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The complexity and dexterity of the human hand make the development of natural

and robust control of hand prostheses challenging. Although a large number of control

approaches were developed and investigated in the last decades, limited robustness in

real-life conditions often prevented their application in clinical settings and in commercial

products. In this paper, we investigate a multimodal approach that exploits the use

of eye-hand coordination to improve the control of myoelectric hand prostheses. The

analyzed data are from the publicly available MeganePro Dataset 1, that includes

multimodal data from transradial amputees and able-bodied subjects while grasping

numerous household objects with ten grasp types. A continuous grasp-type classification

based on surface electromyography served as both intent detector and classifier. At the

same time, the information provided by eye-hand coordination parameters, gaze data

and object recognition in first-person videos allowed to identify the object a person

aims to grasp. The results show that the inclusion of visual information significantly

increases the average offline classification accuracy by up to 15.61 ± 4.22% for the

transradial amputees and of up to 7.37 ± 3.52% for the able-bodied subjects, allowing

trans-radial amputees to reach average classification accuracy comparable to intact

subjects and suggesting that the robustness of hand prosthesis control based on grasp-

type recognition can be significantly improved with the inclusion of visual information

extracted by leveraging natural eye-hand coordination behavior and without placing

additional cognitive burden on the user.

Keywords: hand prosthetics, electromyography, deep learning, multi-modal machine learning, eye-tracking,

eye-hand coordination, assistive robotics, manipulators

1. INTRODUCTION

The loss of a hand deprives an individual of an essential part of the body, and a
prosthesis that can be controlled intuitively and reliably is therefore essential to effectively
restore the missing functionality. Dexterous hand prostheses with notable mechanical
capabilities are now commercially available. They commonly have independent digit actuation,
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active thumb opposition, sufficient grip force and sometimes a
motorized wrist. These characteristics make such devices capable
of performing a large variety of grasps that can substantially
simplify the execution of activities of daily living (ADL) for hand
amputees. On the other hand, to fully exploit these capabilities,
the control system must be able to precisely and reliably decode
the grasp the user intends to perform. Although numerous
non-invasive strategies have been developed to achieve a robust
and natural control for multifunction hand prostheses, their
employment in commercial products and clinical practice is
still limited (Castellini et al., 2014; Farina et al., 2014; Vujaklija
et al., 2016). Pattern recognition-based approaches are arguably
the most investigated ones in scientific research. They identify
the grasp type by applying pattern recognition methods to
the electrical activity of the remnant musculature recorded
via surface electromyography (sEMG) (Hudgins et al., 1993;
Scheme and Englehart, 2011; Jiang et al., 2012). Despite the
remarkable performance obtained by thesemethods in controlled
environments, they commonly have difficulty providing the
level of robustness required for daily life activities in real-life
conditions (Jiang et al., 2012; Castellini et al., 2014; Farina and
Amsüss, 2016; Campbell et al., 2020). The intrinsic variability
of the electromyographic signals and the presence of factors
affecting them are arguably the main causes for the lack of
robustness of pattern recognition-based myoelectric control
methods (Farina et al., 2014; Campbell et al., 2020). Several
strategies have been proposed to overcome these limitations,
such as the development or selection of more robust signal
features (e.g., Phinyomark et al., 2012; Khushaba et al., 2014,
2017; Al-Timemy et al., 2016), the application of more advanced
methods of analysis, such as deep learning (e.g., Atzori et al.,
2016; Geng et al., 2016; Faust et al., 2018), the use or addition
of different modalities (e.g., Castellini et al., 2012; Gijsberts
and Caputo, 2013; Jaquier et al., 2017), and the inclusion of
complementary sources of information to increase the autonomy
of the control system (e.g., Došen et al., 2010; Markovic
et al., 2015; Amsuess et al., 2016). Despite all the mentioned
difficulties, in the last years research achievements in pattern
recognition helped to develop commercial pattern classification
approaches, such as COAPT engineering 1 and Myo Plus from
Ottobock 2. The idea of providing a prosthesis with decision-
making capabilities is not novel (Tomovic and Boni, 1962), and
several approaches have been proposed and investigated over
the years. A promising method relies on identifying the most
appropriate grasp type by obtaining information of the object
a person aims to grasp (Došen and Popović, 2010; Markovic
et al., 2014; Ghazaei et al., 2017; Taverne et al., 2019). In order
to do so, the control system must have the ability to identify
and extract information of the target object reliably, and the
reliance on visual information is a common and natural strategy
for this purpose. The use of visual modalities is motivated
by the natural eye-hand coordination behavior humans use
during grasping, where information to plan the motor action

1http://www.coaptengineering.com/
2https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-

overview/myo-plus/myo-plus.html

are retrieved by briefly fixating the object to be grasped before
the hand movement (Land et al., 1999; Johansson et al., 2001;
Land, 2006). Several studies have investigated the use of eye
tracking techniques to improve the human-robot interaction
during grasping. Castellini and colleagues have investigated the
use of gaze to increase the level of autonomy of a robotic
device in the context of teleoperation, imagining the possible
benefit this approach could have in the control of prosthetic
hands (Castellini and Sandini, 2007). In Corbett et al. (2012), an
eye tracker was employed to improve the trajectory estimation
of an assistive robotic hand for spinal cord injury patients.
The authors concluded that the inclusion of gaze data not
only improved the trajectory estimation but also reduced the
burden placed on the user, facilitating the control. The electro-
oculography technique was used in Hao et al. (2013) to extract
object characteristics to pre-shape a hand prosthesis. In this work
the participants were asked to scan the object’s contour with their
eyes, allowing the system to select the most suitable grasp type
by predicting its affordances. Eye-hand coordination parameters
were used in Cognolato et al. (2017) to semi-automatically extract
patches of the object a person aims to grasp for the training
of an object recognition system. Gigli et al. (2018) investigated
the inclusion of information of the target object for grasp-
type classification tasks. This evaluation exploited the use of
sEMG as reaching phase detector, which triggers a fixation search
to identify and segment the aimed object. Once the object is
identified, a convolutional neural network (CNN) extracts visual
features that are fused at kernel level with the sEMG modality.
The results show a consistent improvement in classification
accuracy for 5 able-bodied subjects with respect to the unimodal
sEMG-based classification, showing that the inclusion of visual
information produces an increment in grasp-type recognition
robustness. The work by Gigli et al. (2018) sets a fundamental
baseline in the domain of prosthetics. However, despite being
on a similar topic and dataset, the previous work is strongly
different from this paper. First, the authors did not include hand
amputees in the dataset and they included a small number of
intact subjects. Second, the approach was not fully based on
deep neural networks. Third, it included the identification of
fixations, which brings the disadvantage of shortening the time
frame to identify the target object, that could prevent a correct
identification (Gregori et al., 2019). Evaluations on transradial
amputees are particularly desirable to better investigate the
performance of multimodal approaches based on gaze and sEMG
for prosthetic applications. This work aims at investigating the
benefit of including visual information obtained by unobtrusively
exploiting eye-hand coordination parameters in transradial
amputees and able-bodied subjects to achieve an improved
and more robust grasp-type classification for hand prosthesis
control. To do so, we use the recently released MeganePro
Dataset 1 (Cognolato et al., 2020), which includes sEMG,
accelerometry, gaze, and first-person videos recorded from 15
transradial amputees and 30 able-bodied subjects while grasping
several objects with ten grasp types. We used a Convolutional
Long Short-Term Memory (ConvLSTM) network to perform
sEMG-based grasp-type classification and a Mask Region-based
Convolutional Neural Network (Mask R-CNN) (He et al., 2017)
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to identify and segment the objects in front of the subject.
Eye-hand coordination parameters were used to identify the
object the subject aims to grasp and the information from both
modalities is combined for a final prediction.

2. MATERIALS AND METHODS

2.1. Data
The data used in this work are publicly available in the
MeganePro Dataset 1 (MDS1) (Cognolato et al., 2020). The
sEMG data were collected at 1926Hz using a Delsys Trigno
Wireless EMG System (Delsys Inc., US). Gaze and first-person
video were recorded at 100Hz and 25 frames per second (FPS),
respectively, with a Tobii Pro Glasses 2 eye tracker (Tobii
AB, SE). The dataset contains recordings from 15 transradial
amputees and 30 able-bodied subjects while grasping numerous
household objects with ten grasp types. Twelve sEMG electrodes
were placed around the forearm or residual limb in a two-array
configuration. The acquisition protocol consisted of two parts. In
the static condition, subjects were asked to statically perform 10
grasps, from a seated and a standing position. Each grasp was
matched with three household objects chosen among a total of
18 objects as shown in Table 1) (Cognolato et al., 2020). Grasp-
object pairings were chosen for having each grasp used with
multiple objects and vice versa. At least five objects were placed
in front of the subject, simulating a real environment. In the
dynamic condition, the participants were asked to perform an
action with the object after having grabbed it (i.e., opening a
door handle or drinking from a can). The dynamic condition
was repeated eight times on a set of two objects, either standing
or seated. Explanatory videos, showed at the beginning of each
grasp-block, instructed the participants on how to perform the
grasps, and vocal instructions guided them through the exercises.
The multiple relationships between objects and grasp types, as
well as the simultaneous presence of several objects in the scene
in front of the subjects, made the acquisition protocol similar
to an everyday life scenario, providing a set of data suitable to
investigate a multimodal control strategies based on sEMG, gaze
and visual information.

2.2. Unimodal sEMG-Based Grasp-Type
Classification
We employed a ConvLSTM to perform the grasp-type
classification based on solely electromyographic signals
(Figure 2). One of the advantages of this network architecture
is the capability of exploiting both spatial and temporal
relationships of the data (Shi et al., 2015). This characteristic can
positively impact the performance in this type of applications,
where the recognition of a grasp type from the muscular activity
of the extrinsic muscles of the hand can be discriminated by
taking into account which muscle activates (i.e., via its location)
and the temporal pattern of such contractions. The ConvLSTM
network (Shi et al., 2015) is based on the widely used Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) model. However, it differs from the LSTM conventional
structure for the convolutional operations performed in both
input and internal state transformations, which provide the

TABLE 1 | Overview of the grasp types and objects for the condition of the

exercise.

Grasp Object

1 Medium wrap

Bottle

Can

Door handle

2 Lateral

Mug

Key

Pencil case

3 Parallel extension

Plate

Book

Drawer

4 Tripod grasp

Bottle

Mug

Drawer

5 Power sphere

Ball

Bulb

Key

6 Precision disk

Jar

Bulb

Ball

7 prismatic pinch

clothespin

key

can

8 Index finger extension

Remote

Knife

Fork

9 Adducted thumb

Screwdriver

Remote

Wrench

10 Prismatic four finger

Knife

Fork

Wrench

capability of handling spatiotemporal information (Shi et al.,
2015). The network used in this work consists of a Convolutional
Long Short-TermMemory layer with 128 filters and a kernel size
of 1 by 3, followed by a dropout layer with a rate of 0.5, a flatten
layer, two fully connected layers of 200 and 50 units, respectively,
with Rectified Linear Unit (ReLU) as activation function with
a dropout having 0.2 as dropout rate. A fully connected layer
with 11 units (the number of classes) and softmax as activation
function provides the output of the network. We used the
categorical cross entropy loss function and Adam (Kingma and
Ba, 2014) as optimizer with the default parameters. The network
was implemented using the Keras functional API.

The sEMG data were shaped following a rest-grasp-rest
pattern, with a random amount of rest of a minimum of 1 s, and
including part of the rest after the previous explanatory video for
the first repetition. Therefore, a total of 320 sEMG segments were
extracted per subject. We subsequently divided these segments
into 4 folds, following the scheme employed in Cognolato et al.
(2020) and graphically described in Figure 1. Each fold contains
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FIGURE 1 | Four-fold data structure segmentation schema. As described in section 2.1, each grasp-type was performed on 2 conditions (static and dynamic) and

repeated 32 times on different objects. Three repetitions from the static seated condition and from the static standing, and 2 from the dynamic condition formed a

fold, which contains 8 repetitions per grasp-type.

8 repetitions per grasp-type, namely 3 repetitions from the
static seated condition, 3 from the static standing, and 2 from the
dynamic, performed on different objects. This allowed us to test
the performance with a 4-fold cross-validation procedure, where
3 folds were used to train the network and the held-out folds
for testing. For each training, a validation set of 30 repetitions
was randomly drawn for each condition from the training set to
evaluate the best model based on the validation accuracy. The
validation set was obtained by randomly extracting a repetition
from each condition per grasp type, resulting in a training set
of 210 repetitions and a validation set of 30. We pre-processed
all the data by removing the mean, making the variance unitary
with a scaler that was fit on the training set and performing
data rectification. After this, the data were windowed with a
window size of 200 samples (slightly more than 100ms) with no
overlap, obtaining a N × 200 × 12 tensor, with N the number of
windows and 12 the number of electrodes. Finally, each window
was divided into 10 subsequences, each structured as a single row
by 20 columns and 12 channels (one per electrode), obtaining
an input tensor of shape N × 10 × 1 × 20 × 12 with which the
ConvLSTM was fed. For each 4-fold cross-validation procedure,
the network was trained for 150 epochs with batches of size 32,
and the best models were saved based on the validation accuracy.
The predominancy of the rest class was taken into account by
providing the network with class weights.

2.3. Object Recognition and Segmentation
Object recognition and segmentation were performed with a
Mask R-CNN network (He et al., 2017), utilizing the model
released by Gregori et al. (2019). The model uses a ResNet-50-
Feature Pyramid Network (He et al., 2016; Lin et al., 2017) as
backbone. It is based on the implementation provided by Massa
and Girshick (2018) that was originally trained on the Common
Objects in Context (COCO) dataset (Lin et al., 2014) and

fine-tuned on the MeganePro objects. Gregori et al. (2019)
demonstrated the substantial increase in average precision of this
model with respect to the non-fine-tuned model when tested on
the on MeganePro objects, thanks also to the limited variability
and number of objects employed in the MeganePro acquisitions.
To reduce the computation time, we extracted and stored the
contour of the objects identified by this network only from 2 s
before to 3.5 s after the beginning of the grasp identified from
the relabeled data. Furthermore, as done in Gregori et al. (2019),
instances having a score level lower than 0.8 were discarded.
At this stage, the gaze points within each video frame (at their
original sampling rate) were used to identify the object being
looked at by the subject. Similarly to what was done in Gregori
et al. (2019), objects were considered looked at for grasping
purposes when the gaze point was closer 20 px to the object
contour (evaluated with the Euclidian distance). This is done only
for valid gaze-frame instances that occur when the conditions
of having a valid gaze-point estimation and at least one object
recognized by the Mask R-CNN are both met (excluding the
person and background “object” classes). The main advantages
of this approach is the decoupling of object and grasp intention
identifications, where the information about the object fixated
by the user is instantly available once the grasp intention is
detected (Gregori et al., 2019).

2.4. Multimodal Analysis
The multimodal analysis consists of fusing gaze, visual data and
sEMG with the aim of increasing the robustness of grasp-type
recognition (Figure 2). The multimodal analysis was performed
on the data extracted with the Mask R-CNN, namely in the
time frame of 2 s before and 3.5 s after the beginning of the
grasp, maintaining the same 4-fold structure used for training the
ConvLSTM models. The sEMG-based grasp-type classification
was performed every 20 samples (approximately 10ms) with the
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FIGURE 2 | Example of a typical unimodal and multimodal analysis process flow. The sEMG-based grasp-type classification (EMG in the figure) continuously identifies

the grasp type, and its output is taken as is when a rest condition or no object are detected (marked in blue). Once a grasp intent is identified, the offline-computed

visual information are loaded and, if a target object is successfully identified, the final grasp is selected only among the grasp-types paired with the identified object

(marked in green). The approach restarts as soon as a sample is classified as rest.

best models obtained in the unimodal sEMG-based grasp-type
classification step (section 2.2). This served to both identify the
beginning of a grasp and classify the grasp type based only on
the sEMG. The identification of the grasp intent is obtained by
leveraging the ability of the ConvLSTM to differentiate between
rest and grasp, and the multimodal data fusion is triggered
only after the recognition of a non-rest condition (i.e., when
a grasp type is detected, regardless of its type). To perform
the multimodal data fusion, the information stored during the
object recognition and segmentation step (section 2.3) is loaded
each time a new valid gaze-frame instance is available. Once a
grasp intention is detected, the target object is then identified
as the last object being looked at in the previous 480 samples
(approximately 250ms). If no object is identified, the search
continues until 500ms after the grasp intention identification. In
the case that an object is successfully identified, the grasp types
paired with the recognized object are fused with the information
provided by the sEMG-based classifier. In particular, the final
grasp type is chosen as the one having the highest rate in the
output vector of the ConvLSTM restricted to the grasp types
paired with the recognized object. If no object is identified within
this time-frame, the approach continues with only the sEMG-
based grasp-type classification. In both cases (i.e., whether an
object is identified or not), the approach restarts as soon as a
sample is classified as rest. In the subsequent analysis, the subject
identified as S114was excluded from themultimodal analysis due
to the strabism condition that negatively influenced the quality of
the eye tracking data (Cognolato et al., 2020).

2.5. Statistical Analysis
Two non-parametric statistical tests were applied to evaluate
the significance of the results: the Wilcoxon signed-rank test
for paired samples and the Mann-Whitney test for independent

samples. We applied the Wilcoxon signed-rank test to results
obtained from the same population group (i.e., amputees or
non-disabled subjects). This test validates the variations of
using different approaches (e.g., sEMG-based vs. multimodal) or
conditions (e.g., static vs. dynamic) on the same population data.
The Mann-Whitney test was used to evaluate if the discrepancy
in correct object identification between the two population
groups (e.g., amputees vs. able-bodied subjects) was statistically
significant. Non-parametric tests were chosen to cope with the
non-normal data distribution. When comparing the sEMG-
based and multimodal approaches with the Wilcoxon signed-
rank test, we used the alternative hypothesis that the multimodal
approach performs better than the unimodal. A null hypothesis
of a difference between the conditions was used for the correct
object identification comparison. The matched rank biserial
correlation and the rank biserial correlation provided the effect
size for the Wilcoxon signed-rank test and the Mann-Whitney
test, respectively, and the values reported hereafter represent the
magnitude of the effect size. The statistical analysis was applied
to the results averaged per subject and was performed with
JASP (JASP Team, 2020).

3. RESULTS

The results show that exploiting eye-hand coordination (via the
fusion of electromyography, gaze, and first-person video data)
significantly increases the average classification accuracy for both
intact subjects and amputees, suggesting that the robustness of
hand prosthesis control based on grasp-type recognition can be
improved significantly with the inclusion of visual information.

The next sections present the results obtained with the
unimodal sEMG-based grasp-type classification, the rate of
correct target object identification and the performance achieved
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with the multimodal approach. The accuracy was evaluated per
fold, while the rate of correct object identification is evaluated
per subject.

3.1. Unimodal sEMG-Based Grasp-Type
Classification
The first step consisted in evaluating the performance of
the ConvLSTM on sEMG-based grasp-type classification. The
average classification accuracies obtained with the 4-fold cross
validation approach presented in section 2.2 on the 11 classes (ten
grasp types and rest) are of 72.51± 5.31% and 74.54± 4.96% for
transradial amputees and able-bodied subjects, respectively.

3.2. Object Recognition via Eye-Hand
Coordination Parameters
This section aims at evaluating whether the target object was
correctly identified by using eye-hand coordination parameters.
This is crucial to assess the actual performance of the approach,
since the correct grasp type may still be retrieved even with an
incorrect identification of the target object, given that multiple
objects graspable with the same grasp type are always present
in the scene. Therefore, this protocol-related aspect might
introduce a bias that can boost the results. To evaluate this
aspect, we considered an identification as correct when the

FIGURE 3 | Object recognition rate via eye-hand coordination parameters for

transradial amputees and able-bodied subjects in both static and

dynamic conditions. The bar illustrates the mean value and the error bars the

standard deviation. **p <0.01, and ***p <0.001.

object recognized by the multimodal approach at the beginning
of the grasp corresponds to the target one. The average rate
of correct object identification is higher than 85% for both
transradial amputees (91.88 ± 6.80%) and able-bodied subjects
(86.08 ± 11.00%) for the static condition, indicating that the
correct object was recognized for the vast majority of the trials.
These values slightly decrease for the dynamic condition, where
the correct object was identified for the 79.73 ± 15.54% of the
times for transradial amputees, and for the 79.50 ± 12.14% for
able-bodied subjects. The statistical analysis revealed that the
condition (static or dynamic) has a statistically significant effect
on the correct object recognition rate (p <0.001 and p = 0.001
for amputees and able-bodied subjects, respectively), while no
significant difference is found between the groups (p = 0.051
and 0.441 for the static and dynamic conditions, respectively).
Figure 3 shows the results for both groups and conditions while
the outcomes of the statistical analysis are summarized inTable 2.

3.3. Multimodal Analysis
This section reports the results obtained by applying the
multimodal approach presented in section 2.4. To better
investigate the possible condition-related differences, the results
are reported for the static and dynamic condition separately.
It is worth noticing that, in this section, the unimodal
and multimodal approaches are evaluated on the same data
(segmented as described in section 2.4), as, due to differences
in data segmentation, the results of the multimodal analysis are
not directly comparable to the ones described in the unimodal
sEMG-based grasp-type classification section (section 3.1). In
fact, while the unimodal approach previously presented was
tested on entire repetitions, in this section the testing was
performed on the data extracted in the object recognition and
segmentation phase, namely from 2 s before to 3.5 s after the
beginning of the grasp identified from the relabeled data.

3.3.1. Static Condition
The inclusion of gaze and visual information has led to a
substantial increase in grasp-type classification accuracy for both
the amputee and able-bodied groups for the static condition.
For amputees in particular, the average classification accuracy
obtained using only the sEMG modality was of 63.03 ± 5.36%
while the multimodal approach reaches on average 78.64 ±

6.13%, with an average increment of 15.61 ± 4.22% (Figure 4A).
This difference is found to be statistically significant (p <0.001,
effect size = 1, Figure 4B), indicating that the multimodal
approach significantly increases the grasp-type classification
accuracy. The same trend, even though to a reduced extent,

TABLE 2 | Within-subject (left) and between-subjects (right) statistical description of the correct object recognition rate.

Amputees Able-bodied Static Functional

p-value Effect size p-value Effect size p-value Effect size P-value Effect size

Static - Dynamic <0.001 0.943 0.001 0.699 Amputees - Able-bodied 0.051 0.371 0.441 0.148

The table on the left reports the statistical analysis performed with the Wilcoxon test to evaluate the effect of the static and dynamic conditions within the same population group. The

evaluation of differences among amputees and able-bodied subjects for the two conditions obtained with the Mann-Whitney test is reported on the right.
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FIGURE 4 | Comparison of grasp-type classification accuracy obtained with sEMG-based and multimodal approaches in transradial amputees and able-bodied

subjects for the static condition. The top and bottom of the box indicate the third and first quartiles, respectively. The central line reports the median, the whisker

extension follows the original definition. Data falling outside 1.5 times the interquartile range are considered outliers and indicated with circles. *p <0.05, **p <0.01, and

***p <0.001. (A) Grasp-type classification in transradial amputees for the static condition. (B) Grasp-type classification in able-bodied subjects for the static condition.

TABLE 3 | Statistical analysis of the accuracy achieved with the unimodal and

multimodal approaches for the static and dynamic conditions.

Amputees Able-bodied

p-value Effect size p-value Effect size

Static <0.001 1.000 <0.001 0.996

Dynamic <0.001 1.000 <0.001 0.991

The analysis was performed with the Wilcoxon test with the alternative assumption that

the results obtained with the unimodal approach were lower than the multimodal ones.

was obtained for able-bodied subjects that achieve an average
increment of 6.56 ± 2.89%, where the approach based only on
sEMG data reached an average accuracy of 73.35 ± 6.14% while
the multimodal analysis 79.92 ± 5.85% (Table 3). Also in this
case, the increase in classification accuracy with the multimodal
approach was found to be statistically significant (p <0.001, effect
size = 0.996, Table 3). The confusion matrices for the grasp-
type classification of the static condition are reported in the
Supplementary Material section.

3.3.2. Dynamic Condition
The trend obtained for the static condition is also maintained for
the dynamic one, where there is however an overall decrease in
classification accuracy. Hand amputees reached 58.99 ± 6.26%
and 74.12 ± 8.87% as average grasp-type classification accuracy
for the sEMG-based and multimodal methods, respectively,
with an average increment of 15.13 ± 6.32% (Figure 5A).
The Wilcoxon test revealed the statistical significance of these
results (p <0.001, effect size = 1, Table 3), which indicates
that the multimodal approach leads to a significant increase
in grasp-type classification accuracy in hand amputees also for
the dynamic condition. Focusing on the able-bodied subjects,
the inclusion of visual information led to an average increase
of 7.37 ± 3.52%, with the sEMG-based grasp-type recognition
and the multimodal approach reaching an average accuracy of

63.55 ± 5.23% and 70.92 ± 5.40%, respectively (Figure 5B).
Also in this case, the increase in performance obtained with the
multimodal approach is statistically significant (p <0.001, effect
size = 0.991, Table 3). The confusion matrices for the grasp-
type classification of the dynamic condition are reported in the
Supplementary Material section).

4. DISCUSSION

This work shows that a multimodal approach based on eye-
hand coordination (thus fusing sEMG, gaze, and visual data)
can significantly improve the performance of a grasp-type
classifier, particularly for trans-radial amputees, suggesting that
the robustness of hand prosthesis control can be improved with
the inclusion of visual information. Furthermore, the results
indicate that the target object can be recognized with a high
probability by relying on the eye-hand coordination parameters
without placing any additional burden on the user.

Target object recognition is overall slightly higher in
amputees, without significant difference between the two
populations (Table 2, p = 0.051 and 0.441 for the static and
dynamic conditions, respectively). This result suggests that an
accurate identification of the target object can be accomplished:
(1) by leveraging the ability of the classifier to discriminate
between rest and grasp, serving as an intention detector, (2) by
exploiting the timing of visuomotor coordination, and (3) by
continuously tracking the objects that the user is looking at (as
proposed in Gregori et al., 2019). The use of the classifier as
both intent detector and grasp-type classifier eliminates the need
for a two-step approach in which the grasp-type classification
is performed after the identification of the movement onset,
which can reduce the time window to identify the target object
correctly. However, the use of an sEMG-based classifier as an
intention detector still does not allow to exploit the entire time
window for the identification of the target object, as a latency
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FIGURE 5 | Comparison of grasp-type classification accuracy obtained with sEMG-based and multimodal approaches in transradial amputees and able-bodied

subjects for the dynamic condition. See Figure 4 for information about boxplots’ parameters. *p <0.05, **p <0.01, and ***p <0.001. (A) Transradial amputees. (B)

Able-bodied subjects.

between the start of a movement and the muscle activation exists
and was shown to be significantly longer for amputees (Gregori
et al., 2019). The inclusion of forearm kinematics [e.g., via via
inertial measurement units (IMUs)] can probably improve this
aspect, even though a muscular activation clearly marks the user
intention of moving the hand, while arm kinematics intrinsically
have a higher degree of variability, particularly in unconstrained
environments where the rest-grasp transition might not be
clearly identifiable. Furthermore, the use of a continuous gaze
and object tracking to identify the object looked at by the user
eliminated also the need to recognize the gaze fixation on the
target object, which is not a trivial task and it has the disadvantage
of shortening the time window for the grasp identification. The
main disadvantage of a continuous gaze and object tracking,
however, is the computational demand.

On the other hand, tools such as Mask R-CNN and You Only
Look Once (YOLO) (Redmon and Farhadi, 2018) can perform
object detection and segmentation in real-time, which can be
made more efficient by restricting the detection area to the
surroundings of the gaze point.

The results show a gap of approximately 10% in the correct
object identification between the static and dynamic conditions,
which was found to be statistically significant. This difference
may be due to the tasks that are performed under the two
conditions. First, the increased number of objects placed in
the scene for the dynamic condition and therefore their spatial
vicinity can facilitate the selection of an object near the target
one, resulting in incorrect identification. Second, the different
gaze behavior shown in Gregori et al. (2019) for in-place, lifting,
and displacement actions could also have influenced the correct
object identification. For in-place actions (i.e., when the object
is not moved), the participants only had to localize the target
object in order to plan the motor action accordingly (i.e., defined
as locating fixation by Land et al., 1999) (Land et al., 1999;
Johansson et al., 2001; Land, 2006; Gregori et al., 2019). Instead
of this, a series of activities were requested for the lifting and
displacement actions (contained only in the dynamic condition),
which commonly cause a gaze shift before the current action

is completed, in order to plan the next step (Land et al., 1999;
Johansson et al., 2001; Land, 2006; Gregori et al., 2019). Finally,
no significant difference was found between the amputees and
able-bodied subjects within each condition for what concerns
the target object identification. This is consistent with the results
from Gregori et al. (2019), where similar visuomotor strategies
were found for the two groups.

A comparison of the results for the unimodal sEMG-based
grasp-type classification with the state of the art is not easy
to perform due to the differences in data, protocols, and
subjects. Although different for data segmentation, the closest
investigation in terms of data and protocol is the validation
given in Cognolato et al. (2020). The grasp-type classification
accuracies achieved in this work with the ConvLSTM are in
line with those in Cognolato et al. (2020). Although the Kernel
Regularized Least Squares with a nonlinear exponential χ2 kernel
and marginal Discrete Wavelet Transform features achieved
better performance (Cognolato et al., 2020), the main advantages
of using ConvLSTM are the complete absence of the feature
extraction step, and the use of shorter time-windows. The
difference in unimodal sEMG-based grasp-type classification
accuracy between amputees and intact subjects is roughly
2%. This result is in line with the findings from Cognolato
et al. (2020), where traditional and well-established machine
learning approaches were employed. Another point that merits
further analysis is the extent to which the displacement of
a real object for the able-bodied subject (which was not
“materially” performed by the amputees) might have influenced
the comparison between the two groups, as it is well known
that changes in force level negatively influence the sEMG-based
grasp-type classification (Campbell et al., 2020).

The inclusion of visual information substantially increased
the average grasp-type classification accuracy. This trend is
maintained for both the static and dynamic conditions, with an
average accuracy gain of approximately 15% for hand amputees
and roughly 7% for intact subjects, and it is found to be
statistically significant for both population groups. These results
reveal the benefit of merging gaze and visual information with
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the traditional sEMG-based approach to improve the grasp
type classification, and it is in line with the findings of Gigli
et al. (2018) and Gregori (2019). Although the different data
segmentation makes the results not directly comparable, our
results showed a stronger increase for both populations than
the one reported in Gigli et al. (2018) and Gregori (2019). In
addition to the different data segmentation, also the different
methods for performing the sEMG-based grasp-type recognition,
for extracting the visual information and for performing the data
fusion have likely contributed to this difference. On the other
hand, both approaches indicate the benefit of including visual
information for grasp-type recognition for both populations,
with the amputees showing an increase roughly twice the one
of the able-bodied subjects. Further efforts should be put to
analyze the reasons behind the different increase in classification
accuracy between the two populations. A possible hypothesis,
to be verified in future works, is that the different increase of
classification accuracy between the two populations might be due
to the fact that the performance of the computer vision part of
the pipeline (which is similar in the two groups) is capable to fully
counterbalance the low performance of sEMGuntil a certain level
of accuracy.

It should be noted that the approach proposed in this work
performs a grasp-type classification based on the sEMGmodality
and the information about the suitable grasp types for the
target object is merged after the classification step. In addition,
this information is used to select the class with the highest
recognition rate among those paired with the target object.
Therefore, it seems reasonable that this approach has more
influence in cases of uncertainty between classes (i.e., when
several classes are similarly likely to be correct) than when
the classifier assigns a high probability to one of the classes
(either correct or not) paired to the object. The approach can
exclude grasp types with a similar likelihood to the correct
one in the former scenario, thereby improving the recognition
of the appropriate class, whereas it has no effect if a high
probability is given to an incorrect class among the suitable
ones. It is also worth noticing that both performance and
improvements depend on the chosen classifier as well as on its
ability to correctly identify a grasp type, as it seems reasonable
that the benefit of including additional and complementary
sources of information decreases as the performance of the
unimodal classification increases. However, given that a greater
improvement for amputees was also obtained in Gregori (2019)
with a different approach, further investigations might enlighten
the reason of this difference.

The proposed method indicates the viability of taking
advantage of a natural human behavior to improve the grasp-
type recognition by having the control system retrieving
complementary information autonomously, without placing any
additional burden on the user. Furthermore, the approach is
mainly driven by the sEMG modality, which is the direct user-
device interface, making the autonomous part of the method
as unobtrusive as possible. This was done in an effort to limit
the conscious and visual attention demands, which was deemed
as an aspect needing improvements by myoelectric prosthesis
users (Atkins et al., 1996; Cordella et al., 2016).

Having the data analysis procedure fully based on deep
neural networks can lead to the seamless integration of different
modalities and to faster models, particularly at the testing phase
(e.g., Ren et al., 2015). The first point represents a potential
starting point for future work targeting multimodal data analysis
employing multiple data acquisition techniques. The second one
can lead to better real-time applications, obtained by reducing
the number of separate processes that are required to achieve the
same task.

Finally, the multimodal approach showed a small increment
in misclassification toward the rest class. This increase of
misclassifications might be a consequence of the “releasing”
strategy employed in the approach, where a rest sample from the
unimodal sEMG-based grasp-type classification marks the end
of the prehension. In this case, the control returns to be purely
sEMG-based, re-initializing the search for a new target object,
which is improbable to be found for the dynamic condition,
as the gaze has likely been moved to the next activity “step.”
A more robust identification of the prehension completion, for
example by requiring a minimum number of consecutive rest
samples instead of a single one, could improve this aspect. On
the other hand, this would increase the delay between the user
intent and prosthesis reaction, reducing the speed of the control
in an online application.

4.1. Limitations and Further Improvements
In order to achieve our objectives, we decided to limit additional
uncertainties regarding the object recognition and the grasp-
types paired with it. However, in a real scenario, the object
recognition accuracy is likely to be lower than the one achieved
in this work with a network fine-tuned on the objects composing
the acquisition setup (Gregori et al., 2019), and the grasp types
suitable for a specific object are commonly not fully known a
priori. Both aspects can influence the improvement achievable.

A limitation of this work is that the computer vision pipeline
was tuned on the same objects that were used in the acquisition
protocol. This approach was applied to be consistent with the
electromyography data analysis procedure. Nevertheless, object
recognition accuracy in a real scenario is likely to be lower
than the one achieved in our work. A perspective of object
recognition for grasping without fine tuning can be found in
Gigli et al. (2018), showing that multimodal fusion increases the
classification success rate considerably, even if fine tuning is not
performed. An alternative perspective of object recognition for
grasping by exploiting dedicated training datasets in provided
by Ghazaei et al. (2017). Despite the fact that in a real scenario
object recognition accuracy is likely to be lower than the one
achieved in our work, we expect this aspect to be improved in
the future thanks to new resources which are being developed,
increasing the applicability to real life applications. In fact, the
presented work is one of the first approaches exploring what
can be done fusing electromyography, computer vision and eye
tracking data using deep learning approaches to mimic human
eye-hand coordination. In this moment, real-life applications
would at least benefit from fine tuning models on dedicated
datasets (Ghazaei et al., 2017), bringing their performance at
least closer to the ones described in this paper, and of newer
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computer vision architectures. In addition, real life applications
of this system in products will most likely require years, during
which performance in computer vision will probably continue to
advance, with dedicated architectures, leading to better models
for grasp classification too, even without or with limited fine-
tuning.” On the other hand, information on the suitable grasp
types can be extracted from the first-person video without the
need of recognizing the object, for example by evaluating the
object’s characteristics (e.g., shape, size) with computer vision
approaches (Došen et al., 2010; Hao et al., 2013; Markovic
et al., 2015), deep learning techniques (Redmon and Angelova,
2015; Ghazaei et al., 2017; Gigli et al., 2018; Taverne et al.,
2019), or by evaluating its affordances (Nguyen et al., 2016).
Moreover, the position of the gaze on the object can also
help to discriminate among multiple affordances, as objects
can commonly be grabbed with several grasp types (e.g., if the
gaze point is on the bottle cap, it is more likely that the user
is planning to open the bottle, thus suggesting the use of a
tripod grasp). Considering the unimodal sEMG-based grasp-type
classification, although the chosen network achieved results in
line with the one shown for the dataset validation (Cognolato
et al., 2020), other networks and architectures might further
improve the performance, which may also limit the potential
benefit of including complementary information.

An additional point concerns the data fusion, because when
the approach fails to detect the correct object an incorrect grasp
type is likely to be chosen. A further refinement may select the
final grasp type by taking into account the confidence of the
recognition from both modalities, weighting the final selection
toward the most promising one. Considering that rest is equally
classified in unimodal and multimodal analysis, fully including it
might influence the classification performance, possibly reducing
the difference in performance between the two approaches. The
need to wear an eye tracker might affect the usability of the setup.
On the other hand, novel devices similar to normal eyeglasses
are now on the market and it is plausible to think of future
improvements that can make this technology even less obtrusive,
for example by integrating it into standard glasses or even in
contact lenses (Sako et al., 2016; Pupil Labs, 2020).

Finally, to validate the viability and performance of the
approach, it should be implemented and tested in a real-time
fashion with transradial amputees, possibly during the execution
of ADL in unconstrained environments.

5. CONCLUSION

The aim of this work was to investigate if a multimodal
approach leveraging a natural human behavior (i.e., the eye–
hand coordination) can improve the challenge of classifying
several grasp types for hand prosthesis control. The results
are encouraging, showing that the fusion of electromyography,
gaze, and first-person video data increases the offline grasp-
type classification performance of transradial amputees. We
used the publicly available MeganePro Dataset 1, containing
sEMG, gaze, first-person video data collected from 15 transradial
amputees and 30 able-bodied subjects performing grasping tasks
on household objects in static and dynamic conditions. A deep

neural network architecture based on a ConvLSTM performs the
unimodal sEMG-based grasp-type classification, while the object
recognition and segmentation are executed with a Mask R-CNN.
A grasp-type classification based on the sEMG is continuously
performed, allowing to identify grasp intents by leveraging
the ability of the network to distinguish between the resting
and grasping conditions. The identification of a grasp intent
triggers the search for the target object based on eye-hand
coordination parameters and in the case of an object being
identified, the grasp type is selected among the suitable ones
for the recognized objects. Otherwise, the approach continues
the grasp-type classification relying only on the sEMG modality.
The results show that the multimodal approach significantly
increases the performance in transradial amputees and able-
bodied subjects. In both the static and dynamic conditions, the
performance increment obtained with the multimodal approach
allowed the grasp-type classification accuracy in transradial
amputees to be comparable with the one obtained in able-bodied
subjects, without placing additional control burden on the user.
The results therefore show the benefit of a multimodal grasp-
type classification and suggest the usefulness of the approach
based on eye-hand coordination. Moreover, the availability of
the dataset allows for further investigations and improvements,
which are desirable to obtain an approach that can be tested in
online applications.
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