coping mechanism) in the following updating stage. As for the 

prior experience-specific effects, higher IU predicts an intensified subjective affective experience in 

all the stages only in presence of a certain previous knowledge. 

THEORETICAL AND CLINICAL IMPLICATIONS 

Overall, the present research project offers both a theoretical contribution to predictive models 

of emotion, and potential clinical implications for the early diagnosis and treatment of affective 

psychopathology (in particular anxiety disorders). 

As a theoretical contribution, our results advance knowledge about the mechanisms 

underlying the construction of affective predictions, both at the neural and subjective experience 

level. Despite predictive models of emotion (Barrett, 2017; Seth & Friston, 2016) assume that the 

main theoretical principles of predictive coding (see § 1.1) can be effectively applied to the emotion 

domain as well, the present research project suggests some caution. In fact, some specificities of 

affective stimuli emerged, worth to be taken into further consideration. First, as regards the prediction 

generation stage, the overall picture derived from our results is mostly coherent with the 

neurocomputational processes already found to subtend this stage. Nevertheless, contrary to some 

previous evidence (cf. § 1.3), we found more neural processing resources to be allocated to extract 
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the emotional information conveyed by cues when the available contextual information is sufficiently 

reliable. Second, for what concerns the implementation stage, the neural processes we found to be 

involved are qualitatively coherent with what has already been found in the literature; but in contrast 

with previous findings, we found that this process is maximally expressed in presence of unreliable 

contextual information (cf. § 1.3). Third and last, as for prediction updating, our results are coherent 

with previous evidence suggesting a prioritization in the neural processing of emotional over neutral 

stimuli, independently from them being predicted or not, and a prediction error signaling to stimuli 

mismatching predictions (see § 1.3). Nonetheless, matching stimuli do not seem to be silenced as it 

could be expected according to predictive coding principles (cf. Kok et al., 2019), and subjective 

affective experience is not influenced by the reliability of prior experience. Thus, predictive coding 

principles seem to apply more consistently to the generation and implementation stages. When it 

comes to prediction updating, instead, more weight (and, thus, more confidence) seems to be 

attributed to the affective nature of stimuli and to the contextual information available in the present 

moment, rather than to top-down predictions. This may be due to the evolutionary value of emotional 

stimuli, in that a prompt response to stimuli potentially impacting homeostasis, driven primarily by a 

quick bottom-up evaluation of present inputs, may cover a more efficient role in supporting allostasis 

and promoting survival (and thus, it must be prioritized). 

Furthermore, given the links between IU and affective psychopathology (especially anxiety 

disorders) (see § 1.4), outlining the specificities of affective prediction construction with increasing 

IU levels may be crucial to narrowing future anxiety research toward a deeper understanding of the 

mechanisms that underpin affective predictions in anxious populations (and that may be shared with 

high-IU). In view of this, our results may support the following preventive and clinical implications. 

First, ERPs (and their estimated brain sources) found to be altered with increasing IU levels may be 

targeted as potential neural markers to assess, or to (early) intervene on, when developing preventive 

and treatment interventions for clinical and subclinical anxiety. Second, since reducing the perceived 

anxiety from past to present moment may contribute in decreasing the adverse reaction to uncertainty 
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(and thus in dampening the associated affective experience), clinical approaches that implement 

progressive minimization of perceived uncertainty in their treatment routines may gain further support 

from our findings. Third and last, by confirming a disrupted prediction updating with increasing 

levels of IU, our results may encourage future clinical protocols to specifically target this stage at the 

neural and subjective experience levels, for instance through biofeedback treatments or cognitive 

reappraisal empowerment interventions. 

STRENGTHS, LIMITATIONS AND FUTURE DIRECTIONS 

Being developed and implemented at the turn of COVID-19 pandemic imposed some 

unavoidable limitations on the present research project, such as the inability to collect more EEG data 

due to the forced closure of the laboratories. Besides, some other limitations are worth to be 

addressed. First, as regards contextual information, we focused only on external probabilistic 

information, leaving out other external (e.g., specific features of the physical environment) or internal 

factors (e.g., interoceptive states) that may equally contribute in shaping affective predictions. 

Similarly, we outlined prior experience only in terms of probabilistic contingency between stimuli, 

but other features of prior experience such as the frequency of exposure, or the familiarity with the 

specific environments in which the learning occurs, may be of interest, too. Nonetheless, a research 

design that simultaneously included and manipulated all of the abovementioned features would have 

been too complex to manage, ultimately making it difficult to draw meaningful theoretical and 

applicative conclusions. 

Second, despite the efforts to make our affective cueing paradigms more realistic, they still 

remain quite artificial as compared to the multisensory and dynamic environments we are embedded 

in our daily life. We employed static and unimodal stimuli, and one could wonder to what extent the 

sequential presentation of such stimuli on a computer screen may be effective in resembling the 

multifaceted human affective experience, as it develops within everyday situations. However, net of 

their potential fictitiousness, experimental paradigms employing visual affective stimuli are still 
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considered as the most effective in inducing a subjective experience of emotion in the lab (Siedlecka 

& Denson, 2019). Moreover, affective cueing paradigms are particularly suitable to study affective 

predictions by targeting the three stages of prediction construction separately, and offering an optimal 

level of flexibility and control over stimuli manipulation (see § 1.3). 

Third, none of our studies contemplated the collection of neural and subjective measures 

simultaneously. If for Studies 2 to 5 this was a choice forced by the pandemic situation, which 

precluded the collection of EEG data, for Studies 1 and 6 it was a deliberate decision. We are aware 

that a passive viewing task could arise some concerns about the experimental control of the attentional 

resources that participants deploy on the task. However, controlling participant’s attention was not 

our primary purpose; rather, we wanted to leave them free to spontaneously develop their own 

predictive models throughout the task. It has been proved that prediction is generated (eliciting 

detectable ERPs) also in absence of an explicit response to S2s (Mento, 2013), and even when cues 

processing occurs unconsciously (Rozier et al., 2020). Further, asking for subjective ratings during 

affective experimental tasks can interfere with implicit emotional processing (Schupp et al., 2014), 

dampening emotion-related neural activity (Taylor et al., 2003). For these reasons, and in the light of 

the advantages offered by a passive task in ruling out any attentional or motor confound on the 

processes (and relative ERPs) under consideration, we chose not to collect subjective affective ratings 

in Studies 1 and 6. 

Fourth, the sample size of Studies 1 and 6 was relatively small (N = 31 and 36, respectively), 

resulting in potentially underpowered studies. Nevertheless, this issue was at least partially 

counterbalanced by the large number of trials (N = 360) we employed in our S1-S2 paradigm, which 

enabled to heighten power by increasing the signal-to-noise ratio (Baker et al., 2020). Moreover, the 

peculiarities of EEG spatial resolution imply caution when interpreting (and speculating on) brain 

sources activations. We nonetheless ensured to minimize this issue by recording the EEG with a high-

density (128-channels) system, and by estimating brain sources through the sLORETA algorithm, 
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which leads to small localization errors even with low signal-to-noise ratio (Hedrich et al., 2017; 

Samuelsson et al., 2021). 

Last, in Studies 3 and 4 the potential interactions between uncertainty and ambiguity may 

have contributed to complicating the full picture of results, preventing more subtle effects of prior 

learnings to be fully identifiable through our experimental manipulation. Even though disentangling 

the differential effects of those two factors on affective prediction construction was not our main goal, 

the resulting mixed picture invites future research to consider these aspects more carefully. 

Net of these limitations, our research project still brought several elements of novelty to the 

literature. First of all, it represents to our knowledge the first attempt to empirically investigate 

affective predictions with affective cueing paradigms by referring to predictive models of emotion 

(Barrett, 2017; Seth & Friston, 2016) as a theoretical framework for interpreting results, and by 

investigating the relationships between all the three stages of prediction construction (generation-

implementation-updating). 

As a second novel feature, exposing participants to either uninstructed or implicit affective 

contingencies, and to moderately predictive contextual information, allowed us to investigate 

affective predictions more similarly to how they spontaneously develop in everyday life. In fact, 

uncertainty levels in the environment are rarely extreme, and people usually learn contingencies from 

the environment without any need to be explicitly instructed. 

Third, in Studies 1 and 6 we employed highly social and arousing affective stimuli (i.e., faces) 

as cues, and we included pleasant as well as unpleasant stimuli, thus allowing valence-specific effects 

to be isolated. Moreover, the optimal compromise between spatial and temporal resolution offered by 

hd-EEG (Hedrich et al., 2017; Michel & Murray, 2012; Samuelsson et al., 2021) contributed to 

providing a compelling comprehensive evidence on the neural activity developing along the 

neurocomputational stages of affective predictions construction, narrowing the gap between low-

density EEG and fMRI studies. 
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Fourth, the experimental design we developed in Studies 2 to 5 allowed to implement the role 

of actual prior experience in constructing new predictions, and to study cross-modality 

generalization between the visual and auditory modalities. 

Last, in Studies 2 to 6 IU was modeled as a continuous predictor, thus better approximating 

the construct and preventing some slight individual differences to be lost in a dichotomization of the 

variable (Royston et al., 2006). 

Concluding, and building on some of the limitations of the present research project, we 

encourage future works to (i) combine the assessment of the overt subjective ratings with the 

simultaneous measurement of more covert (psychophysiological or neural) indices; (ii) investigate 

interoceptive states as inner contextual factors potentially shaping affective prediction construction; 

(iii) isolate the potential mutual influences between uncertainty and ambiguity; (iv) maximize the 

generalization of results to real-life contexts by employing more ecologically valid experimental 

procedures, such as for instance ecological momentary assessment (Shiffman et al., 2008). 
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