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Sommario 

La letteratura scientifica sui metodi statistici per la valutazione della qualità ha avuto 

diversi sviluppi soprattutto con riferimento a metodologie di analisi dell'efficacia 

relativa (Bird et. al, 2005). Nell'ambito della valutazione dell'efficacia relativa, si 

individua in particolare una fase estremamente delicata in cui la pluralità degli 

indicatori considerati informativi dei diversi aspetti dell'efficacia stessa, necessita di una 

sintesi che consenta in particolare di predisporre graduatorie delle diverse unità 

confrontate, e che ne fornisca una misura riassuntiva della performance. 

Dal contesto applicativo emergono spunti per la ricerca di un percorso metodologico 

che abbia come obiettivi finali principali: (i) la classificazione o l'ordinamento di un 

insieme di unità confrontate rispetto ad un fenomeno complesso multidimensionale, e 

(ii) la sintesi di una pluralità di indicatori. 

La metodologia considerata per risolvere i problemi sopra citati è basata sulla 

combinazione di test dipendenti e di graduatorie dipendenti (NPC test ed NPC ranking; 

Pesarin & Salmaso, 2010). Tale metodologia ha il notevole vantaggio di non dover 

specificare la struttura di dipendenza sottostante agli indicatori o test considerati, che 

possono essere calcolati ad esempio sulle stesse unità statistiche. Tale metodologia 

rappresenta un importate superamento dell'usuale metodo di sintesi di indicatori 

costituito dalla semplice media aritmetica. 

Il contributo di questa attività di ricerca consiste principalmente nell'estensione delle 

suddette soluzioni metodologiche non parametriche, in modo da renderle fruibili 

nell'ambito della valutazione della soddisfazione verso prodotti o servizi.  

Questo lavoro di ricerca ha quindi un duplice scopo. Da una parte si propone di 

proporre degli strumenti metodologici innovativi rispetto ai problemi di ordinamento 

multivariato e di combinazione di indicatori e dall’altra di risolvere problemi applicativi 

pratici. Le soluzioni metodologiche proposte sono state infatti applicate nell’ambito 

della valutazione della didattica universitaria tramite l’analisi dei questionari di 

soddisfazione degli studenti universitari e nell’ambito della customer satisfaction 

relativa ai servizi erogati dalle Scuole di Sci dell’Alto Adige. Sono stati inoltre discussi 

altri tipi di applicazione in ambito industriale in fase di sviluppo nuovo prodotto o nella 

definizione del ciclo di vita dei prodotti.  



 

  



 

Abstract 

Scientific literature on statistical methods for quality evaluation within the university 

has undergone recent developments particularly in relation to methods of analysis of the 

relative effectiveness of university activities, based on a comparison between various 

providers/units. In the field of relative effectiveness evaluation, an extremely delicate 

phase is identified in which the variety of indictors considered to be informative of the 

various aspects of the effectiveness itself requires a synthesis that permits the definition 

of rankings of the various compared units, and that provides a summarizing measure of 

the differential performance. 

From the application context suggestions emerge for the pursuit of a methodological 

path, the principal end objectives of which are the classification or ordering of a set of 

compared units  against a complex multidimensional phenomenon, and the synthesis of 

a variety of indicators. 

From the application context suggestions emerge for the pursuit of a methodological 

path, the principal end objectives of which are the classification or ordering of a set of 

compared units against a complex multidimensional phenomenon, and the synthesis of a 

variety of indicators. 

A methodological solution in the nonparametric field is represented by the 

nonparametric combination of dependent tests and dependent rankings (NPC ranking; 

Pesarin & Salmaso, 2010), that allows the combination of rankings derived from 

orderings of statistical units against appropriate indicators, without the need to specify 

the dependence structure underlying the considered indicators that can be calculated, for 

example, on the same statistical units. This methodology represents an important 

surpassing of the usual synthesis of performance indicators made up of the simple 

arithmetic mean. 

The research contribution consists mainly in the extension of nonparametric 

methodological solutions above, such as those concerning the nonparametric 

combination of dependent tests and NPC ranking, in order for them to be used in the 

evaluation of satisfaction about products or services. 

Thus this research activity has a twofold purpose. From one side it aims to suggest 

innovative methodological tools with reference to problems of multivariate ranking and 



 

of combination of indicators, from the other hand it allows to solve practical problems. 

Indeed methodological solutions proposed in this work have been applied in the field of 

university teaching evaluation by analyzing data from student satisfaction surveys and 

in the field of the customer satisfaction related to services provided by the ski schools 

of Alto Adige. Other kinds of applications in industrial field, in development of new 

products and in life cycle of products assessment are also discussed.   
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Introduction 

Within the assessment of the satisfaction about services such as turism services, 

university system etc., complex problems of hypothesis testing often arise. The 

complexity of the study is mainly referred to the presence of mixed variables (ordinal 

categorical, binary or continuous) and missing values. Surveys performed to evaluate 

the university programs are observational studies, where very little is known about the 

multivariate distribution underlying the observed variables and their possible 

dependence structure. In such cases conditional nonparametric methods can represent a 

reasonable approach. In this contribution we consider permutation methods for 

multivariate testing on mixed variables. Unconditional parametric testing methods may 

be available, appropriate and effective when: i) data sets are obtained by well-defined 

random sampling procedures on well-specified parent populations; ii) population 

distributions (the likelihood models) for responses are well-defined; iii) with respect to 

all nuisance entities, well-defined likelihood models are provided with either boundedly 

complete estimates in 0H  or at least invariant statistics; iv) at least asymptotically, null 

sampling distributions of suitable test statistics do not depend on any unknown entity. 

Accordingly, just as there are circumstances in which unconditional parametric testing 

procedures may be proper from a related inferential result interpretation point of view, 

there are others in which they may be improper or even impossible. Conversely, there 

are circumstances in which conditional testing procedures may be appropriate and 

sometimes unavoidable. A brief list of some circumstances is as follows: 

  ·  distributional models for responses are nonparametric; 

  ·  distributional models are not well-specified; 

  ·  distributional models, although well-specified, depend on too many nuisance 

parameters; 

  · with respect to some nuisance entities, well-specified distributional models do not 

possess invariant statistics or boundedly complete estimates in H0; 

  ·  ancillary statistics in well-specified distributional models have a strong influence on 

inferential results; 

  ·  ancillary statistics in well-specified models are confounded with other nuisance entities; 
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  ·  asymptotic null sampling distributions depend on unknown entities; 

  ·  sample sizes are smaller than the number of response variables; 

  ·  sampling data come from finite populations or sample sizes are smaller than the number 

of parameters; 

  · in multivariate problems, some variables are categorical and others quantitative ; 

  · multivariate alternatives are subject to order restrictions; 

  ·  in multivariate problems and in view of particular inferences, component variables have 

different degrees of importance; 

  · data sets contain non-ignorable missing values; 

  · data sets are obtained by ill-specified selection-bias procedures; 

  · treatment effects are presumed to possibly act on more than one aspect (a functional or 

pseudo-parameter), so that multi-aspect testing methods are of interest for inferential 

problems. 

In addition, we may decide to adopt conditional testing inferences, not only when their 

unconditional counterparts are not possible, but also when we wish to give more 

importance to the observed data set than to the population model. 

Conditional inferences are also of interest when, for whatever reason, we wish to limit 

ourselves to conditional methods by explicitly restricting the analysis to the actual data 

set. Thus both conditional and unconditional points of view are important and useful in 

real problems because there are situations in which we may be interested in conditional 

inferences, while there are others in which we may be interested in unconditional 

inferences. Hence, as both points of view are of interest, both types of inference are of 

methodological importance and often they may be analyzed using the same data set. 

However, we emphasize that, in conditional testing procedures, provided that 

exchangeability of data in respect to groups is satisfied in the null hypothesis, 

permutation methods play a central role. This is because they allow for quite efficient 

solutions, are useful when dealing with many difficult problems, provide clear 

interpretations of inferential results, and allow for weak extensions of conditional to 

unconditional inferences. 
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In the present thesis, a nonparametric approach based on the combination of 

permutation of dependent tests (NPC, (Pesarin, 2001)) is provided to solve a 

multidimensional testing problem with mixed variables. Moreover, an extension of a 

nonparametric method for the assessment of  “satisfaction” with some products or 

services is discussed for situations in which this satisfaction depends on values observed 

on 1>k  variables, where each variable is assumed to provide information on a partial 

aspect of interest for satisfaction assessment.  

A difficult methodological problem arises when there is more than one informative 

variable to be taken into consideration. This difficulty is increased by the fact that these 

variables can have different degrees of importance assigned to them. In general, for 

each single variable it is rather easy to establish a suitable assessment criterion leading 

to a partial ranking of units or a partial satisfaction indicator for each unit. At this stage 

the first research question immediately arises:  

RQ1a. How to obtain a reasonable combination of many dependent partial rankings or 

indicators into a combined one? 

This task can be performed via principal component analysis, provided that observed 

variables present a rather strong linear relation structure. Moreover multidimensional 

scaling procedures may also be applied. However, by standard multidimensional 

procedures it is rather difficult, if not impossible, to take different degrees of 

importance into consideration for the many variables.  

Determine a suitable composite indicator of satisfaction requires different 

methodological steps: 

- choose an appropriate standardization of raw data (i.e. simple partial indicators) into 

homogeneous data; 

- find a suitable function of synthesis of partial indicators; 

Relating to the first point, a literature review on standardization methods has been 

performed and resulting mathematical and statistical tools has been studied in order to 

make data comparable.  

Moreover when determine a composite indicator of satisfaction is of interest, extreme 

profiles of satisfaction should be taken into account in order to evaluate the distance 

from the global observed value of satisfaction and an optimal desired value of 
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satisfaction. As Bird, Cox, Farewell, Goldstein, Holt, & Smith (2005) pointed out “the 

principle that being ranked lowest … does not immediately equate with genuinely 

inferior performance should be widely recognized and reflected in the method of 

presentation [of ranking]”. Thus this leads to the subsequent research question of the 

present thesis: 

RQ1b. How to include into the analysis different profiles of satisfaction?  

In this contribution an extension of the nonparametric combination of dependent 

rankings (NPC ranking (Lago & Pesarin, 2000)) is proposed in order to construct a 

synthesis of many partial rankings or indicators, concerning satisfaction on different 

aspects.  

Since in this thesis data coming from customer satisfaction surveys are handled, the 

methodological approach based on NPC ranking method is adapted for the case of 

ordered categorical variables (typical of customer satisfaction data). Such adaptation is 

also based on a useful transformation of data that allows to take into consideration 

desirable satisfaction profiles. This happens substantially by transforming categorical 

data of evaluation into scores weighted by the relative frequencies. This led to the 

construction of a new composite indicator called Nonparametric Composite Indicator 

(NCI).  

Dealing with such kind of surveys, it is very common to find a specific question into the 

questionnaire regarding overall satisfaction, thought to reflect the global satisfaction of 

the respondents considering simultaneously all aspects. Is the answer to this question 

sufficient to explain the “satisfaction structure” of the respondents? If it is, is the 

construction of a composite indicator useful for our purpose of evaluating the 

satisfaction? Thus more formally: 

RQ1c. Does there exist a possible association between a measure of overall satisfaction 

and a composite indicator of satisfaction and are they complementary/alternative in 

explain the ‘satisfaction structure’ of the respondents?  

In this thesis results on the student satisfaction survey of the School of Engineering at 

University of Padova for three academic years (2011/2012, 2012/2013, 2013/2014) is 

shown. In particular methods developed in this thesis have been adopted to analyze data 

of the questionnaire of satisfaction about different aspects, such as organizational 
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aspects, aspects regarding teaching activities etc. Finally we compared the results of 

using a composite indicator (NCI) with respect to considering only answers at the 

question of overall satisfaction. The mean of such answers indeed represents the current 

indicator of global satisfaction. 

Facing such problems of satisfaction, the need to obtain also a global ranking of items 

under study, i.e. to sort them from the ‘best’ to the ‘worst’, is very common. The idea of 

ranking in fact occurs more or less explicitly any time when in a study the goal is to 

determine an ordering among several input conditions/treatments with respect to one or 

more outputs of interest when there might be a “natural ordering”. This happens very 

often in the context of management and engineering studies or in the business world for 

many research and development - R&D problems where the populations can be 

products, services, processes, etc. and the inputs are for example the managerial 

practices or the technological devices which are put in relation with several suitable 

outputs such as any performance measure. Many times in the R&D problems the 

populations of interest are multivariate in nature, meaning that many aspects of that 

populations can be simultaneously observed on the same unit/subject. For example, in 

many technological experiments the treatments under evaluation provide an output of 

tens of even hundreds univariate responses, e.g. think on the myriad of automated 

measurements that are performed on a silicon wafer during the manufacturing process 

by microelectronics industry.  

From a statistical point of view, when the response variable of interest is multivariate in 

nature, the inferential problem may become quite difficult to cope with, due to the large 

dimensionality of the parametric space. Some inferential techniques such as multiple 

comparison procedures (Westfall, Tobias, Rom, & Wolfinger, 2011), ranking and 

selection (Gupta & Panchapakesan, 2002), order restricted inference (Silvapulle & Sen, 

2005) and ranking models (Hall & Schimek, 2012), more or less directly or indirectly 

partially address the issue of population ranking but only under some additional 

assumptions. Thus: 

RQ2. How to rank several populations when more aspects of quality are of interest?  

In this connection the nonparametric combination methodology looks again like a very 

useful tool because of its ability to reduce the dimensionality in order to compare and 

rank the populations under investigation.  
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Subsequent development of the procedure has been interested the well-known problem 

of testing for sharp null hypothesis against two-sided alternatives i.e. for testing 

equivalence of two or more aspects of quality/satisfaction. From a methodological point 

of view, when sample sizes diverge and the null is not true except for a small quantity, 

so that it is practically true except for an irrelevant quantity, every consistent test rejects 

the null with a probability converging to one. This kind of problem comes out in almost 

all applications of traditional two-sided tests as typically occurs in experimental as well 

as in observational designs common of clinical trials, pharmaceutical experiments, 

bioequivalence, quality control, and so on. The limits of the equivalence null interval 

are suitably established by biological or pharmacological or clinical or economical or 

technical or regulatory considerations.  

Let us consider the well-known unidimensional two-sided problem with two 

independent samples where ��: �� = �� and ��: �� ≠ ��, under the assumption that �� 
implies the equality of two underlying distributions, i.e. 	� = 	�  (generalized 

homoschedasticity), and that the treatment effect is fixed additive, i.e. 	�
�� = 	�
� +
�� . We qualify "sharp" such a null hypothesis. In this context, if �� =
����, … , ����� , � = 1,2, are IID and two samples are independent, the "optimal" solution 

under assumption of normality and homoschedasticity for the observed variable X is 

Student’s t test. If F is unknown and X is continuous a "good" solution is the Wilcoxon-

Mann-Whitney rank test. When the underlying distribution is nonparametric, i.e. infinite 

parametric, or when the number of parameters increases with sample sizes, no 

likelihood based solutions are available, unless quite stringent or even un- natural 

restrictions are introduced (Sen, 2007; Romano, 2005). These aspects led to the 

following research question: 

RQ3. How to provide a general solution to the problem of testing for an interval null 

against a two-one-sided alternative overcoming the limitation of likelihood based 

methods?  

Proposed thesis has a double implication: on one hand is part of the research field of so-

called methods of ranking and selection and integrates that theory from the perspective 

of a new nonparametric approach. On the other hand, it is very application and problem-

solving oriented, as has been suggested by numerous case studies that are presented and 

solved hereafter. 
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Chapter 1 is devoted to present a detailed literature review, showing that problem of 

ranking has been faced in different field and point of view. We review the basic 

procedures proposed in the literature, classifying them within the main reference field 

where they have been developed. 

Chapter 2 discusses an appropriate synthesis indicator (NCI) of a set of k informative 

ordered categorical variables representing judgments on a specific quality aspect under 

evaluation. The application of the nonparametric approach based on NPC to the student 

satisfaction survey of the School of Engineering of the University of Padova is shown. 

It represented a significant aspect of the analysis of the gathered data, in order to 

understand the satisfaction structure of the respondents and evaluate the distance from 

the observed global level of satisfaction and an optimal desired value of satisfaction. 

The purpose of Chapter 3 is to propose a new approach for the problem of ranking 

several multivariate normal populations. It will be theoretically argued and numerically 

proved that our method controls the risk of false ranking classification under the 

hypothesis of population homogeneity while under the non-homogeneity alternatives 

we expect that the true rank can be estimated with satisfactory accuracy, especially for 

the ‘best’ populations. A simulation study proved also that the method is robust in case 

of moderate deviations from multivariate normality. Finally, an application to a real 

case study in the field of life cycle assessment is proposed to highlight the practical 

relevance of the proposed methodology. This procedure led to the following two 

publications in 2014: “A New Approach to Rank Several Multivariate Normal 

Populations with Application to Life Cycle Assessment” on Communications in 

Statistics – Simulation and Computation (Carrozzo, Corain, Musci, Salmaso, & 

Spadoni, 2014), and a real application on customer satisfaction survey “Two Phase 

Analysis of Ski Schools Customer Satisfaction: Multivariate Ranking and CUB 

Models” on STATISTICA (Arboretti, Bordignon, & Carrozzo, Two Phase Analysis of 

Ski Schools Customer Satisfaction: Multivariate Ranking and CUB Models, 2014). 

The aim of Chapter 4 indeed is to overcome the very intriguing impasse by considering 

a general solution to the problem of testing for an interval null (also named equivalence 

null) against a two-one-sided alternative. In doing so, the goal is to go beyond the 

limitations of likelihood based methods by working in a nonparametric setting within 

the permutation frame. This procedure led in 2015 to the publication of the work 

“Union-Intersection permutation solution for two-sample equivalence testing” on 
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Statistics and Computing (Pesarin, Salmaso, Carrozzo, & Arboretti, 2015). 
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Chapter 1. Literature review on ranking problem 

Since the problem of ranking has been addressed in the literature from a lot of different 

points of view, in this chapter we review the basic procedures proposed in the literature, 

classifying them within the main reference field where they have been developed, that is 

statistics and operations research. 

1.1 Statistical approaches 

There are many situations when we are facing with inferential problems of comparing 

several - more than two - populations and the goal is not just to accept or reject the so-

called homogeneity hypothesis, i.e. the equality of all populations, but an effort is 

provided to try to rank the populations according to some suitable criterion. 

Multiple comparison procedures - MCPs have been proposed just to determine which 

populations differ after obtaining a significant omnibus test result, like the ANOVA F-

test. However when MCPs are applied with the goal to rank populations they are at best 

indirect and less efficient, because they lack protection in terms of a guaranteed 

probability against picking out the 'worse' population. This drawback motivated the 

foundation of the so-called ranking and selection methods (Gupta & Panchapakesan, 

2002) which formulations provide more realistic goals with respect the need to rank or 

select the 'best' populations. A further class of procedures with some connection with 

the ranking problem is that of the constrained - or order restricted - inference methods 

(Silvapulle & Sen, 2005; Robertson, Wright, & Dykstra, 1988). Finally, the ranking 

problem has been addressed in the literature from the point of view of investigating and 

modeling the variability of sampling statistics used to rank populations, that is the 

empirical estimators whose rank transformation provides the estimated ranking of the 

populations of interest (Hall & Miller, 2009; Hall & Miller, 2010; Hall & Schimek, 

2012). 



 

1.1.1 Multiple comparison procedure 

The reference to the so-called MCPs occurs when one considers a set of statistical 

inferences simultaneously for example when a set, or family, of testing procedures is 

considered simultaneously, in particular when we wish to compare more than two 

populations (treatments, groups, etc.) in order to find out possible significant differences 

between them within the C-samples location testing problem (Westfall et al., 2011). 

Since incorrect rejection of the null hypothesis is more likely when the family as a 

whole is considered, the main issue and goal of MCPs is to prevent this from 

happening, allowing significance levels for single and multiple comparisons to be 

directly compared. These techniques generally require a stronger level of evidence to be 

observed in order for an individual comparison to be deemed "significant", so as to 

compensate for the number of inferences being made. 

Some contributions proposed in the field of MCPs have more or less directly to do with 

the ranking problem. Hsu and Peruggia (1994) critically reviewed the graphical 

representations of Tukey's multiple comparison method behind which we can clearly 

see the Tukey's attempt to rank the populations from the 'best' to the 'worst'. The popular 

Tukey's underlining representation prescribes that after ordering the populations 

according to the increasing values of their estimated means, all subgroups of 

populations that cannot be declared different are underlined by a common line segment. 

After that, one can infer at least as many groups are strictly not the best and in this way 

arguing which population can be overall considered as the best, the second, etc. In fact, 

since the set of all pairwise orderings is equivalent to a set of rankings, from a pairwise 

decision-theoretic subset selection procedure on the possible significances and from the 

specific directions in which each significance occurs, it is possible to specify the subset 

of rankings selected from the set of all possible rankings (for details we refer to 

Bratcher & Hamilton, (2005); Hamilton, Bratcher, & Stamey, (2008)). Bratcher and 

Hamilton (2005) propose a Bayesian decision-theoretic model for producing, via all 

pairwise comparisons, a set of possible rankings for a given number of normal means. 

They perform a simulation study where they proved the superiority of their model to 

popular frequentist methods used to rank normal means, including Tukey's method and 

the Benjamini & Hochberg (1995) procedure. 

Referring to the so global performance indexes and with the goal of ordering several 

multivariate populations, Arboretti Giancristofaro, Corain, Gomiero, & Mattiello, 
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(2010a) proposed a permutation-based method using simultaneous pairwise confidence 

intervals. In this connection, Arboretti Giancristofaro, Corain, Gomiero, & Mattiello, 

(2010b) compared two ranking parameters in a simulation study that highlighted some 

differences between the parametric and nonparametric approach. 

Some additional MCPs techniques are focused on estimating and testing which specific 

population can be inferred as the best one among a set of several populations. This 

situation is called multiple comparisons with the best, or MCB (Hsu, 1992). In the same 

direction but in the framework of the order restricted inference, the so-called testing for 

umbrella alternatives (Mack & Wolfe, 1981) aims at pairwise testing and 

simultaneously estimating among a set of a priori ordered populations which one can be 

considered as the 'peak' group where the response reaches the maximum (or the 

minimum) value of its location parameter. 

 

1.1.2 Selection and ranking 

The selection and ranking approach, also known as multiple decision procedures, arose 

from the need of enabling to answer natural questions regarding the selection of the 

'best' populations within the framework of C-sample testing problem (Gupta & 

Panchapakesan, 2002). Depending on the formulation of the procedures two basic 

approaches have been developed, namely, the indifference zone (IZ) formulation, 

originally proposed by Bechhofer, (1954), and the subset selection (SS) formulation, 

established by Gupta, (1965). The IZ formulation aims to select one of the C 

populations Π1,..., ΠC as the best one and if the selected population is truly the best, 

then a correct selection (CS) is said to occur. A guaranteed minimum probability of a 

CS is required when the best and the second best populations Π[1] and Π[2], i.e. those 

associated with the largest two estimated ranking parameter [1]θ̂  and [2]θ̂ , are 

sufficiently apart, that is θ[1]−θ[2]>δ, where the term ranking parameter refers to a 

population parameter of interest, often the location parameter � = � , whose rank 

transformation define the true population ranking. The IZ approach can be also applied 

in case the interest is focused on completely ranking a set of populations (CR-IZ), that 

is from 'best', 'second best', ..., down to the 'worst' (Beirlant, Dudewicz, & Van Der 

Meulen, 1982). In the SS approach for selecting the best population, the goal is to select 

a nonempty subset of the C populations so that the selected subset includes the best 
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(which event defines a correct selection-CS) with a guaranteed minimum probability. 

Provided certain distributional assumptions on populations are met, these methods 

usually guarantee that the probability of a correct selection will be at least some pre-

specified value P* that should be specified in advance by the experimenter, that is 

P{CS}≥P*. 

A few selection and ranking proposals are concerned with ranking of several 

multivariate populations. Under assumption of multivariate normal distributions, several 

real-valued function θ of population parameter (µ,∑) have been adopted to rank the 

populations, namely, (a) Mahalanobis distance, (b) generalized variance, (c) multiple 

correlation coefficient, (d) sum of bivariate product-moment correlations, and (e) 

coefficient of alienation (Gupta & Panchapakesan, 2002). In case the population 

distribution functions are not specified, several nonparametric solutions have been 

proposed: those procedures are based on more general ranking parameters such as the 

rank correlation coefficient and the probability of concordance (Govindarajulu & Gore, 

1971). 

 

1.1.3 Order restricted inference and stochastic ordering 

Prior information regarding a statistical model frequently constrains the shape of the 

parameter set and can often be quantified by placing inequality constraints on the 

parameters. The use of such ordering information increases the efficiency of procedures 

developed for statistical inference (Dykstra, Robertson, & Wright, 1986). On the one 

hand, such constraints make the statistical inference procedures more complicated, but 

on the other hand, such constraints contain statistical information as well, so that if 

properly incorporated they would be more efficient than their counterparts wherein such 

constraints are ignored (Silvapulle & Sen, 2005). Davidov & Peddada, (2011) extended 

the order restricted inference paradigm to the case of multivariate binary response data 

under two or more naturally ordered experimental conditions. In such situations one is 

often interested in using all binary outcomes simultaneously to detect an ordering 

among the experimental conditions. To make such comparisons they developed a 

general methodology for testing for the multivariate stochastic order between the 

multivariate binary distributions. Conde, Fernandez, Rueda, & Salvador, (2012) 

developed a classification procedure in case of ordered populations that exploits the 
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underlying order among the mean values of several groups by using ideas from order-

restricted inference and incorporating additional information to Fisher’s linear 

discriminant rule (Fisher, 1936). However it should be noted that the work of Conde et 

al., (2012) aims to classify individual observations into populations by exploiting 

restriction constraints on the parameters, while the objective of our book is to classify 

the populations in an ordered sequence according to sampling information and having a 

priori no restriction on population parameters. 

 

1.1.4 Ranking models 

The ranking problem has been also addressed in the literature from the point of view of 

investigating and modeling the variability of sampling statistics used to rank 

populations, that is the empirical estimators whose rank transformation provides the 

estimated ranking of the populations of interest. The distribution of ranking 

probabilities have been investigated by (Gilbert, 2003) within the one-way ANOVA 

layout under the assumption that parameter estimates are well approximated by a 

normal distribution, with possible intergroup heteroscedasticity and correlation. Gilbert 

(2003) proposed several methods for estimating the true (objective, frequentist) ranking 

probability distribution given historical data and for developing inferences about the 

ranking probabilities. Hall and Miller (2009) propose using bootstrap to handle with the 

variability of empirical ranking and they discuss both theoretical and the numerical 

properties of bootstrap estimators of the distributions of rankings. The same authors 

(Hall and Miller, 2010) prove that a light or heavy-tailed underlying distribution of 

population variables may weakly or strongly affect the reliability of empirical rankings. 

Considering the problem where C items are judged by assessors using their perceptions 

of a set of performance criteria, or alternatively by technical devices, Hall and Schimek 

(2012) consider methods and algorithms that can be used to address this problem. They 

studied their theoretical and numerical properties in the case of a model based on 

nonstationary Bernoulli trials. 

Another approach to ranking models is that of formally defining a suitable model 

underlying the process of ranking C items, often referred to a behavioural issue where a 

subject based on its own individual preferences is willing to order C objects. In this 

connection ranking models proposed so far in the literature fall into four categories: the 

Thurstonian models, multistage models, models induced from paired comparison, and 
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distance-based models (Xu, 2000). The Thurstonian models (Daniels, 1950; Mosteller, 

(1951) extends Thurstone's theory of paired comparison to the full ordering of several 

items (Thurstone, 1927). Multistage models split the ranking process into C−1 stages. 

Starting with the full set of C items, at the first stage, one item is selected and assigned 

rank 1; at the second stage, another item is selected from the remaining items and 

assigned rank 2; and so on. The last remaining item is assigned rank C by default. One 

such model is based on Luce's theory of choice behavior (Luce, 1959). Babington-Smith 

(1950) suggested inducing a ranking model from a set of arbitrary paired comparison 

probabilities. To reduce the number of parameters of Babington Smith's model, Bradley 

& Terry (1952) introduced a specific condition on the paired comparison probabilities 

while substituting Bradley-Terry probabilities into the Babington-Smith model leads to 

the well-known Mallows-Bradley-Terry MBT model (Mallows, 1957). Distance-based 

models were first suggested by Mallows (1957); they are based on the assumption that 

there is a modal ranking from where the ranking probabilities are the same. Mallows 

proposed two metrics used for the distance, namely to the concordance measures, 

Kendall’s (1948) tau and Spearman’s (1904) rho, respectively. 

 

1.1.5 Heuristic methods 

GPS - Global Performance Score Tools is an heuristic ordering method proposed by 

Corain, Cordellina, Crestana, Musci, & Salmaso (2011) in the context of the so-called 

primary performance analysis of laundry industry (Bonnini, Corain, Cordellina, 

Crestana, Musci, & Salmaso, 2009). Suppose we observe n independent replicates (e.g. 

fabric samples) related to C treatments to be ranked (e.g. detergents, and/or additives) 

on which are observed p response variables (e.g. the percentage of soil removed from p 

stains). In the context of testing for the so-called primary detergency, tests are carried 

out on various washing machines (external replications) for different fabric samples 

(internal replications). 

The GPS method is defined by the following algorithm: 

1. calculate the averages and standard deviations taking into account the distinction 

between internal and external replications. 
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2. Examine each single variable, then for each row j with j = 1, ..., p of the matrix 

relative to the averages, calculate the K pairwise differences between the 

treatment averages sorted in ascending order: 

3. ∆
����= ��� −��� with i,h=1,...,C and i≠h according to the obtained order; 

4. The differences thus calculated are used to calculate the index  

!"#$"
���� = ∆
���� − �!%� 
5. with i,h=1,...,C and i≠h, j=1,...,p and HSD is calculated for each stain j as 

�!%� = &��'()�;+;+
�'��,
-�$. 

6. where &��'/0�;+;+∗
�'��  is the so-called q-value determined as the �1 − (
)� -

quantile from Tukey’s “studentized range” distribution with C and C(n-1) 

degrees of freedom; sj  is calculated as the sum of the squares of the standard 

deviations of all treatments for variable j, and n represents the number of 

replications obtained as the product of the number of internal and external 

replications. 

7. Alternatively a procedure may be followed in which the parameter Signi(ih)j is 

calculated in the following way: 

!"#$"
���� = ∆
���� − 23� 
8. with i,h=1,...,C and i≠h, j=1,...,p and cfj is the so-called calibration factor i.e. the 

factor calculated for each variable as 23 = 45�'� /
6∗7∗0� �⁄ 9 ∙ 	<�,

�
� 

9. If the value of Signi(ih)j (however it is calculated) is greater than 0, this means 

that a difference was observed between treatments i and h on variable j, and the 

one with the higher average is considered the best. 

10. For each variable j, j = 1, ..., p draw a matrix with treatments in rows and 

columns, ranked from best (the one with the highest average) to worst, in which 

each cell represents the comparison (and the significance of this comparison) 

between the row treatment and the column treatment in the responses on the 

variables under consideration. In particular, if the row treatment is better than 

the column treatment, and the difference is significant (value Signi(ih)j previously 



 

16

described), the cell is assigned the value "1", otherwise the value is "0". The 

cells below the main diagonal are redundant. 

11. Starting from the previous matrix, for each row start from the first treatment and 

draw a line that stops before the first "1" of the treatments to be compared. 

Proceed in this way skipping the cases in which a line would end at the same 

point as the previous one. 

12. Calculate the "rank" values for each column by adding all the row values 

divided by the number of rows. Repeat this for each variable j. These values will 

populate the Counting Table. 

13. For the thus obtained Counting Table, calculate the average along the columns 

to obtain r1, ..., rC; 

14. If at least one ri for i = 1, ..., C is equal to 1, the treatment associated with that 

value will be the best. If no ri for i = 1, ..., C is equal to 1, the values are 

normalized by dividing by the minimum value of ri, thus obtaining the best 

treatment with value equal to 1 and the worst to grow. For simplicity of notation, 

we continue to use ri to refer to the amount described in step 2, both where 

normalization is carried out and where it is not; 

15. Compare the value of each treatment with the best value (which, as said, is 1): 

calculate the difference between the two values, then for every fraction of 0.125 in 

the difference there is a jump of half a position from the first (maximum 5). 

 

1.2 Operations research literature on the ranking problem 

Using the information on the degree of preference of a set of alternatives to be 

compared and starting from a more algorithmic perspective, the ranking problem can be 

seen as the search for an 'optimal' order, that is, what satisfies predetermined criteria of 

optimality. In this perspective, operations research is the discipline that deals with the 

problem of find out an optimal deterministic ranking. We use the term deterministic to 

emphasize the fact that in this context there is no reference to any population nor to 

samples drawn from populations, i.e. in summary there is no underlying inference or 

pseudo-inference. It follows that it makes no sense to speak of uncertainty of the 



 

17

procedure of determining the ranking so that it is essentially a deterministic process in 

nature. 

To solve the ranking problem within the operations research literature two main 

approaches have emerged: multiple-criteria decision making and group-ranking. The 

two approaches have been focused on the optimal synthesis of a multiplicity of 

preferences respectively referred to a set of criteria and to a group of subjects. In 

practice, while the former emphasizes the multidimensional nature of the items to be 

ranked, the second focuses on the multiplicity of individuals who have expressed the 

evaluations. 

The great amount of work developed around the problem of algorithmic ranking drew 

big boost from two important theoretical results: the Arrow's impossibility theorem 

(Arrow, 1963) which inspired the group ranking approach and the analytic hierarchy 

process (AHP) proposed by Saaty (1977; 1980), which became a leading approach to 

multicriteria decision making. With reference to the issue of voting and elections, a 

prominent "impossibility" result is Arrow's (1963) fundamental theorem proving that no 

voting scheme can guarantee five natural fairness properties: universal domain, 

transitivity, unanimity, independence with respect to irrelevant alternatives here referred 

to as rank reversal, and non dictatorship. Kemeny & Snell (1962), proposed an 

axiomatic approach for dealing with preference ranking that models the problem as 

minimizing the deviation from individual rankings defined by the distance between two 

complete rankings. In the AHP proposed by Saaty (1977, 1980), the decision problem is 

modeled as a hierarchy of criteria, sub-criteria, and alternatives. The method features a 

decomposition of the problem to a hierarchy of simpler components, extracting experts' 

judgments and then synthesizing those judgments. After the hierarchy is constructed, 

the decision maker assesses the intensities in a pairwise comparison matrix. 

Hochbaum & Levin (2006) proved that there is a modeling overlap between the 

problems of multicriteria decision making and aggregate ranking, although these two 

issues have been often pursued separately and traditionally are considered distinct. 

Authors proposed a framework that unifies several streams of research and offers an 

integrated approach for the group-ranking problem and multicriteria decision making. 

An important role in all approaches of operations research to the ranking problem has 

been played by the Perron-Frobenius theorem (Keener, 1993; Hofuku & Oshima, 2006), 

which asserts that a real square matrix with positive entries has a unique largest real 
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eigenvalue and that the corresponding eigenvector has strictly positive components, and 

also asserts a similar statement for certain classes of nonnegative matrices. In fact, the 

idea of using a square matrix A, often called preference matrix, to find a ranking vector 

has been around for some time and the idea of powering the matrix A to find a ranking 

vector was initiated by Wei (1952), Kendall (1955) and revisited often (e.g. Saaty, 

1987). 

 

1.2.1 The multiple-criteria decision making approach 

A lot of contributions to the ranking problem have been proposed within the 

management science and operations research literature focusing on the optimisation 

point of view and referring to behavioral issues and decision theory. Methods based on 

the so-called multiple-criteria decision-making - MCDM approach aim at solving 

decision-making problems in which more actions of a set of individuals are compared to 

determine which alternative (among a given set) is the best or to establish a ranking 

(Köksalan, Wallenius, & Zionts, 2011). Among such kind of techniques proposed in the 

literature, essentially three methods are considered: aggregation methods using utility 

functions, interactive methods and outranking methods. The dominance relation 

associated to a multicriteria problem is based on the unanimity of the point of view; 

however, this is usually so poor that it cannot be used for solving real problems, 

therefore many authors have proposed outranking methods in order to enrich the 

dominance relation. The most popular methods in this area are: ELECTRE I,II, III e IV. 

However ELECTRE methods are rather intricate because they require a lot of 

parameters, the values of which are to be fixed to the decision-maker and the analyst. In 

order to avoid these difficulties it was proposed a modified approach called 

PROMETHEE (Brans & Vincke, 1985). 

MCDM or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations 

research that explicitly considers multiple criteria in decision-making environments. 

The main concern of MCDM is to structure and solve decisions, and plan problems that 

involve multiple criteria. MCDM’s purpose is to support decision makers facing these 

types of problems. Typically, there is no unique optimal solution for such problems, 

therefore it is necessary to use decision maker’s preferences to differentiate between 

solutions. 
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"Solving" can be interpreted in different ways. It could correspond to choosing the 

"best" alternative from a set of available alternatives (where "best" can be interpreted as 

"the most preferred alternative" for a decision maker). Another interpretation of 

"solving" could be choosing a small set of good alternatives, or grouping alternatives 

into different preference sets. An extreme interpretation could be to find all "efficient" 

or "nondominated" alternatives (which we will define shortly). 

The difficulty of the problem originates from the presence of more than one criterion. 

There is no longer a unique optimal solution to an MCDM problem that can be obtained 

without incorporating preference information. The concept of an optimal solution is 

often replaced by the set of nondominated solutions. A nondominated solution has the 

property that it is not possible to move away from it to any other solution without 

sacrificing in at least one criterion. Therefore, it makes sense for the decision maker to 

choose a solution from the nondominated set. Otherwise, he could do better in terms of 

some or all of the criteria, and not do worse in any of them. Generally, however, the set 

of nondominated solutions is too large to be presented to the decision maker for his 

final choice. Hence we need tools that help the decision maker focus on his preferred 

solutions (or alternatives). Normally one has to "tradeoff" certain criteria for others. 

 

1.2.2 The group-ranking approach 

Still with reference to operations research, another class of solutions for the ranking 

problem is based on the so-called group-ranking methods which are referred to the 

group decision making theory (also known as collaborative decision making): a 

situation faced when individuals collectively make a choice from the alternatives that 

have been submitted to them. The problem of “group-ranking”, also known as “rank-

aggregation”, has been studied in contexts varying from sports, to decision-making, to 

machine learning, to ranking Web pages, and to behavioral issues (Hochbaum & Levin, 

2006). The essence of this problem is how to consolidate and aggregate decision 

makers’ rankings to obtain a group ranking that is representative of ‘‘better coherent” 

ordering for the decision makers’ rankings (Chen & Cheng, 2009). According to the 

completeness of preference information provided by decision makers, the group ranking 

problem can be roughly classified into two major approaches, the total ranking 

approach and the partial ranking approach. The former needs individuals to appraise all 

alternatives, while the latter requires only a subset of alternatives. Roughly speaking, 
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the goal of most total ranking methods is to determine a full ordering list of items that 

expresses the consensus achieved among a group of decision makers. Therefore, the 

advantage of these researches is that no matter how much users’ preferences conflict, an 

ordering list of all items to represent the consensus is always produced. Unfortunately, 

this advantage is also a disadvantage, because when there is no consensus or only slight 

consensus on items’ rankings, the previous approach still generates a total ordering list 

using their ranking algorithms. In such a situation, what we obtain is really not a 

consensus list, but merely the output of algorithms. Traditionally, there are three 

formats to express users’ preferences about items in the total ranking approach. These 

formats include weights/scores of items, set of pairwise comparisons on the items and 

ranking lists of items. 

Moreover, the group ranking problem can be classified according to the format to 

express users’ preferences. Depending on the input format used to express preferences, 

they can be classified into: weights/scores of items, set of pairwise comparisons and 

ranking lists of items. The first kind of format requires each individual to provide 

weights/scores for all items. Thus, the accuracy of this approach would be affected by 

personal differences in scoring behavior. The second format needs individuals to 

provide set of pairwise comparisons on all items. This kind of format is a general way 

in expressing users’ preference about the items. However, providing these comparisons 

becomes an awful work, in case of large number of items. The last format is to ask users 

to provide lists of ranking items. When items are many, it is not easy for users to 

determine a full ordering list.  
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Chapter 2. Composite indicators of k informative variables 

In this section we define an appropriate synthesis indicator of a set of k informative 

ordered categorical variables representing judgments on a specific quality aspect under 

evaluation (e.g. external effectiveness of educational processes within the university 

system). Let us denote the responses as a k-dimensional variable [ ]kYY ,...,1=Y , where 

each marginal variable can assume m ordered discrete scores, 

{ } 1,0 \,,...,1 >∈= mmmh N , and large values of h correspond to higher satisfaction 

rates. For application reasons these variables are given different (non-negative) degrees 

of importance: ( )kiwi ,...,1,10 =≤< . Such weights are thought to reflect the different 

role of the variables in representing indicators of the specific quality aspect under 

evaluation (e.g. indicators of PhD Researcher’s success in entering the labor market or 

academic field), and are provided by responsible experts or by results of surveys 

previously carried out in the specific context. 

The methodological problem we face is to find a global satisfaction index or a global 

ranking of N statistical subjects starting from k dependent rankings on the same N 

subjects, each representing a specific aspect under evaluation.  

Two main aspects should be considered when facing the problem of finding a global 

index or a global ranking of satisfaction: 

1. the search of suitable combining function of two or more indicators or rankings; 

2. the consideration of extreme units of the global ranking. Bird et al. (2005) pointed 

out that “the principle that being ranked lowest does not immediately equate with 

genuinely inferior performance should be recognized and reflected in the method of 

presentation of ranking”. 

The nonparametric combination (NPC) of dependent rankings (Lago & Pesarin, 2000) 

provides a solution for problem (1). The main purpose of the NPC ranking method is to 

obtain a single ranking criterion for the statistical units under study, which summarizes 

many partial (univariate) rankings. 

Let us consider a multivariate phenomenon whose variables Y are observed on N 

statistical units. Starting from component variables kiYi ,...,1, = , each one providing 
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information about a partial aspect, we wish to construct a global index or combined 

ranking T : 

( ) 12
11 :  ,,...,;,..., RR →= k

kk wwYYT φφ , 

where φ  is a real function that allows us to combine the partial dependent rankings 

and ( )kww ,...1  is a set of weights which takes the relative degrees of importance 

among the k aspects of Y  into account. 

We introduce a set of minimal reasonable conditions related to variables kiYi ,...,1, = : 

1 for each of the k informative variables a partial ordering criterion is well 

established, that is to say “large is better”;  

2 regression relationships within the k informative variables are monotonic 

(increasing or decreasing); 

3 the marginal distribution of each informative variable is non-degenerate. 

Moreover, notice that we need not to assume the continuity of kiYi ,...,1, = , so that the 

probability of ex-equo can be positive. The combining real function φ  is chosen from 

class Φ  of combining functions satisfying the following minimal properties: 

- φ  must be continuous in all 2k arguments, in that small variations in any 

subset of arguments imply small variation in the φ -index; 

- φ  must be monotone non-decreasing in respect to each argument: 

( ) ( ) ;,...,1,01 if,...,;,...,; 11 kiY Y  ww,...Y...,ww,......Y iikiki =>′>>′≥ φφ  

-  φ  must be symmetric with respect to permutations of the arguments, in that if 

for instance kuu ,...,1  is any permutation of 1,…,k then: 

 

Property 1 is obvious; Property 2 means that if for instance two subjects have exactly 

the same values for all sY , except for the i-th, then the one with ii YY ′>  must have 

assigned at least the same satisfaction φ -index. Property 3 states that any combining 

function φ  must be invariant with respect to the order in which informative variables 

are processed. 

( ) ( )kkkuu wwYYwwYY
k

,...,;,...,,...,;,..., 1111
φφ =
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For example, Fisher’s combining function: ( )∑ = −×−= k
i ii Yw1 1logφ  can be useful for 

quality assessment. Of course, other combining functions previously presented may be 

of interest for the problem of quality assessment. Here we simply point out that Fisher’s 

combining function seems to be more sensitive when assessing the best quality than 

when assessing lower quality, in the sense that small differences in the lower quality 

region seem to be identified with greater difficulty than those in the best quality region. 

For problem (2), we propose an extension of the NPC ranking method to the case of 

ordered categorical variables based on extreme satisfaction profiles. Extreme 

satisfaction profiles are defined apriori on a hypothetical frequency distribution of 

variables kiYi ,...,1, = . Let us consider data Y , where the rule “large is better” holds 

for all variables. Observed values for the k variables are denoted as 

Njkiy ji ,...1;,...,1, == . Examples of extreme satisfaction profiles are given below. 

The strong satisfaction profile is defined as follows: 

a. the maximum satisfaction is obtained when all subjects have the highest 

value of satisfaction for all variables: 

kii
mh

fhi ,...,1,  ,
otherwise   0

for     1
=∀



 =

=  

where ihf  are the relative frequencies of categories ,,...,1, mhh =  for 

variable kiYi ,...,1, = ; 

b. the minimum satisfaction is obtained when all subjects have the smallest 

value of satisfaction for all variables: 

kii
h

fhi ,...,1,  ,
otherwise   0

1for     1
=∀



 =

=  

The weak satisfaction profile is defined as follows: 

c. the maximum satisfaction is obtained when the same relative frequency 

(say 70%) of subjects have the highest value of satisfaction for all 

variables: 
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( ) kii
uuu

mhu

f m

h
hh

hi ,...,1,     
1  whereotherwise,   

for     
1

1

=∀








−=

=
=

∑
−

=

; 

d. the minimum satisfaction is obtained when the same relative frequency 

(say 70%) of subjects have the smallest value of satisfaction for all 

variables: 

( ) kii
lll

hl

f m

h
hh

hi ,...,1,     
1  whereotherwise,   

1for     

2

=∀








−=

=
=

∑
=

 

Another way to define weak satisfaction profiles is obtained when: 

e. the maximum satisfaction is obtained when subjects have the highest 

value of satisfaction with relative frequencies varying across the 

variables: 

( ) ki
uuu

mhu

f m

h
ihihi

i

hi ,...,1     
1  whereotherwise,   

for     

1

1

=








−=

=
=

∑
−

=

; 

f. the minimum satisfaction is obtained when subjects have the smallest 

value of satisfaction with relative frequencies varying across the 

variables: 

( ) ki
lll

hl

f m

h
ihihi

i

hi ,...,1     
1  whereotherwise,   

1for     

2

=








−=

=
=

∑
=

.

 

2.1 Extreme profile ranking method 

In order to include the extreme satisfaction profiles in the analysis, we transform 

original values .,...,1, mhh =  At first, we separate the values of h corresponding to a 

judgment of satisfaction, say the last mtt ≤≤1 , , from those values corresponding to 

judgments of dissatisfaction, i.e. ( )tm− . For the last t  values of h corresponding to a 

judgment of satisfaction, the transformed values of h are defined as: 
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kimtmhfh hi ,...,1  ;,...,1         5.0 =+−=×+ . 

For the first ( )tm−  values of h corresponding to judgments of dissatisfaction, the 

transformed values of h are defined as: 

( ) kitmhfh hi ,...,1  ;,...,1         5.01 =−=×−+ . 

Such transformation is equivalent to the assignment to original values ,,...,1, mhh =  of 

additive degrees of importance which depend on relative frequencies ihf  and which 

increase the original values h up to 5.0+h . Let us suppose, for example, that 

4,3,2,1=h  and values 3 and 4 correspond to judgments of satisfaction. By applying the 

above transformation, the value of 3 tends to the upper value 4 which represents higher 

satisfaction, when 3if  increases. On the contrary the value of 1 tends to 2 (less 

dissatisfaction), when 1if  decreases. Figure 2 displays the example. 

 

 

Figure 1. Transformation of original h values. 

 

The transformation of values ,,...,1, mhh =  weighted by relative frequencies ihf , is 

applied to observed values Njkiy ji ,...1;,...,1, == . For the last t  values of h 

corresponding to a judgment of satisfaction, the transformed values of jiy  are defined 

as: 

( ) Njkifyyz
m

tmh
ihjihjiji ,...,1;,...,1     ,5.0

1
==××+= ∑

+−=
I , 

where: 
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( )






≠

=
=

    if    0

   if     1

hy

hy
y

ji

ji
jihI . 

For the first ( )tm−  values of h corresponding to judgments of dissatisfaction, the 

transformed values of jiy  are defined as: 

( ) ( ) Njkifyyz
tm

h
ihjihjiji ,...,1;,...,1    ,5.01

1
==×−×+= ∑

−

=
I . 

In this setting, we can consider the following transformations (partial rankings): 

( )
( ) Njki

zz

zz

ii

iji
ji ,...,1;,...,1     ,

1

5.0

minmax

min ==
+−

+−
=λ , 

where miniz  and maxiz  are obtained accordingly to an extreme satisfaction profile. If 

we consider the strong satisfaction profile we have: 

( ) ( )

( ) .1     ,  and   1    where5.05.0 

1     ,1  and   1    where15.01

1
max

1
min

,...,kimhyfmfyyz

,...,kihyffyyz

jiih

m

tmh
ihjihjii

jiih

tm

h
ihjihjii

====+=××+=

=====×−×+=

∑

∑

+−=

−

=

I

I

 

If we consider a weak satisfaction profile, with 7.0=u  and 1=l , we have: 

( ) ( )

( ) .1   ,  and 7.0   where35.05.0 

1  ,1 and 1   where15.01

1
max

1
min

,...,kimhyfmfyyz

,...,kihyffyyz

jiih

m

tmh
ihjihjii

jiih

tm

h
ihjihjii

====+=××+=

=====×−×+=

∑

∑

+−=

−

=

I

I

 

It is worth noting that maxiz  represents the preferred value for each variable, and it is 

obtained when satisfaction is at its highest level accordingly to the extreme satisfaction 

profile; miniz  represents the worst value, and it is obtained when satisfaction is at its 

lowest level accordingly to the extreme satisfaction profile. Scores 

Njmiji ,...,1,,...,1, ==λ  are one-to-one increasingly related with values jiy , jiz  and 

are defined in the open interval (0,1) (+0.5 and +1 are added in the numerator and 

denominator of jiλ  respectively). 
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In order to synthesize the k partial rankings based on scores Njmiji ,...,1,,...,1, ==λ , 

by means of the NPC ranking method, we use a combining function φ : 

[ ]NjwwT kjkjj ,...,1,),...,;,...,( 11 == λλφ . 

In order the global index varying in the interval ]1,0[  we put: 

Nj
TT

TT
S

j
j ,...,1,

minmax

min =
−

−
= , 

where: 

( )
( )   ,,...,;,..., 

   ,,...,;,...,

1maxmax1max

1minmin1min

kk

kk

wwT

wwT

λλφ
λλφ

=
=

 

and miniλ  and maxiλ  are obtained accordingly to the extreme satisfaction profiles:  

( )
( )

( )
( ) .,...,1     ,

1

5.0

,,...,1     ,
1

5.0

minmax

minmax
max

minmax

minmin
min

ki
zz

zz

ki
zz

zz

ii

ii
i

ii

ii
i

=
+−

+−
=

=
+−

+−
=

λ

λ
 

Note that value minT  represents the unpreferred value of the satisfaction index since it 

is calculated from ( )minmin1 ,..., kλλ , while maxT  represents the preferred value since it 

is calculated from ( )maxmax1 ,..., kλλ . minT  and maxT  are reference values in order to 

evaluate the “distance” of the observed satisfaction values from the situation of highest 

satisfaction defined accordingly to the extreme satisfaction profile.  

Hereafter we will use the acronym NCI (Nonparametric Composite Indicator) to 

indicate the global index !�. 
2.2 A real application: the teaching university assessment 

This section reports the results of the analysis applied to data collected from the student 

satisfaction survey of the School of Engineering of the University of Padova for three 

academic years (2011/12, 2012/13, 2013/14) relating to different aspects of satisfaction.  

The nonparametric composite indicator (NCI) proposed in this chapter has been applied 

to analyze data. The idea at the basis of a composite indicator is to break down a 

complex variable, such as the global satisfaction into component measurable by means 
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of simple partial indicator (Marozzi, 2009). Figure 2 shows an example of 

decomposition of a complex variable. 

 

 

Figure 2. Example of decomposition of a complex variable. 

 

The questionnaire of satisfaction of the University of Padova presents several questions 

relating to the different aspects of satisfaction: 

- Satisfaction about organizational aspects; 

- Satisfaction about teaching activities; 

- Satisfaction about infrastructures (till 2012/13); 

- Overall Satisfaction. 

In Appendix the questionnaire till the academic year 2012/2013 has been reported in 

original language (Italian; Appendix A.1) and in the English version (for foreign 

students; Appendix A.2).  

It is also shown that there are questions related to attending and not-attending students. 

In order to understand the satisfaction related to whole teaching courses, i.e. in all their 

aspects, we considered answer related to attending students (students who attended at 

least the 50% of lessons). The application of the method to questions referred to not 

attending students is obviously possible. 
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As seen before (and as we can see in the questionnaire in the Appendix) till the 

academic year 2012/2013 there were some questions related to infrastructures, e.g. 

related to the classroom for the lecture. From the academic year 2013/2014 these 

questions have been deleted from the questionnaire because, previous studies have 

shown that they do not impact on the satisfaction.  

Since in this section we show results for the academic year 2013/2014 we show in 

Table 1, the 9 questions for the analysis, selected as representing satisfaction aspects 

described above. 

Data consist of scores in Likert scale 1-10 where 10 is optimal evaluation, thus we are 

in presence of ordered categorical variables. 

The aim of the analysis is not only to assess the satisfaction of students about several 

teaching courses belonging to specific degree courses both for different areas of 

satisfaction separately and jointly showing the performances of the new proposal on real 

dataset, but in particular to understand which improvements it involves in the analysis. 

This study has the significant purpose of comparing the behavior of the NCI with 

respect to using only the mean of the answers at the question of overall satisfaction 

(D13), that is currently used as global indicator of satisfaction.  

For the sake of explanation, in order to show properties and advantages of the NCI let 

us consider only the data referring to teaching courses of the degree course in 

Management Engineering held in the academic year 2013/2014. Results for other 

academic years are close. 
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Organizational Aspects 

D01. At the beginning of the course the 

aims and the contents were clearly 

presented? 

D02. The examination procedures were 

clearly defined? 

D03. The times of teaching activities were 

complied with? 

D09. The recommended course material 

was appropriate? 

Teaching Activities 

D07. The teacher encouraged/motivated 

the interest in the subject? 

D08. The teacher set out the topics clearly? 

D10. The professor was during his office 

hours for clarifications and explanations? 

D11. Workshops, tutorials and seminars, if 

any, were appropriate? 

Overall Satisfaction 
D13. How much are you satisfied with the 

development of the course on the whole? 

Table 1. Questions selected from each macro area of satisfaction for the academic year 2013/2014. 

 

Satisfaction profiles. One of the advantages of the NCI is that it can take into account a 

benchmark for maximum or minimum desired satisfaction for different aspects.  

In order to understand this feature let us consider a very simple example of one teaching 

course of the first year in Management Engineering with 300 students. Suppose we 

want to evaluate the teaching course on the basis of the satisfaction about the room (e.g. 

enough seats, good acoustics etc.) and the satisfaction about the quality of teaching (e.g. 

teacher explain well). We can set two different benchmarks of satisfaction, since 

expected satisfaction for the two aspects is different. In a room with a lot of students is 

not likely to expect the highest satisfaction from all students about the infrastructures. 

This is because for example best seats are given early. Thus we can set: 
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- maximum satisfaction about room when at least the 60% of students have the 

highest satisfaction; 

- maximum satisfaction for teaching when  100% of the students have the highest 

satisfaction. 

Look at Figure 3. It reports an example of a real teaching course in Management 

Engineering. If we consider a strong satisfaction profile (i.e. highest satisfaction for all 

students for all variables) we obtain a composite indicator of satisfaction with a median 

0.41.  Thus if we consider the point 0.5 as point of sufficient satisfaction, this teaching 

course is not sufficiently satisfactory. Whereas using a weak satisfaction profile (i.e. 

setting different benchmark of satisfaction for different aspects) we pass from 0.41 to 

0.52 and thus to sufficient satisfaction. 

This feature is very significant since current indicators do not take into consideration 

benchmarks of satisfaction. 

 

[omissis] 

Figure 3. Distribution of NCI for a teaching course using different satisfaction profiles. Red dashed 
lines represent the point of sufficient satisfaction (0.5). Black dashed lines represent the median of 
NCI. 

 

 

Assignment of external weights. A second advantage of NCI is that for its construction 

it is based on a transformation of data obtained weighting variables by their relative 

frequencies. Thus each variable is already involved into the analysis with its intrinsic 

importance. However for application reasons, variables may also have different (non-

negative) ‘a-priori’ degrees of importance 0 < ?� ≤ 1, " = 1,… , A. 

Such weights  

- are thought to reflect different roles of the variables in representing indicators of a 

specific quality aspects under evaluation; 

- are provided by experts or from the results of surveys previously carried out in the 

specific context. 

It takes into account all partial aspects. An important advantage of the NCI is that it 

takes into account all partial aspects. We studied the impact of single aspects of 
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satisfaction both towards overall satisfaction (D13) and NCI by means of a multiple 

linear regression model (other models could be also adopted: latent class, multilevel 

models, etc.).  

[omissis] 

Figure 4. Significance (B ≤ C. CE) of each partial aspects in the regression model, for some teaching 
courses, identified by code of teaching course and code of teacher.  

 

Figure 4 shows a representative extract of the results regarding the significance of each 

partial aspect in the regression model, for each teaching course. A teaching course is 

identified by code of teaching course (as well as by code of degree course) and code of 

teacher, so that teachers who teach the same course are considered separately.  

Note that for some teaching courses, the Teaching Activity area presents some ‘critical’ 

variables i.e. D10 (related to availability of teacher) and D11 (related to workshop, 

laboratories etc.). When those variables have more than 30% of missing values then 

they are not considered to avoid biases.   

What we can see from Figure 4 is that teacher motivation seems to strongly guide the 

satisfaction. The result is mostly evident showing the histogram of the significance of 

each partial aspect (see Figure 5). Teacher motivation in the 76% of times impacts on 

the satisfaction followed by teaching material and teacher exploitation. 

This is a surprising result since the mean of D13 question is actually considered as 

indicator of overall satisfaction, whereas it depends only upon very few aspects. 

Whereas the composite indicator NCI obviously takes into account all partial aspects.  

[omissis] 

Figure 5. Histogram of the significance (B ≤ C. CE) of each partial aspects in the regression model. 

 

Performance with asymmetrical distribution. In Figure 6-7 we show the distribution of 

the scores for each aspect, for overall satisfaction and for composite indicator NCI. We 

can see how the distribution of overall satisfaction seems to follow that of teacher 

explanation, that is one of the aspects which mainly impact on satisfaction. 

 

Figure 6. Distribution of scores of one teaching course (18.312) for each aspect, for overall 
satisfaction and for composite indicator NCI. Red circles indicate aspect with a distribution of 
scores very close to that of overall satisfaction. Green circle indicates distribution of NCI. 
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[omissis] 

Figure 7. Distribution of scores of one teaching course (18.312) for each aspect, for overall 
satisfaction and for composite indicator NCI. Red circles indicate aspect with a distribution of 
scores very close to that of overall satisfaction. Green circle indicates distribution of NCI. 

Concluding the composite indicator proposed in this research presents several original 

aspects, so far not present in currently adopted indicator thus it can be considered as an 

alternative with respect to currently adopted indicators in order to better understand the 

‘satisfaction structure’ of the respondents. 
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Chapter 3. Rankings of multivariate populations 

The need of defining an appropriate ranking of several populations of interest, i.e. 

treatments, conditions, processes, products/services, etc. is very common within many 

areas of applied research such as Engineering, Life Sciences, etc. The idea of ranking in 

fact occurs more or less explicitly any time when in a study the goal is to determine an 

ordering among several input conditions/treatments with respect to one or more outputs 

of interest when there might be a “natural ordering”. This happens very often in the 

context of management and engineering studies or in the business world for many 

research and development - R&D problems where the populations can be products, 

services, processes, etc. and the inputs are for example the managerial practices or the 

technological devices which are put in relation with several suitable outputs such as any 

performance measure. 

Many times in the R&D problems the populations of interest are multivariate in nature, 

meaning that many aspects of that populations can be simultaneously observed on the 

same unit/subject. For example, in many technological experiments the treatments 

under evaluation provide an output of tens of even hundreds univariate responses, e.g. 

think on the myriad of automated measurements that are performed on a silicon wafer 

during the manufacturing process by microelectronics industry. From a statistical point 

of view, when the response variable of interest is multivariate in nature, the inferential 

problem may become quite difficult to cope with, due to the large dimensionality of the 

parametric space. 

Some inferential techniques such as multiple comparison procedures (Westfall et al., 

2011), ranking and selection (Gupta & Panchapakesan, 2002), order restricted inference 

(Silvapulle & Sen, 2005) and ranking models (Hall & Schimek, 2012), more or less 

directly or indirectly partially address the issue of population ranking but only under 

some additional assumptions and not in the setting as we do with the methodology we 

propose in this chapter. 

In order to better illustrate the goal behind the ranking of multivariate populations and 

the related concepts such as ordering within a multivariate setting, let us consider three 

bivariate normal populations Π1, Π2 and Π3 represented by the random variables Yj ~ 

N(µj, I) for j=1,2,3, where Y1 is dominated by Y2 and Y3 with respect to both univariate 
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components, i.e. Y1 and Y2, while Y2 dominates Y3 for the second component and the 

vice versa holds for the first component. 

As quite often happens in many real situations, we assume that all populations can 

strictly take positive real values and the rule ’the larger the better’ takes place so that the 

origin may represent the minimum reference value. As suggested by the ranking and 

selection literature (Gupta & Panchapakesan, 2002), let us choose as multivariate 

ranking parameter the Mahalanobis distance from the origin D j = µ j
T I −1µ j = µkj

2

k=1

2

∑  

and let be D j  the related sampling estimators, j = 1;2,3; since we are referring to 

spherical normal distributions the Mahalanobis distance is equal to the Euclidean 

distance, therefore since it happens that D1 < D2 < D3 within this metric the true 

underlying population ranking can be defined as (3,2,1). Accordingly, we can 

reformulate the multivariate ranking problem into an univariate dominance problem 

focused on the sampling estimators of D j , in particular in this case %F�<
d %F�<

d %FG the 

relation takes place. Note that the distribution of %F�  do depend by the multivariate 

characteristics of the related population distribution. As can be deduced from the 

previous example, it is worth noting that possible opposing dominances of several 

univariate components from two or more given populations do not affect the possibility 

of defining and infer on the possible stochastic dominances and multivariate ordering 

among those populations. In fact as in Dudewics & Taneja (1978), the multivariate 

ranking and selection literature highlights that, once a suitable scalar function of the 

unknown parameters has been chosen, this permits a complete ordering of the 

populations and the related inferences are based on a suitably chosen statistic which has 

an univariate distribution (Gupta & Panchapakesan, 2002). However, it is worth noting 

that when trying to perform parametric pairwise hypothesis testing on the Mahalanobis 

distances (via Hotelling-type statistics) with the goal of infer on which ordering can be 

supported by sampling data, several complications are encountered as pointed out by 

Santos & Ferreira (2012), in particular the joint distribution for all of pairs of mean 

vectors is unknown even under normality assumption. Anyway, several bootstrap and 

permutation solutions do exist, see from example Santos & Ferreira (2012) and 

Minhajuddin, Frawley, Schucany, & Woodward (2007) and Finos, Salmaso, & Solari 

(2007) in case of directional alternatives. When the multivariate population distributions 

are not specified, that is considering the ranking problem from a nonparametric point of 
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view, we should refer to a more general and possibly metric-free distance measure. 

Similarly to what has been proposed by several authors within the nonparametric 

ranking and selection framework (Govindarajulu & Gore, 1971), Arboretti, Bonnini, 

Corain, & Salmaso (2014) consider, as multivariate ranking indicator, a functional of 

the distribution function F, specifically a combination of the univariate directional 

permutation p-values which can be viewed as a distance measure among multivariate 

distributions. In this connection the combination methodology (Pesarin & Salmaso, 

2010) looks like a very useful tool because of its ability to reduce the dimensionality in 

order to compare and rank the populations under investigation. Informally speaking, the 

underlying idea behind the permutation approach for ranking of multivariate 

populations we propose in this work is quite simple: given two multivariate random 

variables Yj and Yh, if Y j dominates Yh then the significance level function related to 

the combined test statistic suitable for testing the null hypothesis of equality in 

distribution against the alternative Yj>Yh will be stochastically larger under the true 

alternative that under the null hypothesis of equality. Moreover, the significance level 

function under the true alternative will also dominates that one under the false 

directional alternative (for details see Arboretti et al., 2014). Actually, using the 

pairwise p-values as tools for ranking univariate populations is not entirely a new idea 

in the literature. In fact, since from Tukey’s underlining representation of pairwise 

comparison results according to the increasing values of their estimated means (Hsu & 

Peruggia, 1994), one can argue which population can be overall considered as the best, 

the second, etc. In this regard Bratcher & Hamilton (2005) proposed a bayesian subset 

selection approach to ranking normal means via all pairwise comparisons and compared 

their model with Tukey’s method and the Benjamini & Hochberg (1995) procedure. As 

it will be shown, actually we intend the ranking problem as a non-standard data-driven 

ordering problem, which can be viewed as similar to a sort of a special case of post-hoc 

multiple comparison procedure related to a multivariate ranking parameter. In this view, 

the ordering procedure is an empirical process that uses inferential tools with the 

function of distance indicators and signals useful to estimate a ranking according to the 

possible presence of several dominances among populations. In what follows, we 

provide details on the proposed methodology to rank several multivariate normal 

populations. A simulation study for unreplicated design is then presented. 



 

3.1 A new approach to rank several populations 

Let us consider the set {I�, I�, . . . , I+} related to C multivariate p-dimensional normal 

populations K� 	~	M
N�, O�, �	 = 	1, . . . , .,  where the variance/covariance matrix Σ is 

assumed to be known so that the C normal populations may differ only with respect to 

their location parameters N� . Assume that the ranking of the C populations can be 

established by an additive rule and assume also that the rule “the higher the better” 

takes place for all the p components, so that let �� 	= 	∑ ��Q <Q⁄)QR�  the “true” ranking 

parameter related to the j-th population. Accordingly, the “true” ranking can be defined 

as 

STΠ�V = S� = 1 + W#
�� < ���, ℎ = 1,… , ., � ≠ ℎZ, � = 1,… , ., 
when the symbol # means “number of times”. Note that if the rule “the lower the better” 

was valid instead, then when defining the ranking we should only reverse the direction 

of the inequality, i.e. 

S� = 1 + W#
�� > ���, ℎ = 1,… , ., � ≠ ℎZ, � = 1,… , .. 
 In case some components have be interpreted with the first rule and some others with 

the second rule, therefore a suitable transformation such as 1/Y or -Y should initially 

applied in order that all components can share the same underlying interpretation 

(obviously, in this case we should assume that the transformed components are 

multivariate normal differing only on the location parameter). Consider that a random 

sample of size $� is available from the j-th population and let �\� = ∑ ]̂�Q/<Q)QR�  be the 

natural estimator for ��, where ]̂�Q = ∑ ]��Q/$����R�  is the k-th univariate sample mean for 

the j-th population. From standard calculations on transformations of normal random 

variables it can be proved that 

�\�~M`��; ab + 2∑ cQdQed f
$� g , � = 1,… , .. 

In case the variance/covariance matrix Σ cannot be assumed as known, the previous 

formula is expected to be valid as approximated distribution, that is 

�\�→
d M `��; ab + 2∑ chQdQed f

$� g , � = 1,… , .. 
In order to calculate Ŝ�, that is to provide an estimate of S�, it is clear that we need to do 

inference on the pairwise differences T�� 	− ��V, �, ℎ = 1, . . . , ., � ≠ ℎ. For this goal let 
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us define as 

j!%T�� , ��V = 5(∗/� ×lab + 2∑ cQdQed f
1/$� + 1/$��. 
It is clear that j!%
��, ��� represents the last significance difference between any given 

pair of estimated ranking parameters, where 5(∗/�  is the adjusted by multiplicity 

standard normal percentile at the desired α-level. In this way, the natural estimator of 

S�can be defined as 

Ŝ� = 1 + W#T�\� − �\�V > j!%T�\� , �\�V, ℎ = 1,… , ., � ≠ ℎZ, � = 1,… , .. 
When performing pairwise comparisons, it is well known that results may be affected 

by the so-called intransitivity problem (Dayton, 2003), i.e. the possible inconsistency 

arising from pairwise results. For example, in case of three multivariate normal 

populations K�, K� and KG, assume that	�G 	< 	 �� <	�� so that the true ranks are S� =
2, S� = 3 and SG = 1, but inferential results support only one (the greatest) significance 

difference out of three pairwise comparisons, that is |�\� 	−	�\G| 	> 	j!%
��, �G�  and 

|�\� 	−	�\�| 	> 	j!%
��, ��� but |�\G 	− 	�\�| 	> 	j!%
�G, ���. In this case the estimated 

ranks will be {Ŝ
K�� = 1, Ŝ
K�� = 2, Ŝ
KG� = 1} which is clear an inconsistent ranking. 

In fact, from the logical point of view, the first two comparisons suggesting K� 	= 	K� 
and K� 	= 	KG  should imply K� 	= 	KG  but on the contrary empirical data support as 

conclusion thatK� 	≠ 	KG . To overcome the intransitivity issue let us define a new 

ranking estimator S̅ defined as 

S̅� = 1 + W#
Ŝ� + SpF��/2 > 
Ŝ� + SpF ��/2, ℎ = 1,… , ., � ≠ ℎZ, � = 1,… , . 

where 

SpF� = 1 + W#
. − W#
�\� − �\�� < j!%
�� , ���Z� < 
. − W#
�\�q − �\�� >
j!%
��q , ���Z�Z. 

When applied to previous example, it follows that S̅� = 2, S̅� = 3, and S̅G = 1, because 

SpF� = 2, SpF � = 2 and SpF G = 1. In general, the revised ranking estimator S̅ fully overcame 

the intransitivity problem and can be viewed as the average rank from the ranks derived 

from two types of counting: the significant observed inferiorities (i.e.�\� − �\� > j!%) 

and the significant observed superiorities (i.e.	�\� − �\� > j!%). 

 It is worth noting that, under the hypothesis of homogeneity of all populations i.e., 
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N� 	= 	N� =	. . . = 	N+  by definition all true ranking position S�  would necessarily be 

equal to one, hence they would be in a full ex-aequo situation, that is 

S� = W1 + #
�� < ���, ℎ = 1,… , ., � ≠ ℎZ = 1, ∀�. 
When performing inference on S�  via pairwise differences 
�� < ��� , under the 

hypothesis of full ex-equo the probability of estimating the correct global ranking - 

CGR and the correct individual ranking - CIR are such that 

Pr{CGR|homogeneity} = 	Pr{r̅� = 1, ∀j} = 1 − α,	
Pr{CIR|homogeneity} = 	PrWr̅� = 1Z ≥ 	1 − α∗, j = 1. . . C, 

where α and α∗ are respectively the significance level and the adjusted by multiplicity 

level chosen in the testing procedure.  

Under the alternative hypothesis of non-homogeneity, i.e. ∃	N� ≠	N�, �, ℎ	 =
	1	. . . ., �	 ≠ 	ℎ, the following expression takes place if 

	�� >	�� 	then	Pr{r̅� 	> 	 r̅�|non − homogeneity} > 	α∗, �	 = 	1. . . ., �	 ≠ ℎ. 
In particular, we can expect that the greater is the relative distance among ranking 

parameters the greater will be both Pr{CGR|non-homogeneity} and Pr{CIR|non-

homogeneity}; however, since under the alternative the populations at the extreme 

ranking positions have a greater probability to be declared as superior/inferior, it is clear 

that the highest individual rates will be referred to the true ‘best’ populations. 

Since as the sample sizes increase Pr{CIR|non-homogeneity} increases as well, it is 

worth noting that under the assumption of non-homogeneity, the ranking estimator can 

be said to be also a consistent classifier that is a procedure such that the probability of 

incorrect ranking classification gets arbitrarily close to the lowest possible risk as the 

sample size goes to infinity (Bousquet et al., 2004). 

3.2 A simulation study 

In order to validate the proposed methodology we carried out a Monte Carlo simulation 

study in the framework of the unreplicated design. The rationale of the simulation study 

was focused on investigating the behavior under the null hypothesis of equality of all 

populations and how the estimated global ranking is affected by the different strength of 

dependence for random errors and by an increasing number of populations. More 

specifically, the simulation study considered 1,000 independent data generation of 
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unreplicated multivariate normal samples and was designed to take into account for 54 

different settings, defined as combinations of the following configurations: 

• three values for the number of populations: C=3,4,5; where the number of response 

variables was always kept fixed at p=10;  

• three types of multivariate distributions: normal, heavy-tailed (Student’s t with 28 

d.f.) and skewed, where the latter has been generated by using the method proposed 

by Vale & Maurelli (1983) and programmed in R by Zopluoglu (2011). The non-

normal heavy-tailed and skewed cases (with kurtosis and skewness parameters equal 

to 0.25 and 0.5 respectively) was considered in order to evaluate the possible 

robustness of the proposed methodology under the cases of moderate heavy-tailed 

or asymmetric multivariate distributions; 

• two types of variance/covariance matrices: i. O� (heteroschedastic and independent 

errors, i.e. <Q 	= A  and <Qd 	= 0, ∀A, - = 1,… , b) and ii. O�  (heteroschedastic and 

correlated errors, i.e. <Q = A and <dQ 	= 0.75, ∀A, - = 1,… , b); anyway, during the 

ranking estimation process, the variance/covariance will be assumes as unknown, so 

that empirical variance/covariance estimates will be used in the LSD formula; 

• three situations for the true means: N�, N�, … , N+; 

i. homogeneity of all populations: N� =	N� =	… = N+ ; 

ii. non-homogeneity and full ranked populations: 

S
I�� = 1, S
I�� = 2, . . . , S
I+� = .; 

iii. non-homogeneity and some equally ranked populations, i.e. 

S
I�� = S
I�� = 1, . . . , S
I+'�� = S
I+�.. 

Under the non-homogeneity settings, we adopted the rule “the lower the better” and we 

set the true means as ��Q = 
� − 1�2<Q, A = 1,… , b. 

Considering the α-level set as 0.05, the performance of the proposed method has been 

evaluated in terms of correct rank classification rates, more specifically we compute  

• the overall Correct Global Ranking - CGR rate, that is the proportion of times the 

method simultaneously classifies all population in the their correct ranking position;  

• the Correct Individual Ranking - CIR rate, that is the proportion of times the method 

classifies a given population in its own correct ranking position.  

First of all it is worth noting that, irrespective of the type of error distribution and of the 

possible correlation, under the homogeneity of all populations the proposed method has 
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both CGR and CGI rates rather close or slightly greater than the nominal value 0.95 

when the number of population C is greater than three. The reason why the nominal 

error rates are not respected in case of C=3 is explained by the poor normal 

approximated distribution of θs estimator due to the estimates of correlation parameters. 

In fact, additional simulations (not reported here) shown that if we replace the estimates 

with the true correlation values in the LSD formula, then the estimated rates become 

exactly matched with the nominal values also for C=3. Under the non-homogeneity 

settings the proposed method shows a good behavior in terms of detection of the true 

rank both partially and globally, especially recalling that we are considering an 

unreplicated design with a relatively small shift δ among populations (δ = 2σ). As 

expected by the LSD formula, simulation results do confirm that the presence of 

correlation negatively affects the corrected classification rates while both estimated 

correct individual and global ranking rates are only slightly smaller in case of non-

normal random errors than in the normal case. The estimated correct individual ranking 

rates are larger for the best population than for the remaining ones which in turn seem 

more or less similar. Finally, another interesting result is the benefit provided by 

including a ’very worst’ population, as in the case of non-homogeneity with some 

equally ranked populations when errors are correlated. In fact, the inclusion of a ’worst’ 

population we have when C=5, with respect to the case when C= 4, allows us the obtain 

much more higher both corrected global and individual classification rates for the two 

tied populations with true rank equal to 3. For details on results of the simulation study 

see Carrozzo, Corain, Musci, Salmaso, & Spadoni (2014). 

In this chapter we proposed a novel parametric approach aimed at ranking several 

multivariate normal populations assuming that the ranking can be established on the 

basis of a ranking parameter defined as the sum of rescaled univariate means. Our 

approach assumes also that the variance/covariance matrix O is known but it could be 

easily extended relaxing this condition. In fact, in this case the reference distribution for 

the estimated ranking parameter becomes a Student’t distribution. The proposed 

approach is referred to multivariate normal populations but the extension to some other 

multivariate distributions, i.e. belonging to the exponential family, seems to be not so 

complicated and will be the objective of future research. It is worth noting that the 

proposed ranking method is suitable in case of unreplicated design as demonstrated by 

the simulation study. The reason why the simulation study considered only the 
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unreplicated design was to emphasize the ability of the proposed method to handle with 

multivariate unreplicated data which are generally, from the methodological inferential 

point of view, quite difficult task to deal with. Anyway, the method is certainly suitable 

for the replicated design as well, and the performance in terms of matching between the 

true and the estimated ranks is expected to improve as the sample sizes increase. 

3.3 Real applications 

This section aims to show two different kinds of real applications of the method 
proposed in this chapter. 

 

3.3.1 Life Cycle assessment 

In order to illustrate the usefulness of the procedure we proposed to rank several 

multivariate populations let us consider the so-called Life Cycle Assessment - LCA, 

that is a technique to assess environmental impacts associated with all the stages of a 

product’s life from-cradle-to-grave (i.e., from raw material extraction through materials 

processing, manufacture, distribution, use, repair and maintenance, and disposal or 

recycling). The goal of LCA is to compare the full range of environmental effects 

assignable to products and services in order to improve processes, support policy and 

provide a sound basis for informed decisions (US Environmental Protection Agency, 

2010). The procedures LCA are part of the ISO 14000 environmental management 

standards: according to the ISO 14040:2006 and 14044:2006 a Life Cycle Assessment 

is carried out in four distinct phases: 1. Goal and Scope Definition; 2. Inventory 

Analysis; 3. Impact Assessment and 4. Interpretation. The ranking procedures we 

proposed in this work is obviously related to the last two stages. 

Indeed, in the framework of LCA several alternative products or production processes 

can play the role of the populations under investigation which should be ranked 

according to their greater or less environmental impact. Moreover, the ranking 

parameter θ can be viewed as a multivariate global indicator/index of product’s 

environmental performances, more specifically it can be considered as the total number 

of “units of environmental impact” so that when comparing a set of estimated θs, 

provided that there are some significance differences, the ranking we obtain allows us to 

easily support decision on replacing one product/production process with greater 

environmental impact with another more sustainable one. In this connection, in the 

framework of LCA we can call the ranking parameter such as the Global Environmental 
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Performance Score - GEPS. 

To better illustrate this kind of decisional process, let us consider a real case study 

concerned with three variants of an established anti-scale product intended to reduce the 

effects of limescale in domestic clothes washes. Limescale build-up can occur when 

conducting domestic clothes washing using unsoftened mains water feed from a hard 

water source. Hard water is water containing a relatively high mineral content and is 

determined by the concentration of multi-valent cations (principally those of 

Magnesium and Calcium) in the water. Limescale build-up can impair the efficient 

operation of the washing machine and shorten the life span of the appliance. To avoid 

this, the anti-scale product is intended to reduce deposition of limescale by preventing 

the precipitation of Calcium and Magnesium carbonates and other species on the 

surfaces of appliances (principally the heating element). Additionally, Calcium and 

Magnesium can interfere with the surfactant properties of detergents and therefore 

reduce cleaning performance in hard water. By adding an anti-scale product to the wash, 

this neutralises the effect of Calcium and Magnesium and allows consumers, instead, to 

reduce the detergent dosage to that recommended by the manufacturer for soft water. 

In Table 2 are reported the estimated environmental effects of a list of ten relevant 

impact categories with respect to UK and Germany by three variants of the anti-scale 

product under investigation, where the chosen reference functional unit was a single 

domestic wash cycle. As a control, a domestic wash without any anti-scale was 

considered as well. Assuming the multivariate normal distribution of the ten categories, 

the application the proposed multivariate ranking methodology provides results reported 

in the bottom of Table 2. 

It is worth noting that the proposed multivariate analysis allows us to rank the 

environmental global impact for the three anti-scale versions in comparison with the 

control showing for each county which is the best product from the sustainability point 

of view. It should be noted that in LCA often it is assumed that response variables, i.e. 

the so-called impact categories, are log-normally distributed. However, in case of log-

normal multivariate populations, the sampling distributions of ranking parameter θs and 

their pairwise differences are very hard to derive and only recently some approximated 

results have been proposed in the literature (Lo, 2013), although the problem of finding 

out quantiles from this kind of complex distributions should be numerically addressed. 

Anyway, our simulation study proved that in case of moderate skewed distributions the 
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proposed solution which uses as reference the normal multivariate distribution may be 

considered as acceptable. 

 
Table 2. Environmental effect for each impact category by product and country and multivariate 
ranking analysis. 

 

The new quantitative ranking method to analyze LCA findings can be useful to support 

the claim, and in general to communicate strategies where it can be highlighted the 

smaller ”unit of environmental impact” that are determined from eco-friendly products 

compared to products obtained from conventional production processes (for application 

within industrial field see also Bonnini, Corain, & Salmaso (2006); Corain & Salmaso 

(2007)). The proposed multivariate ranking methods could effectively be relevant also 

for different applied research fields. Among the others, we mention the new product 

development where the goal is to find out which is the product/prototype most 

performing. For example, when developing new detergents, the laundry industry refers 

to the so-called primary detergency, i.e. the assessment of benefits of a detergent in 

removing several types of stains from a piece of previously soiled fabric. When 

performing a primary detergency experiment, given that the benefits are simultaneously 

evaluated on several different types of stains, the response variable can actually be 

considered multivariate in nature. So that, assuming that the underlying random 

distribution is multivariate normal and the sum of rescaled univariate means is a 

suitable ranking parameter, one can apply the proposed ranking methodology to rank 

the set of investigated products from the ’best’ to the ’worst’. 



 

3.3.2 Customer satisfaction 

In the sport tourism field, customer satisfaction and service dimensions are crucial 

points in order to deliver a high quality service and to be competitive. Evaluations of 

such dimensions with appropriate statistical tools is therefore of fundamental 

importance. 

Sport tourism has been defined as ‘travel for non-commercial reasons, to participate or 

observe sporting activities away from the home range’ (Hall, 1992). Weed & Bull 

(2004) suggest five types of sport tourism: tourism with sport content, sport 

participation tourism, sport training, sport events and luxury sport tourism. In Weed 

(2009) it is reported a meta-review of 18 different references (four journal articles, eight 

book chapters, three reports, etc.) from 1990 to 2008, aimed to trace different research 

paths undertaken in the sports tourism field. Weed (2006; 2009) describes the ‘event 

sports tourism’ as the main researched area followed by ‘active sport tourism’, 

particularly golf and ski tourism. Golf and ski tourism have been classified as ‘active 

sport tourism’ or ‘sports participation tourism’ by several authors (Gibson, 2002; Weed 

& Bull, 2004). The following studies have dealt with the behaviours of sport tourists: 

Petrick & Backman (2002a; 2002b; 2002c) researches on the satisfaction and value 

perceived by golf tourist; the research of Williams & Fidgeon (2000) on the barriers that 

keep many potential skiers off the slopes and trails. As stated by Chalip (2001), sports 

tourism field is ‘multi-faceted’ with authors performing sport tourism researches from 

different disciplinary perspectives. Weed (2009) outlined the importance of the 

contribution of different disciplines to the sport tourism research, highlighting also the 

scarcity of studies related to customer satisfaction particularly in winter sports. In a 

study on how addressing the participation constraint in potential skiers, Williams and 

Fidgeon (2000) stated that ‘so much of the breaking down of the barriers to skiing 

evolve around treating new skiers in friendly and hospitable ways’. To accomplish this 

aspect seems important not only a customer service marketing that makes skiers feel 

comfortable, but also it seems important to evaluate and monitor customer satisfaction 

and service quality. 

Within the sport tourism industry, quality of provided services is a relevant issue in 

order to be competitive (Kouthouris & Alexandris, 2005; Shonk & Chelladurai, 2008). 

Some studies on customers’ perception of service quality have been conducted in health 

and fitness centers (Alexandris, Zahariadis, Tsorbatzoudis, & Grouios, 2004), golf 
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courses (Crilley, Murray, Howat, March, & Adamson, 2002), recreational and leisure 

facilities (Ko & Pastore, 2004) and during sport events (Greenwell et al. 2002a, 2002b; 

Kelley & Turley, 2001; McDonald, Sutton, & Milne, 1995; (Wakefield, Blodgett, & 

Sloan, 1996)). 

Customer satisfaction can determine the success of a sport organization (Ko & Pastore, 

2004). (Matzler, Füller, Renzl, Herting, & Späth, 2008) in a study on customer 

satisfaction in Alpine areas claimed that winter tourism is crucial for eastern Alpine 

region’s economy, in particular Alpine skiing activities (Dolnicar & Leisch, 2003; 

Franch, Martini, & Tommasini, 2003, Matzler, Pechlaner, & Hattenberger, 2004; 

Matzler & Siller, 2003; Weiermair & Fuchs, 1999; Williams & Fidgeon, 2000). Matzler 

et al. (2008) also reported that ‘more and more winters with few snow and the rapid 

growth of long-distance travel increase competition between Alpine ski areas’ 

(Pechlaner & Tschurtschenthaler, 2003). In this competitive market environment, a 

careful analysis of tourist motivations, customer satisfaction and loyalty can make the 

difference (Yoon & Uysal, 2005). 

Requirements for high quality service are also specified by ISO 9001 document (2008). 

The European regulation ISO 9001 states that an organization needs to show its ability 

to regularly provide a product which satisfies customers’ requirements and wishes to 

increase customers’ satisfaction, the former related to monitoring of quality, the latter to 

improvement of quality. In this context it is advised to perform statistical survey and to 

apply methods and statistical techniques, in order to monitor, analyze and improve the 

service and customer satisfaction. 

The aim of this work is to show a statistical approach based on a two phase analysis, to 

evaluate customers’ opinion scores on several quality aspects of services or products. 

Several multi-criteria approaches to derive overall customer satisfaction have been 

introduced in the literature. Successful examples are related to MUlti-criteria 

Satisfaction Analysis (MUSA) (Ipsilandis, Samaras, & Mplanas, 2008; Grigoroudis & 

Siskos, 2002; Siskos, Grigoroudis, Zopounidis, & Saurais, 1998). Recently a multi-

phase analysis was applied to measure customer satisfaction of mobile services by a 

two-stage analysis: at first the authors analyze customer’s opinion in order to obtain 

customer satisfaction criteria and then they performed an analysis to rank service 

aspects (Kang & Park, 2014). 
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3.3.2.1 The case study: ski schools customer satisfaction 

In the present section we want to propose a two phases analysis with the first step aimed 

at ranking a sample of ski schools whereas the second step aimed to identify specific 

component (feeling and uncertainty) in the customer satisfaction process. For first step 

the NPC-based procedure proposed in this chapter (hereafter indicated as NPC Global 

Ranking) has been adopted in order to establish a ranking of the best ski schools by 

elaborating raw data from customers’ evaluations of several ski service aspects. Since 

we are dealing with ordered categorical data, for current application we considered an 

extension of NPC-Global ranking, for this kind of data. The method considers first 

nonparametric tests for pairwise comparisons of ‘Cx(C-1)/2’ populations of interest for 

each variable, and then a combination of directional p-values (through a ranking 

parameter) in which all variables are simultaneously considered. On the basis of the 

ranking parameter a global ranking of the C populations is derived (Arboretti 

Giancristofaro, Bonnini, Corain, & Salmaso (2014) for more methodological and 

computational details). 

 For the second step, aimed to analyze in detail the schools ranking, we refer to CUB 

models (for details see Piccolo, 2003a, 2006; D’Elia & Piccolo, 2005). 

In the winter season of 2011 a large survey has been conducted in 38 ski schools of Alto 

Adige (an area of Italian Alps), in which customers and parents of young children under 

the age of 13, who participated in a ski course, were asked to answer a questionnaire to 

express their level of satisfaction about some aspects of the experience. 

This study was innovative at a national level: it was the first systematic study performed 

on different schools, with quantitative evaluation, using a questionnaire specifically 

designed to measure satisfaction and quality perceived by customers. 

The first part of the questionnaire was about demographics and general information. 

The second part asked for opinions about three aspects of the service, each with specific 

quality dimensions: 

1. booking service, with the following quality dimensions: adequate opening times; 

 clarity and completeness of informative brochures and website information; 

staff  clarity and completeness of information provided; staff courtesy;  
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2. course organization: homogeneity of groups after selection (for collective 

courses);  

3. ski lessons: teaching (progress in skiing skills, courtesy of instructors); safety 

 (adequate slopes and lifts, subjective perception of safety); general satisfaction 

 (enjoyment & fun, increased passion for skiing, kids’ comfort, ...).  

Each dimension was investigated with specific questions reporting the score on a scale 

0-10 (0: not satisfied, 10: fully satisfied). The aim of the present work was to obtain a 

ranking of five selected schools (chosen from the sample of 38 ski schools for 

marketing reason) from the ‘best’ to the ‘worst’ on the basis of the responses of 

satisfaction about different aspects of the course. Schools were codified as A, B, C, D, E 

for illustrative purposes. The aspects of satisfaction considered, were related to: 

1. Improvement: progress in skiing skills;  

2. Courtesy: courtesy and helpfulness of the instructor;  

3. Fun: fun during the course.  

The NPC Global Ranking has been applied to these data and the summary of the 

analysis is shown in Tables 3, 4 and 5. Table 3 contains the combined p-values (after 

multiplicity adjustment) of the pairwise comparisons among the five schools.  

The value of the ranking parameter which determine the preliminary ranking are 

reported in Table 4. The global ranking of the schools reported in Table 5, has been 

obtained from significant comparisons in Table 3 (at a significance �-level equal to 

0.05). 

After this multivariate analysis (based on the three aspects of interest i.e. Improvement, 

Courtesy and Fun) also a univariate analysis has been performed in order to outline 

differences between the ranking obtained by means of NPC-Global ranking when multi 

items were considered, and the ranking resulted from the consideration of a single item 

(i.e considering the answers about overall satisfaction question). 

Ranking of the five schools obtained by univariate analysis is shown in Table 6. What 

we can see in this case is that, even if the ranking is substantially maintained (at least 

for the ‘first’ and for the ‘last’ position) with respect to overall multivariate analysis, the 

first three positions are not well discriminated. Thus considering only the variable 

‘overall satisfaction’ we conclude that A, B, C have the same degree of preference. 

[omissis] 
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Table 3. Combined p-values (after multiplicity adjustment) of the pairwise comparisons. 

[omissis] 

 

Table 4. Ranking parameters of the five schools. 

 

[omissis] 

Table 5. NPC-Global ranking based on the three variables: Improvement, Courtesy and Fun 

[omissis] 

Table 6. Ranking based on univariate analysis (question on overall satisfaction) 

In line with NPC-Global ranking results which outlined customers of school A giving 

the higher scores to the provided service, CUB models showed for this school a very 

positive feeling about the evaluated service. 

Furthermore, the introduction of covariates gave some tips on how to improve the 

service. 

Customers in school E gave worse scores with respect to other schools. In particular the 

results of the analysis have shown that foreign customers were less satisfied than 

Italians with respect to the three aspects of the service under evaluation. Foreign 

customers’ perception of improvement, courtesy and fun at the ski school E was not so 

high as the Italian’s one.  

Since the purpose of this section was to show a useful application of the NPC-ranking 

methodology also associated with other established procedure, for details on results 

about CUB models we refers to Arboretti, Bordignon, & Carrozzo (2014). 
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Chapter 4. Two-sample two-sided test for equivalence 

One of the well-known problems with testing for sharp null hypotheses against two-

sided alternatives is that, when sample sizes diverge, every consistent test rejects the 

null with a probability converging to one, even when it is true. This kind of problem 

emerges in practically all applications of traditional two-sided tests. The main purpose 

of the present work is to overcome this very intriguing impasse by considering a general 

solution to the problem of testing for an equivalence null interval against a two one-

sided alternative. Our goal is to go beyond the limitations of likelihood-based methods 

by working in a nonparametric permutation framework. This solution requires the 

nonparameteric combination of dependent permutation tests, which is the 

methodological tool that achieves Roy’s Union–intersection principle. To obtain 

practical solutions, the related algorithm is presented. To appreciate its effectiveness for 

practical purposes, a simple example and some simulation results are also discussed. In 

addition, for every pair of consistent partial test statistics it is proved that, if sample 

sizes diverge, when the effect lies in the open equivalence interval, the Rejection 

probability (RP) converges to zero. Analogously, if the effect lies outside that interval, 

the RP converges to one. 

As an introduction let us consider the well-known one-dimensional two-sided problem 

with two independent samples, where �� ∶ �� 	= ��  and �� ∶ �� 	≠ �� , under the 

assumption that �� implies the equality of two underlying distributions: 		 = 		� 	= 		� 
(note the generalized homoschedasticity), and that the additive treatment effect is fixed, 

i.e.		�
�� 	= 		�
�	 + 	��. We qualify such a null hypothesis as sharp or point. In this 

context, if �� 	= 
���, . . . , �����, �	 = 	1,2, are IID and the two samples are independent, 

the well-known optimal solution (UMPU) under the assumptions of normality and 

homoschedasticity is Student’s t test, while if F is unknown and continuous a good 

solution is the Wilcoxon–Mann–Whitney rank test. A non-parametric competitor for 

both is the permutation analogue based on divergence of sample averages. This is 

conditional on the pooled dataset � = ��⨄�� , which is always a set of sufficient 

statistics in sharp ��. In turn, if F is unknown or lies outside the regular exponential 

family, X is minimal sufficient. 

Being conditional on X, this permutation test: (i) is generally asymptotically best 

if the population variance ��
��  is finite; (ii) is consistent if the population 
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expected value EF(X) is finite (Pesarin & Salmaso, 2013); (iii) does not require 

continuity of X; (iv) under H , requires that either 	� 	≤ 		�	or		� 	≥ 		�, i.e. the 

dominance in distribution, which is much less demanding than homoschedasticity in the 

alternative when treatment may also affect variability; (v) does not require fixed 

additive effects; (vi) enjoys other important mathematical and statistical properties 

(Pesarin, 2001; Pesarin & Salmaso, 2010a); (vii) under mild conditions permutation 

tests are found to be asymptotically coincident with those obtained via traditional 

likelihood-based techniques, in the most favorable conditions for the likelihood 

approach (Hoeffding, 1952; Good, 2000). Furthermore, when the likelihood formulation 

is such that only asymptotic solutions are available and the rate of convergence is slow 

or when the number of nuisance parameters to remove is large (even larger than sample 

sizes), permutation solutions are generally much more effective than likelihood-based 

techniques even within the regular exponential family (Pesarin & Salmaso, 2010a). In 

addition, when the underlying distribution is nonparametric, or when the number of 

parameters increases with sample sizes, no likelihood-based solutions are available 

unless quite stringent or even unnatural restrictions are introduced (Pesarin & Salmaso, 

2010a; Romano, 2005; Sen, 2007). For this reason we have decided to stay within the 

permutation approach. One of the well-known problems with testing for a sharp null 

hypothesis, as in �0 ∶ 	 �� 	= 	 �� , against two-sided alternatives (e.g. Frosini, 2004; 

Nunnally, 1960; Pantsulaia & Kintsurashvili, 2014); the latter enables to recovering 

more than 200 references on the subject matter) is that when sample sizes diverge and 

�� is true, every consistent test always rejects  �� with a probability converging to one. 

In this respect Nunnally (1960) writes: “To minimize type II errors, large samples are 

recommended. In psychology, practically all (sharp) null hypotheses are claimed to be 

false for sufficiently large samples so ... it is nonsensical to perform an experiment with 

the sole aim of rejecting the null hypothesis”. This remarkable and meaningful concept 

leads to considering the null hypothesis as an equivalence interval, rather than only one 

point; and this not only for practical necessities, but also for theoretical requirements. 

The main objective of the present paper is to overcome this very intriguing impasse by 

considering a general solution to the problem of testing for ��: −�� 	≤ �� − �� 	= � ≤
�� against �� ∶ 	 
�	 < 	−���	��	
�	 > 	 ���, where δ is the divergence of effects and ��, 
��  > 0 are the admitted inferior and superior margins, respectively. Margins can be 

suitably established by biological, clinical, economic, experimental, pharmacological, 
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social, technical and/or regulatory considerations. This kind of problem comes out in 

almost all applications of traditional two-sided tests as typically occurs in experimental 

as well as observational studies. Of course, if one of the margins is set to infinity, we lie 

within the non-inferiority or non-superiority one-sided situation. 

A test for these kinds of hypotheses could be constructed within the generalized 

likelihood ratio test if F belongs to the regular exponential family and if for nuisance 

entities the invariance principle works (Lehmann, 1986). To make this solution 

available in more general situations requires knowledge of F, including all nuisance 

entities. This solution, however, is far from satisfactory in practical terms (Cox & 

Hinkley, 1974). Alternatively (Roy, 1953; Sen, 2007; Sen & Tsai, 1999) it can be 

constructed within Roy’s Union–intersection (UI) approach. To the best of our 

knowledge, following this approach, working within the nonparametric combination 

(NPC) of dependent permutation tests is unavoidable (Pesarin 1990, 2001; Pesarin & 

Salmaso, 2010a). Indeed, it is worth noting that with ��� ∶ 	�	 ≥ 	−�� against ���	� <
−��  and ��� ∶ � ≤ ��  against ��� ∶ � > ��  denoting two one-sided sub-hypotheses, 

according to Roy we may write �� 	≡ 	��� ∩ ��� and �� 	≡ 	��� ∪ ���, respectively. 

That is, the global null �� is true if both one-sided null sub- hypotheses are jointly true 

and the global �� is true if at least one of two sub-alternatives is true. 

In this respect it is also worth noting that when �� is true, one and only one of ��� and 

��� is true because the two have no common point—a property which must be taken 

into consideration while deriving the UI solution. Technically this approach requires 

two one-sided partial tests, such as, for instance, �� 	= �̂� − �̂� − ��  and �� 	= �̂� −
−�� − �̂�   for respectively ���  and ���  followed by their combination within Roy’s 

(1953) UI approach:	�� 	= 	��	
�� , ��	�. Since their dependence is generally too difficult 

to model properly, this combination should be nonparametric. 

Regarding the likelihood-UI approach, Sen (2007), with whom we substantially agree, 

writes: “However, computational and distributional complexities may mar the simple 

appeal of the UI approach to a certain extent. (...) The crux of the problem is however 

to find the distribution theory for the maximum of these possibly correlated statistics. 

Unfortunately, this distribution depends on the unknown F, even under the null 

hypothesis. (...) An easy way to eliminate this impasse is to take recourse to the 

permutation distribution theory (...) [not in fact so easy]. In most of the complex sta- 

tistical inference problems, the usual likelihood formulation stumbles into 
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methodological as well as computational difficulties, even in asymptotic setups” [and 

this (Pesarin & Salmaso 2010a) even within the regular exponential family of 

distributions]. We discuss our solution within the permutation NPC essentially because 

the underlying dependence structure of partial tests, particularly for multidimensional 

situations, is generally much more complex than linear. We will also prove the main 

properties of �� , such as that the limiting Rejection probability (RP), ��a�
��, ��f say, 

converges to one for all �	 ∈ 	�� , converges to zero for all δ in the open interval 


−�� , ��� , and converges to α in the extremes of the equivalence interval. So the 

intriguing pitfall of the sharp two-sided test finds a general solution. However, due to 

the many different perspectives, we do not consider here any comparison with the so-

called Intersection–Union approach to the general equivalence and non inferiority 

problems as used in some questions linked to clinical trials and pharma- costatistics 

(Berger 1982; Hung & Wang, 2009; Romano, 2005; Wellek, 2010). 

In the rest of the chapter we will provide: a general overview of UI-NPC-based testing; 

a detailed description of the proposed univariate permutation solution and some of its 

most important limiting properties; a simple illustrative example and a simulation study 

to assess the behavior of that solution both under the null hypothesis and the alternative. 

4.1 A review on NPC 

Let � = W���, … , ���� , ���, … , ���6Z ∈ � �  be the two-sample Q-dimensional dataset, 

where ¡ ≥ 1, $�, $� ≥ 2, $ = $�, $�, and X belongs to the Q-dimensional sample space 

� . An alternative representation of data set is also � = {�� = �
"�, " = 1, … , $; $�, $�}. 
The pooled data set is denoted � = �� ⊎ �� ∈ � �. 

Let Π
£�  be the set of permutations of units £ = 
1,… , $�  and £∗ = 
¤�∗ , … , ¤¥∗ � ∈ 

Π
£�  one of these permutations. The related permutation of 	�  is: �∗ = {�¦∗ =
�
¤¦∗�, " = 1,… , $; $�, $�}  and so ��∗ = {���∗ = �
¤�∗�, " = 1,… , $�}  and ��∗ =
{���∗ = �
¤�∗�, " = $� + 1,… , $}  are the two permuted samples. Note that individual 

data vectors are permuted so as to preserve all dependences among the Q component 

variables of � . Suppose that ��  true implies ��=
d ��  that is 	� =		� , which then 

implies data exchangeability. Suppose, moreover, that the hypotheses can be broken-

down into § ≥ 1 sub-hypotheses: ��Q  against ��Q, A = 1,… , § , so that, according to 

Roy’s UI principle, �� ≡∩QR�¨ ��Q is true if all the ��Qare true, and �� ≡∪QR�¨ ��Q is 
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true if at least one sub-alternative is true. Note that K can be smaller, equal or even 

larger than Q. Indeed, some component variables can be summarized together in new 

derived variables and on some others one may be interested in more than one aspect, in 

accordance with the so-called multi-aspect analysis (Bertoluzzo, Pesarin, & Salmaso, 

2013; Brombin, Salmaso, Ferronato, & Galzignato, 2011; Marozzi, 2004; Marozzi & 

Salmaso, 2006; Pesarin & Salmaso, 2010; Salmaso & Solari, 2005). 

Also, suppose that for each sub-hypothesis ��Q  against ��Q  a "marginally unbiased" 

partial permutation test statistic �Q; that satisfy the rule "large values are significant" is 

available. Suppose, moreover, that at least one of these partial tests is consistent in the 

traditional sense. Note that often but not always, separate unbiasedness of all the 

�Q, A = 1,… , §, implies that they are "positively dependent" (Lehmann, 1986). 

The global hypotheses are then tested by combining K partial dependent permutation 

tests by a suitable combining function © that is  

�ª = �ª
��, … , �̈ � ≡ ©
«�, … , «¨�. 
where «Q = Pr{�Q∗ ≥ �Q¬|�} is the p-value statistic associated with the partial test �Q: 

Combining functions © should satisfy: 

C1. ©  is continuous and non-increasing in each argument (convexity), i.e. «Q < «Qp  

implies ©
… , «Q, … � ≥ ©
… , «Qp , … �,  
C2.	©	must attain its supremum ©® if at least one argument attains 0;  

C3. � > 0 implies the critical value is such that �ª( < ©® i.e no concentration points at 

©® under ��. 
Unless the cardinality of Π
�� = W∪£∗∈¯
£� a�
¤�∗�, " = 1,… , $; $�, $�fZ is very small, 

literature (Edgington & Onghena, 2007; Good, 2000; Pesarin, 2001; Pesarin & Salmaso 

2010) suggests to estimate, at any desired degree of accuracy, the K -dimensional 

distribution of 
��∗, . . . , �̈∗ 	�  by means of a conditional Monte Carlo procedure, 

consisting of a random sample of R elements from Π
�� (commonly, R is set at least to 

1000) and to proceed according to the following figure which outlines the UI-NPC in 

multivariate testing. 

In this representation, j\∗
�Q°∗ � = ±��+ ∑ �T�Q�∗ ≥ �Q°∗ V²�R� ³ /
� + 1�  is the empirical 

significance level function, similar to the empirical survival function, of �Q at the rth 
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permutation, and «́Q¬ is the (estimated) p-value like statistic associated with �Q¬(Sect. 3 

of Marozzi 2014 considers estimating errors in multivariate permutation tests). 

Properties C.1, C.2 and C.3 of © define a class C of possibilities, a sub-class of which, 

say .µ 	⊆ 	. , contains admissible combining functions [according to Birnbaum (1954a; 

b), a combining function is admissible if its rejection region in the 
«�, . . . , «¨	� 
representation is convex]. 

Usual admissible combining functions are: 

�·∗ = −∑ log
jQ∗ �Q , Fisher’s [the product rule]; 

�¹∗ = ∑ Φ'�
1 − jQ∗ �Q , Liptak’s [suitable if all jQ∗  are positively dependent, Φ'�being 

the standard normal quantile function]; 

�»∗ = ∑ jQ∗Q , the direct [suitable if all jQ∗  share the same null distribution and are 

positively dependent]; 

�¼∗ = maxQ 
1 − jQ∗ �, Tippett’s [the best at each permutation]; 

��∗ = maxQ 
1 − «Q�, the best partial [suitable when only on ��Q is true or when some �Q∗ 
are negatively dependent; also equivalent to minQ 
«Q�]. 
 

4.1.1 Main NPC properties 

The main properties of NPCs are: 

P.1 NPC works with both one-sample and multi-sample designs.  

P.2 If all K partial permutation tests are exact, �ª∗  is exact ∀	© ∈ ..  

P.3 If all K permutation tests are separately unbiased and positively dependent, �ª∗ is 

unbiased ∀	© ∈ ..  

P.4 If all K permutation tests are separately unbiased, positively dependent and at least 

one is consistent (for divergent sample sizes), �ª∗  is consistent ∀	© ∈ ..  

P.5 Under mild conditions NPC satisfies the so-called “finite-sample consistency”, 

which occurs when K diverges while n1 and n2 are fixed useful when n < K , with some 

stochastic processes as well as with functional or shape data (Pesarin 2001; Pesarin & 

Salmaso 2010).  
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P.6 NPC works even when different degrees of importance  are assigned to the K sub-

hypotheses. For example if ?Q 	≥ 0, A = 1, . . . , §,  withw A > 0  for at least one k, 

Fisher’s becomes �¿·∗ = −∑ ?Q ∙ ÀÁ#
jQ∗ �Q . When ?Q = ? > 0 , an equivalent 

formulation of �·∗ occurs. 

P.7 If 0 < Â·
�Q� < ∞ and �Q∗ = �̂�Q∗ − �̂�Q∗ , A = 1,… , §  so that each partial test is 

asymptotically optimal [condition 0 < Â·
�Q� < ∞  is sufficient for the permutation 

central limit theorem], a combined test by any ∀	© ∈ .µ  results in an admissible 

combination of asymptotically optimal tests. It should be noted, how- ever, that Liptak’s 

combination of optimal partial tests is optimal (UMP) only under some specific 

conditions  (Pesarin & Salmaso 2010, 2010a).  

P.8 NPC does not require knowledge of dependence coefficients among partial 

permutation tests.  

P.9 NPC achieves Roy’s UI approach within a permutation  framework.  

 

4.2 The univariate case 

Let us suppose that the IID two-sample data are ��, with $� ≥ 2, � = 1,2 and and �� and 

�� the inferior and superior limits for the null differential effect �. It is assumed that the 

variable �, possibly after suitable transformations (like: ÀÁ#
]�, √] , �Å$A
]�, AUC, 

etc.) of the original underlying observed variable ], is such that its mean value Æ�
�� is 

finite. Without loss of generality, we also assume that data �� are belonging to the 

control experiment and �� to the competitor. If we cannot assume that Æ�
�� is finite 

and variable transformations are not suitable for the problem at hand, we may fall 

within a multi-aspect solution. 

Indeed, in such a situation multiple use of the same data could be necessary (Bertoluzzo 

et al., 2013; Brombin et al., 2011; Marozzi, 2004; Marozzi & Salmaso, 2006; Pesarin & 

Salmaso, 2010; Salmaso & Solari, 2005). 

For testing the one-sided ���: � ≥ −�� against ���: � < −��  let us consider the sample 

data transformations ��� = �� and ��� = �� − �� and for ���: � ≤ ��	 against ���: � >
��  the transformations ��� = ��  and ��� = �� − �� . It is worth noting that a 

unidimensional problem is then transformed into an apparently bivariate one where two 

component variables �� and �� are deterministically related. 
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Two one-sided partial test statistics are �� = �̂�� − �̂�� and �� = �̂�� − �̂��, large values 

of which, as well as small p-value statistics, are significant for the respective 

alternatives. Also note that �>
P 0 implies that �̂�� − �̂�� is equivalent to �̂��/�̂��, h = I, 

S, thus difference intervals and ratio intervals have the same handling within the 

permuta- tion settings [permutation equivalence of two tests means that their respective 

p-value statistics coincide for every data set X ∈ Xn, every effect δ, and every pair 


�� , ���]. 
Note that when ��� is true, the pooled data �� = ��� ⊎ ��� are exchangeable between 

groups at exactly its extremal point � = −�� . And so the rejection permutation 

probability of test �� is �. Since the permutation rejection probability is conditionally 

and unconditionally monotonic in �, by emphasizing the role of � we have that � < �p 
implies RPaX
��, ��f ≥ 	RPaX
�p�, ��f, so the RP is not smaller than � at � < −��, and 

not larger than � at � > −��. This provided that exchangeability conditions is satisfied 

in one points � ∉ ��, is true uniformly for all sample data � ∈ �� and all underlying 

population distributions F (Pesarin & Salmaso 2010, p. 88). 

Correspondingly, when ��� is true, the pooled data �� = ��� ⊎ ��� are exchangeable at 

� = �� and so the rejection permutation probability of test �� is not smaller than � at 

� > ��,  is not larger than � for all � < �� and equals � at � = ��. 
It is worth noting that two tests �� and ��  are negatively related, in the sense that when 

one tries to reject, the other tries to accept. Clearly when, for instance, �� = �� = 0, it is 

��¬ + ��¬ = 0 as well as ��∗ + ��∗ = 0 for every data permutation, provided that both are 

calculated on the same permutation of units, thus proving their dependence. To be 

precise, suppose that £∗ = 
¤�∗, … , ¤�∗ �  is any permutation of 
1, … , $�  so ��∗ =
a��
¤�∗�, … , ��
¤�∗ �f  and correspondingly ��∗ = a��
¤�∗�, … , ��
¤�∗ �f  are the two 

associated permuted pooled sample data the first $�and the second $�  of which are 

���∗ , ���∗ , ���∗ and ���∗  respectively. This process defines the bivariate permutation 

distribution of 
�� , ���.  
As in �� either ��� OR ��� is true—a suitable way for defining the UI global test is 

�� 	= 	min
«�	, «�	� [or min
1 − «�	, 1 − «�	�] where, emphasizing the dependence on 

effect �, «� = Pr{��∗
�� ≥ ��¬
��|��
��} is the permutation p-value statistic of partial 

test ��, ℎ = �, ! (also suitable can be Tippett’s �¼ and Fisher’s �· , but not Liptak’s �¹ 
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or the direct �»). Global test �� is essentially equivalent to the max(TI , TS ) test. 

According to Figure 8 we estimate the bivariate distribution of 
��∗,��∗� by means of a 

conditional Monte Carlo procedure with R elements, hence two p-vlaue statistics 

«�, ℎ = �, !  are then estimated as «́� = ∑ É{��°∗ 
�� ≥ ��¬
��|��
Ê�}/�²°R�  where 

É
∙� = 1 if 
∙� is true and 0 elsewhere, and ��°∗ = �a��
£°∗�f is the �� statistic, ℎ = �, !, 

calculated at the rth permutation.  

One of the consequences of negative relation between ��∗and ��∗ is that P.3 and P.4 do 

not apply directly. So it is not possible to prove unbiasedness of �� for all � and all 


�� , ���. 
 This consequence is in accordance with standard two-sided tests for sharp null, 

where	max
��	, ��	�  when �� = �� = 0  always coincides with |�̂� − �̂�|  which is 

generally not unbiased, unless the underlying population distribution is symmetric (Cox 

& Hinkley, 1974; Lehmann, 1986). If both partial type I error rates are �� = �� = �, 

the RP in ��of �� , ��  say, is bounded by 2�. It is exactly 2� when �� = �� = 0. In 

practice, however, if the length of the equivalence interval �� + ��, measured by the 

distribution of ��∗is moderately large, three tests �� , �� and �� share type I error rate � 

and then ��  becomes unbiased. Thus, application of multiple testing techniques 

becomes easy. For example, if for sufficiently large sample sizes �� is rejected at type I 

error �, the arm ℎ, ℎ = �, !, such that «́�¬ = min
«́�¬, «́�¬� is declared active at type I error 

not larger than �. In general, however, the exact error lies in the range [�/2, �]. 

Let us consider an example with $� 	= 	 $� 	= 	12, �� 	= 	 �� 	= 0.2 and X∼N(0,1). Our 

UI-NPC uses �� 	= �� 	≈ 	0.046 for �� size �� = 0.05. So, if «�¬ 	≤ 	0.05, the related 

arm h would be declared significant at size �� in the interval a0.025, 0.05f. 
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Figure 8. Representation of NPC method in multivariate tests. 

To appreciate how far is the type I error rate of �� from � in some typical situations, a 

simple simulation study is reported in Table 7. 

The whole unidimensional procedure can be realized according to the following 

algorithm: 

1. read the given data set � = 
��, ��� = 
��, " = 1,… , $; $�, $��and two limits 

�� , �� > 0; 

2. define two data vectors �� = 
���, ���� = 
���� = ���, " = 1,… , $�; ���� =
��� + �� , " = 1,… , $��  and �� = 
���, ���� = 
���� = ���, " = 1, … , $�; ���� =
��� − ��, " = 1,… , $��; 

3. compute the observed values of two test statistics: ��¬ = �̂�� − �̂�� and ��¬ =
�̂�� − �̂��; 

4. take a random permutation £∗ = 
¤�∗, … , ¤�∗ � of unit labels £=(1,…,n); 

5. define the two permuted data sets: ��∗ = a��
¤�∗�, " = 1,… , $; $�, $�fand ��∗ =
a��
¤�∗�, " = 1,… , $; $�, $�f; note that two permuted sets are both defined on the 

same permutation  £∗; 
6. compute the permuted values of two statistics: ��∗ = �̂��∗ − �̂��∗ and ��∗ = �̂��∗ −

�̂��∗ ; 

7. independently repeat R times steps 4 to 6; the results: a
��°∗ , ��°∗ �, S = 1,… , �f 
simulate the bivariate permutation distribution of two partial test statistics 


�� , ���; 
8. calculate two estimates of partial p-value statistics «́� = ∑ É
��°∗ ≥ ��¬�/�²°R�  
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and «́� = ∑ É
��°∗ ≥ ��¬�/�²°R�  and the estimated global test statistic �\� =
min	
«́� , «́��; 

9. if �\� ≤ � reject the global null hypothesis ��. 
 

4.3 The multivariate case 

1. From the Q-dimensional original data Y form the K-dimensional data set � =

��, ��� = 
��, " = 1,… , $; $�, $��  and read it together with two K-dimensional 

limits �� and ��; 
2. define two K-dimensional data sets �É = 
���, ���� = 
���Q� = ��Q�, " =

1, … , $�; ���Q� = ��Q� − ��Q, " = 1,… , $�; A = 1,… , §�  and �Ï = 
���, ���� =

���Q� = ��Q�, " = 1,… , $�; ���Q� = ��Q� + ��Q, " = 1,… , $�; A = 1,… , §�; 

3. compute the observed values of 2 × §  statistics: ��Q¬ = �̂��Q − �̂��Q  and ��Q¬ =
�̂��Q − �̂��Q, A = 1,… , §; 

4. take a random permutation £∗ = 
¤�∗, … , ¤�∗ � of unit labels £ = 
1,… , $�;  
5. define the two K-dimensional permuted data sets: ��∗ = 
��Q
¤�∗�, " =

1, … , $; $�, $�; A = 1, … , §�  and ��∗ = 
��Q
¤�∗�, " = 1,… , $; $�, $�; A = 1,… , §� ; 

note that two permuted sets are both defined on the same permutation £∗;  
6. compute the permuted values of 2 × §  statistics: ��Q∗ = �̂��Q∗ − �̂��Q∗  and ��Q∗ =

�̂��Q∗ − �̂��Q∗ , A = 1,… , §, and take memory; 

7. independently repeat R times steps 4 to 6; the results: a
��Q°∗ , ��Q°∗ �, S = 1,… , �, A =
1, … , §f  simulate the permutation distribution of 2 × §  partial test statistics 


Ð� , Ð��; 
8. for each A = 1, … , §  calculate two estimates of marginal p-value statistics «́�Q¬ =

∑ Éa��Q°∗ ≥ ��Q¬ f/�²°R�  and «́�Q¬ = ∑ Éa��Q°∗ ≥ ��Q¬ f/�²°R� and, according to step 8 of 

unidimensional algorithm kth global test �\�Q¬ = min	
«́�Q¬ , «́�Q¬ �, and take memory, 

take also memory of which subscript ℎQsuch that «́�Q¬ = min	
«́�Q¬ , «́�Q¬ �; 
9.  from the set of simulation results a
��Q°∗ , ��Q°∗ �, S = 1,… , �, A = 1,… , §f	extract 

��Ñ°∗ , S = 1,… , �, A = 1, … , §; i.e. one line for each sub-hypothesis ��Qagainst ��Q; 

10. transform the simulated K-dimensional distribution in step 9 into the  empirical 

significance level function Ò\∗ = Tj\�Ñ°∗ , A = 1,… , §; S = 1,… , �V  where j\�Ñ°∗ =
W0.5 + ∑ ÉT��Ñ°∗ ≥ ��Ñ¬ V²ÓR� Z/
� + 1� and ��Ñ¬ = max	
��Q¬ , ��Q¬ �; 

11. define the © -combined permutation empirical distribution asÔ©°∗ =
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©Tj\��°∗ , … , j\�7°∗ V, S = 1,… , �Õ;  
12. the NPC p-value statistic for testing global equivalence is then defined as «́ª =

∑ Éa©°∗ ≥ ©¬f/�²°R� , where �ª¬ = ©¬ = ©
«��¬ , … , «�7¬ �; 
13. if  «́ª ≤ � then reject global �� in favor of ��. 
It is worth noting that: i) step 7 simulates (or provides exactly, if all possible data 

permutations were considered) the multivariate permutation distribution of the whole 

set of statistics expressed in terms of real values T; ii) p-value statistics are defined in 

step 8, also here they were true p-values only if ��were true; iii) step 10 simulates the 

multivariate permutation distribution expressed in terms of significance level values; iv) 

step 11 simulates the permutation distribution of the adopted combined statistic where 

all kind of dependences in the K-dimensional distribution 
j�Q∗ , A = 1,… , §�  are 

nonparametrically taken into account without their dependence coefficients are 

explicitly estimated and processed. It is also worth noting that this solution to the UI 

equivalence testing is exact (its p-value statistic «ª can be estimated at any degree of 

accuracy). Of course, once the global alternative is accepted at kind I error rate not 

exceeding �; by applying any multiple testing procedure for permutation tests, while 

controlling inferential risks, it is possible to infer which alternative sub-hypothesis is 

active, if any (Basso, Pesarin, Salmaso, & Solari, 2009; Pesarin & Salmaso, 2010, 

chapter 5). 

 

4.4 Some limiting properties 

Let us assume that population mean Æ�
�� is finite, so that Æ
�̂∗|�� is also finite for 

almost all � ∈ �� , where �̂∗  is the sample mean of a without replacement random 

sample of $�or $� elements from the pooled set �, taken as a finite population. 

Firstly, consider the behavior of partial test ��∗
�� = �̂��∗ − �̂��∗ ; where its dependence 

on effect � is emphasized. In Pesarin & Salmaso (2013), based on the law of large 

numbers for strictly stationary dependent sequences, as are those generated by the 

without replacement random sampling process, it is proved that, as	min
$�, $�� → ∞, 

the permutation distribution of ��∗
��  weakly converges to Æ�
	�̂�� − �̂��� 	= 	 
	�	 −
	���. 
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Thus, for any �	 > 	 �� the RP of ��
�� converges to one: ��a�
��, ��f 	→ 	1. Moreover, 

for any	� < 	 ��  its RP converges to zero. At the right extreme � = �� , since for 

sufficiently large sample sizes ��
��� rejects with probability α, its limit rejection is also 

α. 

The behavior of ��
��  mirrors that of ��
��. That is, the limiting RP: (i) for � = −�� is 

α; (ii) for �	 > 	−�� is zero; (iii) for � < 	−�� is one. 

In the global alternative ��: 
�	 < 	−��	� ∪ 
�	 > 	 ��� since one and only one of either 

�� and �� is consistent, then �� is consistent too. 

Indeed, either 
«� ×→ 0	and	«� ×→ 1�	��
«� ×→ 1	and	«� ×→ 0�  for respectively �	 ∈
	���	��	�	 ∈ 	���	 . Thus, ∀�	 ∈ 	��, min
«�«�� 	 ×→ 0 <	��( , ∀�	 > 	0  (note: for 

combining functions we have used condition C.3). Consistency of �� follows. 

Moreover: in the extreme points of �� when � is either −��	��	��, as one and only one 

can be true if at least one is positive, the RP of �� is α (if both ��	 and ��	are 0, this RP is 

2α); when −�� 		< 	�	 < 	 ��	, i.e. in the open equivalence interval, the limiting RP is 

zero, being such for both partial tests (Figure 9). 

 

 

Figure 9. Rejection probability (RP) of ÐÙ. 
 

4.5 A simulation study 

We now present a simulation study in order to assess the behavior of the permutation 

solution both under ��  and �� . Before presenting such results under different 

distribution functions, Table 7 presents a simple study to appreciate how fast the 

convergence is to the global �� of partial �. In practice, unless the standardized length 

of 
�� + ���/<
�∗� is too small, it is always possible to use � = �� . These results, 
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except for �� = �� = 0 , were obtained by a simulation study using R = 10, 000 

permutations and M C = 20, 000 Monte Carlo iterations. 

In the following simulation study we generally consider balanced and unbalanced 

designs. Five different distributions, namely Gaussian (N(0,1)), Exponential (Exp(1)), 

Uniform (U(0,1)), Pareto (P(3,1)) and Gamma (G(2,1)), have been considered as data 

generators and different equivalence ranges. We performed 4000 Monte Carlo iterations 

and we recorded the RP of the permutation test (based on B = 2000 permutations) at 

different levels α under the null hypothesis � = −��and the rejection probability (RP) 

under the alternative, � < −�� or � > −��, for α=0.05 and for increasing values of δ.  

Results under the null hypothesis for unbalanced design (n1 = 12, n2 = 24) with 

equivalence ranges �� = �� = 0.5  and �� = �� = 0.25  has showed that the nominal 

levels α are close to the nominal one.  

The behavior of the RP when we move from the null hypothesis for different 

equivalence ranges and sample sizes has shown that the RP is close to zero for δ within 

the equivalence interval and increase as |δ| increase (see Figure 10 and Figure 11). 

Using the results reported in Sect. 3 in (Marozzi, 2014) it can be shown that the 

maximum estimation error is less than 0.0134. 

 

Figure 10. Rejection rates at B = C. CE of the UI permutation test for different distribtuions, with 
sample size ¥� = ¥� = �C and equivalence interval ÚÉ = ÚÏ = C. Û for different values of  δ. 
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Figure 11. Rejection rates at B = C. CE of the UI permutation test for different distribtuions, with 
sample size ¥� = ÛC, ¥� = ÜC and equivalence interval ÚÉ = ÚÏ = C. � for different values of  δ. 
 

It is worth noting that if X has finite variance, our combined test �� = min
«� , «��, 
whose rejection region in the 
«� , «�� representation is convex, and so is admissible 

(P.7), is an admissible combination of asymptotically optimal tests, given that in those 

conditions, by the permutation central limit theorem (Pesarin 1990, 2001), each partial 

test is asymptotically optimal. That is to say that no uniformly better solution than �� 

does exist. This gives our solution good prospects for its practical uses as well as for 

most theoretical inspections. 

The UI-NPC of dependent permutation tests, when the permutation testing principle 

applies, also enables us to deal with the intriguing problem of testing for equivalence 

and non-inferiority in a general multidimensional setting. Two crucial related points, as 

pointed out by Sen (2007), are how to go beyond the likelihood ratio methods, which 

are generally too difficult to apply properly, and how to deal with the generally too 

complex dependence structure of the several partial test statistics into which such an 

analysis is usually broken down. 
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�� , �� $�, $� � �� 

0.000 10 0.01|0.05|0.10 0.0200| 0.100| 0.200 

0.100 “ “ 0.0130| 0.067| 0.141 

0.250 “ “ 0.0103| 0.053| 0.109 

0.500 “ “ 0.0101| 0.051| 0.101 

0.750 “ “ 0.0100| 0.050| 0.100 

0.000 20 “ 0.0200| 0.100| 0.200 

0.100 “ “ 0.0102| 0.063| 0.128 

0.250 “ “ 0.0101| 0.052| 0.103 

0.500 “ “ 0.0100| 0.050| 0.100 

0.000 40 “ 0.0200| 0.100| 0.200 

0.100 “ “ 0.0101| 0.053| 0.116 

0.250 “ “ 0.0100| 0.050| 0.102 

0.500 “ “ 0.0100| 0.050| 0.100 

Table 7. Values of BÙ  of global test when partial tests at B = C. C�, C. CE, C. �, with ¥� = ¥� =
�C, �C, ÛC and ÚÉ = ÚÏ = C. �, C. �E, C. E, C. ÝE for �~Þ
C, ��. 
 
Using the results and methods discussed in the books by Pesarin (2001) and Pesarin and 

Salmaso (2010) concerning the NPC methodology, we are able to provide a general 

solution to testing under the UI approach which can rationally interpret one of the ways 

to deal with the equivalence and non-inferiority problem. Moreover, extensions to 

random effect situations, to one sample designs, to univariate and multivariate paired 

observations, to C > 2 samples, to the multi-aspect framework, to ordered categorical 

variables, to repeated measurement data, and to some situations where missing or 

censored data are informative on treatment effects can be obtained within our UI-NPC 

approach as an extension of the present solution. All these extensions will be considered 

in future works. 
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Chapter 5. Discussion and Conclusion 

The main purpose of this research activity is the development and application to real 

data of nonparametric statistical methods for the construction of composite indicators 

for combination of rankings related to different aspects of quality, with particular 

attention for application in customer satisfaction field and the relative effectiveness of 

university activities.  

When we want to determine an ordering among/evaluation of items of interest, often we 

have to deal with complex variables. A complex variable is such that it is not directly 

observable and also not directly measurable (Marozzi, 2009). A typical example of 

complex variable is the satisfaction. Let us consider for example the university student 

satisfaction. It is not directly measurable in the sense that it depends upon many 

different partial aspects of satisfaction. From a general point of view the university 

students’ satisfaction may be related to the organization of the courses, to educational 

experience or also to infrastructure. 

In the field of relative effectiveness evaluation, an extremely delicate phase is identified 

in which the variety of indictors considered to be informative of the various aspects of 

the effectiveness itself requires a synthesis that permits the definition of rankings of the 

various compared units, and that provides a summarizing measure of the differential 

performance. 

A detailed literature review shows that problem of obtaining a ranking of items of 

interest, is very common in many fields of the applied research. Examples go from 

supply chain management in the context of selection of suppliers, to the environmental 

planning in selecting project with less impact (relate to economy, use of energy etc.), to 

the selection of the best design concept and so on. Such problems are faced in different 

ways and show different opened methodological problems. 

From the application context suggestions emerge for the pursuit of a methodological 

path, the principal end objectives of which are the classification or ordering of a set of 

compared units  against a complex multidimensional phenomenon, and the synthesis of 

a variety of indicators.  

Procedures for ranking problems arose from literature and showed in Chapter 1 of the 

present thesis, substantially may be grouped into two main groups: 
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- Statistical approaches (multiple comparison procedure, selection and ranking, 

ordered restricted inference and stochastic ordering etc); 

- Approaches in Operations research on ranking problem (the multiple-criteria 

decision making approaches and the group-ranking approach). 

All these procedures substantially are a) in the field of parametric approaches and thus 

often based on many restrictive and unrealistic assumptions for practical cases (e.g. 

normality, independency etc.); b) heuristic methods and thus not supported by a robust 

inferential theory; c) univariate approaches, thus they do not specify what to do when 

several aspects are of interest. 

Therefor among methods present in the literature there is none suitable for our aim, that 

is the construction of a global ranking starting from more than one aspect (variables). 

This lead us to the first methodological issue that is how to put together all partial 

aspects of interest (i.e. all the measurable component of the complex variable under 

evaluation).  

Literature also suggests that “ . . . the principle that being ranked lowest . . . does not 

immediately equate with genuinely inferior performance should be widely recognized 

and reflected in the method of presentation (of ranking)” (Bird et al. 2005).  In Chapter 

2 of this thesis an extension of nonparametric methodological solutions already existing, 

such as those concerning the nonparametric combination of dependent tests and NPC 

ranking is presented, in order for them to be used in the evaluation of the university 

system and customer satisfaction in general, and to solve the problems described above. 

In particular, in order to construct a composite indicator the first step is that to find a 

standardization of original data which have to be combined. Thus a literature review on 

standardization methods in order to obtain a suitable transformation of raw data (simple 

indicators) into homogeneous data for measure/variability has been performed. 

Different kinds of transformations have been studied in order to make data comparable 

both using linear and non-linear transformations.  

The second step refers to the choice of a link function as synthesis of a plurality of 

indicators. In the literature the synthesis of the variety of indicators is generally carried 

out using simple or weighed arithmetic means. When the distribution of data is not 

symmetric (very common situation when data come from customer satisfaction surveys) 

these measure are not appropriate, thus a new synthesis indicator is needed. A 
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methodological solution in the nonparametric field is represented by the nonparametric 

combination of dependent rankings NPC since its main purpose is to obtain a single 

criterion for the statistical units under study, which summarizes many partial rankings. 

Adopting this methodology and referring to some of the main synthesis functions 

(Fisher’s omnibus combining function, Tippett’s combining function or Liptack’s 

combining function) jointly with different standardization functions found in the first 

step, a new method of synthesis of partial indicators has been tested. In particular a 

comparative simulation study has been performed in order to compare different 

composite indicators with respect to different kind of transformations and link 

functions, and in order to evaluate their behavior with respect to different situations 

characterized by different data probability distributions. Results from different 

composite indicators have been compared with a reference ranking. Comparisons have 

shown promisingly results, leading to the formalization of a composite indicator based 

on a non-linear transformation as method to standardize units, jointly to the Fisher’s 

combination function as method of synthesis of data. Such indicator resulted the best 

when data were characterized by an asymmetrical and/or heavy tailed distribution. This 

is very important when we deal with data from customer satisfaction surveys. 

A further contribution has interested the extension of the nonparametric combination 

methodology in order to include into the analysis different satisfaction profiles. For this 

purpose the composite indicator is constructed taking into account a benchmark of 

maximum or minimum desired satisfaction. This happen substantially transforming 

categorical data of evaluations into scores weighted by their relative frequencies. 

This is a very original contribution since it allows to take into account an expected 

benchmark of satisfaction with which compare the synthesis indicator. 

Since the overall satisfaction is often measured by a single direct question and by 

several manifest variables relating to different domains of satisfactions, and typically 

these different domains are considered separately, we adopted the composite indicator 

(resulted by the previous steps, hereafter indicated as Nonparametric Composite 

Indicator (NCI)) in order to understand how the satisfaction depends on these different 

aspects. We consider the NCI to analyze responses to student satisfaction survey of the 

School of Engineering of the University of Padova for three academic years 

(2011/2012, 2012/2013, 2013/2014) which is characterized by questions related to 

different aspects of satisfaction and by the typical question of overall satisfaction. The 
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main purpose of the analysis was to understand how the NCI could help to better 

explain the satisfaction structure of the respondents with respect to use only the 

question of overall satisfaction of the questionnaire, the mean of which is currently 

adopted as global indicator of satisfaction. 

We studied the impact of single aspects of satisfaction both towards overall satisfaction 

and NCI by means of a multiple linear regression model (other models could be also 

adopted: latent class, multilevel models, etc.). What emerged is that surprisingly the 

overall satisfaction seems to be guided mainly by the motivational aspect of the teacher, 

but it is used as indicator of general satisfaction. On the other hand NCI depends for its 

construction by all partial aspects and thus it can be considered as an overall indicator 

of satisfaction. 

The result of this first part of the research, presents a valid alternative with respect to the 

currently adopted indicator since it allows to better understand the satisfaction structure 

of the respondent.  

After obtaining a useful synthesis of data we wonder how to proceed whenever we 

would like to obtain a ranking of the compared units, i.e. to sort them from the best to 

the worse. 

In Chapter 3 of the present thesis a new nonparametric approach is proposed.  The 

proposed method has been validated by a robust simulation study both in the situation 

of homogeneity of all populations (i.e. under the null hypothesis) and when they differ 

that is when existed a real ranking among them (i.e. under the alternative). The 

proposed procedure called NPC-global ranking, represent a useful solution aimed at 

ranking several multivariate normal populations assuming that the ranking can be 

established on the basis of a ranking parameter defined as the sum of rescaled univariate 

means. Our approach assumes also that the variance/covariance matrix O is known but it 

could be easily extended relaxing this condition. In fact, in this case the reference 

distribution for the estimated ranking parameter becomes a Student’t distribution. The 

proposed approach is referred to multivariate normal populations but the extension to 

some other multivariate distributions, i.e. belonging to the exponential family, seems to 

be not so complicated and will be the objective of future research. Therefor the 

proposed multivariate ranking methods could effectively be relevant also for different 

applied research fields. Among the others, we mention the new product development 

where the goal is to find out which is the product/prototype most performing. 
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A further development of the research referred to the development of a new method of 

testing hypothesis when testing the equivalence of two or more aspects of quality is of 

interest. Literature showed that for this kind of problem an optimal solution exists but 

only under assumptions of normality and homoscedasticity.  

Basing the research in the field of the nonparametric statistics and in particular in the 

context of permutation tests, a solution has been provided also for this problem by 

following the so called Union-Intersection (UI) principle filling a gap in the literature.  

Thus using the results and methods discussed in the books by Pesarin (2001) and 

Pesarin and Salmaso (2010) concerning the NPC methodology, we are able to provide a 

general solution to testing under the UI approach which can rationally interpret one of 

the ways to deal with the equivalence and non-inferiority problem. Moreover, 

extensions to random effect situations, to one sample designs, to univariate and 

multivariate paired observations, to C > 2 samples, to the multi-aspect framework, to 

ordered categorical variables, to repeated measurement data, and to some situations 

where missing or censored data are informative on treatment effects can be obtained 

within our UI-NPC approach as an extension of the present solution. All these 

extensions will be considered in future works. 
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Appendix 

What follows is the structure of the questionnaire of students’ satisfaction till the 

academic year 2012/2013. Since 2013/2014 some questions are no more present in the 

questionnaire. We show the questionnaire in original language (Italian) and in English 

version for foreign students. 

Appendix A.1. Italian version of questionnaire 
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Appendix A.2. English version of the questionnaire 

[omissis] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


