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Unsupervised Domain Adaptation of Deep
Networks for ToF Depth Refinement
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Abstract—Depth maps acquired with ToF cameras have a limited accuracy due to the high noise level and to the multi-path
interference. Deep networks can be used for refining ToF depth, but their training requires real world acquisitions with ground truth,
which is complex and expensive to collect. A possible workaround is to train networks on synthetic data, but the domain shift between
the real and synthetic data reduces the performances. In this paper, we propose three approaches to perform unsupervised domain
adaptation of a depth denoising network from synthetic to real data. These approaches are respectively acting at the input, at the
feature and at the output level of the network. The first approach uses domain translation networks to transform labeled synthetic ToF
data into a representation closer to real data, that is then used to train the denoiser. The second approach tries to align the network
internal features related to synthetic and real data. The third approach uses an adversarial loss, implemented with a discriminator
trained to recognize the ground truth statistic, to train the denoiser on unlabeled real data. Experimental results show that the
considered approaches are able to outperform other state-of-the-art techniques and achieve superior denoising performances.

Index Terms—Time-of-Flight, Depth, Denoising, Deep Learning, Unsupervised Domain Adaptation, Adversarial Learning.
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1 INTRODUCTION

T IME-OF-FLIGHT (TOF) sensors can acquire depth data
at interactive frame rates. They measure the depth by

illuminating a scene with a periodic, amplitude modulated
light signal and by estimating the time taken by the signal
to reach the scene points and come back [1]. Even if the
performances of ToF sensors have improved a lot since
their introduction, they are still affected by critical issues,
including the limited spatial resolution, relatively high noise
levels (especially on low reflective surfaces) and artifacts
on the edges due to the mixed pixel effect. A particularly
critical issue is the Multi-Path Interference (MPI), due to
the fact that the emitted light can bounce multiple times
in the scene before getting back to the sensor, causing a
depth overestimation. The MPI distortion is related to the
modulation frequency of the ToF signal and multi-frequency
ToF (MF-ToF) sensors have been used to extract useful clues
to deal with this issue. However, the complete removal of
MPI remains an open challenge.

Recently, deep learning techniques have been exploited
for this task [2], [3], [4], [5], but even if these approaches
have outperformed previous analytical approaches, they as
well struggle to completely remove MPI. A challenging
issue of deep learning techniques is their limited general-
ization property. This is specially due to the small amount
of training data for supervised learning. Indeed, there are no
large public datasets, mostly because while ToF depth data
can be easily acquired, obtaining the corresponding ground
truth information requires 3D acquisition with highly accu-
rate scanning equipment and the registration of this data
with the ToF measurements is a time consuming process.
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A possible workaround is to train the deep network
with synthetic data, produced by a Time-of-Flight camera
simulator. The approach of [2] exploits this idea and obtains
impressive performance on synthetic data. But the differ-
ences between real world and simulated data reduce the
performance in the real domain.

This paper introduces a set of novel unsupervised do-
main adaptation methods, allowing to more efficiently de-
noise real world ToF depth data avoiding artifacts caused
by the domain shift with respect to the synthetic data. A
Coarse-Fine CNN exploiting MF-ToF data derived from [2]
is used for depth denoising. The network is firstly trained in
a supervised way on synthetic datasets and then adapted to
the real world setting, exploiting unlabeled real world ToF
acquisitions using three different approaches. Each of these
applies unsupervised adaptation using adversarial learning
at three possible stages of the processing: at the network
input; on the internal network features; or at the output.

The first approach works at input level and uses a
domain translation network to transform the synthetic ToF
data into a representation with statistical properties match-
ing the ones of real data. The translated data are then used
to train the denoising architecture.

The second uses an adversarial learning framework to
statistically align the internal CNN features between the
synthetic and real world domains, forcing the network to
have the same behavior on both domains and thus improv-
ing performance on real world data.

The third, derived from [6], of which this work is the
journal extension, uses an adversarial loss at the output level
of the depth refinement network. The network performing
ToF data denoising is trained along with a discriminator
network capturing the joint statistics of the noisy data and
of the denoised maps, thus implementing the adversarial
model used for the unsupervised domain adaptation.

This work contains several novel contributions. First of
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all, it introduces a novel adversarial learning framework for
domain adaptation in regression problems and it is the first
to apply this technique to the denoising of ToF depth data.
While the conference version of the work [6] was focusing
only the unsupervised adaptation at the output level (i.e.,
the third variant of the approach), here we present multiple
strategies to perform the adaptation at different stages of
the denoising network. Finally a more detailed experimental
evaluation and ablation study have been performed.

The paper is organized as follows: Section 2 discusses
the related work, then the deep learning model used for ToF
denoising is presented in Section 3, while the main contribu-
tion of this work, i.e., the unsupervised domain adaptation
techniques, are detailed in Section 4. Section 5 introduces
the datests used for the training and the evaluation of the
considered methods. The experimental results are discussed
in Section 6 and Section 7 draws the conclusions.

2 RELATED WORKS

Noise and distortions affecting ToF sensor data have differ-
ent typologies depending on the architecture of its pixels
and on the working principle of the various devices [1], [7],
[8], [9]. Related to the sensor itself, the depth is distorted by
different effects. Among these, we have: the thermal noise
due to the electronics of the sensor; the lens scattering, due
to the light inter-reflection between the lens and the sensor
[10]; the so called harmonic distortion or cyclic error, due to
the not ideal sinusoidal shape of the projected light signal;
the photon shot noise (PSN), due to the finite probability of a
photon conversion inside the sensor. Considering instead
sources external to the sensor, the main distortion is the
multi-path interference (MPI) due to the multiple reflections
of the projected light before coming back to the ToF sensor.

ToF Depth Refinement: Model Based Approaches
The zero-mean errors which do not have a systematic im-
pact such as the PSN and the thermal noise can be handled
with well known denoising methods as the bilateral filter or
total variation techniques [2], [11], [12]. Instead, when the
distortion is systematic and scene dependent as in the case
of MPI, the correction becomes more challenging. Ideally,
the perfect correction of MPI would require the complete
description of the scene geometry and the materials com-
posing it. Different methods proposed in literature [13] try
to leverage on the structure of ToF data to collect relevant
information to correct this distortion but MPI correction
remains an open problem.

Some methods [14], [15], [16] try to infer the correct scene
geometry starting from single frequency ToF acquisitions.
These methods rely on various light reflection models and
try to fit the captured ToF data on them to reconstruct the
scene depth. They usually assume that the scene is com-
posed only by diffuse reflective objects. However this is a
limiting hypothesis in real case scenarios where other types
of reflection can arise. These methods are also computation-
ally expensive because they solve the problem iteratively.

Other methods leverage on the frequency diversity of
the MPI distortion and try to correct it by using multi-
frequency ToF data. Many of these methods assume a par-
ticular structure for the back-scattered light, e.g., assuming
it is composed by few specular rays. Freedman et al. [17]

imposes a linear minimization problem where the employed
solution model is a back-scattering vector composed by few
spikes, related to specular reflections. Bhandari et al. [18]
presented a closed form solution to correct MPI due to K
interfering rays using 2K + 1 modulation frequencies.

Another family of approaches is based on hardware
modifications, mainly changing the ToF sensor light projec-
tor [19], [20], [21]. These try to separate the direct component
of the light, the one informative about the true geometry
of the scene from the global one, causing the MPI. Not
related to MPI, but of interest for noise reduction are the
Hamiltonian codes for ToF acquisitions [22], [23] and the
use of spatial patterns for phase disambiguation [24].

ToF Depth Refinement: Data Driven Approaches
Recently data driven approaches for ToF depth refinements
have been introduced. The methods from Son et al. [25] and
Marco et al. [3] exploit deep learning and single frequency
ToF data. In particular, the latter introduces an encoder-
decoder CNN for ToF depth refinement that is initially pre-
trained in an unsupervised way on real world depth maps.
Then, only the decoder part is trained in a supervised way
on a synthetic ToF dataset. In [26], the authors propose a
neural network able to refine ToF data even in conditions
of low signal, as when the used ToF integration time or
illumination power are small.

Some works exploit also the integration of ToF data with
other sources of information as the related color images [27],
[28] or stereo vision data [29], [30], [31], [32].

The most recent deep learning methods for ToF re-
finement instead use multi-fequency ToF data [2], [4], [5],
[33]. Su et. al [4] introduce an end-to-end approach where
a CNN takes the raw ToF correlation measurements as
input and it outputs the refined depth map. Guo et al. [5]
use a similar approach, but they focus additionally on the
correction of motion blur. Finally, in our previous work [2],
we proposed a CNN for MPI correction trained on multi-
frequency synthetic data and we quantitatively evaluated
the performance when it is tested on real data. In order to
avoid the complexity and the high cost of collecting real
data with depth ground truth, these methods are trained
on synthetic recordings. This simplifies the data collection,
however it can implicitly affect the performances on real
acquisitions in a negative way, due to the domain shift issue,
as we evaluated in [2]. By consequence, domain adaptation
is required.

Unsupervised Domain Adaptation
Unsupervised Domain Adaptation has not been applied for
ToF depth refinement, but it has been widely explored in
other fields, starting from image classification. In this field,
some methods focus on reducing the first order [34], [35]
and the second order [36], [37] statistic discrepancy of the
network internal features on the different domains. Also
variants of the batch normalization layers have been used
for the feature statistical alignment [38], [39]. A different
approach is proposed by Ganin et al. [40]. In this work, the
authors reduced the domain shift of a classifier in an unsu-
pervised way by using a domain classifier able to distinguish
features of the classifier generated from the source domain
or from the target domain. The domain classifier is used to
implement an adversarial loss, as done in GANs [41], to
apply the domain adaptation. In [42], [43] a generator net-
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work is used to modify some labeled synthetic data to look
similar to real data, which are then used to train a classifier.
Unsupervised domain adaptation has been widely used also
for semantic segmentation [44] and a very relevant work is
the cycle-consistent domain adaptation scheme proposed in
[45], that translates synthetic color images in real ones, by
ensuring the semantic consistency in the domain translation.
A similar approach was used for semantic segmentation on
depth data in [46].

Regarding regression tasks, in [47] feature alignment
from synthetic to real is used to adapt a network trained for
multiple tasks as normal, edge and depth estimation from
color images. In the field of depth estimation from stereo
and mono camera systems, [48] introduces a technique for
unsupervised domain adaptation leveraging on classical
stereo disparity estimation and confidence measure.

Related to ToF depth refinement, the domain shift issue
was analyzed in [2]. We proposed a unsupervised domain
adaptation with adversarial learning in [6], that is the first
application of domain adaptation in this field. In this pa-
per, we extend the previously proposed network training
procedure, presenting three different unsupervised domain
adaptation frameworks with the task of improving the
refinement performance on real data, without using real
ground truth.

3 DEPTH REFINEMENT WITH DEEP LEARNING

Even if many analytic approaches for ToF data denoising
have been proposed, deep learning approaches proved to
be able to outperform classical techniques also on this type
of data. In particular, the approach introduced in [2] and
further refined in [6] has achieved state-of-the-art perfor-
mance. We will use this approach as the starting point for
this work: the target is to refine ToF depth data, i.e., we aim
at removing both MPI and sensor noise. Here, this deep net-
work is fitted into a novel adversarial learning framework
in order to apply unsupervised domain adaptation to real
data. In this section, we introduce the denoising CNN while
the adversarial learning framework for domain adaptation
will be described in detail in Section 4.

Before describing the network input, let us recall that the
phase offsets carried by the interfering rays causing MPI are
frequency dependent and this frequency diversity can be used
to understand if MPI is acting on the depth acquisition and
can give cues for its correction [17], [49], [50]. For this reason,
the input of the CNN are the ToF depth and amplitude
images acquired at different modulation frequencies (20, 50
and 60 MHz). The raw data acquisitions are pre-processed
before being fed to the CNN. First, the multi-frequency
depth maps are phase unwrapped to extend the maximum
unambiguous range up to 15 m. Then, the amplitude and
the depth images are pre-processed in order to extract a rep-
resentation that highlights relevant information that can be
exploited by the deep network to estimate the MPI presence
and strength. The raw ToF data are used to produce the
CNN input I that is composed by five channels

I=

(
d60; d20 − d60; d50 − d60;

A20

A60
− 1;

A50

A60
− 1

)
. (1)

where we denoted with df and Af the ToF depth and
amplitude maps acquired at f MHz. The first channel is

the ToF depth map d60 at 60 MHz that is the depth map we
aim at refining. d60 is the most accurate among the collected
depth maps since it was acquired at the highest modulation
frequency and depth noise is inversely proportional to the
modulation frequency [51]. The last four channels are a
combination of the ToF depth and amplitude maps acquired
at different modulation frequencies and are informative
about the MPI distortion. As presented in [2], these features
tend to zero in absence of MPI, instead they will assume a
different value in case of MPI due to the frequency diversity
of this phenomenon. Please, notice that if the network is
trained for a given set of modulation frequencies, then it
will not be able to achieve very good performances on a
different set of frequencies. This is due to the fact that MPI
distortion is happening differently for each frequency.

The preprocessed ToF data (Eq. (1)) are fed to the re-
finement CNN (R) introduced in [6]. R has a Coarse-Fine
architecture enabling a multi-scale processing of the data.
As shown by Fig. 1, the coarse part of the network takes I as
input and estimates a low resolution version of the refined
depth field. The fine network processes both I and the
output of the coarse network to estimate the full resolution
refined depth map. The Coarse-Fine approach increases the
receptive field of the CNN without increasing too much the
network complexity or reducing the resolution of the input.
A wide receptive field is important because the reflections
causing MPI can happen in different areas of the scene.

The coarse network allows to have a wide receptive field,
since it applies downsampling with pooling layers after the
first and second convolutional layers. It is made of a stack of
4 convolutional layers with 3×3 kernels and 32 filters. Each
convolutional layer is followed by a ReLU. The last layer is
a single 3 × 3 convolutional filter. The output of the coarse
network is a low resolution estimate of the scene depth (note
that, differently from [2], the network directly estimates the
depth map and not the MPI corruption). The output of the
last layer is finally up-sampled using bilinear interpolation.
The up-sampled output dR,C = RC(I) is a coarse estimate
of the refined depth map.

The fine network works at full resolution and allows
to obtain an accurate representation of edges and details
(the output of this network is denoted with dR = R(I)
and is also the final output of the proposed method). The
first 4 convolutional layers have 3 × 3 kernels, 64 filters,
ReLU activation and no pooling. The output layer is a single
3 × 3 convolutional kernel. In order to exploit the global
information, the up-sampled output of the coarse network
(dR,C ) is given in input to the 4th layer of the fine network.

4 UNSUPERVISED DOMAIN ADAPTATION FOR DE-
NOISING NETWORKS

The training of the depth refinement CNN needs a suffi-
ciently large and diversified dataset. However, it is expen-
sive and time consuming to collect such a labeled dataset
composed of real ToF data with ground truth. For this
reason, synthetic datasets have been used for the training
[2], [3], [4], [5]. Even if synthetic data is generated trying
to emulate the characteristics of real world scenes and the
real sensor behavior, when the synthetic trained network
is tested on real data a degradation of performance can
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Fig. 1. Representation of the ToF depth refinement network R. The upper part is the coarse branch. It is able to capture a wide receptive field at
the cost of a lower output resolution. The lower part is the fine branch. This takes as input the raw ToF data and the output of the coarse branch in
order to estimate an accurate depth map of the scene.

be experienced due to the domain shift issue as shown in
[2]. The domain shift issue arises due to the differences
between the two sets of data, e.g., usually the synthetic
data model just diffuse reflective objects [2], [3], [4], and
does not account for the complex reflective properties of real
materials. The main contribution of this paper is the analysis
of different methods for unsupervised domain adaption of
deep learning models for ToF depth refinement to real data.
Doing so, we aim at improving the performance of synthetic
trained networks on real data, without using real world
ground truth information during the training.

In this paper, we introduce three different techniques in
order to improve the performances of the depth refinement
CNN on real data using a set of labeled synthetic data (i.e.,
provided with the related depth ground truth), and a set of
unlabeled real data (containing just ToF acquisitions). In the
considered methods, a small set of labeled real data will be
used for validation purposes only.

The main difference among the three proposed domain
adaptation methods is where domain adaptation is applied.
We name them as in-DA, feat-DA and out-DA since they are
respectively applied on the input of the CNN, at the feature
level and on the output of the CNN. The remaining of this
section will describe in detail the three domain adaptation
methods highlighting the differences among them.

4.1 In-DA: Adaptation at the Input Level

The first method (in-DA) aims at adapting the ToF synthetic
acquisitions in order to translate them into a representa-
tion with statistical properties more resembling the ones
of real world data. To perform domain translation, we
introduce two neural networks, namely Ts⇒r and Tr⇒s. For
the two networks we used the architecture introduced in
CycleGAN [52]. Inspired from [45], [52], the key idea of
this method is that the translation network Ts⇒r has the
task of transforming the synthetic ToF data, i.e., the input
of the depth refinement network R, to a representation
more resembling real data. Vice versa, Tr⇒s has to apply
the reverse transformation by transforming real data into
synthetic-like representations. Notice that a key difference
with respect to the CyCADA approach [45] is that while
it has been developed for semantic segmentation (i.e., a
pixel-wise classification problem), here we deal with depth
refinement, that is a regression problem. For this reason, we

introduced additional constraints in the training to deal with
this different scenario.

Ts⇒r and Tr⇒s cannot be trained in a supervised way,
because it is nearly impossible to have couples of aligned
synthetic and real data representing the same scene with
the same properties (same scene structure, object geometry,
materials and so on). For this reason, these networks are
unsupervisedly trained by means of adversarial learning
[41]. In order to implement this idea, two additional discrim-
inator networks are introduced, Dr and Ds. These domain
discriminators have the task to respectively understand if
the input data are coming from the real or from the synthetic
domain. By defining Is and Ir as the synthetic and real sets
of input data, the target is that

Ds(I) =

{
1, if I ∈ Is
0, otherwise

; Dr(I) =

{
1, if I ∈ Ir
0, otherwise

(2)

Both Dr and Ds are composed by a stack of five 4 × 4
convolutional layers. The first four layers are composed
respectively of 16, 32, 64 and 128 filters with stride 2 and
each of them is followed by a batch norm layer and a leaky
ReLU with 0.2 slope. The fifth, output layer is composed
by just a single filter and does not have the activation
function. The same network structure will be used for the
discriminators employed in feat-DA and out-DA.

The four above introduced networks, Ts⇒r , Tr⇒s, Dr

and Ds, are trained in an adversarial way. Ts⇒r is trained
to produce data following the statistic of real data when its
input is synthetic data, instead Dr is trained to recognize
data coming from Ir as belonging to the class 1 and data
produced by Ts⇒r as belonging to the class 0. Similarly,
Tr⇒s is trained to produce data following the statistic of the
synthetic data when its input is a real data. Instead, Ds is
trained to recognize data coming from Is as belonging to the
class 1 and the data produced by Tr⇒s as belonging to the
class 0 . More formally, the networks are jointly trained by
minimizing the following loss functions:

min
Ds

LDs
=min

Ds

E
Is∈Is,If

s ∈Ifs

[
(Ds(Is)−1)2+Ds(I

f
s )

2
]
/2 (3)

min
Dr

LDr
=min

Dr

E
Ir∈Ir,If

r ∈Ifr

[
(Dr(Ir)−1)2+Dr(I

f
r )

2
]
/2 (4)
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min
Tr⇒s

LTr⇒s
=min

Tr⇒s

E
Ir∈Ir

(Ds(Tr⇒s(Ir))− 1)2 (5)

min
Ts⇒r

LTs⇒r
=min

Ts⇒r

E
Is∈Is

(Dr(Ts⇒r(Is))− 1)2 (6)

where Ifs and Ifr are respectively the set of fake synthetic
and fake real data generated by Tr⇒s and Ts⇒r . The sets Ifs
and Ifr are built similarly to [52] using a buffer structure:
in 50% of the cases a fake element generated with the
translation network at the current training step is extracted,
otherwise a fake sample generated in the last 512 training
steps is randomly extracted. This way the discriminators are
forced to focus on the statistics of fake data and not on the
current structure of the translator networks.

Please note that as also suggested in CycleGAN paper
[52], the implementation of the adversarial loss functions
above follows the LS-GAN structure proposed in [53], where
the standard negative log likelihoods are replaced by least
squared losses in order to stabilize the learning process. The
LS-GAN structure is also used in feat-DA and out-DA.

During the training process, Ts⇒r will try to fool Dr by
producing data with statistics resembling the ones of real
data, in contrast Dr will become better at recognizing fake
real data, from Ts⇒r . In this way, both Ts⇒r and Dr will
improve, as proven in [41]. If the training converges it will
reach a saddle point in which Ts⇒r is able to produce real-
like data. A similar rationale applies to Tr⇒s and Ds.

We added a cycle consistency constraint in the transla-
tion process that forces the sequential application of Ts⇒r

and Tr⇒s to be closer to the identity operation. This is
a desired and reasonable property of the domain transla-
tion process ensuring that no artifacts are introduced in
the domain translation operation. The cycle consistency is
implemented by minimizing the following loss:

min
Ts⇒r,Tr⇒s

Lcycle =

min
Ts⇒r,Tr⇒s

E
Ir∈Ir,Is∈Is

[
|Tr⇒s(Ts⇒r(Is))− Is|+ ...

...+ |Ts⇒r(Tr⇒s(Ir))− Ir|
]
.

(7)

By jointly minimizing Eq. (3), (4), (5), (6) and (7), it is
possible to train Tr⇒s and Ts⇒r until they produce data
which respectively follow the synthetic and real statistics
as captured by the domain discriminators Ds and Dr .
However, this does not guarantee that the original and the
newly translated data are representative of the same geo-
metric scene. For this reason, we added one supplementary
loss term in order to enforce a geometric consistency in the
translation process. This can be achieved by forcing Ts⇒r to
produce fake real data which have the same depth ground
truth as their synthetic counterpart. Ts⇒r can be trained in a
way such that the output of the synthetic trained denoising
network R∗ is the depth ground truth corresponding to the
synthetic data, when the fake real data generated by Ts⇒r

is given to it as input. Formally, we introduce an additional
loss term to be minimized, enforcing this constraint:

min
Ts⇒r

Lgeom = min
Ts⇒r

E
(Is,dGT

s )∈Is

[
|R∗(Ts⇒r(Is))− dGT

s |
]
. (8)
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Fig. 2. Flux of data during the training steps of the translation networks
Ts⇒r and Ts⇒r used inside the in-DA procedure.
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Fig. 3. When the two translation networks are trained, Ts⇒r is used to
translate the whole synthetic training set Is in Īfr . The latter one is used
to train R in order to adapt to real data without using real ground truth.

The system is trained by minimizing all the six losses
introduced in this section, i.e., Eq. (3), (4), (5), (6), (7) and (8).
Fig. 2 shows how the different data sources are used during
the training. The losses need to be opportunely weighted in
order to ensure the convergence of the training, see Section
6.1 for the details of the parameters settings.

Regarding the synthetic depth refinement network R∗,
used to implement Lgeom, it is pre-trained from scratch on
labeled synthetic dataset by minimizing the loss function of
Eq. (9) as also done in [6]:

min
R

LR,d =

min
R

E(Is,dGT
s )∈Is [|R(Is)− dGT

s |+ |RC(Is)− dGT
s |].

(9)

The weights of R∗ are not updated during the training
of the translation networks.

When the four deep networks (Ts⇒r , Tr⇒s, Dr and
Ds) reach the training convergence, in the second phase
of the domain adaptation in-DA, Ts⇒r can be used to
translate all the labeled synthetic data contained in Is thus
obtaining a new dataset Īfr (with a little abuse of notation
Īfr = Ts⇒r(Is)). Please note that differently from the set of
data Ifr used in Eq. (4), that is dynamically updated at each
training step, Īfr is a static dataset generated when Ts⇒r is
already trained and not updated anymore.

Since the translation is geometrically consistent (as
forced by Eq. (8) ), the ToF data contained in Īfr and Is share
the same depth ground truth. Thus, as shown in Fig. 3, the
ToF depth refinement network CNN R∗ can be fine tuned in
a supervised way on the fake real data contained in Īfr , using
the loss function

min
R

LR,df
r
=

min
R

E(If
r ,dGT

s )∈Īfr [|R(Ifr )− dGT
s |+ |RC(I

f
r )− dGT

s |].
(10)
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Since the statistical properties of Īfr resemble the ones
of real data, this will enforce the unsupervised domain
adaptation of the depth refinement CNN.

4.2 Feat-DA: Adaptation at the Feature Level

The second considered unsupervised domain adaption ap-
proach is named feat-DA. It aims at statistically aligning
the CNN internal features produced from synthetic or real
samples. This way, we force the network to have the same
behavior on the two domains, thus reducing the domain
shift of the network on real and synthetic data.

The CNN feature alignment is achieved through an
adversarial loss, implemented by means of the discriminator
network Dfeat. The input of this discriminator are the inter-
nal features at a selected layer: in this work, we used the out-
put of the fourth layer of the Fine network (we will denote it
with R4). These features are good candidates because they
combine the information coming from the Coarse branch
with the output of the previous layers in the Fine branch
(see Fig. 1). The discriminator Dfeat is made of a stack of
five convolutional layers and it has the same structure as
the discriminator networks used in in-DA (check Section 4.1
for more details). Dfeat is trained to output 1, if the input
are features generated by the R network when its input are
synthetic data, and 0 if the features have been generated
from a real world input. This can be formulated as:

Dfeat(f) =

{
1, if f = R4(Is), Is ∈ Is
0, if f = R4(Ir), Ir ∈ Ir

(11)

Dfeat is trained by minimizing the following loss:

min
Dfeat

LD,feat =

min
Dfeat

E
Is∈Is;I′

r∈Ir

[
(Dfeat(R4(Is))− 1)2 +Dfeat(R4(I

′
r))

2]/2

(12)

Simultaneously, the refinement network R is trained in
an unsupervised way on the real dataset by trying to mimic
the feature statistical distribution obtained on the synthetic
dataset. This is implemented by means of the loss function

min
R

LR,Dfeat
= min

R
E

I′′
r ∈Ir

[
(Dfeat(R4(I

′′
r ))− 1)2] (13)

R is also trained in a supervised way on synthetic data
to estimate an error free depth estimation by minimizing
the loss LR,d from Eq. (9). This loss function is introduced
in [2] and it is used to train both the fine and the coarse
branches of R. As shown in Fig. 4, at each training step the
loss functions of Eq. (12) and (9) are optimized on one batch
of samples extracted from the synthetic dataset and one
batch of samples extracted from the real dataset. A different
real batch is used to minimize Eq. (13). More in detail, we
simultaneously optimize

min
R

LR,d + λfeat · LR,Dfeat
; min

Dfeat

LD,feat (14)

where λfeat is a weighting factor for the adversarial loss
(see Section 6.1). As a result of this optimization, Dfeat will
improve in recognizing synthetic and real features and R
will try to estimate error free depth maps, starting from raw
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Fig. 4. Flux of data during a training step of feat-DA method.

ToF data and to create internal features which are domain in-
distinguishable. This procedure forces the network to reduce
the domain shift issue and so to improve the refinement
performance of R in an unsupervised way to real data.

4.3 Output-DA: Adaptation at the Output Level
The third approach for domain adaptation described in this
paper works at the output level of R and has been intro-
duced in the conference version of this work [6]. The su-
pervised training of the denoising network R on a synthetic
dataset is combined with an adversarial learning scheme,
used for unsupervised domain adaptation. The adversarial
loss is implemented by means of a discriminator network
Dout, that is trained to distinguish between the ground truth
depth statistics and the statistics of the output of R .

In the next of this section, the discriminator network is
described and its use in the domain adaptation framework
is explained in detail while the training parameters are
detailed in Section 6.1.

4.3.1 Adversarial Discriminator Network
We designed the discriminator to distinguish between de-
noised depth maps (i.e., the output of R) and the ground
truth data. The evaluation will be based on the joint analysis
of the noisy ToF depth data and the related noise pattern,
computed or from the input depth map and the ground
truth or from denoised data. The differences between these
situations will be used to drive the adversarial learning
process that will force R to produce correctly denoised
depth maps that resemble the properties of ground truth
data, starting from both, synthetic and from real world data.

The input of the discriminator Dout are the noisy ToF
depth map dn and its error map E. For the current im-
plementation, we used the raw ToF depth map at 60 MHz
(d60) as dn but any other acquisition frequency could be
used. Please notice that the error map E can be either the
difference between the noisy depth map and the ground
truth depth EGT = dn − dGT or the difference between
the noisy depth map and the depth refinement network
output ER = dn − dR. The task of the discriminator is to
distinguish between exactly these two cases. More in detail,
the discriminator is trained to capture the joint statistics of
the couple IDout;GT = (dn;EGT ), that can be rewritten as:

IDout;GT =(dn;EGT )=(dn; dn−dGT )=(dGT +EGT ;EGT )
(15)

giving output 1, if the input follows this distribution and 0
otherwise. Indeed, we want the discriminator to discard all
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the data which do not follow the ground truth statistics and
are generated by R. To clarify, the output of Dout should
be 0, if the input is IDout;R = (dn, dn − dR) = (dn, ER)
and 1 if the input is IDout;GT , i.e., it follows Eq. (15).
Please notice that the straightforward approach of feeding
the discriminator with dGT as positive example, and dR

(the output of R) as negative example does not lead to
very good performance, since it leaves too much freedom
to the refinement network to produce data that has ground
truth statistics but is far from the geometry of the input
depth map. Thus, we employed the proposed two channel
features. This choice forces Dout to focus on the raw ToF
depth map and on how the estimated error is related to it,
preventing the output of R to deviate from its input.

The discriminator Dout is made of a stack of five convo-
lutional layers and it has the same structure as the discrim-
inator networks used in in-DA and feat-DA (more details in
Section 4.1). The discriminator can be trained by minimizing
the following loss function:

min
Dout

LDout
=

min
Dout

E
Is∈Is

[Dout(I
Dout;GT )2 + (Dout(I

Dout;R)− 1)2]
(16)

Recall that for the training of the whole system we use a
synthetic dataset, provided with the ground truth depth
of the scenes (dGT

s ) and an unlabeled real dataset. As in
the previous sections, we use the “s” and “r” subscripts to
distinguish between synthetic and real data.

In the true case (i.e., discriminator output 1), IDout;GT

requires the ground truth dGT and consequently it can be
constructed only on the synthetic dataset. On the other
hand, the fake data IDout;R (discriminator output 0) does not
require ground truth information and can be constructed for
both real and synthetic datasets.

In order to obtain better performance, we chose to train
Dout on synthetic data only. The real data will instead be
used in the adversarial training procedure for R, described
in the next section. Otherwise, Dout would always recognize
real data as fake, since they were always used as negative
examples. This allows to avoid training the discriminator
to distinguish between real and synthetic data instead of
learning the statistics of (dn;E) correctly.

On the other hand, the choice of using only synthetic
data limits the capability of Dout to generalize to real data.
One of the main reasons for this is that the amount of noise
on real data depends on several factors and can be slightly
different from synthetic simulations. In order to better gen-
eralize and train a network that is able to adapt to different
levels of noise, we apply a novel data augmentation strategy
on IDout;GT

s . Using the ground truth information, we can
separate data and noise on the training set and then produce
different versions of the scene with slightly increased or
decreased amounts of noise. The idea is to use the couple
of data in Eq. (17) as true (positive) example for Dout

IDout;GT
s = (dGT

s + ÊGT ; ÊGT ) (17)

with ÊGT given by

ÊGT = k · (d60s − dGT
s ) = k · EGT

s , (18)

where k represents a uniform random variable in the range
[1 − ϵ; 1 + ϵ] that acts as a scaling factor for the noise
on simulated data. The parameter ϵ has been set to 0.5
for optimal domain adaptation performance by validation.
This data augmentation strategy leads to a wider and more
general data distribution of which the synthetic statistics is
a subset. It forces Dout to learn more generic pairs of (noisy
depth; error image), preventing it from focusing too much on
synthetic ToF noise statistics. Doing so, Dout learns to judge
how well the error map from R fits the noisy ToF depth.

4.3.2 Unsupervised Domain Adaptation
The discriminator Dout, described in the previous section,
is used to implement an adversarial loss to perform an
unsupervised domain adaptation of the network to real
world scenes. The denoising network R is trained both with
synthetic data in a supervised way and with unlabeled real
data in an unsupervised way. More in detail, the supervised
training is performed with the patches extracted from a
synthetic dataset Is and allows to obtain good performance
on synthetic scenes. On the other hand, the photometric dif-
ferences between simulated and real world scenes reduces
the performance of the network on real data [2]. For this
reason, an unlabeled real dataset is used to perform domain
adaptation on R by using the adversarial loss from the
discriminator. The denoiser R is trained by minimizing a
loss function composed of two parts:

min
R

Lout = min
R

LR,d + λoutLR,Dout
, (19)

where LR,d was introduced in Eq. (9) and

LR,Dout = E
Ir∈Ir

[
(
D(IDout;R

r )− 1
)2
]. (20)

The first term is optimized in a supervised way on syn-
thetic data only. It is modeled as the sum of the l1 distances
between the outputs of R (i.e., the output dRs = R(IRs ) of the
fine network and the output dR,C

s = RC(I
R
s ) of the coarse

one) and the ground truth depth.
The second part is trained in an unsupervised way on

real data, from dataset Ir, without using ground truth infor-
mation. By minimizing the loss of Eq. (20), we aim at fooling
the discriminator by modifying the output of R in order
to generate depth maps similar to the ground truth ones.
This allows to obtain samples of IDout;R

r = (dnr ; d
n
r − dRr )

(i.e., couples of noisy depth maps and related error images)
similar to the couples constructed from ground truth data
IDout;GT . With the proposed training approach, we can train
R to adapt to and denoise real world data without capturing
depth ground truth for real scenes.

At each step of the training phase, a batch of real data
and a batch of synthetic data are sampled from the two
training datasets Is and Ir. At first, the synthetic data are
used to train the discriminator as mentioned in Section 4.3.1.
By following the idea introduced in [42], [52], we exploited a
buffer to collect examples of fake data IDout;R

s , produced by
R when processing synthetic data in the previous training
steps. Two different strategies can be selected with an equal
probability. In the first, Dout is trained using data produced
by R in the current training step. In the second, data stored
in the buffer is extracted at random and used as fake
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Fig. 5. Flux of data during a training step of out-DA method.

examples for training, while the buffer is filled with the
data produced by R. As we showed in [6], this approach
allows to avoid that Dout overfits on the current status of R.
Thus, it stabilizes the training process and lets Dout focus
also on fake data related to previous training steps, since
these always have to be classified as fake. In this way, Dout

captures the statistics of IDout;GT better. Simultaneously, R
is trained on unlabeled real data by minimizing the loss
function of Eq. (20) and on the synthetic data by minimizing
the loss in Eq. (9). In this way, it is trained to create depth
maps resembling the ground truth ones also when using
real data, even if no real world depth ground truth is used.

5 DATASETS

This section presents the datasets used for the training, the
validation and the testing of the proposed depth refinement
methods. Five datasets have been used for this work: S1

(used for training), S2 (used for unsupervised domain adap-
tation), S3 (used for validation purposes), S4 and S5 (both
used for testing).

The dataset S1 is a synthetic dataset generated by using
the Sony ToF Explorer simulator developed at the Sony R&D
Center Europe located in Stuttgart, Germany. This simulator
is built starting from a ToF simulator initially developed at
the Heidelberg University [54]. It can accurately simulate
the different phenomena of real ToF camera acquisitions.
This dataset was introduced in [2] and the employed camera
parameters resemble the ones of a SoftKinetic DS541 ToF
camera. The computer generated scenes used for the dataset
have been downloaded from the Blend Swap website [55]
and they have been adapted for the simulations inside the
Blender 3D creation suite [56]. The scenes contain diffuse
reflective elements like walls, furniture and objects of var-
ious shapes and textures placed in different indoor and
outdoor environments. The depth of the scenes (from the
ToF camera viewpoint) ranges from about 50 cm to 10 m.
The dataset contains the 320×240 pxl depth and amplitude
maps, acquired at 20, 50 and 60 MHz, simulating the ToF
acquisitions on the 40 synthetic scenes together with the
corresponding depth ground truth. This dataset is used
as the dataset Is for the supervised training of the deep
networks in Section 6.

The datasets S2, S3, S4 and S5 instead contain real world
acquisitions recorded with a SoftKinetic DS541 ToF camera
using the modulation frequencies of 20, 50 and 60 MHz.

The dataset S2 is an unlabeled real world dataset, com-
posed by scenes acquired in an office with uncontrolled
ambient light condition. The recorded scenes contain objects
of common use in offices such as tables, chairs and lockers.
The dataset contains 97 scenes with the calibrated depth
and amplitude images from the ToF camera. The depth of
the scenes ranges from 0.5 to about 10 m. No depth ground
truth has been acquired for these scenes and for this reason
S2 has been used only for unsupervised domain adaptation
playing the role of the Ir dataset.

The S3 dataset contains short range scenes with puppets,
small boxes, wooden corners and polystyrene cones and
spheres. The depth of the scenes from the ToF camera
viewpoint ranges from 0.5 to 2 m. This dataset, as S4 and S5,
also includes depth ground truth acquired with the active
stereo system used in [2] and registered on the pixel grid of
the ToF camera. It contains 8 scenes and has been used as
validation dataset for the proposed deep learning methods.

The S4 dataset contains 8 real world scenes with ground
truth whose subjects are wooden corners and objects of
different materials, as plastic and ceramics, placed in a
wooden box, where a lot of MPI is present. This dataset
is used for testing purposes.

The S5 dataset contains 8 scenes with ground truth
containing boxes of various shapes and dimensions. This
dataset is also named as box dataset in [6] due to the content
of its scenes. It was collected for testing the performance of
considered methods on a scenario in which ToF sensors are
used in logistics and manufacturing for inspection, handling
and dimensioning of box-shaped objects.

The five datasets S1, S2, S3, S4 and S5 are available at
https://lttm.dei.unipd.it/paper data/MPI DA CNN J.

6 RESULTS

This section contains the qualitative and quantitative evalu-
ation of the proposed domain adaptation techniques. In the
first part, we present the implementation details for in-DA,
feat-DA and out-DA. Then, their performances are evaluated
and compared with competing state-of-the-art ToF refine-
ment techniques. Next, we evaluate the combined usage
of the proposed domain adaptation techniques. Finally, we
present a detailed ablation study and we discuss the tuning
of the hyper-parameters.

6.1 Implementation Details
Before evaluating the performance of in-DA, feat-DA and
out-DA, we will focus on the description of their implemen-
tation details and on the used methods hyper-parameters.
The networks used in in-DA, feat-DA and out-DA were
trained by using the synthetic dataset S1 (the whole dataset
and not just the training split as in the conference version
of this paper) for the supervised part of the training and
the unlabeled real dataset S2 for the unsupervised domain
adaptation. The labeled real dataset S3 has been used only
for validation purposes to optimize the methods hyper-
parameters for the best stability and performances. All the
models were trained on a single Nvidia GTX1080TI GPU us-
ing the Adam optimizer [57] in the TensorFlow framework.

In-DA This method is the most complex from the im-
plementation point of view due to the presence of six loss

https://lttm.dei.unipd.it/paper_data/MPI_DA_CNN_J
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components and to the two-step training procedure. For its
implementation and experimental evaluation, we scaled its
losses using the weights: λTs⇒r

= λTr⇒s
= λDr

= λDs
= 1,

λcycle = 10 and λgeom = 100. The pedix of each weight
indicates to which loss it is related. We used a fixed learning
rate equal to 5 · 10−6 using batches of 4 elements for 100k
steps. Regarding the synthetic depth refinement network
R∗, used to implement Lgeom, it has been pre-trained from
scratch on the synthetic dataset S1 for 150k steps using a
fixed learning rate equal to 5 · 10−6 by minimizing Eq. (9).

In the second phase, the dataset generated by translating
the synthetic dataset S1 into real data, Īfr , is used to train R∗

on Eq. (10) by optimizing it with Adam for 350k steps, using
the same learning rate as for the other losses.

Among the presented domain adaptation methods, in-
DA is the one requiring the longest training time. The
overall training takes about 15 hours subdivided in the
following way: about 84 minutes for the pretraining of R∗;
about 640 minutes for the training of the Ts⇒r , Tr⇒s, Dr

and Ds; about 175 minutes for the fine tuning of R∗ for its
adaptation to real data.

Feat-DA In order to ensure the training stability of feat-
DA, we set λfeat = 5 · 10−4. We used a fixed learning rate
equal to 5 · 10−6 using batches of 4 elements for 140k steps.
The training using feat-DA takes about 118 minutes.

Out-DA For the training stability and the optimal per-
formance of out-DA, we set λout = 5 · 10−4 in the loss of
Eq. (19). We used a fixed learning rate of 5 · 10−6, using
batches of 4 elements for 160k steps. These training hyper-
parameters have been selected using the real validation set
S3. The training of the denoising network takes about 125
minutes, similarly to the feat-DA method.

6.2 In-DA, feat-DA and out-DA Evaluation
In the next of this section, the performance of the pro-
posed methods have been evaluated on the test labeled real
datasets S4 and S5. We compared their performances with
other well-known techniques from literature. The methods
used for the comparison are the SRA method [17], the
DeepToF approach [3], the CNN-based refinement method
CF-synth [2], that was proposed in our previous work and
the unsupervised domain adaption method DeepCORAL
[37]. More in detail, SRA uses a multi-frequency approach
based on a linear optimization scheme to correct MPI.
DeepToF uses an auto-encoder CNN, trained in a super-
vised way on synthetic data and in an unsupervised way
on real data. CF-synth [2] is similar to the refinement CNN
R used in this work, the main difference lays in the fully
supervised training process on synthetic data only, without
any domain adaptation procedure. Another key difference is
that the CNN in [2] aims at estimating the MPI corruption,
instead the proposed method outputs directly the denoised
depths. DeepCORAL [37] reduces the domain gap between
synthetic and real data by reducing the second order sta-
tistical discrepancy between internal network features com-
puted from synthetic and real data. This is implemented by
minimizing the Fronbenius distance between the features
covariance matrices generated when the network is fed with
data coming from the different domains. DeepCORAL was
originally developed for the domain adaptation of classifica-
tion neural networks, but we adapted it for the considered

TABLE 1
Quantitative evaluation on the depth refinement performance of the

considered domain adaptation techniques and of other state of the art
methods. The relative error is the ratio between the MAE of each

method and the MAE on the input at 60 MHz, the highest employed
frequency for all approaches, (*) except [3] that is compared with the

MAE on the input at 20 MHz since it only uses this frequency.

S4 dataset S5 dataset
Method MAE Relative MAE Relative

[cm] error [cm] error
Input (60 Mhz) 5.43 - 3.62 -
Input (20 Mhz) 7.28 - 5.06 -

SRA [17] 5.11 94.1% 3.37 93.1%
DeepToF [3] 5.13 70.5%* 6.68 132%*

DeepToF [3]+calib. 5.46 75%* 3.36 66.4%*
CF-synth [2] 3.19 58.7% 2.22 60.5%

DeepCORAL [37] 2.39 44.0% 1.77 48.9%
in-DA 2.40 44.2% 1.74 48.1%

feat-DA 2.37 43.6% 1.64 45.3%
out-DA 2.31 42.5% 1.64 45.3%

regression task, ToF depth refinement. We implemented it
on top of our depth refinement network R, and we used it
on the features produced for each pixel in the fourth layer
of the fine branch, R4(I), as we did for feat-DA.

6.2.1 Evaluation on the S4 Dataset

As mentioned in Section 5, the dataset S4 contains 8 scenes
composed by small objects placed inside a wooden box.
This scenario causes a high amount of light reflections,
producing a severe MPI distortion. Fig. 6 shows a qualitative
comparison of the proposed domain adaptation methods
and compares them with CF-synth [2]. In particular, the
first three rows of the figure depict scenes extracted from
the S4 dataset. All the depth refinement methods bring
improvements to the standard ToF acquisitions, which are
highly corrupted by MPI (the dark red color on the ToF error
map highlights the MPI related depth over-estimation), and
the considered refinement methods strongly reduce this
kind of artifact. However, the synthetic trained CF-synth
[2] is not able to properly remove the MPI distortion on
the floor of the scenes. Furthermore, the regions close to
boundaries show a quite large amount of remaining MPI
corruption (e.g., on the sphere in row 2 or on the objects in
row 3). This is due to the discrepancy between the synthetic
and real domains respectively used for training and testing.
The three domain adaptation approaches instead show a
uniform behavior leading to a better correction with respect
to the aforementioned method. They are able to further
reduce the MPI distortion on the floor of the scenes (in all
the 3 scenes) and on the boundaries of the objects, as it is
possible to notice in the second and third row in Fig. 6.
Finally, notice that also the MPI in proximity of the corner
between the two walls in rows 1 and 2 is more efficiently
reduced by the proposed strategies with respect to CF-synth.

While it is clear that the proposed approaches outper-
form the competing scheme, from a qualitative viewpoint
it is not always easy to judge the differences among them.
The three domain adaptation techniques have similar per-
formances: out-DA seems to have slightly better correction
capabilities on the floor, however, in average the results
looks relatively similar.
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Ground truth ToF 60 MHz CF-synth [2] in-DA feat-DA out-DA
Depth Map Error Map Error Map Error Map Error Map Error Map

Fig. 6. Qualitative comparison: the images show the ToF depth error on some sample scenes. It compares the considered domain adaptation
techniques (in-DA, feat-DA and out-DA) with the standard ToF acquisitions at 60MHz and the output of the machine learning based depth refinement
method CF-synth [2]. The error maps are computed as the estimated depth minus the ground truth depth. The first three rows depict scenes
extracted from the dataset S4, the last three are instead extracted from the dataset S5. All the values are measured in meters.

More accurate conclusions can be drawn from the quan-
titative evaluation in Table 1. The table compares the pro-
posed domain adaptation methods with other state-of-the-
art depth refinement techniques specifically designed for
ToF data. The methods used for comparison are SRA [17],
DeepToF [3], CF-synth [2] and the the unsupervised domain
adaption method DeepCORAL [37]. The Mean Absolute
Error (MAE) to the ground truth depth is used as the metric
to compare the method performances. As an additional
measure for comparison, we used the relative remaining er-
ror between the refined depth map and the input depth map
captured at the highest modulation frequency. We chose this
measure since DeepToF uses just ToF data captured at 20
MHz, instead the other methods employ multi-frequency
data whose highest used frequency is equal to 60 MHz
in the considered implementations. The usage of relative
error accounts for the fact that in ToF acquisitions a higher
modulation frequency leads to a higher depth accuracy.

The left part of Table 1 shows the performance evalu-
ation on the real dataset S4. The SRA method is the least
performing among the methods, bringing the MAE from
5.43 cm of the ToF acquisition at 60 MHz to 5.11 cm with
a relative remaining error of 94.1%. The reason for the
minimal correction capabilities of this method on the target

dataset can be found in the implementation details of SRA.
This method assumes that just a small number of rays are
reflected in the scene. This is suitable for specular reflections,
however in real scenarios as in the target dataset, there
are also diffuse reflections. Diffuse reflections generate an
infinite number of reflected rays in all directions and not just
a single ray as in the case of ideal specular reflections. Due
to this, the basic assumption of the SRA method is broken
and the improvements are little under these conditions.

The data driven method DeepToF [3] can achieve higher
performance with respect to SRA. This method can reduce
the initial MAE of the standard ToF acquisition at 20 MHz
from 7.28 cm to 5.13 cm, with a relative remaining error of
70.5%. However, this approach is in turn outperformed by
CF-synth [2] that achieves a relative error of 58.7%, corre-
sponding to a MAE of 3.19 cm. As mentioned before, CF-
synth shares a similar CNN with the depth refinement net-
work used in this work, but it does not exploit any domain
adaptation scheme. The DeepCORAL domain adaptation
scheme implemented on top of the ToF depth refinement
network R, outperforms the other methods from literature
achieving a relative error of 44.0%, corresponding to a MAE
of 2.39 cm.

From Table 1, it is possible to notice that all the three
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Fig. 7. Comparison on the reconstruction of a corner scene. The plot
shows the output of the methods on the cross section highlighted with a
red horizontal line on the corner depth map.

domain adaption methods proposed in the paper, i.e., in-
DA, feat-DA and out-DA, achieve very good performance. In-
DA performs similarly as DeepCORAL, with a relative error
of 44.2%. Comparing domain adaptation techniques work-
ing at the feature level of the network, feat-DA outperforms
DeepCORAL with a relative error of 43.6%. However, out-
DA is the best performing method on this dataset, being able
to reduce the error to a relative remaining error of 42.5%,
corresponding to 2.31 cm. It is important to notice the wide
margin of improvement (more than 14% of error reduction)
with respect to CF-synth [2] that shares a similar denoising
architecture trained on synthetic data only. This proves that
the adversarial models used in unsupervised training can be
employed to improve the method performance on real data,
without requiring the time-consuming collection of depth
ground truth for real world scenes.

Fig. 7 shows an evaluation of the ToF refinement meth-
ods on the reconstruction of a corner scene from S4. We can
confirm that the domain adaptation methods outperform
the competitors. In particular, focusing on the differences
with CF-synth [2], we can note a slight improvement on
the left side of the wall, and a higher margin on the right
side, where the MPI distortion is stronger. In this kind of
scenario, out-DA shows slightly better performance than the
other domain adaptation methods. However, the domain
adaptation schemes behave similarly good in this situation.

6.2.2 Evaluation on the S5 Dataset
A similar evaluation has also been carried out on the dataset
S5. As described in Section 5, this dataset contains 8 real
scenes composed by box-shaped objects. The fourth, fifth
and sixth rows of Fig. 6 show a qualitative comparison
among the error maps obtained with the three proposed
domain adaptation methods and compare them with the
synthetic supervised method CF-synth from [2]. The dataset
S5 appears to be less affected by MPI because the scenes are
mainly table tops with no reflections coming from the sides

of the scene as in the S4 dataset. Also on this dataset, CF-
synth [2] can reduce the overall depth overestimation due to
MPI, but still a lot of depth distortion remains on the floor
of the scenes. Differently, the proposed domain adaptation
methods can highly reduce the impact of MPI. The three
methods behave similarly with a very good reconstruction
of the real depth of the scenes. Indeed, the error is almost
completely corrected on the floor of the scenes in the forth
and fifth rows of Fig. 6, especially by the feat-DA and out-
DA methods, while in-DA leaves a bit more MPI on the floor
(e.g., see row 4), but the difference is minimal.

The quantitative evaluation on the S5 dataset is collected
in the fourth and fifth columns of Table 1. Another time SRA
is the least performing method, with a relative remaining er-
ror of 93.1%. DeepToF has issues on this dataset, indeed its
basic implementation adds a systematic bias on its output,
increasing the overall error instead of reducing it. To solve
this issue, we calibrated the method by subtracting the offset
that it adds on a flat wall, which is not affected by MPI.
Doing so, DeepToF is able to properly reduce the error and
obtain a relative error of 66.4%. CF-synth [2] outperforms
again these two methods with a relative remaining error of
60.5%. The DeepCORAL domain adaptation method again
outperforms the other methods from literature with relative
remaining error of 48.9%, but it is less performing than all
the proposed domain adaptation schemes.

The performance of in-DA, feat-DA and out-DA are con-
sistent with those from the S4 dataset. Here, they outper-
form the synthetic trained CF-synth [2] with at least a 12%
of margin. In this case, feat-DA and out-DA are the best
performing methods, both with a MAE of 1.64 cm. The
performances of the in-DA method is close, having a MAE
of 1.74 cm.

6.3 Combination of Domain Adaptation Methods

From the performance evaluation carried out on the S4 and
S5 datasets, it comes out that the different unsupervised
domain adaptation methods are all able to achieve very
good performance in denosing real ToF data. A reasonable
approach to obtain even better results, could be to apply
together these domain adaptation methods.

For example, it is possible to perform domain adaptation
using together feat-DA and out-DA. Another possibility is to
first apply in-DA at the input level of the depth refinement
CNN R and then train R using feat-DA, out-DA or both
of them together using the synthetic data converted to fake
real data (i.e., translated by Ts⇒r), as the set Is (that will
have a smaller domain shift w.r.t. real data if compared
with the original synthetic data). This task is performed
using the same translation networks used in in-DA, i.e., the
translation networks have not been retrained with respect
to the description in the previous section.

The performance of the various combinations of domain
adaptation techniques are presented in Table 2 together with
the optimal balancing parameters computed on the valida-
tion set S3. On the dataset S4, it is possible to notice that
by combining in-DA with feat-DA or out-DA or both of them
together, it is possible to obtain some improvements with
respect to the single methods applied alone. Differently, on
the S5 dataset, the combinations of the methods are not able
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TABLE 2
Quantitative evaluation of domain adaptation method combination.

Methods Weights S4 dataset S5 dataset
in-DA feat-DA out-DA λfeat λout MAE [cm] MAE [cm]

✓ - - 2.40 1.74
✓ 5 · 10-4 - 2.37 1.64

✓ - 5 · 10-4 2.31 1.64
✓ ✓ 2 · 10-5 - 2.24 1.75
✓ ✓ - 2 · 10-4 2.26 1.75

✓ ✓ 5 · 10-4 5 · 10-4 2.37 1.70
✓ ✓ ✓ 5 · 10-4 1 · 10-3 2.27 1.71

to outperform feat-DA and out-DA applied alone. A possible
explanation of this limited performance gain is related to the
fact that in-DA can add some elements to the fake real data,
which can be easily recognized by the discriminators used
by the adversarial models in feat-DA and out-DA. This could
make the adversarial domain adaptations less performing.
For this reason, the combination of the proposed domain
adaption methods for ToF depth refinement needs to be fur-
ther explored in order to assess if it is worth the introduced
extra complexity.

6.4 Ablation Study and Hyper-parameter Tuning

To conclude this section, we present some analysis to moti-
vate the design choices we took in implementing in-DA, feat-
DA and out-DA. As already mentioned, the hyper-parameter
tuning and the design choices have been made on the real
validation set S3 (see Section 5).

In-DA The backbone structure and training of the trans-
lation networks Ts⇒r and Tr⇒s are inspired by CycleGAN
[52]. However, we made them able to convert labeled syn-
thetic data into the real world data and we used these data to
train the depth refinement CNN R in a supervised way. This
allows to reduce the domain shift with real data without
using real ground truth. To do so, we had to impose a
geometrical consistency between the original synthetic data
and the newly created fake real data in order to make them
share the same depth ground truth. We implemented this
by adding the geometrical consistency loss Lgeom weighted
by λgeom to the training. Fig. 8 depicts the effects of adding
Lgeom on the ToF depth translated by Ts⇒r . Here, the effect
of Lgeom is showed on depth data only to ease the visu-
alization, but recall that the translation is applied also on
the other source representations acquired by the ToF sensor
and used as input to the network R. The third column of
Fig. 8 shows the error map of the depth map translated
by Ts⇒r when Lgeom is disabled during the training. The
fourth column shows the effects on using λgeom = 100. The
value of λgeom was tuned by validation on S3. Since the
nature of synthetic ToF data is already similar to real data
(indeed the Sony ToF Explorer is a quite accurate simulator),
the task of the translation network Tr⇒s is to slightly modify
the synthetic ToF data by adjusting the noise statistic and the
MPI distortion to make them closer to the real data. Please
note that when λgeom = 0, the ToF depth is highly distorted
and by consequence the synthetic ground truth depth may
be less informative about the geometry of the translated
data. However, as it is possible to see in the fourth column,
thanks to Lgeom, the geometry of the synthetic scene is

Synth. Data λgeom = 0 λgeom = 100
Depth Map Error Map Error Map Error Map

Fig. 8. Qualitative evaluation of the ToF depth translation operation from
synthetic to fake real data using the network Ts⇒r . The scenes are
extracted from the synthetic dataset S1. The values on the color bars
are measured in meters.

preserved and just the intensity of the MPI distortion and
the level of noise are modified. These translation effects
are directly linked to the final performance of the domain
adaptation technique. Indeed, after using the synthetic data
translated by Ts⇒r to train R, in the case λgeom = 100 as
we did in the proposed in-DA, we obtain a MAE of 1.88
cm on the real validation dataset S3. However, when Lgeom

is disabled (λgeom = 0) we obtain a MAE of 8.70 cm on
S3. This shows that the domain adaptation completely fails
when the geometrical consistency loss is not used.

Another key component of in-DA is the use of cycle
consistency in the translation process. This is controlled by
the weight λcycle. Also in this case we notice a degradation
of the performances when it is disabled, obtaining in this
case a MAE of 1.93 cm on S3 confirming the importance of
using also the cycle consistency in the in-DA method.

Feat-DA has a much simpler structure and the only
component affecting the domain adaptation performance
is the value of the weight λfeat. By validation on S3, we
set λfeat = 2 · 10−4, achieving a MAE of 1.86 cm. The
setting of this parameter has a strong impact on the overall
performance. Indeed, by setting its value to λfeat = 5 ·10−4,
the MAE in the validation set S3 increases to 1.98 cm, and
by halving it λfeat = 10−4, the MAE reaches 1.90 cm.

Out-DA has three main parameters: λout, that manages
the strength of the adversarial loss while training R; ϵ, that
manages the amount of the domain data augmentation (see
Section 4.3.1 for details); and if enabling or not the buffer
of new and old examples of refined depth maps (from R)
to train the discriminator network Dout. About the optimal
value of λout, the best performances are achieved for λout =
5 · 10−4, with a MAE of 1.81 cm. Differently, by setting its
value to λout = 1 · 10−3, the MAE in the validation set S3

is 1.96 cm, and by reducing it to λout = 2 · 10−4, the MAE
is 1.98 cm. Results show that the validation error increases
when we disable the domain data augmentation (ϵ = 0,
leading to a MAE of 1.99 cm on S3) or if we disable the
usage of the buffer for training Dout (the MAE reaches 2.00
cm), motivating our method design choices.

7 CONCLUSION

In this paper, we tackled the challenging problem of train-
ing a deep network for ToF depth data denosing with-
out exploiting real world depth ground truth information.
We proposed three novel unsupervised domain adaptation
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strategies, working respectively on the input data, on the
internal feature representation and at the network output
level. The proposed strategies proved to be able to adapt
a coarse-fine denoising network, trained on synthetic data,
to real world acquisitions, allowing to strongly reduce the
overestimation due to the multi-path interference. The com-
parison with current state-of-the-art approaches showed
how the proposed method is able to outperform them and
achieve superior denoising performances.

Further research will be devoted to investigate the com-
bined usage of the proposed strategies. Novel domain adap-
tation schemes will also be investigated, in particular based
on the analysis of the feature space. Finally, the proposed
techniques can be applied not only to ToF data, but can be
used for any image or depth data denoising task and we
will investigate their application in different fields.
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