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Summary

The high demand for energy and the environmental, concerns associated
with the greenhouse effect and global warming, necessitate the devel-

opment of renewable energy sources. Controlled thermonuclear fusion holds
immense promise as a decisive contribution to the medium-term global en-
ergy problem. The process is clean, highly secure, and theoretically capable
of providing vast amounts of energy. However, achieving nuclear fusion on
Earth requires substantial scientiĄc and technological efforts. The fuel, in the
state of plasma, is made up of charged particles that should be appropriately
conĄned to produce nuclear fusion reactions, similar to what naturally hap-
pens in the Sun. Mainly two ŤartiĄcialŤ conĄnement approaches are currently
under investigation: inertial conĄnement, based on the use of high coherence
lasers, and magnetic conĄnement, based on high magnetic Ąelds. The most
promising conĄguration for future commercial reactors are the Tokamaks,
based on magnetic conĄnement. These machines have a toroidal geometry
and are in principle axisymmetric. The presence of high magnetic Ąelds al-
lows: to induce the plasma current, to conĄne the charged particles and to
control the shape of the plasma ring. The plasma current, on the order of
106 ÷ 107 A, plays a dual role: provides heating (through ohmic dissipation)
and stabilizes the plasma itself.

Three-dimensional effects, known as Error Fields, can signiĄcantly im-
pact tokamak performance. Error Ąelds refer to small imperfections or de-
viations in the symmetry and uniformity of the tokamakŠs magnetic Ąelds.
These errors can arise from various reasons, including manufacturing toler-
ances, mechanical deformations, or electromagnetic interactions. Although
these errors may appear as minor issue, they can profoundly affect plasma
conĄnement stability and performance. Presence of error Ąelds can in fact
lead to plasma disruptions, caused by instabilities and conĄnement losses.
These disruptions not only reduce fusion efficiency but also risk damaging
the tokamakŠs plasma-facing components. In extreme cases, such disruptions
can release substantial amounts of energy and heat, potentially damaging the
tokamak itself.
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Researchers and engineers work on mitigating error Ąeld effects through
advanced control techniques and sophisticated magnetic Ąeld shaping. Un-
derstanding and managing error Ąelds, together with other still open prob-
lems, are critical steps towards achieving a stable and efficient fusion reactor.
Here, the model for the estimation and treatment of error Ąelds is presented,
on which the candidate concentrated his contribution. The approach allows
to take into account both assembly and manufacturing uncertainties of the
magnetic system. The uncertainties are projected in a suitable functional
space of Ąnite dimension, called space of parameters, and, a relation between
the set of the parameters and the perturbed Ąeld contribution is obtained
via geometry modelling of the coils. In the limit of small perturbations, this
complex model provides a linear relation suitable for Monte Carlo analysis of
the error Ąelds impact. The procedure has been successfully applied for the
estimation of error Ąelds in two tokamaks: the Divertor Tokamak Test (DTT)
facility, the Italian tokamak under construction at the Frascati ENEA Re-
search Center, Rome, and DEMO, the European demonstration power plant,
where the plasma response to the error Ąelds was also taken into account by
integrating the procedure with the MARS code. In order to develop an al-
ternative linearized plasma response model, the continuity of the magnetic
Ąeld should be guaranteed. A technique, acts as a post-processor of the mag-
netic Ćux solution of the Grad-Shafranov equation employing HelmholtzŠs
theorem, is also shown, to which the candidate has made a further contri-
bution. The procedure, based on the triangular elements, provides magnetic
Ąeld with an accuracy of O(h2) resulting in reliable linearized models derived
with limited computational effort.
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1
Introduction

Most of the energy production, from electricity for our homes to fuel for
our cars, comes from fossil fuels, namely oil, gas, and coal. Over the past
half-century, numerous alternative energy sources have been developed and
reĄned. Some of these are the so-called ŤcleanŤ energy sources, which have
been spreading in recent years, thanks in part to increased public awareness.
Unfortunately, due to various technical and technological limitations, they
are currently unready for large-scale deployment and can only serve as com-
plementary resources. Nuclear Ąssion is one of the leading low carbon power
generation methods of producing electricity. Unfortunately, it has with impor-
tant limitations related to the the disposal of waste materials. Meanwhile, in
the basket of these alternatives, fusion energy could offer the potential for an
unlimited and clean main energy source. In this chapter the controlled ther-
monuclear fusion is presented as well as the most promising reactor models.

1.1 Nuclear reactions and mass defect

Currently, the use of Ąssion energy might be an alternative to fossil
fuels for large scale electricity production. Nuclear Ąssion is the phys-

ical process in which the atomic nucleus of a heavy element is split into two
or more nuclei and a variable number of new neutrons following a collision
with a neutron. The total mass of each of the Ąssion fragments is less than
the mass of the starting atomic nucleus. A large amounts of energy (Ąssion
energy), corresponding to this Ťmass defectŤ, is released after this process.
This amount, can be calculated by the EinsteinŠs equation, ∆E ≙ c2∆m,
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1.1. NUCLEAR REACTIONS AND MASS DEFECT

where ∆E is the nuclear binding energy (see Fig. 1.1) and ∆m the mass
defect [1].

Figure 1.1: Binding energy ∆E per nucleon versus atomic number A.

The Ąrst artiĄcial nuclear Ąssion was achieved in 1932 by scientists Ernest
Walton and John Cockcroft, who, by accelerating protons against a lithium-
7 atom, managed to split its nucleus into two alpha particles [2]. The Ąrst
reaction involving heavy atoms was performed by the scientist Otto Hahn
together with the physicist Lise Meitner. Hahn continued the research work
that had been initiated in 1934 by the Italian physicist Enrico Fermi with
the bombardment of uranium with neutrons, resulting in what Hahn called
an ŤexplosionŤ of the uranium nucleus into atomic nuclei of medium weight.
It is important to underline that, the nuclear Ąssion research also had a great
acceleration during the World War II, when the Ąrst nuclear weapon was de-
veloped (the Manhattan Project). One practical phenomenon of exceptional
interest, resulting from neutron emission after nucleus Ąssion, is the chain
reaction. In fact, if each of the neutrons resulting from a Ąssion causes other
Ąssion reactions, the number of these grows rapidly. A sole a single initial
neutron is sufficient to provoke the Ąssion of an enormous number of nuclei in
the target (Fig. 1.2) [4]. Nuclear Ąssion power plants are designed precisely
to activate and simultaneously control, using appropriate materials called
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moderators, a chain reaction based on 235U , from which heat is derived to
be transformed into electrical energy. Nuclear weapons, on the other hand,
are speciĄcally engineered to produce a reaction that is so fast and intense
it cannot be controlled after it has started and leads to an explosive energy
release.

The approximately 440 nuclear power plants scattered around the world
contribute a signiĄcant and growing fraction of the total electrical power (in
2021 nuclear plants supplied 2653 TWh of electricity, up from 2553 TWh in
2020) [3][4][5]. Being a low-carbon energy source with relatively little land-
use requirements, nuclear energy can have a positive environmental impact
from this point of view. As well known, there are further environmental
considerations and potential risks associated with nuclear energy, primarily
coming from the management of radioactive waste and the risks of accidents
or intentional attacks. However, historically there have only been few disas-
ters at nuclear power plants with known relatively substantial environmental
impacts.

Figure 1.2: Sketch of a Ąssion reaction of a core of 235U .

Nuclear fusion is the reverse process compared to Ąssion and occurs when
two nuclei of an element with a low atomic number (e.g., hydrogen) combine
to form a nucleus with a higher atomic number. In order to trigger a fusion
reaction, the nuclei must be brought close together with an enormous force,
which allows them to overcome electrostatic repulsion and let the ŤstrongŤ
short-range nuclear forces prevail (Fig. 1.3).
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Figure 1.3: Coulomb barrier (electrostatic repulsion) between two nuclei.

The nucleus produced by the reaction has a lower mass than the sum
of the masses of the reacting nuclei because the mass of the nucleons of
the intermediate elements is lower than that of the elements with low and
high atomic numbers. It is precisely this mass defect, converted into energy
again through EinsteinŠs equation. This reaction is the same as the one
continuously occurring in stars; in fact, the core of the Sun is predominantly
composed of hydrogen (H) and its isotopes, deuterium (D), with one neutron
and one proton, and tritium (T), with two neutrons and one proton. As the
temperature reaches around 16 million degrees and the pressure is extremely
high, there are optimal conditions for a fusion reaction. Hydrogen, deuterium
and tritium are ionized, and thanks to the high temperatures, many fusion
reactions are triggered, ensuring self-sustainability. It should be noted that
as a consequence of this process occurring in all stars, 99.9% of the visible
matter in the universe exists as plasma[6][7][8].
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1.1.1 Controlled Thermonuclear Fusion

In order to obtain fusion reactions a plasma has to be heated up to very high
temperature. The artiĄcial plasma conĄnement [6][7][9] is now-day a critical
issue for physicists and engineers involved in design of thermonuclear fusion
power devices. The ŞmechanicalŤ container is not practicable, since a contact
of the high energy particles with a ŞphysicalŤ wall, will provide a strong and
rapid cooling of the plasma. In the starsŠ cores the gravitational forces are
so strong to be able to compress the matter up to very large densities and
pressures, in such a way that the thermonuclear fusion reactions operate at a
fully steady state rate (gravitational conĄnement). This approach cannot be
adopted on the earth for obvious reasons. Beyond gravitational conĄnement,
mainly two possibilities have been investigated during the last decades:

- The inertial conĄnement [10]: involves high density plasmas conĄned
and heated for a very limited time. The idea is to use a fuel capsule
called ŞpelletŤ, compressed by means of an inward shock wave (e.g.
X-rays created by a laser source). The inertia of the fuel keeps it from
escaping, hence the name ŤinertialŤ. The main problems are related to
the efficiency of the required large laser sources and to the automation
of the process. The National Ignition Facility, in Livermore, California,
on December 5, 2022, announced important milestone for this technol-
ogy, using 192 laser beamsand producing 3.15 megajoules of energy
from a 2.05 megajoule input of laser light (somewhat less than the
energy needed to boil 1 kg of water) [11].

- The magnetic conĄnement [12]: is, instead, the most promising ap-
proach along the road to the realization of a fusion power plant. The
idea is to use magnetic Ąelds properly generated by suitable coils, to
conĄne plasma charged particles. The approach has given satisfying re-
sults in several reactor conĄgurations, mainly Tokamaks [6], Reversed
Field Pinches (RFPs) [13] and Stellarators [14]. In the thesis activ-
ity particular attention has been given to the Tokamak, that now-day
represents the most promising conĄguration of magnetic fusion device

. The most promising reaction for commercial applications is the one
between a deuterium nucleus and a tritium nucleus, since has the highest
reaction rate (deĄned later) at the lowest temperature (Fig. 1.4).
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Figure 1.4: Reaction rate as a function of temperature.

D−T reaction produces a helium nucleus (alpha particle) and a neutron
[6]:

2D + 3T→ 4
2He + n (1.1)

In (1.1), the products have higher atomic numbers, leading to a lower to-
tal mass compared to that of the interacting particles. As a result, energy is
released following the principle of mass-energy equivalence mentioned earlier.
The liberated energy is distributed between the alpha particle and the neu-
tron in inverse proportion to their respective masses. Therefore, the majority
of the energy will be present in the free neutron in the form of kinetic energy.
SpeciĄcally, 17.6 MeV of kinetic energy is released in the resulting products,
14.1 MeV in the neutron, and 3.5 MeV in the alpha particle (helium). These
amounts of energy are enormous; in fact, in 1 kg of deuterium there are ap-
proximately 3×1026 atoms and so the energy released per kilogram would be
2.35×1010 kWh (5.27×1029 MeV) [15].

Deuterium can be found in seawater and is relatively easy to extract.
Instead, tritium is radioactive and present in a low quantity in the natural
environment. In addition there are problems related to tritium transport.
For this reason several methods have been studied to produce tritium on
site. The main process under investigation consists in the use of the lithium-
neutron interactions; this process is known as ŤTritium breedingŤ [16].
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1.1.2 Energy balance and Lawson criterion

To achieve controlled thermonuclear fusion in the laboratory, which provides
a positive energy balance, it is necessary to heat the plasma to extremely high
temperatures (around 100 million degrees, more than six times the temper-
ature inside the Sun), while conĄning it to a limited space for a sufficient
amount of time. This allows the energy released from fusion reactions to
offset both the losses and the energy used to produce it, resulting in:

Q ≙
Pfusion

Pexternal

> 1 (1.2)

where Q is the power gain, Pfusion is the fusion reactions power and Pexternal

the external power. The constraint in (1.2) represents the situation where
the power supplied by the fusion reactions is enough on its own to com-
pensate losses and where the external power can thus be switched off. This
corresponds to an inĄnite Q ampliĄcation factor (Pexternal = 0). The plasma
is thus self-maintained like a candle, which, once it has been ignited by a
match (external power), carries on fuelling itself. Properly, it is necessary to
satisfy the conditions expressed by the Lawson Criterion which depends on
the plasma temperature T :

nTτE > 3 ⋅ 1021m−3keV s (1.3)

where τE is the energy conĄnement time of particles and is deĄned as:

τE ≙
W

Plosses

(1.4)

where W is the plasma energy and n the plasma density.
In order to maximize the reaction rate (number of reactions per second

per unit volume) R ≙ n1n2 < σν >, the following relationship should apply:

n1 ≙ n2 ≙ n (1.5)

where 1 and n2 are reactant densities. For a 150 million degree D−T plasma,
(about 10 KeV energy) and with low impurity content, the product nτE must
be greater than 3 ⋅ 1020m−3s. In magnetic conĄnement devices, the goal is
to achieve high conĄnement times while also preventing particles from im-
pacting against the vacuum chamber with a number of negative consequences
such as cooling of the plasma, heating of the machine walls, and introduction
of impurities into the plasma itself. It is worth pointing out that LawsonŠs
criterion as presented is derived from an initial power budget that does not
take into account the boundary consumption required to power all the sys-
tems in a reactor; therefore, a more accurate ignition condition is used in
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prototype machines, and LawsonŠs criterion provides only indicative data on
the operating conditions of a controlled thermonuclear fusion machine.

1.2 The Tokamak

The Tokamak, soviet acronym for (TOroidal KAmara MAgnitic Katushka) is
a device which uses a powerful magnetic Ąeld to conĄne plasma in the shape
of a torus (Fig 1.5). This conĄguration was proposed in the 1950s by Russian
researchers [17]. In order to maintain the fusion process, particles from the
hot plasma must be conĄned in the central region, or the plasma will rapidly
cool. Tokamaks exploit the fact that charged particles in a magnetic Ąeld
experience a Lorentz force and follow helical paths along the Ąeld lines (Fig
1.5) [6].

Figure 1.5: 3D sketch of tokamak sources (red), plasma (pink) and Ąeld lines:
poloidal Ąeld lines (blue vertical circles), toroidal (yellow horizontal circle),
and their combination, producing a three-dimensional curve (green helix) in
which the plasma is highly conĄned.

Tokamaks include the following main components: i) a vacuum system,
based on an integrated Vacuum Vessel with the Ąrst wall and a suction sys-
tem [18]; ii) a blanket system for neutron moderation and, if feasible, on-site
tritium breeding from lithium [16]; iii) an additional heating system, based
on antennas and Neutral-beam injection (NBI) [19]; iv) a complex magnetic
system, whose main characteristics will be illustrated later; v) a diagnostic
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system a large array of instruments such as: Magnetic diagnostics, neutron
diagnostics, Optical systems, bolometric systems, spectroscopic instruments
and microwave diagnostics, to provide the measurements necessary to con-
trol, evaluate and optimize plasma performance and to understand plasma
physics [20]; vi) a comprehensive system of mechanical supports and auxiliary
prevention systems. In Fig. 1.6a a sketch of the ITER tokamak is shown,
while in Fig. 1.6b the radial overview of a tokamak layers is sketched.

(a) (b)

Figure 1.6: Sketch of the ITER tokamak (a), and a radial overview of a
tokamak layers (b).

1.2.1 Magnetic system

Different kind of magnets are used together in order to conĄne the parti-
cles, to induce plasma current and to stabilize and control the plasma. In
particular:

1- ŤDŤ-shaped toroidal Ąeld (TF) magnets (Fig. 1.7a), placed around the
vacuum vessel, produce a toroidal magnetic Ąeld Bφ whose primary
function is to conĄne the plasma particles. ItŠs worth noting that in
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2D approximation the following relationship stands:

2πRBφ ≙ µ0IT ⇒ Bφ ∝
1

R
(1.6)

where R is the radial coordinate, IT the total TF current and µ0 the
vacuum permeability. The number of toroidal coils is chosen appropri-
ately to limit 3D effects (ripple) [21].

2- Poloidal Ąeld (PF) magnets (Fig. 1.7b), circular coils used to shape the
plasma and contribute to its stability by ŤpinchingŤ it away from the
walls. The shape of the plasma, which depends on the poloidal Ąeld, is
chosen on the basis of performance optimisation criteria. It should be
recalled that external currents are required to conĄne a plasma (Virial
Theorem within electromagnetism), and the PF coils are used to sat-
isfy this requirement [22]. In fact, a toroidal plasma cannot be kept in
equilibrium by its currents alone. Equilibrium is maintained, for exam-
ple, by the poloidal magnetic system, which interacts with the plasma
current through its so-called vertical component to produce a suitable
centripetal force that allows equilibrium at the desired position in the
chamber.

3- Central Solenoid (CS) magnets (Fig. 1.7c), represent the ŤbackboneŤ
of the magnet system, located in the centre of tokamak torus, in the
Şdonut holeŤ. CS allows a powerful current to be induced in the plasma,
by transformatory effect, and maintained during long plasma pulses. As
the CS produces a strong magnetic Ąeld, it is subject to large electro-
magnetic forces that try to tear the solenoid apart. Coils of solenoid are
therefore usually placed in some kind of support structure that holds
them in position during a pulse.

4- Error Field Correction Coils (EFCCs) (Fig. 1.7d), generally inserted
between the TF and PF coils, are non-asymmetric saddle-shaped coils
used to compensate for Ąeld errors caused by geometrical deviations
due to manufacturing and assembly tolerances and to control the in-
stabilities (ELM mitigation or suppression) [23].
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(a) (b)

(c) (d)

Figure 1.7: Sketch of the ITER: a) TF, b) PF, c) CS and d) EFCC magnets.

1.2.2 The safety factor

In magnetic conĄnement devices, the helical shape of the Ąeld lines can be
described by the rotational transform t [24]:

t ≙ lim
N→∞

N

∑
n=1

∆θn (1.7)
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where ∆θn is the poloidal angle made by the Ąeld line after n toroidal turns.
In tokamak research, the quantity q ≙ 2π

t
, called safety factor, is preferred.

The basic magnetic Ąeld conĄguration consists of toroidally nested Ćux sur-
faces (Fig 1.8), while each Ćux surface is characterised by a certain value of
the rotational transform or safety factor q.

Figure 1.8: Example of nested Ćux surface.

In a roughly circular tokamak, the equation of a Ąeld line on the Ćux
surface is approximately:

rdθ

Bθ

≙
Rdφ

Bϕ

(1.8)

where ϕ and θ are the toroidal and poloidal angles, respectively. Thus q ≙
m/n ≙ ⟨dφ/dθ⟩ can be approximated by:

q ≃
rBϕ

RBθ

(1.9)

where the poloidal magnetic Ąeld Bθ is mostly produced by a toroidal plasma
current. The term ŤsafetyŤ refers to the resulting stability of the plasma;
Field lines that rotate poloidally around the torus about q times as toroidally
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are inherently less susceptible to certain instabilities. Generally, if q ≤ 2 at
the last closed Ćux surface (the plasma edge), the plasma is magnetohy-
drodynamically unstable. In tokamaks with a divertor conĄguration [25] q
approaches inĄnity at the separatrix, so it is more useful to consider q just
inside the separatrix. It is customary to use q at the 95% Ćux surface (the
Ćux surface that encloses 95% of the poloidal Ćux), q95.

1.2.3 DTT and DEMO: role in the road-map for the
commercial reactors

Despite the progress in research, the goal of producing more energy than that
supplied as plasma input, and making the reaction self-sustaining, has not
yet been achieved. The results achieved so far by the triple product nTτE,
in an effort to obey LawsonŠs criterion are shown in Fig. 1.9.

Figure 1.9: Triple product behaviour from 1955 to 2040 (prospect).

The conventional approach for increasing in the fusion gain Q requires to
scale up the reactor size. Larger reactors would have to be built to achieve the
desired conditions, compared to those still operating in laboratories today.
For this purpose, due to costs incompatible with budgetary constraints, and
to the real technological possibilities of a single nation, strong international
cooperation has increasingly materialized.
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Currently the tokamaks are close to the break-even condition (Q=1). The
JET tokamak, Joint European Torus, whose realization dates back to 1978,
to date holds the record of gain Q ≈ 0.6. A second speciĄc example is the
Japanese JT-60, which holds the record for the highest fusion triple product
value of any machine to date, achieved in 2018. The next-step tokamak will
be ITER (an acronym for International Thermonuclear Experimental Reac-
tor), whose realization is currently underway in the south of France thanks
to the collaboration, since the projectŠs inception in 1985, of Europe, United
States, South Korea, China, Japan, Russia and India. ITER will have the
daunting task of demonstrating the technical and technological feasibility of
a thermonuclear fusion reaction and thus open the door wide for the realiza-
tion of the Ąrst DEMO demonstration reactor prototype, capable of feeding
electricity into the public grid.

DEMO must demonstrate the technologies required not only to control
a more powerful plasma than exists today, but also to generate electricity
safely and consistently, and to maintain the plant regularly, quickly and re-
liably. The design of such a plant must take account, not just of physics
requirements, but also of engineering and technological limitations. Most of
the ITER partners have plans for their own DEMO-class reactors. The most
well-known and documented DEMO-class reactor design is the European
DEMO. On 9 October 2014 EUROfusion [26], the European Consortium for
the Development of Fusion Energy, was born. Presently EUROfusion sup-
ports and funds fusion research activities on behalf of the European Commis-
sionŠs Euratom programme within 26 EU member states, while Switzerland,
Norway and the United Kingdom participate in the activities with their na-
tional fusion budgets. Building and operating DEMO, which will hook fusion
electricity to the grid, is the subject of the last phase of the EUROfusion
Roadmap. The central requirements for DEMO lie in its capability to gen-
erate between 300 Megawatt to 500 Megawatt net electricity to the grid and
to operate with a closed fuel-cycle, meaning spent tritium fuel will be repro-
cessed. The Fusion Technology team is looking at requirements that will lay
the foundation for a robust conceptual design:

- Selecting the right breeding blanket. Blankets are the internal compo-
nents of the reactor wall that absorb the energy from the fusion reac-
tion, ensure the tritium breeding process and shield the components
outside the reaction chamber from the fast fusion neutrons.

- Selecting the right design for the Ąrst-wall, the innermost lining of the
reactor wall. Its integration into the blanket must take into account
that the Ąrst-wall might see higher heat loads than assumed in experi-
mental settings.
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- Selecting the minimum pulse duration of DEMO and of the correspond-
ing mix of plasma heating systems.

- Designing in a way that all maintenance work can be carried out re-
motely via manipulators.

- Incorporating nuclear safety issues from the very beginning of concep-
tion.

- Selecting the right divertor concept (described below).

The power released in the form of alpha particles by fusion reactions in
the core of the tokamak is transported down to an actively cooled component
(the divertor) where it is extracted. The heat Ćux on the divertor could be
very large, reaching values around 60MW /m2, which is the same order of
magnitude as the heat Ćux at the surface of the Sun! The divertor has to
withstand harsh conditions and is one of the most critical components of a
fusion system. A solution for the divertor has been investigated in present
experiments and will be implemented in ITER. However, it is unclear at the
moment if the solution implemented in ITER can be extrapolated to future
power plants, since the amount of fusion power density released in a reactor
will be much larger than in ITER.

A dedicated facility to address these challenges was pointed out Ąrst back
in 2012, when EFDA, the European Fusion Development Agreement, pub-
lished the ŞEuropean Fusion RoadmapŤ. The Divertor Tokamak Test (DTT)
project was born.

DTT is a tokamak designed to accommodate a variety of divertor con-
Ągurations, both in single and double null scenarios, in regimes where core
and edge are in conditions of reactor-relevant power Ćow. The main DTT
features are: 6T on-axis at R=2.19 m maximum toroidal magnetic Ąeld and
plasma current up to 5.5 MA in pulses with total duration up to 100s. The D-
shaped vacuum chamber is able to host a plasma with major radius R=2.19
m, minor radius a=0.70 m and average triangularity 0.3. The auxiliary heat-
ing power coupled to the plasma at maximum performance is 45 MW, which
allows matching ITER and DEMO PSEP /R values, where PSEP is the power
Ćowing through the last closed magnetic surface [27]. DTT sketch is shown
in Fig. 1.10, while the main features are reported in Tab. 1.1 together with
other tokamaks.
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Figure 1.10: DTT project proposal.

Parameter DTT JT60SA JET ITER DEMO
R [m] 2.19 2.96 2.98 6.2 8,2 - 13,1
a [m] 0.70 1.18 0.22 2.0 6,10 - 9,55
Bt [T] 6.0 2.25 3.2 5.3 5,6 - 7,0
Ip[MA] 5.5 5.5 3.5 15 18 - 20

Table 1.1: Main DTT parameters and comparison with other machines.

However, recent studies have shown that for steady state tokamaks op-
erating at Ąxed fractions of the density and beta limits, the fusion gain Q,
depends mainly on the absolute level of the fusion power and the energy
conĄnement, and only weakly on the device size [28]. In addition, recent
progress on the High Temperature Superconducting (HTS) magnets could
make compact fusion possible. Private company, such as Tokamak Energy,
announced the development of a superconducting compact spherical tokamak
called Demo4 in the 2030s [29]. The outcome of these initiatives is uncer-
tain, but a robust partnership between public and private entities in the
scientiĄc community could signiĄcantly impact the path towards construct-
ing the initial commercially viable fusion reactor. In Fig. 1.11 a high-level
schematic of a generic DŰT fusion system for electrical energy production,
using a conventional thermal conversion cycle approach, is shown.
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Figure 1.11: Schematic of a generic DŰT fusion system for electrical energy
production.
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2
Error Ąelds

Inevitable inaccuracies in both manufacturing and assembly of magnetic Ąeld
coils in a tokamak cause discrepancies between actual and nominal Ąeld in
the plasma region called Error Fields (EFs), and their limitation is needed.
A methodology based on the Ąrst order truncated Taylor expansion able to
Ćexibly model these deformations and to estimate the EFs is here shown. A
vacuum (no plasma response) Ągure of merit to quantify EFs is also presented
together with the procedure for calculating a set of currents needed for an
active correction action. The main contribution of the candidate is highlighted
in Section 2.4.

2.1 Error Ąelds in a Tokamak

Amagnetic Ąeld map with prescribed speciĄcations is necessary for the
plasma conĄnement in a fusion device. In an ideal tokamak, the mag-

netic Ąeld should be basically axisymmetric (independence of the toroidal
angle), so that the helical magnetic Ąeld lines remain on the same magnetic
surface as they transit the torus [1][2]. Deviations from nominal magnetic
Ąeld map, due to external perturbations, are known in literature as Error
Fields (EFs) [1][3]. Inaccuracies and tolerances in manufacturing and as-
sembly of magnets, joints, current feeds, or non-axially symmetric parts, are
examples of EFs sources. When they exceed a certain critical level, the tra-
jectory of magnetic Ąeld lines is altered and Ťmagnetic islandsŤ are created.
Islands always degrade conĄnement of energy, particles, and toroidal angular
momentum.
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The most observable effects of EFs on tokamaks are quasi-stationary
modes (QSMŠs), which are slowly rotating magnetic islands, and locked
modes, which are non-rotating magnetic islands. In JET QSMŠs are found to
almost invariably precede disruptions, predominately n=1. The modes have
been observed to lock (stop rotation) and later unlock within the same shot
[4][5]. Large amplitude QSMŠs affect the amplitude and shape of saw-teeth,
Ćatten the electron temperature proĄle around the rational Ćux surface, slow
down or stop the plasma rotation, and can cause signiĄcant degradation of
the energy conĄnement. Locked modes have also been studied on DIII-D[6],
Compass-C [7], and other tokamaks [8] [9] and reversed Ąeld pinches [10] [11].
To prevent these phenomena, the EFs should be Ąrstly correctly quantiĄed
and secondly reduced below a speciĄc threshold. A suitable active correction
system, called ŤError Field Correction CoilŤ (EFCC) system, is designed to
reach the second purpose. Essentially the correction coils are used to gener-
ate an EFs that is, as much as possible, Şequal and oppositeŤ to the actual
one. An example of EFCC system is shown in Fig. 2.1.

Figure 2.1: Perspective view of the three window-pane coil sets. The correc-
tion system shown have nine coils per coil set.
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2.2 Vacuum response: Three Modes Error

Index

A commonly used performance index to describe the quality of the Ąeld
mapping while ignoring the plasma response is a weighted quadratic average
of the amplitudes of the Ąrst three poloidal modes of the error Ąeld, deĄned
as the normal component of the difference between the actual and nominal
Ąelds, evaluated on a speciĄc plasma surface, called the ŤThree Modes Error
IndexŤ (TMEI ).[12]:

TMEI ≙

√
0.2∥B̃1,1∥2 + ∥B̃1,2∥2 + 0.8∥B̃1,3∥2

Btor

(2.1)

where Btor is the unperturbed toroidal Ąeld on the magnetic axis of the device
[13][14], while B̃1,1, B̃1,2 and B̃1,3 are the spectral components of 3D complex
Fourier space [15] deĄned as:

B̃n,m ≙
1

2π2

‹

BN(θ,φ)e−i(nϕ−mθ̃)dθ̃dφ (2.2)

with m ≙ 1,2,3 spectral components, just n ≙ 1 toroidal spectral component
and BN(θ,φ) the normal component of the Ąeld to the q=2 surface, θ,φ the
angular coordinates of a quasi-toroidal (ρ, θ,φ) coordinate system, and θ̃ the
angular curvilinear abscissa [16], deĄned as:

θ̃(l) ≙ 1

q

ˆ l

0

Bt

rBp

dl (2.3)

where l is the length of the unperturbed Ąeld line projected on the poloidal
section and Bt and Bp are the toroidal and poloidal components of the un-
perturbed Ąeld on the q=2 surface.

The estimation of EFs is strictly related to the speciĄc scenario instant
because the q=2 surface is needed. An electromagnetic code, able to compute
the Ąeld due to deformed coils is used for the computation of the harmonics
used in the TMEI.
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2.3 A Ćexible magnet description: MISTIC

In the frame of 3D Ąelds computation, a critical issue is the mathematical
modeling of magnetic Ąeld sources, including currents and magnetic mate-
rials, which act in different components of the fusion device and may have
different shapes. In absence of ferromagnetic materials, it is possible to
assume to have the same properties as the vacuum. Therefore, the super-
position principle applies and the total magnetic Ąeld can be evaluated by
summing up the contributes generated by all the known sources. This is a
very important hypothesis, because it allows a strong parallelization of the
computational burden, by distributing the load on the computational units of
a parallel computing system [17][18][19]. A non-commercial code, well known
in literature as MISTIC[17], is able to manage the actual (deformed) magnets
in linear media, and has been here adopted. The MISTIC code is based on
the representation of coils in terms of current Ąlaments, and on the succes-
sive decomposition of each Ąlament in a suitable number of current sticks. In
this way, the required Ćexibility and accuracy can be guaranteed just Ąxing
a suitable discretization level. On the other hand, the trade-off between the
number of sticks and the computational time must be accurately considered,
particularly on standard computing environments, when no parallel speedup
is available. In order to extend the computational power, an implementation
of MISTIC on High Performance Computing (HPC) architectures, based on
dedicated GPUŠs, has been recently realized and adopted here [17][18][19][20].
The elementary contribution to the Ąeld per unit current in a generic Ąeld
point r is given by [21]:

bstick ≙
µ0

4π

c × a∥c × a∥ (a ⋅ c

∥c∥
−

a ⋅ b

∥b∥
) (2.4)

where the vector a has the same length as the stick and the orientation of
the current Ćowing in it,whereas b and c are vectors pointing from r to the
end-points of the stick as reported in Fig. 2.2.

The MISTIC code, starting from the inputs describing the electric data
(the currents in each Ąlament) and the geometric data (the coordinates ar-
ray of the Ąeld points and the coordinates array of the Ąlament points (tails
and heads of the sticks)) of the problem, computes all the elementary con-
tributes to the Ąeld in (2.4) and hence, sum all these contributes to obtain
the Cartesian components of the overall Ąeld in a set of desired Ąeld points.
Consequently, a massive coil can be discretized by means of a number of
one-dimensional current segments effectively placed in the volume of inter-
est (Fig. 2.2). The Ąeld of the discretized source is the superposition of its
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segmentsŠ Ąeld contributions, and, generally, the higher the discretization,
the higher the accuracy. MISTIC has been abundantly assessed and used in
the past for many kinds of applications, spacing from the medical purposes
to controlled thermonuclear fusion[22][23][12]. Here, the stick approach has
been adopted for modelling the coil deformations. An extension of the clas-
sical formulation has been developed to Ćexibly treat the error Ąelds. The
basic idea is to take advantage from the linearity of small variations in terms
of manufacturing and assembly tolerances of the coils to compute EFs.

Figure 2.2: Coil discretization using Ąlaments of current.

29



2.4. TAYLOR FIRST ORDER MODEL FOR EFS ANALYSIS

2.4 Taylor Ąrst order model for EFs analysis

In a linear assumption, the magnetic Ćux density Cartesian componentBx0(r)
(similarly for y and z components) can be described as the superposition of
the sources contributions, including magnetic system and plasma:

Bx0(r) ≙ B(1)x0 (r) +B(2)x0 (r) + ... +B(N)x0 (r) (2.5)

where r is the generic Ąeld point in R3 and N the number of sources.
Inaccuracies and tolerances in manufacturing and assembly of tokamak

magnets, joints, current feeds, or non-axially symmetric parts act as an ad-
ditive contribution δBx(r), altering the Ąeld in (2.5).

The total perturbed Ąeld Bx(r) can be expressed as:

Bx(r) ≙ Bx0(r) + δBx(r) (2.6)

where δBx(r) takes into account of N perturbing contributions corresponding
to the deformation of the N sources:

δBx(r) ≙ δB(1)x (r) + δB(2)x (r) + ... + δB(N)x (r) (2.7)

A basket of perturbation parameters can be selected in order to reproduce
the effects of the EFs due to magnets deformations. The deformations of the
i-th source, then the associated EF, can be related to a suitable set of a Ąnite
dimensional space parameters:

δp(i) ≙ ∥δp(i)1 , δp
(i)
2 , . . . δp

(i)
K
∥ (2.8)

where i ≙ 1, . . . ,N, and K is the dimension of the space.
It should be noted that δB

(i)
x (r, δp(i)) may depend non-linearly on δp(i).

This could lead to performance problem if, for example, a Monte Carlo anal-
ysis has to be performed, as iterative solver are required.

Under the small perturbations hypothesis, the i-th term in (2.7) can be
expressed as a Taylor series respect to the perturbation parameters [24]. The
truncation at Ąrst order derivatives provides:

δB
(i)
x ≃

∂B
(i)
x

∂p1

δp
(i)
1 +

∂B
(i)
x

∂p2

δp
(i)
2 + ... +

∂B
(i)
x

∂pK

δp
(i)
K (2.9)

Each source can be discretized in a Ąnite number of current segments Nseg

[17][18] as described in previous section. Since the analytical expression (2.4)
of the Ąeld of each segment depends on the coordinates of its extremes and
on its current, the derivatives in (2.9) can be split by using the chain rule:
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∂B
(i)
x

∂pk

≙
∂B

(i)
x

∂xj

∂xj

∂pk

(2.10)

where xj is the j-th current segment coordinate (j ≙ 1, . . . , N seg). Similarly
can be done for yj and zj.

A procedure, able to provide perturbed magnetic Ąeld (usually the normal
component of the perturbed magnetic Ąeld on a suitable Ćux-surface) related
to the set of deformation parameters, has been developed for the calculation
of analytical electromagnetic and geometric derivatives in the right hand
side of (2.10). In a Ąnite dimensional space, combining the expressions in
(2.2),(2.9) and (2.10) the relation between the vector of the deformation
parameters and the TMEI harmonics can be obtained [24]:

B̃
(i)

harms ≙ M̃
(i)

∆p(i) (2.11)

where M̃
(i)
∈ C3×K is the complex sensitivity matrix of deformations referred

to the i-th coil, and K is the number deformation parameters.
Once the set of deformation parameters is deĄned, the TMEI modes ma-

trices M̃
(1)
, . . . , M̃

(N)
can be stored making the EFs analysis easily exe-

cutable thanks to the linearity. In Fig (2.3) the block diagram of the coupling
between the set of the deformation parameters and the vacuum error Ąeld
model based on the sticks is shown. The main contribution of the candidate
to the work consisted in choosing and treating a basket of deformation pa-
rameters and developing the procedure for computing the related sensitivity
matrices, then used to characterize of the EFs in a tokamak.

Figure 2.3: Block diagram of the coupling between the set of the deformation
parameters and the vacuum error Ąeld model.
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2.4.1 Assembly and manufacturing inaccuracies of PF,
CS and TF coils modelling

Inaccuracies and tolerances in manufacturing and assembly of magnets pro-
duce EFs. The generic point Q

j
∈ R3 of the discretized magnet, which coin-

cides with the head (or the tail) of the j-th stick of current can be ŤperturbedŤ
as:

Q̃
j
≙ T̃ (Q

j
) (2.12)

where T̃ is the R3
Ð→ R3 operator describing the deformation. Assembly

inaccuracies of a coil can be described as translations and rotations respect to
the axis of a suitable coordinates system. Translations along the speciĄc axis
can be modelled just using an additive constant contribute to the coordinates
describing the coil geometry, while rotations using EulerŠs rotation matrices
[25].

Here, PF and CS coils system assembly inaccuracies are treated as trans-
lations respect to the x, y and z Cartesian directions, and rotations respect to
x̃∣∣x, ỹ∣∣y and z axes, passing through the coil barycenter (Fig. 2.4). Manufac-
turing errors are instead implemented both as planar elliptical deformation
of the Central Coil Line (CCL), the line passing through the coil section
barycenter, and a coil radius perturbation[24]. The coil sections are kept
rigid.

Figure 2.4: PF coil 3D representations along with the axes of the system.
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TF coil assembly inaccuracies are implemented similarly to the PF-CS
case, are described in a suitable coordinate system (r̃, t̃, z̃): where r̃∣∣r, z̃∣∣z,
and t̃ ≙ z̃ × r are centered in the TF barycenter (Fig. 2.5).

Figure 2.5: TF coil 3D representations along with the axes of the system.

The non-rigid deformations working on TF D-shape, have been imple-
mented using cubic spline interpolation functions [24] controlled in some
points along the D-shape (Fig. 2.6) called Control Points. The coil sections
are kept rigid.

Figure 2.6: TF coil shape and 3D representations of the deformations (blue)
and Control Points (pink circles).
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The spline function is designed to assign the maximum deformation on
the control nodes. The 1D cubic spline expression, depending on the generic
curvilinear abscissa t, in the i-th interval between two subsequent nodes (with
indices i and i-1), is:

s3(t) ≙ (ti − t)
3
6(f(ti)−f(ti−1)

h2

i

)+(ti−1 − t)36(f(ti)−f(ti−1)

h2

i

)
6hi

+ ...

+ 3(f (ti) − f (ti−1)
hi

) (t − ti−1) + f(ti−1) − hi (f (ti) − f (ti−1)
hi

)
(2.13)

where ti and ti−1 are the coordinates of the nodes, f (ti) and f (ti−1) are
the respective deformation amplitudes used to control the spline shape, and
hi is the step. In order to manage rigid and non rigid deformations as in
(2.10), the geometrical Ąrst order derivatives of 2.12 are needed for each kind
of deformation. A model of this ŤlinearizedŤ set of deformations has been
collected and used for the analysis of EFs.

2.4.2 Stochastic analysis and Correction Action: EFCC
currents optimization

In order to correctly characterize the EFs and to allow a reliable design of the
EFCCS, usually a reasonable worst case is looked for by means of a Monte
Carlo analysis. The linearized model (2.9) is helpful for high performance
computation of millions of random cases of deformations, since only matrix
multiplications are needed. A distribution of harmonicsŠ values B̃

c

harms,
with c=1,. . .Ncases, can be obtained from (2.11), by randomly varying the
vector ∆p ≙ ∥∆p(1),∆p(2), . . . , ∆p(N)∥ within the allowed tolerances for each
deformation parameter.

Each examined case B̃
c

harms can be used as the input of a EFCCs currents
optimization tool solving the system:

G̃ ICC
c
≙ B̃

c

harms (2.14)

where G̃ is a C 3 × nEF CCs matrix linking the harmonics for unitary currents
and the nEF CCs feeders ICC

c. It is useful rewrite (2.14) in order to split
real and imaginary parts of BOV F

m,n=1 obtaining a 6×nEF CCs. Typically, since
nEF CCs > 6, then the routine acts on the under-determined system looking for
a solution minimizes the maximum EFCCs currents used to reduce the overall
EFs below the required threshold. Properly, system in (2.14) is replaced by
the minimization of a quadratic function:
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min
ICC

{1

2
((ICC

c)T G̃T
W TWG̃Ic

CC) − (((B̃c

harms)T WWG̃)T Ic
CC)} (2.15)

where lb ≤ ICC
c
≤ ub, W is a suitable regularization matrix and lb and ub

are vectors with the current limits[24]. The MATLAB® tool quadprog [26]
has been used to solve (2.15). Finally, the percentage of corrected cases can
be obtained. The candidateŠs main contribution was to develop the routine
for optimising the EFCC currents, then used to reduce the EFs of each case
returned by the stochastic analysis.
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3
Error Ąelds and linearized

plasma response: MARS-F

Non-axisymmetric coil systems on major tokamaks are installed because they
provide the opportunity of having ELM-free operation and correcting the error
Ąelds. Understanding the plasma response to the applied Ąelds is a crucial
issue, since very small non-axisymmetric Ąelds can have surprisingly large
consequences. Here, the derivation of the linear MHD equations is presented
together with the MARS-F equilibrium code, in order to treat the plasma
response to the EFs using the Overlap Field Criterion. The main contribution
of the candidate is highlighted in Section 3.4.

3.1 Linearized MHD

The MHD model allows to study the equilibrium and stability conditions
of a plasma, modeled as a conducting Ćuid interacting with electro-

magnetic Ąelds[1]. The plasma is viewed as a continuous Ćuid characterized
by distributions of mass density ρ, temperature T , velocity v related to both
electric E and magnetic B Ąeld at each point r of space and at each instant
t. The model is based on some important assumptions:

- overall neutral plasma, i.e., in case of hydrogen isotopes, ne ≙ ni ≡ n

(ne and ni are the electrons and ions density respectively).

- negligible electron mass, hence ρ ≙ nm ≈ nmi, where m and mi are the
average particle mass and ion mass respectively;
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3.1. LINEARIZED MHD

- thermodynamic equilibrium, i.e., ions and electrons at same tempera-
ture T ( isothermy assumption);

- absence of collisions;

- slow, non-relativistic phenomena, so that the displacement current can
be neglected(1/τ << ωp), where τ represents the characteristic time
evolution of the quantities and ωp is the plasma frequency;

From these assumptions, it is possible to obtain the equations that con-
stitute the MHD model:

∂B

∂t
≙ ∇×(v ×B) + η∇2B with η ≙ 1/(µ0σ) (3.1)

ρ
Dv

Dt
≙ −∇p +

1

µ0

(∇×B)×B (3.2)

Dρ

Dt
+ ρ∇⋅ v ≙ 0 (3.3)

p ≙ (kB/m)ρT (3.4)

D

Dt
( p
ργ
) ≙ 0 (3.5)

∇ ⋅B ≙ 0 (3.6)

where η is the magnetic diffusivity, µ0 is the vacuum permeability, σ is the
electrical conductivity, p is the plasma pressure, kB is the Boltzmann constant
and γ is the adiabatic expansion coefficient.

The assumption of small perturbations allows a Ąrst-order derivation
of the MHD equations known as the linearized MHD, which describes the
plasma dynamics around an equilibrium point. The (3.1), ( 3.2), (3.3), (3.4),
(3.5), (3.6) become:

∂B1

∂t
≙ ∇ × (v1 ×B0) (3.7)

ρ
∂v1

∂t
≙ −∇p1 +

1

µ0

(∇×B0) ×B1 +
1

µ0

(∇ ×B1) ×B0 (3.8)

∂ρ1

∂t
≙ −v1 ⋅ ∇ρ0 − ρ0∇ ⋅ v1 (3.9)
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∂p1

∂t
≙ −v1 ⋅∇p0 − γp0∇ ⋅ v1 (3.10)

where each variable is described as the sum of a contribution to equilibrium
(with subscript 0 to indicate zero order) and one due to small perturbations
(with subscript 1 to indicate order 1).

Introducing the displacement vector ξ(r0, t), such that:

r ≙ r0 + ξ (3.11)

it follows that:

v ≙
dr

dt
≙
dr0

dt
+
∂ξ

∂t
+ (v1 ⋅ ∇)ξ (3.12)

where r is the position vector and v is the velocity vector. Remembering that
v0 ≙

∂r0

∂t
≙ 0 and neglecting second-order terms in the convective derivative,

it can be deduced that:

v ≙ v1 ≙
∂ξ

∂t
(3.13)

Substituting this expression for the velocity into the conservation of mass
equation 3.9, yields to the following expression for mass density:

ρ1 ≙ −ξ ⋅ ∇ρ0 − ρ0∇ ⋅ ξ (3.14)

In other words, the mass density depends on both a positional change
term (ξ) and a deformation term (∇ ⋅ ξ) of the volume. With similar math
on equations (3.7) and (3.10) it is possible to obtain:

B1 ≙ ∇×(ξ ×B0) (3.15)

p1 ≙ −ξ ⋅ ∇p0 − γp0∇ ⋅ ξ (3.16)

Substituting the three results obtained into equation (3.8), we get:

ρ0

∂2ξ

∂t2
≙ F (ξ) ≙ ∇(ξ ⋅ ∇p0 + γp0∇ ⋅ ξ)

+
1

µ0

∥(∇×B0) × (∇×(ξ ×B0)) +∇×(∇×(ξ ×B0))×B0∥ (3.17)

This equation describes the evolution of the displacement vector ξ for a
given equilibrium (p0, ρ0, B0).
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3.2 MARS-F code overview

The study of plasma responses to external Ąelds such as EFs can be ap-
proached in multiple ways, such as treating it as an initial value problem,
wherein the systemŠs evolution is observed from an initial unperturbed state,
or by adopting a nearby perturbed equilibrium approach. Researchers em-
ploy both linear and nonlinear models in these analyses. ItŠs worth noting
that the choice of the approach, and sometimes even the same approach, can
produce different results [2]. These outcomes are inĆuenced by the physical
model used, particularly whether one assumes an ideal or dissipative plasma.
In the case of linear models, like the MARS-F code [3], the plasma response
can be large, and these models may be inaccurate even when the external Ąeld
is relatively small. MARS-F solves the linearized MHD (3.7)(3.8)(3.9)(3.10)
for three-dimensional perturbations in two-dimensional toroidal geometry.
The plasma velocity, the perturbed magnetic Ąeld and the pressure are used
as unknowns. The code is based on a Ąnite element discretization in the
radial direction, and Fourier discretization in the poloidal direction, i.e., as
the sum of a Ąnite number of poloidal modes eimχ, where m is the poloidal
harmonic number, and χ is the generalised poloidal angle. Fourier expan-
sion is also considered along the toroidal angle ϕ, i.e., considering the term
ejnφ in the basis functions for the n-th toroidal mode number. The plasma
response to a given magnetic perturbation on a suitable Coupling Surface
(CS) is computed as a plasma response matrix. In the past, MARS-F was
effectively integrated with the CARIDDI code [4]. CARIDDI allows a full
volumetric three-dimensional description of the conducting structures and a
resulting detailed analysis of such instabilities. This integration resulted in
the CarMa code, which is designed for investigating plasma MHD instabili-
ties in the presence of 3D eddy currents within the conductive structures of
a tokamak [5]. The coupling was performed by assuming that the plasma
inertia (and, with it, all Alfven wave-like phenomena) can be neglected on
the time scale of interest, which is dictated by the relevant electromagnetic
time of the metallic structures. Plasma coupling with the metallic structures
has been performed using a suitable surface S. In particular, by adopting
the Fourier decomposition in poloidal and toroidal modes, it turns out that
each toroidal mode can be associated with a matrix (additively) perturbing
the inductance matrix that commonly describes the magnetic coupling of
currents in vacuum.
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3.3 The Overlap Field Criterion

The general importance of the plasma response for EFs correction was already
demonstrated in different tokamaks [6][7][8]. The plasma in fact can both
amplify and shield external Ąelds [9][10] and both effects operate in most of
the interesting applications, including Resistive Wall Mode (RWM) stability,
error Ąeld ampliĄcation, angular momentum transport, and ELM suppres-
sion. The estimation of the linear plasma response to the EFs, based on
the Singular Value Decomposition (SVD) technique, has recently been suc-
cessfully applied to both DIII-D [3] and ITER [11] plasmas. The basic idea
is the following. Suppose a stable plasma response to an imposed external
vacuum Ąeld is the superposition of the response from all stable eigenmodes
of the system, for a given toroidal mode number n. In the discrete level (e.g.
in the poloidal Fourier space), the response of all the eigenmodes forms a
response matrix. The diagonal elements of the SVD of this response matrix
indicates the sensitivity of the plasma response to the corresponding eigen-
vector. In other words, the strongest response from the plasma corresponds
to the largest singular value of the m ×m response matrix M , where m is
the total number of poloidal harmonics for a given toroidal number n. This
strongest response is called Overlap Field (OVF). the SVD eigenvectors, and
correcting (i.e. cancelling) the most sensitive component using the EFCC
Ąeld, a signiĄcant reduction of the plasma response to the EF Ąeld is ex-
pected. The cases n = 1 and 2, are generally considered due to their greater
impact on plasma performance, but the procedure is applicable to any higher
n. The procedure for the computation of the OVF for just n=1 is:

- computation of vacuum magnetic Ąeld on the coupling surface due to
unit perturbations of coils (sensitivity);

- calculation of (m=-15:15, n=1) 31 harmonics per perturbation;

- calculation of (m=-15:15, n=1) 31 harmonics of vacuum EFCC Ąeld;

- multiplication of the vacuum Ąeld by the dominant eigenfunction ob-
taining the OVF.

3.4 Pure electromagnetic model and MARS-

F interface matrices coupling

As mentioned before, the CARIDDI code [4] was used in the past, together
with the equilibrium code MARS, to take into account the plasma response
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and the eddy currents in the conductive structure [5][12][13]. A plasma equi-
librium code can be combined with a pure electromagnetic code for EFs
plasma response estimation. MARS-F returns the total magnetic Ąeld start-
ing from the vacuum normal component of the perturbed Ąeld on a suitable
coupling surface SC (Ąg. 3.1) in input. Therefore, an accurate computation
of the perturbed Ąeld is needed. The main contribution of the candidate con-
sisted in coupling the pure electromagnetic model in (2.9) and the MARS-F
linearized plasma response, for treating EFs in the presence of plasmas.

Figure 3.1: Coupling surface points (blue), normal unit vectors n̂ (orange
arrow) and surrounding magnetic system (CS, PF and TF) (black) sections

The coupling procedure consists in: i) computing the vacuum normal
component of the perturbed Ąeld ∆BCS

n on SC with a pure electromagnetic
model (such as CARIDDI or the model in (2.9)); ii) projecting ∆BCS

n on a
double Fourier space of a Ąnite dimension (θ,ϕ); iii) using the resulting spec-
trum as input of MARS-F to return the spectrum of the total Ąeld (including
the plasma response). The the coupling scheme between MARS-F and the
vacuum error Ąeld model based on the sticks is shown in Fig 3.2.
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Figure 3.2: Block diagram of the coupling between MARS-F and the vacuum
error Ąeld model.

where:

⋅ ∆p is the vector collecting the deformation parameters;

⋅ MCoils is the matrix that links the deformation parameters to the nor-

mal component of error Ąeld ∆BCS
n on SC (Fig. 3.3);

⋅ Ṽ
MARS−F

is a suitable vector of weights for selecting the dominant
singular value to compute the Overlap Ąeld BOV F

m,n=1 and m the poloidal
harmonic order

It is important to highlight that a suitable discretization of the coils and
SC is needed to reach high accuracy.

Figure 3.3: Example of a coupling surface points (blue) and normal unit
vectors n̂ (orange arrows).

A model for the assembly inaccuracies, such as independent rigid dis-
placement and rotations of coils, has been developed and validated for the
European DEMO tokamak, and the coupling with MARS-F code has been
tested in order to measure the plasma response to this misalignmentŠs (see
Chapter 6).
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Similarly to (2.14), a reasonable worst case is looked for by means of a
Monte Carlo analysis. Each examined case BOV F

m,n=1 can be used as the input
of a EFCCs currents optimization tool solving the system:

G̃
OV F

ICC
c
≙ BOV F

m,n=1 (3.18)

where, in this case, G̃
OV F

is a complex vector of nEF CCs elements linking

the Overlap Ąeld for unit currents and the nEF CCs feeders ICC
c. It is useful

rewrite (3.18) in order to split real and imaginary parts of BOV F
m,n=1 obtaining

a 2×nEF CCs. Typically nEF CCs > 2, then the routine acts on the under-
determined system looking for a solution minimizes the maximum EFCCs
currents used to reduce the overall OVF below the required threshold. Sys-
tem in (3.18) is solved using MATLAB® tool quadprog [14] as an optimiza-
tion problem. The candidateŠs main contribution was to readjust, in terms
of the OVF, the routine for the EFCC currents optimization in Section 2.4.2,
then used to reduce the EFs of each case returned by the stochastic analysis
in the presence of plasmas.
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4
Accurate magnetic Ąeld
description for a plasma

response model

The plasma equilibrium conĄgurations, obtained via standard Ąnite element
formulations, as solutions of the Grad-Shafranov equation in terms of poloidal
Ćux using linear triangles, provide the magnetic Ćux with an accuracy O(h2).
However, the poloidal magnetic Ąeld is obtained with a lower accuracy O(h)
and is discontinuous across adjacent elements, with consequent problems in
the derivation of linearized models for MHD stability analysis. This requires
the calculation of terms related to magnetic Ąeld derivatives. The method
shown here, based on the HelmholtzŠs theorem, achieves continuity and con-
vergence rate of order O(h2) for the magnetic Ąeld by using three-node linear
triangular Ąnite elements. It can be implemented as a post-processor of the
magnetic Ćux solution obtained with linear triangles, in such a way to provide
the magnetic Ąeld with an accuracy O(h2). The continuity properties of the
magnetic Ąeld provide a high level of accuracy and the possibility of deriving
reliable linearized models with a limited computational effort. The accuracy is
highly reliable for some applications requiring a high precision in the vicinity
of magnetic poloidal Ąeld null points, like for instance breakdown analysis,
or control of the X-point of diverted conĄgurations in a tokamak. The ef-
fectiveness of the method is shown in linear and nonlinear cases for which
analytical solutions are available. The main contribution of the candidate is
highlighted in Section 4.3.
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4.1. GRAD-SHAFRANOV EQUATION SOLUTION GUARANTEEING
THE MAGNETIC FIELD CONTINUITY

4.1 Grad-Shafranov equation solution guar-

anteeing the magnetic Ąeld continuity

MHD equilibria of 2D axisymmetric plasmas in toroidal nuclear fu-
sion devices are usually obtained by numerically solving the Grad-

Shafranov equation in terms of the magnetic poloidal Ćux. Some numerical
codes have been developed using Ąnite element schemes, assuming the mag-
netic poloidal Ćux Ψ (or ψ = Ψ/2π) as basic unknown. In most of them
[1][2][3][4][5], the shape functions are in H1, i.e., square integrable and con-
tinuous, with Ąrst derivatives square integrable and piecewise continuous.
The results obtained with these shape functions are accurate enough for most
applications like Ąxed and free boundary analysis, design of the poloidal Ąeld
system, simulation of plasma scenarios, design and veriĄcation of closed loop
magnetic control systems, etc. However, these formulations have the main
disadvantage that the value of the magnetic Ąeld is not continuous across
adjacent mesh elements, and this yields several consequences.

As shown in [6], for linear or nonlinear elliptic problems, monotonicity of
the operator and quasi-uniformity of the meshes guarantee that the conver-
gence rate of the solution is O(h2), i.e. the error approaches zero with the
square of the mesh size h. When solving the Grad-Shafranov equation with
linear three-node triangular elements, the convergence rate of the poloidal
Ćux is indeed quadratic, i.e., O(h2). However, the error on the magnetic Ąeld
is O(h), i.e., approaches zero linearly, since the gradient of the magnetic Ćux
is uniform in each triangle. This fact also implies that the location of the
X-point of a diverted conĄguration, which is a null of the poloidal Ąeld, is
necessarily approximated by the position of a node of the mesh. Another
consequence is that the sensitivity analysis with respect to the position of
the magnetic diagnostics is cumbersome. The use of quadratic six-node tri-
angles [2][3] does not yield signiĄcant beneĄts, as the continuity of the Ąeld
across the elements is not guaranteed. The poor convergence of the mag-
netic Ąeld is not the unique drawback. The derivation of the linearized MHD
model for stability analysis [7] calls for the calculation of terms related to the
derivatives of the Ąelds, even using variational or weak formulations. This
is one of the main reasons why the M3D-C1 code adopts two-dimensional,
reduced-quintic triangular Ąnite elements with 18 degrees of freedom in each
triangle [8]. JOREK, a non-linear MHD code for tokamak plasmas [9], makes
use of 4-vertex elements with 16 degrees of freedom for similar reasons. The
formulation introduced here [10] achieves continuity and convergence rate of
order O(h2) for the magnetic Ąeld by using three-node linear triangles, based
on an extension of the error Ąeld approach that dates back to 1981 [11] and
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is based on two steps. The Ąrst step is the calculation of the poloidal Ćux.
The second step is an application of the procedure proposed in [11] for a
more accurate determination of the magnetic Ąeld. Furthermore, it should
be highlighted that since the method is based on HelmholtzŠs theorem, the
uniqueness of a vector Ąeld of whose curl and divergence are known in the
domain, is guaranteed if suitable boundary conditions are prescribed.

4.2 Grad-Shafranov equation for the poloidal

Ćux

In a 2D axisymmetric geometry, using a cylindrical coordinate system (r, ϕ,
z), the magnetic Ćux density B and the current density J can be expressed
as:

B ≙ ∇ψ ×
iφ

r
+
f

r
iφ (4.1)

J ≙ ∇(f
µ
) × iφ

r
+Liφ (4.2)

where iφ is the unit vector in the toroidal direction, µ is the magnetic perme-
ability, f is the poloidal current function, given by the toroidal Ąeld multiplied
by the radial coordinate f ≙ rBφ, and:

L ≙ −
∂

∂r

1

µr

∂ψ

∂r
−
∂

∂z

1

µr

∂ψ

∂z
(4.3)

which is obtained by (4.1)(4.2) when just AmpereŠs law along the toroidal
direction is considered.

Inside the plasma, a region Ωp in a poloidal plane rz with the magnetic
permeability of the vacuum µ ≙ µ0 (Fig. 4.1), the toroidal component of the
current density Jφ is given by:

Jφ ≙ rp
′(ψ) + ff ′(ψ)

µ0r
(4.4)

according to the Grad-Shafranov equation [1][2][3][4][5]:

Lψ ≙ rp′ (ψ) + ff ′ (ψ)
µ0r

in Ωp (4.5)

which is an elliptic second order partial differential equation, where the pro-
Ąles of poloidal current function f and kinetic pressure p are prescribed as
functions of the poloidal Ćux per radian ψ.
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Figure 4.1: Sketch of a plasma region: cross section Ωp in a poloidal plane
rz, showing normal and tangential unit vectors n and t on its boundary ∂Ωp.

The Grad-Shafranov equation is closed by suitable Dirichlet boundary
conditions on ∂Ωp if the plasma shape is prescribed:

ψ ≙ ψb on ∂Ωp (4.6)

and in this case (4.5) and (4.6) deĄne a boundary value problem, usually
denoted as Ąxed boundary problem. Otherwise, (4.5) has to be coupled
to MaxwellŠs and circuit equations outside the plasma and in this case the
formulation is referred to as free boundary problem, being the plasma shape a
result of the analysis. Here, for the sake of simplicity, the focus is on problem
(4.5)-(4.6), but the method is also applicable to the free boundary case as
well. It is worth noticing that problem (4.5)-(4.6) is linear or non-linear,
depending on the proĄles p′(ψ) and ff ′(ψ).
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4.3 Field error approach for the calculation

of the poloidal Ćux gradient

Once problem (4.5)-(4.6) is solved in terms of ψ and the poloidal current func-
tion is obtained by the proĄle f(ψ), the calculation of J and B is straight-
forward from (4.1)-(4.2). This is the standard procedure usually adopted
in plasma equilibrium codes. However, as outlined in the introduction, the
continuity properties of the magnetic Ąeld are not satisfactory for some ap-
plications when using Ąrst order triangular elements for ψ.

Continuity and O(h2) convergence rate of ψ are automatically transferred
to p(ψ),f(ψ) and hence to Bφ ≙ f(ψ)/r and to Jφ ≙ rp′(ψ) + ff ′(ψ)/µ0r. A
dramatic improvement can be achieved by using the approach proposed by
[11] for a more accurate calculation of g ≙ ∇ψ and hence of the poloidal Ąeld
Bpol ≙ ∇ψ × iφ/r.

The poloidal Ąeld is solenoidal, hence:

∇ ⋅Bpol ≙ 0 in Ωp (4.7)

Another relationship is obtained by AmpereŠs law along the toroidal di-
rection:

∇ ×Bpol ≙ µ0Jφiφ in Ωp (4.8)

Problem (4.7)-(4.8) is closed by the boundary condition:

n ⋅Bpol ≙
1

r

∂ψb

∂t
on ∂Ωp (4.9)

where n is the unit outward normal vector, t ≙ iφ ×n is the unit tangential
vector, and ∂ψb/∂t is the tangential derivative of ψb, which is zero if ∂Ωp is
the interface between plasma and vacuum (where ψb is constant).

The plasma region is simply connected in the 2D domain Ωp in the
poloidal plane and boundary condition (4.9) is certainly compatible with
(4.7). Therefore, according to HelmholtzŠs theorem, problem (4.7)-(4.9)
yields a unique solution for the poloidal Ąeld Bpol ≙ g × iφ/r and can be
reformulated in variational terms as the minimization of an error functional
in terms of g ≙ ∇ψ:

min
1

2
{ˆ

Ωp

[(∇ ⋅Bpol)2 + (∇ ×Bpol − µ0Jφiφ)2] r2dΩ

+

ˆ

∂Ωp

[(n ⋅Bpol −
∂ψb

∂t
/r)2] rdΓ} (4.10)
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4.3.1 Finite element procedure

The Ąnite element procedure follows the two steps depicted in the previous
section. The Ąrst step is the standard Ąnite element solution in terms of
poloidal Ćux per radian ψ using three-node linear triangles [1][2][3][4]. Fig.
4.2 shows an example of mesh of the plasma region Ωp.

Figure 4.2: Sketch of a plasma region: discretization of Ωp with linear trian-
gular Ąnite elements.

The second step is an extension of the procedure proposed in [4] for the
determination of the vector Ąeld g ≙ ∇ψ.

ψ(r, z) ≙ N

∑
k

ckwk(r, z) (4.11)

where the ck coefficients are the nodal values, since the generic wk shape
function is 1 at node k and zero at the other nodal points, and N is the
total number of nodes. Therefore, the values corresponding to the boundary
nodes are directly given by (4.6).
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Figure 4.3: Three-node linear triangles: a) three degrees of freedom (scalar
shape functions w1,w2,w3) for the calculation of the poloidal Ćux; b) six
degrees of freedom for the calculation of g ≙ ∇ψ (vector shape functions
w1 ≙ u1 ≙ w1ir, w2 ≙ u2 ≙ w2ir, w3 ≙ u3 ≙ w3ir, w4 ≙ v1 ≙ w1iz, w5 ≙ v2 ≙

w2iz, w6 ≙ v3 ≙ w3iz, where ir and iz are the unit vectors along r and z).

Galerkin weak formulation applied to (4.3), with weight functions coinci-
dent with shape functions, yields [12]:

ˆ

Ωp

∇wi ⋅∇ψ

r
dΩ ≙ µ0

ˆ

Ωp

wi Jφ dΩ (4.12)

Applying the same approach to (4.5), the values of the coefficients of ex-
pansion (4.11) corresponding to the internal nodes are obtained from system:

ˆ

Ωp

∇wi ⋅∇ψ

r
dΩ ≙

ˆ

Ωp

wi ∥µ0rp
′(ψ) + ff ′(ψ)

r
∥dΩ (4.13)

which, for the Ąxed boundary problem, is linear or nonlinear, depending on
the proĄles p′(ψ) and ff ′(ψ).
4.3.2 Finite element calculation of the magnetic Ąeld

This step assumes Bpol ≙ g × uφ/r, expanding g as a linear combination of
vector shape functions wk:

g(r, z) ≙ 2N

∑
k

αkwk(r, z) (4.14)

obtained by using nodal basis functions for its radial and vertical compo-
nents in three-node linear elements (Fig. 4.3b) where the αk coefficients are
the nodal amplitudes. Minimization of scalar functional (4.10), rewritten in
terms of g:
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min
1

2
{ˆ

Ωp

(∇ × g)2 dΩ + ˆ
Ωp

∥∇ × (g × iφ)/r − µ0Jφiφ∥2 r2dΩ +

+

ˆ

∂Ωp

[(t ⋅ g − ∂ψb

∂t
)2 /r]dΓ} (4.15)

yields a linear system for the determination of the gk coefficients:

ˆ

Ωp

(∇ ×wi) ⋅ (∇ × g) dΩ +
+

ˆ

Ωp

[∇ × (wi × iφ

r
)] ⋅ ∥∇ × (g ⋅ iφ/r) − µ0Jφiφ∥ r2dΩ+

+

ˆ

∂Ωp

(t ⋅wi) ⋅ (t ⋅ g − ∂ψb

∂t
) /rdΓ ≙ 0

(4.16)

The integration is carried out numerically, with a single Gauss point at
the element center. As suggested in [6], this does not degrade the accuracy
of the solution. The results obtained are shown in the Chapter 6. The
candidateŠs contribution was to develop the post-processing routines based
on the HelmholtzŠs theorem, which return a continuous magnetic Ąeld using
linear triangular elements.

4.4 Planned activities: EF advanced analysis

The linearized MHD (3.7)(3.8)(3.9)(3.10) requires the continuity of the mag-
netic Ąeld across adjacent elements in order to guarantee the computation of
the magnetic Ąeld derivatives. The equation for the displacement (3.17) is
here recalled for convenience:

ρ0

∂2ξ

∂t2
≙ F (ξ) ≙ ∇(ξ ⋅ ∇p0 + γp0∇ ⋅ ξ)+

+
1

µ0

[(∇×B0) × (∇×(ξ ×B0)) +∇× (∇×(ξ ×B0)) ×B0] (4.17)

The two highlighted terms require the Ąeld to be smooth. Nowdays, MHD
codes use high degree of polynomial shape functions to guarantee continuity,
such M3D-C1 and JOREK[8][13]. The method presented above, achieves
continuity and convergence rate of order O(h2) for the magnetic Ąeld by using
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three-node linear triangular Ąnite elements; and allows the development of
a 3D linearized plasma response model. A brief overview of the approach is
here reported.

The problem (4.17) can be closed by a boundary condition:

δξn on ∂Vpl (4.18)

where Vpl is the plasma region.

In the Master Thesis titled ŤDevelopment of a new linearized plasma
response model in a tokamak deviceŤ [14] a 2D plasma model response to
poloidal Ćux disturbance δψb has been faced. For 3D cases, δψb can be
replaced by the normal component of the Ąeld δBn. Here, the main contents
of the method are summarized similarly to the 2D case:

1. A disturbance δBn (or equivalently δξn), is applied as input.

2. The Ąxed boundary problem (4.17) is solved using the strategy shown
in sections 4.2-4.3 for higher accurate Ąeld computation, and δξ is pro-
vided in Vpl.

3. Using the relation δBpl ≙ ∇× (δξ×Bpl,0), the variation of the magnetic
Ąeld δBpl generated by the plasma is computed in Vpl, including the
values on ∂Vpl, where Bpl,0 is the equilibrium magnetic Ąeld due to the
plasma.

4. On ∂Vpl, the contribution of the external disturbance δBn,ext is com-
puted as the difference δBn,ext ≙ δBn − δBn,pl.

5. Finally, the plasma response to a unitary external disturbance can be
computed as:

δBn,pl

δBn,ext

(4.19)

The assessment of the previous model for 3D plasma response is planned
in the future. The presented model could be a valid alternative to the linear
plasma response codes currently used and could provide a more advanced
error Ąeld analysis.
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5
Parametric analysis and model

validation

The characteristic dimensions of a tokamak magnets are in the order of me-
ters, with tolerances in the order of millimeters. Thus, the tool shown in
section 2.4, based on Ąrst order Taylor approximation, should be validated in
order to asses its accuracy to produce a statistical analysis, evaluate the im-
pact on the EFs and optimize the EFCCs currents to counteract them. The
assessment has been performed on both DTT and DEMO devices.

5.1 Assessment of the accuracy level of mag-

netic Ąeld

The analysis aimed at investigating the discretization level of the magnets
varying the number of sticks was carried out by comparing the magnetic

Ąeld calculated analytically (as a reference) with the numerically calculated
Ąeld using the Biot-Savart law. This comparison was performed using the
DTT geometry data, dating back to 2022, reported in Tabs. 5.1, 5.2, 5.3,
5.4 [1][2], feeding the magnets at their maximum current and varying the
number of sticks per Ąlament for CSs, PFs and TFs respectively in order to
ensure the accuracy about 1µT. In Fig.5.1a and Fig.5.1b two examples of
discretization levels of a DTT PF coil are shown.
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5.1. ASSESSMENT OF THE ACCURACY LEVEL OF MAGNETIC
FIELD

(a)

(b)

Figure 5.1: Coarse discretization level (about 20 sticks) (a) and intermediate
discretization level (about 200 sticks) (b) of a DTT PF magnet (top view).
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Name RB [m] ZB [m] DR [m] DZ [m] nR nZ
CS3U-H 0.4896 2.1658 0.1213 0.7880 4 17
CS3U-M 0.5960 2.1658 0.0915 0.7880 4 20
CS3U-L 0.6935 2.1658 0.1035 0.7880 6 24
CS2U-H 0.4896 1.2994 0.1213 0.7880 4 17
CS2U-M 0.5960 1.2994 0.0915 0.7880 4 20
CS2U-L 0.6935 1.2994 0.1035 0.7880 6 24
CS1U-H 0.4896 0.4331 0.1213 0.7880 4 17
CS1U-M 0.5960 0.4331 0.0915 0.7880 4 20
CS1U-L 0.6935 0.4331 0.1035 0.7880 6 24

Table 5.1: DTT CS system geometrical data info adopted.

Name RB [m] ZB [m] DR [m] DZ [m] nR nZ
PF1 1.4000 2.7600 0.5100 0.5904 18 20
PF2 3.0795 2.5340 0.2790 0.5168 10 16
PF3 4.3511 1.0150 0.3898 0.4522 14 14
PF4 1.4000 2.7600 0.5100 0.5904 18 20
PF5 3.0795 2.5340 0.2790 0.5168 10 16
PF6 4.3511 1.0150 0.3898 0.4522 14 14

Table 5.2: DTT PF system geometrical data info adopted.

Nodes R nodes [m] Z nodes [m]
BŠ 1.8606 -2.2113
AŠ 1.0422 -1.3929
E 1.0422 0
A 1.0422 1.3754
B 1.8606 2.1939
C 3.7962 0.6738
D 3.8732 0
DŠ 3.7821 -0.7456
CŠ 2.8609 -1.9533

Table 5.3: R-Z control points coordinates for the DTT TF D-shape (see Fig.
5.2).
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FIELD

Centers R [m] Z [m] Rays [m]
O1 1.8606 -1.3929 0.8184
O2 1.8606 1.3755 0.8184
O3 1.8784 0.2241 1.9698
O4 0.9584 0.0083 2.9148
O5 1.1285 -0.0442 2.7448
O6 1.8660 -0.2392 1.9819
O7 1.9009 -0.2993 1.9124

Table 5.4: R-Z centers coordinates and rays for the DTT TF D-shape arcs
(see Fig. 5.2).

Figure 5.2: DTT TF D-shape sketch within geometrical data info adopted
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The results about the magnets discretization, reported in Tabs. 5.5, 5.6
and 5.7, show that approximately 4000 sticks per Ąlament for each magnet
are sufficient to guarantee the required level of accuracy.

# of sticks 1000 2000 3000 4000 5000 6000 7000
Max Error [µT] 6.16 0.491 0.218 0.123 0.0786 0.0546 0.040

Table 5.5: CS: Ąeld error by varying source Ąlament discretization of CS1
(the closest to the surface), where CS1 is obtained as the CS1-U H,CS1-U M
and CS1-U L series (see Fig. 6.10).

# of sticks 1000 2000 3000 4000 5000 6000 7000
Max Error [µT] 6.16 1.75 0.777 0.437 0.247 0.171 0.126

Table 5.6: PF: Ąeld error by varying source Ąlament discretization (PF3 the
closest to the surface).

# of sticks 1000 2000 3000 4000 5000 6000 7000
Max Error [µT] 6.05 1.52 1.02 0.585 0.381 0.269 0.201

Table 5.7: TF: Ąeld error by varying source Ąlament discretization (TF1).

5.2 Sampling of the q=2 surface in order to

stabilize of the accuracy of TMEI har-

monics.

An appropriate level of discretization of the q=2 surface was achieved to en-
sure adequate accuracy of the TMEI harmonics. In particular: (i) a reference
instant was Ąxed (since the surface is associated with a speciĄc instant, and
at Ćat top the surface has the maximum volume); (ii) the number of points
on the surface was varied to achieve stabilization of the signiĄcant digits of
the TMEI harmonics at a desired level. The chosen instant as reference was a
Ćat-top instant of a Single-Null scenario of DTT [3]. In Fig.5.3a and Fig.5.3b
two examples of discretization levels of a DTT q=2 surface are shown.
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5.2. SAMPLING OF THE Q=2 SURFACE IN ORDER TO STABILIZE
OF THE ACCURACY OF TMEI HARMONICS.

(a)

(b)

Figure 5.3: Coarse poloidal discretization level (about 30 samples) (a) and
intermediate discretization level (about 100 samples) (b), with 50 cross sec-
tions along the toroidal direction, of the DTT q=2 surface at the Ćat-top
reference instant.

68



CHAPTER 5. PARAMETRIC ANALYSIS AND MODEL VALIDATION

Harmonics B̃1,1, B̃1,2 and B̃1,3 were calculated by varying the number of
samples along theta Nθ={400, 500, 600} and Ąxing the sampling along ϕ

at 50 sections, and compared with the reference case at N ref
θ =700. The

three cases were obtained by rotating (since rotations are subject to greater
approximation errors) CSs, PFs and TFs, independently fed at the current
values of associated to the instant, and choosing the appropriate level of
discretization (4000 sticks for each coils Ąlament) in order to ensure the
accuracy about 1µT. The results about the q=2 discretization, shown in
Tabs. 5.8, 5.9 and 5.10, have suggested to use 600 poloidal samples and 50
cross sections along the toroidal direction in order to guarantee the accuracy
level needed.

poloidal samples ∣∣∆B̃1,1∣∣ [T] ∣∣∆B̃1,2∣∣ [T] ∣∣∆B̃1,3∣∣ [T]
400 2.741e-06 2.701e-06 2.083e-06
500 1.751e-06 1.701e-06 1.192e-06
600 5.441e-07 5.762e-07 4.619e-07

Table 5.8: Harmonics differences obtained comparing q=2 reference poloidal
sampling (N ref

θ ≙700 samples) and the three cases of sampling due to CS1
(obtained as the CS1-U H, CS1-U M and CS1-U L series, see Fig. 6.10)
rotation along x (y) producing a maximum displacement of 4mm.

poloidal samples ∣∣∆B̃1,1∣∣ [T] ∣∣∆B̃1,2∣∣ [T] ∣∣∆B̃1,3∣∣ [T]
400 8.349e-07 1.765e-06 5.506e-07
500 5.782e-07 1.031e-06 3.359e-07
600 1.803e-07 4.014e-07 8.425e-08

Table 5.9: Harmonics differences obtained comparing q=2 reference poloidal
sampling (N ref

θ ≙700 samples) and the three cases of sampling due to PF3
rotation along x (y) producing a maximum displacement of 4mm.

poloidal samples ∣∣∆B̃1,1∣∣ [T] ∣∣∆B̃1,2∣∣ [T] ∣∣∆B̃1,3∣∣ [T]
400 2.618e-07 1.452e-06 2.565e-07
500 1.902e-07 8.051e-07 1.317e-07
600 5.144e-08 3.461e-07 7.383e-08

Table 5.10: Harmonics differences obtained comparing q=2 reference poloidal
sampling (N ref

θ ≙700 samples) and the three cases of sampling due to TF
rotation along x (y) producing a maximum displacement of 4mm.
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5.3. VALIDATION OF THE FIRST ORDER TAYLOR
APPROXIMATION ON DTT

5.3 Validation of the Ąrst order Taylor ap-

proximation on DTT

Validation of the PF, CS, TF Taylor approximation: comparison between
the ŤapproximateŤ TMEI harmonics (obtained using the Ąrst order Taylor
approximation) and the actual TMEI harmonics within the bounds of 1µT.
Tables 5.11, 5.12, 5.13, 5.14, 5.15, 5.16 and 5.17 show the results about the
linearity check on the harmonics, while Fig. 5.4 shows the normal component
of the EF amplitude on the q=2 points of both the methods for a TF tilting
with a maximum displacement of 4 mm. The discrepancy is less than 2%.

TMEI harms Actual [T] Approximate [T] ∆ [T]

B̃1,1 6.8873e-06-5.9813e-06i 6.8873e-06-5.9813e-06i -1.5404e-12-1.2757e-12i
B̃1,2 1.2689e-06+5.2724e-06i 1.2689e-06+5.2724e-06i 2.1661e-12-3.5998e-13i
B̃1,3 -2.7111e-06-2.4265e-07i -2.7111e-06-2.4265e-07i -4.0336e-13+1.4542e-12i

Table 5.11: CS3: comparison of actual and approximate harmonic: transla-
tions in x (y) of 1mm.

TMEI harms Actual [T] Approximate [T] ∆ [T]

B̃1,1 1.378e-5-1.196e-5i 1.378e-5-1.196e-5i -1.2323e-11-1.0205e-11i
B̃1,2 2.538e-6+1.055e-5i 2.538e-6+1.055e-5i 1.7329e-11-2.8799e-12i
B̃1,3 -5.422e-6-4.853e-7i -5.422e-6-4.853e-7i -3.2269e-12+1.1634e-11i

Table 5.12: CS3: comparison of actual and approximate harmonic: transla-
tions in x (y) of 2mm.

TMEI harms Actual [T] Approximate [T] ∆ [T]

B̃1,1 2.7549e-05-2.3925e-05i 2.7549e-05-2.3925e-05i -9.8586e-11-8.1643e-11i
B̃1,2 5.0756e-06+2.109e-05i 5.0755e-06+2.109e-05i 1.3863e-10-2.304e-11i
B̃1,3 -1.0844e-05-9.7051e-07i -1.0844e-05-9.7061e-07i -2.5815e-11+9.3071e-11i

Table 5.13: CS3: comparison of actual and approximate harmonic: transla-
tions in x (y) of 4mm.

TMEI harms Actual [T] Approximate [T] ∆ [T]

B̃1,1 -2.1464e-05+1.5018e-05i -2.1464e-05+1.5018e-05i -3.7045e-11+2.395e-11i
B̃1,2 -2.5411e-05+1.705e-05i -2.5411e-05+1.705e-05i -6.8007e-11+6.4314e-12i
B̃1,3 -1.9484e-05+5.4413e-06i -1.9484e-05+5.4413e-06i -7.4846e-11-2.7112e-11i

Table 5.14: PF3: comparison of actual and approximate harmonic: transla-
tions in x (y) of 4mm.
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TMEI harms Actual [T] Approximate [T] ∆ [T]

B̃1,1 1.8439e-05-4.8542e-05i 1.8402e-05-4.8473e-05i 3.7261e-08-6.8611e-08i
B̃1,2 3.2766e-05-1.7622e-05i 3.2648e-05-1.7604e-05i 1.1812e-07-1.841e-08i
B̃1,3 1.9775e-05-4.7036e-06i 1.9683e-05-4.7145e-06i 9.2599e-08+1.0882e-08i

Table 5.15: PF3: comparison of actual and approximate harmonic: tilting
along x (y) with a maximum displacement of 4mm.

TMEI harms Actual [T] Approximate [T] ∆ [T]

B̃1,1 3.4447e-05-0.00024712i 3.4454e-05-0.00024715i -7.3117e-09+3.1648e-08i
B̃1,2 5.1495e-06+1.0046e-06i 5.1489e-06+1.0054e-06i 6.2063e-10-7.7301e-10i
B̃1,3 -2.0834e-05+1.5072e-05i -2.0837e-05+1.5074e-05i 2.1606e-09-2.2623e-09i

Table 5.16: TF: comparison of actual and approximate harmonic: transla-
tions in x of 4mm (y and z comparable).

TMEI harms Actual [T] Approximate [T] ∆ [T]

B̃1,1 -1.8048e-04+1.3487e-04i -1.8043e-04+1.3492e-04i -4.8839e-08-5.0051e-08i
B̃1,2 -9.4831e-06-2.317e-05i -9.479e-06-2.3291e-05i -4.0798e-09+1.2129e-07i
B̃1,3 1.6688e-05+1.0209e-05i 1.6694e-05+1.0237e-05i -6.4089e-09-2.8171e-08i

Table 5.17: TF: comparison of actual and approximate harmonic: 3D-Spline
on 9 control points, with a maximum deformation of 4mm.

Figure 5.4: DTT TF tilting producing a maximum displacement of 4mm:
comparison between Bn from the 1st order Taylor (blue circles) and direct
computation using MISTIC (orange curve).
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5.4 Validation of the Ąrst order Taylor ap-

proximation tool on DEMO

Here the linearity check has been approached together with the validation of
the MARS-F vacuum interface matrix using the model shown in Section 3.4.
For the linearity check, a tilting producing a maximum displacement of 2mm
of both DEMO PF and TF are considered [3]. The EF has been computed
both using CARIDDI and the 1st Taylor tool. Each coil Ąlament has been
discretized using 4000 sticks and the coupling surface using 99×150 points,
where 99 is the sampling in the toroidal angle ϕ and 150 in the toroidal angle
θ. The comparison between the outputs produced an error less than 2%.
Fig. 5.5 and Fig. 5.6 show the normal component of the EF on the coupling
surface of both the tools for the PF3 and the TF respectively.

Figure 5.5: DEMO PF3 tilting producing a maximum displacement of 2mm:
comparison betweenBn from the 1st order Taylor (blue circles) and CARIDDI
direct computation (orange curve).
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Figure 5.6: DEMO TF tilting producing a maximum displacement of 2mm:
comparison betweenBn from the 1st order Taylor (blue circles) and CARIDDI
direct computation (orange curve).

The MARS-F vacuum response matrix K
resp

on the q=2 surface is used to

compute the poloidal spectrum of the normal component of the EFs starting
from those on the coupling surface, obtained as a result of direct computation
on the coupling surface. Then, a direct computation of such Ąeld on q=2
is also performed. Fig 5.7 and Fig. 5.8 show a good agreement from the
comparison between the direct computation and MARS-F output for PF
tilting and TF tilting respectively.
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Figure 5.7: Vacuum response spectrum due to a PF6 tilting with a maximum
displacement of 1mm: MARS-F interface matrix output (red bars) and direct
computation (blue bars).

Figure 5.8: Vacuum response spectrum due to a TF1 tilting with a maximum
displacement of 1mm: MARS-F interface matrix output (red bars) and direct
computation (blue bars).
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6
Results

The tool presented in Section 2.4, which utilizes a Ąrst-order Taylor approxi-
mation, has been here used to perform a Monte Carlo analysis. This analysis
provided worst cases of EFs resulting from deviations of the magnets from
their nominal conĄguration. Furthermore, the currents of the EFCCs were
optimized for correction purposes. The EFs analysis was carried out for the
DTT, JT60SA and DEMO tokamaks. The JT60SA EFs analysis was per-
formed to validate the results obtained by G. Matsunaga and his research
team. For both JT60SA and DTT devices, the TMEI criterion was em-
ployed, whereas for DEMO, the Overlap Ąeld criterion was chosen to include
the plasma response. Finally, the effectiveness of the method presented in
chapter 4 is benchmarked in two different applications for which analytical
solutions are available.

6.1 JT60SA EFs estimation and correction

Here, the EFs analysis has been performed, considering CS/PF currents
of the Ćat-top instant of the JT60SA reference Scenario and TF cur-

rents, to reproduce comparable results as in [5]. The threshold above which
the effects of EFs are considered harmful in JT60SA has been identiĄed as
100 ppm, but a safety coefficient of 2 has been introduced. The threshold
considered was than:

BT MEI < 0.1 mT (TMEI < 50 ppm) (6.1)
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where BT MEI= TMEI ⋅Bt, and Bt is the toroidal Ąeld on the magnetic axis
of JT60SA.

6.1.1 TMEI Estimation due to magnets misalignments

The TF system consists of 18 identical D-shaped coils, produces a toroidal
Ąeld about 2.25T on the device axis, while the set of axisymmetric coils used is
illustrated in Tab. 6.1 and Tab. 6.2. The PF/CS system has been perturbed
using two typologies of parameters: i) assembly inaccuracies, modelled as
translations respect to x, y and z directions, and rotations respect to x̃//x,
ỹ//y and z axes, passing through the coil barycenter (see Fig. 2.4). TF
assembly inaccuracies are implemented similarly to the PF/CS case but using
a suitable coordinate system (r̃, t̃, z̃) (see Fig. 2.5). Manufacturing errors are
not included in this analysis.

Name RB [m] ZB [m] DR [m] DZ [m] nR nZ
CS1 0.822 2.407 0.327 1.574 23 23
CS2 0.822 0.802 0.327 1.574 23 23
CS3 0.822 -0.802 0.327 1.574 23 23
CS4 0.822 2.407 0.327 1.574 23 23

Table 6.1: JT60SA CS system geometrical info adopted.

Name RB [m] ZB [m] DR [m] DZ [m] nR nZ
PF1 5.801 1.179 0.329 0.334 12 12
PF2 4.607 3.171 0.357 0.334 13 12
PF3 1.913 4.025 0.543 0.428 18 14
PF4 1.913 -4.117 0.543 0.611 18 20
PF5 3.902 -3.722 0.302 0.39 11 14
PF6 5.039 -2.774 0.357 0.39 13 14

Table 6.2: JT60SA PF system geometrical info adopted.

For the stochastic analysis, Ncases=1e6 has been considered and bounds
for the maximum perturbations have been introduced (see in Tab. 6.3). The
histograms of the pdf of the TMEI (BT MEI) and the Ąrst three harmonics
B11, B21 and B31, are reported in Figs. 6.1, 6.2, 6.3 and 6.4 respectively.

78



CHAPTER 6. RESULTS

CS [mm] PF [mm] TF [mm]
Translations 2.0 4.0 4.0

Rotations 2.0 4.0 4.0
Deformations Not present Not present 4.0

Table 6.3: CS, PF and TF deformations bounds.

Figure 6.1: JT60SA predicted BT MEI from TF and PF coils: upper obtained
using the method presented, lower from G. Matsunaga results [5].

Figure 6.2: JT60SA predicted B11 EF harmonic from TF and PF coils: upper
obtained using the method presented, lower from G. Matsunaga results [5].
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Figure 6.3: JT60SA predicted B21 EF harmonic from TF and PF coils: upper
obtained using the method presented, lower from G. Matsunaga results [5].

Figure 6.4: JT60SA predicted B31 EF harmonic from TF and PF coils: upper
obtained using the method presented, lower from G. Matsunaga results [5].

6.1.2 TMEI Correction action

An EFCC system, consisting in three arrays of 6 identical independent Ąla-
mentary copper coils (just the Centre Coils Lines (CCLs) of the saddle coils
considered), is arranged on the inner wall face of the vessel in order to correct
the three poloidal modes of TMEI in JT60SA [5]. In Fig. 6.5 the CCLs of
the 18 EFCCs, are shown. The results are similar to the ones obtained in [5],
but the performance of the present method based on quadratic programming
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is slightly better (Fig. 6.6) probably because a different approach has been
used.

Figure 6.5: EFCCs system in JT-60SA [5].

Figure 6.6: Diagrams of corrected vs. uncorrected TMEIs (Bt∥mT ∥) by
EFCC, left obtained using the method presented, right from G. Matsunaga
results [5].
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The histograms of required EFCC currents, limited within 45 kA are
reported in Figs. 6.7, 6.8 and 6.9.

Figure 6.7: Histogram of required EFCC Upper array of currents: upper
obtained using the method presented, lower from G. Matsunaga results [5].

Figure 6.8: Histogram of required EFCC Middle array of currents: upper
obtained using the method presented, lower from G. Matsunaga results [5].
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Figure 6.9: Histogram of required EFCC Lower array of currents: upper
obtained using the method presented, lower from G. Matsunaga results [5].
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6.2 DTT EFs estimation and correction

Here, the analysis, considering simpliĄed models for the manufacturing and
assembly inaccuracies, such as independent rigid displacement, rotations,
and deformations of coils, has been carried out for DTT [1] to study the
impact of the EFs and design an EFCCs system able to reduce the TMEI
below a speciĄc threshold. The threshold above which the effects of EFs
are considered harmful in DTT has been identiĄed as 100 ppm, but a safety
coefficient of 2 has been introduced. The threshold considered was than:

TMEI < 50 ppm (6.2)

6.2.1 TMEI Estimation due to magnets misalignments

The EFs impact has been performed, considering CS/PF currents of the Sin-
gle Null Ćat-top instant t=36s [2] and TF currents (Tab. 6.4). The TF system
consists of 18 identical D-shaped coils, produces a toroidal Ąeld of 6T on the
device axis, while the set of axisymmetric coils used is illustrated in Tab. 5.1
and Tab. 5.2. The PF/CS system has been perturbed using two typologies
of parameters: i) assembly inaccuracies, modelled as translations respect to
x, y and z directions, and rotations respect to x̃//x, ỹ//y and z axes, passing
through the coil barycenter (see Fig. 2.4). Manufacturing errors, modelled as
deformations, implemented as an elliptical striation parameter and a coil ra-
dius perturbation do not act on n=1 modes since they have no impact on the
TMEI and can be disregarded. TF assembly inaccuracies are implemented
similarly to the PF/CS case but using a suitable coordinate system (r̃, t̃, z̃)
(see Fig. 2.5). The non-rigid deformations, working on TF D-shape, have
been implemented using cubic spline interpolation functions on nine control
points (for more details see section 2.4.1). In Fig. 6.10 a poloidal sketch of
DTT together with the CCLs of the three correction coil arrays is shown.
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Figure 6.10: sketch of DTT magnetic system (black), EFCCs (upper (yellow),
equatorial (blue) and lower (red)) coil proĄles and First Wall (dark green
dots).
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Name Current [MAt]
PF1 4.109
PF2 -1.815
PF3 -1.910
PF4 -3.211
PF5 -2.047
PF6 9.331
CS3U-H -0.07104
CS3L-H -1.346
CS3U-M -0.08358
CS3L-M -1.583
CS3U-L -0.1504
CS3L-L -2.850
CS2U-H 0.3978
CS2L-H -0.9327
CS2U-M 0.4680
CS2L-M -1.097
CS2U-L 0.8424
CS2L-L -1.975
CS1U-H -1.596
CS1L-H 0.2946
CS1U-M -1.878
CS1L-M 0.3466
CS1U-L -3.380
CS1L-L 0.6239
TFs (× 18) 3.520

Table 6.4: CS/PF and TF currents of the Ćat-top reference instant.

For the stochastic analysis, Ncases=1e6 has been considered and bounds
for the maximum perturbations have been introduced (see in Tab. 6.5). A
Gaussian distribution of deformation parameters, appropriately truncated to
Ąt within the bounds, has been used.

CS [mm] PF [mm] TF [mm]
Translations 2.0 4.0 4.0

Rotations 2.0 4.0 4.0
Deformations Not present Not present 4.0

Table 6.5: CS, PF and TF deformations bounds.
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A cumulative distribution function (cdf) has been used to compute 80%,
90% and 95% of the cumulative TMEI values of the probability density func-
tion (pdf). Tab. 6.6 reports the TMEI values for different combinations,
while Fig. 6.11 and Fig. 6.12 show the CS+PF+TF pdf for 1e6 and 1e7
cases, conĄrmation that 1e6 cases are sufficient to characterise worst cases of
TMEI.

Figure 6.11: Pdf of CS+PF+TF contribution to TMEI, 1e6 cases.

Figure 6.12: Pdf of CS+PF+TF contribution to TMEI, 1e7 cases.
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Percentage CS only PF only TF only CS+PF+TF
80% 30.38 39.35 132.8 140.4
90% 35.39 45.48 154.2 162.0
95% 39.55 50.65 172.9 180.8

Table 6.6: TMEI (ppm) values for main percentages of the pdf.

6.2.2 TMEI Correction action

An EFCC system, consisting in three arrays of 9 identical independent Ąl-
amentary copper coils (just the CCLs of the saddle coils considered), is ar-
ranged on the inner wall face of the vessel in order to correct the three
poloidal modes of TMEI in DTT. In Tab. 6.7, the R-Z coordinates of upper
(RU ,ZU) and lower (RL,ZL) extremes of the CCLs poloidal proĄles of each
EFCC, are reported.

RU [m] ZU [m] RL[m] ZL[m]
Lower array 3.093 -0.7737 2.975 -1.072
Equat. array 3.142 0.5251 3.142 -0.5251
Upper array 2.729 1.399 3.109 0.8190

Table 6.7: R-Z coordinates of the CCL proĄles of DTT correction coil arrays.

The analysis has shown that 50kAt are able to reduce the TMEI under
50 ppm in 95% of the cases considered, when the CS+PF+TF set of sources
is used (see Fig. 6.13 and Tab. 6.8)[3]).
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Figure 6.13: Cdf curves of TMEI varying currents constraints of EFCCs for
the CS+PF+TF case. The 95% at 50 ppm has been highlighted.

Currents CS only PF only
TF

only

CS+PF

+TF
TF def. only TF pert. only

10 kAt 100 % 100 % 49.78 % 44.01 % 80.70 % 73.21 %
20 kAt 100 % 100 % 70.72 % 66.12 % 93.77 % 90.17 %
30 kAt 100 % 100 % 84.43 % 80.43 % 98.35 % 97.06 %
40 kAt 100 % 100 % 92.41 % 89.87 % 99.66 % 99.28 %
50 kAt 100 % 100 % 96.62 % 95.18 % 99.95 % 99.84 %
60 kAt 100 % 100 % 98.76 % 97.85 % 100 % 99.98 %

Table 6.8: TMEI below 50 ppm: percentages of corrected cases varying
EFCCs current bounds for different combinations of magnetic sources.
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6.3 DEMO EFs estimation and correction in

presence of plasma response

Here, the analysis, considering simpliĄed models for the manufacturing and
assembly inaccuracies, such as independent rigid displacement, rotations of
coils, has been performed for the EU-DEMO to study the impact of the EFs,
using the overlap Ąeld criterion, and designing an EFCCs system, able to
reduce the perturbations below a speciĄc threshold. The threshold above
which the effects of EFs in presence of plasma reaction are harmful has been
identiĄed as:

OV F < 110 ppm (6.3)

Tab. 6.9 and Tab. 6.10 show the last version of the geometrical info of
CS and PF systems in EU-DEMO. In Fig. 6.14 a poloidal sketch of DEMO
together with the CCLs of the two correction coil arrays is shown.

Name RB [m] ZB [m] DR [m] DZ [m] nR nZ
CS1 2.77 7.07 0.80 2.99 13 50
CS2 2.77 4.08 0.80 2.99 13 50
CS3 2.77 -0.40 0.80 5.97 13 100
CS4 2.77 -4.88 0.80 2.99 13 50
CS5 2.77 -7.86 0.80 2.99 13 50

Table 6.9: DEMO CS system geometrical info adopted.

Name RB [m] ZB [m] DR [m] DZ [m] nR nZ
PF1 5.40 9.26 1.20 1.20 20 20
PF2 14.0 7.90 1.40 1.40 14 14
PF3 17.75 2.50 1.00 1.00 17 17
PF4 17.75 -2.50 1.00 1.00 17 17
PF5 14.0 -7.90 1.40 1.40 23 23
PF6 7.00 -10.50 2.00 2.00 33 33

Table 6.10: DEMO PF system geometrical info adopted
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Figure 6.14: sketch of DEMO magnetic system (black), EFCCs Inner and
outer (red and light blue coil proĄles respectively) and blanket (dark green
rectangles).

6.3.1 Estimation and correction of the overlap Ąeld
due to magnets misalignments

The EFs impact has been performed, considering CS/PF currents of the Ćat-
top instant of the DEMO reference Scenario and TF currents (Tab. 6.11) [4].
The TF system consists of 16 identical D-shaped coils, produces a toroidal
Ąeld about 4.9T on the plasma axis (particular chosen case), while the set of
axisymmetric coils used is illustrated in Tab. 6.9 and Tab. 6.10. The PF/CS
system has been perturbed using two typologies of parameters: i) assembly
inaccuracies, modelled as translations respect to x, y and z directions, and
rotations respect to x̃//x, ỹ//y and z axes, passing through the coil barycenter
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(see Fig 2.4). TF assembly inaccuracies are implemented similarly to the
PF/CS case but using a suitable coordinate system (r̃, t̃, z̃) (see Fig 2.5).
Manufacturing errors are not included in this analysis.

Name Current [MAt]
PF1 12.495
PF2 -3.807
PF3 -7.668
PF4 -1.654
PF5 -9.788
PF6 18.712
CS1 16.11
CS2 4.79
CS3 -3.27
CS4 0.77
CS5 22.01

TFs (× 16) 13.66

Table 6.11: CS/PF and TF currents of the Ćat-top reference instant

For the stochastic analysis, Ncases=1e6 and Ncases=1e7 have been consid-
ered and bounds for the maximum perturbations have been introduced (see
in Tab. 6.12). The bounds are chosen scaling ITER bounds of 9/6 for the
coils misalignments [6]. A uniform distribution of deformation parameters
has been chosen.

CS [mm] PF [mm] TF [mm]
Translations 3.0 3.0 3.0

Rotations 1.5 1.5 3.0 (1.5 along x)
Deformations Not present Not present Not present

Table 6.12: CS, PF and TF deformations bounds

Fig. 6.15 and Fig. 6.16 show the CS+PF+TF pdf of Ncases=1e6 and
Ncases=1e7 respectively and conĄrm 1e6 cases are sufficient to well charac-
terise worst cases of OVF.
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Figure 6.15: Pdf of CS+PF+TF contribution to OV F (1e6 cases).

Figure 6.16: Pdf of CS+PF+TF contribution to OV F (1e7 cases).

Two different EFCC systems, consisting of an equatorial array of 16 iden-
tical independent Ąlamentary coils, were considered independently. The two
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arrays have been arranged on the inner wall face of the DEMO Breeding
Blanket (BB) (inner array) and outside the TF system (outer array) respec-
tively and both have been used to counteract the overlap Ąeld produced by
the Monte Carlo analysis of the misalignments of the coils. In Tab. 6.17,
the R-Z coordinates of upper (RU ,ZU) and lower (RL,ZL) extremes of the
CCLs poloidal proĄles of each EFCC, are reported, while Fig. 6.17 shows a
3D sketch of the two sets of coils and their relative positioning with respect
to the TF coil.

RU [m] ZU [m] RL[m] ZL[m]
Inner array 13.14 2.82 13.14 -2.82
Outer array 15.39 4.60 15.43 -4.65

Table 6.13: DEMO EFCCs system R-Z coordinates.

Figure 6.17: A pair of 16 equatorial EFCCs tested in DEMO: Inner (red
saddles) and Outer array (light blue saddles) and TF coil (grey).

The correction action of the two sets of coils, performed solving (3.18)
produced similar results (Figs. 6.18 and 6.19), but with a very different
current demand.
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Figure 6.18: Correction action of the inner array: Initial OVF (blue curve),
OVF after the correction (orange curve), threshold (dashed curve) for each
case (ascending sort).

Figure 6.19: Correction action of the outer array: Initial OVF (blue curve),
OVF after the correction (orange curve), threshold (dashed curve) for each
case (ascending sort).

The analysis has shown that, when the CS+PF+TF set of EFs sources
is used, the outer array has required a maximum current about 180kAt to
reduce the overlap Ąeld below 20 ppm, while the inner array requires a very
high current (see Fig. 6.20). The reason is related to the cancellation of the
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main spectral components due to the proximity to the plasma (see Fig. 6.21).
For this reason, the outer array, (or different conĄgurations of correction coils)
might be preferred for further analysis.

Figure 6.20: Correction action of both inner and outer array: maximum
current demand for each case (ascending sort).

Figure 6.21: harmonics cancellation problem for the inner EFCCs array.
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6.4 Overlap Ąeld effects due to ECRH ports

discontinuities and magnetic system power

supply in DEMO

The presence of additional asymmetries, such as ferromagnetic parts, magnet
feeders (transmission lines and coil terminals), non-ideal coil winding distri-
bution of the coils [7], etc., could affect the nominal magnetic conĄguration
in a tokamak. Here, using the MARS-F interface matrices, the effect on the
OVF due to the DEMO ferromagnetic BB cut-outs used as Electron Cy-
clotron Resonance Heating (ECRH) ports [8] and to the presence of the coil
terminals [9], i.e. the terminating parts of the magnet power supply system,
has been investigated.

6.4.1 Ferromagnetic ECRH ports OVF

The DEMO BB is the inner and ferromagnetic component that will be used
to produce (or ŤbreedŤ) tritium fuel for the nuclear fusion reactions [10]. Al-
though the DEMO BB is designed to cover about 85% of the plasma, several
holes or ports are included for several purposes. The ferromagnetic material
from which the BB is made, EUROFER steel [11], makes its discontinuities
real magnetic sources that could alter the nominal magnetic conĄguration
and need to be investigated. Here, the six ports hosting the ECRH antennas
are considered for the analysis. The ports, arranged around the torus, break
the periodicity and affect the n=1 toroidal mode as well as the poloidal modes
of the OVF (see Fig. 6.22). Due to the high Ąeld to which is subjected (about
4T), the EUROFER BB reaches the saturation. A magnetization amplitude
of about M=1.45e6 [A/m] has been estimated from the EUROFER initial
magnetization curve (see Fig. 6.23). Although the main contribution is along
the toroidal direction, a not negligible vertical component Mz is also present
due to the poloidal Ąeld. From the equilibrium data [4] it resultsBt ≈3.5T and
Bz ≈1.2T at the ECRH port barycenter (Rport ≈ 12.43 m, Zport ≈ 0.02 m).
Therefore, less than one third of M amplitude is along the z axis. In Fig.
6.24 the toroidal Ąeld as function of r is reported together with the poloidal
section of DEMO including the port barycenter.
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Figure 6.22: DEMO ports top view: initial 6-ports (white rectangles) and
the boundary of the plasma (red dashed crown).

Figure 6.23: EUROFER initial magnetization curve.
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Figure 6.24: Overlapping between the toroidal Ąeld Bt as function of r (light
blue axis) and poloidal section of DEMO (black axes). Bt=3.5T reached at
the barycenter of the ECRH port.

Due to the size of the structure, the computational effort for the numer-
ical treatment of the BB is very high. Here two different approaches, based
on the compensation theorem, are shown. The ports have been treated as
magnetic sources with opposite magnetization to the BB. This allows a huge
reduction of the computational burden. The Ąrst method, based on an in-
tegral formulation [12], returns the magnetic Ąeld produced by uniformly
magnetized polyhedrons (hexahedrons) used to discretize each port. The
second approach treats the ports as windings fed by the currents previously
ŤcalibratedŤ, in order to produce the desired magnetization at the windings
barycenters.

In Figs. 6.25a and 6.25b the representations, based on the two approaches
mentioned before, of a DEMO ECRH port, are reported. It should be clear
that the second model has the only limitation of producing just a toroidal
magnetization Mφ.
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(a) (b)

Figure 6.25: Port model based on a) the use of magnetized hexahedrons, b)
the use of winding producing the desired magnetization Mφ in the barycenter.

In order to compare the two approaches, only the toroidal component
of the magnetization Mφ has been considered for the assessment. In Fig.
6.26 the two behaviors of normal component of the magnetic Ąeld Bn are
reported.

Figure 6.26: Bn behavior on the coupling surface: equivalent coil (blue curve)
and hexahedrons model neglecting Mz for the hexahedrons (orange curve).
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The results of the comparison show a good agreement between the two
approach when only the toroidal magnetization is considered. In Tab. 6.14
the OVF computed using two approaches independently is shown. If Mz

is included in the model based on the hexahedrons, an increasing of the
OVF is observed about 70% probably due to the vicinity of the ports to the
plasma. This amount of OVF, together with the one produced by the coils
misalignments, might be dangerous since could overcome the threshold of
110 ppm. A drastic reduction of the OVF due to the ports can be obtained
by re-establishing the toroidal periodicity of the ports, in this way they do
not affect the n=1 anymore and make the corresponding OVF negligible (see
an example in Fig. 6.27).

ECRH port model OVF [ppm]
Hexahedral 6-ports 29

Equivalent 6-ports coils 20
Hexahedral 6-ports (including Mz) 83

Table 6.14: ECRH ports effects for three models

Figure 6.27: DEMO ports top view: initial 6-ports (white rectangles), two
ports re-establishing the periodicity (blue rectangles) and the boundary of
the plasma (red dashed crown).
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6.4.2 Terminals connections OVF

For the purposes of this preliminary analysis, the presence of the transmission
lines is considered negligible, as they consist of pairs of wires with opposite
currents which are very close to each other in terms of distance to the coupling
surface, and are therefore such that they cancel each other out. Since the
design of the power supply in DEMO is still ongoing, just the boxes for the
positioning of the terminals are available from the CAD projects. In Fig.
6.28a the boxes for the positioning of the terminals of PFs, CSs and TFs
are sketched. SimpliĄed model of the terminals consists in using rectangular
Ąlamentary currents. Fig. 6.28b shows the models used for the PFs terminals.

(a) (b)

Figure 6.28: Sketch of a) boxes containing DEMO terminals connections: 6
PFs(red circles), 5 CSs(green circles) and 16 periodic TFs(blue circles); b)
PF terminals Ąlamentary model

The normal component of the magnetic Ąeld for each Ąlament has been
calculated on the coupling surface and the OVF, BOVF

terminals, returned using
MARS-F. An appropriate relative error is introduced to characterise the
weight of each terminal with respect to the expected OVF of the correspond-
ing coil:

Error% ≙ (BOVF
Terminals

BOVF
Expexted

) × 100 (6.4)

where BOVF
Expexted was obtained from a Monte Carlo analysis by deforming the

coil relative to the terminal studied.
In Tabs. 6.15 and 6.16, the results, for CS and PF terminals OVF respec-

tively, are reported. The positioning of the TF terminals, which is periodic
(n=16), does not affect the OVF and has been ignored.
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CS1 CS2 CS3 CS4 CS5

OVF Terminals (ppm) 0.17 0.15 0.21 0.02 0.15
Error% 8.41 11.7 23.45 9.85 7.52

Table 6.15: DEMO CS terminals effects in terms of OVF.

PF1 PF2 PF3 PF4 PF5 PF6

OVF Terminals (ppm) 0.05 0.015 0.016 0.003 0.014 0.017
Error% 2.74 1.44 1.81 1.80 0.49 0.82

Table 6.16: DEMO PF terminals effects in terms of OVF.

The results show that the ŤPFs+CSsŤ terminals OVF is about 0.45 ppm,
with a threshold of about 110 ppm, then < 1%.

6.5 Grad-Shafranov solutions with accurate

magnetic Ąeld using linear triangular el-

ements

The effectiveness of the method presented in chapter 4 has been assessed in
two different applications for which analytical solutions are available. The
Ąrst case refers to a linear problem. The second one shows the applicability
to a nonlinear case. It is useful to deĄne the relative error for the generic
variable V used for method bench-marking:

err ≙
∥Vnum − Van∥∥Van∥ (6.5)

where Vnum is the numerical evaluation of V and Van the analytical one.

6.5.1 Application to a linear problem

The linear problem considered for bench-marking is taken from [13]. Assum-
ing the following current density proĄle:

Jφ(ψ) ≙ S
µ0

r +
1

µ0r
(Tψ +U)

with p′(ψ) ≙ S
µ0

and ff ′(ψ) ≙ Tψ +U (6.6)
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with S, T > 0, U arbitrary constant parameters, the following analytical
expression veriĄes Grad-Shafranov equation (4.5) for arbitrary values of the
integration constants c1, c2, z0 and k (with k2

≤ T ):

ψ (r, z) ≙ rJ1 (√T − k2r) ∥c1cos(k(z − z0)) + c2sin(k(z − z0))∥ (6.7)

where J1 is the Ąrst kind order-one Bessel function. The following choice of
parameters has been made: S=0.75, U=2, T=17.8116, z0=0.08667, k=

√
T /2,

c1=0.17795, c2=-0.03291, expressed in SI units.

To Ąx the boundary conditions for a feasible tokamak plasma, a boundary
with a constant ψb=-0.25 Wb/rad has been obtained from (6.7), Ąxing the
value of r in a certain range and calculating the corresponding two solutions
for z:

z1 ≙ z0 +
1

k
[sin−1 (− C√

A2 +B2
) − tan−1 (B

A
)] (6.8)

z2 ≙ z0 +
1

k
[π − sin−1 (− C√

A2 +B2
) − tan−1 (B

A
)] (6.9)

where:

A ≙ rJ1 (√T − k2r) c2 (6.10)

B ≙ rJ1 (√T − k2r) c1 (6.11)

C ≙ −
Sr2

T
−
U

T
−ψb (6.12)

Fig. 6.29a shows the plasma region and the equilibrium Ćux. Fig. 6.29b
illustrates the magnitude of the poloidal Ąeld. Fig. 6.29c shows the lines
where the present procedure provides zero values of the two components of
the poloidal Ąeld. The intersection of the two lines provides an estimation
of the magnetic axis, where both components are zero. This procedure is
also applicable for the localization of X-points at the plasma boundary or
elsewhere. Fig. 6.29d shows that the accuracy is far better than the Ąrst
order procedure, for which magnetic axes and X-points are necessarily nodes
of the grid. Fig. 6.30 shows the behavior of the relative error of the numerical
Ćux, its derivative and the magnetic Ąeld, highlighting the convergence rate
of O(h2).
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(a) (b)

(c) (d)

Figure 6.29: Comparison with the analytical solution of the linear problem
reported in [13] in the plasma region 1.99925m ≤ r 2.43763m, z1(r) ≤ z(r) ≤
z2(r): a) poloidal Ćux per radian ψ, where psian and psinum are the ana-
lytical and numerical solutions, respectively; b) magnitude of the poloidal
Ąeld ∣Bpol∣, where Bpolan is the analytical solution, Bpol1st is the solution
obtained by the standard technique in terms of ψ used in the Ąrst step and
Bpol2nd the one obtained by the present procedure; c) curves where the
two components of Bpol2nd are zero; d) exact position of the magnetic axis
(black circle) compared to the evaluation of the Ąrst order procedure (black
diamond, at a distance of 0.60 mm) and the estimation provided by the
present procedure (intersection of the thick curves, at a distance of less than
0.01 mm).
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Figure 6.30: Linear problem [13]: relative error, deĄned in (6.5), of the
numerical Ćux, its derivative and the magnetic Ąeld as functions of the mesh
size h, highlighting (dash lines) the convergence rate of O(h2). Here psin
refers to the nodal values of ψ, psig and Bpolg to the barycentric values
of ψ and Bpol, respectively, provided by the standard solver in terms of
ψ; Bpoln1st corresponds to the interpolation from Bpolg to nodal values of
Bpol; Bpoln2nd refers to the nodal values of Bpol provided by the present
procedure.

6.5.2 Application to a non-linear problem

The non-linear problem considered for benchmark is taken from [14]. As-
suming the following current density proĄle:

Jφ (ψ) ≙ ψ2

r
(k1

3
+

2k2
1 (z + c1)2ψ

9
+ 18a2r2ψ) (6.13)

with a, c1 and k1 arbitrary constant parameters, the following analytical
expression veriĄes Grad-Shafranov equation (4.5):

ψ (r, z) ≙ − 6

9ar2 + k1 (z + c1)2 (6.14)
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The family of solutions given by (6.14) has constant Ćux lines that are
ellipses centered at r = 0. For this reason, they cannot represent real plasma
conĄgurations in a tokamak. Nevertheless, they can be used to test the
effectiveness of the present procedure. Thus, the following choice of param-
eters has been made: a=5/9, k1=0.8, c1=-0.1, all expressed in SI units. The
boundary is a polygon where (6.14) has been applied in order to Ąx non-
uniform boundary conditions.

Fig. 6.31 shows the plasma boundary, the equilibrium Ćux and the mag-
nitude of the poloidal Ąeld. Fig. 6.32 shows the behavior of the relative error
of the numerical Ćux, its derivative and the magnetic Ąeld, highlighting the
convergence rate of O(h2).

(a) (b)

Figure 6.31: Comparison with the analytical solution of the nonlinear prob-
lem reported in [14] inside the plasma region deĄned by the polygon with
vertices [r[m], z[m]]=[0.1,1], [0.4,1], [0.7,1.3], [0.4,1.6], [0.1,1.6]: a) poloidal
Ćux per radian ψ; b) magnitude of the poloidal Ąeld ∣Bpol∣. The legends
psian, psinum, Bpolan, Bpol1st, and Bpol2nd are deĄned in Fig. 6.29.
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Figure 6.32: Nonlinear problem [14]: relative error, deĄned in (6.5), of the
numerical Ćux, its derivative and the magnetic Ąeld as functions of the mesh
size h, highlighting (dash lines) the convergence rate of O(h2). The legends
psin, psig, Bpolg, Bpoln1st, and Bpoln2nd are deĄned in Fig. 6.30.
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7
Conclusions

In this thesis work, the tool presented in Section 2.4, which utilizes a Ąrst-
order Taylor approximation, was assessed and then employed to conduct

a Monte Carlo analysis in order to map EFs in a tokamak. This analysis
provided worst cases of EFs resulting from deviations of the magnets from
their nominal conĄguration. Furthermore, a procedure for EFCCs current
optimization for correction purposes has been developed. The EFs analysis
was conducted for both the DTT and DEMO tokamaks.

For the DTT tokamak, the TMEI criterion was employed, whereas for
DEMO, the Overlap Ąeld criterion was chosen to include the plasma response.
EFs from manufacturing and assembly worst cases of DTT superconducting
coils have been calculated and the required EFCC currents to push them
below a given threshold in terms of TMEI. EFCC currents of 50 kAt are
sufficient to correct the TMEI under 50 ppm with a 95% probability.

In DEMO, the analysis has shown that, when the CS+PF+TF set of EFs
sources is randomly deformed, the outer array has required a maximum cur-
rent of 180kAt to reduce the overlap Ąeld below 20 ppm for the worst cases,
while the inner array requires a very high current. The reason is related to
the cancellation of the main spectral components due to the proximity to the
plasma. In addition, the study of ferromagnetic cut-outs will host ECRH
antennas have shown a not negligible effect in terms of OVF (unless Ťpre-
cautionsŤ on their disposition are taken); while about the magnet terminals
connections effects, the analysis has shown a negligible OVF.

Finally, a formulation able to achieve continuity and convergence rate of
order O(h2) for the magnetic Ąeld by using three-node linear triangles, based
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on an application of HelmholtzŠs theorem, has been presented. These prop-
erties are very useful, providing a high level of accuracy and the possibility of
deriving reliable linearized models with a limited computational effort. The
procedure has been extended so as to be applied to nonlinear elliptic prob-
lems, in particular to the solution of Grad-Shafranov equation. It can be
implemented as a post-processor of the magnetic Ćux solution obtained with
linear triangles. The effectiveness of the method has been shown in linear
and nonlinear cases for which analytical solutions are available.
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