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Abstract 
Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of 

more than 6.5 million people around the world to date. The high transmissibility of its 

causative agent, the SARS-CoV-2 virus, coupled with its potentially lethal outcome, 

provoked a profound global economic and social crisis. The urgency of finding suitable 

pharmacological tools to tame the pandemic shed light on the ever-increasing importance 

of computer simulations in rationalizing and speeding up the design of new drugs, further 

stressing the need for developing quick and reliable methods to identify novel active 

molecules and characterize their mechanism of action. 

In the present work, several existing computer-aided drug discovery tools are successfully 

exploited for deciphering the recognition process between active molecules and crucial 

targets for the SARS-CoV-2 reproductive cycle such as the 3CL protease and the spike 

protein. Incidentally, the knowledge acquired upon working on SARS-CoV-2 has been 

successfully applied also to investigate other pharmaceutically relevant non-viral targets, 

including casein kinase 1 and adenosine receptors.  

Finally, two novel, in-house developed, methodologies for the characterization of binding 

processes between biological entities are presented, with the first one being the 

application of Supervised Molecular Dynamics (SuMD) to the study of RNA-protein 

complexes formation, while the second one being Thermal Titration Molecular Dynamics 

(TTMD), a brand new protocol for unbinding kinetics estimation. 





ABSTRACT 

 

 v 
 

Sommario 

Sin dal suo scoppio nel dicembre 2019, la pandemia da COVID-19 ha causato fino ad oggi 

la morte di oltre 6,5 milioni di persone in tutto il mondo. L'elevata trasmissibilità del suo 

agente eziologico, il virus SARS-CoV-2, combinata con il suo esito potenzialmente letale, 

hanno provocato una profonda crisi economica e sociale a livello globale. L'urgenza di 

trovare strumenti farmacologici adeguati a contrastare la pandemia ha fatto luce sulla 

sempre crescente importanza dei metodi computazionali nel razionalizzare e accelerare 

la progettazione di nuovi farmaci, sottolineando ulteriormente la necessità di sviluppare 

metodi rapidi e affidabili per l’identificazione di nuove molecole attive e la 

caratterizzazione del loro meccanismo d'azione. 

Nel presente lavoro di tesi, diverse metodologie computazionali atte alla scoperta di nuovi 

farmaci sono state impiegate con successo per decifrare il processo di riconoscimento fra 

le molecole attive e alcuni bersagli molecolari cruciali per il ciclo riproduttivo di SARS-CoV-

2, quali la proteasi principale 3CLpro e la proteina spike. Incidentalmente, le conoscenze 

acquisite lavorando su SARS-CoV-2 sono state applicate con successo anche per studiare 

altri bersagli non virali farmaceuticamente rilevanti, tra cui la caseina chinasi 1 e i recettori 

dell'adenosina.  

Infine, vengono presentate due nuove metodologie, sviluppate internamente, per la 

caratterizzazione dei processi di legame tra entità biologiche, con la prima che consiste 

nell'applicazione della Dinamica Molecolare Supervisionata (SuMD) allo studio della 

formazione di complessi tra RNA e proteine, mentre la seconda consiste nella Titolazione 

Termica mediante Dinamica Molecolare (TTMD), un nuovo protocollo per la stima della 

cinetica dei processi di dissociazione.
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The COVID-19 pandemic 
In December 2019, a cluster of pneumonia cases of unknown etiology emerged in the Chinese 

city of Wuhan1. Soon after, analyses of the patient's lung fluid, blood, and throat swab 

reconducted this outbreak to a newly identified virus, tentatively named 2019-new 

coronavirus (2019-nCoV)2.  

Phylogenetic analyses performed on viral genomes isolated from patients' samples revealed 

a close relationship between the new virus with several bat coronaviruses isolated in China 

(>90%). A lower degree of similarity was also found with SARS-CoV (80%) and MERS-CoV 

(50%), the causative agents of two recent coronavirus-related epidemics3. Based on 

phylogeny, taxonomy, and established practice, the virus was renamed SARS-CoV-24, while 

the associated illness was defined as COVID-19 by the World Health Organization (WHO)5.  

The striking similarity between the SARS-CoV-2 genome and several bat coronaviruses led to 

the hypothesis that bats could be the animal reservoir for SARS-CoV-2, with pangolins or other 

mammals acting as the intermediate host before human transmission6. The assumption that 

bats could be the animal reservoir of SARS-CoV-2 was further reaffirmed at a later stage by 

the work of Temmam et al., which identified in the caverns of North Laos a series of bat 

coronaviruses that share a high level of sequence similarity (96%) with the SARS-CoV-2 

genome7.  

From a clinical perspective, the spectrum of COVID-19 manifestation is broad, ranging from 

asymptomatic infections to severe viral pneumonia with respiratory failure and even death8. 

The most common symptoms, similar to influenza, are related to mild upper respiratory tract 

affection, such as fever, cough, myalgia, and headache9. Less common but still relevant ones 

include gastrointestinal manifestations, such as diarrhea, more severe respiratory illnesses, 

such as dyspnea, and multi-organ failure10.  

The long incubation time compared to similar infections11, the capability of asymptomatic12 

or paucisymptomatic13 patients to transmit the virus even before the eventual symptoms' 

manifestation, and the aerial transmission modality14,15 all concurred to determine a higher 

transmissibility index (estimated between 2.5 and 3.0) for the SARS-CoV-2 virus, compared to 

similar viral infections16. These factors contributed to the rapid spread of SARS-CoV-2 
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worldwide, resulting in more than 650 million cases and more than 6.5 million deaths 

globally17.  

In the first stages of the COVID-19 pandemic, extraordinary sanitary measures, such as 

physical and social distancing, wearing face masks and eye protection devices18,19 were 

adopted to prevent the collapse of the public healthcare system20, due to the unbalance 

between the high demand and the low availability of critical supplies21,22. Although this short-

term plan has proven helpful in gaining time23,24, more sustainable and long-term oriented 

strategies were needed to better cope with the socio-economic25 and psychological26 

consequences of the pandemic, other than ensuring a fair and efficient resource 

management27. 

Drug repurposing 
Considering that bringing a brand-new drug on the market is usually a very long and expensive 

process28, the so-called "drug repurposing" was the first approach to finding suitable 

therapeutic options for COVID-19 patients29,30. This strategy extends the applicability domain 

of already marketed drugs for treating diseases other than the one it was conceived for31. This 

approach is appealing because it involves using de-risked compounds, with potentially lower 

overall development costs and shorter development timelines32. Unfortunately, despite all 

the promising premises33, this approach was largely unsuccessful34. Indeed, several 

investigated drugs showed little to no efficacy in randomized clinical trials34. The few 

successful cases were primarily symptomatic treatments, mostly limited to hospital usage for 

the most severe cases due to the therapy's high costs or route of administration35.  

Failure of the drug repurposing strategy against COVID-19 can be mostly reconducted to the 

very first stages of the pandemic, where few clinical pieces of evidence were available for the 

rational elaboration of therapy plans. For example, the combination of HIV protease inhibitors 

Lopinavir and Ritonavir was examined36, despite a suboptimal predicted recognition pattern 

towards the SARS-CoV-2 main protease (Mpro) compared to other compounds of the same 

class37. Another example is the combined use of an antimalaria drug (hydroxychloroquine) 

and an antibiotic (azithromycin) despite no clear indication of the possible mechanism of 

action38,39.  
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With more and more clinical observations becoming available, more fine-tuned treatments, 

especially symptomatologic ones, were adopted. This is the case, for example, of 

corticosteroids such as dexamethasone40, employed to tame the inflammatory response 

associated with severe COVID-19 cases, and low molecular weight heparins41, used to prevent 

or treat thrombo-embolic events associated caused by interference with the cardiocirculatory 

system.  

A group of anti-arthritis drugs represents another successful example of drug repurposing to 

their ability to modulate the immune response42 and cytokine storm43 caused by severe SARS-

CoV-2 infection. This family includes the monoclonal antibodies Tocilizumab44 and 

Sarilumab45, which both inhibit Interleukin-6 (IL-6) signaling, Anakinra46, that interferes 

instead with IL-1 signaling, and the Janus Kinase (JAK) inhibitor Baricitinib47, alone or in 

conjunction with Remdesivir48, with the latest representing maybe the most successful 

example of drug repurposing against COVID-19 being the first approved drug against this 

illness49. 

Originally designed against Ebola Virus, Remdesivir is a nucleotide analog prodrug that acts 

as a viral polymerase inhibitor50 and is efficient in shortening the recovery time in hospitalized 

adult patients affected by COVID-1951. Unfortunately, as previously mentioned, Remdesivir 

and the other repurposed drugs need parenteral administration, thereby limiting their 

massive-scale adoption as pharmacological treatments against COVID-1935.  

Convalescent plasma and monoclonal antibodies 
With the first round of spontaneously healed patients, doctors started flanking standard 

treatment with the use of convalescent plasma (CP), i.e., the plasma derived from recently 

recovered donors with a sufficiently high neutralizing antibody titer52. A similar protocol was 

previously adopted to face Ebola53 and MERS54 outbreaks, justifying its emergency use in the 

first stages of the COVID-19 pandemic. Unfortunately, despite promising observational data 

from the first studies performed on small-size patients' cohorts55, more thorough 

investigations from more extensive clinical trials demonstrated the inefficacy of this 

treatment56,57, leading to its dismission from routine clinical practices. Despite this failure, CP 

inspired the design of safer and more targeted immunological treatments in the form of 

monoclonal antibodies (mAbs)58,59. Since the beginning of the pandemic, several mAbs 
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directed against COVID-19 have been developed, with some obtaining approval from 

regulatory agencies60. Multiple of these mAbs are often used in conjunction to combine their 

neutralizing power and boost their therapeutic efficiency, exploiting their ability to bind at 

different epitopes61. 

The list of approved ones contains the therapeutic combinations of casirivimab and 

imdevimab (Regeneron/Roche), redanvimab (Celltrion Healthcare), sotrovimab (GSK), and 

the combination of tixagevimab and cilgavimab62,63. Furthermore, the association of 

bamlanivimab and etesevimab is nearly approved, despite the previous failure of trials 

investigating bamlanivimab on its own63.  

Vaccines 
As seen in the case of CP and mAbs, a targeted immune response against SARS-CoV-2 can be 

a beneficial treatment for patients64. While immunoglobulins are limited to treating ongoing 

infections in hospital settings due to the high costs and the parenteral administration route, 

a more economical and scalable approach would be instructing the human body to produce 

this type of response without needing external intervention65. Based on this assumption and 

parallel to the drug repurposing approach, the industry and academia spent a consistent joint 

effort on developing preventive tools to avoid the infection in the first place or at least 

mitigate the most detrimental effects of the illness. This endeavor resulted in the quick 

approval by regulatory agencies of several vaccines66.  

Three different classes of these therapeutic entities can be recognized67. The first one, related 

to inactivated virus vaccines, comprises the Chinese CoronaVac (Sinovac) and the Russian 

CoviVac. The second group is formed by adenovirus vector vaccines such as 

Vaxzevria/ChAdOx1-S (AstraZeneca), Sputnik V/Gam-COVID-Vac, and Jcovden/Ad26.COV2.S 

(Janssen). Finally, the third one is composed of mRNA-based vaccines, including 

Comirnaty/BNT162b2 (Pfizer-BioNTech) and Spikevax/mRNA-1273 (Moderna)68,69.  

Despite the poor performances of the first class of vaccines70,71, several independent studies 

have asserted worldwide the efficacy of vaccination campaigns based on the other two types 

of vaccines, particularly in the case of mRNA-based ones72,73.  
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Spike protein 
The ability of the SARS-CoV-2 virus to infect human cells heavily depends on a surface 

glycoprotein known as the S/spike protein74, named after its peculiar shape75. For this reason, 

both mRNA vaccines and mAbs are designed to target this protein and prevent the virus 

entrance within the cell, thereby limiting its replication76.  

Concerning these, although different pathways for SARS-CoV-2 cell entry are possible77,78, the 

principal and better-characterized one involves binding to the human ACE2 receptor 

(hACE2)79, a membrane-anchored metallopeptidase that is abundantly present in various 

districts of the human body, from the vascular endothelium to the epithelia of lungs and small 

intestine80. On its own, host cell receptor binding is not sufficient to ensure entrance within 

host cells. Priming and activating the S protein by host proteases is required to enhance its 

cell-cell and virus-cell fusion processes and increase viral shielding from neutralizing 

antibodies79,81. The list of priming proteases included, but is not limited to, TMPRSS2, a 

transmembrane serine protease that is often co-expressed with ACE2 in SARS-CoV-2 target 

cells, Furin and cathepsin B/L79,82,83. The priming process entails the exposure of a lipophilic 

fusion peptide (FP), which penetrates the host cell membrane triggering the viral fusion84 

thanks to its strong membrane-perturbing capacities85  

From a structural perspective, the spike is a trimeric transmembrane glycoprotein composed 

of 1273 amino acids organized in two main subunits, S1 and S2, and several functional 

domains86.  

The S1 subunit comprises two main domains, specifically the N-terminal and C-terminal 

domains (NTD and CTD, respectively), which are both involved in the binding to host cell 

receptors86. The CTD contains the receptor-binding domain (RBD, residues 319–541), 

consisting of two motifs. Firstly, a core structure formed by a twisted five-stranded anti-

parallel β sheet (β1, β2, β3, β4, and β7), with three short helices (α1, α2, and α3). Secondly, 

an extended loop (receptor binding motif, RBM), formed by a two-stranded β sheet (β5 and 

β6), lying at one edge of the core and containing most of the residues involved in binding to 

hACE287. 
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Figure 1. a) crystal structure of spike RBD (pink) in complex with hACE2 (teal), deposited in the Protein Data Bank 

with accession code 6M0J. b) close-up view of interface contacts between the spike RBD and hACE2: hydrogen 

bonds are represented as black dashed lines.  

The S2 subdomain has significant roles in spike protein trimerization and in mediating the 

virion entry into the host cell once the molecular contacts have been established88. It is 

formed by relevant subdomains such as the transmembrane domain (TD) (residues 1296–

1317), which exerts both the spike anchoring to the outer side of the viral membrane and the 

maintenance of the trimeric quaternary structure89,90 and a cytoplasm domain (CD) (residues 

1318–1353), which mediates viral assembly and cell-cell fusion91. Furthermore, the previously 

mentioned fusion peptide, a cleavage S2′ site (residues 815/816), and two heptad-repeat 

domains (HR1/HR2) (residues 984–1104/1246–1295) are also part of S292.  

Viral variants 

Due to its exposition on the external surface of the SARS-CoV-2 membrane and its pivotal role 

in the virus' ability to infect host cells, the spike protein is often subjected to mutations that 

alter the virus's infectivity and antigenicity93,94. Therefore, since the spreading of the original 

viral strain (Wuhan-Hu-1) began, several viral variants appeared on the scene95, particularly 

in the third-world nations where collective sanitary practices like social and physical 

distancing96 or wearing face masks in public places 18 were hardly implementable97. 
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The insurgence of novel viral strains with different susceptibility to the protective effect of 

vaccines98 demands a periodical update of their original formulations coupled with multiple 

booster shots to maintain their efficacy99, thus hampering the management of the pandemic 

based on massive vaccination of the world population100,101.  

Among the large pool of SARS-CoV-2 mutations102, some gathered the scientific community's 

attention due to their increased fitness, gaining the "variant of concern" (VOC) status103. 

The first ever SARS-CoV-2 VOC was the B.1.1.7 variant, more commonly referred to as the 

"Alpha" or "English" variant due to being first identified in November 2020 in the Kent region 

of the United Kingdom104,105. Despite worries about the higher transmissibility compared to 

other circulating variants at the time106,107, clinical studies appointed how mAbs, CP, and 

especially vaccines, were still able to confer protection against B.1.1.7108–110, containing its 

impact on the sanitary system111.  

Unfortunately, soon after the emergence of the Alpha variant, a more threatening VOC arose. 

The B.1.617.2 variant, commonly known as the "Delta" or "Indian" variant due to being first 

identified in India in late 2020, quickly overthrew the B.1.1.7 one thanks to its strikingly 

increased transmissibility105. The advent of the Delta variant was associated with the first 

signs of reduced protection provided by mAbs, CP, and most importantly, vaccines112–114, 

thanks to its increased immune system evasion capability115, posing a heavier workload on 

the sanitary system116. 

The latest hallmark in the history of SARS-CoV-2 variants is represented by the B.1.1.529 

variant, first detected in South Africa and more often recalled as the Omicron variant117. The 

combination of increased transmissibility118 and immune system evasion119 conferred this 

variant a net selective advantage in bypassing the protection provided by the complete 

primary vaccination cycle and a variety of clinically utilized mAbs120–122 compared to other 

circulating strains. The ground-breaking impact the Omicron variant had on the worldwide 

spread of SARS-CoV-2 even led to the introduction of the "booster dose" to compensate for 

the reduced coverage of the primary vaccine cycle98,123. 
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Lately, several subvariants germinated from the original Omicron strain (also labeled as BA.1), 

namely BA.2, BA.3, BA.4, and BA.5124–126. Although different studies indicated how the first 

identified Omicron subvariants (BA.2 and BA.3) were similarly susceptible to existing 

treatments despite their increased transmissibility127–129, it also emerged how the most 

recently identified ones (BA.4 and BA.5) are significantly more efficient in evading the immune 

response130–132. 

These findings indicate that SARS-CoV-2 continued to evolve by increasing its immune-

evasion capability rather than counting on sheer higher transmissibility, sustaining the virus 

spread even in populations with high vaccination frequency and recovery rates130–132.  

Main protease (3CLpro) 
Considering the uncertainty about the efficacy of existing treatments133 and booster 

vaccinations134 against present and future Omicron subvariants, the need to find more 

reliable and variant-agnostic therapeutic tools against COVID-19 is emerging more and more. 

The previously mentioned issues with the continuously mutating spike protein, which affects 

most present gold-standard COVID-19 treatments, indicate that different viral targets should 

be explored for developing novel antiviral drugs135. Generally speaking, an ideal target would 

have to play a pivotal role in the virus replication cycle and be highly conserved across 

different viral strains136. Within SARS-CoV-2, this role is portrayed by its main protease 137 

(Mpro, or 3C-like protease / 3CLpro due to similarities with the picornavirus 3C protease138), 

thanks to its conserved fold across different coronaviruses138–141(including SARS-CoV142) and 

essentiality for the replication of this viruses' subfamily143.  

SARS-CoV-2 Mpro, also called nsp5, is a cysteine protease composed of 306 residues144 that 

steers the maturation of two partially overlapping polyproteins (pp1a and pp1ab) into 

individual mature nonstructural proteins (including Mpro itself) through their proteolytic 

cleavage145. 
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Figure 2. a) crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2E): within each protomer, domain I is colored in 

green, domain II is colored in magenta, the 16-residue flexible loop is colored in violet, domain III is colored in 

light blue, while the active site position is highlighted by a blue circle. b) close-up view of the catalytic site: the 

H41-C145 dyad is highlighted, alongside the conserved water molecule that substitutes the third member of the 

canonical catalytic triad diffused in several cysteine proteases.  

Functionally speaking, Mpro exists in equilibrium between a monomeric and a homodimer 

form146–148. This dimerization directly influences the shape of the catalytic site147, thus altering 

the enzymatic activity138 and playing an indirect regulatory role during the virus replication 

cycle149,150.  

Within the Mpro functional dimer, each protomer is composed of three structural domains. 

The chymotrypsin-like fold, including β-barrel domain I (residues 1-99) and II (residues 100-

182), hosts the active site and thus has direct control over the catalytic event138,147, while the 

α-helical domain III (residues 198-306) is mainly involved in the direct regulation of 

dimerization, exerting only a secondary and indirect role on regulating Mpro's enzymatic 

activity151. Between the second and third domains lies a flexible 16-residue loop (residues 

183-197)152.  

As anticipated, the catalytic site is located between domains I and II, bordered by the N-

terminal domain I of the second protomer in the dimer. Notably, the N-finger (residues 1-7) 

interacts with the binding site through a salt bridge between the positively charged end of 
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Ser1 and the negatively charged end of Glu166153. The latest is also involved in forming a 

hydrogen bond with His172, an essential interaction for the enzyme's proteolytic activity154. 

These interactions are so crucial in stabilizing the catalytic site155 that N-finger deletion 

impairs dimerization and abolishes the protease's enzymatic activity156.  

Mpro's shallow, plastic, and solvent-exposed active site152,157 comprises several subpockets 

(ranging from S6 to S3'), hosting the corresponding substrate residues (which vary from P6 to 

P3')139. Speaking of substrates, the SARS-CoV-2 Mpro cleaves peptide bonds at the C-terminus 

end of a glutamine residue (P1)137, which is conserved across different SARS-CoV-2, SARS-CoV, 

and even MERS-CoV substrate sequences152.  

SARS-CoV-2 Mpro recognizes sequences as long as ten residues (P6–P5–P4–P3–P2–P1↓P1′–

P2′–P3′ P4', where ↓ indicates the scissile bond139), but only shows remarkable selectivity at 

four subsites: S4, S2, S1, and S1′158. On the contrary, prime recognition subsites located at the 

C-terminus of the conserved P2 (Leu/Val/Phe), P1 (Gln) ↓-P1' (Ser/Ala) sequence are not 

conserved and show remarkable plasticity152,159. Furthermore, the main structural alterations 

of the binding site derive from flexibility at residues that line the S1 subpocket and segments 

incorporating methionine 49 and glutamine 189152,160.  

Differently from many other chymotrypsin-like proteases, Mpro exerts its enzymatic functions 

through a catalytic dyad instead of the usual triad, where His41 and Cys145 are flanked by a 

conserved water molecule that substitutes the sidechain of the third component (usually an 

aspartate or an asparagine)138,161.  

Aside from the catalytic dyad, another vital component of the catalytic machinery is 

represented by a set of conserved residues contouring the S1 subpocket known as the 

oxyanion loop (138-145)152,162. Notably, the correct conformation87,163,164 of the oxyanion hole 

(Gly143-Ser144-Cys145) is required for stabilizing the tetrahedral transition state through a 

coordinated series of hydrogen bonds involving the backbone amides138,155,165. Accordingly, 

alternative oxyanion loop conformations are associated with catalytically 

incompetent/inactive proteases140,152,154,166,167. 
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Rational design of COVID-19 drugs 

Several characteristics of the viral proteases family, including SARS-CoV-2 Mpro, make them 

an attractive target for the rational development of tailored drugs against COVID-19. First, 

the low sequence identity with human proteases coupled with distinct cleavage-site 

specificities reduces the possibility of off-target/side effects associated with the therapy168. 

Second, the striking conservation of protein fold and structural organization of the active site 

among different members of the same family leads to the possibility of developing pan-

coronaviral drugs169. Third, the abundance of structural data about the SARS-CoV-2 main 

protease (659 structures have been deposited in the Protein Data Bank170 to date [27th 

December 2022]) makes it possible to exploit the state-of-the-art structure-based approaches 

in drug design171. Furthermore, a similar strategy has already proved successful in finding 

efficient treatments against the hepatitis C virus172,173 and human immunodeficiency virus 

(HIV)174,175. Finally, the experience acquired studying the original SARS-CoV protease176, in 

conjunction with the rapid release to the scientific community of the SARS-CoV-2 protease164, 

certainly played a major role in determining its prominent place within most COVID-19 drug 

discovery campaigns.  

The first attempts at finding SARS-CoV-2 Mpro inhibitors involved the repurposing of existing 

protease inhibitors. Particularly, the hepatitis C protease inhibitor Boceprevir177,178 and the 

feline coronavirus 3CLpro inhibitor GC373 (derived from its prodrug GC376) 179 were found to 

be active in the low µM potency range against Mpro 180, with the latter being particularly 

interesting due to its promiscuous anti-coronaviral activity181. Both candidate drugs share a 

similar peptidomimetic scaffold, which entails the most prominent interaction features of the 

first identified ones164.  

Although these primary hit compounds present a good binding pattern, their evolution 

towards clinical candidates and drugs is prevented by two main factors: first, covalent 

inhibitors are usually associated with selectivity problems, due to their ability to react 

promiscuously with a plethora of nucleophile moieties182, second peptidomimetic scaffold are 

usually associated with suboptimal pharmacokinetic properties that affect the preferred 

route of administration183.  
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With this regard, a step forward was obtained when the first SARS-CoV-2 Mpro inhibitors were 

able to reach clinical stage experimentation, namely PF-07304814 (lately renamed as 

Lufotrelvir), a prodrug for the active principle PF-00835231, and PF-07321332 (Nirmatrelvir).  

Lufotrelvir was originally developed by Pfizer in 2002-2003 towards the SARS-CoV virus and 

later repurposed against the SARS-CoV-2 due to the high similarities between the two 

proteases184. Due to its efficacy against several viral strains in preclinical studies185,186, it was 

advanced to the clinical stages of experimentation, albeit quickly overcome by Nirmatrelvir 

thanks to its more favorable pharmacokinetic profile187.  

 

Figure 3. a) three-dimensional depiction of Nirmatrelvir orientation within the catalytic site of SARS-CoV-2 Mpro 

(PDB ID: 7RFW). b). bidimensional representation of intermolecular interactions of Nirmatrelvir – SARS-CoV-2 

Mpro 7RFW complex.  

Contrary to Lufotrelvir, which like Remdesivir requires parenteral administration, Nirmatrelvir 

can be administered orally188, a must-have characteristic for the widespread adoption of 

drugs189,190. Designed by Pfizer amid the pandemic through the rational modification of 

Lufotrelvir191, the structure of Nirmatrelvir was officially presented to the general audience 

on April 6th at the American Chemical Society Spring 2021 meeting192, only one year after the 

official start of its development process191. 
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This peptidomimetic inhibitor, which is administered in association with the pharmacokinetic 

enhancer Ritonavir and sold under the commercial name of Paxlovid, represents a hallmark 

in the history of both the COVID-19 pandemic and structure-based drug discovery, due to the 

groundbreaking speed of its discovery campaign193. Although clinical studies highlighted a 

remarkable therapeutic efficacy of Paxlovid in preventing the most severe COVID-19 cases194, 

its effectiveness on more mild infections remains unclear195. Furthermore, the impact of viral 

mutations on present and future protease inhibitors has yet to be disclosed196,197, thus 

justifying the current effort to find novel and diverse drugs that can enlarge the pool of 

pharmacological tools available against COVID-19.  

An important step in this direction is represented by the development of Ensitrelvir (formerly 

known as S-217622), the first non-covalent, non-peptidomimetic, orally available Mpro 

inhibitor to reach clinical stage experimentation198. This compound has successfully reached 

the third and final stage of clinical experimentation, thanks to its proven efficacy against mild-

to-moderate or even asymptomatic infections199,200. Possible approval of this active principle 

by regulatory agencies would provide an additional and orthogonal therapeutic tool to 

Nirmatrelvir in the treatment of COVID-19 cases, thus reducing the impact of resistance 

mechanisms associated with the emergence of mutated viral strains 196,197.  

Potential targets of interest 
Although targeting the SARS-CoV-2 main protease was successful in individuating several 

clinical candidate drugs, and even led to the first approval of COVID-19 specifically designed 

drugs, other drug discovery campaigns aimed at different viral targets are needed for therapy 

diversification, potential combined and synergic treatment, and resistance prevention201–203.  

Altogether, the SARS-CoV-2 genome encodes four major structural proteins, including 

nucleocapsid (N), membrane (M), envelope (E), and the spike as mentioned earlier (S), plus 

16 nonstructural proteins, encompassing the previously mentioned main protease204. 

Although Mpro plays a pivotal role in processing the SARS-CoV-2 viral polyproteins, it is not the 

only component of the functional replicase complex that is required for the viral spread 

process205. Alongside her, a secondary but still relevant enzyme operates, namely the papain-

like protease (PLpro, the catalytic domain of protein nsp3)206. Despite being a cysteine protease 
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like Mpro, PLpro exerts its enzymatic functions through a catalytic triad composed of Cys111, 

His272, and Asp286207. Further, PLpro processes peptide bonds located at the C-terminal end 

of LXGG motifs208. Functionally speaking, this 343 residues segment which is part of the 

multidomain nsp3 protein is responsible for cleaving the SARS-CoV-2 polyproteins at three 

different sites, resulting in the liberation of nsp1, nsp2, and nsp3 proteins209. Moreover, PLpro 

is also responsible for cleaving post-translational modifications on known regulators of host 

innate immune response210.  

As demonstrated by the approval of Remdesivir by regulatory agencies, another valuable 

target for the development of COVID-19 drugs is represented by the RNA-dependent RNA 

polymerase (RdRp)49. This complex machinery comprises four subunits, including one nsp12, 

responsible for the catalytic activity of the assembly, one nsp7, and two nsp8, with the latest 

two acting as cofactors211. The assembled holoenzyme presides RNA replication, a process 

that results in the formation of nine subgenomic RNAs212. The active site of nsp12 resides in 

its C-terminal RdRp domain and includes residues spanning from Thr611 to Met626, which 

are involved in binding one turn of double-stranded RNA, while residues D760 and D761 are 

required for recognition of the 3’ end and essential for RNA synthesis213,214. Remdesivir binds 

within the active site, forming direct contact with residues K545, R553, D623, S682, T687, 

N691, S759, D760, and D761 and blocking the catalytic machinery by delaying the chain 

termination process215,216.  

During the RNA synthesis process, the RdRp interoperates also with nsp13 (helicase)217, an 

enzyme involved in unwinding the RNA secondary structure of the 5’ untranslated section of 

viral genome218 to increase the efficiency of the copy process219,220. From a structural 

perspective, the nsp13 is a 596 residue, triangular pyramid-shaped helicase, which exploits 

its function thanks to the energy provided by its NTPase domain composed of six conserved 

residues (K288, S289, D374, E375, Q404, R567)221. Adding to its helicase activity, the nsp13 

active site also exerts RNA 5′ triphosphatase activity, further highlighting its importance in the 

maturation process of the viral mRNA222.  

The 5’ end of the newly synthesized mRNA is then subjected to post-translational 

modifications to boost both its stability (preventing cleavage from exonucleases), protein 
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translation, and viral immune escape223. This activity is sequentially carried out by two S-

adenosyl-L-methionine-dependent methyltransferases, namely nsp14 and nsp16224. 

Specifically, the 527 residue nsp14 encompasses both a proofreading exoribonuclease (ExoN) 

and an N7-methyltransferase enzymatic activity 225. Furthermore, it has recently been 

suggested that it could encompass also a third, essential function for the viral replication 

cycle, based on the fact that SARS-CoV-2 ExoN knockout mutants are nonviable despite the 

95% sequence identity with SARS-CoV 226 and the conservation of important active site amino 

acids including both the cap-binding residues (N306, C309, R310, W385, N386, N422, and 

F426) and the S-adenosyl methionine (SAM) binding residues (D352, Q354, F367, Y368, and 

W385)227,228.  

After its cleavage by the Mpro, evidence suggests that it forms a binary complex with nsp10 

which cooperatively exerts the proofreading activity on fresh RNAs produced by the RdRp 

machinery 229,230. Although the binary complex theory is the most prominent one, an 

alternative hypothesis based on the formation of a ternary nsp10-nsp14-nsp16 has been 

proposed due to the flexibility of the lid subdomain of nsp14 and the fact that nsp10 also 

forms a heterocomplex with nsp16 230. 

Particularly, the nsp16-nsp10 heterodimer is responsible for the 2’ O-methyltransferase 

activity that is required to complete the cap-0 → cap-1 conversion of mRNA that is initiated 

by nsp14224. While the catalytic activity entirely resides on nsp16, nsp10 portrays a support 

role, aiding the recruitment of both the m7GppA-RNA substrate (which happens at a binding 

site defined by residues K24, C25, L27, Y30, K46, Y132, K137, K170, T172, E173, H174, S201, 

and S202) and the SAM cofactor (which binds in a pocket defined by N43, G71, G73, G81, D99, 

D114, C115, D130, and M131), thus enhancing nsp16’s catalytic activity231–233.  

Lastly, another essential target for coronavirus biology is represented by nsp15, a uridine-

specific endoribonuclease (NendoU)234. The active form of this enzyme is a dimer of trimers, 

with each monomer composed of 345 residues organized in three different domains: N-

terminal, middle, and C-terminal NendoU, where the catalytic activity resides235.  
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The active site contains six conserved residues: His250, His250, and Lys290, which compose 

the catalytic triad, Thr341, Tyr343, and Ser294, with the latest associated with selectivity in 

substrate recognition236. Due to their localization within the hexamer, cooperativity or anti-

cooperativity between different binding sites is possible237. Nsp15 enzymatic activity involves 

the cleavage of both single- and double-stranded RNA at uridine sites producing 2′,3′-cyclic 

phosphodiester, and 5′-hydroxyl termini238.  

Functionally speaking, Nsp15 seems to directly participate in viral replication through 

interference with the innate immune response236. Indeed, to evade host pattern recognition 

receptor MDA5 responsible for activating the host defenses, the Nsp15 cleaves the 5′-

polyuridine tracts in (-) sense viral RNAs239, though it has also been suggested that Nsp15 

degrades viral RNA to hide it from the host defenses237.  
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Computer simulations for rational drug design 
For most of its existence, the human genre has exploited natural products such as leaves, 

seeds, roots, barks, and flowers as medicines, based on empirical observations purely based 

on symptom relief240,241.  

Nevertheless, throughout the latest two centuries, the process of drug discovery has evolved 

rapidly from the serendipitous discovery of novel active principles derived from or inspired 

by natural compounds242,243 to the rational design of brand-new chemical entities244. 

The major turning point in the history of modern drug discovery can be traced back to the 

1980s when experimentally solved macromolecular structures become routinely available245. 

The enhanced accessibility of structural data about biological targets reflected in a rapid 

interest in the development of computational methods that could valorize this information 

and aid medicinal chemists’ work246.  

Today, computer simulations are a staple point of drug discovery campaigns, thanks to their 

ability to streamline and reduce their attrition rate247. From a functional perspective, 

computer-aided drug discovery (CADD) techniques are employed in the earliest stages of the 

pipeline for hit identification, hit-to-lead optimization, and pharmacokinetic evaluations248.  

CADD methodologies can either fall into one of two subgroups, based on the rationale behind 

them: the first group is represented by ligand-based (LBDD) approaches, while the second one 

includes structure-based (SBDD) methods249. The main difference between these two 

orthogonal and complementary approaches is that the first one does not exploit any 

information about the target macromolecule structure (e.g., a protein or a nucleic acid), while 

the second one does250.  

Nowadays, with the advent of cryo-electron microscopy (cryo-EM)251 and groundbreaking 

tools for de novo prediction of protein structures such as AlphaFold252, the second approach 

has become the gold-standard253. 

CADD strategies against COVID-19 
The starting point of every SBDD campaign is the identification of a target macromolecule (a 

protein or a nucleic acid) that is involved in the etiology and or pathogenesis of a disease of 
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interest, whose function can be opportunely modulated through a specifically designed 

ligand, usually a small organic molecule171.  

Once the target has been identified, its structure must be retrieved, either through 

experimental methods such as X-Ray crystallography (XRC, the gold standard)254, nuclear 

magnetic resonance (NMR)255, and cryo-EM256 or hypothesized through homology modeling 

or de novo prediction257.  

Homology modeling involves the use of a homologous protein with high primary sequence 

identity with the target as a template for the construction of its three-dimensional 

model258,259. De novo prediction, instead, does not rely on any information about other 

protein’s structures and outputs a structural hypothesis that is solely based on the primary 

sequence of the target of interests260.  

While the second approach has gained a lot of momentum during the last two years, thanks 

to its unprecedentedly high accuracy261,262, the first one is still relevant in those cases where 

important structural rearrangements occur between different states of the target functional 

cycle, other than predicting ligand-bound conformations263,264.  

In the context of the COVID-19 pandemic, where the extraordinary effort promoted by the 

scientific community quickly made several experimentally determined structures available, 

the relevance of structural modeling was highlighted by the ability to keep up with the high 

mutation rate of the virus135,206, other than providing useful starting points for drug discovery 

campaigns for targets whose structure had yet to be elucidated265,266. For example, several 

studies were conducted to investigate the impact of mutations found in both the spike 

protein135,267–271 and the main protease135,197,272,273 of emerging strains on viral fitness and 

resistance to existing therapies. These studies showed that relatively inexpensive approaches 

such as homology modeling and positional scanning can be reliable tools to rationalize the 

origin of the virus272,274–276, quickly track the evolution of the original strain135,277,278, predict 

the impact of future possible mutations268,270 and adjust existing therapeutics tools 

accordingly197,279.  

The huge amount of structural information available on several SARS-CoV-2 druggable targets 

was fertile terrain for various COVID-19 SBDD campaigns 280,281, both in academia and in the 
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industry, with most effort aimed at hitting well-characterized and pivotal viral targets such as 

Mpro or spike 282,283.  

A remarkable example is represented by the COVID Moonshot Consortium, a drug discovery 

campaign driven by a collaborative effort among different research groups across the world 

aimed at targeting the SARS-CoV-2 main protease. This project led to the advancement of 

novel noncovalent orally available nanomolar Mpro inhibitors to clinical stage 

sperimentation284.  

The Swiss knife of SBDD: molecular docking 
Within every SBDD campaign, available information about the target structure is exploited to 

fetch molecules able to recognize it selectively and potently285. Usually, this involves the 

identification of molecules that have good steric and electrostatic complementarity with the 

active site286. Depending on the steric and volumetric features of the binding site, the ligand 

type can be chosen accordingly, with small organic molecules being a better solution for 

buried cavities287 and peptides, aptamers, or antibodies a better one for larger, flatter, and 

solvent-exposed interaction surfaces288.  

To narrow down the list of potentially active molecules to experimentally test to a feasible 

number, and to avoid wasting resources on compounds that do not possess the appropriate 

features to interact with the target, most SBDD campaigns start with a virtual screening 

process (SBVS)289. The most widely and successfully adopted method for SBVS is molecular 

docking, a computational protocol developed in the 1980s by Kuntz et al.290 for predicting the 

preferred orientation of a certain ligand within the active site of a receptor291.  

Each docking program has two major components, which cooperate to find the solution to 

the protein-ligand docking problem292. The first part is the search algorithm (SA), which 

explores the ligand degrees of freedom within a user-defined search space centered around 

the active site of the protein293. The SA generates several ligand conformations (poses) that 

are fed to the second element of the program, i.e., the scoring function (SF), which 

qualitatively evaluates subsisting protein-ligand interaction features294.  
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In the context of the COVID-19 pandemic, docking was also the king of computational 

methods used for drug discovery, thanks to the combination between its accuracy295 and 

rapidity, which allows it to virtually screen billions of compounds in just a few days296–298.  

For example, Corona et al. reported the discovery of four low micromolar nsp13 inhibitors 

through a virtual screening carried out with the LiGen299 docking program on an in-house 

natural compounds’ library300.  

Kolarič et al. identified two micromolar SARS-CoV-2 cell-entry inhibitors, that act by binding 

human neuropilin-1 (nrp-1) and preventing its interaction with the spike protein, by 

performing a virtual screening with the GOLD301 program on a library of commercially 

available compounds302.  

Vatansever et al. performed a virtual screening based on the Autodock303 program on a library 

of drugs approved by the Food and Drug Administration and by the European Medical Agency 

(EMA) to discover six micromolar Mpro inhibitors304.  

Kao et al. reported the discovery of three sub-micromolar, synergistic nsp1 inhibitors 

identified through two independently executed virtual screenings with ICM305,306 and Vina307 

software on a library of FDA-approved drugs308.  

Zhang et al. identified 11 natural compound Mpro inhibitors active in the low micromolar range 

through a virtual screening purely based on the commercial software Glide309, developed by 

Schrödinger310. Another strategic use of docking-based virtual screening based on the Glide 

program is portrayed by the work of Huff et al., which designed six mixed covalent and non-

covalent nanomolar Mpro inhibitors311. Another Glide-based virtual screening performed by 

Liu et al. led to the repurposing of histone deacetylase (HDAC) inhibitors as SARS-CoV-2 cell 

entry inhibitors through allosteric modulation of ACE2 and alteration of its ability to recognize 

the spike protein312.  

Wang et al. used LibDock313 to perform a virtual screening on a library composed of FDA-

approved peptides which led to the identification of a nanomolar SARS-CoV-2 cell entry 

inhibitor that exerts its effect by binding the human ACE2 receptor314.  
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A remarkable result was obtained by Luttens et al., which identified 8 Mpro inhibitors 

(including a nanomolar compound with pan coronaviral activity) by combining fragment-

based drug design with ultra-large virtual screening based on the DOCK290 program315.  

Welker et al. exploited the molecular docking pipeline of the LeadIT316 program to repurpose 

previously identified SARS-CoV PLpro inhibitors towards its SARS-CoV-2 homolog, 

demonstrating their activity on viral replication in cell-based assays317.  

Otava et al. utilized docking calculations with the GOLD software to rationalize the structure-

activity relationship of a series of rationally designed S-adenosyl-L-homocysteine derivatives, 

some of which showed inhibitory activity towards SARS-CoV-2 nsp14 in the low nanomolar 

potency range318.  

Similarly, Wang et al. exploited docking with Vina to rationalize the SAR of a series of rationally 

designed phenanthridine nucleocapsid protein (NPro) inhibitors, including two compounds 

showing low micromolar inhibitory activity319.  

Complementary strategies to address docking limitations 
Although a very efficient and useful tool, molecular docking is rarely used on its own within 

SBDD campaigns and, indeed, is most often coupled with other methods to compensate for 

its weak points, such as neglecting receptor flexibility or the role of solvent320, thus increasing 

the virtual screening success rate321. Another major limitation is represented by the poor 

ranking capabilities of classical scoring functions322, which is the main cause of the high false 

positive rate of docking-based virtual screenings323.  

A possible solution to the limited physical description of the protein-ligand binding event of 

docking is to couple it with molecular dynamics (MD) simulations292,324. Molecular dynamics 

is a computational technique that allows investigating the time-dependent evolution of 

biological systems following the rules of molecular mechanics, i.e., determining the atomic 

trajectories by numerically solving Newton's equation of motion, where forces between the 

particles and their potential energies are calculated according to molecular mechanical force 

fields325. Due to the heavy computational workload required to run these types of 

simulations, MD is rarely used for screening purposes, while it is more frequently exploited 

for the refinement of docking results, i.e., evaluating the pose stability or optimizing the 
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protein-ligand complex geometry for a more accurate estimation of the free binding 

energy326,327.  

Regarding the pitfalls of the scoring component of docking programs, one possible strategy is 

to apply some form of knowledge-based filter upon docking results, in a similar fashion to 

what would happen if each pose were visually inspected328. For example, experimental 

information about critical protein-ligand interactions required for binding can be encoded 

within a pharmacophore filter or an interaction fingerprint, both of which can be used as 

constraints in the pose selection process329. In the case of pharmacophore filters, poses are 

filtered based on their ability to place a given functional group within a defined volume330,331, 

while in the case of protein-ligand interaction fingerprint, the selection is usually based on 

the similarity between the reference and the query vector, representing the interaction 

features of the reference compound (a true active) and the investigated molecule 

respectively332,333.  

For instance, Wang et al. used a combination of structure-based pharmacophore screening, 

docking (both performed with the appropriate tools of the Molecular Operating Environment 

suite), and post-docking molecular dynamics refinement to identify a set of four sub-

micromolar Mpro inhibitors among a database of in-house compounds334.  

The same protocol was successfully exploited by Tian et al. to identify four sub-micromolar 

PLpro inhibitors in the same in-house library335.  

Furthermore, a slight variation of the protocol was also employed by Yin et al. to discover a 

non-covalent cyclic peptide that simultaneously inhibits both SARS-CoV-2 Mpro and nrp-1 with 

an activity in the low nanomolar range336. Within this scientific work, pharmacophore 

constraints were used for scoring peptide poses on Mpro, while traditional docking scores were 

used for the nrp-1 screening.  

A remarkable joint computational work by Gossen et al. led to the molecular dynamics-driven 

design of a structure-based pharmacophore filter, which was then exploited to identify two 

nanomolar Mpro inhibitors among a library of publicly available compounds337.  

A similar approach was exploited by Hu et al., which exploited the combination between MD-

based pharmacophore filtering, docking-based virtual screening within the Molecular 
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Operating Environment suite, and MD-based post-docking refinement to identify micromolar 

SARS-CoV-2 cell entry inhibitors targeting the FP of the spike protein338. 

Jang et al. used protein-ligand interaction fingerprint similarity as a post-docking filter for 

their double virtual screening on both Mpro and RdRp with the Vina program to identify seven 

compounds inhibiting SARS-CoV-2 replication in cell-based assays among a library of 

approved drugs339.  

Due to the static nature of molecular docking, which does not consider receptor flexibility, 

the choice of the input structure is vital for the success rate of a virtual screening340. Although 

molecular dynamics can be a useful “a posteriori” refinement of poses, a wrong input 

conformation of the target macromolecule could prevent the sampling of native-like poses 

for active compounds, leading to a reduced hit-finding rate341. For this reason, multiple 

conformations of the same receptor derived from MD simulations or experimentally solved 

in different conditions can be used in parallel in a process defined as ensemble docking 

(ED)342. When this approach is used, docking calculations are independently run on each 

structure, with virtual hit compounds being identified either through a consensus scoring or 

a consensus ranking approach343,344. In the case of consensus scoring, the docking score of 

the same molecule is averaged across the different virtual screenings, with the final ranking 

based on the consensus score345. Differently, consensus ranking involves the selection of top-

ranking hit compounds across different virtual screenings, regardless of congruence between 

scores346. A consensus approach can also be utilized to rank molecules based on virtual 

screening executed on the same receptor structures with different docking protocols347.  

For example, Gimeno et al. applied a consensus scoring approach to three independently 

executed virtual screening through Glide, FRED348, and Vina software to identify two Mpro 

micromolar inhibitors within the Drugbank database, a library which includes all approved 

drugs by the Food and Drug Administration (FDA)349.  

Yang et al., instead, employed an ensemble docking approach with the Glide docking software 

to identify six Mpro inhibitors among a library of commercially available peptidomimetic 

compounds, two of which demonstrated sub-micromolar potency350.  
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Rubio-Martinez et al. used a combination of ensemble docking based on QVina2351 and post-

docking molecular dynamics refinement to identify five Mpro micromolar inhibitors within a 

library of commercially available natural compounds352.  

A mixture of the previous two approaches was exploited by Clyde et al. for their High-

Throughput Virtual Screening (HTVS), based on both ensemble docking and consensus scoring 

between the FRED and Vina docking programs, that led to the discovery 7 micromolar Mpro 

inhibitors among a set of commercially available compounds353.  

Further, a combination of consensus ranking among Autodock, Hybrid, and FlexX and post-

docking molecular dynamics refinement was utilized by Glaab et al. to virtually screen a library 

of commercially available compounds and identify two micromolar Mpro inhibitors354.  

Similarly, Ghahremanpour et al. applied consensus ranking among three independent virtual 

screenings performed with the Glide, Autodock, and Vina software and post-docking 

molecular dynamics refinement to identify 14 micromolar Mpro inhibitors within the Drugbank 

database355.  

Another possible solution to cope with inaccuracy in free binding energy determination by 

traditional scoring functions is to rescore docking poses using more computationally intensive 

and accurate methods such as Free Energy Perturbation (FEP)356 or MMGBSA/MMPBSA357. 

The first approach relies on performing a series of alchemical transformations across a set of 

ligands that need to be evaluated. This conversion cycle allows calculating relative differences 

in the free binding energy that can be used for a more accurate ranking of hit compounds 

derived from a virtual screening358. The second approach relies instead on correcting the gas 

phase interaction energy calculated according to the molecular mechanics force field with a 

term accounting for the desolvation free energy, where the polar component is estimated 

either by numerically solving the Poisson-Boltzmann equation (MMPBSA) or through the 

Generalized-Born method (MMGBSA)359. 

Intriguingly, one of the hit compounds identified in the work of Ghahremanpour et al. was 

then used by Zhang et al. for the FEP-driven design of multiple nanomolar Mpro inhibitors360.  

A similar combination of Glide docking and FEP to determine the absolute binding free energy 

was also employed by Li et al. to identify 15 micromolar Mpro inhibitors within the Drugbank 
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database361.  The efficacy of FEP in estimating the binding energy of potential Mpro inhibitors 

was also highlighted by a retrospective study by Ngo et al362.  

A multistep virtual screening involving semiflexible docking with Glide, Schrödinger induced-

fit docking363, MD-based post docking refinement, and binding free energy estimation with 

the MMGBSA364 protocol was exploited by Ibrahim et al. to identify one low micromolar nsp15 

inhibitor365.  

Although the estimation of thermodynamic properties such as the free binding energy has 

been a staple point of drug discovery campaigns, both from a computational and an 

experimental perspective, lately there has been a major interest shift towards the 

determination of kinetic parameters since they better correlate with in vivo efficacy366. 

Specifically, several MD-based methods have been developed throughout the years to rank 

compounds based on their predicted residence time, i.e., the time that the ligand spends in 

the receptor-bound state367. Among those, Pavan et al. developed Thermal Titration 

Molecular Dynamics (TTMD), a new method for qualitative estimation of protein-ligand 

complex stability, that was successfully applied for correctly discriminating tight, low 

nanomolar, binders from weak, micromolar, SARS-CoV-2 Mpro inhibitors368.  

 

Figure 4. Workflow of a Thermal Titration Molecular Dynamics (TTMD) simulation. The time-dependent 

conservation of the native binding mode within a protein-ligand complex of interest is monitored with a scoring 

function based on interaction fingerprint through a series of short molecular dynamics simulations performed 

at progressively increasing temperatures. The simulation is carried out until the target temperature is reached 

or the dissociation process is completed. A coefficient called MS is then calculated and used to rank ligands 

based on the persistence of their native binding mode.  
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Beyond protein-ligand docking: alternative strategies for rational drug 

development 
Despite the indisputable relevance of molecular docking within most SARS-CoV-2 drug 

discovery campaigns, other approaches were successfully implemented, especially for 

projects which deviate from the design of standard small molecule non-covalent binder.  

For example, Zaidman et al. developed Covalentizer, an automated pipeline for the 

conversion of non-covalent binders to irreversible ones, which was successfully applied to the 

conversion of a SARS-CoV Mpro reversible inhibitor to a sub-micromolar SARS-CoV-2 Mpro 

irreversible one369.  

Valiente et al. reported the discovery of D-peptides that bind the spike RBD with low 

nanomolar affinity, hence blocking SARS-CoV-2 infection in cell-based assays These ACE2-

mimicking peptides were selected within the starting library through a combination of 

structural alignment, MD-based post docking refinement, and binding free energy 

estimation370. 

Similarly, a series of peptides mimicking the HR2 domain of the spike protein able to prevent 

SARS-CoV-2 infection in cell-base assays with low micromolar potency were designed through 

the combination between structural alignment, mutational scanning with the BeAtMuSiC371 

tool and MD-based post docking refinement372.  

Jeong et al. used Rosetta373 to rationally design a mAb that recognizes a conserved surface on 

the spike RBD of various coronaviruses with picomolar binding affinities, thereby strongly 

inhibiting SARS-CoV-2 replication in cell-based assay374.  

A similar strategy was exploited by Miao et al., which employed Rosetta docking and MD-

based post-docking refinement to design an RNA aptamer that binds with picomolar affinity 

to the spike RBD and inhibits SARS-CoV-2 replication with sub-micromolar potency in cell-

based assay375.  

Further, Cao et al. utilized a combination of modeling with Rosetta and docking with 

RifDock376 to design ten mini proteins which bind with picomolar affinity to the spike RBD thus 

inhibiting SARS-CoV-2 infection within cell-based assays377.  
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Moreover, Glasgow et al. combined modeling with Rosetta and computational alanine 

scanning with Robetta378,379 to rationally design “ACE2 receptor traps”, i.e., engineered 

proteins that bind the spike RBD with high affinity and neutralize SARS-CoV-2 infection as 

effectively as clinically used mAbs380.  

As thoroughly discussed in previous paragraphs, many SARS-CoV-2 drug discovery campaigns 

favored static, time-independent approaches such as docking or structural alignment, over 

time-dependent methods such as molecular dynamics. This can be attributed to the long 

calculation times, the reduced conformational sampling capabilities, and the lower 

accessibility of MD simulations to the general medicinal chemistry audience327,381. Despite 

these issues, several works demonstrated the potential of using full-fledged MD-based drug 

discovery pipelines, especially, when smart enhanced-sampling strategies are employed381.  

For example, Bissaro et al. showed how high-throughput supervised molecular dynamics (HT-

SuMD)382, a virtual screening platform based on an enhanced sampling MD protocol, could be 

successfully exploited for docking fragments to the active site of SARS-CoV-2 Mpro, 

overcoming accuracy limitations of most docking protocols383 in identifying the native-like 

binding mode for frag-like compounds384.  

 

Figure 5. Workflow of a Supervised Molecular Dynamics (SuMD) simulation. The ligand is dynamically docked 

within a user-defined binding site through a series of short, unbiased molecular dynamics simulations. At the 

end of each step, the distance of mass between the ligand and the receptor binding site is computed for each 

trajectory frame and is fed to a tabu-like algorithm. If the slope of the straight line which interpolates the data 

is negative, indicating the ligand is approaching the binding site, the step is retained, and the simulation 

continues with the next “SuMD-step”. If not, the step is discarded and repeated, randomly reassigning particles’ 
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velocities through the Langevin thermostat. This cycle is repeated until a threshold distance is reached or other 

user-defined termination criteria are met.  

Furthermore, the SuMD385,386 algorithm was successfully exploited by Pavan et al. to decipher 

details about the recognition mechanism of Nirmatrelvir upon the SARS-CoV-2 Mpro catalytic 

site before any structural detail was revealed by the drug developer, successive structural188 

and molecular medicine197 studies confirming the prediction validity387.  

Moreover, an evolved version of the SuMD protocol was developed by Pavan et al. and 

successfully applied to the study of the recognition mechanism between RNA aptamers and 

proteins, including an RNA-aptamer that binds to the spike RBD with picomolar affinity thus 

preventing the viral infection of host cells388.  
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As stated in the introduction, the COVID-19 outbreak in December 2019 drastically 

changed the lives of many people around the world. The social and economic crisis 

generated by this pandemic had such drastic consequences that many members of the 

scientific community decided to devoid most of their efforts into increasing the 

knowledge about this topic. This situation resulted in unprecedented cooperative action 

in an attempt to put an end to this unpleasant situation.  

The present work was conceived within this framework, aiming to evaluate the usefulness 

of existing structure-based computer-aided drug discovery (CADD) strategies within a 

pandemic scenario, where reduced timescales are required compared to traditional drug 

discovery campaigns. Our effort served two different purposes: the first and most 

immediate one was to provide helpful information for developing novel candidate drugs 

against COVID-19, especially concerning inhibitors of the SARS-CoV-2 main protease. 

Instead, the second and more long-term oriented one was to assess the helpfulness and 

reliability of CADD techniques in facing future similar scenarios. Indeed, a study published 

in PNAS1 estimated that the likelihood of a highly infectious disease epidemic could 

double in the coming decades. So, the resurgence of a COVID-19-like scenario is a question 

of when rather than whether, thus requiring adequate preparation by everyone.  

Furthermore, another critical part of the present work was dedicated to promoting 

methodological advancement, either by extending the applicability domain of existing 

techniques to new fields or developing completely novel methodologies, aiming to 

compensate for the weakness of existing ones.  

The development of RNA-based therapeutics is becoming more and more relevant these 

days, as demonstrated by the pivotal role played by mRNA vaccines against COVID-19. We 

present a novel implementation of Supervised Molecular Dynamics (SuMD)2, an enhanced 

sampling approach for studying molecular recognition processes, applied to RNA-protein 

complexes. Our SuMD-based pipeline will provide the community with a valuable tool to 

help rationalize RNA-based therapeutics design, which will soon play a prominent role in 

tackling untreated diseases.  
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Finally, one major issue that all drug discovery campaigns face, regardless of the nature 

of investigated molecules, is related to the accurate prediction of drug efficacy. This 

parameter has been increasingly linked to kinetic properties concerning the drug-target 

interaction, generating high interest in developing novel methods for predicting such 

properties. In this work, we developed an entirely new platform named Thermal Titration 

Molecular Dynamics (TTMD)3, an enhanced sampling technique for unbinding kinetics 

estimation. Thanks to its swiftness and ease of use, TTMD will hopefully increase the 

adoption of CADD techniques in the field of drug-target kinetic investigation. 
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3. Pavan, M., Menin, S., Bassani, D., Sturlese, M. & Moro, S. Qualitative Estimation of Protein–Ligand 

Complex Stability through Thermal Titration Molecular Dynamics Simulations. J Chem Inf Model 
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During the present work, several different computational methods belonging to the field 

of structure-based drug discovery were used. This section briefly summarizes the various 

approaches employed. A more thorough and referenced overview of the topic can be 

found in the “Introduction” as well as within each publication where these methods have 

been used, while information about the techniques used within each work can be found 

in the “Articles overview” section.  

• Homology modeling / de novo prediction: in the absence of an experimentally 

determined three-dimensional structure for a biological target of interest, it can 

be predicted with various degrees of accuracy either through homology modeling 

or de novo prediction. In the case of homology modeling, the structure of the 

target macromolecule is modeled using as a template a protein with conserved 

function and high sequence identity to the target, provided that its structure has 

already been determined experimentally. This method assumes that proteins with 

high sequence identity and similar functions will fold similarly. In the case of de 

novo prediction, the protein fold is guessed solely based on the primary sequence 

of the target macromolecule, with limited to no exploitation of the knowledge 

about the structure of homologous macromolecules. 

• Molecular docking: one of the crucial tasks in the rational design of drugs is being 

able to predict how a certain compound (the ligand) will bind to the active site of 

a target macromolecule (the receptor). This is usually accomplished through 

molecular docking, a method for determining the most plausible orientation of a 

ligand within a binding site that operates through the combination of a search 

algorithm and a scoring function. The search algorithm generates a series of 

possible ligand conformations within a user-defined search space, usually a sphere 

or a rectangular prism box including the binding site. The scoring function, instead, 

evaluates the quality of protein-ligand interactions for each pose and attributes a 

score which is used to rank the conformations generated by the search algorithm. 

At the end of each docking run, the user retrieves a series of poses (ligand 

conformations within the binding sites), ranked based on the docking score.  
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• Pharmacophore model: the knowledge about the interaction features required 

for selective and potent binding to a specific biological target can be encoded into 

a three-dimensional model, i.e. a pharmacophore. A pharmacophore model is a 

set of spheres that defines the position in the space of each functional group that 

is needed for defining the minimum set of intermolecular interactions necessary 

for a compound to be active towards a target of interest. Once built, this model 

can then be used to perform virtual screening, i.e. selecting compounds within a 

virtual library based on the possibility to portray this set of features, or to filter 

docking poses, retaining only those poses which match the pharmacophore 

model.  

• Protein-Ligand Interaction Fingerprint: another way to encode information about 

binding features of active compounds against specific biological targets of interest 

is to construct protein-ligand interaction fingerprints (PLIFs). Various types of PLIFs 

exist, depending on the way the information is encoded, but generally speaking, 

protein-ligand interactions are translated into numeric vectors/matrices where 

each cell accounts for a different type of interaction and the numeric value 

represents its frequency. PLIFs can be compared using different similarity metrics, 

producing scores that can be used to rank compounds based on the congruence 

between their binding pattern.  

• Molecular Dynamics: a pivotal aspect when working with biological systems is 

being able to study their time-dependent evolution and related properties. This 

computationally daunting task is performed by using molecular dynamics. In 

molecular dynamics simulations, molecular mechanics is used to discretize the 

description of biological systems in such a way as to make it feasible to compute 

the time-dependent evolution of a system at the atomic level for simulation times 

in the order of microseconds/milliseconds. Practically speaking, the presence of 

electrons is neglected, with their distribution being approximated by the 

attribution of punctiform partial charges on each atom, which is described as a 

sphere connected to other atoms by springs representing each covalent bond. The 

evolution of atomic coordinates follows the gradient of the potential energy of the 

system, calculated through a series of parametric equations known as a force field, 
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where different contributions to the potential energy of the system are weighed 

to accurately reproduce experimental data or calculations performed at a higher 

level of theory (quantum mechanics). 

• Supervised Molecular Dynamics: the real-world time required to observe 

infrequent events such as association or dissociation processes between biological 

entities is usually too high to rely on classic, unbiased, molecular dynamics 

simulations. For this reason, several enhanced-sampling strategies have been 

developed. One of these algorithms, known as Supervised Molecular Dynamics, 

relies on performing a series of short molecular dynamics simulations (SuMD-

steps) where the distance between the center of mass of the ligand and of the 

receptor is monitored and linearly interpolated: if the angular coefficient is 

negative, indicating the ligand is approaching the binding site in a given simulation 

window, the SuMD-step is retained for the generation of the final trajectory, if it 

is positive, the SuMD-step is discarded and the simulation is repeated until a 

negative coefficient is obtained. This method is particularly useful for studying 

association processes between a ligand and a receptor. 

• Thermal Titration Molecular Dynamics: another enhanced sampling method for 

molecular dynamics simulations, which is useful for investigating dissociation 

processes, is Thermal Titration Molecular Dynamics. This technique monitors the 

conservation of the native binding mode for a certain receptor-ligand complex 

with a scoring function based on protein-ligand interaction fingerprints through a 

series of short molecular dynamics simulations performed at progressively 

increasing temperatures. The temperature increase is used to augment the kinetic 

energy of the system, to facilitate overcoming the energy barrier between the 

bound and unbound states. 
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Articles overview 
The present work is divided into three main sections. The first and most conspicuous part 

is dedicated to COVID-19-related scientific production, with a particular focus on the study 

of the SARS-CoV-2 main protease (Mpro/3CLpro). The central portion is a collection of 

ancillary works, both in the field of neurodegeneration and cancer. The third and final 

section focuses, instead, on methodological projects. The pivotal points of the obtained 

research results are summarized in the current paragraph and detailed afterward through 

the presentation of the already published scientific publications. 

Section 1: COVID-19 

The first eight articles are all related to COVID-19, mainly focusing on the SARS-CoV-2 main 

protease (Mpro). As recalled in the introduction, Mpro is a validated target for the 

development of effective and safe COVID-19 pharmacological treatments, so an essential 

part of the present work has been dedicated to the study of recognition processes 

between small molecule ligands and the catalytic site of the enzyme through a 

combination of both time-dependent and time-independent structure-based approaches. 

1. Pavan, M., Bassani, D., Sturlese, M. & Moro, S. Bat coronaviruses related to 

SARS-CoV-2: what about their 3CL proteases (MPro)? 

https://doi.org/10.1080/14756366.2022.2062336 37, 1077–1082 (2022). 
Temmam et al. reported the discovery of bat coronaviruses found in North Laos 

caverns that present a high degree of genome similarity with SARS-CoV-2 and are 

as much or even more infective than their human counterpart. This news raised 

important concerns in the general population about the possibility of a spillover 

and the rise of novel pandemic waves caused by these viruses or closely related 

ones. Complementing the original work, which fully focuses on the analysis of the 

spike protein, which mediates the capability of such viruses to infect human cells, 

in the present work, we used homology modeling to analyze the similarities and 

differences between the main proteases of these newly reported viruses and 

SARS-CoV-2, discussing their relevance relative to the efficacy of existing 

therapeutic approaches against COVID-19, particularly concerning the first orally 

available anti-SARS-CoV-2 drug (Paxlovid), and the development of future ones.  



SCIENTIFIC PUBLICATIONS 

 

 74 
 

2. Pavan, M., Bassani, D., Sturlese, M. & Moro, S. From the Wuhan-Hu-1 strain to 

the XD and XE variants: is targeting the SARS-CoV-2 spike protein still a 

pharmaceutically relevant option against COVID-19? J Enzyme Inhib Med Chem 

37, 1704–1714 (2022). 

Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 

genome has undergone several mutations, resulting in the rise of a multitude of 

viral variants, some of which have shown an increased pathogenic potential. The 

continuous rise of novel variants provoked skepticism in the general population 

regarding the efficiency and trustworthiness of existing treatments (vaccines, in 

particular) and the ones in development. In the present work, homology modeling 

has been extensively exploited to characterize the structural features of a set of 

variants of concerns, analyzing the different impact that the viral evolution process 

had on the two most important targets for the development of anti-SARS-CoV-2 

treatments, namely the spike protein and the main protease. 

3. Heilmann, E. et al. SARS-CoV-2 3CL pro mutations selected in a VSV-based system 

confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci Transl Med (2022) 

doi:10.1126/scitranslmed.abq7360. 

The emergence of novel SARS-CoV-2 strains threatens the efficacy of existing 

COVID-19 treatments, due to their possible antiviral resistance. To identify 

mutations that confer resistance to existing inhibitors of SARS-CoV-2 main 

protease, Heilmann et al. engineered a chimeric vesicular stomatitis virus (VSV) 

whose replication cycle was dependent on the autocatalytic processing of its 

precursor polyprotein by the main protease itself. This platform was then used to 

generate resistant mutants (some of which already circulating), particularly 

towards Nirmatrelvir, the active principle of the first approved orally available anti-

COVID-19 drug (Paxlovid). In the present work, we exploited homology modeling 

and in silico alanine and resistance scanning to investigate the mechanistic 

rationale behind the Nirmatrelvir resistance.  
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4. Fornasier, E. et al. A new inactive conformation of SARS-CoV-2 main protease. 

Acta Crystallogr D Struct Biol 78, 363–378 (2022). 

Thanks to the early release to the scientific community of its three-dimensional 

structure and its pivotal role in the SARS-CoV-2 replication cycle, the main 

protease (Mpro) has become the most investigated target for developing drugs 

against COVID-19. During a screening campaign, a novel conformation of Mpro was 

observed for the first time. This structure adopts a new conformation of the 

oxyanion loop, a short motif involved in substrate recognition and enzymatic 

activity. Many fundamental interactions that stabilize the active site are lost 

compared to the canonical Mpro structure, resulting in the abolition of the catalytic 

activity. In this work, molecular dynamics simulations were employed to 

complement and support experimental observations about the novel 

conformation of the SARS-CoV-2 main protease.  

5. Bassani, D., Pavan, M., Bolcato, G., Sturlese, M. & Moro, S. Re-Exploring the 

Ability of Common Docking Programs to Correctly Reproduce the Binding Modes 

of Non-Covalent Inhibitors of SARS-CoV-2 Protease Mpro. Pharmaceuticals 15, 

180 (2022). 

Computational methodologies portray an essential role in the early stages of 

modern drug discovery campaigns, especially for identifying hit compounds and 

steering their development into mature leads. The remarkable amount of 

structural information about the SARS-CoV-2 main protease made it possible to 

exploit several structure-based approaches, such as molecular docking, for finding 

candidate inhibitors. Despite the good success rate of docking-based campaigns 

both for drug repurposing and for discovering novel active molecules against Mpro, 

an article by Zev et al. harshly critiqued the usefulness and reliability of docking 

runs performed on this target. In this work, we countered their observations by 

demonstrating how several commonly used docking algorithms are perfectly 

capable of reproducing most experimentally determined binding poses on the 

SARS-CoV-2 Mpro, except for very unstable and solvent-exposed ones. 
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6. Bissaro, M. et al. Inspecting the Mechanism of Fragment Hits Binding on SARS‐

CoV‐2 M pro by Using Supervised Molecular Dynamics (SuMD) Simulations. 

ChemMedChem 16, 2075–2081 (2021). 

Computational methodologies which can characterize the binding mode of 

fragments are valuable assets for the success of fragment-based drug discovery 

campaigns. Concerning this, molecular docking represents a state-of-the-art 

technique. The low molecular complexity of fragments, combined with the 

important role of solvent in mediating their interactions with the target, impair 

the predictive power of docking, issuing the need for novel, more accurate, 

protocols. In this work, we showed how a refined version of the in-house 

developed High-Throughput Supervised Molecular Dynamics platform (HT-SuMD) 

can be successfully employed to rapidly and accurately determine the binding 

mode of fragment compounds to the catalytic site of the SARS-CoV-2 main 

protease (Mpro). 

7. Bolcato, G., Bissaro, M., Pavan, M., Sturlese, M. & Moro, S. Targeting the 

coronavirus SARS-CoV-2: computational insights into the mechanism of action of 

the protease inhibitors lopinavir, ritonavir and nelfinavir. Sci Rep 10, 20927 

(2020). 

In the early stages of the COVID-19 pandemic, the rapid spread of the virus 

combined with the lack of efficient pharmacological treatment, lead to several 

attempts at repurposing existing drugs. Particularly, the therapeutic combination 

of two HIV protease inhibitors, lopinavir, and ritonavir, was investigated in clinical 

trials, regardless of the lack of mechanistic insights regarding their anti-SARS-CoV-

2 action at the time. To overcome this lack of information, and predict the validity 

of this therapeutic approach, we carried out Supervised Molecular Dynamics 

Simulations (SuMD) to study the binding mechanism of lopinavir and ritonavir to 

the SARS-CoV-2 main protease (Mpro), comparing their binding features with the 

ones of nelfinavir, an analog compound which showed promising in vitro activity. 

Follow-up experimental evidence supported our computational prediction, which 

speculated how nelfinavir would outperform both lopinavir and ritonavir, despite 

not being good enough for clinical use.   
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8. Pavan, M., Bolcato, G., Bassani, D., Sturlese, M. & Moro, S. Supervised Molecular 

Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main 

protease inhibitor PF-07321332. J Enzyme Inhib Med Chem 36, 1646–1650 

(2021). 

In April 2021, the chemical structure of PF-07321332 (Nirmatrelvir), the first orally 

available drug specifically designed against COVID-19 to reach the clinical stages 

of experimentation, was revealed to the general audience. No further information 

was provided about the interaction pattern between PF-07321332, which would 

eventually become the active principle of Paxlovid, the first anti-COVID-19 drug, 

and its biomolecular counterpart, the SARS-CoV-2 main protease (Mpro). In this 

work, we compensated for this shortage by elucidating the binding pattern of PF-

07321332 to Mpro through Supervised Molecular Dynamics (SuMD) simulations. 

Successive experimental evidence confirmed the SuMD-predicted binding mode, 

other than indirectly confirming certain details about the whole recognition 

process. 

Section 2: neurodegeneration and cancer 

The second part collects seven articles in which the expertise acquired through the 

production of COVID-19-related work has been applied to different side-projects, ranging 

from the field of neurodegeneration to the one of cancer. Concerning neurodegeneration, 

efforts have been mainly devolved to the implementation of a computational pipeline for 

the fragment-based development of novel inhibitors of casein kinase 1, with a final 

glimpse into future therapeutic perspectives regarding the relatively unexplored world of 

GPCRs. Particularly, we concentrated on adenosine receptors, a class of GPCRs that are 

involved in various diseases, involving both neurodegeneration and cancer. Regarding 

cancer, methodological and applicative works are presented, involving both a classic 

typology of targets (GPCRs) and a novel type, i.e., the mitochondrial ribosome.  
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9. Pavan, M. et al. Computational Strategies to Identify New Drug Candidates 

against Neuroinflammation. Curr Med Chem 29, 4756–4775 (2022). 

Within the frame of contemporary drug discovery campaigns, computational 

approaches have been increasingly and successfully adopted. In the field of 

neuroinflammation, some intrinsic issues of the task, such as the peculiar 

anatomical localization and the presence of the blood-brain barrier, require the 

adoption of measures to fine-tune the physicochemical properties of candidate 

drugs from the early stages of the process. In this literature review, we provide an 

overview of the start-of-the-art computational strategies that can be exploited for 

the rational design of novel small molecules controlling neuroinflammation, 

particularly focusing on those which exploit information about the three-

dimensional structure of the biological target of interest. 

10. Bolcato, G. et al. A Computational Workflow for the Identification of Novel 

Fragments Acting as Inhibitors of the Activity of Protein Kinase CK1δ. Int J Mol 

Sci 22, 9741 (2021). 

In the last twenty years, Fragments-Based Drug Discovery has become a 

prominent paradigm for the rational design of novel active molecules, especially 

towards targets difficult to address with traditional pipelines. One example of 

successful implementation of this strategy is represented by kinases, as 

represented by the approval of the BRAF inhibitor vemurafenib. In the Kinase 

family, protein kinase CK1 isoform δ (CK1δ) has become a promising target in the 

treatment of different neurodegenerative diseases such as Alzheimer’s disease, 

Parkinson’s disease, and amyotrophic lateral sclerosis. In the present work, we set 

up a computational workflow based on the combination of molecular docking, 

pharmacophore filter, and molecular dynamics simulations for the identification 

of putative fragment binders in large virtual databases. The method was 

successfully applied to the screening of several libraries of commercially available 

compounds, leading to the identification of 7 novel fragment inhibitors of CK1δ.  
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11. Pavan, M., Menin, S., Bassani, D., Sturlese, M. & Moro, S. Implementing a Scoring 

Function Based on Interaction Fingerprint for Autogrow4: Protein Kinase CK1δ 

as a Case Study. Front Mol Biosci 0, 629 (2022). 

Fragment-Based Drug Discovery is an attractive approach for the design of novel 

active molecules against difficult targets. While several strategies, both 

computational and experimental, are readily available for the initial screening 

campaign, leading to the identification of fragment hits, novel pipelines for the 

rational hit-to-lead optimization are needed, to render the process smoother and 

more time and cost-efficient. One example is represented by Autogrow, a semi-

automated computational protocol that exploits a combination between a genetic 

algorithm and molecular docking for de novo drug design and lead optimization. 

In the present work, we present a customized version of this software which 

implement a new scoring function based on protein-ligand interaction 

fingerprints. The protocol was applied to the generation of novel fragment-based 

CK1 potential inhibitors with high similarity of shape and electrostatic features to 

known inhibitors used as reference.  

12. Bassani, D. et al. The Multifaceted Role of GPCRs in Amyotrophic Lateral 

Sclerosis: A New Therapeutic Perspective? International Journal of Molecular 

Sciences 2022, Vol. 23, Page 4504 23, 4504 (2022). 

Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor 

neurons, which causes a progressive loss of movement ability, usually leading to 

death within 2 to 5 years from the diagnosis. Much effort has been put into 

research for an effective therapy for its eradication, but still, no cure is available. 

The only two drugs approved for this pathology, Riluzole, and Edaravone, are only 

able to slow down the inevitable disease progression. As assessed in the literature, 

drug targets such as protein kinases have already been extensively examined as 

potential drug targets for ALS, with some molecules already in clinical trials. In this 

literature review, we provide an overview of the involvement of another very 

important and studied class of biological entities, G protein-coupled receptors 

(GPCRs), in the onset and progression of ALS.   
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13. Bassani, D., Pavan, M., Sturlese, M. & Moro, S. Sodium or Not Sodium: Should Its 

Presence Affect the Accuracy of Pose Prediction in Docking GPCR Antagonists? 

Pharmaceuticals 15, 346 (2022). 

The presence of a sodium ion that acts as an allosteric modulator to stabilize the 

inactive conformation of class A GPCRs has been a staple point of pharmacology 

for a while. Several studies highlighted how this ion is essential for the binding of 

ligands acting as antagonists at the orthosteric site. From a structural point of 

view, not all experimentally determined class A GPCRs structures present this ion 

in its usual location. This usually requires manual editing of the structure by 

molecular modelers, by inserting the missing ion at its usual location. After 

examining in the past the influence of the allosteric sodium in both docking and 

molecular dynamics simulations of adenosine receptors, in the present work, we 

decided to extend our investigation to all other class A GPCRs whose structures in 

complex with an antagonist have been experimentally solved and deposited in the 

Protein Data Bank.  

14. Bolcato, G., Pavan, M., Bassani, D., Sturlese, M. & Moro, S. Ribose and Non-

Ribose A2A Adenosine Receptor Agonists: Do They Share the Same Receptor 

Recognition Mechanism? Biomedicines 2022, Vol. 10, Page 515 10, 515 (2022). 

Adenosine receptors have been a promising class of targets for the development 

of new therapies for several diseases, including neuro. In recent years, a renewed 

interest in this field has risen, thanks to the implementation of a novel class of 

agonists that lack the ribose moiety, once considered essential for the agonistic 

profile. Recently, an X-ray crystal structure of the A2A adenosine receptor has been 

solved, providing insights about receptor activation from this novel class of 

agonists. Starting from this structural information, we have performed supervised 

molecular dynamics (SuMD) simulations to investigate the binding pathway of a 

non-nucleoside adenosine receptor agonist as well as one of three classic agonists. 

Furthermore, we analyzed the possible role of water molecules in receptor 

activation.  
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15. Sighel, D. et al. Streptogramin A derivatives as mitochondrial translation 

inhibitors to suppress glioblastoma stem cell growth. Eur J Med Chem 114979 

(2022) doi:10.1016/J.EJMECH.2022.114979 

New therapeutic strategies for glioblastoma treatment, especially tackling the 

tumor’s glioblastoma stem cell (GSC) component, are an urgent medical need. 

Recently, mitochondrial translation inhibition has been shown to affect GSC 

growth, clonogenicity, and self-renewal capability, therefore becoming an 

attractive therapeutic target. The combination of streptogramins B and A 

antibiotics quinupristin/dalfopristin (Q/D), which inhibits mitochondrial ribosome 

function, affects GSCs more effectively in vitro than the standard of care 

temozolomide. Here, we performed docking calculations based on the cryo-EM 

structure of the Q/D-bound mitochondrial ribosome to develop a series of 

streptogramin A derivatives. A couple of the designed compounds resulted more 

potent and more able to penetrate cancer cells compared to the parent 

compounds, thus justifying their election for further evaluation in vivo as 

antineoplastic agents. 

Section 3: method development 

The third and final section of this work focuses on two methodological papers, in which a 

new implementation of an in-house developed technique and a brand-new methodology 

are presented. Both methodological works are an attempt to overcome some of the 

limitations found in the employment of the classical computational approaches in the 

development of candidate drugs against COVID-19. Particularly, in the first article 

Supervised Molecular Dynamics (SuMD) has been applied for the first time to the study of 

RNA-protein complexes, a necessity that was issued by the rising interest in developing 

RNA-based therapeutics after the success of RNA vaccines against COVID-19. The 

development of Thermal Titration Molecular Dynamics, instead, was inspired by the need 

to have a quick and robust screening tool to distinguish strong and weak binders in the 

initial stages of a drug discovery campaign, such was the case for the development of 

candidate inhibitors of SARS-CoV-2 main protease.   
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16. Pavan, M., Bassani, D., Sturlese, M. & Moro, S. Investigating RNA–protein 

recognition mechanisms through supervised molecular dynamics (SuMD) 

simulations. NAR Genom Bioinform 4, (2022). 

Ribonucleic acid (RNA) plays a key regulatory role within the cell, cooperating with 

proteins to control the genome expression and several biological processes. 

Thanks to its structural plasticity, this polymer can mold itself into different three-

dimensional structures able to recognize target biomolecules with high affinity and 

specificity, as demonstrated by aptamers, thereby attracting the interest of drug 

developers and medicinal chemists. In this scientific work, we present the first 

application of Supervised Molecular Dynamics (SuMD), an enhanced sampling 

Molecular Dynamics-based method for the study of receptor-ligand association 

processes in the nanoseconds timescale, to the study of recognition pathways 

between RNA aptamers and proteins, elucidating the main advantages and 

limitations of the technique while discussing its possible role in the rational design 

of RNA-based therapeutics.  

17. Pavan, M., Menin, S., Bassani, D., Sturlese, M. & Moro, S. Qualitative Estimation 

of Protein–Ligand Complex Stability through Thermal Titration Molecular 

Dynamics Simulations. J Chem Inf Model (2022) doi:10.1021/ACS.JCIM.2C00995 

Recently, there has been an increased interest in the prediction and determination 

of binding kinetic properties, since they better correlate with ligand efficacy 

compared to thermodynamic properties such as the equilibrium dissociation 

constant. In the present work, we present Thermal Titration Molecular Dynamics 

(TTMD), an alternative computational method that combines a series of molecular 

dynamics simulations performed at progressively increasing temperatures with a 

scoring function based on protein-ligand interaction fingerprints for the qualitative 

estimation of protein-ligand binding stability. The protocol has been applied to 

four different pharmaceutically relevant test cases, on a variety of ligands with 

different sizes, structures, and experimentally determined affinity values. In all 

four cases, TTMD was able to distinguish between high-affinity compounds (low 

nanomolar range) and low-affinity ones (micromolar), proving to be a useful 

screening tool for the prioritization of compounds in a drug discovery campaign. 
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Bat coronaviruses related to SARS-CoV-2: what about their 3CL 

Proteases (Mpro)? 

Matteo Pavan, Davide Bassani, Mattia Sturlese, and Stefano Moro 

Pavan, M., Bassani, D., Sturlese, M. & Moro, S. Bat coronaviruses related to SARS-CoV-2: what about their 3CL proteases 

(MPro)? https://doi.org/10.1080/14756366.2022.2062336 37, 1077–1082 (2022). 

Abstract 

Despite a huge effort by the scientific community to determine the animal reservoir of 

SARS-CoV-2, which led to the identification of several SARS-CoV-2-related viruses both in 

bats and in pangolins, the origin of SARS-CoV-2 is still not clear. Recently, Temmam et al. 

reported the discovery of bat coronaviruses with a high degree of genome similarity with 

SARS-CoV-2, especially concerning the RBDs of the S protein, which mediates the 

capability of such viruses to enter and therefore infect human cells through a hACE2-

dependent pathway. These viruses, especially the one named BANAL-236, showed a 

higher affinity for the hACE2 compared to the original strain of SARS-CoV-2. In the present 

work, we analyze the similarities and differences between the 3CL protease (main 

protease, Mpro) of these newly reported viruses and SARS-CoV-2, discussing their 

relevance relative to the efficacy of existing therapeutic approaches against COVID-19, 

particularly concerning the recently approved orally available Paxlovid, and the 

development of future ones. 

Introduction 

Since its outbreak in December 2019, the COVID-19 pandemic has caused to date the 

death of almost 6 million people all around the world1,2. This worldwide-spread disease is 

caused by a betacoronavirus known as SARS-CoV-2, which infects the respiratory system 

of the host organism compromising its health status3. The symptoms of this illness range 

from the ones typical of influenza (cough, fever, and headache) to very serious 

complications such as breathing difficulty, pneumonia, and hypoxia, eventually leading to 

respiratory failure and death4. The high transmissibility of the SARS-CoV-2 virus allowed 

its fast diffusion all around the world, rapidly attracting the interest of experts in the 

medical, biological, and pharmaceutical environments, who have extensively worked and 
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are still putting relevant efforts into the elaboration of proper solutions to fight this 

pathogen.  

The first approach to finding viable therapeutic options was the so-called “drug-

repurposing”, i.e. the use of drugs that are already marketed for the treatment of different 

diseases to cure COVID-19 patients. Concerning this, particular attention was directed 

towards HIV protease inhibitors such as Kaletra (therapeutic combination of Lopinavir and 

Ritonavir)5 and antimalarial drug Plaquenil (commercial name of hydroxychloroquine)6. 

Unfortunately, despite the promising premises (especially from a timescale perspective7), 

this approach was unsuccessful, with investigated drugs showing little to no efficacy in 

randomized clinical trials8. 

Parallel to the first approach, a considerable amount of labor by both the industry and 

academia has been spent on developing tools that prevent the detrimental effect of the 

pathology and has resulted in the approval by the Food and Drug Administration (FDA) of 

several vaccines9. These therapeutic entities can be divided into three different classes10: 

the first one is composed of the inactivated virus vaccines, such as Chinese CoronaVac and 

the Russian CoviVac, the second family is formed by the ones based on adenovirus 

vectors, like Vaxzevria, Sputnik V, and the Janssen COVID-19 vaccine, while the third and 

final family consists of the mRNA-based ones such as the Pfizer-BioNTech “Comirnaty” 

and the Moderna “Spikevax”.  

While vaccines based on inactivated viruses have given poor results, several studies have 

proven the efficacy of vaccination campaigns with the other two classes of vaccines 

(especially m-RNA ones) all around the world11,12. Despite the success of said vaccines, the 

SARS-CoV-2 Spike protein is often subjected to immune system-escaping mutations which 

lead to the development of new viral variants13, obliging the vaccines to be periodically 

updated to maintain their efficacy.  

The high variability of the Spike protein among different coronavirus strains, which 

threatens the efficacy of already approved vaccines in the long period, led the scientific 

community to join forces to identify effective treatments for ongoing infections and to 

prevent future pandemic waves. Regarding this, a remarkable example is portrayed by the 
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COVID Moonshot consortium, a collaborative project that involved scientists from all over 

the world in an attempt to design and develop an orally available drug against COVID-

1914,15. COVID Moonshot aside, the great amount of knowledge accumulated on the target 

since the SARS-CoV epidemic in 2002/2003 rapidly resulted in the approval of the first 

COVID-19 specific treatments. 

The first drug to be approved was Remdesivir, a polymerase inhibitor that was initially 

designed against the Ebola Virus and has then been repositioned against COVID-19. This 

drug, unfortunately, has an unfavorable pharmacokinetic profile, which limits its 

administration to the intravenous route in a hospital setting16,17. Tocilizumab, an 

interleukin-6 receptor monoclonal antibody originally developed to cure rheumatoid 

arthritis, obtained the emergency use authorization (EUA) for the treatment of COVID-19 

in the United States in June 202118. The oral RNA-polymerase inhibitor Favipiravir has also 

been approved for marketing in countries such as Japan, China, India, Saudi Arabia, and 

the United Arab Emirates, but is still under examination from the FDA19.  

An important milestone has been achieved at the end of 2021 with the FDA approval of 

the therapy based on the SARS-CoV-2 main protease (Mpro) inhibitor Nirmatrelvir (also 

known as PF-07321332) in combination with Ritonavir, sold under the commercial name 

“Paxlovid” (which is available also in Europe since the end of January 2022)20. Thanks to 

its efficient, reversibly covalent inhibition of Mpro, the Nirmatrelvir-based therapy 

demonstrated to lower of 89% the risk of severe complications after COVID-19 infection 

in symptomatic, unvaccinated, non-hospitalized adults21. 

A recent scientific work by Temmam et al. reported the discovery of a high level of 

sequence similarity between the SARS-CoV-2 genome and that of other coronavirus 

species infecting cave bats living in North Laos22, raising serious concerns about the 

potential threat to public health that these coronaviruses could portray. Despite giving an 

in-depth analysis on the similarities and differences between the S protein of these newly 

reported viruses, no consideration is reported in the original work about their main 

proteases. For this reason, in order to assess the impact that these bat coronaviruses 

could have on public health, we performed a computational analysis to shed light on 

similarities and differences between the main protease of SARS-CoV-2 and that of these 
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newly discovered bat coronaviruses, discussing the role that these alterations could have 

on the efficacy of existing therapies (Paxlovid, in particular) and the development of future 

ones. 

Materials and Methods 

Organism Isolate Accession Code Product Protein ID Residues 

SARS-CoV-2 “Wuhan-Hu-1” NC_045512.2 ORF1ab 

polyprotein 

YP_009724389.1 S3264-

Q3569 

Bat 

coronavirus 

“BANAL-20-

52/Laos/2020” 

MZ937000.1 ORF1ab 

polyprotein 

UAY13216.1 S3255-

Q3560 

Bat 

coronavirus 

“BANAL-20-

103/Laos/2020” 

MZ937001.1 ORF1ab 

polyprotein 

UAY13228.1 S3256-

Q3561 

Bat 

coronavirus 

“BANAL-20-

236/Laos/2020” 

MZ937003.2 ORF1ab 

polyprotein 

UAY13252.1 S3256-

Q3561 

Bat 

coronavirus 

RaTG13 

“RaTG13” MN996532.2 ORF1ab 

polyprotein 

QHR63299.2 S3263-

Q3568 

Table 1. This table reports the protein sequences used in this work and their origin. 

The genome sequence for SARS-CoV-2, BANAL-52, BANAL-103, BANAL-236, and RaTG13 

was obtained through GenBank. Table 1 reports the accession codes for each of the 

considered genomes. The protein sequence associated with the 3CL protease (main 

protease, Mpro), was extracted, aligned using the appropriate tool from MOE 2019.0123, 

and used for the generation of the correspondent homology model (except for SARS-CoV-

2, for which several crystal structures are available in the Protein Data Bank). 

The structure of SARS-CoV-2 main protease in its unliganded state was retrieved from the 

Protein Data Bank (PDB ID: 6Y2E24) and prepared using MOE 2019.01. At first, the 

functional dimer was restored applying the symmetric crystallographic transformation to 

each asymmetric unit. Secondly, residues with fractional occupancy values were assigned 

to the most probable state. Then, missing hydrogen atoms were added to the system 

according to the most probable protonation state at pH 7.4 for each titratable residue 
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exploiting the “Protonate 3D” tool. Afterward, hydrogen atoms coordinates were energy 

minimized according to the AMBER10: EHT force field until a gradient of 0.1 Kcal mol-1 Å-

2 was reached. Finally, crystallographic water molecules were removed.  

Four different homology models were generated exploiting the “Homology Model” tool, 

one for each bat coronavirus considered in the present work. The sequences used for the 

generation of homology models are reported in Table 1, while the structure 6Y2E, 

prepared as described before, was used as a template for the model generation.  

Results 

In order to compare similarities and dissimilarities between the SARS-CoV-2 Mpro and 

correspondent proteases in the most closely related bat coronaviruses, four different 

homology models (one for each different virus considered in this work) were generated, 

as reported in Materials and Methods. Due to the high degree of sequence identity (99,7% 

for BANAL-52, BANAL-103, and BANAL-236, 99,4% for RaTG13) between considered bat 

coronaviruses and SARS-CoV-2 Mpro, homology modeling is expected to give a 

representative result, very closely related to the experimental data. 

As illustrated by Figure 1, there are only two differences in the primary sequences of 

considered viruses. These small changes to the amino acid sequences led to the 

generation of homology models that are practically superimposable to the reference 

structure (6Y2E), as is also depicted in Figure 1. 

Figure 2, instead, reports a comparison between the four homology models and SARS-

CoV-2 Mpro from structure 6Y2E, mapping the differences between various proteases onto 

their three-dimensional structure.  

The first difference is related to residue 96, which in the case of SARS-CoV-2 is a proline. 

This residue is conserved in each BANAL coronavirus reported by Temmam et al. but is 

not conserved in RaTG13, which was previously considered to be the most closely related 

bat coronavirus to SARS-CoV-2. Instead of a proline, RaTG13 presents a threonine residue 

at the 96 position, which is expected to increase both the flexibility and the hydrophilicity 

of the surroundings.  
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The second structural alteration is referred to residue 180, which in the case of SARS-CoV-

2 is an asparagine. In this case, there is a higher variability between different coronavirus 

strains, with each BANAL virus presenting a hydrophobic residue (alanine, in the case of 

BANAL-52 and BANAL-236, isoleucine in the case of BANAL-103), while RaTG13 once again 

differentiate from both BANAL viruses and SARS-CoV-2 presenting a hydrophilic threonine 

residue.  

 

Figure 1. Comparison between SARS-CoV-2 3CL protease (Mpro) from crystal structure 6Y2E (blue) and 

homology models of Mpro from four different bat coronaviruses, reported in Table 1. In Panel A, the pairwise 

RMSD matrix derived from the superposition of each bat coronavirus homology model to the template 

structure 6Y2E is reported. Panel B and C summarize the differences in the primary sequence between SARS-

CoV-2 and bat coronaviruses Mpro.  
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Figure 2. Comparison between SARS-CoV-2 3CL protease (Mpro) from crystal structure 6Y2E (blue) and 

homology models of Mpro from four different bat coronaviruses, reported in Table 1. Panel A reports the 

structure of SARS-CoV-2 Mpro (PDB ID: 6Y2E) in its free form. The protein is depicted in blue ribbons, while 

mutated residues (namely, P96 and N180) in comparison with bat coronaviruses are highlighted and 

depicted as CPK models. For visual reference, Nirmatrelvir (also known as PF-07321332, commercial name 

Paxlovid) from structure 7RFS is also shown in the picture, alongside the binding site surface colored 

according to electrostatic properties. Panel B highlights the comparison between residue 96 of SARS-CoV-2 

Mpro and homology models of bat coronaviruses Mpro. Panel C reports a comparison between residue 180 

of SARS-CoV-2 Mpro and homology models of bat coronaviruses Mpro. 

Discussion 

The comparison between the crystal structure of SARS-CoV-2 and homology models of 

bat coronaviruses Mpro showed that there are two main structural differences, both of 

which do not involve the catalytic site.  
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In the native SARS-CoV-2 structure, Phe96 is involved in a series of hydrophobic contacts 

with the side chain of Trp31, Thr93, and Lys97 through its pyrrolidine core. In the case of 

RaTG13, the only bat coronavirus that presents an alteration at this position, the presence 

of a threonine causes a reduction of possible hydrophobic contacts with the surrounding 

aminoacids but does not cause the loss of any crucial interaction for structural integrity. 

Moreover, this residue is located in a solvent-exposed flexible loop region that connects 

between two beta-sheets, a further indication that this substitution should not 

compromise the structural integrity of the protease.  

Concerning the second structural alteration, in the native SARS-CoV-2 structure Asn180 is 

involved in a double interaction with the sidechain of two charged residues, namely 

Asp176 and Arg105. Both of these interactions happen with the backbone of Asn180 and 

do not involve its sidechain, which is stretched towards the solvent. Intriguingly, in this 

case, the newly discovered bat coronaviruses all present a hydrophobic residue at position 

180: in all these cases, no loss of native interaction happens, coherently with the fact that 

they do not involve the sidechain of residue 180 and only occur through its backbone. 

Once again, RaTG13 is the most diverse one, being the only analyzed bat coronavirus that 

presents a polar aminoacid (a threonine) at this position. As previously mentioned, the 

sidechain of residue 180 is not involved in any structurally relevant interaction, and 

therefore the presence of a hydroxyethyl sidechain does not give a particular advantage 

to this virus strain. Furthermore, as is the case for Pro96, this structural modification is 

also located in a solvent-exposed, non-structured loop region, indicating that no critical 

harm to the protease integrity should be provoked by this alteration.  

Altogether, our structural analysis reveals that neither of these two structural differences 

between SARS-CoV-2 and bat coronaviruses Mpro should determine any relevant 

structural alteration of the main protease. Notably, this observation is in agreement with 

a recent article that characterized the effect of each possible Mpro mutation on its 

functionality: both Pro96 and Asn180 are marked as highly tolerant to mutations25. 

Concerning the implications of these two mutations on the efficacy of Mpro inhibitors, 

several elements point to the conclusion that neither mutation should have a relevant 

effect. As can be seen from Figure 2, which gives a depiction of the localization of these 
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two mutations relative to the position of the catalytic site (which is also the binding site 

of most protease inhibitors, including PF-07321332, the active principle of Paxlovid) 

shows that both these mutations are not directly linked to the catalytic site, indicating 

that the binding cleft that harbors PF-07321332 should not be altered. Moreover, as 

thoroughly assessed in a previous scientific work from our laboratory, neither of these 

two residues is in any way involved in the recognition process of PF-0732133226, 

complementing the structural information provided by crystal structures 7VH827, 7RFS, 

and 7RFW which clearly show how none of these two residues contributes to the 

interaction with PF-07321332 in the final bound state. 

The fact that the SARS-CoV-2 main protease and the one from closely related bat 

coronaviruses are very similar and practically identical at the catalytic site supports the 

idea that targeting this protease is still a viable therapeutic option not only for the present 

but also for the prevention of future pandemic waves. To date, several studies have 

contributed to thoroughly characterizing the nature of the shallow and solvent-exposed 

catalytic site of the SARS-CoV-228, which has proven to be readily investigable with both 

time-dependent and time-independent structure based-approaches such as molecular 

docking29 and molecular dynamics30, leading to the development of compounds with 

affinities in the low nanomolar range31,32.  

All these factors, combined with the fact that striking 3D structure similarities exists also 

with other coronaviral Mpro such as the one from Porcine transmissible Gastroenteritis 

virus (TGEV)33, Human coronavirus strain 229E (HCoV)34, Infectious bronchitis virus (IBV)24 

and MERS-CoV35, validate the pursue of novel Mpro inhibitors that could increase the pool 

of available treatment for COVID-19 and also for future coronavirus-related diseases, 

acting as pan-coronaviral drugs.  

Conclusions 

Recently, a scientific work by Temmam et al. reported the discovery of bat coronaviruses 

closely related to SARS-CoV-2 that can infect human cells. This scientific work raised the 

attention of both the scientific community and the general audience to the possible threat 

to public health that these newly discovered coronaviruses could represent. Despite a 
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thorough characterization of Spike protein of these bat coronaviruses, no information was 

given in the original work about their main proteases, which is considered the main target 

for the development of COVID-19 specific active principles.  

In the present scientific work, we performed a computational analysis to characterize 

structural similarities and differences between the main proteases of SARS-CoV-2 and 

closely related bat coronaviruses. A comparison between the crystal structure of SARS-

CoV-2 Mpro and homology models of bat coronavirus Mpro shows that two main 

differences exist, involving the mutation of Pro96 and Asn180. None of these structural 

alterations are predicted to have an impact on the protease structural integrity, 

functionality, or affinity for existing inhibitors (especially the recently approved orally 

available Paxlovid), nor towards the development of novel protease inhibitors. 

Furthermore, the high degree of structural conservation among main proteases from 

different coronaviruses suggests that Mpro is not only a valid target for the treatment of 

COVID-19, but that the knowledge acquired on this target could be useful in the 

identification and development of pan-coronaviral drugs that can cure different diseases 

and prevent future pandemic waves.  
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Abstract 

Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 genome 

has undergone several mutations, resulting in the rise of a multitude of viral variants, 

some of which have shown an increased pathogenic potential. The emergence of such 

variants has resulted in multiple pandemic waves, contributing to sustaining to date the 

number of infections, hospitalizations, and deaths despite the swift development of 

vaccines, since most of these mutations are concentrated on the Spike protein, a viral 

surface glycoprotein that is the main target for most vaccines. A milestone in the fight 

against the COVID-19 pandemic has been represented by the development of Paxlovid, 

the first orally available drug against COVID-19, which acts instead on a different viral 

target, i.e., the Main Protease (Mpro). In this article, we analyze the structural features of 

both the Spike protein and the Main Protease of the recently reported SARS-CoV-2 variant 

XE, as well as the closely related XD and XF ones, discussing their impact on the efficacy 

of existing treatments against COVID-19 and on the development of future ones.  

Introduction 

More than two years have now passed since the beginning of the COVID-19 pandemic, 

back in December 20191,2. Caused by a betacoronavirus known as SARS-CoV-2 and 

characterized by para-influenzal symptoms such as fever, cough, and dyspnea, this 

worldwide-spread disease has resulted in the death of more than 6 million people around 

the world, becoming one of the deadliest illnesses in human history3,4.  
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The SARS-CoV-2 virus was first identified in the Chinese city of Wuhan, where the 

pandemic was firstly spotted5. The genomic sequence of this virus (named Wuhan-Hu-1 

from now on in the article) is 80% identical to the one of the SARS-CoV virus6,7, which was 

responsible for the Severe Acute Respiratory Syndrome (SARS) that stroke the South East 

of Asia in 2002/2003, causing the death of about 800 patients over 9000 cases (10 % death 

rate)8,9. The exact origin of the SARS-CoV-2 virus is still to this date unknown, however 

several pieces of evidence point out bat coronaviruses as closely related ancestors and to 

the pangolin as the intermediate host before the human spillover10–13. 

Soon after the original virus started spreading all over the world, several viral variants 

began to emerge14,15, especially in the poorest countries where public health measures 

such as social distancing and wearing surgical masks in public places were difficult to 

implement16–18. Most of the genome mutations that characterized these variants were 

concentrated in the S gene19, which encodes for the Spike protein, a surface glycoprotein 

that mediates the virus entry within the human cell through an interaction with the 

human ACE2 receptor20. Some of these mutations gathered the attention of the scientific 

community due to the selective advantage that they provided to the correspondent viral 

variants, regarding both the virus’ ability to infect human cells and to escape the immune 

system response21, gaining for these reasons the status of “variant of concern” (VOC). 

The first SARS-CoV-2 variant to be labeled as VOC was the so-called Alpha variant (B.1.1.7). 

First identified in November 2020 in the Kent region of the United Kingdom and for this 

reason also known as the “English variant”, B.1.1.7 was estimated to be 29% more 

transmissible than the original virus22,23. Despite being more transmissible than other 

circulating viral strains24,25, and despite showing the first signs of reduced protection 

provided by vaccines, monoclonal antibodies, and convalescent sera26–28, the indication 

from clinical studies showed that the vaccine coverage (especially in those who had 

already completed the vaccination cycle) was still able to contain the impact of this variant 

on the sanitary system29.  Soon after the identification of the Alpha variant, a second VOC 

arose: the Delta variant (B.1.617.2), also known as the “Indian variant” due to being first 

detected in India in late 2020, rapidly overcame the Alpha variant becoming the dominant 

strain in the world, thanks to being 97% more transmissible than the original Wuhan 
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virus23. The replacement of the less threatening Alpha variant with the Delta marked a 

significant change of pace in the pandemic trend, signing an increased burden for the 

health system30 and posing for the first time a serious threat to the protection provided 

by vaccines, convalescent sera, and monoclonal antibodies31–33 due to its increased ability 

to evade the immune system response34. From November 2021 onwards, the Delta 

variant has been flanked by another VOC firstly identified in South Africa and defined as 

the Omicron variant (B.1.1.529)35. The rise of the Omicron variant, fuelled by a 

contemporary increase in transmissibility36 and immune evasion37, resulted in an 

unprecedented diffusion of the SARS-CoV-2 virus all over the world, being able to 

overcome even the protection provided by the full primary vaccination cycle and by most 

neutralizing antibodies used in therapy38–40, thus inducing the introduction of a “booster 

dose” to bring the protective effect of vaccines back to adequate levels41,42.  

In the face of this increasingly troublesome variant landscape, characterized by a 

progressive reduction of the efficacy of existing therapeutic options against COVID-19, a 

light at the end of the tunnel is possibly represented by the development and release on 

the market of Paxlovid. This therapeutic combination between the active principle 

Nirmatrelvir (also known as PF-07321332) and the pharmacokinetic enhancer Ritonavir, 

represents the first orally available drug specifically designed against SARS-CoV-2 virus43. 

Instead of targeting the Spike protein, this peptidomimetic entity is designed to inhibit 

the SARS-CoV-2 Main Protease (Mpro) by covalently binding to Cysteine 145, one of the 

two components of the protease’s catalytic diad44. Clinical studies showed a remarkable 

therapeutic efficacy of this novel treatment, with Paxlovid being able to lower by 89% the 

risk of severe complications associated with COVID-19 infection in symptomatic, non-

vaccinated, and non-hospitalized adult patients45. 

Recently, three novel recombinant SARS-CoV-2 variants were identified in the United 

Kingdom: Xd, Xe, and Xf46. These variants are derived from the combination of the 

genomes of other major circulating variants, namely Delta, Omicron, and Omicron 246,47. 

Among these three novel viral strains, particular worry is related to the XE variant, which 

derives from the recombination between two VOCs, Omicron and Omicron 2, and is 

supposed to be 13-20 % more transmissible than the Omicron 2 variant46.   
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The rise of novel SARS-CoV-2 variants derived from the recombination of other 

threatening and heavily diffused ones poses a serious challenge in the fight against the 

COVID-19 pandemic, since it could contribute to render existing therapeutic options 

inefficient or practically useless. To evaluate the impact that these recently reported 

recombinant variants could have on the efficacy of existing vaccines and treatments 

(Paxlovid, in particular), we performed a computational analysis to shed light on the key 

structural features that characterize both the Spike glycoprotein and the Main Protease 

of these novel viral strains. Moreover, we analyzed the structural evolution of these two 

viral proteins throughout the pandemic, discussing the impact that mutations found on 

these strains had and will have on the efficacy of existing therapeutic options against 

COVID-19 and the development of future ones.  

Materials and Methods 

The genome sequence for the SARS-CoV-2 virus and its variants, namely Delta, Omicron, 

XD, XE and XF, was obtained through GenBank48. Accession codes for each of the 

considered genomes are reported in Table 1. In the case of newly discovered variants XD, 

XE, XF, the sequence was chosen according to the one reported by the Nextclade 

project49. 

Organism Isolate Accession Code 

SARS-CoV-2 “Wuhan-Hu-1” NC_045512.2 

SARS-CoV-2 “Delta” “SARS-CoV-

2/human/JPN/SARS-CoV-2” 

OK091006.1 

SARS-CoV-2 “Omicron” “SARS-CoV-

2/human/NLD/EMC-Omicron-

1/2021” 

OM287553.1 

SARS-CoV-2 “XD” “SARS-CoV-

2/human/FRA/IHUCOVID-

64762/2022” 

OM990851.1 

SARS-CoV-2 “XE” / OW018845.1 

SARS-CoV-2 “XF” / OV940149.1 

 

Table 1. The genome sequences used in this work and their origin. 
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All the basic molecular modeling operations have been executed with the Molecular 

Operating Environment (MOE) suite (version 2019.01)50.  

For what concerns the Spike protein, the approach chosen depended on the variant 

considered. For the wild-type (WT) Spike, the three-dimensional structure was retrieved 

from the Protein Data Bank (PDB code: 6ZDH51, method: cryo-EM, resolution: 3.70 Å), as 

well as for the Delta (PDB code: 7W9E52, method: cryo-EM, resolution: 3.10 Å), and the 

Omicron (PDB code: 7WPD53, method: cryo-EM, 3.18 Å) variants. The cited structures 

were all subjected to the same preparation procedure for molecular modeling.  

After being downloaded, the Structure Preparation tool implemented in MOE was applied 

in order to rebuild the missing loops in the structures, the proper protonation state was 

assigned to each amino acid with the MOE ”Protonate 3D” application, and finally, the 

added hydrogens were minimized under the AMBER10:EHT54 force field implemented in 

MOE. Since experimentally resolved structures for the XD, XE, and XF variants are not 

available in public databases, the models considered for our study were created starting 

from the WT SARS-CoV-2 Spike coming from the PDB code 6ZDH by manually mutating 

the residues, exploiting the MOE “Protein builder” tool, and subjecting each protein to the 

preparation procedure reported above. For the realization of the video reported in the 

Supplementary Materials, the program VMD 1.9.255 (Visual Molecular Dynamics) was 

used. 

For what concerns Mpro, the protein sequences corresponding to the main protease were 

extracted from the whole genome sequence and aligned to the reference sequence 

(Wuhan-Hu-1) making use of the appropriate tool of MOE 2019.01. Subsequently, 

homology models for each variant were created making use of the “Homology Model” 

tool of MOE 2019.01, using the structure deposited in the Protein Data Bank with 

accession code 6Y2E (Crystal structure of the free enzyme of the SARS-CoV-2 main 

protease) as a template for model generation.  
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Results and Discussion 

Structural analysis of Spike glycoprotein mutations found in SARS-CoV-2 XD, XE, and XF 

variants and their impact on hACE2 binding 

The SARS-CoV-2 Spike protein (S) consists of a large biological entity formed by 1273 

amino acids organized in different functional domains. The main role of the Spike protein 

is to mediate the virus entry into the host cell, with the principal and better-characterized 

mechanism being the pathway involving the binding to the human ACE2 receptor 

(hACE2)56, a membrane-bound enzyme that is widely expressed in various districts of the 

human body (from the endothelial cells of the blood vessels to kidneys, liver, intestine, 

lungs57, and cells of bronchial and nasal epithelia58).  

The S protein, which works in a trimeric organization, is divided into two main subunits, 

S1 and S2. The second of these has very important roles in spike protein trimerization and 

in mediating the virion entry into the host cell once the molecular contacts have been 

established. It is formed by relevant subdomains such as the fusion peptide (FP, residues 

943-982, crucial for viral fusion to the host cell membrane), the transmembrane domain 

(TM, composed of 24 aminoacids and deputed both to the anchoring of S protein to the 

viral membrane and the maintenance of the Spike trimeric organization), and the 

cytoplasmatic fusion domain (CT, mediating virus-cell fusion). 

The S1 subunit, instead, contains both the N-terminal and the C-terminal domains (NTD 

and CTD, respectively), which are involved in the binding to host cell receptors. 

Specifically, the CTD contains the receptor-binding domain (RBD, aminoacids 319-541), 

the region deputed to the binding with hACE2. This function is more precisely carried out 

by a particular RDB subdomain, called receptor-binding motif (RBM), which is formed by 

two beta-sheets (b5 and b6) composed of those residues which are in close contact with 

hACE2 (from 438 to 50659)60.  

Looking at all the S proteins of the different SARS-CoV-2 relevant variants, the RBD 

contains the highest “single-point mutations/sequence length” ratio in all cases. 

Examining the different SARS-CoV-2 variants discovered up to date, the Spike protein is 

surely the viral entity that has mutated the most in the evolutionary process of the virus61. 
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Its exposition on the viral surface and its crucial function in viral cell entry make this 

protein the eligible target for the host immune system62.  

The SARS-CoV-2 S protein has experienced several mutations in the past two years63, as 

reported in Tables 1 and 2 for the variants considered in our study. As can be noticed, 

variants such as Delta (but also Alpha and Beta, not specifically treated in this article) 

showed few mutations in the overall viral genome, and Spike protein displayed never 

more than a tenth of single-point changes. The game-changing event was the advent of 

the Omicron variant, much different from its previous analogs, with 30-single nucleotide 

mutations involving the S protein only. Many of these, such as K417N, T478K, and P614G 

were inherited from the previous lineages (mainly Beta and Delta), but other mutations 

were completely new, such as G339D, G446S, or E484A.  

Delta variant Omicron variant XD variant XE variant XF variant 

T19R  T19R T19R  

  A27S A27S  

 A67V   A67V 

 T95I T95I  T95I 

 G142D G142D G142D  

    Y145D 

R158G  R158G   

 L212I L212I  L212I 

   V213G  

 G339D G339D G339D G339D 

 S371L S371L S371L S371L 

 S373P S373P S373P S373P 

 S375F S375F S375F S375F 

   T376A  

   D405N  

   R408S  

 K417N K417N K417N K417N 

 N440K N440K N440K N440K 
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 G446S G446S  G446S 

L452R     

 S477N S477N S477N S477N 

T478K T478K T478K T478K T478K 

 E484A E484A E484A E484A 

 Q493R Q493R Q493R Q493R 

 G496S G496S  G496S 

 Q498R Q498R Q498R Q498R 

 N501Y N501Y N501Y N501Y 

 Y505H Y505H Y505H Y505H 

 T547K T547K  T547K 

D614G D614G D614G D614G D614G 

 H655Y H655Y H655Y H655Y 

 N679K N679K N679K N679K 

P681R P681H P681H P681H P681H 

 N764K N764K N764K N764K 

 D796Y D796Y D796Y D796Y 

 N856K N856K  N856K 

 Q954H Q954H Q954H Q954H 

 N969K N969K N969K N969K 

 L981F L981F  L981F 

Table 2. List of all the single-point mutations affecting the SARS-CoV-2 Spike protein for all the variants 

considered in our study (Delta, Omicron, XE, XD, and XF). The mutations have been aligned to give a better 

perspective of the ones which have been conserved through the evolutionary process. The mutations 

involving the RBD have been highlighted in green, while the ones involving the RBM are colored in cyan. 

Most of the mutations listed in Table 2 have been related to higher infectivity, mainly due 

to a consequent gain of affinity for hACE2 or improved shielding from the immune cells. 

As evidence of this, the most successful vaccination campaigns for COVID-19 always 

involved the forced recognition of Spike protein from the patients’ immune cells64.  

Specifically, mutations such as S371L, K417N, and Q493R were related to a diminished 

binding to the anti-coronavirus monoclonal antibody Casivirimab, while mutations like 
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N440K and G446S confer resistance towards the antibody Imdevimab65. The combination 

of Casivirimab and Imdevimab has been used to treat COVID-19 patients but has 

demonstrated to be ineffective against the Omicron variant66. Other mutations external 

to the RBD have been linked to different outcomes, such as increased viral replication 

(∆69-7067 and D614G68) and higher viral resistance (G339D and N440K69). In other 

scenarios, mutations have been reported to influence tropism of the S1/S2 cleavage, as in 

the cases of N679K and P681H70.  

The majority of the mutations highlighted up to date on the SARS-CoV-2 S protein impact 

the binding with hACE2, as in the cases of S477N, Q498R, and N501Y71. These last 

mutations, as can be seen from Table 2, have been conserved from all the variants 

following Omicron, assessing their importance for the viral evolutionary process.  

As can be seen in Figures 1 to 5 and video.mp4 (Supplementary Materials), the highest 

“number of mutations/sequence length” ratio is owned by the RDB, as previously 

mentioned. Indeed, taking Omicron as an example, among the 30 mutations in the overall 

1273-residues structure, 15 are located just in the 222 residues-sequence forming the 

RBD. The insertions and the deletions (summarized in Table 3), on the other hand, are 

located far outside the hACE2-binding domain in all the variants examined, allowing us to 

assert that these mutations should not impact at all the host cell recognition process. 

Delta variant Omicron variant XD variant XE variant XF variant 

   ∆24-26  

 ∆69-70   ∆69-70 

    ∆142-144 

 ∆143-145    

∆156-157  ∆156-157   

 ∆211 ∆211  ∆211 

 ins214EPE ins214EPE  ins214EPE 

Table 3. List of all the insertions and deletions operated by SARS-CoV-2 Spike protein for all the variants 

considered in our study (Delta, Omicron, XD, XE, and XF). The mutations have been aligned to give a better 

perspective of the ones which have been conserved through the evolutionary process. 

Interestingly, as depicted in the aforementioned figures, single-point mutations that are 

present in the RBD for all considered variants tend to progressively increase the positively-
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charged character of this protein region. Moreover, of all the changes operated by the 

evolutionary process of Spike protein, the very few mutations which transform a residue 

into a negatively-charged one (Asp or Glu) are always located away from the RBD (except 

for G339D, which is located in the posterior part of the RBD, away from the RBM that 

contacts hACE2). Indeed, in this region, the changes from polar aminoacids to positively 

charged ones are abundant (N440K, T478K, Q498R, Y505H), and there are also cases in 

which non-polar residues transform into polar ones (e.g., G446S and G496S, which are 

conserved in all examined post-Omicron variants except for the XE one). Another 

conserved structural feature across all post-Omicron variants is also the fact that E484, 

located in the RBM, mutates into an alanine, while a peculiar mutation exclusive to the XE 

variant is represented by the transformation of D405 into an asparagine. Taken together, 

all these pieces of evidence converge in assessing that an increase in the polar 

characteristics of the RBD (more specifically, the RBM), with particular relevance to an 

increase in the number of positively charged aminoacids, could be the mechanism 

adopted by SARS-CoV-2 to continuously increase its infectivity through an increase in the 

interaction with hACE2. 

To further support this evidence, in Figure 6 we reported the electrostatic surface of 

hACE2 complexed with WT-Spike RBD highlighting the prevalence of negative charge on 

the surface facing Spike RBM (colored in green in the image). Coherently, the only 

mutation present in the RBD in which a positively-charged residue shifts into a polar one 

(K417N) has been reported to reduce the affinity with hACE275. It is worth noting that 

other hACE2-independent entry routes for SARS-CoV-2 have been described in 

literature76,77, but the lack of reliable structural information about the interaction with the 

target at the present date hampers and limits the possibility to analyze and discuss the 

impact that these mutations could have on them in a meaningful way. However, it cannot 

be excluded that this mutation pattern and other future Spike mutations could also impact 

these other entry pathways, contributing to making them more relevant for the ability of 

SARS-CoV-2 to infect human cells and increasing its overall infectivity.  
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Figure 1. Representation of structural differences between the WT (taken from the Protein Data Bank72, 

PDB code: 6ZDH) and the Delta variant (retrieved from the PDB, code 7W9E73) of SARS-CoV-2 Spike protein. 

Panels A and B offer a front view of the comparison between the structures, while panels C and D shift the 

point of view to the bottom of the proteins. To give a clearer view of the mutations, only one monomer was 

considered to create the image. The aminoacids involved in mutations are labeled in the figure and are 

colored based on their kind, following the legend reported in the panel A. Specifically, Gly, Ala, Val, Leu, Ile, 

Pro, Cys, Met, Phe and Trp are considered non-polar aminoacids (green), Asp and Glu represent the 

negatively-charged aminoacids (red), and Lys, Arg, and His form the positively-charged aminoacid group 

(blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered polar aminoacids (purple). All images were 

created and rendered using the Molecular Operating Environment (MOE) suite. 
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Figure 2. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the Omicron 

variant (retrieved from the PDB, code 7WPD) of SARS-CoV-2 Spike protein. Panels A and B offer a front view 

of the comparison between the structures, while panels C and D shift the point of view to the bottom of the 

proteins. To give a clearer view of the mutations, only one monomer was considered to create the image. 

The aminoacids involved in mutations are labeled in the figure and are colored based on their kind, following 

the legend reported in the panel A. Specifically, Gly, Ala, Val, Leu, Ile, Pro, Cys, Met, Phe and Trp are 

considered non-polar aminoacids (green), Asp and Glu represent the negatively-charged aminoacids (red), 

and Lys, Arg, and His form the positively-charged aminoacid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr 

are all considered polar aminoacids (purple). All images were created and rendered using the Molecular 

Operating Environment (MOE) suite. 



SCIENTIFIC PUBLICATIONS 

 

Pavan et al., 2022 109 
 

 

Figure 3. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the XD 

variant of SARS-CoV-2 Spike protein. Due to the lack of experimentally resolved structure of SARS-CoV-2 XD 

variant, the three-dimensional structure represented was obtained from the wild-type S protein coming 

from PDB code 6DZH, and then manually mutating the residues involved in the mutations (exploiting the 

MOE “Protein builder” tool). Panels A and B offer a front view of the comparison between the structures, 

while panels C and D shift the point of view to the bottom of the proteins. To give a clearer view of the 

mutations, only one monomer was considered to create the image. The aminoacids involved in mutations 

are labeled in the figure and are colored based on their kind, following the legend reported in the panel A. 

Specifically, Gly, Ala, Val, Leu, Ile, Pro, Cys, Met, Phe and Trp are considered non-polar aminoacids (green), 

Asp and Glu represent the negatively-charged aminoacids (red), and Lys, Arg, and His form the positively-

charged aminoacid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered polar aminoacids 

(purple). All images were created and rendered using the Molecular Operating Environment (MOE) suite. 
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Figure 4. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the XE variant 

of SARS-CoV-2 Spike protein. Due to the lack of experimentally resolved structure of SARS-CoV-2 XE variant, 

the three-dimensional structure represented was obtained from the wild-type S protein coming from PDB 

code 6DZH, and then manually mutating the residues involved in the mutations (exploiting the MOE “Protein 

builder” tool). Panels A and B offer a front view of the comparison between the structures, while panels C 

and D shift the point of view to the bottom of the proteins. To give a clearer view of the mutations, only 

one monomer was considered to create the image. The aminoacids involved in mutations are labeled in the 

figure and are colored based on their kind, following the legend reported in the panel A. Specifically, Gly, 

Ala, Val, Leu, Ile, Pro, Cys, Met, Phe and Trp are considered non-polar aminoacids (green), Asp and Glu 

represent the negatively-charged aminoacids (red), and Lys, Arg, and His form the positively-charged 

aminoacid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered polar aminoacids (purple). All 

images were created and rendered using the Molecular Operating Environment (MOE) suite. 
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Figure 5. Representation of the differences between the WT (taken from PDB code: 6ZDH) and the XF variant 

of SARS-CoV-2 Spike protein. Due to the lack of experimentally resolved structure of SARS-CoV-2 XF variant, 

the three-dimensional structure represented was obtained from the wild-type S protein coming from PDB 

code 6DZH, and then manually mutating the residues involved in the mutations (exploiting the MOE “Protein 

builder” tool). Panels A and B offer a front view of the comparison between the structures, while panels C 

and D shift the point of view to the bottom of the proteins. To give a clearer view of the mutations, only 

one monomer was considered to create the image. The aminoacids involved in mutations are labeled in the 

figure and are colored based on their kind, following the legend reported in the panel A. Specifically, Gly, 

Ala, Val, Leu, Ile, Pro, Cys, Met, Phe and Trp are considered non-polar aminoacids (green), Asp and Glu 

represent the negatively-charged aminoacids (red), and Lys, Arg, and His form the positively-charged 

aminoacid group (blue). Finally, Ser, Thr, Asn, Gln, and Tyr are all considered polar aminoacids (purple). All 

images were created and rendered using the Molecular Operating Environment (MOE) suite. 
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Figure 6. Representation of the interaction between WT-Spike receptor-binding domain (RBD) and hACE2 

(coming from PDB code: 6M0J74). The Spike RBD is colored in yellow, while the receptor-binding motif (RBM) 

is colored in green. The hACE2 surface is colored according to the electrostatic properties of underlying 

residues (blue, positively-charged regions, red, negatively-charged regions, white, neutral regions). Panel A 

offers a lateral view of the complex, while panel B focuses the attention on a top-lateral perspective. As can 

be seen from panel B, the hACE2 regions in contact with Spike-RBM are prevalently negatively-charged (red 

color): concerning this, for visualization purpose, the most extended negative regions at the Spike-hACE2 

interface have also been highlighted with grey circles. 

Structural analysis of Main Protease mutations found in SARS-CoV-2 XD, XE and XF 

variants and their impact on the recognition of known inhibitors 

The main protease Mpro, also known as 3C-like protease or 3CLpro, is a cysteine peptidase 

that is essential for the replication cycle of SARS-CoV-278,79. Its catalytic activity revolves 

around the processing of two overlapping polyproteins, namely pp1a and pp1ab, which 

leads to the formation of 16 mature non-structural proteins (NSPs)80. Composed of 306 

aminoacids, the SARS-CoV-2 Mpro shares 96% sequence identity and a highly conserved 

three-dimensional structure with the SARS-CoV Mpro (0.53 Å R.M.S.D. between PDB 

entries 6Y2E and 2BX4)81,82. Although a dynamic equilibrium between a monomeric and a 

dimeric form exists, only the dimer is responsible for the protease’s enzymatic activity83,84. 

Each protomer composing the catalytically active dimer is composed of three different 

domains: the chymotrypsin-like β-barrel domains I (residues 1-99) and II (residues 100-

182), which comprehend the substrate binding site and directly control the catalytic 
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event, and the extra α-helical domain III (residues 198-306), which is connected to the 

remaining domains through a 16 residues loop and is involved in the dimerization process, 

thus playing an indirect role in the regulation of Mpro catalytic activity83,85.  

The catalytic site is a shallow, solvent-exposed cavity which is formed by several sub-

pockets that are responsible for the recognition of various residues composing the 

substrate peptide sequences81,85. Concerning this, particularly important is the conserved 

sequence Gln↓-Ser, where Gln↓- indicates the glutamine residue that precedes the 

cleavage site86.  

Despite its peculiar structural features, which makes it a difficult target to drug, rational 

Structure-Based approaches such as Molecular Docking87 and Molecular Dynamics88 have 

proven to be useful tools in the identification and characterization of Mpro small molecule 

inhibitors, leading to the discovery of both covalent and non-covalent lead 

compounds89,90. Further reinforcing the importance of the Main Protease as a key drug 

target against COVID-19, is the discovery and approval by regulatory agencies of 

Nirmatrelvir, the first drug specifically designed against SARS-CoV-2 to enter the market43.  

Due to its pivotal role for the virus replication cycle, the Main Protease is, on the contrary 

of Spike, particularly conserved in its primary sequence and its threedimensional 

structural features among different viral strains. Taking a closer look at the main proteases 

from previously mentioned SARS-CoV-2 variants, only one out of 306 aminoacids is 

mutated compared to the reference sequence, precisely residue 132, which is a proline in 

the case of Wuhan-Hu-1, Delta and XD viral strains, while it is mutated to a histidine in the 

case of Omicron, XE and XF variants.  

As can be seen in Figure 7, this mutated residue is located outside the substrate binding 

site, specifically in a turn that precedes the sequence leading to the oxyanion loop 

(residues 138-145), which is a vital part of the catalytic machinery that is responsible for 

the processing of substrate peptides81. Although the position of such mutation could 

suggest a possible destabilization of the catalytic site related to an alteration of the 

enzymatic activity of the protease, a visual inspection of the surroundings of residue 132 

suggests that this mutation should not affect in any way the stability of the 
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threedimensional structure of the protease, thereby not harming its ability to correctly 

process the substrate.  

 

 

Figure 7. The structure of SARS-CoV-2 Mpro (PDB ID: 6Y2E) in its free form. The protein is depicted in blue 

ribbons, while the mutated residue P132 in comparison with considered SARS-CoV-2 variants (Delta, 

Omicron, XD, XE and XF) is highlighted and depicted as a CPK model. For visual reference, Nirmatrelvir (also 

known as PF-07321332, commercial name Paxlovid) from structure 7RFS is also shown in the picture, 

alongside the binding site surface coloured according to electrostatic properties. 

As can be seen in Figure 8, indeed, the proline residue is not involved in any intermolecular 

interaction relevant for the structural stability of the protease, suggesting that its only 

role could be limited to a joint between more relevant residues such as R131, which 

mediates several interactions through its sidechain guanidium group (specifically, a salt 

bridge with both D289 and D197, and a hydrogen bond with the backbone of T198) and 

its backbone (a hydrogen bond between its backbone amide proton and the amide 

carbonyl oxygen of T135 and another one between its carbonyl oxygen and the amide 

proton of F134), and N133, which is itself involved in a network of intermolecular 

interactions with both its backbone (hydrogen bond between its amide proton and the 

carboxyl oxygen of D197) and its sidechain (the amide proton donates to the carbonyl 

oxygen of G195 while the carbonyl oxygen receives from the hydroxyl group of T135). 
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These structural insights are confirmed also by a functional screening performed by Flynn 

et al., which showed that mutations at this position, especially the P132H found in these 

viral variants, are generally well tolerated, while mutations of both R131 and N133 

drastically reduce or even abolish the catalytic activity of the protease91.  

 

 

Figure 8. Comparison between SARS-CoV-2 3CL protease (Mpro) from crystal structure 6Y2E (blue) and 

homology models of Mpro from five different SARS-CoV-2 variants, reported in Table 1: focus is on residue 

132 (either a proline or a histidine) of SARS-CoV-2 Mpro and homology models of Delta, Omicron, XD, XE and 

XF variants Mpro.  

Concerning the relevance of this mutation for the efficacy of existing therapeutic 

treatments and the development of future ones, a recent study from Greasley et al. 

reported the crystal structure of Nirmatrelvir in complex with the main protease from 

three different viral variants that presented a mutation on Mpro92. The analyzed mutations 

included the P132H, which characterizes both the Omicron SARS-CoV-2 variant and the 

recently found XE and XF. Greasley and collaborators established that the P132H mutation 

does not affect the affinity of Nirmatrelvir for the main protease catalytic site, thereby 

indicating the same data would be extendable also to XE and XF variants considered that 

they share the same P132H mutation as the Omicron variant.  
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Figure 9. This panel reports the structural superposition between the crystal structure of SARS-CoV-2 

Omicron variant Mpro in complex with Nirmatrelvir (PDB ID: 7TLL, green) and the homology model of the 

XE/XF variant based on the unliganded state of the original SARS-CoV-2 virus (orange). In panel A, the whole 

protease structure is shown in ribbon: for visual reference, both Nirmatrelvir and H132 are reported in 

licorice and CPK models respectively. In panel B, a focused view of residue 132 and its surrounding residues 

is reported.  

As can be seen in Figure 9, despite the fact that our homology model of the XE/XF variant 

is based on the structure 6Y2E, which represents the SARS-CoV-2 main protease in its 

free/unliganded form, there is an almost perfect structural superposition between our 

homology model and the experimentally resolved structure of the complex between the 

Mpro from the Omicron variant and Nirmatrelvir (PDB ID: 7TLL), as is also quantitatively 

assessed by the 0.67 Å R.M.S.D. between the two structures after optimal 

superimposition of the backbone. The congruence between our structural prediction and 

the experimental data supports the idea that the overall fold of the main protease is 

conserved across several variants and that the structural effect that residue mutations 

could have on the effectiveness of main protease inhibitor could be accurately predicted 

through the combination of computational techniques such as homology modelling, 

molecular docking and molecular dynamics. Moreover, based on available structural 

information, the high degree of structural similarity between the main proteases is not 

only shared by variants of the SARS-CoV-2 virus but also by other coronaviruses such as 



SCIENTIFIC PUBLICATIONS 

 

Pavan et al., 2022 117 
 

bat coronavirus13, the Porcine transmissible Gastroenteritis virus (TGEV)83, Human 

coronavirus strain 229E (HCoV)85, Infectious bronchitis virus (IBV)93 and MERS-CoV94, 

thereby validating the pursue of novel Mpro inhibitors that could act as pan-coronaviral 

drugs and help preventing future coronavirus associated pandemics. 

Conclusions 

The recent emergence of novel recombinant SARS-CoV-2 variants, namely XD, XE and XF, 

poses a serious threat to the efficacy of existing therapeutic options against COVID-19. In 

the face of a continuous evolution of the SARS-CoV-2 genome under an evolutionary 

pressure opposed by the development of vaccines and by the natural immunity induced 

by infections, the more recent viral variants have increased both their infectiveness and 

their ability to escape the immune response. The structural analysis reported in this article 

depicts a scenario where the Spike protein, which is responsible for the ability of the virus 

to infect human cells by interaction with the hACE2 receptor, is the viral entity that is 

accumulating the highest number of mutations in an attempt to increase its affinity 

towards the hACE2 and decrease the one towards antibodies, while the main protease 

Mpro, a key enzyme for the virus replication cycle, is still practically identical to the wild-

type virus. The difference behaviour of these two proteins in response to SARS-CoV-2 

genome evolution could be vital not only for the development of efficient therapies 

against COVID-19 but, considering the striking structural similarities between the main 

protease from different viruses, also in the development of pan-coronaviral drugs that 

could prevent the development of future coronavirus-associated pandemics.  
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Abstract 

Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first 

protease inhibitor against the SARS-CoV-2 protease 3CLpro that has been licensed for 

clinical use. To identify mutations that confer resistance to this protease-inhibitor, we 

engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein 

composed of the VSV glycoprotein G, the SARS-CoV-2 3CLpro, and the VSV polymerase L. 
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Viral replication was thus dependent on the autocatalytic processing of this precursor 

protein by 3CLpro and release of the functional viral polymerase L, and replication of this 

chimeric VSV was effectively inhibited by nirmatrelvir.  

Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance 

was confirmed by retesting nirmatrelvir against the selected mutations in an additional 

VSV-based systems, in an independently developed cellular system, in a biochemical 

assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are 

cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these 

compounds. Furthermore, we found that most of these resistance mutations already 

existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID 

databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.  

Introduction 

In late 2019, the zoonotic transmission of a new coronavirus, severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), into the human population1, has led to worldwide 

efforts to find effective treatments against the various pathologies caused by the virus. 

Inhibitors of viral enzymes, such as proteases, have proven to be highly potent drugs in 

the treatment of HIV and Hepatitis C virus infections. However, resistant viruses rapidly 

emerge unless the protease inhibitors are given in combination with other directly acting 

antivirals2,3. SARS-CoV-2 encodes two proteases. The 3-Chymo-trypsin-like protease 

(3CLpro) cleaves 11 sites in the viral polyproteins pp1a and pp1ab and is also referred to as 

the main protease (Mpro) or non-structural protein 5 (nsp5), indicating that it cleaves more 

sites than the second protease and its location within the polyproteins, respectively4. The 

second viral protease, Papain-like protease (PLpro) cleaves three additional sites in pp1a 

and pp1ab5. Thus, both proteases are essential for viral replication and therefore 

interesting drug targets. 

Recently, the 3CLpro inhibitor nirmatrelvir was approved for clinical use. Nirmatrelvir acts 

as a peptidomimetic, covalent inhibitor binding to the catalytic site cysteine (C145), 

thereby blocking its function6–8. Nirmatrelvir has been authorized in combination with 

ritonavir by the U.S. food and drug administration (FDA) for emergency use in high-risk 
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SARS-CoV-2-infected individuals under the trade name Paxlovid (EUA 105 Pfizer Paxlovid, 

22.12.2021). In the studies leading to the Paxlovid (nirmatrelvir/ritonavir) emergency use 

authorization (EUA), mouse hepatitis virus (MHV) 3CLpro was used as a surrogate for SARS-

CoV-2 3CLpro to generate resistance data, which may not be the ideal system. In addition, 

very recently several preprints have described nirmatrelvir resistance mutations in 

authentic SARS-CoV-2, either generated de novo9,10, found in isolates11,12, or modelled in 

silico13. Working with SARS-CoV-2 requires biosafety level 3 (BSL- 3) installations due to 

its virulence14. Even more so, performing SARS-CoV-2 antibody or antiviral resistance 

studies demand utmost caution to avoid biosafety breaches and subsequent spread of 

mutant variants. To address these caveats, we describe in this study a BSL-2 system based 

on VSV that allows the selection of resistance mutations in the SARS-CoV-2 3CLpro. Several 

mutations identified were validated in cell-based, biochemical, and recombinant SARS-

CoV-2 assays and two mutations were found to be identical to (L167F) or at the same 

residue (Q192) as those described in the other manuscripts characterizing resistance in 

authentic SARS-CoV-2. We further-more showed that some mutations selected by one 

3CLpro inhibitor can confer cross-resistance to other inhibitors. In contrast, other 

mutations appeared more inhibitor-specific. We attributed these effects to the distinct 

chemical structures of the inhibitors and occupation within the active site of the 3CLpro. 

Lastly, we modelled catalytic site mutations with Robetta15 and Molecular Operating 

Environment16 to elucidate their mechanism of resistance. 

Results 

MHV 3CLpro is less sensitive to nirmatrelvir than SARS-CoV-2 3CLpro 

We compared the sensitivity of SARS-CoV-2 and MHV 3CLpro to the active component of 

Paxlovid, nirmatrelvir, using the gain-of- signal variant of a VSV-based 3CLpro 

measurement assay shown in fig. S1A and B and described in detail recently17. In brief, 

the coronavirus 3CLpro proteases flanked by autocatalytic sites were cloned into the P 

protein of a red fluorescent protein (dsRed) ex-pressing VSV. The P protein with the 

internal 3CLpro is functional and essential for viral genome replication and dsRed 

expression. In the absence of protease inhibitor, the P:3CLpro protein is autocatalytically 

cleaved and dsRed is not expressed. In the presence of a protease inhibitor, the P protein 
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is functional, the VSV genome replicates and dsRed is expressed. Using this system, we 

found that MHV 3CLpro showed a weaker response to nirmatrelvir than to SARS-CoV-2 

3CLpro (Fig. 1A). The sequence identity of the two proteins is only 50% (fig. S2), whereas 

the structures of the SARS-CoV-2 and MHV 3CLpro enzymes are strongly conserved. 

However, the interaction site of nirmatrelvir (a distance of 5 Å or less from the compound) 

shows seven amino acid differences between the two enzymes, namely H164 - Q, M165 - 

L, P168 - S, V186 - R, R188 - A, T190 - V and A191 - V (counting from the first residue 

(serine) after the glutamine of the N-terminal cleavage site). We therefore suggest that 

MHV 3CLpro is not an optimal proxy to study SARS resistance mutations. 

A VSV-based non-gain-of-function system was generated to predict SARS-CoV-2 3CLpro 

mutations 

To generate a safer alternative to selection of drug resistant SARS-CoV-2 for studying 

mutants, we engineered a chimeric VSV variant, where the intergenic region between the 

glycoprotein (G) and the polymerase (L) was replaced by the 3CLpro of SARS-CoV-2 (fig. 

S3A). Upon translation, G, 3CLpro, and L form a surrogate polyprotein, which must be 

processed by 3CLpro to generate the functional viral proteins G and L.  This surrogate 

polyprotein mimics the polyprotein that is produced by SARS-CoV-2 as dimerization of 

3CLpro is obligate for its function18,19 and cleavage of the cognate 3CLpro N- and C-terminal 

motifs must occur for successful VSV replication. By applying an appropriate protease 

inhibitor (+PI), this processing is disturbed and therefore viral replication cannot occur 

(fig. S3B). Through passaging the chimeric VSV variant in presence of suboptimal 

concentrations of a protease inhibitor, 3CLpro mutations that are generated by the error-

prone viral polymerase20,21 are selected for resistance to the inhibitor (fig. S3C). In a first 

proof-of-concept study, we selected a mutant against the inhibitor GC376, which acquired 

the amino acid change in the 3CLpro from phenylalanine to leucine at position 305 (F305L) 

in the autocatalytic cleavage motif at the C terminus of the protease. This virus gained a 

mildly faster replication kinetic and produced higher titers in the presence of GC376 and 

nirmatrelvir compared to the parental virus (Fig. 1B and C). Related coronaviruses have 

leucine at position 305 as a preferred cleavage motif (Fig. 1D); therefore, the likely 

mechanism of the selection of F305L is auto-cleavage site optimization. We used the wild-
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type VSV-3CLpro for subsequent mutation selection studies with nirmatrelvir. We also 

included the F305L as parental virus for further selection experiments, because the F305L 

mutation has been found in regional out-breaks (mostly in England) and has been 

deposited in the global initiative on sharing avian flu data (GISAID) database22–24 with 

three different codon usages to obtain leucine instead of phenylalanine (fig. S4A). The 

mutants were variants of Delta, mainly the sublineage AY.4 (fig. S4B). We therefore 

assumed F305L could be an advantageous mutation that, in combination with further 

mutations, may give rise to protease inhibitor resistant lineages. 

 

Figure 1. A VSV-based non-gain-of-function system was developed to predict SARS-CoV-2 3CLpro mutations. 

(A) 3CLpro from SARS-CoV-2 and mouse hepatitis virus (MHV) were tested in a gain-of-signal assay. Data are 

presented as individual points of n = 3 biologically independent replicates per condition for SARS-CoV-2 

3CLpro and n = 2 for MHV 3CLpro, average values are represented by histogram bars. (B) Replication kinetics 

are shown for wild-type (wt) VSV-G-3CLpro-L and GC376-selected F305L variant. Data are presented as SD of 

n = 2 biologically independent replicates per condition. (C) GC376 and nirmatrelvir dose responses are 

shown for wild-type (wt) VSV-G-3CLpro-L and GC376-selected F305L variant. Data are presented as means of 

n = 2 (GC376) and n = 3 (Nirmatrelvir) biologically independent replicates per condition. (D) Sequence 

alignment of C-terminal autocleavage sites is shown for SARS-CoV-2 3CLpro and related coronaviruses. 
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Nirmatrelvir resistant 3CLpro mutants were selected for in the VSV-3CLpro system 

We next used the wild-type and F305L mutant viruses to select for nirmatrelvir resistant 

3CLpro. BHK-21 cells in a 96-well plate were infected at a low multiplicity of infection (MOI; 

0.01). Where cytopathic effects were visible in the first passage (25 out of 48 wells from 

parental wild-type and 17 out of 48 wells from parental F305L), supernatants were used 

for passaging individual wells with increasing concentrations (wild-type initial infection: 

30 μM, second round: 40 μM, and third round: 50 μM; F305L initial infection: 50 μM, 

second round: 75 μM, and third round: 100 μM) of nirmatrelvir. At every passage, where 

cytopathic effects were observed again, supernatants were collected from the cell culture 

of individual 96-wells and transferred to individual new wells of a 96-well plate. At every 

passage, each well was sequenced individually, the target region being 3CLpro and adjacent 

parts of G and L. We only counted mutants from un-ambiguous chromatogram peaks (as 

exemplified in fig. S3C). If, in the first or second passage there were still overlapping peaks, 

we sequenced the well again after the next passage. By this continuous selection pressure, 

the fittest mutant virus variant became dominant over the wild-type (and potential other 

mutants) in each well and made up the entirety of the genomic RNA, cDNA, and 

subsequent polymerase chain reaction (PCR) fragment. To finally exclude minority mutant 

populations that were not visible in a Sanger sequencing chromatogram, but could 

contribute to the resistance phenotype, mutations were later re-introduced into 3CLpro 

measurement systems individually. We found 39 distinct mutations within 3CLpro by 

Sanger sequencing. Viruses carried from one dominant mutation up to four mutations. 

The mutations were distributed over the entire sequence of 3CLpro (Fig. 2A, table S1). We 

categorized them into catalytic site, near-catalytic site, dimerization interface and 

autocleavage site mutants. A fourth category for all mutations not fitting the first three 

was chosen as “allosteric” mutants. The mutants Y54C, L141F, L167F and Q192R occurred 

in residues in very close proximity (within 5 Å of PDB 3CLpro structure 7vh8, Fig. 2B, table 

S2) to nirmatrelvir. We searched for the mutants in the National Center for Biotechnology 

Information (NCBI) Virus data base25 and GISAID EpiCoV22–24, and found most of the 

mutations, or at least the same residue with a different mutation, in deposited sequences 

with varying coverage (Fig. 2A, table S1). We further subdivided GISAID entries into de-
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positions made before and after the emergency use authorization of Paxlovid 

(nirmatrelvir/ritonavir) on 22nd December 2021 (table S3). An update of the Paxlovid EUA 

(18th March 2022) included 3CLpro mutants that were retrieved from patients treated with 

Paxlovid (nirmatrelvir/ritonavir) (Fig. 2A). The update stated that it was unclear whether 

these mutations had clinical relevance26. 
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Figure 2. Sequencing of 3CLpro escape mutants and comparison to databases and Paxlovid EUA information. 

(A) Mutants were recovered from VSV-G-3CLpro-L wild- type (*) and the F305L variant (red **). Autocleavage 

site mutants are colored in turquoise, catalytic site mutants in green, near catalytic site mutants in light 

green, dimerization interface mutants in yellow and “allosteric” mutants in white. Viruses with more than 

one mutation are displayed above in a gray box and named a to f. The number of mutated sequences in the 

databases from NCBI and GISAID are displayed below the mutations in gray. If specific mutations were not 

present in the database, the residue is displayed with any mutation that occurred at this position. Multiple 

such different amino acid changes that were not selected in our virus are displayed with X (N203X, V204X). 

Mutations from the Paxlovid EUA are divided into mutations found in cell culture and mutations sequenced 

from treated patients. The coverage of mutation entries was obtained on June second, 2022. (B) 

Visualizations of mutation-affected residues are shown. Residues that were mutated one time are 

highlighted in yellow, two times in light orange, three times dark orange, and four times in red. The 3CLpro 

protease dimer with bound nirmatrelvir (blue) was visualized in ChimeraX from the Protein Data Bank 

structure 7vh8 (32).   Catalytic center mutations are within a range of 5 Å as visualized in dark green. 

Replications kinetics and dose response were analyzed for selected 3CLpro mutants 

To confirm these potential resistance mutations, we chose six virus samples to perform 

replication kinetics and dose response experiments. Mutants were selected for further 

testing based on two criteria. First, we chose virus variants with catalytic site mutations 

because alterations in drug binding residues (direct or indirect) are more likely to alter 

efficacy. Second, we chose the most frequently recovered mutant outside of the catalytic 

site. Four samples were derived from wild-type VSV-G-3CLpro-L and two were derived from 

the F305L variant. Supernatants for the replication kinetic experiments were collected at 

indicated time points after infection, and supernatants for the virus nirmatrelvir dose 

response experiments were collected 24 hours after infection. The replication kinetics 

revealed that all variants were still capable of replicating to high titers, suggesting that 

resistance mutations did not result in a strong negative effect on 3CLpro activity (Fig. 3). 

The dose responses showed that wild-type VSV-G-3CLpro-L replication was inhibited 106-

fold at 100 μM of nirmatrelvir, with a half maximal inhibitor concentration (IC50) of about 

185 nM (Fig. 3A). We tested two L167F variants, because this mutant arose twice 

independently. The similarity of their dose responses (Fig. 3B and C), as well as the low 

variation of the biological replicates, suggests that the differences in the degree of 

resistance we observed between the mutants were not artifacts. We tested additional 
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single mutants, namely the catalytic site mutant Y54C (Fig. 3D), a mutant from the 

mutation cluster shown in Fig. 2B, N203D (Fig. 3E) and the autocleavage site mutant F305L 

(Fig. 3F). To test if mutants that were selected from the F305L background had increased 

resistance, we also tested double mutants G138S/F305L (Fig. 3G) and Q192R/F305L (Fig. 

3H). We observed the strongest resistance phenotype in the double mutant 

Q192R/F305L, replicating to high viral titers with a pronounced cytopathic effect (fig. S5) 

even in the presence of 100 μM nirmatrelvir. 

 

Figure 3. Replication kinetics and nirmatrelvir dose responses of parental VSV-G-3CLpro-L and mutant 

variants. (A to H) Replication kinetics and dose responses are shown for wild-type (A), L167F (B), L167F-2 

(C), Y54C (D),   N203D (E),  F305L (F),  G138S/F305L (G)   and Q192R/F305L (H)   VSV-G-3CLpro-L. Supernatants 
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for replication kinetics were collected at indicated time points. Supernatants for virus nirmatrelvir dose 

response were collected 24 hours after infection. (n = 2 biologically independent replicates per condition 

with individual data points shown and connecting lines of mean values). neg, without nirmatrelvir; TCID50, 

50% tissue culture infective dose. 

Re-introduction of 3CLpro mutations confirms their resistance phenotype 

As shown in table S1, VSV-induced 3CLpro mutations were observed after the first passage 

when nirmatrelvir was applied. To validate the resistance data of replication-competent 

VSV-3CLpro and at the same time exclude the effects of potential additional mutations 

arising within the dose response experiment, we re-introduced some of the catalytic 

center mutations (Y54C, L167F, Q192R) into a recently developed protease activity 

measurement tool based on replication-incompetent VSV (17) (fig. S1A and B). In brief, 

the protease activity measurement tools comprise replication-incompetent VSV-dsRed 

variants missing either the viral phosphoprotein (ΔP) or polymerase (ΔL). These viruses 

are complemented with either an INTRAmolecular-3CLpro tagged phosphoprotein or and 

INTERmolecular GFP-3CLpro-L fusion protein, respectively. The P:3CLpro or GFP-3CLpro-L 

proteins are expressed in cells from transfected plasmids. The cells are then infected with 

the replication incompetent VSV-dsRed variant and treated with inhibitors. An 

intramolecular 3CLpro tag in combination with VSV-ΔP-dsRed constitutes a gain-of-signal 

or “on”-assay. An intermolecular 3CLpro tag in combination with VSV-ΔL-dsRed constitutes 

a loss-of-signal or “off”-assay. We found that the identified single catalytic center 

mutations indeed conferred partial resistance against nirmatrelvir of the 3CLpro from the 

Wuhan-1 as well as the Omicron SARS-CoV-2 variant (Omicron signature mutation in 

3CLpro P132H) (Fig. 4A to D), which could be further enhanced by introduction of a second 

mutation in the autocleavage site (F305L, Fig. 4E to H). The mutation Q192R arose in the 

F305L parental virus. Introducing Q192R alone reduced 3CLpro activity mildly, as we 

observed by increased values in 3CLpro-On-Q192R at low nirmatrelvir concentrations. 

Adding F305L as second mutation, thereby restoring the original combination from the 

double mutant virus, rescued this phenotype (Fig. 4G). A randomly selected combination 

of catalytic center mutations led to a strong loss in enzymatic activity (fig. S6A and B). We 

further introduced two mutants (A194S, G138S) into the 3CLpro measurement assays, 

which also conferred resistance to nirmatrelvir (Fig. 4I and J).  



SCIENTIFIC PUBLICATIONS 

 

Heilmann et al., 2022 135 
 

  



SCIENTIFIC PUBLICATIONS 

 

Heilmann et al., 2022 136 
 

Figure 4. Re-introduction of individual or dual 3CLpro mutations confirms their resistance phenotype. A 

graphic representation of the 3CLpro-on and 3CLpro-off system used to measure the inhibitory activity of the 

protease inhibitor against the different 3CLpro mutants can be found in fig S3. (A) Gain-of-signal assay results 

are shown for single catalytic site mutations Y54C and L167F with nirmatrelvir. Data are presented as the 

standard deviation (SD) of n = 3 biologically independent replicates per condition. (B) Loss-of-signal assay 

results are shown for single catalytic site mutations Y54C and L167F with nirmatrelvir. Data are presented 

as the SD of n = 4 bio-logically independent replicates per condition. (C) Gain- of-signal assay results are 

shown for catalytic site mutations Y54C and L167F in combination with the Omicron 3CLpro signature 

mutation P132H. Data are presented as the SD of n = 4 biologically independent replicates per condition. 

(D) Loss-of-signal assay results are shown for single catalytic site mutations Y54C and L167F in combination 

with the Omicron 3CLpro signature mutation P132H. Data are presented as the SD of n = 4 biologically 

independent replicates per condition. (E) Gain-of-signal assay results are shown for double mutant 

L167F/F305L versus wild-type and single mutant L167F. Data are presented as the SD of n = 4 biologically 

independent replicates per condition. (F) Loss-of-signal assay results are shown for double mutant 

L167F/F305L versus wild-type and single mutant L167F. Data are presented as the SD of n = 4 biologically 

independent replicates per condition. (G) Gain-of-signal assay results are shown for double mutant Q192R-

F305L versus wild-type and single mutant Q192R. Data are presented as the SD of n = 4 biologically 

independent replicates per condition. (H) Loss-of-signal assay results are shown for double mutant 

Q192R/F305L versus wild-type and single mutant Q192R. Data are presented as the SD of n = 4 biologically 

independent replicates per condition. (I) Gain-of-signal assay results are shown for mutants A194S and 

G138S versus wild-type. Data are presented as the SD of n = 4 biologically independent replicates per 

condition. (J) Loss-of-signal assay results are shown for mutants A194S and G138S versus wild-type. Data 

are presented as the SD of n = 4 biologically independent replicates per condition. 

Nirmatrelvir and GC376 react differently to 3CLpro mutants  

Comparing GC376 to nirmatrelvir in the 3CLpro Y54C and L167F mutants directly revealed 

that these mutants react differently to the compounds. Y54C confers a similar resistance 

to GC376 as to nirmatrelvir (Fig. 5A). GC376 and nirmatrelvir interact similarly with the 

residue Y54, whereas L167 and Q192 are distant to GC376 and close to nirmatrelvir (within 

5 Å) (Fig. 5B). L167F and Q192R appeared to affect the activity of GC376 less than 

nirmatrelvir (Fig. 5C and D, tables S4 and S5). Nirmatrelvir IC50 values were especially high 

in the 3CLpro-On construct. We sought to improve the assays sensitivity by changing the 

read-out method from a FluoroSpot to a flow cytometry-based readout. With this 

approach, we could decrease the IC50 of the wild-type 3CLpro-On to 0.91 μM of 

nirmatrelvir (fig. S6C, table S6).  
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Figure 5. Nirmatrelvir and GC376 react differently to mutants. (A) Gain-of-signal assay results are shown for 

single mutants Y54C and L167F versus wild-type tested with GC376 and nirmatrelvir (Y54C: n = 4, L167F: n 

= 3 biologically independent replicates per condition). (B) GC376 (PDB: 7k0g) and nirmatrelvir (PDB: 7vh8) 

3CLpro crystal structures are shown with GC376 in green (and colored by heteroatom) and nirmatrelvir in 

light blue (and colored by heteroatom) and proximal residues in orange (within zone of 5 Å). Compound to 

residue distances are shown with dotted purple lines. (C) Fitting of gain-of-signal assay results are shown 

for single mutants Y54C and L167F versus wild-type tested with GC376 and nirmatrelvir. (D) Fitting of gain-
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of-signal assay results are shown for single mutant Q192R versus wild-type tested with GC376 and 

nirmatrelvir. Data in (C and D) are presented as the SD of n = 4 biologically independent replicates per 

condition. 

Confirmation of resistance mutations in a second cell-based assay system, biochemical 

assay, and with recombinant SARS-CoV-2 

The resistance phenotype of L167F observed with gain- and loss-of- signal assays was 

confirmed using another recently published cellular system27. In this complementary 

assay, a polyprotein of Src, 3CLpro with N-and C-terminal autocleavage sites, HIV Tat, and 

luciferase was used to repress transcription when 3CLpro was active (fig. S7). Bona fide 

chemical inhibitors blocked 3CLpro activity and restored luciferase signal in a dose-

dependent manner (Fig. 6A to C). Similar to the results described above, L167F was more 

resistant to nirmatrelvir than GC376 (Fig. 6A and C, table S7). Furthermore, this mutant 

was most resistant to ensitrelvir, a recently developed compound in clinical trials in both 

the Src- 3CLpro-Tat-Luc (Fig. 6B, table S7)28 and our assay (fig. S8, table S8). For further 

confirmation of resistance phenotypes, we purified recombinant enzymes (fig. S9A to C). 

We tested catalytic activity with a substrate dose-response kinetic experiment with 

purified wild-type 3CLpro versus mutants Y54C, L167F, and Q192R with the substrate Ac-

Abu-Tle-Leu-Gln↓MCA releasing the fluorogenic molecule 7-amino-4-methylcoumarin 

(AMC) (fig. S10A). The ratio between the catalytic constant or turnover rate (kcat) and the 

Michaelis-Menten constant (Km), displayed as kcat/Km, showed that some of the mutants 

partially lose catalytic activity, most notable Q192R, which was in line with the cellular 

assays (Fig. 6D, table S9). For further resistance confirmation we applied a biochemical 

fluorescence resonance energy transfer (FRET) assay, which uses a quencher (DABCYL) 

and a fluorogenic substance (EDANS), which are connected by a peptide 

(KTSAVLQSGFRKME) that is recognized and cleaved by 3CLpro (fig. S10B). Upon cleavage, 

fluorescence of EDANS increases. All three mutant 3CLpro enzymes were more resistant to 

nirmatrelvir than the wild-type 3CLpro (Fig. 6E, table S10). Lastly, we confirmed our findings 

in recombinant SARS-CoV-2 viruses expressing a reporter gene (fig. S10C)29,30. The 

recombinant SARS-CoV-2 variant expressing mCherry used for mutagenesis, aside from its 

transgene, was sequence identic to the Wuhan-1 variant29,30 (Data file S1). Viruses 

carrying L167F alone and in combination with F305L were able to replicate but replicated 
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slower than wt virus and produced smaller plaques (Fig. 6F and G). The mutations 

introduced into recombinant SARS-CoV-2-mCherry had been found in clinical samples 

prior to our study (Data file S2). As expected, both L167F single and L167F/F305L double 

mutants were more resistant to nirmatrelvir than the wild-type (Fig. 6H, table S11). 
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Figure 6. Cross-testing mutants and validation of enzyme kinetics. a: Scheme of cellular gain-of-signal assay 

based on Src-3CLpro-Tat-Luc polyprotein used for cross-validation. b: Cross-validation of wild-type (wt) Src-

3CLpro-Tat-eGFP and L167F mutant with nirmatrelvir, ensitrelvir (c) and GC376 (d). e: Scheme of cellular 

biochemical assay from BPS Bioscience used for cross-validation. In presence of an appropriate protease 

inhibitor (+PI), 3CLpro cannot cleave the substrate and fluorescence is low. Without inhibitor (-PI), 3CLpro 

cleaves the substrate, quencher (DABCYL) and fluorogen (EDANS) are separated, fluorescence is high. f: 

Nirmatrelvir dose responses of wild-type (wt) vs. mutant 3CLpro variants in biochemical assay and IC50 fold 

changes. g: Enzyme kinetics and metrics of wt 3CLpro and mutants with the substrate Ac-Abu-Tle-Leu-

GlnMCA releasing the fluorogenic molecule MCA. 

Structural modelling of mutant 3CLpro variants  

To explore potential mechanisms of resistance, we performed molecular modelling with 

an in-silico alanine mutation scanning as well as resistance mutation scanning with 

Molecular Operating Environment (MOE) suite16 and the Robetta service15. MOE 

modelling was based on the PDB structure 7rfw31, and Robetta modelling was based on 

7vh832 (32), both of which are 3CLpro structures with high nirmatrelvir occupancy. 

Experimental alanine scanning33,34 as well as in silico alanine screening35,36 is routinely 

utilized to evaluate the impact of single amino acid mutations on protein structure, and 

the models can provide plausible explanations for the structural basis of nirmatrelvir 

resistance. Fig. 7A shows that the most important losses of binding affinity are primarily 

related to mutation of residues whose sidechains directly contact the ligand, such as H41, 

M49, N142, H163, M165 and Q189, and secondarily to other residues lining the binding 

site like Y54, H164, E166, P168, D187, and Q192. Residues with hydrophobic sidechains, 

such as L27, Y54, F140, L167 and F181 seem to have a pivotal role in the structural integrity 

of the binding site (Fig. 7B), despite having a negligible impact on the variation of binding 

affinity. The primary effect of Y54C in these models is the disruption of a stabilizing inter-

protein hydrogen bond to the backbone oxygen of D187 and disruption of additional weak 

but stabilizing interactions with surrounding hydrophobic residues such as a π-charge 

interaction between the phenyl ring of Y54 and the guanidinium group of R40. No major 

direct interaction to the 3.5 Å distant C20 methyl group of nirmatrelvir exists (Fig. 7C, fig. 

S11A). However, loss of the critical hydrogen bond between loop region 43 to 55 and the 

adjacent loop around D187 allows for a structural rearrangement destabilizing the distal 

part of the binding site, likely increasing the inherent plasticity of this protein region. 
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Residue G138 lies in a solvent accessible loop, with backbone torsion angles in the β sheet 

region. Replacing it with a polar serine (G138S) while maintaining the same backbone 

conformation led to the Cβ of S138 pointing into the protein interior, and all of the 

preferred rotamers led to unfavorable interactions or required a re-arrangement of the 

affected region. Formation of new hydrogen bonds, for example with a backbone 

hydrogen of F140 and the sulfur of C128 (Fig. 7D) likely led to a rearrangement of the S1 

sub-pocket, which is responsible for hosting the terminal carboxamide moiety that mimics 

the P1 glutamine in natural peptide substrates. Supervised Molecular Dynamics 

simulations of the nirmatrelvir-3CLpro recognition process revealed how L141 is one of the 

first residues that is contacted during the approach of nirmatrelvir into the binding site37. 

In the L167F mutant, the larger sidechain of phenylalanine cannot be accommodated 

without a structural rearrangement, which likely leads to repulsive interaction between 

the trifluoromethyl (CF3) moiety of nirmatrelvir and weakening its interactions with other 

proximal residues such as N142, which are thought to play a pivotal role in maneuvering 

the ligand entrance in the catalytic pocket37. As anticipated in the alanine scan, the L167F 

mutation seems to have an indirect effect on the binding affinity by alteration of the β 

sheet that constitutes the lower portion of the binding site, where a set of hydrogen bonds 

are established between nirmatrelvir and the backbone of both H164 and E166 (fig. S11B). 

A similar distortion of the binding pocket by the bulkier phenylalanine has also been 

described recently10. Finally, polar Q192 stabilizes a solvent exposed loop participating in 

hydrogen bonds to backbone oxygen and nitrogen of V186, backbone oxygen of R188, 

and a stabilizing contact to the CF3 group of nirmatrelvir. Replacement with positively 

charged R192 disrupted this network, which likely results in a structural rearrangement 

and altered binding to nirmatrelvir (Fig. 7E). The slight increase in binding affinity of Q192R 

concurrent with protease destabilization (Fig. 7A and B) could be explained by 

recontouring of the subpocket hosting the negatively polarized CF3 moiety of nirmatrelvir 

and interacting with positively charged R192 (Fig. 7E, fig. S11C). Despite the predicted, 

marginally more favorable interaction with nirmatrelvir, an overall unfavorable effect of 

the mutation could still be possible due to altered sequestration of nirmatrelvir and the 

destabilization of the loop region lining the S2 and S4 subpocket of the catalytic site, 

where important residues such as Q189 are located.  
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Figure 7. Structural modelling of mutant 3CLpro variants. (A) Colorimetric mapping of the dAffinity value 

(kcal/mol) by virtual alanine scanning with MOE suite. Residues within 5 Å of the nirmatrelvir position are 

displayed. Colors range from blue (negative values, indicating increased protein-ligand affinity) to red 

(positive values, indicating decreased protein-ligand affinity). The nirmatrelvir (NV) structure is shown in 

light blue. (B) Colorimetric mapping of the dStability value (kcal/mol), computed as above for (A). Colors 

range from blue (negative values, indicating increased in the protein stability) to red (positive values, 

indicating decreased protein stability. (C) The catalytic center of 3CLpro from PDB structure 7vh8 is shown 

with nirmatrelvir bound. Y54 (left) forms a strong hydrogen bond (HB, highlighted with a blue dashed line) 

with D187, whereas nirmatrelvir is at a distance of 3.5 Å (yellow dashed line). The exchange of Y54 with C 

(right) leads to a loss of the hydrogen bond to D187 and makes room in the nirmatrelvir binding pocket due 

to the smaller side- chain of cysteine versus tyrosine. (D) G138 (left) contacts H172 with a hydrogen bond. 

S138 (right) forms several new hydrogen bonds with the back-bone hydrogen of F140, backbone oxygen of 

K137 and the sulfur of C128. (E) Q192 (left) forms hydro-gen bonds with the oxygen and nitrogen of V186, 

the oxygen of R188, and stabilizes the polar contact to the CF3 group of nirmatrelvir. R192 (right) disrupts 

this hydrogen bond network; subsequent rearrangement could form additional interactions with the CF3 

group. 

Discussion 

In our study, we selected mutations in the main protease 3CLpro of SARS-CoV-2 against the 

protease inhibitor nirmatrelvir with a non- gain-of-function system based on VSV. The 

selected mutations were confirmed in two cellular assays and in one biochemical assay, 

along with confirmation using recombinant SARS-CoV-2. For the catalytic site mutations, 

a resistance mechanism was postulated based on mapping the mutations onto the co-

crystal structure of 3CLpro-nirmatrelvir and generating mutant models with Robetta38. In 

previous initial resistance studies leading to emergency use authorization of Paxlovid 

(nirmatrelvir/ritonavir), the 3CLpro of a related coronavirus, MHV, was used to select for 

resistance mutations. The 3CLpro of SARS-CoV-2 and MHV share 50% sequence identity.  

In this study, we compared the activity of 3CLpro of SARS-CoV-2 and MHV and found that 

MHV 3CLpro responded only mildly to nirmatrelvir in our gain-of-signal assay17. Although 

the structures of SARS-CoV-2 and MHV 3CLpro are conserved, we propose that the low 

amino acid sequence identity alters the binding pocket affinity to nirmatrelvir sufficiently 

to reduce the sensitivity against the inhibitor. Key corresponding residues of the binding 

pocket (within 5 Å or less) are different, namely H164 - Q, M165 - L, P168 - S, V186 - R, 

R188 - A, T190 - V and A191 - V. Furthermore, amino acid changes that occurred in our 
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selection experiments, Y126F and F305L are already present in the MHV 3CLpro sequence. 

Taken together, we argue that MHV 3CLpro was not an optimal proxy for resistance studies. 

Recently, chimeric VSV variants with SARS-CoV-2 spike were used to predict spike protein 

immune escape mutations by selecting against neutralizing serum39–41. The fast 

occurrence of mutations was facilitated in those studies by the high error rate of the VSV 

polymerase20,21. In a similar approach, we exploited this high error rate in a recombinant 

VSV expressing 3CLpro to select for 3CLpro mutations that confer resistance against 

protease inhibitors. The 3CLpro was used to replace the function of an intergenic region 

between the viral glycoprotein (G) and the polymerase (L). The intergenic regions of VSV 

are responsible for separate gene expression, which in other viruses is accomplished by a 

polyprotein and proteases. Although this polyprotein of VSV-G-3CLpro-L is only a surrogate 

to the one in SARS-CoV-2, the cognate cleavage sites, the requirement for dimerization of 

the protease for proper function18,19 and the context of a replicating virus in the cell make 

this approach an attractive proxy. Initially, we selected the 3CLpro mutant F305L using 

GC376, which showed reduced sensitivity to GC376, as well as to nirmatrelvir. This 

mutation lies in the 3CLpro cleavage site that flanks 3CLpro at its C terminus. Interestingly, 

the LQ motif found in the mutated site is indeed known to be preferred over FQ as a target 

motif for 3CLpro42–44, which may explain the reduced sensitivity of the F305L mutant to the 

protease inhibitors. We then selected both wild-type and the F305L mutant against 

nirmatrelvir. We also used F305L as parental virus because we found that this variant 

existed already in regional outbreaks (mainly in England), underlining the viability of this 

mutation and its potential replicative advantage. These clusters were mainly of the Delta 

subvariant AY.4. Delta was replaced gradually by Omicron, which may have ended the 

spread of the Delta F305L. Nevertheless, we also found combinations of the Omicron 

signature mutation P132H with F305L. We were therefore interested in finding potential 

combinations of F305L with further protease inhibitor resistance mutations, assuming 

that the combination would show a higher degree of resistance than single mutations, 

which we did observe. Mutations from both wild-type and F305L were selected that 

ultimately allow the mutants to escape the inhibitor. Resistance phenotypes were 

confirmed by dose response experiments and re-introduction of mutations into recently 

developed protease activity measurement systems17 as well as alternative methods such 
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as biochemical45 and cellular assays27. We collected a total of 39 unique mutations, of 

which Y54C, L167F, N203D and D216Y occurred twice independently. F305L was selected 

for with both GC376 and nirmatrelvir. Six out of 39 occurred in the catalytic site, two near 

the catalytic site, seven at the dimer interface, three in the autocleavage sites and 21 in 

the rest of the 3CLpro sequence (which we called “allosteric” mutations). First, we 

confirmed catalytic site mutants (Y54C, G138S, L167F and Q192R), where the resistance 

mechanism is likely straight forward: the steric disturbance of nirmatrelvir binding. Then, 

we tested the near-catalytic site substitution A194S, which is more prevalent than the 

previous catalytic site mutants in virus isolates. In GISAID, this mutation can be found in 

over 800 sequence depositions in the variants of concern Alpha, Gamma, Delta, Lambda, 

and Omicron. Changes of the residue A194 in general are frequent with over 3000 entries. 

Although it is not known if this mutant was selected for by the use of nirmatrelvir in 

patients, the fact that it is a resistant mutant and prevalent in virus sequences makes it a 

variant worth tracking. We further combined L167F and Q192R with the autocleavage site 

mutation F305L, which further increased the resistance. The combination of Y54C and 

L167F with the Omicron signature mutation P132H also conferred increased resistance, 

highlighting the potential relevance of these mutations for the Omicron variant. The 

substitution F305L was described as resistance mutation in this study. An adjacent 

mutant, T304I, was found in nirmatrelvir selection experiments with authentic SARS-CoV-

29 and the suggested mechanism was auto-cleavage site optimization. Given F305L is also 

likely an autocleavage site optimizing mutant, we did not test it further in a biochemical 

assay, since such assays use mature protease in which autoprocessing does not play a 

role. Lacking an appropriate method, we therefore did not investigate the mechanism of 

F305L. Nevertheless, such mutants merit further study in assays that can elucidate the 

mechanism of action. One technical particularity in the 3CLpro-On construct is that the 

nirmatrelvir IC50 values are higher than generally reported in the literature. However, IC50 

values are generally higher in cell-based assays than in biochemical assays as we described 

previously17. In brief, in the excess of an inhibitor and constant renewal of protease fusion 

protein, signals are expected to plateau later than in a biochemical assay with a fixed 

amount of enzyme. Furthermore, the screening method used in this study to assess 

mutants was originally developed as high-throughput screening tool for 3CLpro inhibitors 



SCIENTIFIC PUBLICATIONS 

 

Heilmann et al., 2022 146 
 

using a FluoroSpot reader that allows fast sampling17. We im-proved the assays’ sensitivity 

by changing the read-out method from FluoroSpot to flow cytometry-based sampling. 

Flow cytometry sampling is more sensitive, but also more time consuming. Flow 

cytometry read-outs captured milder degrees of inhibition and resulted in a more gradual 

signal increase; therefore, this resulted in lower IC50 values in 3CLpro-On assay (0.91 μM of 

nirmatrelvir, which is closer to the published range of 74.5 (66.5 to 83.4) nM)31. We cross-

validated several of our mutants in different assays. We confirmed the resistance data of 

L167F with a previously published cellular assay27 and the mutants Y54C, L167F and Q192R 

with a biochemical assay46. We showed also in a biochemical assay that the kinetic metrics 

of the mutants Y54C, L167F, and Q192R are attenuated to varying degrees. However, the 

VSV-chimeric viruses containing resistant 3CLpro showed little fitness loss. In three recent 

preprints, L167F as well as various mutants at Q192 were identified to be resistance 

mutations in authentic SARS-CoV-29,10,12. Lastly, we confirmed the viability and resistance 

of the single mutant L167F and in combination with F305L in a previously published 

recombinant SARS-CoV-2 expressing a reporter gene29,30, finally confirming the validity of 

our mutation prediction tool based on VSV as well as the resistance mutations identified. 

Genetically modifying highly pathogenic viruses such as SARS-CoV-2 can be considered as 

so-called gain-of-function experiments if the recombinant virus is more apt to cause 

disease, or if treatment is made more difficult than the wt variant. We therefore applied 

several safety measures such as using a virus for mutagenesis that was sequence identic 

to the Wuhan-1 variant. Therefore, compared to currently circulating viruses, it has not 

undergone extensive evolution and if set free, would unlikely be able to compete with 

current Omicron variants. Importantly, other previously described antivirals approved for 

use in humans have been shown to inhibit viral replication of this Wuhan-1 strain. 

Moreover, current vaccines used in humans to protect against SARS-CoV-2 have been 

developed based on the sequence of the Spike glycoprotein of this, or a similar, Wuhan-1 

strain. Thus, neutralizing antibody responses induced by these vaccines will be able to 

protect against these recombinant viruses. Secondly, the plaques the mutant 

recombinant viruses formed in Vero E6 cells were found to be smaller than that of wild-

type recombinant virus and replication kinetics also indicate mild attenuation. Third, the 

mutations introduced into recombinant SARS-CoV-2-mCherry had been found in clinical 
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samples already. In this study, we identified several mutations such as Y54C, G138S, 

L167F, Q192R, A194S and F305L in the SARS-CoV-2 3CLpro that confer resistance to the 

3CLpro inhibitors nirmatrelvir and GC376. To understand these mutations in light of the 

Omicron variant, we combined two of our most intensively studied mutations, Y54C and 

L167F with the Omicron 3CLpro signature mutation P132H. These results showed that the 

mutations are functional, thereby confirming their potential relevance in this context of 

the Omicron variant. Complementary structure modelling approaches based on Robetta 

and the Molecular Operating Environment (MOE) reveal potential effects of the catalytic 

site mutants Y54C, G138S, L141F, L167F and Q192R. Y54C and G138S seem not to directly 

affect nirmatrelvir binding, but may lead to a restructuring of the catalytic site, thereby 

indirectly affecting the binding site. L141F is likely impacting the early sampling of the 

catalytic pocket by nirmatrelvir. L167F may distort the distal region of the binding pocket. 

Lastly, Q192R could strengthen a polar interaction with nirmatrelvir, which may alter 

sequestration of the compound in an unfavorable position concurrent with destabilization 

of a loop containing important nirmatrelvir-catalytic site interaction partners such as 

Q189. Our study has limitations. The mutations generated in VSV occurred in an artificial 

polyprotein, which, like pp1a or pp1ab, comprises precursors for large protein subunits 

and requires 3CLpro dimerization for autocleavage. Nevertheless, the polyprotein 

structure is different, which could result in mutations not relevant in authentic SARS-CoV-

2. Along the same line, in this artificial polyprotein, only autocleavage or cis-cleavage 

occurs, whereas in SARS-CoV-2, the mature 3CLpro additionally cleaves distant or trans-

cleavage sites. It has been shown that autocleavage of 3CLpro in coronaviruses is a 

stepwise process with distinct N- and C-terminal autocleavage binding pocket 

confirmations47,48, where the C-terminal autocleavage occurs after N-terminal auto-

cleavage and might resemble a matured structure as in the trans- cleavage confirmation. 

Even so, this system could, in theory, disregard trans-cleavage specific mutants, if such 

exist. Finally, we did not elucidate the exact mode of resistance of the different mutants 

described in this study. Although we modelled catalytic site mutations and described a 

plausible mechanism for autocleavage site mutants, solving crystal structures was beyond 

the scope of this work and remains for future studies. In conclusion, our findings argue for 

a highly selective application of protease inhibitors to patients at increased risk of severe 
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disease, as extensive, unselective use is expected to rapidly lead to emergence of drug 

resistance. Furthermore, the combination of different drugs is a proven strategy to avoid 

resistance mutations, as has been shown for HIV3 and HCV2 therapy. As more compounds 

became available, combinations including classes of inhibitors targeting distinct viral 

functions, such as protease and polymerase inhibitors, may be an effective strategy. 

However, as we observed in this study, 3CLpro mutants can react differently to specific 

compounds. Therefore, even the combination of different protease inhibitors could lower 

the risk of viral escape. 

Materials and Methods  

Study design  

The overall rationale of the study was to develop a mutation selection tool based on VSV 

and to describe mutants as proof-of-concept for that tool. The study was performed on 

cell lines and in-silico, and no animal husbandry or human participants were involved. 

Human and monkey cell lines with replicating BSL-1, 2 and − 3 viruses were treated with 

protease inhibitors to observe resistance phenotypes in appropriate facilities. Viral titers 

were determined using TCID50 and plaque assays. Measurement readouts were 

fluorescence-based, detected by flow cytometry, ELISpot and multi-well readers. 

Autofluorescent fibers were excluded automatically and manually from spot counting in 

the ELISpot readout. Experiments were neither blinded nor randomly distributed to 

experimenters. We chose sample sizes empirically based on experience from former 

studies. At least two and up to four biologically independent replicates were performed 

per condition. Biologically independent meant distinct wells with the same condition, not 

multiple measurement of the same wells (technical replicates). Resistance phenotypes 

were reproduced at least twice, usually more often and in different combinations 

(comparing single mutants to each other and the wild-type or wild-type to single and 

double mutants). Representative measurements were chosen to compile graphs and 

figures. 
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Cloning strategies  

The chimeric VSV variant with 3CLpro instead of the intergenic region between G and L was 

cloned by Gibson assembly (New England Biolabs, NEB)49. A VSV-G plasmid50 was digested 

with KpnI and HpaI (NEB), removing a C-terminal part of G, the intergenic region and a 

small N-terminal part of L. Insert fragments were generated as follows. Missing C-terminal 

G with an additional overhang to the N-terminal cleavage site of 3CLpro was amplified with 

primers 33n-before-KpnI-for and G-cut1-rev. 3CLpro with its N- and C-terminal cleavage 

sites and a C-terminal overhang to L was amplified from Wuhan-1 (NCBI Reference 

Sequence: NC_045512.2) cDNA with primers cut1-for and cut2-L-rev. The N-terminal 

missing L sequence was amplified with primers cut2- L-for and 33n-after-HpaI-rev. For 

subsequent Gibson assembly, the fragments were ligated in a fusion PCR using the outer 

primers 33n-before-KpnI-for and 33n-after-HpaI-rev with all three fragments as 

templates. The cloning primers for VSV vectors are shown in table S12 and the annotated 

sequence is shown in data file S3.  

Name Sequence (5’-3’ direction) 

33n-before-KpnI-for GAACCGGTCCTGCTTTCACC 

G-cut1-rev CATTTTTCTAAAACCACTCTGCAAAACAGCTGAGGTGATCTTTCCAAGTCGGTTC 

cut1-for ATCACCTCAGCTGTTTTGCAG 

cut2-L-rev GTCGGTCTCAAAATCGTGGACTTCCATGATTGTTCTTTTCACTGCACTTTG 

cut2-L-for AGTGCAGTGAAAAGAACAATCATGGAAGTCCACGATTTTGAG 

33n-after-HpaI-rev GATGTTGGGATGGGATTGGC 

Table 1. Cloning primer for VSV vectors. 

3CLpro-Off and -On point mutants were generated by mutagenic Gibson assembly on 

parental plasmids (GenBank accession codes: 3CLpro-Off: 25684003; 3CLpro-On: 

2568399). For 3CLpro-Off mutants, a lentiviral expression plasmid expressing VSV L 

(identical sequence as blasticidin 3CLpro-Off plasmid without GFP and 3CLpro) was digested 

with HpaI, which removed the cPPT/CTS and CMV promoter sequences and a small N-

terminal part of L. This missing sequence was replaced with the identical sequence from 

3CLpro-Off with the addition of the N-terminal 3CLpro sequence up to the respective 

mutation site with primers blasticidin-for and 3CLpro-*mut-x*-rev, where *mut-x* is the 

mutation of interest. The C-terminal part of 3CLpro and the small missing fragment of L 
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were generated by PCRs on parental vectors with primers 3CLpro-*mut-x*-for and 33n-

after-HpaI-rev. For 3CLpro-On mutants, a lentiviral hygromycin vector (modified from 

Addgene pLenti CMVie-IRES-BlastR accession: #119863) was digested with NheI and PacI. 

N-terminal 3CLpro insert fragments with vector overhangs were generated with hygro-P-

for and 3CLpro-*mut-x*-rev. C-terminal 3CLpro insert fragments with vector overhangs 

were generated with 3CLpro-*mut-x*-for and P- hygro-rev. Double mutants were cloned 

by repeating the site directed mutagenesis with a second primer pair in combination with 

Gibson assembly on an already mutant-bearing plasmid. Cloning primers for 3CLpro-Off 

and -On mutant variants are shown in table S13.  

Name Sequence (5’-3’ direction) 

blasticidin-for CATTCGATTAGTGAACGGATCTC 

3CLpro-L167F-for GCACCATATGGAATTTCCAACTG 

3CLpro-L167F-rev CATGAACTCCAGTTGGAAATTCC 

3CLpro-Y54C-for CATGCTTAACCCTAATTGTGAAGATTTACTC 

3CLpro-Y54C-rev CTTACGAATGAGTAAATCTTCACAATTAGGG 

3CLpro-F305L-for GCTCAGGTGTTACTCTCCAAAG 

3CLpro-F305L-rev CACTGCACTTTGGAGAGTAACAC 

3CLpro-Q192R-for GTTGACAGGCAAACAGCACGAGCAGCTG 

3CLpro-Q192R-rev GTCCGTACCAGCTGCTCGTGCTGTTTG 

Omicron-for CAATGTGCTATGAGGCACAATTTCAC 

Omicron-rev CTTAATAGTGAAATTGTGCCTCATAGC 

A194S-for CAAACAGCACAAGCATCTGGTACG 

A194S-rev GTGTCCGTACCAGATGCTTGTGC 

G138S-for CCCAATTTCACTATTAAGAGTTCATTCCTTAATG 

G138S-rev ACCACATGAACCATTAAGGAATGAACTCTTAATA 

hygro-P-for CTGTTTTGACCTCCATAGAAGATTCTAGAGCTAGCATGGATAATCTCACAAAAGTTC 

P-hygro-rev GAGGGAGAGGGGCGGATCCCCTTAATTAACTACAGAGAATATTTGACTCTCGC 

Table 2. Cloning primer for 3CLpro-Off and -On mutant variants. 

Cell lines  

BHK-21 cells (American Type Culture Collection, ATCC) were cultured in Glasgow 

Minimum Essential Medium (GMEM) (Lonza) supplemented with 10% fetal calf serum 

(FCS), 5% tryptose phosphate broth, and 100 units/ml penicillin and 0.1 mg/ml 



SCIENTIFIC PUBLICATIONS 

 

Heilmann et al., 2022 151 
 

streptomycin (P/S) (Gibco). 293 T cells (293tsA1609neo, ATCC), and 293- VSV (293 

expressing N, P-GFP and L of VSV)51 were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% FCS, P/S, 2% glutamine, 1x sodium pyruvate and 1x non-

essential amino acids (Gibco). Vero E6 (ATCC CRL-1586) were cultured in DMEM 

supplemented with 5% FCS (VWR) and 1% penicillin−streptomycin−glutamine (PSG) 

solution (Corning). A549-hACE2 (Biomedical Resource Ontology NR- 53821) were grown 

in DMEM supplemented with 4 mM L-gluta-mine, 4500 mg/l glucose, 1 mM sodium 

pyruvate, 1500 mg/l sodium bicarbonate, 10% FCS, 1x non-essential amino acid solution 

(Gibco) and 100 μg/ml blasticidin (Gibco). 

Virus recovery  

VSV-G-3CLpro-L was rescued in 293 T cells by CaPO4 transfection of whole-genome VSV 

plasmids together with T7-polymerase, N-, P-, M-, G- and L expression plasmids as helper 

plasmids52. Briefly, genome and helper plasmids were transfected into 293 T in the 

presence of 10 μM chloroquine to avoid lysosomal DNA degradation. After 6 to 16 hours, 

chloroquine was removed, and cells were cultured until cytopathic effects occurred. M 

and G proteins were used as helper plasmids; although these proteins are optional in the 

recovery of VSV, they were chosen here as a precaution to support the rescue of a 

potentially attenuated virus variant. After the rescue, viruses were passaged on 293-VSV 

cells and plaque purified twice on BHK-21 cells. ∆P and ∆L VSV variants expressing dsRed 

were produced on replication supporting 293-VSV cells. VSV-G-3CLpro-L was fully 

replication competent and produced on BHK-21 cells. 

Replication kinetics, TCID50 assays, and dose responses 

Initial replication kinetics (wild-type versus F305L) were performed as single-step kinetics. 

105 BHK-21 cells per well were seeded in 24- well plates one day before infection. Cells 

were infected in duplicate with an MOI of 5 of VSV 3CLpro wild-type or the F305L variant. 

One hour after infection, the medium was removed, cells were washed with phosphate-

buffered saline (PBS), and fresh medium was added. Supernatant was collected at the 

indicated time points and stored at −80°C until further analysis. For quantification, TCID50 

assays were performed as described previously53. In short, 100 μl of serial dilutions of 
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virus were added in octuplicates to 103 BHK-21 cells seeded in a 96-well plate. Six days 

after infection, the TCID50 values were read out and titers were calculated according to 

the Kaerber method54. For wild-type versus different mutants replication kinetics, multi-

step growth kinetics were performed. 105 BHK-21 cells per well were seeded in 24-well 

plates one day before infection. Cells were infected in duplicates with an MOI of 0.5 of 

VSV 3CLpro wild-type or mutant variants. For initial dose response experiments, 5 x 104 

BHK-21 cells per well were seeded in 48-well plates one day before infection. Cells were 

infected in duplicates with a MOI of 0.05 of VSV 3CLpro wild-type or mutant variants and 

indicated concentrations of nirmatrelvir were added to the wells. After 48 hours, 

supernatants were collected and titrated to determine the TCID50. For mutant comparing 

dose response experiments, 5 x 104 BHK- 21 cells per well were seeded in 48-well plates 

one day before infection. Cells were infected in duplicates with an MOI of 0.05 of VSV 

3CLpro wild-type or mutant variants and indicated concentrations of nirmatrelvir added to 

the wells. To prevent initial escape or further mutation in wild-type or already mutation-

bearing viruses (“intra-assay mutants”), respectively, supernatants of all viruses were 

collected after the first mutant (Q192R, F305L) showed a massive cytopathic effect at 100 

μM nirmatrelvir (at about 24 hours after infection). Initial dose responses (wild-type 

versus F305L) were performed as described above, but the supernatant was collected 

after 48 hours. 

Viral RNA isolation and 3CLpro sequencing  

VSV-G-3CLpro-L RNA was isolated with E.Z.N.A. Viral RNA Kit (Omega Bio-Tek Inc.) or 

NucleoSpin RNA Virus (Macherey- Nagel GmbH). BHK-21 cells were infected with VSV-G-

3CLpro-L wild-type and F305L (3CLpro) mutant in 96-well plates. Virus-containing 

supernatants were collected from individual 96-wells and the RNA was purified from the 

supernatants according to manufacturers’ instructions. Then, cDNA was synthesized from 

isolated viral RNA by RevertAid RT Reverse Transcription Kit (Thermo Fisher Scientific). 

3CLpro sequence was amplified by PCR with primers (for: CTCAGGTGTTCGAACATCCTCAC 

and rev: GAT GTTGGGATGGGATTGGC) and sent for sequencing (MicroSynth AG). 

Obtained sequences were mapped to the 3CLpro-wt (Wuhan- 1) reference sequence in 

Geneious Prime 2022.0.2 and examined for mutations. 
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Mutation selection assay  

104 BHK-21 cells per well in a 96-well plate were seeded one day before infection with 

wild-type VSV-G-3CLpro-L or VSV-G- 3CLpro-L-F305L at an MOI of 0.01 and indicated 

nirmatrelvir doses. Each virus variant occupied 48 wells of the 96-well plate. Wells that 

displayed cytopathic effect after two days (25 out of 48 from parental wild-type and 17 

out of 48 from parental F305L) were further passaged with increasing concentrations of 

nirmatrelvir with each passage (wild-type: 30, 40 and 50 μM; F305L: 50, 75 and 100 μM). 

Table S1 indicates at which passage a pure mutant virus could be distinguished by Sanger 

sequencing, such that only one base-pair peak appeared in the chromatogram instead of 

a mixture with the parental virus. Only pure mutants are displayed in Fig. 2 and table S1. 

Expression and purification of his-tagged 3CLpro and point mutations  

Plasmids containing cDNA of SARS-CoV-2 main protease 3CLpro (pMCSG9255) and mutants 

thereof were prepared as described in the following. Plasmids were cloned by site-

directed mutagenesis with primers of table S13 on pMCSG92. 100 ng of each plasmid was 

applied to 50 μl of thawed competent BL21(DE3) TUNER E. coli (Merck) on ice in 1.5 ml 

tubes. Bacterial suspensions containing the plasmids were flicked and incubated for 30 

minutes on ice. Subsequently, bacteria were heated to 42°C for 90 seconds in a thermo-

mixer without shaking and put back on ice for 5 minutes. 400 μl of NZCYM Medium 

produced in-house (NZ amine (Art.-Nr. CP76.1, Roth) 10.0 g, NaCl 5.0 g, casamino acids 

(Gibco) 1.0 g, yeast extract (Art. Nr. 2363.2, Roth) 5.0 g, MgSO4 x 7 H2O 2.0 g, ddH2O to 1 

L, adjusted to pH 7.4) was added to each bacterial suspension, and the bacteria were 

amplified for 1 hour at 37°C in a bacterial shaker in 1.5 ml tubes. Meanwhile, LB agar plates 

containing selection antibiotics (ampicillin) were prepared and incubated at room 

temperature. 200 μl of bacterial culture was crossed out on individual plates and 

incubated overnight at 37°C. Single colony formation was observed the following day. 

Individual colonies were picked and placed in 5 ml of NZCYM medium supplemented with 

selection antibiotics, and amplified overnight at 37°C. The next day, overnight cultures 

were amplified in 1 L of NZCYM medium supplemented with selection antibiotics to an 

optical density (OD) of 0.2, after which protein expression was induced by applying 1 mM 

isopropyl-β-D-thiogalactopyranosid (IPTG). After 5 hours bacteria were harvested by 
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centrifugation and the supernatant discarded. Bacterial pellets were frozen at −20°C for 

further use. Pellets were suspended in 10 ml of Ni-NTA running buffer (20 mM Tris-HCl, 

300 mM NaCl, 10 mM Imidazole, adjusted to pH 7.4) and transferred into 50 ml tubes. 

Bacteria were lysed using an ultra-sonic probe on ice. The homogenates were centrifuged 

at 10,000 x g for 10 minutes and the supernatant was filtered using 0.45 μM and 0.22 μM 

syringe filter units. After preparing a Ni-NTA agarose column (Invitrogen, Ni-NTA Agarose 

R90115) and washing with 30 ml Ni-NTA running buffer, the filtered homogenate was 

applied to the column, and the flow-through was collected. The column was again washed 

with 3 x 10 ml of Ni-NTA running buffer. The His-tagged protein bound to the Ni-NTA resin 

and was then eluted with 3 x 1 ml of Ni-NTA elution buffer (20 mM Tris-HCl, 300 mM NaCl, 

200 mM imidazole, adjusted to pH 7.4). The obtained protein solutions were dialyzed at 

4°C overnight against a storage buffer (Tris-HCl 1 mM, NaCl 4 mM, KCl 2.2 mM, TWEEN-

20 0.04 vol-%, DTT 3 mM, glycerol 20.2 vol-%, adjusted to pH 8). Eluted protein samples 

were further purified using size exclusion chromatography (SEC) with fast protein liquid 

chromatography (FPLC) (ÄKTA Pure FPLC System, Superdex 200 10/300 GL). At each step 

of the protocol, samples for SDS-PAGE analysis were obtained, and the successful 

expression of the 3CLpro proteins was monitored by SDS-PAGE and Coomassie R staining. 

The final degree of protein purity was estimated to be greater than 90% based on 

Coomassie R staining, similar among the different preparations of 3CLpro wild-type and 

mutant forms. 

Screening assay with Fluorospot read-out  

3 x 105 cells were seeded per well in 6-well plates and transfected one day after seeding 

with 3CLpro plasmids using TransIT-PRO (Mirus Bio LLC) and incubated overnight. Then, 

cells were seeded into a 96-well plate with 2 x 104 cells per well in 50 μl complete growth 

medium. Directly after seeding, compounds and virus (MOI 0.1) were added in 50 μl 

complete growth medium to wells. After 48 to 72 hours, supernatants were removed, and 

fluorescent spots counted in a Fluoro/ImmunoSpot counter (CTL Europe GmbH). Longer 

incubation times of 72 hours increased the overall signal and were chosen in order to 

achieve a clear signal of the more resistant double mutants, which as expected have a 

lower signal output in 3CLpro-On assays. The manufacturer-provided software CTL 



SCIENTIFIC PUBLICATIONS 

 

Heilmann et al., 2022 155 
 

switchboard 2.7.2. was used to scan 90% of each well area concentrically to exclude 

reflection from the well edges, and counts were normalized to the full area. Automatic 

fiber exclusion was applied while scanning. The excitation wavelength for dsRed was 570 

nm, the D_F_R triple band filter was used to collect fluorescence. In addition, manual 

quality control for residual fibers was performed. To increase comparability between 

3CLpro-On and -Off signals, we normalized dsRed events with the following strategies. In 

3CLpro- On, the highest compound concentrations would not reach the same value due to 

the different response of each mutant. Therefore, we normalized to the highest mean of 

the experiment, which was the wild-type signal. In 3CLpro-Off, untreated wells reached the 

same signal yield in wild-type and mutants. Therefore, we normalized the signal to each 

individual highest mean of the construct. 

Screening assay with flow cytometry read-out  

3 x 105 cells were seeded per well in 6-well plates and transfected with 3CLpro plasmids 

using TransIT-PRO (Mirus Bio LLC) and incubated overnight. Then, cells were seeded into 

a 96-well plate with twenty thousand cells per well in 50 μl. Compound and virus (MOI 

0.1) were added in 50 μl to reach desired concentrations. After two days, cells were 

detached with 0.05% Trypsin-EDTA (Gibco) and transferred to a 96-well round-bottom 

plate (TPP Techno Plastic Products AG) for automatic sampling by flow cytometry using a 

BD FACSCanto II.  Gates were set to distinguish live and dead cells and to exclude doublets. 

Singlet cells were divided into dsRed positive and negative based on reference to samples, 

which were infected, but not treated with inhibitor (17). Samples were analyzed using BD 

FACSDiva 8.0.1 (BD Biosciences). 

Cross validation with orthologous cellular Src-3CLpro-tat- Luc assay  

3x106 293 T were seeded per well in a 6-well dish. 24 hours later, they were transfected 

with 2 μg of the wild-type Src-3CLpro-Tat- Luc or mutants thereof with TransIT-LT1 (Mirus, 

catalog number MIR 2304). Four hours after transfection, cells were washed with PBS, 

trypsinized, resuspended in medium and counted. 2x105 cell per well were seeded in 50 

μl medium in a flat-bottom 96-well plate (Greiner). Inhibitor dilution series were added in 

2-fold excess to required concentrations in 50 μl medium. After 44 hours, medium was 
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removed and 50 μl of Bright-Glo reagent (Promega) added to each well. Cells were 

incubated for five minutes in the dark and then transferred to a white flat 96-well plate 

(CLS3600, Corning) for measuring luminescence on a Synergy H1 plate reader (Agilent). 

The percent inhibition was calculated with the following formula.  

% 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 100 − (
100

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑢𝑚𝑖𝑛𝑒𝑠𝑐𝑒𝑛𝑠𝑒
) 

3CLpro enzymatic activity  

Wild type and variant proteases were produced in-house as described in 3CLpro 

purification method section. Solution of wild type 3CLpro and variants at 85 ng / 30 μl were 

prepared in appropriate buffer (20 mM Tris/HCl pH 8, 150 mM NaCl, 0.1 mg/ml BSA, 1 

mM DTT) and these 30 μL were added to each well in a black 96- well plate (BPS 

Biosciences) to get a final concentration of 50 nM in 50 μl/well. The substrate Ac-Abu-Tle-

Leu-Gln↓MCA (Acetyl-L-α- aminobutyroyl-L-tert-leucyl-L-leucyl-L-glutamine α-(4-methyl-

coumaryl-7-amide)) was purchased from Peptide Inc., resuspended in dimethyl sulfoxide 

at 5 mM concentration. 20 μl buffer with diluted substrate was then added to the protein 

solutions at different concentrations. The plate was immediately placed inside a GloMax 

Explorer reader (Promega), and fluorescence emission measured with a substrate-

appropriate filter. To determine enzymes initial velocities, we plotted RFU (relative 

fluorescent units) on the y-axis and time (min) on the x-axis. We performed a simple linear 

regression analysis. Fitting values from zero up to 60 minutes were used in a range that 

had a linear increase. The resulting slopes represented the initial velocity expressed as 

RFU/min for each protein variant at each substrate concentration. Slope values were 

plotted (y-axis) against the substrate concentration (x-axis). Finally, the obtained values 

were fitted using the “Michaelis-Menten” equation built-into GraphPad Prism 9 to 

extrapolate the kinetic parameters Km and Vmax. 

𝑌 =
𝑉𝑚𝑎𝑥 ∙ 𝑋

𝐾𝑚 + 𝑋
 

kcat was calculated dividing Vmax by [ET], where [ET] is the give enzyme concentration. Wild 

type and variant 3CLpro catalytic efficiencies were determined as kcat/KM.  
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Cross validation with biochemical 3CLpro inhibition assay  

The biochemical assay used to confirm mutations was based on the 3CLpro activity assay 

from BPS Biosciences, catalogue number #78042–2. The 3CLpro in the kit was replaced by 

an in-house produced 3CLpro and mutants thereof, as described in 3CLpro purification. 

Solutions of wild-type 3CLpro and mutants at 5 ng/μl in 30 μl buffer (composition described 

above) were prepared according to the kit’s manual. Ten μl of five-fold excess to tested 

nirmatrelvir concentrations were added to the 30 μl of 3CLpro solution and incubated for 

30 minutes. Then, 10 μl of fluorogenic substrate (DABCYL-KTSAVLQSGFRKME-EDANS) was 

added (generating a in total a 1:5 dilution of the excess nirmatrelvir and therefore final 

concentrations) and incubated for 4 hours. Fluorescence was induced with 365 nm UV-

light and read at 460 nm in a Glomax Explorer (Promega). Blanks (assay buffer plus 

substrate) values were subtracted from sample values.  

Replication kinetics with recombinant SARS-CoV-2 expressing mCherry  

Monolayers of Vero E6 cells (6-well plate, 106 cells per well, triplicates) were infected with 

the indicated viruses at MOI 0.01. After viral absorption for 3 hours at 37°C, the 

supernatant was discarded, the cells were washed three times with PBS, and post-

infection media (3 ml/well) was added. At the indicated time points, the supernatant (300 

μl/well) was collected and titrated by plaque assay (29).  

Cross-validation with recombinant SARS-CoV-2 (rWA1) expressing mCherry  

A monolayer of A549-hACE2 cells was infected with 300 plaque- forming units (PFU) of 

indicated viruses in quadruplicates at 37°C. After viral adsorption for 1 hour, the 

supernatant was discarded, and the cells were washed twice with PBS. Then, phenol red-

free post-infection medium (DMEM +2% fetal bovine serum +1% penicillin-streptomycin-

glutamine (PSG)) containing the indicated concentrations of nirmatrelvir was added to 

each well. The mCherry intensity was determined at 48- and 72-hours post-infection 

under a Synergy LX Multimode Reader (Agilent). Wells without drug or virus were used as 

negative controls or baseline signal. Positive controls were wells with virus, but no drug. 

Infection percentages of wells with different amounts of inhibitor were calculated by 

subtracting the negative control (mean of wells without virus or drug) and then dividing 
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by the positive control (mean of wells with virus but without drug). Data were analyzed in 

GraphPad Prism 9 and IC50 values were calculated as the highest dilution of the 

nirmatrelvir-containing sample that prevents 50% plaque formation in infected cells, 

determined by a sigmoidal dose-response curve (see statistical analysis section).  

IC50 and EC50 calculations  

In this study, different assay systems were used to generate resistance data, namely VSV-

based cellular assays with FluoroSpot and flow cytometry read-outs, an orthologous cell-

based assay with a luciferase read-out, as well as a  biochemical assay  and SARS-CoV-2-

mCherry assay  with fluorescence read-outs. Al-though the magnitudes of resistance are 

different in these assays, the tendencies agree. We expected the dynamic range of the 

3CLpro cellular assays to be greater than in a biochemical assay, where there is a fixed 

amount of enzyme. In cells, the continuous renewal of protease-viral fusion proteins in an 

excess of inhibitor likely led to a later plateauing of the signal. At lower concentrations, 

compound molecules are depleted and the signal plateaus. In FluoroSpot read-outs, the 

3CLpro-On assay data were normalized to the highest mean value in an experiment. 3CLpro-

Off data were normalized to the highest value of each construct in an experiment. In the 

flow cytometry experiments, 3CLpro-On assay data were also normalized to the highest 

value of each construct in an experiment. For purified wild-type and mutant enzymes, IC50 

values were determined using the biochemical assay “3CL Protease, Untagged (SARS-CoV-

2)” from BPS Biosciences with the assay’s substrate DABCYL-KTSAVLQSGFRKME-EDANS. 

IC50 and EC50 calculations and statistical analysis for all assays were performed with 

GraphPad Prism 9 (see statistical analysis section). 

Nanopore sequencing of recombinant SARS-CoV-2 (rWA1) expressing mCherry  

To validate the sequence of the recombinant SARS-CoV-2 (rWA1) expressing mCherry, we 

used the Nanopore sequencing “Midnight protocol”, version 656. Primer pools generating 

1200 bp overlap-ping amplicons were purchased from Integrated DNA Technologies, as 

referenced in the abovementioned protocol. The sequencing reactions were prepared 

using the Rapid Barcoding Kit SQK-RBK110.96 (Oxford Nanopore Technologies) and were 

performed in a sequencer (MinION Mk1B) using a proprietary flowcell (R9.4.1, Oxford 
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Nanopore Technologies). Electrical signals are translated into nucleotide sequences 

(basecalling). Sequenced reads were sorted into separate files for each sample (de-

multiplexing). Demultiplexing was done using the super high accuracy model in Guppy 

6.1.5. Output sequences generated so called fastq files and sequences below 200 and 

above 1200 bp were removed. Sequences between 200 and 1200 bp were assembled with 

the algorithm epi2me-labs/wf-artic v0.3.18 in Nextflow 22.04.4. The SARS-CoV-2 lineage 

pangolin 4.1.1 was used to map the sequences. A visualization application (Nextclade 

2.4.0) was used to check mutations.  

Protein structure preparation for molecular modelling  

The three-dimensional structure of the SARS-CoV-2 3CLpro complexed with nirmatrelvir 

was retrieved from the Protein Data Bank (PDB code: 7RFW, method: X-ray diffraction, 

resolution: 1.73 Å (31)) and prepared for molecular modeling evaluations exploiting 

several tools implemented in the Molecular Operating Environment (MOE) 2022.02 suite 

(16). Specifically, the “Structure Preparation” tool was used to assign each protein residue 

with alternative conformations to the one characterized by the highest occupancy value, 

and the “Protonate 3D” program was exploited to assign each titratable amino acid to the 

most appropriate protonation state at a pH of 7.4. Finally, the coordinates of hydrogen 

atoms were energy minimized using the AMBER10:EHT force field57 until a gradient of 0.1 

kcal mol−1 Å−2 was reached.  

In silico alanine and resistance mutation scanning  

An in-silico evaluation of the impact of SARS-CoV-2 3CLpro mutations on both the stability 

of the protein and the affinity towards nirmatrelvir was conducted using the “Protein 

Design” module of MOE, using the previously mentioned complex structure. Particularly, 

the “Alanine Scan” and “Resistance Scan” tools were used to perform two virtual 

mutagenesis experiments. First, we applied the “Alanine Scan” interface, in which each of 

the 612 amino acids composing the dimeric SARS-CoV-2 3CLpro was mutated into an 

alanine residue, calculating at each given time the energy difference between the 

mutated protein and the wild-type form concerning both the potential energy of the 

protein itself (dStability) and the affinity towards nirmatrelvir (dAffinity). Values were 
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then color plotted on the crystal complex of nirmatrelvir and SARS-CoV-2 3CLpro using 

UCSF Chimera58. Then we used the “Resistance Scan” interface to investigate the impact 

of a selected pool of mutations: Y54C, G138S, L141F, L167F, and Q192R. For both types of 

calculations, the conformational sampling was carried out through LowModeMD59, using 

the AMBER10:EHT forced field coupled with the Generalized Born implicit solvent 

model60; the dAffinity value was determined through the GBVI/VSA61 method. 

Statistical analysis  

Raw and normalized data are provided in Data file S4. Dose response data points of 3CLpro-

On, Off and biochemical assays were fitted using a four-parameter logistic regression 

(sigmoid, 4PL, X is concentration). IC50 values were extrapolated as the concentration 

value at which the signal was 50% between the top and bottom plateaus of each sub-

dataset. Dose responses curves of the Src-3CLpro-Tat-Luc-based assay were fitted with the 

same regression, setting X as 2 for IC50 extrapolation.  

𝑌 = 𝐵𝑜𝑡𝑡𝑜𝑚 +  
𝑇𝑜𝑝 − 𝐵𝑜𝑡𝑡𝑜𝑚

1 + (
𝐼𝐶50

𝑋 )𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒
 

Data obtained with flow cytometry were normalized and fit based using the non-linear 

regression function “[Agonist] vs. normalized response”. The EC50 values were 

extrapolated as the medium value between the top and bottom plateaus of each sub-

dataset. 

𝑌 =  
100 ∗ 𝑋

𝐸𝐶50 + 𝑋
 

Nirmatrelvir dose response curves of recombinant SARS-CoV-2 expressing mCherry were 

normalized and fitted using the non-linear regression function “log(inhibitor) vs. 

normalized response - variable slope”. 

𝑌 =
100

1 + 10log(𝐼𝐶50−𝑋)∗𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒
 

Kinetic parameters and catalytic activity of wild-type and mutant 3CLpro enzymes were 

calculated as described in the corresponding method section. 95% confidence intervals 

were generated by the de-scribed fittings and are provided in supplementary tables 
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together with IC50 and EC50 values. All statistical analyses were performed with GraphPad 

Prism 9. 
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Abstract  

The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome 

replication and transcription of the coronavirus, making it a promising target for drugs 

against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro 

adopts an inactive state that has never been observed before, called new-inactive. It is 

shown that the oxyanion loop, which is involved in substrate recognition and enzymatic 

activity, adopts a new catalytically incompetent conformation and that many of the key 

interactions of the active conformation of the enzyme around the active site are lost. 

Solvation/desolvation energetic contributions play an important role in the transition 

from the inactive to the active state, with Phe140 moving from an exposed to a buried 

environment and Asn 142 moving from a buried environment to an exposed environment. 

In new-inactive Mpro a new cavity is present near the S2′ subsite, and the N-terminal and 

C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization 

of the dimeric assembly. This novel conformation is relevant both for comprehension of 

the mechanism of action of Mpro within the catalytic cycle and for the successful structure-

based drug design of antiviral drugs. 

1. Introduction 

To face the global COVID-19 pandemic, besides prevention via the use of vaccines, it is 

also essential to develop targeted therapeutic options for patients infected by the SARS-

CoV-2 betacoronavirus. In general, one of the most promising classes of antiviral drug 

candidates are protease inhibitors, small molecules that are able to inhibit enzymes 

involved in virus replication within the cell. Very low sequence identity with human 

proteases and distinct cleavage-site specificities suggest that viral enzymes can be 
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inhibited with very low associated toxic effects (`off-target' effects), if any. Indeed, 

protease inhibitors have already been efficient in the treatment of viral pathogens such 

as hepatitis C virus1  and human immunodeficiency virus (HIV)2. In coronaviruses, the main 

protease, Mpro, is a cysteine peptidase that is essential for the replication cycle of positive-

sense, single-stranded RNA coronaviruses3, including SARS-CoV-2. It is also known as 3C-

like protease or 3CLpro from the similarity of its active site and its substrate specificity to 

those of the picornavirus 3C protease4. Mpro is involved in the proteolytic processing of 

the two overlapping polyproteins pp1a and pp1ab, with the formation of individual 

mature nonstructural proteins5, and as such it is a validated antiviral drug target6–8. 

Currently, there are at least two SARS-CoV-2 Mpro inhibitors in phase I clinical trials as 

candidates with potent antiviral activity: the orally administered PF-073213329 and the 

intravenously administered PF-0083523110. 

SARS-CoV-2 Mpro (nsp5), a 306-amino-acid polypeptide of molecular weight 33.8 kDa11, 

shares 96% sequence identity and a very similar 3D structure with SARS-CoV Mpro [0.53 Å 

r.m.s.d. between PDB entries 6y2e12 and 2bx413]. Very similar 3D structures have also 

been found for other coronaviral Mpros such as those from Porcine transmissible 

gastroenteritis virus (TGEV), which was the first structure of a coronaviral Mpro 4, Human 

coronavirus (HCoV) strain 229E14, Infectious bronchitis virus (IBV)15 and MERS-CoV16. This 

structural similarity, which is particularly relevant around the active site, leads to the 

possibility of the development of pan-coronaviral drugs. Mpro exists in an equilibrium 

between a monomer and a homodimer (with the two protomers roughly perpendicularly 

oriented; Fig. 1a), with an apparent Kd of between 0.8 and 14 µM for the SARS-CoV 

enzyme, depending on the experimental conditions17. For SARS-CoV-2 Mpro, the Kd has 

been estimated to be 2.5 µM by analytical ultracentrifugation12 and 0.14 µM by native 

mass spectrometry18. Unlike 3C protease, only the SARS-CoV Mpro dimer shows enzymatic 

activity4 and the correct shape of the substrate-binding site, particularly of the S1 subsite; 

the correct conformation for productive catalytic events is linked to the dimerization 

process. It has been proposed that the dimerization process has a direct regulatory role 

of the activity of Mpro during the coronaviral replication process19,20. Given the high 

structural similarity, particularly at the dimeric interface, it was reasoned that 
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dimerization of the enzyme is also necessary for the catalytic activity of SARS-CoV-2 Mpro 

12.  

 

Figure 1. SARS-CoV-2 Mpro architecture, free form (PDB entry 6y2e). (a) Dimeric assembly of the protease 

with the main structural features discussed in the text highlighted. Protomer A is in blue-based colors and 

protomer B is in yellow/red-based colors. The two oxyanion loops and the two catalytic cysteines 145 are 

shown in green. (b) Comparison between different oxyanion-loop conformations of Mpro: active in SARS-

CoV-2 Mpro (PDB entry 6y2e) in pink, collapsed-inactive in SARS-CoV Mpro (PDB entry 1uj1 chain B) in magenta 

and new-inactive in SARS-CoV-2 Mpro (this work) in green. 

Each Mpro protomer is composed of three structural domains (Fig. 1a)4. The chymotrypsin-

like and 3C protease-like β-barrel domains I (residues 1–99) and II (residues 100–182) 

directly control the catalytic event. The substrate-binding site is between these two 

domains and comprises several subsites for substrate binding (from S1 to S6 and from S1′ 

to S3′), corresponding to the P1–P6 and P1′–P3′ amino-acid positions of the substrates 

(according to the convention P6–P5–P4–P3–P2–P1↓P1′–P2′–P3′, where ↓ indicates the 

hydrolyzed peptide bond)14. Enzymatic proteolysis by SARS-CoV-2 Mpro at the 11 cleavage 

sites on the viral polyprotein occurs on the C-terminal side of a conserved glutamine in 

position P1, with the most common consensus sequence being Leu-Gln↓(Ser/Ala), 

indicating that specificity is determined mostly by the P2, P1 and P1′ positions8. Glutamine 

in position P1 is fully conserved not only for SARS-CoV-2 but also in substrates of SARS-

CoV and MERS-CoV. Prime recognition sites at the C-terminus of P1′ are not conserved. 
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Mpro subsites S4, S2, S1 and S1′ have been identified as the most relevant subsites for 

substrate binding, with regions in the S5, S4 and S2 sites showing considerable 

conformational flexibility upon binding different chemical groups21. The chymotrypsin-like 

fold, including domains I and II, is connected by a 16-residue flexible loop to the extra α-

helical domain III (residues 198–306; Fig. 1a). Domain III is absent in other RNA virus 3C-

like proteases and plays a key role in enzyme dimerization and activity regulation of Mpro 

4,22. 

At variance with the classical catalytic triad of chymotrypsin-like proteases, coronaviral 

Mpro has a catalytic dyad, consisting of His41 and Cys145 in SARS-CoV-2 (Fig. 1a); a 

conserved water molecule occupies a position analogous to that of the side chain of the 

third member of the catalytic triad (for instance, aspartate in chymotrypsin and 

asparagine in papain) and forms hydrogen bonds to the side chains of His41, His164 and 

Asp187. It has been proposed that this conserved water is involved in the catalytic event4. 

A key role in the proper function of the enzyme is also played by the N-finger (residues 1–

7) as the N-terminal tail of one protomer interacts and stabilizes the binding site (S1 

subsite) of the other protomer23. Indeed, deletion of the N-finger hampers dimerization 

in solution and abolishes the proteolytic activity. Both the N-finger and the C-terminus are 

results of the autoproteolytic processing of Mpro. Accordingly, in the mature dimeric 

enzyme both termini of one protomer face the active site of the other. 

The important conserved residues Phe140, Leu141, Asn142, Ser144 (SARS-CoV-2 

numbering) are part of a structural element that is essential for a productive catalytic 

event, the so-called oxyanion loop comprising residues 138–145, which globally lines the 

binding site for glutamine P1. The central role of the oxyanion loop in the catalytic reaction 

mechanism of serine proteases and cysteine proteases has been extensively 

characterized24. The correct positioning of the oxyanion hole, which is part of the oxyanion 

loop (formed by the backbone of Gly143, Ser144 and Cys145 in SARS-CoV-2 Mpro), is 

essential for stabilization of the transient tetrahedral acyl (oxyanion) transition state via 

the hydrogen-bond donor properties of the amides4,23,25. In the known crystal structures 

of SARS-CoV and SARS-CoV-2 Mpro, the oxyanion loop adopts essentially the same `active' 
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conformation; here, we take PDB entry 6y2e as a reference for this conformation12,26–28. 

A specific conformation is defined to be active when the amino acids known to participate 

in the chemical reaction catalyzed by the enzyme are properly positioned and oriented 

for the reaction to proceed. We also term this conformation catalytically competent. 

Variations from the active conformation of the oxyanion loop are found in a few forms of 

the enzyme, which were consequently considered to be inactive or catalytically 

incompetent, as in protomer B of SARS-CoV Mpro (PDB entries 1uj1 and 1uk2)29, in the 

monomeric R298A mutant of SARS-CoV Mpro (PDB entry 2qcy)30 and in the C172A mutant 

of 3Cpro from the picornavirus hepatitis A virus31, as well as in IBV 3CLpro (PDB entries 2q6f 

and 2q6d)15. In the inactive monomeric R298A mutant (PDB entry 2qcy), the region of the 

oxyanion loop, Ser139-Phe140-Leu141, is converted into a short 310-helix. In PDB entry 

1uj1 (SARS-CoV Mpro crystallized at pH 6) the oxyanion loop of one of the two protomers 

exists in a `collapsed' conformation (similar to that found in PDB entry 2qcy), which is 

considered to be catalytically incompetent, in which the hydrogen bond between Glu166 

and His172 that is important for activity is broken29. In the following, we will refer to these 

two inactive conformations with similar oxyanion-loop conformations as collapsed-

inactive (Fig. 1b). In the vast majority of SARS-CoV and SARS-CoV-2 Mpro crystal structures, 

the dimer is crystallographic32; that is, there is only one molecule in the asymmetric unit 

and therefore the two protomers are perfectly identical. In the very few inactive 

structures, apart from the artificially induced monomeric forms, the dimer is formed by 

two different molecules present in the asymmetric unit, one of which is in the inactive 

state and the other of which is in the active state. Based on molecular-dynamics 

simulations coupled to activity data in solution, it was suggested that only one protomer 

at a time is active in the dimer17. 

Here, we describe a new inactive structure (called new-inactive) of the main protease of 

SARS-CoV-2 that is clearly distinct from both the active and the known collapsed-inactive 

structures, with an oxyanion-loop conformation that is very different from those 

previously described (Fig. 1b). In Section 4, we argue that this conformation has an 

important functional role as part of the catalytic cycle of coronaviral Mpro.  
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2. Materials and methods 

2.1. Recombinant protein production and purification 

The plasmid PGEX-6p-1 encoding SARS-CoV-2 Mpro 12 was a generous gift from Professor 

Rolf Hilgenfeld, University of Lübeck, Lübeck, Germany. Recombinant protein production 

and purification were adapted from Zhang et al.12 (where the structure of Mpro in the 

active form was presented; PDB entry 6y2e). The expression plasmid was transformed 

into Escherichia coli strain BL21 (DE3) and then precultured in YT medium at 37°C (100 µg 

ml−1 ampicillin) overnight. The preculture was used to inoculate fresh YT medium 

supplemented with antibiotic and the cells were grown at 37°C to an OD600 of 0.6–0.8 

before induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). After 5 h at 

37°C, the cells were harvested by centrifugation (5000g, 4°C, 15 min) and frozen. The 

pellets were resuspended in buffer A (20 mM Tris, 150 mM NaCl pH 7.8) supplemented 

with lysozyme, DNase I and PMSF for lysis. The lysate was clarified by centrifugation at 12 

000g at 4°C for 1 h and loaded onto a HisTrap HP column (GE Healthcare) equilibrated 

with 98% buffer A/2% buffer B (20 mM Tris, 150 mM NaCl, 500 mM imidazole pH 7.8). The 

column was washed with 95% buffer A/5% buffer B, and His-tagged Mpro was then eluted 

with a linear gradient of imidazole from 25 to 500 mM. Pooled fractions containing the 

target protein were subjected to buffer exchange with buffer A using a HiPrep 26/10 

desalting column (GE Healthcare). Next, PreScission protease was added to remove the C-

terminal His tag (20 µg of PreScission protease per milligram of target protein) at 12°C 

overnight. The protein solution was loaded onto a HisTrap HP column connected to a 

GSTrap FF column (GE Healthcare) equilibrated in buffer A to remove the GST-tagged Pre-

Scission protease, the His tag and the uncleaved protein. Mpro was finally purified using a 

Superdex 75 prep-grade 16/60 SEC column (GE Healthcare) equilibrated with buffer C (20 

mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM DTT pH 7.8). Fractions containing the target 

protein with high purity were pooled, concentrated to 25 mg ml−1 and flash-frozen in 

liquid nitrogen for storage in small aliquots at −80°C. 
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2.2. Protein characterization and enzymatic kinetics 

The correctness of the Mpro DNA sequence was verified by sequencing the expression 

plasmid. The molecular mass was determined as follows: recombinant SARS-CoV-2 Mpro, 

diluted in 50% acetonitrile with 0.1% formic acid, was analyzed by direct infusion 

electrospray ionization (ESI) on a Xevo G2-XS QTOF mass spectrometer (Waters). The 

detected species displayed a mass of 33 796.64 Da, which very closely matches the value 

of 33 796.81 Da calculated from the theoretical full-length protein sequence (residues 1–

306). A representative ESI-MS spectrum is shown in Supplementary Fig. S1. To 

characterize the enzymatic activity of our recombinant Mpro, we adopted a FRET-based 

assay using the substrate 5-FAM-AVLQ↓SGFRK(DABCYL)K (Proteogenix). The assay was 

performed by mixing 0.05 µM Mpro with various concentrations of substrate (1–128 µM) 

in a buffer composed of 20 mM Tris, 100 mM NaCl, 1 mM EDTA, 1 mM DTT pH 7.3. 

Fluorescence intensity (excitation at 485 nm and emission at 535 nm) was monitored at 

37°C with a VictorIII microplate reader (Perkin Elmer). A calibration curve was created by 

measuring multiple concentrations (from 0.001 to 5 µM) of free fluorescein in a final 

volume of 100 µl reaction buffer. Initial velocities were determined from the linear section 

of the curve, and the corresponding relative fluorescence units per time unit (ΔRFU s−1) 

were converted to the amount of cleaved substrate per time unit (µM s−1) by fitting to the 

calibration curve of free fluorescein. The catalytic efficiency kcat/Km was 4819 ± 399 s−1 

M−1, which is in line with literature data12,33. 

2.3. Crystallization and data collection 

A frozen aliquot of Mpro was thawed in ice, diluted in a 1:2 ratio with buffer C (20 mM Tris, 

150 mM NaCl, 1 mM EDTA, 1 mM DTT pH 7.8) to a final concentration of 12.5 mg ml−1 and 

clarified by centrifugation at 16 000g. The inhibitors masitinib, manidipine, bedaquiline 

and boceprevir were dissolved in 100% DMSO to a concentration of 100 mM. The protein 

was crystallized both in the free form and in the presence of inhibitors by co-

crystallization. In all cases, final crystal growth was obtained by microseeding starting 

from small crystals of the free enzyme. The protein in the free form was crystallized using 

the sitting-drop vapor-diffusion method at 18°C, mixing 1.0 µl Mpro solution with 1.0 µl 

precipitant solution [0.1 M MMT (DL-malic acid, MES and Tris base in a 1:2:2 molar ratio) 
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pH 7.0, 25% PEG 1500] and 0.2 µl seed stock (diluted 1:500, 1:1000 or 1:2000 with 

precipitant solution) and equilibrating against a 300 µl reservoir of precipitant solution. 

Crystals appeared overnight and grew for 48 h after the crystallization drops had been 

prepared. In the case of co-crystallization, Mpro was incubated for 16 h at 8°C with a 13-

fold molar excess of inhibitor (final DMSO concentration 5%). After incubation with 

masitinib, manidipine or bedaquiline, a white precipitate appeared and the solutions were 

clarified by centrifugation at 16 000g; as the protein concentration was essentially 

unchanged after centrifugation, we concluded that the precipitate is composed of the 

inhibitors, which are poorly soluble in water. The fact that the protein was later 

crystallized under the same conditions as described for the free form further confirmed 

that its concentration was not altered by the centrifugation process. For data collections, 

crystals were fished from the drops, cryoprotected by a quick dip into 30% PEG 400 (with 

5 mM inhibitor in the case of co-crystals) and flash-cooled in liquid nitrogen. The crystals 

were monoclinic (space group C2), isomorphous to the crystals of the free enzyme (PDB 

entry 6y2e), with one monomer in the asymmetric unit; the dimer is formed by the 

crystallographic twofold axis. 

2.4. Structure determination, refinement and analysis 

Data were collected on beamlines ID23-2 and ID23-1 at the ESRF. Diffraction data 

integration and scaling were performed with XDS34 and data reduction and analysis were 

performed with AIMLESS35. Initially, structures were solved by molecular replacement 

(MR) with Phaser36 in Phenix37 using PDB entries 6y2e and 5rel (Mpro in complex with PCM-

0102340)26 as search models. To limit MR model bias in critical zones (namely residues 

139–144, 1–3 and the side chain of His163) we then performed new MR runs using PDB 

entry 6y2e without residues 139–144 and 1–3, and with an alanine instead of a histidine 

at position 163, as the search model. Only for co-crystallization experiments with 

boceprevir was electron density for the ligand clearly visible from the beginning of the 

refinement (Supplementary Figs. S2 and S3), and the three final structures, modeled from 

residues 1 to 306 (compared with the `new' structure modeled to residue 301), are 

virtually identical to those deposited in the PDB38. In all of the other cases, no electron 

density indicating the presence of the inhibitors masitinib, manidipine or bedaquiline in 
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the active site (or elsewhere) was detectable. For four structures, it was possible to 

efficiently model residues 139–144, 1–3 and the side chain of His163 in `new' 

conformations. The final structures were obtained by alternating cycles of manual 

refinement with Coot39 and automatic refinement with phenix.refine40. At the end, the 

model was submitted to phenix.ensemble_refinement41 with default parameters. Data-

collection and refinement statistics for the structure obtained by a co-crystallization 

experiment with masitinib (which was not visible in the final electron density) are 

reported in Table 1. Secondary-structure analysis was performed with DSSP 42,43. Local 

energetic frustration analysis was performed with the Frustratometer server 

(http://frustratometer.qb.fcen.uba.ar)44. Interface analysis was performed using PISA45. 

Data collection  

X-ray source ESRF ID23-2 

Wavelength (Å) 0.873130 

Space group C2 

Cell dimensions  

a, b, c (Å) 113.07, 54.71, 44.84 

, ,  (°) 90.00, 101.30, 90.00 

Resolution range (Å) 55.44 – 1.58 (1.61 – 1.58) 

Rmerge  0.070 (1.305) 

Rmeas  0.081 (1.505) 

Rpim 0.040 (0.739) 

Total number of observations 145297 (7276) 

Total number unique 36653 (1847) 

Mean(I)/(I) 9.2 (1.0) 

CC1/2 (%) 99.8 (35.7) 

Completeness (%) 99.4 (99.5) 

Multiplicity 4.0 (3.9) 
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Wilson B estimate (Å2) 23.7 

  

Refinement   

Resolution range (Å) 55.44 – 1.58 

Rwork/Rfree (%) 17.71/20.31 

Number of atoms  

Protein 2350 

Water 218 

B-factor  

Protein (Å2) 32.6 

Water (Å2) 43.1 

r.m.s.d.  

Bond lengths (Å) 0.008 

Bond angles (°) 0.868 

Coordinate error (maximum-likelihood based by Phenix) 

(Å) 

0.21  

Ramachandran statistics  

Favored (%) 97.99 

Allowed (%) 2.01 

Outliers (%) 0.00 

PDB entry 7NIJ 

Ensemble refinement  

Number of models 60 

Rwork/Rfree (%) 15.47/20.80 

  

Values in parentheses are for the highest-resolution shell 

Table 1. X-ray diffraction data processing and model refinement statistics  
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2.5. Molecular modeling 

The majority of the computational work was performed on a Linux desktop workstation 

(Intel Xeon CPU E5-1620 3.60 GHz) running Ubuntu 16.04 LTS. Molecular-dynamics 

trajectories were collected on a heterogeneous Nvidia GPU cluster composed of 20 GPUs 

with models spanning from GTX1080 to RTX2080Ti. For structure preparation, 

coordinates of the active conformation of SARS-CoV-2 Mpro were retrieved from the 

Protein Data Bank (PDB entry 6y2e). Coordinates for both the active and the new-inactive 

conformation were processed with the aid of the Molecular Operating Environment 

(MOE) 2019.01 (Chemical Computing Group) structure-preparation tool. Initially, the 

functional unit of the protease (the dimeric form) was restored by applying a symmetric 

crystallographic transformation to each asymmetric unit. Residues with alternate 

conformations were assigned to the highest occupancy alternative. Moreover, missing 

residues that are present in the primary sequence were added using the MOE Loop 

Modeler tool. The MOE Protonate3D tool was used to assign the most probable 

protonation state to each residue (pH 7.4, T = 310 K, i.f. = 0.154). Partial charges were 

then assigned using the AMBER10 force field and H atoms were energy-minimized until 

the gradient was below 0.1 kcal mol−1 Å−2. Finally, ions and all co-crystallized molecules 

except for water were removed before saving the structures. The system setup for the 

MD simulations was carried out using the antechamber, parmchk and tleap software 

implemented in the AmberTools14 suite46. AMBER ff14SB47 was adopted for system 

parametrization and attribution of partial charges. Protein structures were explicitly 

solvated in a rectangular prismatic TIP3P48 periodic water box with borders placed at a 

distance of 15 Å from any protein atom. Na+ and Cl− ions were added to neutralize the 

system until a salt concentration of 0.154 M was reached. MD simulations were then 

performed using ACEMD349, which is based upon an OpenMM 7.4.2 engine50. Initially, 

1000 steps of energy minimization were executed using the conjugate-gradient algorithm. 

A two-step equilibration procedure was then carried out: the first step consisted of a 1 ns 

canonical ensemble (NVT) simulation with 5 kcal mol−1 Å−2 harmonic positional 

constraints applied to each protein atom, while the second step consisted of a 1 ns 

isothermal–isobaric (NPT) simulation with 5 kcal mol−1 Å−2 harmonic positional 
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constraints applied only to protein Cα atoms. The production phase consisted of three 

independent MD replicas for each protein conformation. Each simulation had a duration 

of 1 µs and was performed using the NVT ensemble at a constant temperature of 310 K 

with a timestep of 2 fs. For both the equilibration and the production stage, the 

temperature was maintained constant using a Langevin thermostat. During the second 

step of the equilibration stage, the pressure was maintained at a fixed value of 1 atm with 

a Monte Carlo barostat. MD trajectories were aligned using protein Cα atoms from the 

first trajectory frame as a reference, wrapped into an image of the system under periodic 

boundary conditions (PBC), and subsequently saved using a 200 ps interval between each 

frame and removing any ions and water molecules using Visual Molecular Dynamics 1.9.2 

(VMD)51. The protein radius of gyration (Rg), the root-mean-square deviation (r.m.s.d.) 

and the root-mean-square fluctuation (r.m.s.f.) of atomic positions along the trajectory 

were calculated for protein Cα atoms exploiting the MDAnalysis52,53 Python module. 

Secondary-structure analysis was carried out with the STRIDE package54 as implemented 

in VMD 1.9.2. The collected data were then plotted using the Matplotlib Python library55. 

Furthermore, two classic MD simulations were performed on the complexes obtained by 

superposing the coordinates of peptide ligands from PDB entries 2q6g and 7khp on the 

new-inactive conformation of SARS-CoV-2 Mpro using MOE 2019.01. For each peptide–

ligand complex, a two-stage equilibration protocol followed by a single productive 

simulation was carried out. The first equilibration step consisted of a 0.1 ns canonical 

ensemble (NVT) simulation with 5 kcal mol−1 Å−2 harmonic positional constraints applied 

to each protein atom, while the second equilibration step consisted of a 0.5 ns 

isothermal–isobaric (NPT) simulation with 5 kcal mol−1 Å−2 harmonic positional 

constraints applied only to protein Cα atoms. For both equilibration simulations, the 

temperature was maintained constant (T = 310 K) using a Langevin thermostat, while 

during the second equilibration stage the pressure was kept at a constant value of 1 atm 

using a Monte Carlo barostat. The productive simulation was carried out for 10 ns in the 

NVT ensemble (T = 310 K). 
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3. Results 

3.1. Identification of a new-inactive conformation of Mpro 

In a campaign to obtain structural insights into SARS-CoV-2 Mpro, we analyzed 27 different 

data sets to determine crystal structures of Mpro in complex with different inhibitors, 

among which were masitinib, manidipine and bedaquiline56. As `positive' controls (i.e., 

structures that were already known), we considered ligand-free Mpro and Mpro in complex 

with the known α-ketoamide covalent reversible inhibitor boceprevir, an approved HCV 

drug that is also able to bind to SARS-CoV-2 Mpro 38. Mpro samples were produced and 

crystallized in parallel, with very similar experimental procedures, analogous to those of 

the active enzyme (PDB entry 6y2e; see Section 2)12. Almost all tested crystals were 

monoclinic (space group C2, with unit-cell parameters a ≃ 113.1, b ≃ 54.7, c ≃ 44.8 Å, 

α = 90.0, β ≃ 101.3, γ = 90.0°), isomorphous to the crystals of the free active enzyme (PDB 

entry 6y2e)12 and to most of the deposited Mpro structures, signifying the same crystal 

contacts. After successful molecular replacement and a first round of refinement, in most 

cases (including the complex with boceprevir) electron density was clearly visible for the 

entire sequence, indicating a protein matrix with a very similar structure to the search 

models (PDB entries 6y2e and 5rel)26. However, there were a significant number of cases, 

around ten, in which the electron density was of much lower quality or was even absent 

in particular portions of the protein, namely residues 139–144 of the oxyanion loop, 

residues 1–3 of the N-finger and the side chain of His163 in the S1 specificity subsite, all 

of which are residues that are part of the active site. To cope with the known molecular-

replacement bias problem and to correctly rebuild the ambiguous parts, we performed 

new MR runs using PDB entry 6y2e deprived of residues 139–144 and 1–3, and with an 

alanine instead of a histidine at position 163 (to remove the His side chain), as a search 

model. This allowed us to confirm perturbations in the conformation of the selected areas 

for ten structures, while clear electron density was visible for the remaining cases with 

the oxyanion loop unambiguously in the active conformation (Supplementary Figs. S2 and 

S3). In some cases, the electron density was so poor that the tracing of the chain was very 

problematic, and it was not possible to reliably rebuild the mobile zones entirely 

(Supplementary Fig. S2b). For four structures, it was possible to efficiently model residues 
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139–144, residues 1–3 and the side chain of His163 in ̀ new' conformations (`new' because 

there are no equivalents in Mpro structures deposited in the PDB) that differ from the 

active conformations and also from the collapsed-inactive conformations, including PDB 

entry 2qcy, where the oxyanion loop adopts a 310-helix conformation (Supplementary Fig. 

S2c). In this regard, comprehensive analyses of the available SARS-CoV and SARS-CoV-2 

Mpro crystal structures have recently appeared in the literature32,57–59. In no case was a 

conformation analogous to that presented here described, confirming our assessment of 

a new-inactive state. The most relevant structures discussed here are reported in 

Supplementary Table S1. 

In summary, we found three different conformational states for the oxyanion loop: active 

(Supplementary Fig. S2a), flexible (i.e. with poor electron density; Supplementary Fig. S2b) 

and, strikingly, a new-inactive state (Supplementary Fig. S2c). A comparison of the known 

active and collapsed-inactive conformations with the new-inactive conformation 

presented here is shown in Fig. 1(b). 

The new-inactive structures were derived solely from crystals obtained using Mpro pre-

incubated with the inhibitors masitinib, manidipine or bedaquiline, but in no case was 

electron density indicating the presence of the inhibitors detected. This is explainable by 

the medium/high IC50 (in the range 2.5–19 µM)56,60 and the very low aqueous solubility of 

the molecules (when inhibitors in 100% DMSO were added to the protein solution, visible 

white precipitates appeared). It is tempting to speculate that the presence of these 

inhibitors in solution plays a role in favoring the selection of the new-inactive 

conformation by the crystallization process. Some structures of crystals from co-

crystallization experiments with masitinib or manidipine, again without any evidence for 

the presence of the ligand in the binding site, show the oxyanion active conformation. 

This indicates that these molecules, although favoring the new state, are not strict 

determinants for its formation. In the free form of the enzyme (from crystallization 

experiments with no ligands), we obtained structures with very clear electron density for 

the oxyanion loop, as shown in Supplementary Fig. S2(a), with low local B factors in the 

refined model, but also structures with a very `destabilized', mobile oxyanion loop, as in 

Supplementary Fig. S2(b), with much higher B factors in the final model. This suggests that 
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the high flexibility of the oxyanion loop is an intrinsic property of the free enzyme and is 

not artificially induced by the presence of ligands in the crystallization experiments. 

Here, we describe only one of the structures of Mpro determined in the new-inactive 

conformation, which was obtained by co-crystallization experiments with masitinib (no 

relevant differences exist among the four new-inactive Mpro structures). Data-collection 

and final model statistics are reported in Table 1; final electron densities for the most 

relevant regions discussed in the text are shown in Fig. 2. Unlike in other inactive 

structures of the enzyme, in which only one protomer adopts the inactive conformation, 

the dimeric arrangement of the new structure is due to a crystallographic symmetric axis, 

and the two subunits are therefore identical and both inactive. 
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Figure 2. Final electron densities for the most relevant regions of new-inactive Mpro. 2FO-FC maps contoured 

at 1.0 σ level are shown. (a) and (b) show two views of the final electron density for the oxyanion loop in 

the new conformation. Leu141 and the solvent-exposed Phe140 and Lys137 side chains have incomplete 

densities indicating various degrees of flexibility. (c), simulated-annealing omit map (oxyanion loop residues 

138-146 were omitted), viewed as in (b). (d) Electron density in the inter-protomers (intra-dimer) interaction 

area between the oxyanion loop of one protomer and the N-finger of the other protomer (residues Ser1´-

Met6´).  

3.2. The oxyanion loop adopts a novel inactive conformation 

 

 

Figure 3. Details of the hydrogen-bond interactions in the oxyanion region of new-inactive Mpro. (a) The new 

conformation of the oxyanion loop is stabilized by several backbone hydrogen bonds (blue dashed lines) as 

described in the main text. The side chain of catalytic Cys145 has a double conformation. (b) Comparison 

between the new-inactive (green) and active (light magenta; PDB entry 6y2e) oxyanion loops. There are 

large movements (blue dashed lines) of the side chains of Asn142 and Phe140. In the new-inactive 

conformation, Asn142 moves from an exposed position with an ASA of 153.74 Å2 to a buried position with 

an ASA of 49.00 Å2 and Phe140 moves from a buried position with an ASA of 14.79 Å2 to an exposed position 

with an ASA of 143.29 Å2. Gly143 NH (G-NH) of the oxyanion hole, which is involved in the stabilization of 

the tetrahedral intermediate, moves 8.8 Å away. 

The most striking property of the new structure is the significantly different 

conformational state of the oxyanion loop (Figs. 1 and 3), which is essential for 

stabilization of the tetrahedral acyl (oxyanion) transition state during the catalytic cycle. 

The loop backbone is stabilized by many hydrogen bonds in the new state (Fig. 3a). 
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According to the DSSP standardized secondary-structure assignment42,43, in the new 

oxyanion loop there are two consecutive ̀ 3-turns' (β-turns) with hydrogen bonds between 

Leu141 CO and Ser144 NH and between Ser144 CO and Ser147 NH. This region is further 

stabilized by a `4-turn' (α-turn) with a hydrogen bond between Ser139 CO and Gly143 NH. 

DSSP does not recognize any 310-helical segments in the oxyanion loop (as present in the 

inactive PDB entry 2qcy). 

There are other hydrogen bonds involving the backbone that stiffen the oxyanion loop: 

between Cys145 CO and Asn28 NH, between His163 CO and Gly146 NH and between 

Ser147 CO and His163 NH (Fig. 3a). As a result, the new conformation appears to be quite 

stable and rigid, as confirmed by the good quality of the local electron density (Fig. 2 and 

Supplementary Fig. S2c). 

To analyze the energetics of the local contacts, we performed an energetic frustration 

analysis44 on the active and new-inactive conformations. The concept of local frustration 

in protein structure refers to possible residual energetic conflicts in local interactions in 

folded proteins, using a `frustration index' that measures how favorable a particular 

contact is relative to the set of all possible contacts in that location61. The `principle of 

minimal frustration' assumes that proteins find their native state by minimizing the 

internal energetic conflicts within their polypeptide chain62. The degree of frustration is 

therefore dependent on the type of amino acids involved in the interaction. Local 

violations of this principle have been recognized to be important to exert the proper 

biological functions, specifically around the active sites of protein enzymes63. Analysis of 

the local configurational frustration of the most interesting contacts around the active site 

of active and new-inactive Mpro is shown in Supplementary Table S2. In both 

conformations, the catalytic Cys145 is a minimally frustrated `hub' (here we call a position 

with ≥10 minimally frustrated interactions a minimally frustrated hub), with a small 

prevalence of interactions in the active conformation. On the other hand, the difference 

for Phe140 is striking: eight minimally frustrated interactions are present in active Mpro 

(where it is buried in a hydrophobic pocket) as opposed to no interactions in new-inactive 

Mpro (where it is solvent-exposed). Differences between the two structures are also 

evident for other amino acids of the oxyanion loop, namely Leu141, Gly143 and Ser144, 



SCIENTIFIC PUBLICATIONS 

 

Fornasier et al., 2022 184 
 

indicating their diverse involvement in the local energetic contributions. The oxyanion 

loop of inactive Mpro has a larger number of minimally frustrated interactions with Cys117. 

This residue is a minimally frustrated hub in both conformations; however, given the 

higher number of minimally frustrated interactions in new-inactive Mpro (18 versus ten), 

Cys117 seems to play an important role in the stabilization of the new-inactive 

conformation. Internal to the oxyanion loop there is also a highly frustrated (unfavorable) 

interaction involving Leu141, with Ser139 in new-inactive Mpro and with Ser144 in active 

Mpro. This suggests that Leu141 may be important in switching between the two 

conformations. 

3.3. Many key interactions of the active enzyme are lost in new-inactive Mpro 

The correct location of Phe140, Leu141, Asn142, Ser144, Tyr161, His163, Met165, 

Glu166 and His172 (as seen in the active PDB entry 6y2e, for instance) is an absolute 

requirement for the reaction catalyzed by Mpro to properly proceed, with special reference 

to stabilization of the tetrahedral acyl-intermediate4,23,25. Notably, all of these residues are 

conserved among known coronaviral Mpros, underlining their importance. In the new 

structure of Mpro most of these residues move away from the `active location': Phe140, 

Leu141, Asn142 and Ser144 because of displacement of the oxyanion loop (Fig. 3b) and 

His163 and His172 because of rotation of their side chains (Fig. 4).  

Specifically, Asn142 Cα and the side chain of Phe140 are remarkably shifted from the 

active position by 9.8 and 7.5 Å, respectively (Fig. 3b). Phe140, which is buried in a 

hydrophobic cleft in active Mpro with as accessible surface area (ASA) of 14.79 Å2), is now 

exposed to the solvent (ASA 143.29 Å2), while Asn142, which is exposed in active Mpro 

(ASA 153.74 Å2), is now buried (ASA 49.00 Å2). The side chain of Asn142 is locked in the 

new position by hydrogen bonds to the side-chain Oγ and backbone NH of Ser139. 

Markedly, the oxyanion hole Gly143 NH, the correct positioning of which is essential for 

the stabilization of the tetrahedral oxyanion intermediate during catalysis, is moved 8.8 Å 

away.  
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Figure 4. Comparison between new-inactive (green) and active (light magenta) Mpro.  In the new structure 

the side chain of His163 rotates away to avoid steric clashes with the oxyanion loop: in the active 

conformation (PDB-ID 6Y2E) the His163 side chain would be at 1.2 Å from the new position of Gly143-CO. 

Note also the movement of His172.  

 

Figure 5. Catalytic dyad. In new-inactive Mpro (green) the position of the catalytic dyad His41 and 

Cys145 is similar to that in the active enzyme (6Y2E, light magenta), despite the large shift of 

residues 138-144. In new-inactive Mpro Cys145 adopts a double conformation.  
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As a consequence, many interactions that are recognized to be important for stabilization 

of the active conformation are lost, namely hydrogen bonds between Glu166 and His172 

and between Tyr161 and His163, as well as the aromatic stacking between His163 and 

Phe14064. The rotation of the side chain of His163 (located at the very bottom of the S1 

subsite), the hydrogen-bond properties of which seem to be very important in 

determining both substrate specificity and proper inhibitor binding65, is a noteworthy 

characteristic of this new conformation of Mpro. His163 is no longer available for substrate 

binding as it rotates away to avoid steric clashes with Gly143 CO (Fig. 4). Its position is 

now `functionally' occupied by His172, which moves towards the S1 subsite (Fig. 4). The 

other three important residues, Tyr161, Met165 and Glu166, essentially maintain the 

same position as adopted in active Mpro. Despite the large displacement of the oxyanion 

loop, the position of the catalytic dyad His41 and Cys145 is not significantly altered, 

especially in the backbone, even though the Cys145 side chain now shows a double 

conformation (Fig. 5). The conserved water molecule near His41 is still present in the same 

position, making hydrogen bonds to the side chains of His41, His164 and Asp187 as in 

active SARS-CoV-2 Mpro. 

3.4. The N-finger, the C-terminal tail and the dimeric interface are perturbed in new-

inactive Mpro 

In new-inactive Mpro, the dimeric interface is altered compared with that of the active 

conformation. PISA analysis of the interface shows that in new-inactive Mpro the interface 

area is reduced (from 1661 to 1273 Å2), as are the number of hydrogen bonds (from 33 to 

six) and the number of salt bridges (from 12 to six). However, structural features that are 

important for stabilization of the dimeric form are essentially conserved, namely (i) the 

salt bridge between Glu290 of one protomer and Arg4′ of the other4, (ii) the hydrophobic 

aromatic interaction between Tyr126 and Met6’ 66 and (iii) the interaction of Arg298 with 

the N-finger and the C-terminus30. This suggests that although new-inactive Mpro is still 

able to form dimers, the dimeric state is less stable compared with that of active Mpro. 

At the dimeric interface, relevant changes in both the N- and C-termini are present. In 

active Mpro, the N-finger of one protomer interacts and stabilizes the S1 subsite of the 
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other protomer23. For instance, in active SARS-CoV-2 Mpro (PSB entry 6y2e) Ser1 of one 

protomer is hydrogen-bonded both to the carboxylate group of Glu166 and to the main 

chain of Phe140 of the other protomer. In the new-inactive structure, these interactions 

are lost as a consequence of the different oxyanion conformation of one protomer that 

`pushes away' residues 1–3 of the N-finger of the other protomer (Fig. 6), with Gly2′ CO 

now at 3.2 Å from Ser139 NH. The rearrangement of the oxyanion loop of one protomer 

also influences the C-terminal tail of the other protomer, the electron density of which is 

no longer visible from residue 301 onwards, indicating high flexibility (Figs. 6b and 7). 

Among the residues of the oxyanion loop, Leu141 shows major changes at the level of the 

dimeric interface (Fig. 7b), also causing rotation of the side chain of Tyr118 to avoid steric 

clashes, further supporting its possible central role in switching between the new-inactive 

and active conformations. 

 

Figure 6. Displacements at the intra-protomer interface. New-inactive Mpro is in green and active Mpro is in 

magenta. (a) The new oxyanion loop of one protomer pushes away residues 1′–3′ of the other protomer; 

however, the key salt bridge between Arg4′ and Glu290, which is important for dimer stabilization, is 

conserved. (b) Overall superposition of active and new-inactive Mpro shows that besides those in the 

oxyanion loop (red ellipsoid), major differences are located in the N-finger and in the C-terminal tail, which 

is not visible in new-inactive Mpro.  
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Figure 7. Dimeric architecture of new-inactive Mpro. (a) The new conformation of the oxyanion loop (labeled 

`loop') causes changes in the interface between protomer A (blue) and protomer B (light blue) at the level 

of the N-finger (labelled `NF') and the C-terminal tail (labeled `C-term'). (b) Local differences between the 

new structure [blue-based colors as in (a)] and the canonical structure (PDB entry 6y2e; brown-based colors, 

with intact C-terminus): the shift of the Leu141 side chain seems to have major effects in destabilizing the 

C-terminal tail of the new structure.  
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3.5. New-inactive Mpro can still bind substrates 

 

Figure 8. Reshaping of the S1 and S2′ subsites. Molecular-dynamics modeling of the hypothetical interaction 

of new-inactive Mpro with substrates is shown. Top, putative interaction with the 11-mer pseudo-substrate 

peptide from PDB entry 2q6g: (a) new-inactive Mpro, (b) SARS-CoV Mpro from PDB entry 2q6g. Bottom, 

putative interaction with the acyl-intermediate of the Mpro C-terminal autoprocessing site: (c) new-inactive 

Mpro, (d) Mpro in PDB entry 7khp. As a result of the rearrangement of the oxyanion loop, a new cavity near 

the S2′ site, labeled `NEW', is formed. 

Having established that the new structure is catalytically incompetent, we tried to 

understand whether it is still able to bind natural substrates. Superposition of the new-

inactive conformation with either the active conformation in complex with the C-terminal 

acyl-intermediate (PDB entry 7khp)25 or the SARS-CoV Mpro active conformation in 

complex with its 11-mer substrate complex (PDB entry 2q6g)15 does not show evident 

steric clashes for the substrate. This is also valid for superposition of the new-inactive 

conformation with two recent complexes between SARS-CoV-2 Mpro and two peptide 

substrates corresponding to the nsp4/567 and nsp8/968 cleavage sites. Additionally, a short 
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molecular-dynamics refinement of the complexes of the new-inactive conformation of 

SARS-CoV-2 Mpro with either the C-terminal acyl-intermediate or the 11-mer peptide 

substrate reveal compatible binding modes, with only minor side-chain rearrangements 

(Fig. 8). The reshaped S1 site of the new-inactive Mpro could still host a P1 glutamine, 

although the rearrangement causes the loss of its interactions with Glu166 Oɛ and Phe140 

CO in favor of a single hydrogen bond to Gly143 CO (Fig. 9). Aside from the alterations of 

the S1 subsite, which alter the recognition profile of the P1 glutamine, the other 

interaction features are retained, namely the hydrogen bonds to Glu166 and Gln189 and 

the hydrophobic interactions of the P2 phenylalanine within the S2 subpocket. This is a 

quite remarkable observation because it suggests that the new conformation could be 

inactive not necessarily because it is incapable of recognizing the substrate, but because 

the catalytic machinery is not properly organized for an efficient catalytic event, 

particularly in the oxyanion-hole region, and is unable to stabilize the tetrahedral acyl 

intermediate. The new conformation of the oxyanion loop generates a new cavity near 

position S2′, as evident from comparison of the new structure with the SARS-CoV-2 acyl-

enzyme (PDB entry 7khp)25 and the SARS-CoV 11-mer substrate complex (PDB entry 

2q6g)15 (Fig. 8). 

 

Figure 9. Details of the putative interaction between new-inactive Mpro (green) and the C-terminal acyl-

intermediate peptide substrate from PDB entry 7khp (orange). Hydrogen bonds between the substrate and 

the binding site are depicted as dashed black lines. Aside from the P1 glutamine and its interactions with 

the P1 pocket, other common interaction features such as hydrogen bonds to Glu166 and Gln189 and 

hydrophobic interactions of the P2 phenylalanine side chain within the S2 subpocket are retained.  
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3.6. The new-inactive conformation is stable and in equilibrium with the active 

conformation in solution 

For SARS-CoV Mpro, it has been shown that the active-site loops are very dynamic and 

sensitive to variations in the environmental conditions13,15,29,69,70. Similarly, the oxyanion 

loop of SARS-CoV-2 Mpro showed conformational flexibility as deduced from room-

temperature X-ray crystallography71,72. To test the stability and to model the dynamics of 

new-inactive Mpro, specifically of the oxyanion loop and regions involved in substrate 

binding, we performed crystallographic ensemble refinement41  and MD simulations. 

The 60 structures generated by ensemble refinement of new-inactive Mpro compatible 

with the crystallographic restraints confirm the new conformation of the oxyanion loop 

and reveal that its flexibility is comparable to that of other portions of the substrate-

binding region (residues 43–51 in domain I and residues 188–198 in the flexible linker 

connecting domains II and III; Fig. 10), as also found in the literature. In four out of 60 

structures the oxyanion-loop conformation is similar to that in the active form, which is in 

line with the experimental observation of a residual electron density compatible with the 

presence of a small fraction of the oxyanion loop and of the side chain of His163 in the 

active conformation in the crystal state. In this respect, all structures determined here, 

including new-inactive Mpro, were obtained from batches of correctly autoprocessed 

protein (i.e. catalytically active towards itself at the N-terminus) which displayed normal 

catalytic activity in solution towards substrate peptides. 

This strongly suggests the presence of a dynamic equilibrium in solution with the 

coexistence of different conformations, including inactive conformations. In other words, 

exhibition of the correct catalytic activity on the macroscopic level (with the full ensemble 

of conformational states available in solution for Mpro) does not contrast with the 

possibility of selection by the crystallization process (in this case probably favored by the 

presence of certain small molecules) of a subpopulation of a catalytically incompetent 

form of the enzyme as shown here and for the previous structure with PDB code 1uj1. The 

conclusion that the dynamic equilibrium in solution includes both the active and the new-

inactive conformation is supported by comparing the results of ensemble refinement of 
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the structure in the free state with very poor electron density for the oxyanion loop 

(Supplementary Fig. S2b). The refined ensemble conformations show a highly dynamic 

oxyanion loop, with 20% of conformations similar to the active conformation, 23% of 

conformations similar to the inactive conformation and 57% of conformations in 

intermediate states. 

 

Figure 10. Ensemble refinement. The 60 structures generated by ensemble refinement highlight the mobile 

regions of new-inactive Mpro. The oxyanion loop, which is confirmed in the new conformation, has a 

flexibility similar to those of residues 43–51 and 188–198 involved in substrate recognition as the S3 and S4 

sites. 

To assess the structural stability of the new-inactive conformation of SARS-CoV-2 Mpro and 

to compare it with the active conformation, three independent 1 µs classical molecular-

dynamics simulations were performed for both conformations. For the active state, PDB 

entry 6y2e was taken as a reference. As depicted in Fig. 11, which summarizes the 

principal geometric analysis performed along the MD trajectories, the two structures 

show a similar degree of stability. The backbone r.m.s.d. profile for PDB entry 7nij (Fig. 

11b), representing the new-inactive conformation of Mpro, displays moderately higher 

fluctuations with respect to the active state (Fig. 11a). As can be seen in the per-residue 

r.m.s.f. plots (Figs. 11c and 11d), this difference can mainly be attributed to major 
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structural fluctuations in the same regions that were marked as flexible by the 

crystallographic data, namely the three flexible loops 43–51, 188–198 and 272–279 and 

the C-terminus (299–306), while the rest of the structure is quite stiff, as in the active 

state. Specifically, the C-terminus in the new-inactive conformation of Mpro shows the 

highest amplitude of movement, as denoted by the high r.m.s.f. values associated with 

these residues. This result agrees with the absence of electron density for residues 301–

306, which indicates high flexibility of this region. Instead, the N-terminus (residues 1–4) 

shows more limited fluctuations for both Mpro conformations, which is in agreement with 

the presence of well-defined electron density in both structures. The overall structural 

stability of the new-inactive conformation of Mpro is also confirmed by the time-

dependent evolution of both secondary-structure elements and the protein radius of 

gyration (Rg), with only minor oscillations, similar to those seen in the active conformation 

(Supplementary Figs. S4, S5 and S6). Despite the slightly higher fluctuations observed in 

the inactive conformation, no sufficient motions were observed to shed light on a possible 

transition mechanism between the two conformations. It is not surprising that such 

rearrangement was not sampled even on a 1 µs scale, since such collective motions in 

proteins usually involve longer timescales (i.e. millisecond to microsecond)73. 
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Figure 11. Results of MD simulations. Summary of the key geometric analysis performed along the MD 

trajectories for both the active (PDB entry 6y2e) and new-inactive (PDB entry 7nij) conformations of SARS-

CoV-2 Mpro. (a) and (b) highlight the time-dependent variation of the protein root-mean-square deviation 

(r.m.s.d.) of Cα atomic positions for PDB entries 6y2e and 7nij, respectively. (c) and (d) summarize the per-

residue mean root-mean-square fluctuation (r.m.s.f.) of atomic positions of protein Cα atoms for PDB entries 

6y2e and 7nij, respectively. The most relevant regions of the protein are highlighted in the plot for 

visualization clarity as described in the legend. For both r.m.s.d. and r.m.s.f. analyses, each chain composing 

the crystallographic dimer is considered separately. 

4. Discussion 

We had the opportunity to capture a new and stable (as seen in MD simulations) inactive 

state of Mpro, called new-inactive, expanding the knowledge of the conformational space 

accessible to the enzyme. Altogether, the movements in the substrate-binding region and 

near the catalytic site result in a significant reshaping of the reaction center (Figs. 3, 4 and 

8) that has never previously been observed and is much more pronounced than in the 

previously described collapsed-inactive Mpro conformation. The conformation adopted by 

residues 139–144 of the oxyanion loop is potentially catalytically incompetent. The 

backbones of key residues in the oxyanion hole are 8–10 Å away from the catalytically 

competent position. Fundamental interactions for the proper function of the enzyme are 

broken or absent, as illustrated in the previous section. Among the residues of the 

oxyanion loop, Phe140, Leu141 and Asn142 play a major role in the shift between the 

new-inactive and active conformations. The new state of the oxyanion loop of one 

protomer pushes the N-finger of the second protomer away from the position adopted in 

the active enzyme. The last six residues of the C-terminal tail are not visible in the 

electron-density map and were confirmed to be fully flexible by MD simulations. The novel 

conformations of the oxyanion loop and of the N- and C-termini result in a weakening of 

the dimeric architecture, as shown by decreases in the interaction surface area and in the 

number of inter-protomer interactions. Major variations in the dimeric interface are 

connected to Leu141 of the oxyanion loop. 

This new structure is relevant for the analysis of the Mpro catalytic cycle, which was 

recently investigated using biodynamics theory under non-equilibrium conditions74, using 
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the available crystal structures, which show Mpro in different conformational states75. This 

novel approach tries to mimic in vivo conditions, which depend on non-equilibrium 

structure–kinetics relationships. From this analysis a substrate-induced Mpro activation 

mechanism was developed, suggesting the existence of a complex substrate-binding 

activation mechanism in both SARS-CoV and SARS-CoV-2. The proposed catalytic cycle 

involves transition from the collapsed-inactive conformation of the oxyanion loop, 

represented by the free form of monomeric Mpro (PDB entry 2qcy), to the putative 

substrate-bound form of monomeric Mpro, represented by one monomer of PDB entry 

2q6g (with an active oxyanion loop), and finally to the dimeric fully active state, 

represented by dimeric Mpro (PDB entry 6m03; very similar to PDB entry 6y2e). The new-

inactive structure presented here shows a new conformational state with an accessible 

oxyanion loop, adding novel important pieces of information to the structural dynamics 

of the substrate-induced activation of Mpro in the context of its catalytic cycle. In the non-

equilibrium model, it was hypothesized that transition of the oxyanion loop from the 

inactive to the active conformation is triggered mainly by solvation/desolvation effects. 

This also applies to transitions involving our new-inactive structure, where, for activation, 

Phe140 moves from an exposed position (with no minimally frustrated interactions) to a 

buried position (with eight minimally frustrated interactions), while Asn142 moves from 

a buried position to an exposed position. In the context of the conformational dynamics 

of Mpro, the intriguing possibility exists that the remodeling of the S2′ subsite can be 

correlated with the large amino-acid variation in position P2′ of SARS coronaviral 

nonstructural protein (nsp) cleavage sites, Mpro autoprocessing included. Despite being 

catalytically incompetent, this new state (with a novel cavity in position S2′) seems to be 

able to bind natural substrates of Mpro (see Figs. 8 and 9). Among the 11 substrates of 

SARS-CoV-2 Mpro, position P2′ is highly variable, hosting nine different amino acids with 

very different chemical and structural properties: small, such as Gly and Ala, bulky 

hydrophobic, such as Ile, Val and Leu, positively charged, such as Lys, negatively charged, 

such as Glu, and polar and hydrogen-bond donor/acceptor, such as Ser and Asn. It is 

conceivable that the flexibility of the oxyanion-loop conformation is correlated to this 

variability of the substrates, specifically in position P2′, and to the necessity to 

accommodate the different substrates during the maturation process of the pp1a and 
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pp1ab polypeptides, in the correct succession of proteolytic events. We suggest that this 

new conformational state is that preferred by the enzyme to efficiently host substrates 

with bulky hydrophobic residues in position P2′, for instance for the processing of nsp7/8 

(Ile), nsp12/13 (Val) and nsp14/15 (Leu) cleavage sites. According to the Mpro reaction 

scheme proposed by Wan et al.75, the substrate-binding event triggers the conformational 

switch of the oxyanion loop, which adopts the necessary conformation for a productive 

catalytic event. Overall, the following scheme can be proposed: (i) for the initial binding, 

specific substrates (with bulky residues in position P2′) select the new-inactive 

conformation among a complex ensemble of different conformations of Mpro in mutual 

equilibrium, (ii) the binding event causes conformational changes of the oxyanion loop 

and, mainly, of the side chains of Glu166, His172 and His163, (iii) the dimeric architecture 

is stabilized because of rearrangements of the N-finger and the C-terminus and (iv) the 

resulting activated enzyme is ready to properly hydrolyze the substrate. 

The new-inactive structure is also important for the structure-based drug-discovery 

process that is currently being applied to Mpro 65. The approach of `repurposing' already 

known drugs via classical docking methodologies on the 3D structure of the protein target 

is interesting because, methodologically, it is potentially fast and the safety profiles of the 

tested compounds are already known. This justifies the large amount of research devoted 

to repurposing known antiviral drugs against Mpro 76. Obviously, the success rate of these 

campaigns would greatly benefit from the possibility of targeting significantly different, 

stable, conformations. In this respect, the discovery of the new stable inactive 

conformation of Mpro presented here, with the remodeling of the S1 subsite and the 

formation of the nearby new cavity near subsite S2′ (poorly explored until now as known 

inhibitors usually span the enzyme S1–S4 subsites), offers solid attractive possibilities for 

the design of completely new classes of antiviral drugs targeting Mpro. Indeed, a putative 

binder of the new-inactive form could reduce the population of the active conformation 

by stabilizing the inactive conformation. Also, a ligand able to bind the novel, readapted 

site around the catalytic cysteine could sterically hamper the recognition of the substrate. 

In addition, the possibility of targeting a novel subpocket could increase the affinity by 

establishing novel contacts and interactions. Most of the more promising Mpro inhibitors 
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were developed by optimizing starting hits that were further decorated to explore the 

subpockets located around the catalytic center, following the classic route of fragment 

maturation in fragment-based lead discovery77. One notable example is represented by 

the optimization of portions of parampanel on S1 and S1′ and its engagement of S3–S4, 

which lead to a fourfold boost in IC50 activity78. 

In conclusion, the new-inactive structure of Mpro is relevant for better understanding of 

the function and mechanism of action of this fundamental enzyme for SARS-CoV-2 repli-

cation in the cell, with a particular accent on the dynamics within the catalytic cycle of the 

enzyme, which explores different conformational states including that presented here for 

the first time. Further, the discovery of this unprecedented inactive conformation of Mpro 

provides a unique opportunity for the more successful design of antiviral drugs with 

improved pharmacological properties using both classical docking-based and innovative 

non-equilibrium-based approaches.  
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Abstract 

In the latest decades, molecular docking has imposed itself as one of the most used 

approaches to computational drug discovery. Several docking benchmarks have been 

published, comparing the performance of different algorithms in respect to a molecular 

target of interest, usually evaluating their ability in reproducing the experimental data, 

which in most cases comes from X-ray structures. In this study, we elucidated the variation 

of the performance of three docking algorithms, GOLD, Glide, and PLANTS, in replicating 

the coordinates of the crystallographic ligands of SARS-CoV-2 main protease (Mpro). 

Through the comparison of the data coming from docking experiments and the values 

derived from the calculation of the solvent exposure of the crystallographic ligands, we 

highlighted the importance of this last variable for docking performance. Indeed, we 
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underlined how an increase in the percentage of the ligand surface exposed to the solvent 

in a crystallographic complex makes it harder for the docking algorithms to reproduce its 

conformation. We further validated our hypothesis through molecular dynamics 

simulations, showing that the less stable protein-ligand complexes (in terms of root-

mean-square deviation and root-mean-square fluctuation) tend to derive from the cases 

in which the solvent exposure of the ligand in the starting system is higher. 

1. Introduction 

In the 1980s, with the first study provided by Kuntz et. al1, the computational technique 

of molecular docking had its birth. The efficiency, speed, and robustness of this method 

make its presence a constant in every structure-based drug discovery pipeline2. To give a 

brief explanation, molecular docking consists of a multi-step computational process that 

aims to find the best conformation of a molecule to bind to another to form a stable 

complex3. In the field of medicinal chemistry, as is deductible, its main application is 

finding the best molecules to bind in a firm way to the desired target (a protein, a nucleic 

acid, etc.). The algorithm starts with the exploration of the conformations space of the 

ligands (exploiting the so-called “search algorithm”). The conformations (called “poses”) 

are then classified by a “scoring function”, which attributes a numeric value to the 

goodness of the interaction according to energetical and/or geometrical function.  

After a series of iterations, the final conformations are presented from the program to the 

user, ranked by the internal scoring function4. 

In the last 30 years, many docking programs have been developed. Among them, GOLD5 

(a genetic docking algorithm developed by the Cambridge Crystallographic Data Center - 

CCDC), Glide6 (a systematic docking program released under license by Schrödinger), 

AutoDock7 (a non-commercial genetic algorithm from The Scripps Research Institute), 

AutoDock VINA8 (created by the same organization and released for non-commercial use), 

and PLANTS9 (an algorithm based on an “Ant Colony Optimization” method) have gained 

popularity. 

The performance of molecular docking programs can be measured by evaluating their 

ability to reproduce the experimental structural data, such as the crystallographic 
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coordinates of a ligand into its binding site10. This ability has been evaluated in several 

benchmarks[11,12] to rank the performance of different algorithms regarding a specific 

target, usually using as the key parameter the root-mean-square deviation (RMSD) 

between the coordinates of the different poses given by the program and the 

crystallographic ones.  

The ability to reproduce a crystallographic conformation strongly relies on different 

factors. First, the geometrical characteristics of the binding site, like extension and shape 

play a very important role; it is known that the performance of the algorithms has been 

improved to dock molecules in “cavities” or “pockets” rather than surfaces of proteins13. 

Second, the nature and the dimensions of the ligand are also crucial. Indeed, very small 

ligands may explore different places in a binding site, and the interactions that they can 

establish are usually few, reducing the “synergism” which could induce a molecule to keep 

a peculiar shape into a pocket14. On the other hand, even if drug-like molecules generally 

have higher conformational freedom, their dimensions force them to be oriented into a 

site in a more conserved way, so they have less roto-translational freedom.  

In this study, we examine the ability of three docking programs characterized by diverse 

conformational sampling algorithms to efficiently reproduce the crystallographic pose of 

different ligands bound in different sites of a protein. To accomplish this task, a target of 

which several crystal structures are solved with the ligands located in different sites of the 

macromolecule itself is needed. To this scope, we considered a very recent and relevant 

target in the current pharmaceutical scenario, such as the SARS-CoV-2 main protease 

(Mpro).  

In the last couple of years, with the pandemic spreading of the SARS-CoV-2 virus, the 

world of medical sciences had found itself fighting a new and dangerous adversary15,16. 

This biological entity, which is part of the coronavirus family, has been demonstrated to 

cause a pulmonary infection which eventually leads to serious complications, as witnessed 

by the high number of deaths that have already been linked to it (more than 5 million, at 

the present day17). The replication cycle of this virus strongly relies on the activity of its 

main protease (known as Mpro or 3CLpro, a crystallographic structure example is reported 

in Figure 1)18. Indeed, this protein is responsible for the cleavage of the propeptide 



SCIENTIFIC PUBLICATIONS 

 

Bassani et al., 2022 206 
 

transcribed by the viral genome. This way, the formation of all the functional proteins for 

the building of new virions takes place, and so the viral infection can proceed. Even if 

many molecules have been shown to bind to Mpro 19 and inhibit its activity, and even if a 

molecule is currently in phase III clinical trial for this purpose (PF-07321332, from 

Pfizer20,21) no drug has already been approved by the European Medicinal Agency for the 

treatment of COVID-19. Computational methods have already proven to be beneficial in 

the research for new potential inhibitors for Mpro, as literature witnesses22,23. In this work, 

we decided to implement a molecular docking-based approach relying on the programs 

GOLD, Glide, and PLANTS. These algorithms are considered “orthogonal” because they 

are characterized by diverse placing and scoring algorithms to obtain the best solution to 

the “protein-ligand posing problem”. Each of these programs has been used to dock each 

of the different non-covalent ligands of the various crystal structures of Mpro, and this 

allowed us to evaluate the factors which influence the variability in reproducing the 

crystallographic poses. A self-docking protocol similar to the one herein reported had 

already been developed by our laboratory, with the name “DockBench”. This program has 

been implemented with success in several workflows, as literature assesses22,23. In this 

study, a slightly modified version of that tool was used, which exploits only three docking 

programs at the present moment but can expand the analysis of the results obtained. 

Looking at the docking benchmarking protocols on Mpro, a remarkable study has already 

been conducted and published by Zev et al.26. In that specific work, 6 different docking 

programs were evaluated in their performance in reproducing the Mpro non-covalent 

ligands’ crystallographic poses, and 3 of those algorithms have also been compared in 

their ability to correctly place Mpro covalent ligands into their proper binding site. In our 

work, we decided to expand the considerations brought by that study, evaluating 

specifically how docking performance changes in respect of the crystallographic data that 

has to be reproduced.  
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Figure 1. Representation of the crystal structure of Mpro (PDB: 7L10). The two monomers composing the 

protein are colored differently, while the residues of the catalytic dyad, Cys145, and His41, are labeled in 

each of the monomers. 

Indeed, we considered in our calculations parameters like the solvent exposure of the 

ligand and the influence of the crystallographic water molecules in docking calculations, 

focusing our evaluations just on non-covalent Mpro ligands. We executed the experiment 

in two different scenarios, one which excluded the crystallographic waters from the 

calculation, and one which induced the docking programs to consider them. After that, 

we compared the docking results with the percentage of solvent exposure of the 

crystallographic pose of the ligand, successfully confirming that a higher solvent exposure 

tendentially reflects a worsening in the ability to reproduce the crystallographic pose by 

the algorithms (that, as already mentioned, are better trained for “cavities” rather than 

“surfaces”). To further investigate this aspect, we expanded our computational analysis 

by performing a molecular dynamics (MD) experiment, in which each crystallographic 

ligand was left free to move for 5 ns (3 replicas per system). This approach (known as “MD 

post-docking”) has already become part of our computational protocol25,26 and is based 
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on the fact that the conformations of the ligands which are less prone to be displaced 

from their initial position during the simulation are related to higher stability and binding 

strength with the target. In the case presented, this principle was applied directly to the 

crystallographic conformations of the ligands rather than to docking poses. This was done 

because the goal wasn’t to select the most promising molecules in binding to a specific 

region of the protein, but instead, the objective was to elucidate which are the features 

of the crystallographic ligands that tend to guarantee a tighter binding with the receptor. 

Our evaluation demonstrated that the molecules bound to the orthosteric pocket of Mpro 

keep their position much stronger than the molecules crystallized on other sites, further 

validating our solvent exposure-based theory. A representation of the Mpro ligands 

crystallized in the various sites of the protein is given in Figure 2. 

 

 

Figure 2. Representation of all the crystallographic ligands of Mpro superposed. To give a better view, just 

one protein structure is represented (the one coming from PDB: 7L10). The ligands which are crystallized 

inside the catalytic pocket are colored in magenta, while all the small molecules crystallized outside the 

orthosteric binding site are colored in cyan.  
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2. Results and Discussion 

2.1. “Scenario 1” – docking calculations without considering the crystallographic water 

molecules 

The results of our docking protocol for this section (which are numerically reported in the 

Supplementary materials file “Selfdocking_scenario1.csv”) are graphically represented 

with colormaps. All the colormaps present in this study are based on a colorimetric scale 

delineating the RMSD values, starting from 0 Å, which corresponds to a molecular docking 

pose exactly superposable to the crystallographic one (maximum docking performance, 

represented by the dark blue color), and reaching values of 5 Å or higher (minimum 

docking performance, all represented by the dark red color), corresponding to a very low 

level of overlap between the coordinates of the pose produced and the ones of the 

crystallographic conformation. The colormaps in Figure 3 show the self-docking results 

obtained on the different Mpro crystal structures in the case in which water molecules are 

not considered in the calculation. As is depicted, the RMSD values were far lower for all 

the complexes in which the crystallographic ligand is located in the orthosteric pocket. 

 

Figure 3. Colormaps represent the results of self-docking experiments in the case in which the 

crystallographic water molecules are not considered during the docking runs. The three plots illustrate 

respectively: A) the results coming from the average of the RMSDs of all the poses for each docking run; B) 

the results derived just from the RMSD between the crystallographic ligand coordinates and the pose 

classified as the best from the scoring function; C) the results of the self-docking experiments if just the pose 

showing the best RMSD value between its coordinates and the crystallographic ones are retained. The x-

axis lists all the different protein-ligand complexes, which are plotted against the different pairs docking 

program-scoring function used for this study, reported in the y-axis. 
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To give a better resolution of this, we have separated each map into two different 

colormaps, one grouping all the 78 proteins in which the ligand is located into the catalytic 

pocket, and one including all other cases (41 complexes).  

We analyzed the data coming from the calculations, and we computed that, looking at all 

the complexes with all the different couples docking program-scoring functions, the 

average values of all the RMSDs obtained was 5.76 Å (“RMSD_average”). Looking at the 

average of the RMSDs coming from the poses which were scored as the best ones from 

the algorithms’ scoring functions (“RMSD_scor_func”), the value was 5.10 Å. If the lowest 

RMSD values only are taken into account for each docking run (“RMSD_sorted”), the mean 

of the values was 3.70 Å. 

The average values have also been calculated separately for all the complexes in which 

the crystallographic ligand is located into the catalytic pocket, and for all other cases. The 

colormaps for these different conditions are reported in Figure 4 and Figure 5. 

 

Figure 4. Colormaps represent the results of the self-docking experiments just for the ligands crystallized 

inside the orthosteric pocket when the crystallographic water molecules are not considered during the 

docking runs. The three plots illustrate respectively: (A) the results coming from the average of the RMSDs 

of all the poses for each docking run; (B) the results derived just from the RMSD between the 

crystallographic ligand coordinates and the pose classified as the best from the scoring function; (C) the 

results of the self-docking experiments if just the pose showing the best RMSD value between its 

coordinates and the crystallographic ones is retained. The x-axis lists all the different protein-ligand 

complexes, which are plotted against the different pairs docking program-scoring function used for this 

study, reported in the y-axis. 
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First, the analysis focused on the complexes having the crystallographic ligand located 

within the orthosteric pocket. For this set of systems, we calculated the average RMSD 

value of all the poses (“RMSD_average”), which was revealed to be 4.54 Å. Then, also the 

average of the RMSD values coming from the poses which were ranked with the best score 

from the scoring functions was computed (“RMSD_scor_func”), and its value was 3.43 Å. 

Finally, the average RMSD value of the poses with the lowest RMSD in each run was 

calculated (“RMSD_sorted”), and its measure was 2.45 Å. 

Second, the same steps were done for the rest of the protein-ligand complexes, which are 

the ones in which the crystallographic ligand is located outside the orthosteric binding 

site. Also, in this case, the first passage involved the calculation of the average RMSD value 

of all the poses generated for these systems (“RMSD_average”), and its measure was 8.08 

Å. Then, the mean of the RMSD values coming from the poses which received the highest 

rank from the scoring functions was calculated (“RMSD_scor_func”) and is revealed to be 

8.29 Å. In the end, the average value of the lowest RMSDs of each run was computed 

(“RMSD_sorted”), and its measure has shown to be 6.08 Å. 

 

Figure 5. Colormaps represent the results of the self-docking experiments just for the ligands crystallized 

outside the orthosteric pocket in the case in which the crystallographic water molecules are not considered 

during the docking runs. The three plots illustrate respectively: (A) the results coming from the average of 

the RMSDs of all the poses for each docking run; (B) the results derived just from the RMSD between the 

crystallographic ligand coordinates and the pose classified as the best from the scoring function; (C) the 

results of the self-docking experiments if just the pose showing the best RMSD value between its 

coordinates and the crystallographic ones is retained. The x-axis lists all the different protein-ligand 

complexes, which are plotted against the different pairs docking program-scoring function used for this 

study, reported in the y-axis.
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The results obtained for “scenario 1” are summarized in Table 1. 

Results for “scenario 1” – no water molecules considered in docking calculations 

 RMSD_average (Å) RMSD_scor_func (Å) RMSD_sorted (Å) 

All the 119 protein-ligand 

complexes 
5.76 5.10 3.70 

The 78 complexes with the ligand 

inside the catalytic pocket 
4.54 3.43 2.45 

The 41 complexes with the ligand 

outside the catalytic pocket 
8.08 8.29 6.08 

Table 1. Table representing the self-docking results obtained for “scenario 1”. 

2.2. “Scenario 2” – docking calculations considering the crystallographic water 

molecules 

The outcomes of our molecular docking experiment for this section (which are reported 

in the Supplementary materials file “Selfdocking_scenario2.csv”) are graphically 

represented with colormaps, which have been created with the same criteria listed in the 

previous paragraph. The results reported in the colormaps in Figures 6, 7, and 8 reveal the 

self-docking performance obtained on the different Mpro crystal structures in the case in 

which the crystallographic water molecules within 5 Å from the ligand were retained 

during the calculation. Also, in this case, it is easy to notice that the values result to be far 

better for the complexes in which the small molecule of interest is in the orthosteric 

binding site. 
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Figure 6. Colormaps represent the results of the self-docking experiments in the case in which the 

crystallographic water molecules at 5 Å or nearer to the ligand itself are considered during the docking runs. 

The three plots illustrate respectively: (A) the results coming from the average of the RMSDs of all the poses 

for each docking run; (B) the results derived just from the RMSD between the crystallographic ligand 

coordinates and the pose classified as the best from the scoring function; (C) the results of the self-docking 

experiments if just the pose showing the best RMSD value between its coordinates and the crystallographic 

ones is retained. The x-axis lists all the different protein-ligand complexes, which are plotted against the 

different pairs docking program-scoring function used for this study, reported in the y-axis. 

Similar to the first scenario, we divided each colormap into two sets, one with the 78 

proteins having the ligand located into the catalytic pocket, and the other including all the 

remaining cases (41 proteins). Considering all the protein-ligand complexes with all the 

different pairs docking program-scoring function, the mean values of all the RMSDs 

obtained (“RMSD_average”) was 5.64 Å, but focusing only on the mean of the RMSDs 

derived from the poses which were given the highest rank from the algorithms 

(“RMSD_scor_func”), the value resulted to be 4.83 Å. Looking only at the best RMSDs for 

each docking run (“RMSD_sorted”), the average of the values was 3.68 Å. 

As already done for “scenario 1”, also in “scenario 2” the analysis was divided between 

the complexes in having the crystallographic ligand crystallized into the catalytic pocket, 

and for all other situations. 

We reported the colormaps which resulted from this evaluation, and those are 

represented in Figures 7 and 8. 

We started from the complexes in which the ligand is located inside the catalytic pocket 

in the crystal. For those systems, the mean of the RMSD values coming from all the 

poses(“RMSD_average”) resulted to be 4.22 Å. Then, the average of the RMSDs derived 

from the scoring function highest-ranked poses in all the docking runs 

(“RMSD_scor_func”) was computed, and its value was 3.11 Å. In the end, also the average 

value between the lowest of the RMSDs in each docking run was calculated 

(“RMSD_sorted”) and is revealed to be 2.26 Å.  
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Figure 7. Colormaps represent the results of the self-docking experiments just for the ligands crystallized 

inside the orthosteric pocket when the crystallographic water molecules at 5 Å or nearer to the ligand itself 

are considered during the docking runs. The three plots illustrate respectively: (A) the results coming from 

the average of the RMSDs of all the poses for each docking run; (B) the results derived just from the RMSD 

between the crystallographic ligand coordinates and the once of the pose classified as the best from the 

scoring function; (C) the results of the self-docking experiments if just the pose showing the best RMSD 

value between its coordinates and the crystallographic ones are retained. The x-axis lists all the different 

protein-ligand complexes, which are plotted against the different pairs docking program-scoring function 

used for this study, reported in the y-axis. 

Second, we repeated the analysis for all the complexes in which the crystallographic ligand 

is located outside the orthosteric pocket. For these systems, the average of the RMSD 

coming from all the poses collected in the docking runs (“RMSD_average”) was calculated 

to be 8.32 Å. Next, we computed the mean of the RMSD values derived from the poses 

which received the highest score (from the scoring functions) in each run 

(“RMSD_scor_func”), and this value was 8.11 Å. Last, also the average value between the 

lowest of the RMSDs in each docking run was calculated (“RMSD_sorted”), giving 6.36 Å. 
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Figure 8. Colormaps represent the results of the self-docking experiments only for the ligands crystallized 

outside the orthosteric pocket when the crystallographic water molecules at 5 Å or nearer to the ligand 

itself are taken into account during the docking runs. The three plots illustrate respectively: (A) the results 

coming from the average of the RMSDs of all the poses for each docking run; (B) the results derived just 

from the RMSD between the crystallographic ligand coordinates and the once of the pose classified as the 

best from the scoring function; (C) the results of the self-docking experiments if just the pose showing the 

best RMSD value between its coordinates and the crystallographic ones are retained. The x-axis lists all the 

different protein-ligand complexes, which are plotted against the different pairs docking program-scoring 

function used for this study, reported in the y-axis. 

The results obtained for “scenario 1” are summarized in Table 2. 

Results for “scenario 2” – water molecules 5 Å or nearer to the ligand considered in docking calculations 

 RMSD_average (Å) RMSD_scor_func (Å) RMSD_sorted (Å) 

All the 119 protein-ligand 

complexes 
5.64  4.83  3.68  

The 78 complexes with the ligand 

inside the catalytic pocket 
4.22 3.11 2.26  

The 41 complexes with the ligand 

outside the catalytic pocket 
8.32 8.11  6.36  

Table 2. Table representing the self-docking results obtained for “scenario 2”. 

Just analyzing the numbers coming from the average values, is depictable how the 

performance of the docking programs dramatically increases when the ligand is docked 

inside the catalytic pocket rather than on the surface of the protein, in line with the fact 

that the molecules have a limitation in the conformation that they can explore into a 

binding site. Together with this, the ligands can exploit their accessible surface area to 

interact with the protein more efficiently, following the principle of 

“complementarity”27,28.  

  



SCIENTIFIC PUBLICATIONS 

 

Bassani et al., 2022 216 
 

2.3. Solvent exposure analysis 

The results of the docking calculations were then analyzed in light of the data coming from 

the solvent exposure analysis. For each docking program-scoring function pair, the best 

RMSDs given by the docking calculation were evaluated against the solvent exposure of 

the ligand in its crystallographic pose. The results were reported in different plots, one for 

each couple docking program-scoring function, also in this case dividing the graphs in 

respect to the “scenario” from which the docking result was coming. To give an example, 

we reported in this article the plots for the pair GOLD-goldscore for each of these cases 

(Figures 9 and 10).  

 

 

Figure 9. Scatter plots showing the different distribution of the RMSD values between the coordinates of 

the best pose from the GOLD-goldscore docking experiment in respect to the solvent exposure of the 

corresponding crystallographic ligands. The red dots represent the values having the ligand crystallized 

inside the catalytic pocket while the blue dots represent the ligands crystallized on the other side of Mpro. 

As can be noticed, the molecules showing the best values of RMSD are in most cases located inside the 

orthosteric pocket and characterized by low solvent exposure. This plot depicts part of the results of 

“scenario 1”, and so the crystallographic water molecules are not considered in the docking runs of which 

the outcomes are here represented. 
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Figure 10. Scatter plots showing the different distribution of the RMSD values between the coordinates of 

the best pose from the GOLD-goldscore docking experiment in respect to the solvent exposure of the 

corresponding crystallographic ligands. The red dots represent the ligands that are originally crystallized 

inside the catalytic pocket, while the blue dots represent the ligands crystallized in the other parts of Mpro. 

As can be noticed, the molecules showing the best values of RMSD are in most cases located inside the 

orthosteric pocket and characterized by low solvent exposure. This plot depicts part of the results of 

“scenario 2”, which means that the crystallographic water molecules at 5 Å or nearer to the ligand are also 

considered in the docking runs of which the outcomes are here represented. 

The plots arising from all other docking program-scoring function pairs, both in “scenario 

1” and “scenario 2”, are reported in the supplementary material (Figure S1). From these 

graphs, it is easily depictable how the best RMSDs values tended to derive from protein-

ligand complexes in which the solvent exposure of the ligand is low, and most of the time 

this means that the small molecule is crystallized in the binding pocket (indicated with the 

red dots in the plots). There are some cases in which the mean RMSD values were 

suboptimal also for this kind of ligands, and this can be due to several reasons. In some 

situations, of which the complexes 5REH, 5RE9, 5RGK (represented in Figure 11), and 

7AVD are an example, the solvent exposure was tendentially higher in respect to the other 

orthosteric ligands, while in other cases the increase in RMSD can be attributable to the 

small dimensions of the ligand itself, which made harder for the docking algorithms to 

reproduce the reference pose in a pocket of such considerable volume (the complexes 

5R82 and 5RG0 are an example for this)31.   
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Figure 11. Representation of the crystallographic complex conformation of 5RGK, one of the protein-ligand 

complexes in which the crystallographic ligand is located inside the orthosteric binding site, but the docking 

calculation results in high RMSD values. This is mainly due to the high level of solvent exposure that 

characterizes this ligand, which locates just a small portion of its structure inside the pocket, leaving the rest 

in an outer zone. The ligand is represented with stick representation (C-atom are colored in magenta), the 

catalytic dyad (Cys145 and His41) is highlighted, as well as the His163, the binding site residue interacting 

with the ligand. To give a better representation, the surface of the protein in a 5 Å radius from the ligand is 

represented and colored in blue. 

On the other hand, there are also some cases in which the best RMSD given by the 

protocol was pretty low even if the crystallographic ligand is not placed inside the 

orthosteric pocket. This is the case, for example, of 7LFP ( the crystallographic pose is 

reported in Figure 12); the ligand is placed at the interface between the monomers, and 

so its solvent exposure and RMSDs values were low even if is marked to be “outside the 

catalytic pocket”. A similar situation is observed on 5RF0, where the ligand, even if not 

located into the orthosteric pocket, is neither situated in the peripheral part of the 

protease. 
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Figure 12. Representation of the crystallographic pose of 7LFP, which is one of the protein-ligand complexes 

in which, even if the crystallographic ligand is located outside the orthosteric binding site, the RMSD values 

between the original coordinates and the ones given from the docking runs are considerably low. The reason 

for this can be found in the very low solvent exposure of this ligand, which is located in the interface 

between the monomers, and so is shielded by them. In the Figure, the ligand is represented in orange and 

the catalytic dyad (Cys145 and His41) of both monomers is highlighted. To give a better representation, the 

surface of the protein in a 5 Å radius from the ligand is represented and colored in blue. 

2.4. Molecular dynamics simulations 

For each of the 119 crystallographic complexes, 3 different molecular dynamics 

simulations (MD) of 5 ns each were collected, to examine the behavior of the ligands in a 

dynamic environment. The trajectories were wrapped, aligned to the first frame and the 

root-mean-square fluctuation (RMSF) of the ligand, as well as the RMSD between its 

crystallographic and final coordinates (“RMSD_final”), were calculated for every single 

experiment. For each protein, the values coming from the average of the RMSFs and 

“RMSD_final” derived from the replicas were considered. Considering all the simulations 

collected, the average of all the ligand RMSF values was calculated to be 5.28 Å, while the 

average of the RMSD values between the coordinates of the crystallographic 
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conformation of the ligand and the ones coming from the last frame of the trajectory 

(“RMSD_final”) was of 8.89 Å. 

As already done for the docking results analysis, we firstly focused on the complexes in 

which the crystallographic ligand is originally located inside the orthosteric pocket. For 

these systems, the average of all the RMSFs coming from the simulations was 2.19 Å. The 

mean value of the RMSDs of the ligands in the last frame of each trajectory (“RMSD_final”) 

was instead calculated to be 4.43 Å. 

Second, we concentrated on the systems in which the crystallographic position of the 

ligand (and so its initial location) is outside the catalytic pocket. For these systems, the 

average value of all the ligand RMSFs during the trajectories was calculated to be 11.15 Å. 

Then, the RMSD value between the final coordinates of the ligands and their 

crystallographic ones (“RMSD_final”) were considered. The average of these values, for 

all the trajectories collected for these complexes, was 17.66 Å. The output files of the 

molecular dynamics simulation geometric analysis are available in the supplementary 

material (“MD_data.csv”). 

As already done for the docking experiments, also for MD results the average values of 

RMSF and “RMSD_final” were plotted against the percentage of solvent exposure of the 

crystallographic conformation of the ligand, and the plots obtained have been reported 

in Figures 13 and 14. As expected, the complexes in which the ligand is crystallized in the 

orthosteric site (marked with the red dots in the scatter plot) tended to fluctuate much 

less than the ligands which are complexed in the external parts of the protease 

(represented with the blue dots in the graphs). As depicted, MD analysis confirms that the 

best values in terms of RMSF and “RMSD_final”, which are correlated to a more 

energetically stable situation for the protein-ligand complex, come from the systems in 

which the crystallographic ligand is localized inside the catalytic pocket and are 

characterized by a low percentage of solvent exposure. These outcomes further support 

the already mentioned hypothesis about the correlation between the improvement of the 

docking performances in the case in which the binding site is a pocket rather than a 

surface.  
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Figure 13. Scatter plots showing the different distribution of the mean RMSF values between the 

coordinates of the Mpro ligands compared to crystallographic ones after the molecular dynamics simulations 

in respect to the solvent exposure of the corresponding crystallographic ligands. The red dots represent the 

ligands that are originally crystallized inside the catalytic pocket, while the blue dots represent the ligands 

crystallized in the other parts of Mpro. As can be noticed, the molecules showing the best values of RMSF 

after the analysis of the trajectories are mainly located inside the catalytic pocket and characterized by a 

low solvent exposure of the original crystallographic pose. 
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Figure 14. Scatter plots showing the different distribution of the mean RMSD values between the final 

coordinates of the Mpro ligands compared to crystallographic ones after the molecular dynamics simulations 

in respect to the solvent exposure of the corresponding crystallographic ligands. The red dots represent the 

ligands that are originally crystallized inside the catalytic pocket, while the blue dots represent the ligands 

crystallized in the other parts of Mpro. As can be noticed, the molecules showing the best values of RMSF 

after the analysis of the trajectories are mainly located inside the catalytic pocket and characterized by a 

low solvent exposure of the original crystallographic pose. 

The overall results obtained with molecular dynamics simulations are summarized in 

Table 3. A graphical representation of the molecular dynamics simulations is reported in 

the Supplementary material (“Video_S1.mp4”). In this video, the ligands crystallized into 

the catalytic pocket were colored in magenta, while the other ligands were colored in 

cyan. 

Results of the molecular dynamics simulations 

 RMSD_final (Å) RMSF_average (Å) 

All the 119 protein-ligand complexes 8.98 5.28 

The 78 complexes with the ligand inside the 

catalytic pocket 

4.43 2.19 

The 41 complexes with the ligand outside 

the catalytic pocket 

17.66 11.15 

Table 3. Table representing the results of the molecular dynamics experiments. 

3. Materials and Methods 

3.1. Software overview 

The molecular modeling operations were executed with the Molecular Operating 

Environment (MOE) suite (version 2019.01)32. The molecular docking calculations have 

been carried out with CCDC GOLD (version 2020), Schrodinger Glide (from the Schrödinger 

suite 2021.3), and PLANTS. The solvent exposure calculation was performed with a series 

of SVL commands (exploiting “moebatch” of the MOE suite) implemented into a python 

script. The systems for molecular dynamics simulations were prepared using tleap33 and 

VMD34. The simulations were then carried out with ACEMD335 (version 3.3.0), a licensed 

program based upon OpenMM36 (version 7.4.0). The modeling and docking calculations 

have been performed on a 12 CPU (Intel Xeon E5-1620 3.50 GHz) Linux Workstation, while 
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the MD simulations were carried out on a GPUs-cluster based composed of 20 NVIDIA 

GPUs. 

3.2. Structure preparation for docking calculations 

The different crystal structures of Mpro were collected from the Protein Data Bank37. 

Among these, the proteins which did not present any ligand, or which were complexed 

with a covalent ligand, were excluded. This way, only the non-covalent protein-ligand 

complexes were retained, and the complete list of all the 119 complexes used is available 

in the Supplementary material (Table S1). The structures were grouped into a database 

and were prepared with MOE “QuickPrep” tool. With this tool, each complex was properly 

prepared to recreate the small missing loops in the structure, assigning the proper 

conformation to the residues with alternate orientation (based on occupancy) and adding 

the hydrogens to the system (this last passage was performed with the MOE “Protonate 

3D” tool). The hydrogens added this way were then minimized using the AMBER10:EHT 

force field implemented in MOE38.  

After these preliminary but crucial steps, each complex was manually examined and 

treated to eliminate every molecule except the crystallographic waters and the main 

ligand. Each complex was then independently saved. 

3.3. Docking calculations 

For each of the complexes prepared, the crystallographic ligand was separated from the 

protein and self-docked into its binding site. For each docking program, all the scoring 

functions available were used for separate runs, and each run 5 poses were collected for 

the ligand. GOLD supports 4 different scoring functions: goldscore, chemscore, asp, and 

plp; Glide supports two main functions for docking, which are Glide-SP and Glide-XP, while 

PLANTS implements plp and chemplp.  

For each docking program-scoring function couple, the docking calculation has been 

carried out in two different scenarios: one in which the crystallographic water molecules 

were not considered (which we will refer to as “scenario 1”) and one in which also the 

water molecules 5 Å or nearer from the ligand atoms were taken into account into the 

computation (which we will refer to as “scenario 2”).  
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When all the docking calculations were executed, the ligand root-mean-square deviation 

(RMSD) between the coordinates of each one of the poses and the crystallographic 

conformations were computed. The data of major interest were: the RMSD in respect to 

the pose which is marked with the highest score by the program (RMSD_scor_func), the 

lowest RMSD of the docking run (RMSD_sorted), and the average of the RMSDs of all the 

poses generated (RMSD_average). The output files of the self-docking experiments 

executed are available in the supplementary material (“Selfdocking_scenario1.csv” and 

“Selfdocking_scenario2.csv”). 

3.4. Solvent exposure calculation 

For each Mpro complex, the solvent exposure of the main crystallographic ligand was 

calculated with an SVL script based on MOE “moebatch”. The output of such calculation 

was the percentage of the ligand surface which is exposed to the solvent in the protein-

ligand crystallographic complex. A table comprising all the percentages obtained is 

present in the Supplementary material (Table S2). 

3.5. Molecular dynamics simulations set up and execution 

All the protein-ligand Mpro systems were independently prepared for molecular dynamics 

simulations. The program tleap was used for the creation of the simulation box, which 

was set to be cubic and characterized by a 15 Å padding. The solvation model used was 

the explicit TIP3P, and the neutralization of the system was performed adding Na+ and Cl- 

ions until the salt concentration inside the box reached the value of 0.154 M.  

The systems then underwent a two-passage equilibration. In the first one, both protein 

and ligand atoms were subjected to a harmonic position restrain of 5 kcal/mol. The length 

of this step was set to 0.1 ns and the ensemble used was the canonical one (NVT). During 

the second equilibration step, the ensemble was set to NPT (isothermal-isobaric), the 

length was 0.5 ns and the harmonic restrains (always 5 kcal/mol) were applied both on 

the ligand and on the alpha-carbons of the protein backbone. 

After these preliminary steps, 3 replicas of 5 ns each were collected for each system, the 

ensemble was again the NVT one and no restraints were applied. At the end of the 

simulations, the average root-mean-square fluctuation (RMSF) of the ligand during the 
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trajectory, as well as the RMSD between crystallographic coordinates of the ligand and 

the ones coming from the last frame of the trajectory were collected. 

4. Conclusion 

In this study, we have evaluated the performance of three orthogonal docking algorithms 

in reproducing the crystallographic pose of several ligands, located in different parts of 

the same target, which in our case was the SARS-CoV 2 main protease (Mpro). Our analysis 

revealed how, even if the docking programs used operate in different ways to give the 

final conformations to the user, all of them perform much better in the case in which the 

ligands are located in a binding pocket rather than crystallized outside of it. Specifically, 

we reported that their performance tends to decrease with the increment of the exposure 

of the crystallographic pose to the solvent. This was confirmed both from the experiments 

executed without considering the crystallographic water molecules in the docking 

calculations and from the ones taking into account the waters 5 Å or nearer to the ligand. 

Molecular dynamics simulations further give credit to our study, demonstrating how the 

less-fluctuating ligands (and so the most stable) through the trajectories were the once 

crystallized inside the orthosteric binding site of Mpro.  
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Abstract 

Computational approaches supporting the early characterization of fragment molecular 

recognition mechanism represent a valuable complement to more expansive and low-

throughput experimental techniques. In this retrospective study, we have investigated the 

geometric accuracy with which high-throughput supervised molecular dynamics 

simulations (HT-SuMD) can anticipate the experimental bound state for a set of 23 

fragments targeting the SARS-CoV-2 main protease. Despite the encouraging results 

herein reported, in line with those previously described for other MD-based posing 

approaches, a high number of incorrect binding modes still complicate HT-SuMD routine 

application. To overcome this limitation, fragment pose stability has been investigated 

and integrated as part of our in-silico pipeline, allowing us to prioritize only the more 

reliable predictions. 

1. Introduction 

Fragment-based drug discovery (FBDD) has progressively established as a game-changing 

approach to navigate the chemical space in the drug discovery pipelines, both on 

academic and industrial early discovery stages1,2,3. By definition, fragments are low 

molecular weight organic molecules able to recognize a target of therapeutic interest in a 
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mild affinity range and with a poor selectivity profile4. Intriguingly, the screening of small 

sized fragment libraries in place of conventional larger ones has proven to provide better 

coverage of the chemical diversity and higher hit rates5,6. The identification of such weak 

binders, however, strictly depends on the implementation of biophysical screening 

techniques, such as X-Ray Crystallography (XRC), Nuclear Magnetic Resonance (NMR), 

surface plasmon resonance (SPR), or Thermal Shift Assay (TSA)1,7,8. Anyway, broad 

differences exist among such methods and each of them suffers unique limitations in the 

challenging identification of reliable fragment; indeed the agreement in the hits identified 

is surprisingly limited9,10,11. Besides, only XRC and NMR offer the possibility to investigate 

the binding mode of weak binders. In light of this, structure-based computational 

strategies have increasingly gained appeal12,13,14. As highlighted in a recent review, during 

the last decade Molecular Dynamics (MD) simulations have been extensively applied also 

in the FBDD field, providing an atomistic insight on the fragment-receptor binding 

mechanisms, with a femtosecond temporal resolution15. From this perspective, we 

recently developed HT-SuMD, a computational protocol exploiting supervised MD 

simulations to perform the screening of a small fragments library in a competitive 

timescale16. The performance of the protocol in prioritizing the most promising fragment 

binders was compared with NMR-based screening, against the oncological protein target 

Bcl-xL. Despite the notable agreement with NMR in identifying the most promising hits, 

the lack of structural data prevent the assessment of HT-SuMD accuracy in fragments 

binding mode prediction, which would represent a valuable set of information to guide 

the subsequent hit to lead (H2L) optimization steps. In this methodological study, we have 

therefore retrospectively investigated the accuracy of HT-SuMD simulations in 

reproducing the experimental binding mode of several fragment-protein complexes, 

exploiting the 3C-like main protease (Mpro) of the novel SARS-CoV-2 coronavirus as a 

relevant case study. Following indeed the dramatic spread of the COVID-19 pandemic, a 

collaborative XRC fragment screening against the protein Mpro has timely offered to the 

scientific community valuable structural information to accelerate the rational design of 

new protease inhibitors17,18,19. For this validation study in detail, among the 71 fragments 

targeting the catalytic site of Mpro originally identified by the XRC screening, only the 23 

presenting a reversible mechanism of recognition were taken into consideration, due to 
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the impossibility of modeling covalent reactivity through classical molecular mechanics 

(MM) force fields20,21. 

2. Results and Discussion  

2.1 Characterization of fragment-receptor complexes  

The high-quality Mpro crystallographic structures were collected from the Protein Data 

Bank database (PDB ID are reported in Table 1 of SI) and prepared by applying symmetric 

transformation to each asymmetric unit, thus recreating the original functional dimer22. A 

visual inspection of the catalytic clefts has revealed how the 23 non-covalent fragments 

comprehensively explore most protease binding subsites (S1, S2, S3, and S1’) while 

providing decent coverage of chemical diversity. Besides, Mpro catalytic cleft is easily 

accessible from the bulk solvent and hence suitable to SuMD studies, as recently 

demonstrated for a couple of Mpro inhibitors23. The complexity, as well as the plasticity of 

the Mpro binding pocket, made this test case particularly challenging, the reason why an 

MD-based stability characterization of all the experimental-solved crystallographic 

complexes was performed, before investigating HT-SuMD accuracy in the fragment posing 

process.  

For this purpose, the AMBER14SB force field was combined with the general amber force 

field (GAFF) to parameterize respectively the protein biopolymers and the small organic 

fragments24,25. To ensure results robustness, 5 trajectories each 20 ns long were collected 

for all Mpro complexes, resulting in a total of 2.3 μs of conventional MD simulations. The 

content of information extrapolated from a single trajectory has been hence doubled by 

simply repeating the analysis against the two distal and independent catalytic sites of the 

homodimeric SARS-CoV-2 Mpro. To characterize the geometric stability of the 

experimental-solved fragment complexes the root-mean-square fluctuation (RMSF) of 

ligands heavy atoms has been chosen as a metric, then summarizing the results through 

a heatmap representation, as reported in Figure 1.  
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Figure 1. Fragment stability assessed by classical MD of the 23 crystallographic complexes. For each MD 

simulation collected (x-axis) starting from the crystallographic ligand-receptor complexes (y-axis), the pose 

stability value of the fragment is herein reported through a heatmap representation. The colorimetric scale, 

from green to red, quantitatively represents the RMSF computed for each ligand heavy atoms (0 to 5 Å 

scale). The MD simulation were carried out on each subunit of the Mpro functional dimer resulting in two 

set (labelled a and b) for each of the 5 runs. 

The colorimetric scale helps in differentiating those fragments which maintained the 

original binding mode during all the collected replicates (green color), from others 

undergoing a neat perturbation of the recognition modality (yellow color) or that even 

experience a spontaneous unbinding event, repetitively leaving the catalytic cleft (red 

color). Interestingly, a strong correlation was identified between the topological 

localization of the fragments and their RMSFavg, with those ligands occupying the highly 

flexible S2 subsite also showing the more pronounced propensity in losing the 

experimental solved binding mode. This information not only offers valuable insights for 
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the H2L optimization phase but also opens up questions about the suitability of MD-based 

approaches for the posing of ligands characterized by such limited structural stability.  

2.2 Fragments posing through HT-SuMD  

HT-SuMD protocol has been applied to investigate the binding mechanism of the 23 non-

covalent fragments against the unliganded crystal structure of the SARS-CoV-2 Mpro (PDB 

ID 6YB7). As accurately described in the original paper, HT-SuMD manages the 

preparation, collection, and analysis of multiple SuMD simulations in an automatic 

modality, only requiring the binding pocket localization as initial information. SuMD, 

briefly, exploiting a tabu-like supervision algorithm that monitors in times variations in 

the ligand-protein binding site distances, could be considered an enhanced sampling 

approach improving the efficiency with which rare events, such as binding, are 

described26,27. For each fragment investigated, a solvated MD simulation box has been set 

up (a detailed description is reported on supplementary materials) and equilibrated after 

distancing the ligand at least 30 Å away from the protein catalytic cleft, to avoid 

premature intramolecular interactions. Also in this case, as an attempt to increase the 

robustness of the results, 10 SuMD replicates have been collected, resulting in a total of 

6.3 μs of simulation time. The ensemble of 230 trajectories describing different fragment 

binding pathways has been later geometrically discretized through DBSCAN, a density-

based clustering algorithm, which allows all the most populated ligand-protein states to 

emerge from the background noise28,29. In detail, a cluster is initialized if it contains at 

least 25 similar fragments conformations, which therefore differ from each other by no 

more than 1.5 Å. Finally, each binding mode was qualitatively evaluated using the 

MM/GBSA approach to approximate the ligand-protein free energy of binding, thus 

allowing to perform a ranking of the predicted poses30. The accuracy of the predictions 

was assessed by comparing each cluster of fragment conformations identified with the 

respective crystallographic reference, computing the root-mean-square deviations 

(RMSD) of non-hydrogen atomic coordinates. The results obtained for the 23 Mpro 

crystallographic inhibitors have been extensively reported in the supplementary 

information (SI_HT-SuMD.xlsx) and graphically summarized in Figure 2, exploiting a 

colorimetric map to differentiate the correctness of the posing protocol.  
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Figure 2. The results of the HT-SuMD posing protocol have been herein summarized. For each of the 23 

fragments investigated the cluster of ligand conformations closes to the experimentally solved binding 

mode was reported, measuring the accuracy of the prediction through the RMSDavg and RMSDmin values 

of the selected cluster. The crystallographic reference has been rendered in white color, while the HT-SuMD 

predicted binding modes have been differentiated in green, yellow, and red color, following the criteria 

described in the legend. In the case of partially predicted fragments, in which a good binding geometry was 

retrieved but erroneously ranked, the magnitude of the error has been underlined reporting the incorrect 

ranking position. 

More specifically, for each fragment, the minimum RMSD (RMSDmin) and the average 

RMSD (RMSDavg) values for the best cluster, i.e. the cluster closer to the crystallographic 

reference, were reported then comparing the predicted binding mode with the 
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experimental one. The fragment posing exercise was considered correctly achieved if the 

RMSDmin of the cluster selected falls below the cut-off value of 2 Å.  

For 11 fragments out of 23, representing almost half of the considered cases, the protocol 

was able to identify and correctly rank the experimental binding mode (green-coloured 

molecules). Among these, the most noteworthy case is represented by the fragment with 

the PDB ID 5RGI, the only one targeting the S1’ subsite. HT-SuMD posing approach, fully 

exploring the conformational flexibility of the receptor, was able to reproduce the 

fragment crystallographic binding mode in an extremely accurate way, with an RMSDmin 

value of 0.46 Å. This result is impressive since, in the unliganded Mpro structure chosen 

in this study, the S1’ pocket, due to a different orientation of the residues composing the 

catalytic dyad (H41 and C145), is initially inaccessible.  

For the remaining 12 fragments, an in-depth analysis highlighted two orthogonal reasons 

underneath the HT-SuMD based posing failures. In 5 cases the MM/GBSA-based scoring 

method was unable to prioritize the experimental binding mode, even if it was 

exhaustively sampled by SuMD simulations (yellow-colored molecules). The incorrect 

ranking position was then reported in Figure 2 within a squared box, to underline the 

magnitude of the scoring error. This disagreement may be caused by limitations affecting 

the MM models, as errors in the fragments force field parameters or, more intriguingly, 

the crystallographic structures could capture only one of the possible accommodation 

states that the ligand can explore within the binding site31. In the other 7 cases instead, 

the experimental conformation was never sampled (red-colored molecules), suggesting 

possible MD-sampling issues that may be addressed by widening the number of SuMD 

replicates performed for each compound, however increasing the computational cost of 

our approach. The accuracy of HT-SuMD protocol, therefore, with 48% of correct binding 

mode predictions is greater than non-native docking-based protocols reported in the 

literature and in line with that of other MD based fragments posing approaches32,33. It 

appears however evident how the posing of fragments still represents a tough 

pharmaceutical challenge, in particular, as suggested by Verdonk, for those characterized 

by a low-ligand efficiency (LE). Even our computational approach, in about half of the 
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examined cases, fails to return a reliable result making its routine application very 

complex in a pharmaceutical drug discovery context.  

To elucidate the applicability domain of HT-SuMD and better understand the limitations 

related to the implementation of MD-based protocols for the fragment binding modes 

prediction, we have therefore investigated if the fragment pose stability, a geometric-

dynamic property, could impact the predictivity of our method. The fragment pose 

stability retraces the concept behind the structural stability criterion that has recently 

been discussed also by Barril’s research group, as a complement to more traditional 

thermodynamic-based approaches in the identification of correct fragment-receptor 

binding mode34.  

 

Figure 3. HT-SuMD predictions have been analyzed and related to the average fragment pose stability values 

(RMSFavg) showed by each original crystallographic complex during the MD-based characterization study 
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HT-SuMD outcomes have therefore been compared, as reported in Figure 3, with the 

average values of atomic coordinates fluctuation (i.e. RMSFavg) respectively showed by 

each crystallographic fragment in the classical MD study previously discussed. Intriguingly, 

a clear pattern is noticeable since almost the totality of the correctly predicted binding 

modes (9/11) has been recovered for those fragments characterized by marked structural 

stability, with an RMSFavg value lower than 2.5 Å. Above this empirical cut-off, consistently 

most of the incorrect predictions concentrate, thus corroborating the existence of an 

inverse relationship linking together the stability of a crystallographic final state and the 

ability to correctly anticipate it through MD-based approaches, as our protocol configure. 

Fragment poses stability as a confidence metric.  
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Figure 4. HT-SuMD predicted binding modes (i.e. the cluster of fragments conformations characterized by 

the lowest MM/GBSA value) have undergone an MD-based refinement step. The fragment poses stability 

of each prediction, measured as the RMSFSuMD, has been exploited to rank HT-SuMD results, allowing in this 

way to efficiently prioritizing the correct binding modes at the expense of the incorrect ones. The dashed 

line delimits the empirical cut-off of 2.5 Å used to discriminate the reliability of HT-SuMD posing prediction 

The relationship described above could therefore be exploited to drive the analysis and 

the interpretation of HT-SuMD results, providing an observable with which distinguish 

reliable binding modes predictions from decoys. To test this hypothesis, the results 

collected through HT-SuMD posing protocol were retrospectively evaluated simulating a 

real screening scenario, in which crystallographic references are not available. Hence, for 

each of the 23 Mpro fragments previously investigated through HT-SuMD, the binding 

mode with the lowest MM/ GBSA score was blindly selected, regardless of whether it 

corresponds to the original experimental pose. Then, multiple classical MD simulations 20 

ns long were started from the predicted final states, to characterize their relative 

fragment pose stability. Results of this study have been summarized in Figure 4, sorting 

the data concerning the RMSFSuMD values, or the average fluctuations of SuMD-predicted 

binding poses, computed on the fragment‘s heavy atoms. A first interesting aspect to 

underline is how almost the totality of the correct binding modes anticipated by HT-SuMD 

(green-colored molecules) only undergoes a mild conformational perturbation during 

classical MD simulations, in agreement with the results described in the first part of the 

manuscript for the crystallographic complexes. On the contrary, incorrect binding mode 

(yellow and red-colored molecules) in most of the cases experience great lability when 

refined through MD simulations, sometimes even culminating in a spontaneous unbinding 

event of the fragment.  

These observations corroborate the initial hypothesis, suggesting how a combination of 

HT-SuMD protocol for the posing of fragments with classical MD simulation for the 

refinement of results could represent an optimal operative pipeline, which allows 

overcoming some of the previously discussed methodological limitations. In this specific 

case indeed, the implementation of a geometric-dynamic property, namely the RMSFSuMD, 

results extremely useful to qualitatively estimate the reliability of the in-silico predicted 

poses. 
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Observing the ranking reported in Figure 3, as the structural stability of the HT-SuMD 

predicted binding mode decreases, a worsening in posing accuracy occurs contextually. 

Intriguingly, also, in this case, 2.5 Å configure as a valuable empirical threshold which 

allows us to prioritize all the 11 correct fragment binding mode predictions. However, it 

is worth noting how the same cut-off is also responsible for the incorporation of three 

false positives, predictions characterized by remarkable structural stability, but which are 

nevertheless geometrically far from the crystallographic reference. For what concerns the 

fragment belonging to the PDB ID 5R7Y complex, HT-SuMD protocol has probably 

prioritized a metastable binding mode anticipating the experimental one, that has been 

nevertheless sampled through MD simulations but incorrectly scored by MM/GBSA. In the 

other two cases (PDB ID 5REH and 5RGK) the misprediction affects two fragments sharing 

a similar structure and interactivity. In the specific case of the 5REH complex, the HT-

SuMD posing protocol has prioritized an alternative binding mode in which the pyridine 

portion of the fragment is correctly predicted, reproducing the key hydrogen bond 

interaction with H163 residue, while the remaining flexible portion is erroneously 

accommodated in the subsite S2 causing, as indicated in Figure 2, the high RMSD value of 

the cluster. This aspect is particularly interesting in the FBDD context, considering how 

the mild affinity profile characterizing these compounds could determine multiple 

recognition modes.  

Conclusion 

The elucidation of fragment binding modes in the early stages of FBDD campaigns still 

represents a tough medicinal chemistry task, which can be mitigated by the concomitant 

application of in-silico approaches. In this work, we have therefore investigated the 

geometric accuracy with which our recently developed computational protocol can 

reproduce experimentally solved fragment-receptor complexes. For this purpose, the XRC 

structures of 23 non-covalent fragments targeting SARS-CoV-2 Mpro, a pharmaceutical hot 

target in this actual COVID-19 pandemic, were exploited. HT-SuMD, as summarized in 

Figure 5, samples for each fragment multiple binding trajectories (Box 1), which are 

subsequently geometrically discretized through DBSCAN clustering and energetically 

evaluated using the MM/GBSA approach (Box 2). Our methodology was able to recover 
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and prioritize in almost half of the cases taken into consideration (48%) the original 

fragment bound geometry, with an accuracy comparable to that described for other MD-

based posing approaches. 

  

Figure 5. HT-SuMD protocol for the posing of fragments mainly consists in three operative steps, that are 

respectively summarized in this graphical workflow. In detail, supervised MD simulations are exploited to 

sample multiple binding trajectories for all the fragments analyzed (1), then DBSCAN clustering algorithm 

allows to identify of the most populated ligand conformation, which is energetically evaluated using 

MM/GBSA scoring method (2). The in-silico predicted binding modes finally undergo an MD-based 

refinement step, using the RMSFSuMD as a metric to qualitatively characterize the posing reliability. 

Intriguingly, a clear correlation has been identified between HT-SuMD posing accuracy 

and the stability of the respective crystallographic complexes, with most of the correct 

binding modes predictions retrieved for those fragments characterized by a low RMSFavg. 

In light of this aspect, a refinement step of HT-SuMD results through classical MD 

simulations has become an integrative part of our posing protocol (Figure 5 – Box 3). More 

specifically, the structural stability of the predicted binding mode, i.e. the RMSFSuMD, has 

been exploited and validated as a metric to qualitatively estimate the reliability of each 

single in-silico prediction. In this way, it was possible to effectively rank and prioritize the 

11 correct HT-SuMD binding poses while discharging the ones characterized by a marked 

instability that was mainly revealed as incorrect predictions. This concept is exemplified 

in Video1 (supplementary information), reporting how MM/GBSA, a thermodynamic-

based approach, fails in distinguishing a correct form and incorrect fragment binding pose, 

while the subsequent MD refinement steps allow highlighting a marked difference 

between the two different predictions, in terms of RMSFSuMD.  

Despite these preliminary encouraging results, which must be certainly consolidated with 

further case studies, an improvement in the fragment posing accuracy is however still 
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desirable. From this perspective, the ever-increasing computing power that will be 

available in the next years coupled with the continuous optimization of the 

conformational sampling algorithm, as well as the force fields model used, could pave the 

way for the development of more accurate fragment posing protocols, that could 

massively impact many in-silico FBDD pipelines. 
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Abstract 

Coronavirus SARS-CoV-2 is a recently discovered single-stranded RNA (ssRNA) 

betacoronavirus, responsible for a severe respiratory disease known as coronavirus 

disease 2019 (COVID-19), which is rapidly spreading. Chinese health authorities, as a 

response to the lack of an effective therapeutic strategy, started to investigate the use of 

lopinavir and ritonavir, previously optimized for the treatment and prevention of 

HIV/AIDS viral infection. Despite the clinical use of these two drugs, no information 

regarding their possible mechanism of action at the molecular level is still known for SARS-

CoV-2. Very recently, the crystallographic structure of the SARS-CoV-2 main protease 

(Mpro), also known as C30 Endopeptidase, was published. Starting from this essential 

structural information, in the present work we have exploited Supervised Molecular 

Dynamics (SuMD), an emerging computational technique that allows investigating at an 

atomic level the recognition process of a ligand from its unbound to the final bound state. 

In this research, we provided molecular insight on the whole recognition pathway of 

Lopinavir, Ritonavir, and Nelfinavir, three potential C30 Endopeptidase inhibitors, with the 

last one taken into consideration due to the promising in-vitro activity shown against the 

structurally related SARS-CoV protease. 
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1. Introduction  

Coronavirus SARS-CoV-2, previously known as 2019-nCoV, is a recently discovered single-

stranded RNA (ssRNA) betacoronavirus, responsible for a severe pathological 

condition known as coronavirus disease 2019 (COVID-19).1 Since it was first identified in 

December 2019, this novel coronavirus has rapidly spread all around the world, being 

since now responsible for the death of nearly one milion of people, which have lost their 

lives due to a severe respiratory illness.2  

The first outbreak of this new disease originally took place in the city of Wuhan (China), 

rapidly spreading in the southeast of Asia and, recently, in other continents like Europe, 

North America and Africa.1 The astonishing rate at which COVID is expanding compared 

to previous coronavirus related diseases (SARS-CoV and MERS-CoV), in conjunction with 

the absence of approved drugs or effective therapeutic approaches for its treatment, has 

gathered the attention of the international community, which is promoting a cooperative 

effort to face this emergency.3,4 On January 2020 indeed, the International Health 

Regulations Emergency Committee of the World Health Organization declared the 

outbreak a “public health emergency of international concern” in responding to SARS-

CoV-2. 

Unfortunately, the timeline characterizing a typical drug discovery process badly couples 

with the urgency of finding a cure for the already infected patients as rapidly as possible. 

In this kind of scenario, it is of paramount importance to accelerate the early stages of the 

drug discovery process for COVID-19 treatment, and for all possible future emergencies.5 

The early isolation of the SARS-CoV-2 genome from ill patients represented a first crucial 

outcome, making it possible to highlight an important sequence identity (~80% of 

conserved nucleotides) with respect to the original SARS-CoV epidemic virus.6 In light of 

this similarity, some therapeutic strategies could be inherited from other genetically 

related CoV diseases.  

A possible target is for example represented by structural viral proteins, therefore 

interfering with the assembly and the internalization of the pathogen into the host, which 

was shown to occur also in this case through the Angiotensin-converting enzyme II (ACE2) 

receptor. From this perspective, the development of a vaccine is desirable, and it is 
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foreseen that the first candidates will be advanced to clinical phase I around mid-2020.7–

9  

In the meantime, however, a great effort involves the targeting of non-structural viral 

proteins which are instead essential for the viral replication and the maturation processes, 

thus representing a crucial and specific target for anti-COVID drug development.3,10 In this 

regard, the crystallographic structure of the SARS-CoV-2 main protease (Mpro), also known 

as  C30 Endopeptidase, was elucidated and made available to the scientific community 

with impressive timing, just a few weeks after the first COVID-19 outbreak (PDB ID: 6LU7). 

The structural characterization of the protease, which shares 96.1% of its sequence with 

those of SARS-CoV, has revealed a highly conserved architecture of the catalytic binding 

site. 

As a result, Structure-Based Drug Discovery techniques (SBDD) can now be applied to 

efficiently speed up the rational identification of putative Mpro inhibitors or to drive the 

repurposing process of known therapy. This latter route is particularly attractive, as it 

allows to significantly shrink the time required to access the first phases of clinical trials, 

without compromising patient safety. A multitude of research groups has begun to apply 

computational approaches, such as molecular docking based virtual screening (VS), to 

evaluate already approved FDA approved drugs against the aforementioned viral 

protease.11–14 Many of these studies have found convergence in suggesting compounds 

inhibitors of the human immunodeficiency viruses (HIV) as possible anti-COVID 

candidates; this is surprising considering the important structural differences exiting 

among these two homologous enzymes. The repositioning of HIV antiviral drugs for the 

treatment of coronavirus infections found, however, a foundation in the scientific 

literature of the past 20 years. Some of these compounds have therefore been 

experimentally investigated, showing promising activity, both in the case of SARS-CoV and 

MERS-CoV outbreak.15,16 

Moreover, at least three randomized clinical trials are currently been held in China in 

order to evaluate the therapeutic efficacy of Lopinavir and Ritonavir,  a combination of 

HIV protease inhibitors, in COVID-19 treatment.7 In this perspective and preliminary 

computational research, we took advantage of the recently solved crystallographic 

structure of SARS-CoV-2 Mpro to perform a cutting edge in-silico investigation.   
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Figure 1. The crystallographic structure of SARS-CoV-2 C30 Endopeptidase exploited in our computational 

investigation (PDB ID : 6LU7) is reported in Panel A. The two different monomers composing the 

homodimeric proteases are depicted using different colors (i.e. pink and white respectively for monomer A 

and B). As represented on Panel B, only one chain (monomer A) was exploited in our SuMD protocol to 

describe the putative inhibitor binding mechanism.  

Supervised Molecular Dynamics (SuMD), an emerging technique allowing to investigate 

at an atomic level of detail the molecular recognition process, was exploited to 

characterize the putative binding mechanism of three HIV protease inhibitors.17–19 In 

detail, along with the aforementioned combination of Lopinavir and Ritonavir, also 

Nelfinavir was taken into consideration, due to the promising in-vitro activity shown by 

this compound against the structurally related SARS-CoV protease.20 SuMD protocol 

implements a tabu-like algorithm that controls the sampling of short unbiased MD 

trajectories, each of which hundreds of picoseconds (ps) long. In detail, simulation steps 

are accepted only when describing a ligand approaching a known binding site, otherwise, 

the simulation is discharged and restarted from the previous coordinate set. The 

combination of all productive SuMD simulation steps represents, therefore, a putative 

molecular recognition trajectory collected, differently from brute force MD, in a very 

competitive computational time not exceeding the nanoseconds (ns) timescale. Contrary 

to molecular docking, SuMD simulations fully consider both the flexibility characterizing 

the protein target during the binding event and the contribution played by water 

molecules during the recognition. Moreover, the study is not limited to a possible final 

state but allows peeking dynamically at the whole process of recognition, also identifying 

putative metastable binding sites. 
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2. Results 

The combination of the structurally related antiviral protease inhibitor Lopinavir and 

Ritonavir, commercially known with the name Kaletra, represent an effective therapeutic 

weapon ensuring an adequate and durable suppression of viral load in HIV positive 

patients. The synergistic coadministration of these two compounds exploits low-dosage 

concentration of Ritonavir which, inhibiting the metabolic inactivation of Lopinavir, acts 

as a pharmacokinetic enhancer.21 Following a preliminary favorable clinical response in 

SARS-CoV related diseases, the combination of the drug is currently under investigation 

also against SARS-CoV-2, with at least three randomized clinical trials undergoing with 

Chinese infected patients.15 In our computational study, we considered Lopinavir and 

Ritonavir as two independent inhibitors, performing separate SuMD binding simulations, 

which results are herein reported an analyzed. 

As highlighted in Figure 2 (Panel B) about 20 ns proved to be sufficient to sample a putative 

Lopinavir recognition trajectory with SARS-CoV-2 protease. At a distance of about 15 Å 

from the binding site, the first molecular contacts are recorded (Figure 2 – Panel C, D and 

Video 1), which guide the subsequent accommodation of the ligand into the catalytic site. 

The predicted final state is stabilized by a double hydrogen bond interaction with residue 

Glu166 backbone, tightly anchoring the inhibitor (Figure2 - Panel A). This strong and 

persistent interaction (Figure 2 – Panel B) is known to be crucial in many SARS-CoV 

complexes and moreover, was also found to stabilize the covalent peptidomimetic 

compound crystallized in the recently published SARS-CoV-2 Mpro structure. In addition, 

the cyclic urea moiety of Lopinavir mediates a hydrogen bond interaction with the side 

chain of Gln189, another residue whose importance has been elucidated by means of 

several SARS-CoV three-dimensional complexes.  
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Figure 2. This panel summarizes the recognition pathway of Lopinavir against the SARS-CoV-2 main 

protease. (A) Lopinavir conformation sampled in the last frame of the SuMD trajectory (green-colored 

molecule). The residues surrounding the binding site are reported in pink color. (B) Distance between the 

ligand center of mass (Cm) and the catalytic binding site of the Mproduring the SuMD simulation. (C) 

Interaction Energy Landscape describing the protein-ligand recognition process; values are arranged 

according to the distances between ligand and protein target mass centers. (D) Dynamic total interaction 

energy (electrostatic + vdW) computed for most contacted Mpro residues. 

Despite the modest pharmacodynamic contribution made by Ritonavir in the combined 

formulation under investigation by the Chinese scientific community, in which the drugs 

act as a pharmacokinetic enhancer rather than a protease inhibitor, we still tried to 

elucidate its putative molecular recognition pathway. Also, in this case, 20 ns of SuMD 

simulation time were sufficient to sample a binding trajectory (Figure 3 – Panel B). 

Although some key interactions – i.e. hydrogen bond network with residue Glu166 and 

Gln189 – are appreciable also in this final state (Figure 3 – Panel A,D and Video 2), a 

comparative analysis of the Interaction Energy Landscape graphs (Panel C of Figure 2 and 

3) suggests lower energy stability of the SuMD predicted binding mode, when compared 

with that characterizing Lopinavir. A reason could be seeking on the non-optimal 

accommodation of Ritonavir urea moiety, which floats outside the binding site exposed 

to the bulk solvent during all the simulation (Video 2).  
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Figure 3. This panel summarizes the recognition pathway of Ritonavir against the SARS-CoV-2 main 

protease. (A)  Ritonavir conformation sampled in the last frame of the SuMD trajectory (orange-colored 

molecule). The residues surrounding the binding site are reported in pink color. (B) Distance between the 

ligand center of mass (Cm) and the catalytic binding site of the Mproduring the SuMD simulation. (C) 

Interaction Energy Landscape describing the protein-ligand recognition process; values are arranged 

according to the distances between ligand and protein target mass centers. (D) Dynamic total interaction 

energy (electrostatic + vdW) computed for most contacted Mpro residues. 

In light of the promising experimental results shown by Nelfinavir, which milded the 

cytopathic effect induced by SARS-CoV infection strongly inhibiting the virus replication, 

we decided to computationally evaluate its possible molecular recognition mechanism 

also against SARS-CoV-2 protease. As reported in Figure 4 (Panel B), a slightly longer SuMD 

simulation was necessary to fully describe a putative Nelfinavir binding trajectory. Once it 

has approached the vestibular region of the protease catalytic site, the ligand spends the 

first 20 ns negotiating the accommodation with a series of polar residues with which it 

mediates intermittent interactions, as highlighted in the interaction energy fingerprint 

(Figure 4 - Panel D, Video 3). The importance of this metastable site is also depicted in the 

Interaction Energy Landscape (IEL) graphic (Figure 4 – Panel C, Figure S3 – Panel A and B,), 

from which it is possible to notice a highly populated region presenting ligand-protein 

interaction energy comparable to the final states previously described for the other two 

inhibitors. The last 10 ns of the simulation were characterized by a series of 
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conformational rearrangements, which resulted in an optimal Nelfinavir accommodation 

within the protease binding cleft stabilized through a dense hydrogen bond network, 

tightly anchoring the inhibitor to the protease. As shown in Figure 4 (Panel A), SuMD 

predicted binding mode of Nelfinavir is characterized by great analogies with that of the 

originally crystallized covalent peptidomimetic compound. Residues His164, Glu166, 

Gln189, Thr190, and Gln196 mediate a series of directed or water-bridged hydrogen 

bonds interactions. Moreover, as highlighted in Figure 4 (Panel D), on the last ns of the 

simulation a stabilizing salt bridge interaction occurs between the side chain of residue 

Glu166 and the octahydro-1H-isoquinoline charged moiety of Nelfinavir. Intriguingly, 

mutagenesis studies have corroborated the crucial role played by this residue. Mutation 

of Glu166 correlated therefore with the block of substrate-induced dimerization of the 

main protease, both in SARS-CoV and in MERS-CoV.22,23 

Figure 4. This panel summarizes the recognition pathway of Nelfinavir against the SARS-CoV-2 main 

protease. (A)  Nelfinavir conformation sampled in the last frame of the SuMD trajectory (cyan-colored 

molecule). The residues surrounding the binding site are reported in pink color. (B) Distance between the 

ligand center of mass (Cm) and the catalytic binding site of the Mpro during the SuMD simulation. (C) 

Interaction Energy Landscape describing the protein-ligand recognition process; values are arranged 

according to the distances between ligand and protein target mass centers. (D) Dynamic total interaction 

energy (electrostatic + vdW) computed for most contacted Mpro residues. 
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3. Discussion 

In the last two decades, three major outbreaks of coronavirus-related diseases SARS-CoV, 

MERS-CoV and ultimately SARS-CoV-2 have been responsible for significant public health 

issues, along with dramatic social-economic consequences. The process of drug discovery 

often undergoes timelines which are difficult to reconcile with the urgency and the need 

to provide an effective therapeutic response to such an emergency health situation. Drug 

repurposing could represent a viable possibility, and this is the case for some anti-HIV 

compounds targeting SARS-CoV-2 C30 Endopeptidase. The molecular basis underneath 

their therapeutic action remains however often obscure. In this preliminary 

computational investigation, we have taken advantage of the recently published 

crystallographic structure of SARS-CoV-2 Mpro to investigate the putative binding 

mechanism of three antiviral compounds, previously designed as selective HIV protease 

inhibitors and now under investigation as anti-COVID-19 emergency treatments. SuMD 

protocol was in detail exploited to collect, for each of the three inhibitors, MD simulation 

describing the possible mechanism of molecular recognition, thus providing an atomistic 

insight to interpret their data of therapeutic efficacy. An interesting aspect is represented 

by the speed of this approach: a few days of calculation in a modest GPU cluster allowed 

to collect a multitude of simulations, from which it was possible to hypothesize the 

recognition mechanism of Lopinavir, Ritonavir, and Nelfinavir. An approach of this type, 

therefore, becomes crucial in all emergencies, making it possible to overcome the lack of 

structural data to guide and understand the possible repositioning of already approved 

drugs. In this particular case study,the SuMD protocol not only allowed to hypothesize a 

possible recognition method for each antiviral but also to advance some preliminary 

comparative considerations. Nelfinavir, in particular, showed the best fitting for the 

catalytic site of SARS-CoV-2 Mpro, establishing an interactions network similar to those 

elucidated in the crystallographic complex for the covalent peptidomimetic compound 

N3. More specifically, the phenyl sulfanyl moiety of the protease inhibitor at the end of 

the simulation was completely buried within the hydrophobic sub-pocket S2, which is 

delimited by residues His41, Cys44, Met49 and Met165. The stabilizing vdW contribution 

mediated by these residues has been dynamically mapped during the entire simulation 
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and it is appreciable in Figure S3.  Encouragingly, a recent fragment crystallographic 

screening has highlighted how this site, precisely renamed “aromatic wheel”, consistently 

accommodates aromatic fragments mediating hydrophobic interactions with the 

surrounding residues.24 Furthermore, Nelfinavir hydroxyl group engages a hydrogen bond 

interaction with the carbonyl backbone of Glu166, a key residue found to stabilize most 

of the aforementioned non-covalent fragments as well as many covalent peptidomimetic 

inhibitors. The optimal interactive network differentiating Nelfinavir from the other two 

protease inhibitors is probably responsible for its total interaction energy which, as 

reported in Figure 4 (Panel C), is quantitatively greater than that computed for Lopinavir 

and Ritonavir (Figure 2 and 3 – Panel C). Intriguingly, this in-silico hypothesis has recently 

found two independent experimental validations, which have highlighted a mild inhibitory 

activity of Nelfinavir against the SARS-CoV-2 Mpro (estimated between 250 and 600 

μM).25,26 

4. Methods 

4.1 Software overview  

MOE suite (Molecular Operating Environment, version 2018.0101) was used to perform 

most of the general molecular modeling operations, such as proteins and ligands 

preparation.27 All these operations have been performed on an 8 CPU (Intel® Xeon® CPU 

E5-1620 3.50 GHz) Linux workstation. Molecular dynamics (MD) simulations were 

performed with an ACEMD3 engine on an Nvidia GPU cluster composed of 20 NVIDIA 

drivers, whose models go from GTX 1080 to Titan V.28 For all the simulations, the ff14SB 

force field was adopted to describe C30 Endopeptidase protein while general Amber force 

field (GAFF) was adopted to parameterize small organic molecules.29–31 

4.2 Structures Preparation 

The three-dimensional coordinates of C30 Endopeptidase protein in complex with a 

covalent peptidomimetic inhibitor (N3) were retrieved from the RCSB PDB database and 

prepared for SuMD simulations as herein described.32 Considering the perfect symmetry 

that characterizes this homodimeric protein, and therefore its two catalytic binding sites, 

only one of the two monomers was used in this computational investigation. Once the 
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covalent ligand was removed, residue Cys145 was restored to its reduced form. Protein 

was then processed by means of MOE protein structure preparation tool: residues missing 

atoms were built according to AMBER14 force field topology. Missing hydrogen atoms 

were added to X-ray derived complexes and appropriate ionization states were assigned 

by the Protonate-3D tool.33 The coordinates of three antiviral compounds were prepared 

through MOE builder tool and subsequently moved at least 30 Å away from the catalytic 

protease binding cleft, a distance bigger than the electrostatic cut-off term used in the 

simulation (9 Å with Amber force field) to avoid premature interaction at the initial phases 

of the SuMD simulations. 

4.3 Solvated System Setup and Equilibration 

Each system investigated by means of SuMD contains a C30 Endopeptidase target 

macromolecule and respectively one of the three HIV antiviral compounds taken into 

consideration in this study, moved far away from the protein binding site as previously 

described. The systems were explicitly solvated by a cubic water box with cell borders 

placed at least 15 Å away from any protein/ligand atom, using TIP3P as a water model. To 

neutralize the total charge of each system, Na+/Cl- counterions were added to a final salt 

concentration of 0.154 M. The systems were energy minimized by 500 steps with the 

conjugate-gradient method, then 500000 steps (1 ns)  of NVE followed by 500000 steps 

(1 ns) of NPT  simulations were carried out, both using 2 fs as time step and applying 

harmonic positional constraints on protease and ligands heavy atoms by a force constant 

of 1 kcal mol-1 Å-2, gradually reduced with a scaling factor of 0.1. During this step, the 

temperature was maintained at 310 K by a Langevin thermostat with low dumping of 1 

ps−1 and the pressure at 1 atm by a Monte Carlo barostat34. The M-SHAKE algorithm was 

applied to constrain the bond lengths involving hydrogen atoms. The particle-mesh Ewald 

(PME) method was exploited to calculate electrostatic interactions with a cubic spline 

interpolation and 1 Å grid spacing, and a 9.0 Å cutoff was applied for Lennard-Jones 

interactions 35. 
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4.4 Supervised Molecular Dynamics (SuMD) Simulations 

SuMD code, in this implementation, is written in Python and exploits the ProDy python 

package to perform the geometrical ligand-target supervision process 36. SuMD protocol 

reduces the timescale, and consequently the computational effort, required to sample a 

binding event in the range of nanoseconds, instead of hundreds of nanoseconds or 

microseconds usually necessary with unbiased MD. Sampling is improved by applying a 

tabu-like algorithm that monitors the distance between the ligand center of mass with 

respect to the protein binding site, during short unbiased MD simulations of 600 ps. Once 

a SuMD step has been collected, the distance points calculated at regular time intervals 

are fitted into a linear function. Only productive MD steps are maintained, those in which 

the computed slope is negative, indicating a ligand approach toward the protease catalytic 

binding site. Otherwise, the simulation is restarted by randomly assigning the atomic 

velocities. Supervision algorithm controlled the sampling of short simulations until the 

distance between the ligand and the protein binding site dropped below 5 Å, then was 

disabled, and a classical MD simulation was performed. For each case study up to a 

maximum of ten SuMD binding simulations were collected, of which only the best was 

thoroughly analyzed and discussed in the manuscript.  

4.5 SuMD Trajectories Analysis  

All the SuMD trajectories collected were analyzed by an in-house tool written in tcl and 

python languages, as described in the original publication19. Briefly, the dimension of each 

trajectory was reduced saving MD frames at a 20 ps interval, each trajectory was then 

superposed and aligned on the proteaseCα atoms of the first frames and wrapped into an 

image of the system simulated under periodic boundary condition.  The molecular 

recognition was monitored by calculating for each simulation step the distance between 

the catalytic binding site and the center of mass of the ligand taken into consideration 

(Figure F2 to F4 – Panel A). A ligand-protein interaction energy estimation during the 

recognition process was calculated using an NAMD engine, plotting the ligand-receptor 

interaction energy values over time.37 These values were also arranged according to the 

distances between ligand and protease binding site mass centers in the Interaction Energy 

Landscape plots (Figure F2 to F4 – Panel B). Here, the distances between mass centers are 
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reported on the x-axis, while the ligand-receptor interaction energy values on the y-axis, 

and are rendered by a colorimetric scale going from blue to red for negative to positive 

energetic values. These graphs allow evaluating the variation of the interaction energy 

profile at different ligand-protein distances, helping to individuate meta-stable binding 

states during the binding process. Furthermore, for each target investigated in this work, 

the residues within a distance of 4 Å from the respective ligand atoms were dynamically 

selected, to qualitatively and quantitatively evaluated the number of contacts during the 

entire binding process. The most contacted residues were thus selected, to compute a 

per-residues electrostatic and vdW interaction energy contribution with the protease 

target. NAMD was used for post-processing computation of electrostatic interactions, 

using AMBER ff14SB force field. The cumulative electrostatic interactions were computed 

for the same target residues by summing the energy values frame by frame along the 

trajectory, and the resulting graphs were reported at the lower-right of movies provided 

on supplementary material (Video V1 to V3). Representations of the molecular structures 

were prepared with VMD software 38.  

4.6 SuMD videos 

Each video is composed of four synchronized and animated panels that depict the 

molecular trajectory obtained by the SuMD simulation considering different aspects of 

the simulation. The time evolution is reported on an ns scale. In the first panel (upper-

left), the molecular representation of the SARS-CoV-2 main protease is shown. The protein 

backbone is represented by the ribbon style (pink color) and the residues within 4 Å of 

each ligand investigated are shown in green, orange and cyan colors respectively for 

Lopinavir, Ritonavir, and Nelfinavir. In the second panel (upper-right), the dynamic 

distance of each ligand center of mass (CM) from the respective protein catalytic binding 

site during the trajectory is reported. In the third panel (lower-left), the ligand-protein 

interaction energy profile is reported. The animated red circle highlights the value of the 

corresponding frame. The trend is depicted by a continuous black line obtained by 

smoothing the raw data (grey circles) using a Bezier curve procedure. In the fourth panel 

(lower-right) cumulative electrostatic interactions are reported for the 15 protein residues 

most contacted by each ligand during the whole simulation.  
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Abstract  

The chemical structure of PF-07321332, the first orally available Covid-19 clinical 

candidate, has recently been revealed by Pfizer. No information has been provided about 

the interaction pattern between PF-07321332 and its biomolecular counterpart, the 

SARS-CoV-2 main protease (Mpro). In the present work, we exploited Supervised Molecular 

Dynamics (SuMD) simulations to elucidate the key features that characterize the 

interaction between this drug candidate and the protease, emphasizing similarities and 

differences with other structurally related inhibitors such as Boceprevir and PF-07304814. 

The structural insights provided by SuMD will hopefully be able to inspire the rational 

discovery of other potent and selective protease inhibitors. 

1. Introduction 

The Covid-19 pandemic, caused by a single-stranded RNA betacoronavirus known as 

SARS-CoV-2, has caused the death of more than 3 million people around the world since 

its outbreak in December 20191,2. Despite the impressive cooperative effort promoted by 

the international community and by medicinal chemists around the world3,4, to date, 

there is only one drug approved by the Food and Drug Administration (FDA) for the 

treatment of Covid-19 patients. 

Remdesivir, a polymerase inhibitor initially conceived to target Ebola Virus, proved to be 

efficient in shortening the recovery time in adult patients hospitalized with Covid-195,6 

and has therefore been granted Emergency Use Authorization (EUA). Unfortunately, due 

to its pharmacokinetic profile, this drug has to be administered intravenously in a hospital 

setting, thereby limiting its use for Covid-19 treatment on a massive scale. The first 
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attempts to face this lack of pharmacological tools to contrast the Covid-19 pandemic 

involved the repurposing of antiviral drugs designed for the treatment of other virus-

related illnesses against Covid-19: this approach, despite being very appealing from a 

timescale perspective7, did not bring any significant results, with several clinical trials 

showing little to no efficacy of those active principles against SARS-CoV-28. 

Meanwhile, the early release to the scientific community of the crystallographic structure 

of the SARS-CoV-2 main protease (Mpro) (PDB ID: 6LU7), caused a shift in the attention of 

researchers around the world towards the Structure-Based approach to the rational 

design of new potential protease inhibitors9,10. Among all the different chemical entities 

developed to target the main protease, PF-07321332 is, to date, the first and only orally 

available COVID-19 antiviral clinical candidate. 

Designed amid the pandemic, the structure of PF-07321332 was unveiled by Pfizer on 

April 6th at the American Chemical Society Spring 2021 meeting11. This compound, which 

has recently entered clinical phase I, was developed to target SARS-CoV-2 main protease, 

thereby impairing the virus's ability to reproduce itself, and it is intended as a 

pharmacological tool to prevent the development of COVID-19 in people who have been 

exposed to the pathogen. Even though the compound structure has been revealed, no 

further information has been provided yet about the way PF-07321332 interacts with the 

main protease active site, except for the fact that it reacts reversibly with a cysteine 

residue located in the binding site11.  

In this perspective computational investigation, we exploited Supervised Molecular 

Dynamics (SuMD)12, an emerging protocol allowing to decipher at an atomic level of detail 

the recognition process between two molecular entities, to sample and characterize a 

putative binding pathway for PF-07321332. As described in the original publication, SuMD 

simulations fully consider both the protein flexibility and the contribution of the solvent 

molecules, which are explicitly simulated, throughout the binding process. As shown by 

previous scientific works13,14, this makes it possible to overcome the limitations of 

traditional techniques such as molecular docking when working on challenging targets 

such as Mpro, whose active site is relatively shallow, plastic and solvent exposed15.   
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2. Methods 

2.1 Software overview 

For every general molecular modeling operation, such as protein and ligand structure 

preparation, MOE suite (Molecular Operating Environment, version 2019.0116) was used, 

exploiting an 8 CPU (Intel Xeon E5-1620 3.50 GHz) Linux Workstation. Molecular Dynamics 

simulations were carried out with ACEMD17 (version 3.3.0), which is based upon 

OpenMM18 (version 7.4.0), on a cluster composed of 20 NVIDIA GPUs. 

2.2 Structure preparation 

The crystallographic structure of the unliganded Mpro was retrieved from the Protein Data 

Bank (PDB ID: 7K3T). At first, the active functional dimer of the protease was restored 

applying the symmetric crystallographic transformation to each asymmetric unit. 

Residues with alternative conformation were assigned to the one with the highest 

occupancy. The Protonate3D tool was then used to add missing hydrogen atoms, 

evaluating the most probable protonation state for each titratable residue at pH 7.4. 

Finally, each non-protein residues (e.g.: water, co-solvents, etc.) were removed before 

successive steps. The ligand structure was prepared exploiting tautomers, fixpka, and 

molcharge tools from the QUACPAC OpenEye19 software suite to assign the most probable 

tautomeric and protomeric state at pH 7 and ligand partial charges according to the 

MMFF94 force field. Three-dimensional coordinates were generated with Corina Classic20.  

2.3 Molecular Dynamics system setup 

The simulated system contained both the protein and the ligand structure prepared as 

described in the previous section, with the ligand positioned at least 30 Å away from the 

nearest receptor atoms. For system parametrization, the combination of Amber ff14SB 

and General Amber Force Field (GAFF) was used to describe each component of the 

simulation box. 

The system was explicitly solvated in a cubic TIP3P21 water box with 15 Å padding and 

neutralized with the addition of Na+/Cl- ions until a 0.154 M concentration was reached. 

Prior to the simulation, 1000 steps of energy minimization with the conjugated-gradient 
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algorithm were performed. A two-step equilibration stage was carried out in the following 

way: the first step consisted of 0.1 ns of simulation in the canonical ensemble (NVT) with 

harmonic positional restraints applied both on the protease and ligand atoms using a 5 

Kcal mol-1 Å-2 force constant, the second step consisted of 0.5 ns of simulation in the 

isothermal-isobaric ensemble (NPT) with the same harmonic positional restraints applied 

only on protein alpha carbons and ligand atoms. For each simulation, an integration 

timestep of 2 fs was used. To constrain bonds involving hydrogen atoms the M-SHAKE 

algorithm was used. A 9.0 Å cutoff was applied for the calculation of Lennard-Jones 

interactions, while electrostatic interactions were computed exploiting the particle-mesh 

Ewald method (PME). The temperature was maintained at the constant value of 310K by 

the Langevin thermostat, with a friction coefficient of 0.1 ps-1. During the second 

equilibration stage, the pressure was maintained constant at 1.0 atm utilizing a Monte 

Carlo barostat.  

2.4 Supervised Molecular Dynamics (SuMD) simulation 

SuMD code is written in Python 2.7 and exploits the ProDy22 package to perform 

geometrical supervision upon the ligand-binding process. This supervision allows to 

reduce the timescale, hence shrinking the computational effort, that is required to sample 

the ligand-biomolecular target recognition process to the range of nanoseconds, instead 

of the usual hundreds of nanoseconds or microseconds that are required by unbiased 

molecular dynamics (MD) simulations. The entire SuMD derived trajectory is composed 

by short unbiased 600 ps MD simulation runs (NVT ensemble, T= 310 K) with the ACEMD3 

software: at the end of each simulation (the so-called “SuMD-step”), the distance 

between the center of mass of the ligand and the binding site is computed at five different 

points, picked at regular time intervals, and fitted into a linear function evaluated by a 

tabu-like algorithm. Only those SuMD-steps whose computed slope is negative (indicating 

that the ligand is approaching the binding site) are retained. Every time a SuMD-step is 

rejected (positive slope), the simulation is restarted from the previous productive step by 

randomly assigning the atomic velocities. The supervision algorithm is switched off after 

the distance between the center of mass of the ligand and the binding site drops below 5 

Å: from that point on the simulation continues as a classical MD simulation.   
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3. Results 

In our computational study, we exploited Supervised Molecular Dynamics simulations to 

obtain a putative binding pathway between PF-07321332 and the SARS-CoV-2 Main 

Protease (Mpro) catalytic site. A total amount of 36 ns of SuMD simulation time proved 

sufficient to sample the entire recognition trajectory, from the starting unbound state to 

the final predicted protein-ligand complex. 

Figure 1. This panel encompasses the recognition pathway between PF-07321332 and the SARS-CoV-2 main 

protease predicted by SuMD. (A) PF-07321332 conformation within the binding site, sampled in the last 

SuMD trajectory frame (orange). Binding site residues within 4 Å of the ligand are depicted in ice-blue. (B) 

Profile of the distance between the center of mass of the ligand and the Mpro catalytic site during SuMD 

simulation. (C) Interaction Energy Landscape describing the protein-ligand binding pathway; values are 

arranged according to distances between the center of mass of the ligand the one of the Mpro catalytic site. 

(D) Dynamic total interaction energy (sum of electrostatic and van der Waals contribution) computed for 

the 25 most contacted residues throughout the SuMD trajectory. 

As can be seen in Video1, PF-07321332 reaches Mpro active site after about 7 ns of 

simulation time, making its first contacts with Leu141, Asp 142, Gln189, and Glu166. 

Leu141 and Asp142 are part of the oxyanion loop (residues 138-145), which lines the 

binding pocket of Glutamine P1 and is assumed to stabilize the tetrahedral acyl transition 

state15. Glu166 is a key residue located in the middle of the binding site: mutagenesis 

studies carried out on SARS-CoV Mpro (which has 96% sequence identity with SARS-CoV-2 
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Mpro and is identical at the binding site level13) showed that this residue plays a key role 

in linking the dimer interface with the substrate-binding site23. Gln189 is located at the 

boundary of the S3 site and is assumed to be one of the key interactors with SARS-CoV-2 

Mpro inhibitors, as well as Glu16624. Asn142 and Gln189, located on opposite sides at the  

boundary of the binding sites, seem to serve as electrostatic recruiters for the ligand, 

exploiting their polar and flexible sidechains to maneuver the entrance of the ligand into 

the core region of the binding site. Glu166 appears to instead serve as an electrostatic 

anchor that tightly hooks the middle portion of the ligand with the central region of the 

binding site, facilitating the formation of further interactions with residues such as His 

164. 

After the tri-fluoro-acetamide moiety of the compound establishes contact with the side 

chain of Gln189, the cyclopropyl-proline moiety occupies the central portion of the 

binding site, establishing a series of coordinated hydrogen bonds with the backbone of 

His164 and Glu166 and orientating the cyclopropyl group towards the hydrophobic S2 

pocket, delimited by the side chains of His41, Met49, Tyr54, and Met165. Meanwhile, the 

pyrrolidone moiety is inserted in the S1 pocket, interacting with key residues of the 

oxyanion loop such as Asn142, Gly143, and Ser144, before undergoing a conformational 

rearrangement around the 18 ns simulation time mark which allows the carbonyl of the 

pyrrolidone to establish a hydrogen bond with His163. This interaction has been flagged 

as a conserved interaction across several deposited structures of non-covalent 

inhibitors25. Moreover, this interaction is conserved across all possible substrate peptide 

crystal structures, where the interacting group is the sidechain of the Glutamine P1 

residue26. 

Subsequently, the pyrrolidone moiety rearrangement also allows the reactive nitrile 

group to face the catalytic Cys145, making it possible to reach the final covalent-bound 

state which cannot be described through molecular mechanics. Finally, in the final 

conformation, the tri-fluoro acetamide moiety is fully inserted in the S4 subpocket, 

establishing two additional hydrogen bonds with the backbone of Thr190 and Glu166. 
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As can be seen in Figure 1 (Supplementary Material), the ligand conformation in the final 

step of the SuMD simulation is superimposable to the bound state predicted by the 

PLANTS27–29 docking algorithm (RMSDSuMD-PLANTS: 0.92 Å), further corroborating the 

binding mode hypothesis portrayed by the SuMD protocol. 

4. Discussion 

Intriguingly, the binding mode proposed by the SuMD simulation for PF-07321332 is fairly 

superimposable to the ones of other two covalent protease inhibitor, Boceprevir (PDB ID: 

6WNP) and PF-00835231 (PDB ID: 6XHM) which share common structural features with 

the oral candidate, validating the hypothesis that they could also share an overall similar 

interacting pattern (Figure 2). 

  

Figure 2. This panel illustrates the similarities between PF-07321332 conformation in the final SuMD 

trajectory frame and the crystallographic complexes of two structurally related covalent inhibitors of SARS-

CoV-2 Mpro: Boceprevir and PF-00835231 (active metabolite of PF-07304814). (A) superposition between 

the binding mode predicted by SuMD for PF-07321332 (orange) and the crystallographic complex of 

Boceprevir within the catalytic site of SARS-CoV-2 Mpro (cyan, PDB ID: 6WNP). (B) superposition between 

the binding mode predicted by SuMD for PF-07321332 (orange) and the crystallographic complex of PF-

00835231 within the catalytic site of SARS-CoV-2 Mpro (green, PDB ID: 6XHM) 

Boceprevir is a protease inhibitor originally developed for the Hepatitis C Virus (HCV) NS3 

protease30. It shares many common structural features with PF-07321332, such as the 

cyclopropyl proline residue at P2 and the alanine at the P3 position but has a different 

reactive group (α-ketoamide), a cyclobutyl alanine at P1, and a tert-butyl carbamate 
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capping moiety at P4. From a binding mode point of view, the most prominent difference 

between the newly developed inhibitor and Boceprevir regards the hydrogen bond with 

His163 (absent in Boceprevir complex with the protease) which, as previously mentioned, 

is a crucial interaction also for natural peptidic substrates. 

PF-07304814 is a Phase I clinical candidate originally developed by Pfizer in 2002-2003 

against SARS-CoV and repurposed for SARS-CoV-2 due to the aforementioned similarities 

between the two viruses’ proteases31. The compound contains a hydrolyzable phosphate 

group which enhances its solubility and is cleaved by alkaline phosphatases in tissue 

releasing the active compound PF-00835231. The main limiting factor for this candidate 

is that, unlike its successor PF-07321332, it has to be administered intravenously, making 

it less appealing for massive distribution and relegating its usage to hospital settings. From 

a structural point of view, this latter compound is less similar to PF-07321332 compared 

to Boceprevir, but still retains the key features concerning its binding mode with the Mpro 

active site. The only conserved structural feature between the two inhibitors developed 

by Pfizer is the pyrrolidone group at the P1 position, which establishes a hydrogen bond 

with His163. The reactive group, in this case, is an aldehyde, the same as for Boceprevir. 

The hydrophobic residue at P2, in this case, is a leucine, which is the most recurrent amino 

acid that can be found at the P2 position in natural substrate peptides (included the N-

term of Mpro itself)26, while the P3 terminal residue is a 4-methoxyl indole group, which 

interacts through a hydrogen bond with the backbone of Glu166. Additional interaction 

occurs at the P1’ subsite, where the two hydroxyl groups (one of which is formed upon 

reaction between the aldehyde group and Cys145 sidechain) form hydrogen bonds with 

Cys145 backbone and His41 sidechain. 

Overall, PF-07321332 appears to have combined the strong points of both Boceprevir and 

PF-07304814 in a single molecular entity, showing that it is possible to repurpose the 

knowledge acquired in previous drug development campaigns on different virus proteases 

to rationally design SARS-CoV-2 Mpro inhibitors suitable for advancement to clinical 

phases, hence addressing the need for a quick response against a widespread disease like 

Covid-19. Moreover, the combination of innovative computational strategies such as 

SuMD with experimental data coming from X-Ray Crystallography could provide useful 
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structural insights to stir the rational development of antiviral drugs in a more rational 

and less time-consuming way. 

5. Conclusions 

In this computational study, we employed Supervised Molecular Dynamics (SuMD) to 

investigate the recognition process between PF-07321332, the first orally available Covid-

19 antiviral candidate to reach clinical phase I, and its biological target, SARS-CoV-2 main 

protease (Mpro).  

About 36 ns of SuMD simulations proved sufficient to sample a putative binding process, 

allowing to simulate the whole approaching path from the unbound state to the final 

protein-ligand complex. SuMD simulations suggest a possible role in the first stages of the 

recruitment of the ligand for residues such as Leu141, Asp 142, Gln189, and Glu166, which 

have already been acknowledged as crucial residues for the binding of both natural and 

synthetic substrates. 

Finally, the binding mode predicted by SuMD for PF-07321332 is quite similar for other 

structurally related protease inhibitors, namely Boceprevir and PF-07304814, which could 

also share a similar binding pathway.  
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Abstract 

The even more increasing application of computational approaches in these last decades 

has deeply modified the process of discovery and commercialization of new therapeutic 

entities. This is especially true in the field of neuroinflammation, in which both the 

peculiar anatomical localization and the presence of the blood-brain barrier make it 

mandatory to finely tune the candidates’ physicochemical properties from the early 

stages of the discovery pipeline. The aim of this review is therefore to provide a general 

overview to the readers about the topic of neuroinflammation, together with the most 

common computational strategies that can be exploited to discover and design small 

molecules controlling neuroinflammation, especially those based on the knowledge of the 

three-dimensional structure of the biological targets of therapeutic interest. The 

techniques used to describe the molecular recognition mechanisms, such as molecular 

docking and molecular dynamics, will therefore be eviscerated, highlighting their 

advantages and their limitations. Finally, we report several case studies in which 

computational methods have been applied in drug discovery on neuroinflammation, 

focusing on the last decade’s research. 

Introduction 

Inflammation is a vital host defense response to stimuli that undermine the homeostasis 

and integrity of tissues, such as traumatic injury, infection by pathogens, autoimmune 

responses, or hypoxic conditions. From a mechanistic point of view, it can be described as 

a multi-factor process that involves the invasion of circulating immune cells such as 

lymphocytes and monocytes and the induction of inflammatory mediators like cytokines 

and prostanoids1. 
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Usually, inflammation consists of a cascade of events known as acute phase response 

aimed at resolving the initiating stimulus and restoring tissue’s integrity and functionality. 

However, if the condition persists for a prolonged period and exceeds the physiological 

response it becomes detrimental to the tissue’s health and function2. 

Uncontrolled inflammatory processes are associated with several neurodegenerative 

diseases, including both proteinopathies such as Alzheimer’s disease (AD), Parkinson’s 

disease (PD), amyotrophic lateral sclerosis (ALS), or Huntington’s disease (HD), and 

lysosomal storage diseases (LSDs) such as Niemann-Pick type C (NPC), Gaucher Disease 

(GD), Mucopolysaccharidoses (MPS) and Neuronal Ceroid Lipofuscinosis (NCL), resulting 

in a condition defined as neuroinflammation3,4. 

Although it is still debated whether this condition has a role in the early stages of the 

aforementioned pathologies, contributing to their etiology, several pieces of evidence 

point out that sustained inflammatory states in the Central Nervous System (CNS) 

decisively contribute to the progression of such diseases5,6. Moreover, some studies even 

suggest that inflammation could play a protective role in the first stages of the disease7,8, 

further underlying the complexity of the topic and the intricacy of the mechanisms that 

regulate these processes. 

From an immune system point of view, the brain is compartmentalized and separated 

from the peripheral blood circulation by the blood-brain-barrier (BBB), therefore 

indicating that a critical role in the inflammatory process is portrayed by locally resident 

cells, namely astrocytes and microglia, rather than by leucocytes infiltrating from the 

periphery9,10. This is particularly true in the initiating phases of inflammation, while in later 

stages the disruption of the BBB provoked by the inflammatory cascade and by proteases 

such Matrix Metalloproteinases (MMPs) causes the involvement of non-resident immune 

cells such as monocytes, neutrophils, and CD4+/CD8+ T cells11–14. 

In healthy brain tissue, astrocytes serve as key components of the BBB. Moreover, they 

are involved in ionic homeostasis, removal of excess neurotransmitters, and secretion of 

neurotrophic factors that are vital for neuron survival15. Astrocytes can exist in a 

continuous spectrum of different phenotypes, ranging from neuroprotective to pro-
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inflammatory16. Although their pro-inflammatory contribution is limited compared to that 

of microglia, under immunologic challenges or injuries, astrocytes assume an activated 

phenotype that leads to an increase in the production of glial fibrillary acidic proteins that 

eventually hinders axonal regeneration17,18. Furthermore, reactive phenotype astrocytes 

can induce the production of factors such as Interleukin-1β (IL-1β), Tumor Necrosis Factor 

(TNF), and nitric oxide (NO) that enhance inflammation and neuronal death19.  

Figure 1. General scheme of the common mechanisms involved in neuroinflammation. The figure was 

created with ‘BioRender.com’. 

Microglia are the predominant immune cell species located in the brain20. Under 

physiological conditions, these macrophage-like cells exist in a deactivated ramified 

phenotype, and they are engaged in a process of environmental surveillance to maintain 

tissue homeostasis, producing neurotrophic and anti-inflammatory factors21,22. Under the 

influence of external stimuli such as pathogen invasion or tissue damage, they can switch 

to an activated amoeboid phenotype that promotes an inflammatory response to address 

the situation and promote tissue reparation23. If a persistent stimulus from either an 

environmental or an endogenous factor is perceived by the immune system as a threat, 

https://biorender.com/
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an uncontrolled inflammatory state may cause the production of several neurotoxic 

factors such as superoxide, NO, and TNF that contribute to the progression of underlying 

disease states24. A general depiction of the common mechanisms underlying 

neuroinflammation is reported in Figure 1. 

This inflammatory response is usually initiated by pattern recognition receptors such as 

Toll-Like Receptors (TLRs)25, but they can also be started by purinergic26 and scavenger 

receptors27. Particularly, TLRs such as TLR4 are overexpressed on the surface of CNS 

resident immune cells such as microglia and are responsible for the recognition of both 

pathogen-associated molecular patterns (PAMPs) and damage/danger-associated wide-

array of patterns (DAMPs) coming from the host itself25. The inflammatory signal is then 

passed on to several transduction systems, such as Myeloid differentiation primary 

response 88 (MyD88), TIR-domain-containing adapter-inducing interferon-β (TRIF), 

phosphoinositide 3-kinases (PI3Ks), IkB kinases (IKK), and mitogen-activated protein 

kinases (MAPKs), that cooperate in a combinatorial manner to regulate hundreds of 

different genes based upon the activated target cells employing transcription factors such 

as the ubiquitous nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)28–

33. Among these signal transduction pathways, particular importance is portrayed by the 

Wnt signaling, whose pro-inflammatory activity is finely regulated by several mechanisms 

such as the formation of the “β-catenin destruction complex” which involves 

neurodegenerative disease-related kinases such as casein kinase 1 delta (CK1 ) and 

glycogen synthase kinase 3 (GSK-3 )34–36. Finally, gene expression then leads to the signal 

amplification through prostaglandins, cytokines such as TNF or interleukin 1 beta (IL-1β), 

and chemokines such as monocyte chemoattractant protein-1 (MCP-1), C-C motif 

chemokine ligand 2 (CCL2), and C-X-C Motif Chemokine Ligand 5 (CXCL5) that allow for 

the recruitment of other immune cells37,38. Furthermore, the generation of reactive 

oxygen species (ROS) mainly through the nicotinamide adenine dinucleotide phosphate 

oxidase (NADPH oxidase) system and of nitric oxide through the inducible nitric oxide 

synthase (iNOS) further contribute to the defense response in an unspecific manner39,40. 

By contrast, several negative feedback mechanisms exist to attenuate or arrest this 

inflammatory cascade. These involve proteins with different functions, such as inhibition 
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of signal transduction (SOCS proteins), induction of transcriptional repressors (Nurr1), and 

production of soluble anti-inflammatory factors (IL-10, TGF-β)41–43. Furthermore, 

resolution of inflammation is also modulated by a family of specialized pro-resolving lipid 

mediators (SPMs) formed by lipoxins, resolvins, protectins, and maresins, either by 

inhibition of pro-inflammatory pathways or by activation of protective ones through 

interaction with a series of G-protein coupled receptors (GPCRs)44,45.  

Although a general convergence in the mechanism of the inflammatory processes that 

lead to neurotoxicity can be found, each pathology has its own set of markers that 

characterize the specific role of neuroinflammation in the insurgence and progression of 

the disease46. 

Alzheimer’s disease was the first neurodegenerative disease to be linked to an 

inflammatory response47. Characterized by symptoms such as memory loss and cognitive 

impairment, from a pathological point of view this illness is associated with extracellular 

amyloid plaques formed by cleavage products of the amyloid precursor protein (APP) such 

as the beta-amyloid peptide (Aβ peptide) and with intracellular neurofibrillary tangles 

(NFTs) that are composed of hyperphosphorylated forms of the microtubule-binding 

protein tau48. The hallmarks of the inflammatory response in AD include a change in the 

microglia phenotype, which switches from a resting to an activated pro-inflammatory one, 

astrogliosis, which consists of an increase of astrocytes number, dimensions, and motility, 

other than high levels of cytokines and chemokines found in senile plaques49. 

Particularly, aggregates of Aβ peptide can activate microglia through TLRs such as TLR4 

and TLR2, scavenger receptors CD36, CD47, and SCARA1, receptor for advanced 

glycoxidation end-products (RAGE) and NOD-like receptors (NLRs) like NALP3 or NALP1, 

leading to the phagocytosis of Aβ plaques, degradation of Aβ fibrils through the 

endolysosomal pathway and the subsequent activation of an inflammatory cascade that 

promotes neuronal death50.  Not only pro-inflammatory cytokines can induce neuronal 

apoptosis directly, but they can also activate an astrocyte response that further enhances 

microglia-driven inflammation17. On the contrary, a protective role against this 

inflammatory cascade is played by TREM251 (triggering receptor expressed on myeloid 

cells 2), a transmembrane glycoprotein exclusively expressed on immune cells that 
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represses microglia-driven cytokine production and secretion52 and regulate the 

phagocytic pathways involved in the removal of neuronal debris53. Several variants of the 

gene encoding for this receptor were associated with an increased risk of developing AD 

and other neurodegenerative diseases, such as PD and ALS, indicating that targeting 

TREM2 could be vital in the fight against these diseases54,55. 

Parkinson’s disease is the second most common neurodegenerative disease after AD56. 

Differently from AD, it is mainly identified by motor symptoms such as bradykinesia, 

tremor, and rigidity, while from a neuropathological point of view it is characterized by 

intracellular inclusions of a misfolded protein called α-synuclein defined as Lewy bodies 

accompanied by the loss of dopaminergic neurons in the substantia nigra57. Regarding 

inflammation, microglial activation can be observed in PD, accompanied by astrogliosis 

and lymphocyte infiltration58,59. The presence of α-synuclein aggregates is sensed and 

internalized by microglia, causing the activation of NADPH oxidase and iNOS which leads 

to the release of ROS and NO that indeed causes the switch of microglia to the activated 

phenotype60. Pro-inflammatory microglia then release factors such as TNF, NO, and IL-1β 

that modulate and drive the neuroinflammatory process61,62. Moreover, high levels of 

neuromelanin derived from an increased catecholamine metabolism further contribute 

to neuron oxidative stress and microglial activation63. On the contrary, C-X3-C Motif 

Chemokine Receptor 1 (CX3CR1), CD200R, and Nurr1 can mediate anti-inflammatory 

responses that mitigate the negative effect of microglia activation in PD64–66. 

Amyotrophic Lateral Sclerosis is a neurodegenerative disease identified for the first time 

more than 150 years ago67. Clinically, it is characterized by a progressive motor neurons 

degeneration that eventually leads to the patient’s death caused by respiratory muscles’ 

paralysis68. The most prominent pathological marker of ALS is a strong inflammatory 

reaction caused by the immunoreactive inclusions of ubiquitin in the cytoplasm of 

degenerating neurons, which are mainly composed of TAR DBA-binding protein 43 (TDP-

43)69,70. This inflammation process involves both astrocytes and microglia, whose 

activation causes the release of a high quantity of cytotoxic and pro-inflammatory 

molecules such as ROS, prostanoids, ILs, and TNF71,72. A prominent role in familiar forms 

of ALS is portrayed by mutant forms of superoxide dismutase 1 (SOD1), which cause an 
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incremented NADPH oxidase-dependent oxidative stress that boosts microglia activation 

and subsequent inflammatory response73. Neuron cell death, in this case, is induced by 

both NO and Fas ligand (FasL), while a protective role against this process is carried out 

by infiltrating Th2 cells by inducing microglia to produce neurotrophic factors74–76. 

Huntington’s disease has been known for centuries, but only recently its causative agent 

has been identified77. HD is caused by a CAG triplet expansion in the huntingtin (HTT) 

gene78. This expansion leads to a conformational alteration of HTT protein which assumes 

a toxic phenotype, provoking neuronal damage and subsequent death either through the 

formation of intranuclear inclusion bodies, formation of toxic fragments, or impairment 

of metabolic pathways79–82. The main clinical feature of HD is the extensive striatal 

neuronal cell death, but also white matter is involved at various stages in the degeneration 

process83. This disease manifests itself with a set of clearly defined symptoms, such as 

chorea, bradykinesia, lack of coordination, and motor impairment84. An inflammatory 

response carried out by activated microglia is correlated with disease severity and 

progression: the up-regulation of pro-inflammatory proteins such as complement 

proteins and clusterin, and an increased level of cytokines are the main markers of 

inflammation in HD85,86. 8-OHdG, an oxidative stress marker circulating in the blood, is 

also up-regulated in patients with HD87. Finally, a microglial enzyme involved in 

excitotoxicity and ROS generation known as kynurenine 3-monooxygenase (KMO) has 

been found implicated in the regulation of HTT induced neurotoxicity88. 

Mucopolysaccharidoses are the most representative group of lysosomal storage diseases, 

accounting for 30% of all LSDs89. It is a heterogeneous group of pathologies caused by a 

deficiency in the lysosomal clearance of glycosaminoglycan (GAG)90. As for other LSDs, the 

alteration of lysosome function and integrity leads to the partial release of its content 

within the cellular lumen, with cathepsins and hydrolases acting as DAMPs and 

subsequently triggering the inflammatory cascade that leads to neuronal damage91.  

Although clinical manifestations of MPS can vary heavily depending on the illness type, 

peripheral organ dysfunction is generally a common trait across different MPS, with 

neurodegeneration and related cognitive and behavioral deficits being another quite 
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common clinical marker of this set of pathologies, particularly in the most aggressive 

forms of MPS type I (Hurler syndrome) and MPS type III (Sanfilippo syndrome)90,92–94. 

From an immune system point of view, MPS are associated with microglia-induced 

inflammatory response, characterized by high levels of chemokines such as CCL3 and CCL4 

in the brain95,96. Moreover, treatments with anti-inflammatory/immunosuppressive drugs 

such as aspirin or prednisolone were able to lower the levels of both cytokines and 

chemokines associated with the inflammatory response95,97. 

Neuronal Ceroid Lipofuscinosis are a group of LSDs caused by mutation of one of 14 ceroid 

lipofuscinosis genes98. These mutations lead to alteration in the composition and 

structure of lysosomes99,100. The most recurrent symptoms of these pathologies are visual 

failure, neurocognitive and motor decline, seizures, and premature death101. The most 

deadly forms of these diseases are the ones associated with a more prominent 

neuroinflammatory response, characterized by increased microglial and astrocyte 

activation leading to high levels of pro-inflammatory mediators such as TNF and various 

interleukins102,103. Some studies suggested that anti-inflammatory treatment may be 

beneficial in hampering inflammation-caused neurodegeneration104. 

Gaucher Disease, the most common lysosomal storage disease, arises from a mutation in 

the lysosomal enzyme glucosylceramidase, which leads to intracellular accumulation of 

glucosylceramide89,105,106. Out of the three types of GD, only Type 2 and 3 are associated 

with neurological symptoms, which in the most severe cases can even lead to the 

premature death of the patient92,107,108. Neurodegeneration associated with inflammatory 

response is, in this case, triggered by an alteration of calcium homeostasis, which causes 

increased sensitivity of neurons to neurotoxic agents, thus inducing the release of DAMPs 

that induces the inflammatory response109. 

Niemann-Pick type C disease is caused by a mutation in either NPC1 or NPC2 gene110. 

These two genes codify for proteins involved in the regulation of intracellular trafficking, 

other than the processing of cholesterol and other lipids111,112. The alteration of their 

function leads to a lysosomal accumulation of cholesterol and sphingolipids, with 

lysosomal perturbation eventually resulting in the activation of the subsequent 
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inflammatory cascade, most probably due to the release in the cytoplasm of lysosome 

content (e.g. hydrolases and cathepsins) that acts as DAMPs91,113. NPC shows an age-

dependent evolution of the main symptomatologic manifestation, with peripheral 

symptoms such as hepatosplenomegaly being predominant in early stages, while 

neurological manifestation such as cerebellar ataxia, dementia, cognitive decline, and 

seizures are more prominent at later stages of the disease, with the most severe forms 

leading to the patient’s early death114,115. The involvement of a neuroinflammatory 

process in the progression of the pathology is highlighted by the high levels of TNF and IL-

1β in brain regions associated with major neuron loss at later stages of the disease116,117. 

Furthermore, the disease progression can be altered and slowed down by exploiting anti-

inflammatory compounds such as non-steroid anti-inflammatory drugs (NSAIDs)118,119. 

Considering the huge impact that these pathologies have on patient’s expectancy and 

quality of life120, the social cost for the treatment of such diseases121 and the current lack 

of cure for this deadly neurodegenerative illnesses122, the possibility to rationally develop 

pharmacological tools that modulate inflammatory response in neurodegenerative 

disease is highly appealing.  

Computational methodologies in neurodegeneration 

It is nowadays widely accepted that Computational-Aided Drug Discovery (CADD) 

techniques have given a huge impact on both the time and money required for bringing 

new therapeutical entities to the market123.  

The computational approach to drug design can be divided into two main classes: 

structure-based drug design (SBDD) and ligand-based drug design (LBDD)124. 

The first family of techniques strongly relies on the availability of structural data about the 

target investigated for the pathology considered125. These data mainly come from X-ray 

crystallography (XRC) nowadays (the public database Protein Data Bank contains 180207 

structures at the present day) but can also derive from NMR spectroscopy. XRC allows to 

obtain, with a high resolution, objects with low limitations in terms of dimensions (roughly 

150 kDa), it cannot resolve hydrogen atoms and gives just a “static” overview of the 

substrate. On the other hand, NMR spectroscopy can give access to data of the object 
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which is much more similar to reality (dynamic data in solution) but it cannot be reliable 

with structures above 50 kDa, other than requiring lots of runs to achieve an acceptable 

signal-to-noise ratio126. Other techniques have emerged in the latest decades, such as 

Cryo-Electron Microscopy, which is acquiring a lot of interest for its ability to resolve 

complicated (such as membrane proteins) and high-molecular-weight (such as entire 

mitoribosomes127) structures128. 

The ligand-based drug discovery comprises a variety of techniques that can be both used 

alone -if no structural data of the target is available129- and in consensus with SBDD 

protocols130. LBDD, as the name suggests, is based on the evaluation of known ligands of 

a certain target or simply on ligands that are active against a pathology on which no 

mechanism has been elucidated yet (so no target is known). The known actives are 

evaluated in several features, such as the 3D conformation, the electrostatic fields, the 

molecular descriptors, etc. After having obtained enough information, some algorithms 

can be developed to search molecules that are predicted to be similar to the known 

actives131. To pursue this task, in the latest years the experts in the field of machine 

learning and artificial intelligence have put some effort into developing reliable prediction 

models, both in industry and in academia132. 

In the case of neuroinflammation, considering the targets that we have summed up in the 

previous section, we can assess that SBDD can be implemented for drug discovery 

purposes, considering the considerable amount of structural data present for the targets 

of interest, as the PDB database witnesses133,134,135,136. 

Here we briefly report the main techniques which can be used for SBDD on 

neuroinflammation (which are also depicted in Figure 2), with a description of the tools 

and some cases in which they were adopted. 
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Figure 2. Representation of a general workflow scheme of the computational techniques that can be used 

to find new candidate molecules for neuroinflammation and related diseases.  

Structure preparation 

Just as an introduction, is always useful to remember that all the computational tools 

require both the ligands and the targets to be properly prepared for the calculation. The 

ligands must be in 3D shape, with a proper protonation state and, depending on the cases, 

with a partial charge assigned to each atom. The biological targets must also be suitable 

for calculation: the structure must be complete, the hydrogen atoms added (if the 

structure comes from XRC) and a protonation state assigned to all amino acids. It is also 

advisable for added hydrogens to be energetically minimized137. If some portions of the 

targets are missing, some programs may help in building them (through homology 

modeling, see chapter below) or, if it is the case, they can be capped (just for a small loop). 

This second option has reasonably been discarded if the capping site is very near to the 

active site, and mostly in docking calculations. 

Homology modeling 

If no structural data is available for a certain target, the SBDD approach can be used if a 

proper model is generated. Homology modeling is a technique used to predict the 

structure of a certain entity (mainly proteins and nucleic acids, in the case of medicinal 

chemistry) using available data138. The approach in these cases can be dual: in the case in 
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which some structures with reasonable sequence similarity (usually around 30% at least) 

are present, is possible to build the target (or even just a portion of it) using that as a 

template139. On the other hand, if no structure of the desired target is available at all, is 

possible to predict its 3D structure using different methodologies, such as the use of 

comparative models140. Many tools allow performing these tasks, such as MODELLER141, 

Schrödinger Prime142, MOE homology modeler143, SWISS-MODEL144, and others145.  

Another approach that has gained relevance recently is the prediction of protein structure 

based on artificial intelligence techniques. A famous example of this is represented by 

AlphaFold146, a program based upon a deep learning algorithm (which has recently been 

updated to its second version, AlphaFold2147). The AlphaFold neural network has been 

properly trained to assign a three-dimensional shape to a sequence of amino acids based 

upon their similarities with existing crystallographic homologues147. This program has 

already proven to be very accurate in predicting the secondary structure of several 

targets148,149,150. Nevertheless, the application of models coming from AlphaFold to 

molecular docking experiments still needs some further optimization, mainly because of 

the higher difficulty in foretelling the conformation of a ligand-bound protein, which 

represents the main case of interest for drug discovery scientists151. 

It is a good practice to assess the stability and the reliability of the models produced, and 

this can be done through Molecular Dynamics (MD) refinement152, evaluating various 

energetics and geometric parameters of the trajectory obtained. 

There are some interesting situations regarding neuroinflammation in which no structural 

data is available for a target. When this circumstance takes place, both homology modeling 

and LBDD techniques can be evaluated. This is the case for the cited TSPO, on which some 

groups put efforts in generating valuable homology models, e.g., Bhargavi et al. used 

Modeller to create a virtual structure suitable for docking calculations153. Nguyen T. and 

Lai T. created and validated, through molecular dynamics simulations, a homology model 

for hTSPO based on the RsTSPO structure154.  
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Molecular docking 

Maybe the most used computational technique applied to drug discovery so far155,156, 

molecular docking is a procedure consisting of generating several conformations of a 

molecule and evaluating the best among them for binding to a substrate (in our case, a 

protein or a nucleic acid). The docking programs can be roughly divided into two parts: a 

search algorithm and a scoring function. The first has the task to search the conformational 

space of the ligand, while the second has the objective to select, for each docking run, the 

best options among the conformations generated to fit with the target157. After several 

runs, the program returns the conformations (known as “poses”) which are predicted to 

be the best for the scoring function applied. The docking programs can be differentiated 

mainly by how they search, optimize, and score the conformations of the molecules 

examined. A well-known family of programs use “genetic algorithms” to pursue this task 

(the most famous are CCDC GOLD158 and AutoDock159), other use “systematic search 

algorithms” (such as Schrödinger Glide160) and other programs exploit more peculiar 

algorithms (such as the ACO used by PLANTS161 and the molecular dynamics-based 

algorithm used by CDOCKER162). Several benchmarks have tried to highlight the best 

protocol to be used163,164, but the most shared opinion is that each docking run must be 

optimized looking at the target considered165. A tool named “DockBench” was developed 

by Cuzzolin et. al to compare the efficiency of several program-scoring function pairs to 

reproduce the crystallographic pose of the ligand inside its substrate. This allows also us 

to select the best crystallographic structure to use for docking calculation (if more are 

present)166. 

To select among the poses obtained with molecular docking, there are several options. 

The first is to exclusively rely on the scoring function of the algorithm167, another is to 

exclusively select poses in respect to certain parameters (such as electrostatic interaction, 

solvent exposure, etc.), but one of the most reliable methods remains the pharmacophore 

implementation168. A pharmacophore is an ensemble of features that are considered to 

be necessary for molecular recognition. If many XRC structures are present for a target, 

many tools offer the possibility to create a consensus “pharmacophore” (e.g., Schrödinger 

Phase169 or MOE Pharmacophore editor), otherwise the features can be selected and 
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customed with the scientist knowledge. Another approach for docking poses scoring is the 

molecular dynamics refinement170, of which the details are reported in the following 

section. 

Molecular docking offers several advantages, such as flexibility, wide applicability, and 

speed171. With the technologies available nowadays, several billion molecules can be 

docked in a few days172. On the other hand, this technique has several limitations173. First 

of all, the scientist has to remind that the “classical” docking calculations are performed 

in a vacuum, which is does not take into account the presence of the water molecules 

solvating the biological target. Moreover, even if the solvent is considered, the water 

molecules should be classified for their ability to be displaced by the ligand174, and special 

consideration should be given to the crystallographic waters around the ligand175. Another 

strong limitation is the number of false positives given by the algorithms. The docking 

programs have been developed making them very efficient in finding a good conformation 

for the binding, even if it is not consistent. To attenuate this feature, a particular protocol 

is known as “consensus docking” can be used. This approach consists of repeating the 

same docking calculation with different programs, which must implement different 

search-score algorithms176,177. The molecules that are selected from all the programs are 

more prone to be “real” positives.  

In the field of neuroinflammation research, molecular docking has been applied several 

times. Cheng et al. implemented this technique for the development of novel MAPK 

inhibitors178, while Rippin et al. used Glide docking for the design of novel GSK3  

inhibitors179.  

Several efforts have been put into the discovery of CK1  inhibitors through molecular 

docking-based methods. Cescon et al. were successful in repurposing two molecules on 

CK1  through a docking-based protocol180, while in a recent paper the same technique 

allowed Redenti et al. to design a dual GSK3  covalent/CK1  reversible inhibitor active in 

the very low micromolar range181. 

Tandon and Sinha used AutoDock and Flexidock to rationalize the binding mode of three 

groups of known MMP-9 inhibitors182, while Razak et al. used the same software to 
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rationalize the activity of their compound of interest (2-(5-methoxy-2-methyl-1H-indol-3-

yl)-N[(E)-(3-nitrophenyl) methylidene] acetohydrazide, called MMINA) against various 

targets of neuroinflammation, such as COX-2, STAT3, and TNF183. Docking-based virtual 

screening (VS) technique was chosen by Liu et al. to select (among over 90000 natural 

compounds) an inhibitor of STAT3 protein DNA-binding activity and dimerization184, while 

Ray et al., through a large Glide-based VS, selected 15 molecules potentially able to 

stabilize SOD1 dimer, preventing its aggregation185. 

Looking at the TLRs, CDOCKER, and AutoDockVina were included by Durai et al. in the 

workflow for the discovery of two new TLR-2 antagonists active in the micromolar 

concentration range 186. Mahita et al. applied molecular docking to evaluate the possibility 

of abrogating the TRAM-mediated signaling on Toll-Like Receptor 4187. Yilmazer et al. 

successfully implemented a virtual screening approach based on the Glide docking 

program to select the most promising candidates as novel chaperones for beta-

glucocerebrosidase (GBA), one of the main pharmacological targets of Gaucher's 

disease188. 

El-Zohairy et al. recently implemented a GOLD-based virtual screening protocol 

comprising a pharmacophore filtration for the design of novel low-micromolar inhibitors 

of CCR5189, and a similar workflow (using MolDock instead of GOLD) was applied by Ahmad 

et al. for the selection of potential inhibitors of caspase 8 for treating neurodegeneration 

and neuroinflammation190.  

García-Aranda et al., with AutoDock 4.2 docking, evaluated and compared the candidates 

of a series of 1,2-diphenylbenzimidazoles (DPBI) with different aromatic substitutions for 

their activity on bot COX-2 and h-iNOS active sites191.  

Molecular dynamics 

If Molecular docking offers a static representation of the “binding event” between ligand 

and receptor, Molecular Dynamics (MD) allows exploring the behavior of the complex 

during the time. In MD, a system (protein-ligand, but also protein alone or ligand alone) is 

generated, solvated, relaxed, and simulated during the time to see the evolution in time 

of some desired observables. In the case of medicinal chemistry, MD is implemented in 
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various steps of the drug discovery process192. It can be used, as cited above, to assess the 

stability of a certain model created for a biological entity of interest. For model refinement, 

the trajectory obtained should show any huge change in RMSF of the backbone, as it could 

be a signal for model instability193. Even some ligand-protein structural data are present 

for a target, MD can help to understand the importance of ligand present in the complex 

(evaluating the geometrical and energetics parameters of the protein deprived of the 

ligand).  

One of the uses of MD in SBDD is the docking poses refinement170. It is reasonable for 

docking poses to be compared for their ability to preserve their shape in a dynamic 

environment. The poses in which the ligands preserve the conformation obtained with the 

docking procedure are associated with a higher “virtual stability” and scored higher in 

respect to the poses which present a higher RMSD during the trajectory194.  

To perform MD simulations, several packages are available nowadays. Among the others, 

the most famous are Amber195, GROMACS196, CHARMM197, and Schrödinger Desmond198. 

All these suites offer specific tools for system preparation, equilibration, and analysis (e.g., 

Amber relies on AmberTools for these purposes).  

The classic MD protocols are based on molecular mechanics, so each parameter of the 

system (bonds, angles, partial charges, etc.) is set up at the beginning and does not change 

during the simulation. If the case considered by the scientist involves the presence of 

coordination bonds or the formation/break of bonds, different MD techniques must be 

implemented. This is the case of Quantum-Mechanics/Molecular-Mechanics (QM/MM) 

simulations, in which the site interested in the events cited above is treated with a QM 

level of theory, while the rest of the system is left to MM199. This allows obtaining 

reasonable results with a modest computational effort, which would become huge if all 

the systems were considered with QM theory.  

Molecular dynamics is also applied to elucidate the mechanistic aspect of some biological 

events of difficult experimental evaluation, as several studies have witnessed200. Indeed, 

to investigate the inhibition mechanism of CCR5, Salmas et al. used MD, and the 

trajectories were processed with a principal component analysis and clustering method201. 



SCIENTIFIC PUBLICATIONS 

 

Pavan et al., 2022 289 
 

Banu et al., in a recent study, evaluated the interaction between NALP3 and Apoptosis-

associated speck-like protein (ASC) in the inflammasome exploiting NAMD as the software 

for MD simulations202. A molecular dynamics approach was implemented by Tanwar et al. 

to explore the effect of different mutations on the structural behavior of N-

sulphoglucosamine sulphohydrolase (SGSH), the main protein involved in 

mucopolysaccharidosis type IIIA203. Remaining in the field of LSDs, Hodošček et al. used 

MD simulations to investigate on the stability of the complex between the Niemann Pick 

type C proteins (NPC1 and NPC2) and cholesterol, considering the cases in which this 

molecule is bound first to one and then to the other of the pockets available in the 

system204. 

MD refinement of docking poses has been applied in various studies regarding 

neuroinflammation. Among the cited works, Ahmad et al.190 and Tandon-Sinha182 

implemented this technique in the last part of their drug discovery workflow. Szefler and 

Czelen used an Amber-based MD approach for evaluating the most promising candidates 

in a library of oxindole derivatives as inhibitors of GSK3 205, while Kalva et al. analyzed the 

most promising candidates for MMP-9 inhibition derived from a cross-docking selectivity 

study206. Özkılıç and Tüzün analyzed with MD the best candidates resulting from a massive 

VS, which were firstly filtrated for ADME properties, highlighting two promising inhibitors 

of KMO207.  

In a recent methodological study, Jamal et al. implemented MD simulations for the 

evaluation of the structural and thermodynamic stability of the best candidates from a 

Glide docking VS208. 

The importance of ADMET in computational drug discovery for neuroinflammation 

In drug discovery, and mainly in lead optimization, much importance must be given to the 

Blood-Brain-Barrier (BBB) passage of the candidate molecules. The BBB is a complex 

structure composed predominantly of endothelial cells, which are typically in contact with 

one another through tight junctions, which grant a very high filtration efficiency for the 

substances passing through this border.  
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Said this, it appears clear that a proper pharmacokinetic profile prediction is needed when 

the activity of a molecule versus a certain target located in the CNS is assessed. Moreover, 

looking at the topic of neuroinflammation, it is obvious that a molecule acting in the CNS 

is required to pass the BBB and reach a therapeutical concentration at the site of action. 

To exactly foretell if this is going to happen a priori is not a trivial task. 

Moreover, the active transport mechanisms are active across the BBB in a very distinct 

way209. Among these systems, one of the most known and studied is the P-glycoprotein 

(P-gp) mediated efflux. The ability of this protein engine to transport potential bioactive 

molecules from inside to the outside of the BBB granted to this machinery the second 

name of Multidrug Resistance Protein 1 (MDR1)210. One of the most known examples in 

which the P-gp importance appears clear is the one related to the loperamide, an opioid-

receptor agonist mainly acting on the μ-opioid receptors. The high lipophilicity of this 

molecule allows it to easily pass the BBB, but the P-gp efflux system can efficiently pump 

the drug against gradient211, almost eliminating its cerebral side effects at the 

therapeutical dosage and limiting its action to the intestine. 

From a computational point of view, a proper ADMET prediction can be achieved in various 

ways. An early evaluation can certainly be done on various molecular descriptors, coming 

both from the 2D structure of a molecule and from the 3D arrangement of its atoms. 

Among the 2D descriptors, the combination of the ones involved in Lipinski’s rule of five 

(molecular weight, logarithm of partition coefficient, number of hydrogen bond acceptors, 

and donors) can certainly be considered212. Of course, the very basic knowledge coming 

from a 2D descriptor must be enriched with data coming from several other sources. 

Furthermore, the success rate of ADMET models can be improved if also high quality in 

vitro and in vivo data are included213. At the present day, machine learning and artificial 

intelligence-driven protocols are widely used, both in academics and in industry214. 

As for everything related to data, the efficiency of these model-based methods relies on 

the quality (and, to a lesser extent, on the quantity) of data used215. Different assays, 

different assay conditions, and differences in procedure protocols are all factors that 

strongly impact the final overall quality of the dataset. This makes industries the most 
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advantaged environment for the creation of clean datasets, mainly due to the remarkable 

consistency in their assay conditions and proceeding.  

Some of the most known software used to predict the pharmacokinetic profile of 

molecules are Schrӧdinger QikProp216, OptibriumStarDrop, Metasite217, and 

SwissADME218. An exhaustive list of such tools can be found on more specialistic articles, 

like the one made by Peach et al219. Many of these tools do not simply calculate descriptors 

but are also able to model them for several ADMET predictions. These programs are in 

some cases also able to depict important features in terms of CYP interaction and molecule 

metabolism. In the last decades, the machine learning approaches allowed even to obtain 

models for P-gp interactions, as the scientific literature witnesses220221222. On the other 

hand, if the ability of prediction from data is in a constant increase, is always useful to 

remember the complexity of the biological systems considered in drug discovery. Even if 

the computational tools converge in one direction, the scientist has always to remember 

that all the predictive outputs coming from them are based on a limited (even if large, in 

some cases) dataset. It is also important to notice that the majority of the tools nowadays 

present can perform well in predicting molecules distribution based on passive transport 

in the various tissues of the organism but foretelling the effects of the active transport 

mechanisms remain a tough task223. The efficiency of the prediction relies on several key 

factors: the diversity of the dataset, the number of elements in the dataset which are 

similar to the examined molecules, the quality of the data, etc. Much importance has also 

to be given to the right choice of the variables to build the model upon. Indeed, it is not 

necessary the case that more variables considered equals a better model. The most 

suitable models, in fact, are generally simple, easily interpretable224 and built on few, well-

chosen variables (which could be descriptors or data coming from physicochemical, 

biological, or clinical data). A scheme of the features that a proper prediction model for 

BBB permeation should present is reported in Figure 3.   
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Figure 3. Scheme reporting the main characteristics that a proper model for blood-brain barrier (BBB) 

passage prediction should present. 

A good prediction system for BBB passage based on molecular descriptors was developed 

by Hemmateenejad et al225, exploiting a genetic algorithm-based artificial neural 

network, while Muehlbacher et al used a random forest-based method226. An ensemble 

method was recently applied in BBB passage prediction by Liu et al227. 

In the field of neuroinflammation, computational prediction of BBB passage has already 

been applied in various drug discovery protocols. Among these, Shahbazi et al. used 

Schrӧdinger QikProp for the development of potential NO-releasing anti-inflammatory 

molecules228, while Dileep et al, with the same software, evaluated the BBB passage 

prediction of in silico designed potential multi-target ligands for neuroinflammation229. 

QikProp was also applied by Elrayess et al. for the ADME evaluation of potential triazole 

inhibitors of COX-2 against neurodegeneration230. 

Conclusion 

In this review we highlighted the complexity beneath neuroinflammation, elucidating the 

main biological actors which play a role in its development. We then tried to give a 

comprehensive overview of the fundamental instruments and approaches nowadays 
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applied from computational medicinal chemists for the discovery and the development of 

innovative therapeutical entities, underlying for each its advantages and its limitations. 

For each technique, we reported some cases in which its application was implemented for 

drug discovery in neuroinflammation, looking mainly at the last decade of research. In the 

years to come, we hope that a deeper knowledge of the neuroinflammation biological 

mechanism, together with a further improvement in both the efficiency and the 

predictivity of the computational tools will be useful in finding innovative, valid, and safe 

therapies for the pathological states associated to neuroinflammation and 

neurodegeneration.   
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Abstract 

Fragment-Based Drug Discovery (FBDD) has become, in recent years, a consolidated 

approach in the drug discovery process, leading to several drug candidates under 

investigation in clinical trials and some approved drugs. Among these successful 

applications of the FBDD approach, kinases represent a class of targets where this strategy 

has demonstrated its real potential with the approved kinase inhibitor Vemurafenib. In 

the Kinase family, protein kinase CK1 isoform δ (CK1δ) has become a promising target in 

the treatment of different neurodegenerative diseases such as Alzheimer’s disease, 

Parkinson’s disease, and amyotrophic lateral sclerosis. In the present work, we set up and 

applied a computational workflow for the identification of putative fragment binders in 

large virtual databases. To validate the method, the selected compounds were tested in 

vitro to assess the CK1δ inhibition.  

1. Introduction 

1.1. Protein Kinase CK1δ 

Protein kinase CK1δ belongs to the family of CK1 Kinases (Casein Kinase 1), which in turn 

belongs to the class of Ser-Thr Kinases; seven isoforms of this family were identified in 

mammals: α, β, γ1, γ2, γ3, δ, ε. All the isoforms of CK1 are constitutionally active and they 

exhibit activity in monomeric form, They present a highly conserved catalytic domain 

(unlike in N and terminal C domains), they utilize ATP as a phosphate group donator and 

they are generally independent of the presence of a cofactor 1. 

CK1δ and the other isoforms of the family of CK1 can phosphorylate Ser or Thr residues in 

sequences such as (P)Ser/Thr-X1-2-Ser/Thr, where (P)Ser/Thr indicates a Ser or Thr pre-

phosphorylated residue 2; CK1, therefore, needs the substrate to be already 
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phosphorylated. Nevertheless, it has been demonstrated that a set of amino acids with 

acidic character in the direction of the N-terminal with respect to Ser/Thr target residue 

or an acidic residue in position 3 (preferably Asp) can provide for the lack of the pre-

phosphorylated amino acid3,4. This allows CK1 to act also as a Priming Kinase activating 

the substrate towards a second enzyme by phosphorylation. Currently, about 140 

substrates (in vitro or in vivo) recognized by CK1 have been described1. 

The activity of CK1 isoforms is regulated in different ways. Phosphorylation is the principal 

strategy adopted for the activity regulation of this family of kinases. CK1δ is 

phosphorylated by kinases such as Akt, PKA, PKCα, CLK2, and Chk1. Moreover, CK1δ can 

also be subjected to auto-phosphorylation 1,5,6. Another fundamental aspect in the CK1δ 

activity regulation is the subcellular compartmentalization, operated through the binding 

to intracellular structures and other proteins 7,8. One last mechanism reported in the 

literature for the CK1δ regulation is the formation of homodimers 9,10. 

CK1δ, together with other CK1 isoforms, has been correlated to several 

neurodegenerative processes11; in particular, CK1 seems implied in tauopathies, among 

which Alzheimer’s disease (AD) is the most representative one. 

AD is associated with several cellular processes. The first mechanism described is 

correlated to Tau protein, which after phosphorylation tends to come off from the 

microtubules forming aggregates at a cytoplasmatic level, leading to cellular damage. A 

second mechanism implies instead production and accumulation, with consequent 

cellular death, of the β-amyloid peptide. This is produced by the cut of its precursor APP 

(Amyloid Precursor Protein) by β-secretase 1 and γ-secretase enzymes. The implications 

of CK1 isoforms in pathogenetic processes at the root of Alzheimer’s disease are many. In 

general, CK1δ proves to be overexpressed in brain tissue, up to 30 times in patients 

affected by Alzheimer’s disease12,13. 

Concerning Tau protein, initially, it was observed how CK1 turns out to be associated with 

fibrillar masses of hyperphosphorylated Tau protein (Paired Helical filaments)14; in 

particular, CK1δ seems to be accumulated within these fibrillar masses15. Later it was 

demonstrated how CK1δ can phosphorylate Tau protein causing its separation from 

microtubules; the residues of Tau phosphorylated by CK1δ are Ser202, Thr205, Ser396, 

and Thr40411,16. As regards β-amyloid peptide, it was described how this can stimulate the 
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activity of CK1 and CK2 (employing casein as a substrate)17. Likewise, there is evidence 

that CK1 activity would be proportionally correlated to β-amyloid peptide production, 

since in presence of constitutionally active CK1 forms the amount of this peptide 

increases, whereas it decreases in presence of CK1 inhibitors. CK1 interference seems to 

take place along with the γ-secretase enzyme18, but it is more likely correlated to CK1ε 

isoform, than to CK1δ19.  

As regards Parkinson’s Disease, it has been observed how CK1 isoforms phosphorylated 

Ser129 of α-synuclein11,20.  

Amyotrophic lateral sclerosis (ALS) is another neurodegenerative disease where CK1δ 

plays a role. Indeed, CK1δ phosphorylated TDP-43 (Trans Activate Response DNA Binding 

Protein 43) at many different residues. TDP-43 is the principal component of the protein 

aggregates observed in the pathogenesis of ALS21,22. 

1.2. Fragment-Based Drug Discovery (FBDD) Principles. 

FBDD is a strategy used in drug discovery that has gained popularity both in the industrial 

and academic contexts. In a typical FBDD process a library of polar low molecular weight 

compounds is screened against a specific target. Usually, the screening is performed by 

biophysical methods including X-ray crystallography, nuclear magnetic resonance (NMR), 

thermal shift assay, and surface plasmon resonance (SPR). One of the key factors in the 

FBDD success is the smaller size of the fragment-like chemical space compared to the size 

of the drug-like one. The size of the drug-like chemical space has been estimated at 

around 1060 compounds, many orders of magnitude greater than that of the fragment-

like compounds’ chemical space23. This means that, through the screening of fragments, 

the portion of chemical space sampled is larger than the one sampled with the screening 

of drug-like molecules. This will promisingly also allow the attainment of innovative 

scaffolds for drug candidates. 

Despite the hit fragments having typically a low affinity, they could be turned into a lead 

compound that efficiently binds the target. Fragments, having a low molecular weight, 

establish few interactions with the target; however, the combination of multiple 

fragments by linking and merging or by decorating them with adequate functional groups 

(fragment growing) allows the development of specific and more affine compounds.  
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1.3. Fragment-Based Drug Discovery and Kinase Inhibitors 

Concerning the identification of kinase inhibitors through an FBDD approach, X-ray 

crystallography has also been largely employed because kinases represent a class of 

protein that provides good results with this technique.  

The most outstanding example of kinase inhibitors derived from an FBDD approach is 

Vemurafenib (inhibitor of BRAF) which is an approved drug for the treatment of 

metastatic melanoma24. The discovery of vemurafenib started with an enzymatic assay 

screening of a fragment library. The hit compounds identified were analyzed through X-

ray crystallography, using the structural information so obtained one fragment was 

chosen for optimization leading at the end to Vemurafenib25. Another notable example is 

Asciminib an allosteric inhibitor of BCR-ABL1 tyrosine kinase, now in phase III clinical trial 

for resistant chronic myeloid leukemia. This compound was identified from an NMR-based 

fragment screening; the fragment hits identified were then optimized using In Silico 

methodologies, X-ray crystallography, and NMR26,27.  

Many other Kinase inhibitors derived from FBDD approaches are in clinical trials; for a 

comprehensive review of FBDD derived drugs that have been approved or which are in 

clinical trials see28. 

An interesting observation is that the fragments identified often bind at the hinge region 

of the kinase and maintain this binding mode also in the mature compound. For this 

reason, the library of compounds tested in the present work has been focalized, using in 

silico methodologies described in the next sections, to be composed of putative hinge-

binding fragments. 

1.4. Computational Methods in FBDD 

Since the dawn of FBDD, computational chemistry has played a major role in both 

fragments’ hit identification and in the process of fragment optimization. The MCSS 

(multiple copy simultaneous search) algorithm29 was a pioneering method for the study 

of fragment binding modes in a protein site. Another method for fragment posing based 

on grand canonical Monte Carlo (GCMC) has been reported30. 

Over the years many in silico methods have been proposed not only for fragment 

placement prediction but also to aid the fragment optimization process. Software like 

LUDI31, HOOK32, CAVEAT33, RECORE34, and many others have been developed for this 
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purpose. Additionally, Schrodinger35 and CCG36 implement in their software suites many 

tools to aid the fragment optimization process.  

Molecular dynamics (MD)-based tools represent the most advanced in silico techniques 

used in FBDD. The first application of MD to FBDD was the refinement of docking poses, 

a method note as post-docking37. More advanced protocols have also been developed. 

Nonequilibrium candidate Monte Carlo (NCMC) is an algorithm that has been applied to 

enhance the sampling of fragment binding modes38; this method has been successfully 

applied to FBDD39. Another promising approach is the application of Markov state models 

to MD simulations, which has proved its potential to FBDD40. Recently, Supervised 

Molecular Dynamics (SuMD)41 has been applied as a fragment screening tool42.  

Molecular docking has also become a routinely used tool in FBDD. While the 

conformational sampling performs by docking protocols is generally effective in 

reproducing the correct pose for a ligand, the scoring functions frequently fail in valuating 

this pose43, this is especially true for Fragment-like compounds for which many doubts 

have been raised about the docking applicability44. This said, to make the docking results 

more reliable a consensus docking approach was used45, and instead of the scoring 

function, the poses were evaluated using a pharmacophore model. A post-docking 

refinement of the poses was then performed. A detailed explanation of the computational 

workflow adopted in the present work is reported in Section 4.1, Section 4.2, and Section 

4.3. 

2. Results 

 

Figure 1. Schematic representation of the workflow adopted in the present work. First the fragments are 

retrieved from several vendors libraries. After proper preparation, the database is docked using three 
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different docking protocols. The resulting poses have been filtered using a pharmacophore model and only 

the molecule that fit the model for each protocol have been retained. The poses of these molecules were 

further refined using MD to assess the stability of the binding mode. The molecules that appear to be stable 

were finally selected through visual inspection. 

2.1. Computational Results 

A library of around 272,000 commercially available fragment compounds was screened in 

silico using an integrated structure-based approach based on different techniques such as 

molecular docking, molecular dynamics (MD), and pharmacophore filter. The workflow 

adopted is reported in Figure 1. 

At first, three independent docking-based virtual screenings were performed in parallel 

exploiting three different protocols: PLANTS-ChemPLP, GOLD-ChemScore, and Glide-SP. 

PLANTS exploits an Ant-Colony Optimization (ACO) algorithm, GOLD a genetic one while 

Glide performs an exhaustive search. The choice of these three protocols was made to 

evaluate the virtual library with three orthogonal search algorithms, to minimize the false-

positive rate to which traditional docking-based virtual screenings are prone. At the end 

of each virtual screening, a total of about 13.6 M poses (50 per ligand) was obtained for 

each protocol. The choice to generate such a great number of poses for each ligand was 

taken in order not to rely on the scoring function ability to prioritize the best binding mode 

for each compound, since fragments can have multiple binding modes that are similar 

from an energetic and qualitative point of view and are therefore difficult to distinguish 

for scoring functions that are trained upon mature, lead-like, compounds.  

To filter this huge amount of ligand conformations and retain only the most interesting 

compounds, we decided to exploit the structural knowledge provided by the 23 Ck1 

protein–ligand complexes deposited in the Protein Data Bank and create a 

pharmacophore filter. This pharmacophore model was built to retain those features 

which are vital for the interaction with the hinge region of the kinase since these features 

are the most commonly found across the structures. The pharmacophore included three 

features, two of them to guarantee the interaction with Leu85 (a hydrogen bond donor 

and a hydrogen bond acceptor) and the presence of and a feature for an aromatic ring 

also in the proximity of the hinge region. 
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The pharmacophore filter was then applied independently on each pose database 

generated by the three different docking protocols. Exploiting an approach known as 

consensus docking, the three libraries containing those ligand conformations that fit the 

pharmacophore model were merged, retaining only those found within each dataset. 

After this consensus filtering, only 840 docking poses were left.  

 

 

Figure 2. Representation of the pharmacophore model used in the present work. Some representative 

crystallographic ligands are displayed (not all for clarity). The Pharmacophore model is formed by an 

aromatic ring (the three orange spheres define the position and its orientation) and two hydrogen bonds 

with the backbone of Leu85 (an acceptor and one donor). 

To further filter out those poses characterized by unstable binding modes, a post-docking 

molecular dynamics refinement was performed (three replicates, 10 ns each). The 

average Root Mean Squared Fluctuation of atomic positions (RMSF) across the three 

replicates was used as a cutoff to eliminate those poses characterized by conformational 

instability over time. After filtering out those ligand conformations with RMSF > 2 Å, 650 

stable poses were maintained. 

With the intent of prioritizing the most interesting compound for in vitro assays, each 

pose was carefully manually examined. After this visual inspection46 step, 66 fragments 

were finally selected to be purchased and tested. The structure of all the 66 fragment 

compounds tested are reported in supplementary Table S1, while the pose of each of 

them resulted from the VS pipeline is reported in Video S1.   
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2.2. Enzymatic Assay Results  

Figure 3. CK1δ residual activity at a concentration of 100 μM of the ligand under examination. Molecules 

marked with a star have been tested at 50 μM due to solubility issues.  

 

Figure 4. CK1δ Residual activity at a concentration of 40 μM of the ligands that showed a residual activity 

of less than 40% at 100 μM. 

Fragments were tested against CK1δ using a luminescent-based assay. Compounds were 

evaluated at a fixed concentration of 100 μM (see Figure 3) and those that showed a 

kinase residual activity lower than 40% were tested also at a fixed concentration of 40 μM 

(see Figure 4). 

IC50 values were calculated for compounds with a residual kinase activity lower than 40%. 

Compounds 37, 38, 52, 59,62 and 63 showed IC50 values in the micromolar range of 12.71 

μM (9.57–16.80), 20.49 μM (17.46–24.08), 13.50 μM (12.47–14.62), 13.92 μM (11.89–
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16.29), 18.15 μM (16.78–19.64) and 24.86 μM (21.46–28.92), respectively. Remarkably, 

compound 28 shows a half-maximal inhibitory concentration of 3.31 μM (2.67–4.12). The 

IC50 curves for the seven hits are reported on SI. The value of IC50 is based on the average 

of three independent measurements. 

2.3. Molecular Recognition Studies of the Most Promising Fragment 

To shed light on the possible recognition mechanism of the most effective inhibitor, 

compound 28 (IC50 = 3.31 µM) was investigated by mean of Supervised Molecular 

Dynamics simulations (SuMD). The primary scope was to assess if the hypothesized bound 

state obtained by our computational protocol was also accessible by simulating the 

fragment association from the unbound state without any information about the ligand 

conformation. Since in our VS-pipeline the pharmacophoric filter plays a primary goal in 

defining the bound geometries, its validation by using a more articulated technique based 

on MD and in which the water molecules need to be displaced by the fragment to reach 

the hinge region would provide the reliability of the binding mode.  

A complete recognition pathway of the length of 15 ns is reported in Video S2 (SI). 

Compound 28 showed three steps during the recognition, with two stable states (Figure 

6A).  

Figure 6. SuMD simulation of compound 28. In panel (A) the interaction energy landscape is reported for 

the recognition trajectory displaying the ligand–protein interaction energy plotted against the distances 

between the protein–ligand center of mass. In panel (B), the superposition of the VS-pose (cyan) for 

compound 28 against the lowest energy frame from the SuMD trajectory (orange). 

A pivotal role in the first phases (around 1 ns time mark) of the ligand recruitment within 

the binding site is played by Asp149, which acts as an electrostatic recruiter for the amino-
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thiophene moiety of the ligand. By contrast, the vicinal residue Lys38 hampers the ligand 

entrance into the core portion of the binding site due to the electrostatic repulsion 

between the charged amino group of the amino acid side chain and the non-charged 

amino group of the ligand. The balance in attraction and repulsion between the flexible 

side chains of these two amino acids located at the boundary of the binding site is 

depicted also by the large energetic funnel shown in Figure 6A at around 10 Å with regard 

to the distance between the centers of mass of the binding site and the ligand (dcmL-R). 

Afterwards, the binding pathway is characterized by two stable ligand conformations 

within the binding site. The first state (S1) occurred at a dcmL-R distance of 4.5 Å, with the 

ligand interacting with the backbone of Leu85 through its amino-thiophene moiety and 

the morpholine moiety oriented towards the external part of the binding site (solvent-

exposed), while the second one (S2) at a dcmL-R distance of 1.5 Å is characterized by a 

bivalent hydrogen bond with Leu85 and the morpholine moiety of the ligand buried within 

the hydrophobic selectivity pocket defined by Met80, Met82, Ile23 and the alkyl portion 

of the Lys38 side chain. Although these two states are characterized by similar interaction 

energy values (according to the AMBER forcefield), their energetic funnels have different 

shapes: the final state (S2) shows a narrower profile than the S1 state, suggesting that the 

pharmacophore binding mode (S2) has a higher stability than S1. Furthermore, the final 

bound state nicely retraced the pose obtained with the VS pipeline, validating both the 

pharmacophore model used in this work and the binding mode proposed by molecular 

docking for this compound (Figure 6B) 

3. Discussion 

The seven fragments that were characterized by calculating the IC50 showed a noticeable 

chemical diversity including scaffolds spanning from one to three nitrogen-containing 

fused rings. The poses of the seven hits as obtained in the VS are reported in Figure 5. All 

the fragments logically share the common interaction pattern required by the 

pharmacophore filter. Interestingly, compounds 28, 37, 38, 52, 62, and 63 showed a 

similar interaction scheme in which an aromatic amine moiety was able to establish a 

hydrogen bond with the carbonyl oxygen of the Leu85 backbone while a further hydrogen 

bond between the Leu85 backbone amide is guaranteed by aromatic nitrogen in ortho to 
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the amine group. Compounds 37, 52, and 59 share a conserved pyrimidine ring that is part 

of different fused systems. Compound 59 also has the pyrimidine ring in a different 

orientation: it restores the hydrogen bond donor by its fused pyridone ring. Compounds 

38 and 63 present the same scaffold.  

 

Figure 5. The structure and binding mode for the seven compounds for which the IC50 value is reported. The 

value of IC50 is based on the average of three independent measurements  

To assess the novelty of the identified fragments, a substructure search was performed 

against ChEMBL using the main ring recognized by the pharmacophore as a query; except 

for compounds 38 e 52, which resulted in 34 and 20 already known CK1δ inhibitors, for all 

the remaining hits none known inhibitors were found sharing the principal ring. The 3-



SCIENTIFIC PUBLICATIONS 

 

Bolcato et al., 2021 318 
 

amino-indazole scaffold of compound 38 was found in a multikinase inhibitor 

(CHEMBL1999931) with a Ki of 316.23 nM47. For compound 52 a couple of ligands with 

low uM activity were found; in particular CHEMBL2000114 with a Ki of 1 uM arose from 

the same kinome scan from Abbott Labs47. 

 Additionally, compound GSK1838705A showed the same scaffold of 52, in this case the 

Ki reported is 3.5 uM but it is a residual activity since the compound is a potent inhibitor 

of ALK kinase (IC50 = 0.5 nM)48. 

.4. Materials and Methods 

4.1. Molecular Modelling and Docking 

The virtual library used in this work was obtained through the merging of different 

libraries of commercially available compounds designed for FBDD. The vendors are 

Asinex, Chembridge, Enamine, Life Chemicals, Maybridge, Otava, Timtec, Vitas. The total 

number of fragments in the merged library is about 272,000 virtual compounds.  

The merged library was prepared to be suitable for the Docking-Based Virtual Screening. 

This preparation consists of the following steps: the tautomeric state enumeration for 

each compound and determination of the most probable tautomer (for each molecule at 

the three most tautomeric states was retained), the most probable ionization state at pH 

7.4 calculation, the atomic partial charge calculation (using MMFF94 force field), the 3D 

coordinates generation. All these steps were performed using QUACPAC of the Openeye 

suite49 except for the 3D coordinated generation for which Corina Classic was used50. 

The protein used both for Docking and for MD simulation was prepared using MOE. The 

preparation consists of the removal of the crystallographic water molecules and other 

solvent molecules together with ions and the ligand. The correct protonation state for 

each residue at pH 7.4 was calculated with the Protonate3D tool of MOE. 

For the Consensus Docking strategy, three different Molecular Docking protocols were 

used. To make the results more robust, the three docking protocols chosen rely on search 

algorithms of different types. The Molecular Docking Protocols are PLANTS51 which is 

based on an Ant Colony Optimization algorithm, GOLD52,53 which employs a genetic 

algorithm, and Glide54,55 which use a systematic searching approach. The Scoring 

Functions adopted are CHEMPLP for PLANTS, ChemScore for GOLD, and Glide SP for Glide. 
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For each fragment 50 poses were generated using each Docking Protocol even if the 

termination criteria and the nature of the algorithms did not always provide 50 poses, in 

particular for Glide SP. 

Similarity and substructure searches were performed with MOE using the ChEMBL29 

database. 

4.2. Pharmacophore Modeling 

Each ensemble of poses (one for each docking protocol) was then filtered using a 

pharmacophore model. This pharmacophore model was calculated using MOE: all the 

holo crystal structures available on the PDB for human CK1δ were superposed and the 

common features of each ligand were analyzed. The list of complexes included 23 

complexes with PDB ID: 3UYT, 3UZP, 4HGT, 4HNF, 4KB8, 4KBA, 4KBC, 4KBK, 4TN6, 4TW9, 

4TWC, 5IH5, 5IH6, 5MQV, 5OKT, 5W4W, 6F1W, 6F26, 6GZM, 6HMP, 6HMR, 6RCG, 6RCH.  

Since the ligands present in the crystal structures are drug-like molecules, it is difficult that 

a fragment can comply with all the common features observed in the crystal structures. 

For this reason (and because as stated above the first fragment identified in an FBDD 

process of a kinase inhibitor is a hinge binding fragment) the pharmacophore model was 

built using only the features involved in the interaction with the hinge region of the kinase. 

The model included three features: one hydrogen bond donor and one hydrogen bond 

acceptor to guarantee the interaction with the backbone of Leu85 (Figure 2). The last 

feature represents an aromatic ring also in the proximity of the hinge region. Only the 

molecule that has passed the Pharmacophore filtering for each protocol was retained 

(consensus). 

4.3. Molecular Dynamics 

The molecules retained after the consensus filtering were subjected to a post-docking 

refinement. The docking pose used in this step is the one obtained from Glide. All the 

simulations were carried out using ACEMD356 with ff14SB as force field57, the system 

preparation was conducted with MOE concerning protein preparation and with the use of 

AmberTools14 for the simulation box preparation. 

For each complex, a simulation box was prepared: the protein was immersed in an explicit 

TIP3P58 solvent box, with an ionic strength of 0.154 M obtained using Na+/Cl−. The protein 

is 15 Å away from the border of the box.  



SCIENTIFIC PUBLICATIONS 

 

Bolcato et al., 2021 320 
 

Using the conjugate gradient method, the system energy was minimized for 500 steps; 

after this minimization the system was equilibrated in two stages. The first equilibration 

consists of 1 ns of NVT simulation with harmonic positional constraints of 1 kcal mol−1 Å−2 

on the protein. In the second equilibration step, which consists in this case of 1 ns of NPT 

simulation, the constraints of 1 kcal mol−1 Å−2 were applied only on the α carbons of the 

protein. After the equilibration for each protein–pose complex, three NVT trajectories of 

10 ns were produced. The average RMSF of the ligand during these three replicas was 

calculated and if this value was greater than 2 Å the molecule was discarded. 

A Supervised Molecular Dynamics59,41 simulation was performed to gain some insights 

into the binding process of the most potent fragment (Compound 28). SuMD is an MD-

based method developed to investigate molecular binding events without energetic 

biases. The algorithm is based on the supervision of the ligand–protein binding site center 

of mass distance during a classical short MD simulation. At the end of each small 

simulation (SuMD step), this distance is measured: if it has shortened during the SuMD 

step, the simulation continues with another SuMD step, otherwise, it is stopped, and the 

simulation restarts from the previous set of coordinates. The fragment was placed 30 Å 

away from the protein. Each SuMD step was set to 300 ps. 

4.4. Enzymatic Assay  

Compounds were evaluated towards CK1δ (aa 1-294, Merck Millipore) with the 

KinaseGlo® luminescence assay (Promega) following procedures reported in the 

literature22. In detail, luminescent assays were performed in white 96-well plates, using 

the following buffer: 50 mM HEPES (pH 7.5),1 mM EDTA, 1 mM EGTA, and 15 mM MgCl2. 

Compound PF-670462 (IC50 = 14 nM) was used as a positive control for CK1δ60 and 

DMSO/buffer solution was used as a negative control. In a typical assay, 10 μL of inhibitor 

solution (dissolved in DMSO at 10 mM concentration and diluted in assay buffer to the 

desired concentration) and 10 μL (16 ng) of enzyme solution were added to each well, 

followed by 20 μL of assay buffer containing 0.1% casein substrate and 4 μM ATP. The 

final DMSO concentration in the reaction mixture did not exceed 1%.  

After 60 min of incubation at 30 °C, the enzymatic reactions were stopped with 40 μL of 

KinaseGlo® reagent (Promega). The luminescence signal (relative light unit, RLU) was 

recorded after 10 min at 25 °C using Tecan Infinite M100. Fixed-dose experiments were 
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performed at 100 μM and for more potent compounds also at 40 μM. Two independent 

experiments were performed in duplicate and the corresponding residual activity of CK1δ 

was obtained. Data were analyzed using Excel and reported as the mean of the two 

experiments with standard deviation. For IC50 determination ten different inhibitor 

concentrations ranging from 100 to 0.026 μM were used and each point was assessed in 

duplicate. IC50 values are the mean of three independent experiments and 95% 

confidence limits were also reported. Data were analyzed using GraphPad Prism software 

(version 8.0). 

5. Conclusions 

In the present work to find new potential CK1δ inhibitors, we elaborated a computational 

workflow for the identification of candidate hinge binding fragments. This workflow 

consists of the generation of a large number of poses for each compound of a virtual 

library of commercially available fragments using three different Docking protocols. These 

poses were filtered using a pharmacophore model and only the fragment for which each 

docking protocol was able to produce a pose that fits the model was retained (consensus 

docking). In the next step each protein-fragment complex that passed the previous filter 

was subjected to an MD-driven post-docking refinement to inspect the geometric stability 

of the pose. Finally, some fragments were manually selected among the group that 

demonstrated a good performance in the post-docking refinement; to validate the 

method these fragments were tested using an enzymatic assay test to assess the CK1δ 

residual activity, and for the most promising candidates, the IC50 value was determined, 

with a value in the low micromolar range. Five of the seven fragments showed novel 

scaffolds for CK1δ, confirming that the proposed pipeline could be particularly useful to 

identify novel structures.   
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Abstract 

In the last twenty years, Fragment-Based Drug Discovery (FBDD) has become a popular 

and consolidated approach within the drug-discovery pipeline, due to its ability to bring 

several drug candidates to clinical trials, some of them even being approved and 

introduced to the market. 

A class of targets that have proven to be particularly suitable for this method is 

represented by kinases, as demonstrated by the approval of BRAF inhibitor Vemurafenib. 

Within this wide and diverse set of proteins, protein kinase CK1δ is a particularly 

interesting target for the treatment of several widespread neurodegenerative diseases 

such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.  

Computational methodologies such as molecular docking are already routinely and 

successfully applied in fragment-based drug discovery campaigns alongside experimental 

techniques, both in the hit-discovery and in the hit-optimization stage. Concerning this, 
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the open-source software Autogrow, developed by the Durrant lab, is a semi-automated 

computational protocol that exploits a combination between a genetic algorithm and a 

molecular docking software for de-novo drug design and lead optimization.  

In the present work, we present and discuss a modified version of the Autogrow code that 

implements a custom scoring function based on the similarity between the interaction 

fingerprint of investigated compounds to a crystal reference. To validate its performance, 

we performed both a denovo and a lead-optimization run (as described in the original 

publication), evaluating the ability of our fingerprint-based protocol to generate 

compounds similar to known CK1δ inhibitors based on both the predicted binding mode 

and electrostatic and shape similarity in comparison with the standard Autogrow 

protocol. 
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Introduction 

Protein kinase CK1δ is a Ser/Thr protein kinase belonging to the Casein Kinase 1 family. In 

mammals, 7 distinct genes encoding for Casein kinase proteins are present, each 

producing a different isoform (α, β, γ1, γ2, γ3, δ, and ε)1. CK1 family proteins use 

exclusively ATP as a phosphate source for their kinase activity, which is carried out by the 

protein in its monomeric form. Each isoform is constitutionally active and does not require 

the presence of a cofactor to exert its activity2. 

From a biological function point of view, the members of this family have been historically 

related to different physiological mechanisms, such as cell replication3, DNA repair4, and 

circadian rhythm5.  

From a structural perspective, the members of the CK1 family are characterized by the 

typical bilobed structure of the globular Ser-Thr kinase proteins, with the N-term lobe 

consisting mainly of β-sheets and a larger C-term lobe, constituted primarily of α-helices. 

The two domains are connected by a protein region named the “hinge region”, which 

forms a highly conserved pocket for ATP binding2.  

As for other members of the CK1 family, CK1δ recognizes the canonical phospho-primed 

structural motif pSer/pThr-X1-2-Ser/Thr, where X stands for any amino acid and pSer/pThr 

represents the phospho-primed residue6. The CK1 kinases are also able to recognize non-

phosphorylated sequences, as far as they contain strongly acidic residues (Asp or Glu) that 

can make up for the absence of the phosphorylated residue3. The structural motif that 

can be recognized by the CK1 proteins is widespread in many cellular proteins and, 

because of this, over 140 substrates have been reported both in vitro and in vivo2, 

underlining the pleiotropic character of this protein family. Due to the great variability of 

its substrates, CK1δ is involved in many cellular pathways, among which the main ones 

are the Wnt-pathway, the Hippo pathway, the p53 regulation pathway, and the Hedgehog 

pathway3. 

The endogenous regulation of CK1δ, on the other hand, can be carried out through various 

mechanisms, including autophosphorylation or phosphorylation by other protein 

kinases7,8, interactions with other protein and/or cellular components, and subcellular 
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sequestration3,9. In addition, homodimerization excludes ATP from the binding site, thus 

inhibiting kinase activity10,11.  

In recent years, several studies have highlighted the importance of CK1δ in 

neurodegenerative diseases, particularly tauopathies such as Alzheimer’s disease (AD), 

Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS)12. In addition to having 

unknown etiology, these illnesses are all characterized by loss of neuronal function, with 

neurotransmitter deficiency, misfolding, and protein aggregation13. Clinical symptoms are 

manifested differently, depending on the neuronal area involved14.  

AD is a progressive neurodegenerative disorder that mainly involves the neurons of the 

hippocampus15. On the extracellular side, the main marker of the disease is represented 

by the accumulation of β-amyloid peptides, produced by β-secretase 1 and γ-secretase 

enzymes, which leads to neuronal death16. Meanwhile, on the intracellular part, the illness 

presents lesions related to both cytoplasmic accumulations of vacuoles with abnormal 

dimensions and dense granular content and the assembly of fibrils and filaments within 

the neuronal body. These types of lesions are both characterized by the accumulation of 

hyperphosphorylated Tau protein in the filaments, but also within the vacuoles17.  

The correlation between CK1δ activity and tau protein aggregates in various 

neurodegenerative diseases has been confirmed by co-immunoprecipitation studies, 

which highlight that the presence of CK1δ is associated with hyperphosphorylated tau 

aggregates18,19. CK1δ phosphorylates tau protein at the Ser202 / Thr205 and Ser369 / 

Ser404 residues in vitro12,20. The phosphorylation sites are the same as those involved in 

binding with tubulin, highlighting the key role of kinase in the pathogenesis of AD18. It is 

not clear whether the hyperactivity of CK1δ is due to an over-transcription of its gene, 

altered protein turnover, or both causes, but it has been observed that the concentration 

of the protein CK1δ in an AD-affected hippocampus is 30 times higher than normal17. 

In PD, on the other hand, the pathology is characterized by the accumulation of Lewy 

bodies, consisting of aggregates of α-synuclein hyperphosphorylated by CK1δ at the level 

of Ser129 residues21. This process determines a massive loss of neuronal function at the 

substantia nigra level22.  
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CK1δ also plays a key role in Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative 

disorder in which intracellular inclusions of TDP-43 (TAR DNA-binding Protein) are found 

in the frontotemporal lobe. It was established that TDP-43 can be phosphorylated by CK1δ 

at 29 different sites23.  

These pathologies are all characterized by the absence of effective pharmacological 

therapy: in fact, there are no EMA-approved drugs on the market that can solve, and 

therefore cure, these diseases, but there are only palliative therapies for the temporary 

improvement of the patient’s quality of life, thus resulting in a high social cost24.  For these 

reasons, CK1δ appears as an interesting therapeutical target in the field of 

neurodegeneration, as witnessed by the increasing interest in the research for inhibitory 

candidates for this protein during the last 15 years. 

Concerning the identification of novel kinase inhibitors, an approach that has proven to 

be particularly successful is the so-called Fragment-Based Drug Discovery (FBDD), as 

demonstrated by the approval of the BRAF inhibitor Vemurafenib25 (employed in the 

treatment of metastatic melanoma) and by several other kinase inhibitors which are at 

various stage of clinical trials26,27.  

This approach revolves around the exploitation of “fragments”, i.e., compounds that 

respect the “Rule of Three” (molecular weight < 300, number of hydrogen bond 

donor/acceptor <= 3, logP<=3), as a starting point for the rational development of novel 

mature, drug-like, active molecules28,29.The main reason for the success of FBDD is the 

ability to sample a larger portion of the chemical space compared to the one occupied by 

drug-like molecules, thus increasing the success rate in finding novel scaffolds for targets 

of interest30.  

This methodology heavily relies on very sensitive biophysical methods such as X-ray 

crystallography (XRC), nuclear magnetic resonance (NMR), or surface plasmon resonance 

(SPR), to perform large screening campaigns on libraries composed of molecules with low 

molecular weight and high solubility, to find hit compounds31,32. These hit fragments have 

usually a low affinity for the target, ranging from low mM to high µM (hence the need for 

very sensitive screening techniques), but usually have a higher binding efficiency 
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compared to traditional drug-like molecules, being able to establish high-quality 

interaction with the target33. Fragment hits can then be easily combined (either through 

a linking or a merging process) or chemically modified (growing) to increase their affinity 

for the target, allowing for the development of potent and selective active compounds34.  

Alongside the aforementioned experimental techniques, in the last decade, a prominent 

role in FBDD campaigns has been played by computer-aided drug discovery (CADD) 

techniques such as molecular docking or molecular dynamics35. These computational 

approaches have been routinely and successfully applied for performing large screening 

on virtual fragment libraries, for the characterization of the fragment interaction mode 

with the target and to aid the fragment-to-lead optimization in a less time-consuming, 

more rational, and more efficient way. Some examples of software developed specifically 

designed for FBDD are LUDI36, HOOK37, CAVEAT38, RECORE39. Moreover, commercial drug 

discovery suites such as Schrödinger, MOE, and OpenEye have implemented several tools 

related to the fragment optimization process. 

Among the plethora of software available for FBDD, the open-source software Autogrow, 

developed by the Durrant lab, is particularly interesting. As thoroughly described in the 

work of Spiegel et al.40, the open-source software Autogrow is a Python written code that 

combines a genetic algorithm with docking calculation based on the Vina41 docking 

software to perform a semi-automatized process for both de-novo drug design and lead 

optimization. The latest release of the Autogrow (version 4.0.3, the one used in this work), 

was developed with the idea of making the codebase modular thus allowing the third-

party implementation of different conversion scripts, molecular docking programs, 

scoring functions, and reaction libraries, to better suit the need of different research 

groups.  

A recent scientific work published by our laboratory led to the identification of seven 

novel fragment compounds that bind the hinge region of CK1δ with a low-micromolar 

IC50
42. Attracted by the idea of exploiting a semi-automatized computational protocol for 

the optimization of our newly discovered fragment compounds, we decided to investigate 

if this protocol would be suitable for our needs. Since it is notorious that molecular 

docking programs are usually very efficient and optimized with regards to the 
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conformational search, but are usually lacking in the scoring phase43,44 (especially for 

molecules like fragments that deviates from the drug-like chemical space on which these 

scoring functions have been trained45,46), we decided to investigate if the implementation 

of a different scoring protocol based on protein-ligand interaction fingerprint would 

improve the performance of the Autogrow protocol, concerning the ability of the program 

to generate compounds similar to known inhibitors based on their interaction scheme and 

electrostatic and shape similarity.  

Materials and Methods 

2.1 Hardware Overview 

Each general molecular modeling operation has been performed on a Linux Workstation 

equipped with an 8 core Intel Xeon® CPU E5-1620 CPU. For more intensive calculations, 

such as the Autogrow runs, a 64 cores AMD Opteron™ Processor 6376 CPU cluster was 

exploited. Both the workstation and the cluster run Ubuntu 16.04 as their operating 

system. 

2.2 Structures Preparation 

In the case of protein kinase CK1, 23 protein-ligand complexes between the protein and 

small drug-like molecules are available in the Protein Data Bank47(PDB ID; 3UYT, 3UZP, 

4HGT, 4HNF, 4KB8, 4KBA, 4KBC, 4KBK, 4TN6, 4TW9, 4TWC, 5IH5,5IH6, 5MQV, 5OKT, 

5W4W, 6F1W, 6F26, 6GZM, 6HMP, 6HMR, 6RCG, 6RCH). In the context of this work, the 

crystals with codes 6RU6, 6RU7, and 6RU8 were not considered in the study because they 

contain the natural substrate adenosine-5'-diphosphate. One of the structures (PDB ID: 

4KB848) is composed of two different CK1-ligand complexes. For this reason, the system 

has been separated into two different entries (namely 4KB8-A and 4KB8-B). Because of 

this, the total number of complexes considered in our study is 24.  

Each of the mentioned complexes has been downloaded and properly prepared for 

subsequent computational analysis with the “Structure Preparation” tool implemented in 

the Molecular Operating Environment (MOE)49 2019.01 suite. The missing hydrogen 

atoms were appropriately added with the MOE “Protonate 3D” program (setting the pH 

for the protonation at a value of 7.4) and were then energetically minimized according to 
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the AMBER10: EHT50 force field implemented in MOE. After the preparation phase, the 

protein-ligand complexes have been properly aligned and superposed with the MOE 

dedicated tool, to make the binding site coordinates coherent among the different 

crystallographic structures. These complexes were saved and used at a later stage for the 

generation of the pharmacophore model (see section 2.4).  

Afterward, each ligand has been separated from its respective protein. All the small 

molecules were collected in a database and prepared for docking calculations exploiting 

several packages from the QUACPAC OpenEye51 suite. For each molecule the most 

probable tautomeric state was selected with the “tautomers” program, the three-

dimensional coordinates were rebuilt using the “Omega” tool, the partial charges were 

attributed with the “MolCharge” program according to the MMFF94 force field, and 

finally, the dominant protonation state at pH 7.4 was determined by the “FixPka” tool.  

2.3 Cross-docking 

Each of the aforementioned 24 CK1δ crystallographic ligands, prepared as described in 

section 2.2, was docked inside each of the correspondent 24 CK1δ protein structures 

exploiting two different molecular docking pieces of software, namely  GOLD52 (based on 

a genetic algorithm, developed and distributed with a commercial license from CCDC) and 

PLANTS53 (an Ant-Colony-Optimization docking algorithm, developed by the University of 

Tübingen and free-for-use for academics).  

This approach was chosen to follow the principles of “consensus docking”54, which is 

based on the fact that data obtained combining results coming from docking programs 

that operate in an orthogonal way are associated with higher robustness.  

For both GOLD and PLANTS, 10 poses per molecule were collected. The default 

parameters were used for both protocols. Concerning the choice of the scoring function, 

Chemscore was selected for GOLD, while PLANTSChemPLP was selected for PLANTS.  

A total of 1152 (24 ligands x 24 proteins x 2 docking protocols) independent docking runs 

were performed, and the results were then analyzed by making use of an in-house Python 

script. The script collects the RMSD between each docking pose and the correspondent 

crystal reference pose, outputting two different plots. The first plot is a heatmap that 
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illustrates the RMSD values for the best docking pose generated for each ligand onto each 

protein. The second plot is a histogram that re-elaborates the previous results to give a 

visual representation of the “success rate” of each protein: a successful docking run is 

obtained when the RMSD between the docking pose and the crystal reference is below 

the arbitrary chosen 2 Å threshold value so that the “success-rate” is defined by the 

percentage ratio of the successful docking runs for each protein (i.e., the percentage of 

docking experiments where the RMSD falls below the threshold value).  

2.4 Pharmacophore Modeling 

Based on previously published works on the same target, we took advantage of the 

structural information about known inhibitors of CK1δ in the form of crystal structures of 

their complex with the kinase deposited in the Protein Data Bank. The same 24 protein-

ligand complexes mentioned in section 2.2 were subjected to the MOE Pharmacophore 

model tool: shared interaction features (with a 50% threshold value for feature retention) 

were then used in the generation of the pharmacophore model. 

 

Figure 5. Visual representation of the pharmacophore model used in this scientific work. Features are 

represented as spheres. Orange spheres indicate an aromatic ring, with an orientation determined by the 

small orange pin, while the pink spheres indicate a hydrogen bond donor/acceptor. For visual reference, 

the 4TN6 complex is also reported in this figure, with the protein represented in teal ribbons and the PFO 

ligand represented as orange sticks.  
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As can be seen in Figure 1, the final model consisted of 4 features (represented as spheres 

in the image), namely a hydrogen bond donor and a hydrogen bond acceptor interacting 

with Leu85, an aromatic ring in the proximity of the hinge region, and another aromatic 

ring adjacent to the first one in the inner part of the binding pocket.  

2.5 Autogrow 

Autogrow455 is a fully open-source code written in Python and developed by the Durrant 

lab that combines a genetic algorithm with docking calculation based on the Vina56 

docking software (version 1.2.0) to perform a semi-automatized process for both de-novo 

drug design and lead optimization.  

Molecules are submitted to the program in the form of SMILES strings. The genetic 

algorithm part of the code uses a series of synthetically feasible reactions to perform a 

defined number of mutation and crossover operations (i.e., growing and merging) on 

submitted chemical entities, creating a full population (called generation) of molecules to 

feed to the molecular docking program.This generation is then docked using the Vina 

docking software. After the docking stage, the genetic algorithm retrieves the score for 

each docking pose, which it uses to rank molecules and pick the most fitted members of 

the generation to promote them to the next generation. This iterative process is repeated 

for a user-defined number of generations, or until an earlier termination criterion is met.  

The code is released under the Apache2 license, is freely available at 

https://durrantlab.pitt.edu/autogrow4/, and works both in a Python 2.7 and >=3.6 

environment. A detailed description of how the latest Autogrow release works is provided 

in the work of Spiegel et al.40. 

Two different versions of the Autogrow code were used in this scientific work. The first 

one was downloaded from the official repository and used as is, without any modifications 

to the source code. The second one was the result of an in-house modification of the 

source code performed to customize the scoring stage of the docking process. The 

traditional Autogrow protocol uses the Vina standard scoring function (from now on, 

defined as VINA), which encompasses some elements of knowledge-based potentials and 

others of a typical empiric scoring function56. Instead, our modified version of the 
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Autogrow code implements an alternative scoring function (from now on, defined as 

IFPCS) based on the similarity between protein-ligand interaction fingerprints.  

The crystal complex of a known inhibitor is chosen as reference (in our case, the ligand 

PFO from complex 4TN6 was chosen) and its binding mode is codified into a bit vector 

exploiting the InteractionFingerprint function from the fingerprint module of the Open 

Drug Discovery Toolkit57 Python Library. This function converts the protein-ligand 

interaction into a bit array according to the residue of choice and the type of interaction. 

Each protein residue is represented by eight bits, one for each type of interaction 

considered (hydrophobic contacts, aromatic face to face, aromatic edge to face, hydrogen 

bond with protein acting as donor, hydrogen bond with protein acting as acceptor, salt 

bridge with protein acting as the positively charged member, salt bridge with protein 

acting as the positively negative member and ionic bond with a metal ion), so that the 

final vector will have a size of r*8, where r stands for the number of protein residues. 

During the scoring phase of our custom Autogrow run, each docking pose is also codified 

into an Interaction Fingerprint vector, the same way as for the crystal reference. Then, 

the two vectors are transformed from sparse to dense making use of the appropriate 

functions from the Numpy Python library, before the comparison between the reference 

and the query fingerprint is executed using the cosine similarity metrics, exploiting the 

appropriate function of the Scikit-learn Python library. The resulting score, which ranges 

from 1 (indicating a complete agreement and coherence between the two binding modes) 

to 0 (indicating that the two binding modes are not coherent), is then multiplied by -1 to 

comply with the selection mechanism of Autogrow genetic algorithm, which favors the 

most negative scores, as is usually the case for most classic scoring functions, like the one 

used by Vina.  

𝐼𝐹𝑃𝐶𝑆 =  
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
∗ (−1) 

Equation 1: mathematic formulation of the IFPCS scoring function. The IFPCS scoring function is the inverse 

of the cosine similarity between two vectors, A and B, representing the Interaction Fingerprint for the 

reference and the query ligand respectively. Values range from -1 (indicating maximum coherence between 

the two binding modes) to 0 (indicating the lowest possible correspondence between the two binding 

modes).   
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Results 

3.1 Cross-docking 

Since 24 different protein-ligand complexes were available for CK1δ (the target for our 

computational study), but only one at a given time can be used for docking calculations, 

we had to carefully evaluate which one was the most suitable for our needs. The choice 

of the protein structure to use for docking calculation is not trivial, for several reasons. 

When a ligand gets in contact with a protein, the binding event may cause a change in the 

structure of the protein itself58. These modifications are mainly depictable in the binding 

site and may also be extended to other regions. In a crystallographic complex, this effect 

is highlightable by differences in the shape of the binding site among the different crystal 

structures available for a single protein59.  

One of the possible approaches to accomplish this task, which is the one that we used in 

our workflow, is known as “cross-docking”60. This technique consists in taking all the 

protein-ligand complexes available for a target, separating all the ligands from their 

respective co-crystallized structure, and docking all the different ligands in the binding site 

of each different protein structure. By analyzing the docking results, it is possible to define 

which is the crystallographic protein structure that has the highest tendency to correctly 

reproduce ligands' crystallographic conformation.  

For these reasons, we performed a cross-docking experiment on our 24 CK1δ complexes 

to decide which one to pick for subsequent calculation. Each ligand was docked into each 

protein structure using two different docking protocols, GOLD-Chemscore and PLANTS-

PLANTSChemPLP, for a total of 1152 independent docking runs. For each ligand, the root-

mean-square deviation (RMSD) between each docking pose and the crystallographic 

conformation was calculated. The poses with the lowest RMSD in each docking run were 

selected and their RMSDs were plotted, obtaining the graphs represented in Figure 2. A 

detailed description of the methodology used for the cross-docking experiment is 

provided in the Materials and Methods, section 2.3. 
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Figure 6. This figure contains two heatmaps that summarize the results of the cross-docking experiment 

performed before the Autogrow runs to select the protein structure to use for subsequent calculations. 

Panel A reports the results for the GOLD-Chemscore protocol, while Panel B encompasses the results of the 

PLANTS-PLANTSChemPLP one. On the vertical axis, the PDB code of the protein is reported, while on the 

horizontal axis the PDB code of the ligand is indicated. The colored squares report the RMSD values for the 

best docking pose generated by the two docking protocols according to the color bar located on the right 

side of the image: color ranges from Blue (indicating a low RMSD (minimum value is 0 Å, indicating a perfect 

superposition between the docking pose and the crystal reference) to Red (maximum value is 4 Å, indicating 

a high deviation between the docking pose and the crystal reference).  

To visualize the results more clearly, the data from the plots reported in Figure 2 were re-

elaborated to obtain a single indicator of the performance of each protein in reproducing 

the correct binding mode for docked ligands. We opted for calculating the “success rate” 

for each protein structure: a 2 Å threshold value was chosen to discriminate between 

successful and unsuccessful docking runs. For each protein, the percentage of successful 

docking runs (the “success rate”) was calculated accordingly and plotted in a histogram. 
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Figure 7. This figure shows the overall “success rate” in reproducing the correct crystallographic binding 

mode for each of the 24 CK1δ complexes considered in the study. The “success rate” is defined as the 

percentage of successful docking runs for each protein in the cross-docking experiment, where a successful 

docking run is defined as a docking calculation where the RMSD between the best docking pose and the 

crystal reference falls below an arbitrarily chosen threshold value of 2 Å. Panel A reports the results for the 

GOLD-Chemscore protocol. Panel B reports the results for the PLANTS-PLANTSChemPLP protocol. Panel C 

encompasses the combined “success rate” for each protein, defined as the average between the success 

rate for each protocol. Protein from the complex 4TN6 was chosen as the most representative CK1δ 

structure for successive calculations.  

Figure 3 encompasses the results of this second analysis, reporting the success rate for 

both the GOLD-Chemscore and PLANTS-PLANTSChemPLP protocols. Moreover, since we 

adopted the principle of “consensus docking”, as mentioned in section 2.3, we decided to 

calculate the average success rate between the two docking protocols. As can be seen in 

Figure 3, the overall “success rate” obtained by the combination of data from the two 

docking protocols indicates the protein from the complex 4TN6 as the protein that is, on 

average, more able than the other ones to correctly reproduce the crystallographic 

binding mode of docked ligands. Although the difference in the success rate between the 

first and the second protein is low, in the context of several consequential docking runs 

where thousands of compounds are considered at a given time even small differences in 

the percentage success rate could have a big impact on the quality of the run, considering 
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that the prioritization of compounds from one generation to another is based upon their 

docking-predicted ability to retain the interaction features that characterize the binding 

mode of known inhibitors. For this reason, we used the protein 4TN6 as a representative 

CK1δ structure for our subsequent calculations with Autogrow.  

3.2 Benchmark DeNovo Run  

To assess the performance of our alternative, fingerprint-based, Autogrow protocol 

(defined as IFPCS, while the traditional one is defined from now on as VINA), we first 

performed a benchmark denovo run, using the same conditions as the ones described in 

the work of Spiegel et al.40 

A 30-generation run was performed for each protocol, using the 

“Fragment_MW_100_to_150.smi” library provided in the Autogrow repository and 

described in the original publication. Configuration files for both denovo runs in the JSON 

format are available in the Supplementary Materials, while a detailed description of both 

Autogrow and our alternative scoring approach is described in Materials and Methods, 

section 2.5. 

In order to validate the performance of both protocols, we opted for evaluating the 

quality of the generated compounds by filtering each generation of poses using a 

pharmacophore model. This filter, which has already proved to identify true binders in 

previous related works42,61, was used to retain only those poses which complied with 

known requirements for binding to the CK1δ pocket. This metric was used to determine 

if there is any advantage in incorporating a knowledge-based element in the generation 

of novel potential inhibitors of CK1δ, steering the compound selection process towards 

the ones that assume a pharmacophore-like binding mode. These pharmacophore-like 

compounds were then characterized by calculating their molecular weight and the 

similarity of their shape and electrostatic properties to crystal CK1δ inhibitors taken as 

reference. For this purpose, the EON56 package from the OpenEye suite was used. Each 

compound passing the pharmacophore filter was compared with each crystallographic 

ligand, calculating the electrostatic and shape similarity (ETcombo). The best value for each 
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ligand was extracted and used for the elaboration of the a posteriori analysis, whose 

results are reported in Figure 4 and Figure 5. 

 

Figure 8. This figure compares the performance of the two Autogrow protocols in the benchmark denovo 

runs regarding their ability to generate compounds that pass the pharmacophore filter. The VINA protocol 

is reported as a blue line, while the IFPCS one is reported as an orange line. Panel A depicts, for each protocol, 

the average molecular weight of compounds within the population that pass the pharmacophore filter on 

a per-generation basis. The vertical axis reports the molecular weight, while the horizontal axis reports the 

generation number. Panel B depicts, for each protocol, the distribution of generated compounds that pass 

the pharmacophore filter regarding their molecular weight and the similarity of shape and electrostatic 

properties to crystal inhibitors taken as reference. The vertical axis reports the average molecular weight in 

Da, while the horizontal axis reports the ETcombo value. Blue dots represent compounds generated by the 

VINA protocol, while orange dots represent compounds generated by the IFPCS one.  

As can be seen in Figure 4 (panel A), which shows the average molecular weight of 

compounds that pass the pharmacophore filter for each generation, the VINA protocol 

rapidly reaches the peak of the average molecular weight (around generation 6), while 

our IFPCS protocol has a slower but regular growth that reaches values comparable to the 

VINA protocol from around generation 27 onwards. This difference is probably related to 

the fact that the VINA scoring function is biased towards the selection of larger 

compounds, which can make a good number of non-specific interactions with the target, 
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while our IFPCS one is biased towards the selection of compounds that have a similar 

interaction pattern compared to a reference compound, regardless of their dimensions.  

As depicted in Figure 4 (panel B), which illustrates the distribution of generated 

compounds across all generations concerning their molecular weight and their 

electrostatic and shape similarity with crystal CK1δ inhibitors, this different selection 

process results in the production of compounds with different properties: the blue dots, 

which represent the compounds generated by the VINA protocol, are mostly located in 

the left-upper portion of the graph, indicating that most of the compounds generated by 

the traditional protocol have a high molecular weight but a low level of similarity with 

known inhibitors. On the contrary, the upper-right part of the graph (high molecular 

weight, high electrostatic, and shape similarity) is mostly populated with orange dots, 

which represent the compounds generated by our IFPCS protocol. 

 

Figure 9. This figure encompasses the ability of the two Autogrow protocols in the benchmark denovo run 

to produce compounds that have a high degree of similarity concerning shape and electrostatic properties 

to the crystallographic ligands, chosen as reference. The probability distribution of the ETcombo score for 

compounds populating each generation is reported as a histogram, where the vertical axis reports the 

probability density while the horizontal axis reports the ETcombo value. Two distributions are reported within 

each plot: the blue bars refer to compounds generated with the VINA protocol, while the orange bars refer 

to compounds generated with the IFPCS one.   
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The difference in the selection process is also highlighted in Figure 5, which illustrates the 

distribution of compounds across a representative subset of generations concerning their 

electrostatic and shape similarity: the graph clearly shows how the VINA protocol does 

not improve the similarity of generated compounds while increasing the number of 

generations. On the contrary, the orange population (which represents the compounds 

generated by the IFPCS protocol) gradually shifts towards the right part of the plot passing 

from earlier to later stage generations, indicating that the compounds passing the 

pharmacophore filter increase their electrostatic and shape similarity passing from one 

generation to another. Another comparison of the performances of the two protocols is 

given in Figure 6, which reports the progressive enrichment in compounds with a high 

degree of similarity to reference inhibitors within the total population. An example of a 

high-scoring compound generated by our IFPCS protocol is reported in Figure 7, where its 

chemical structure and the comparison between its docking-predicted binding mode and 

crystal pose of the PFO ligand from reference crystal complex 4TN6 is shown. 
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Figure 6. This figure illustrates the capability of the two different Autogrow protocols in the benchmark 

denovo run to produce compounds that have a high degree of similarity concerning shape and electrostatic 

properties to the crystallographic ligands, chosen as reference. For each generation, the percentage of 

compounds within the total population whose ETcombo exceeds a defined threshold value is reported. Three 

different cutoff values are reported, 0.50, 0.75, and 1.00 respectively.  

 

Figure 7. This figure reports the superposition between the docking-predicted binding mode of a high 

scoring compound (MMS1) from the benchmark denovo run performed with the IFPCS scoring protocol and 

the reference crystal binding pose of compound PFO from the structure deposited in the Protein Data Bank 

with accession code 4TN6. On the left part of the image, the protein kinase CK1δ ATP binding site is reported 

in teal ribbon, the pose of compound MMS1 is shown in orange sticks while the pose of compound PFO is 

shown in green sticks. On the right part of the image, the chemical structure of compound MMS1 is 

reported.  

3.3 Benchmark Lead Optimization Run 

To further evaluate the validity of our custom scoring protocol, we performed also a 

benchmark lead optimization run, using once again the same conditions as the ones 

reported in the work of Spiegel et al.40 A 5-generation run was performed for each 

protocol, using a library composed of the 24 crystallographic ligands mentioned in the 

previous sections and other 316 fragments obtained from the fragmentation of 

crystallographic ligands exploiting the “fragmenter_of_smi_mol.py” Python script 
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provided by the Autogrow developers, using the BRICS fragmentation rule, for a total of 

340 compounds fed to the algorithm. In this case, also, configuration files for both 

benchmark runs in the JSON format are available in the Supplementary Materials.  

To assess the performance of both protocols, we applied the same criteria described 

previously for the denovo runs, focusing once again on compounds passing the 

pharmacophore filter described in section 2.4 and characterizing them about their 

molecular weight and electrostatic and shape similarity compared to crystal CK1δ 

inhibitors. 

 

Figure 8. This figure compares the performance of the two Autogrow protocols in the benchmark lead 

optimization runs regarding their ability to generate compounds that pass the pharmacophore filter. The 

VINA protocol is reported as a blue line, while the IFPCS one is reported as an orange line. Panel A depicts, 

for each protocol, the average molecular weight of compounds within the population that pass the 

pharmacophore filter on a per-generation basis. The vertical axis reports the molecular weight, while the 

horizontal axis reports the generation number. Panel B depicts, for each protocol, the distribution of 

generated compounds that pass the pharmacophore filter regarding their molecular weight and the 

similarity of shape and electrostatic properties to crystal inhibitors taken as reference. The vertical axis 

reports the average molecular weight in Da, while the horizontal axis reports the ETcombo value. Blue dots 

represent compounds generated by the VINA protocol, while orange dots represent compounds generated 

by the IFPCS one. 
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Figure 8 (panel B) illustrates the distribution of compounds across all five generations 

regarding their ETcombo and their molecular weight: as can be seen, there is little to no 

difference between the two protocols, with the two populations being practically 

superimposable. However, contrary to what might be suggested by this plot, there is a 

significant difference in the performances of the two protocols, which is highlighted in 

both Figure 8 (panel A), Figure 9, and Figure 10.  

 

Figure 9. This figure encompasses the ability of the two Autogrow protocols in the benchmark lead 

optimization run to produce compounds that have a high degree of similarity with regards to shape and 

electrostatic properties to the crystallographic ligands, chosen as reference. The probability distribution of 

the ETcombo score for compounds populating each generation is reported as a histogram, where the vertical 

axis reports the probability density while the horizontal axis reports the ETcombo value. Two distributions are 

reported within each plot: the blue bars refer to compounds generated with the VINA protocol, while the 

orange bars refer to compounds generated with the IFPCS one. 

As can be noticed in Figure 8 (panel A), the average molecular weight of compounds 

passing the pharmacophore filter grows by about 90 Da passing from the first to the last 

generation in the case of our IFPCS protocol. On the contrary, not only the average 

molecular weight of pharmacophore-like compounds generated by the traditional VINA 

protocol does not increase with the number of generations, but slightly decreases over 

time, falling even below the average molecular weight of the first generation derived from 
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the IFPCS protocol. Furthermore, Figure 9 illustrates how, as previously seen in the 

benchmark denovo run, the similarity of compounds passing the pharmacophore filter 

increases over time when the IFPCS scoring protocol is adopted, while it slightly decreases 

and does not improve over time in the case of the traditional VINA scoring protocol.  

 

Figure 10. This figure illustrates the capability of the two different Autogrow protocols in the benchmark 

lead optimization run to produce compounds that have a high degree of similarity concerning shape and 

electrostatic properties to the crystallographic ligands, chosen as reference. For each generation, the 

percentage of compounds within the total population whose ETcombo exceeds a defined threshold value is 

reported. Three different cutoff values are reported, 0.50, 0.75, and 1.00 respectively.  

Particularly, this trend is also confirmed by Figure 10, which shows how the IFPCS protocol 

can produce a quicker enrichment of the population in high similarity compounds 

compared to the traditional VINA one.  As for the previous case, an example of a high-

scoring compound generated in the last and final generation of the IFPCS run is reported 

in Figure 11. 
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Figure 11. This figure reports the superposition between the docking-predicted binding mode of a high 

scoring compound (MMS2) from the benchmark lead optimization run performed with the IFPCS scoring 

protocol and the reference crystal binding pose of compound PFO from the structure deposited in the 

Protein Data Bank with accession code 4TN6. On the left part of the image, the protein kinase CK1δ ATP 

binding site is reported in teal ribbon, the pose of compound MMS2 is shown in orange sticks while the pose 

of compound PFO is shown in green sticks. On the right part of the image, the chemical structure of 

compound MMS2 is reported. 

3.4 Prospective DeNovo Run 

Encouraged by the results of our benchmark runs, we decided to perform a prospective 

run with the IFPCS protocol, applying the same operating conditions as before. This time, 

the starting library was modified to add to the compounds used for the benchmark runs 

also 7 fragment ATP-competitive CK1δ inhibitors identified during a previous virtual 

screening campaign from our laboratory42. The idea behind this run was to evaluate the 

ability of our IFPCS scoring protocol to generate interesting novel potential CK1δ inhibitors 

derived from in-house, readily available compounds.  

The chemical structure of the seven fragments used in this run is reported in Figure 12. 
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Figure 12. Chemical structure of the seven fragment CK1δ inhibitors derived from the work of Bolcato et 

al.42 

To verify the quality of this run, we performed the same analysis as for the benchmark 

runs. The results of this analysis are summarized in Figures 13, 14, and 15 respectively.  

 

Figure 13. This figure compares the performance of the two Autogrow protocols in the prospective denovo 

runs regarding their ability to generate compounds that pass the pharmacophore filter. The VINA protocol 

is reported as a blue line, while the IFPCS one is reported as an orange line. Panel A depicts, for each protocol, 

the average molecular weight of compounds within the population that pass the pharmacophore filter on 



SCIENTIFIC PUBLICATIONS 

 

Pavan et al., 2022 351 
 

a per-generation basis. The vertical axis reports the molecular weight, while the horizontal axis reports the 

generation number. Panel B depicts, for each protocol, the distribution of generated compounds that pass 

the pharmacophore filter regarding their molecular weight and the similarity of shape and electrostatic 

properties to crystal inhibitors taken as reference. The vertical axis reports the average molecular weight in 

Da, while the horizontal axis reports the ETcombo value. Blue dots represent compounds generated by the 

VINA protocol, while orange dots represent compounds generated by the IFPCS one. 

 

Figure 14. This figure encompasses the ability of the two Autogrow protocols in the prospective denovo run 

to produce compounds that have a high degree of similarity with regards to shape and electrostatic 

properties to the crystallographic ligands, chosen as reference. The probability distribution of the ETcombo 

score for compounds populating each generation is reported as a histogram, where the vertical axis reports 

the probability density while the horizontal axis reports the ETcombo value. Two distributions are reported 

within each plot: the blue bars refer to compounds generated with the VINA protocol, while the orange bars 

refer to compounds generated with the IFPCS one. 
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Figure 15. This figure illustrates the capability of the two different Autogrow protocols in the prospective 

denovo run to produce compounds that have a high degree of similarity concerning shape and electrostatic 

properties to the crystallographic ligands, chosen as reference. For each generation, the percentage of 

compounds within the total population whose ETcombo exceeds a defined threshold value is reported. Three 

different cutoff values are reported, 0.50, 0.75, and 1.00 respectively. 

As remarked in Figure 14, the same trend seen in the benchmark denovo run can be 

observed also in the case of this prospective run: while the VINA protocol is not able to 

increase the shape and electrostatic similarity to known inhibitors over time, the IFPCS 

protocol can produce a shift of the orange population towards higher ETcombo values. As 

illustrated by Figure 13, which reports a comparison between the benchmark denovo run 

performed with the VINA protocol and the prospective denovo run carried out with the 

IFPCS protocol, the trend in both the distribution of compounds regarding their molecular 

weight and ETcombo and the growth of molecular weight over time are similar to the 

benchmark denovo run. Figure 13 (panel B) clearly shows how the upper-right portion of 

the graph, which hosts compounds with both high molecular weight and ETcombo values, is 

populated exclusively by orange dots, which represent compounds generated with the 
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IFPCS scoring protocol. Interestingly, Figure 14 (panel A) highlights how there is much less 

difference in the growth rate of molecular weight between the IFPCS run (which is 

contaminated by the presence of our 7 CK1δ-inhibiting fragments) and the benchmark 

VINA run, suggesting that performances of the IFPCS could improve if some high-quality 

pharmacophore-like fragments are included in the starting library. However, despite the 

quicker growth of molecular weight, the quality of generated compounds follows the 

same trend seen in the benchmark denovo run, as reported in Figure 15. As for the 

previous cases, an example of a high-scoring compound is reported in Figure 16. 

 

 

Figure 16. This figure reports the superposition between the docking-predicted binding mode of a high 

scoring compound (MMS3) from the benchmark denovo run performed with the IFPCS scoring protocol and 

the reference crystal binding pose of compound PFO from the structure deposited in the Protein Data Bank 

with accession code 4TN6. On the left part of the image, the protein kinase CK1δ ATP binding site is reported 

in teal ribbon, the pose of compound MMS3 is shown in orange sticks while the pose of compound PFO is 

shown in green sticks. On the right part of the image, the chemical structure of compound MMS3 is 

reported. 
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Discussion 

The open-source software Autogrow455 is an interesting piece of code that utilizes a 

combination between a genetic algorithm and the Vina41 molecular docking software to 

semi-automatize the processes of fragment growing and lead optimization. Thanks to the 

modular nature of the codebase, we implemented an alternative scoring protocol (IFPCS) 

based on the similarity of protein-ligand interaction fingerprint between a crystal 

reference and query compounds, exploiting the appropriate function from the open-

source library Open Drug Discovery Toolkit57, and we compared its performances with the 

traditional Autogrow scoring protocol (VINA), which is based on the Autodock Vina scoring 

function.  

The VINA protocol uses a scoring function that incorporates some elements of knowledge-

based potentials and some others of empirical scoring functions. As is the case for many 

scoring functions, the score is biased towards higher molecular weight compounds, which 

can establish a higher number of non-specific interactions with the target44.  For this 

reason, usually, molecular docking programs are efficient in sampling the conformational 

space available for the ligand within the binding site but are weaker in prioritizing the right 

binding mode among a set of reasonable hypotheses generated by the search algorithm43. 

This is especially true in the case of fragments, which deviate from the drug-like properties 

of compounds upon which traditional scoring functions have been trained46.  

As thoroughly discussed in the work of Bolcato et al.42, one possible solution to the scoring 

problem is to apply a pharmacophore filter to poses generated by the molecular docking 

program. When several structural pieces of information are available in the form of 

protein-ligand crystal complexes for a certain target (as is the case for protein kinase CK1δ, 

the case study for this work), a good solution to reduce the false positive rate of molecular 

docking programs is to build a pharmacophore model that encompasses the most 

prominent interaction features that are required to ligands to bind to the target active 

site62. In the case of a program like Autogrow, where the selection mechanism that 

determines which compounds to promote to the next generation is based on the docking 

score, we thought it would be interesting to incorporate a knowledge-based element in 

the pose selection mechanism in the form of a comparison between the interaction 
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fingerprint of query compounds and known inhibitors, to bias the selection mechanism 

towards molecules that respect the required features to bind to the target.  

To validate our IFPCS scoring protocol, we performed both a denovo and a lead-

optimization benchmark run, using the same operative conditions described in the 

original work of Spiegel et al.40 but on a different target. The protein target of choice was 

the protein kinase CK1δ, a pharmaceutically relevant target in the field of 

neurodegenerative diseases for which several crystal complexes with inhibitors are 

available in the Protein Data Bank. The benchmark denovo run was performed on a library 

composed of 6103 fragment compounds whose molecular weight falls between 100 and 

150 Da, while the benchmark lead-optimization run was carried out on a library composed 

of 24 crystallographic ligands of the protein kinase CK1δ and 316 fragments derived from 

the fragmentation of crystallographic ligands using the BRICS rule. To compare the 

capabilities of the two protocols, we filtered each generation of compounds with the same 

pharmacophore filter already utilized in previous scientific works on the target42,61. We 

then proceeded to evaluate the quality of compounds that pass the pharmacophore filter, 

considering both the size and the similarity of shape and electrostatic properties of query 

compounds compared to the crystallographic ligands taken as reference.  

As illustrated by the results of our analysis (Section 3.3 and 3.4, respectively), there is a 

substantial difference in the performances of the two protocols: while both protocols can 

generate a certain amount of compounds that pass the pharmacophore filter (therefore 

possessing the right structural features that are required for the interaction with the 

target), in both scenarios the IFPCS scoring function outperforms the traditional VINA one 

regarding the ability to select and prioritize pharmacophore-like compounds that have a 

similar shape and electrostatic properties compared to known inhibitors of the protein 

kinase CK1δ. This is particularly evident in the lead-optimization scenario, where within 

each generation passage, the average molecular weight of compounds that pass the 

pharmacophore filter steadily increases, passing from the typical MW of a fragment-like 

compound to the MW of a grown, mature, lead candidate, while the contrary happens in 

the case of the VINA protocol, with the average MW of the compounds that pass the 

pharmacophore filter steadily decreasing, falling even below the value of the first 
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generation from the IFPCS protocol. Moreover, when poses from each generation are 

compared with the ones of crystallographic ligands concerning the shape and electrostatic 

similarity, a similar trend can be noticed. While the VINA protocol can select high-quality 

compounds in the first generation, compared to the IFPCS one, at later stages during the 

run a progressive reduction in the similarity between the query and reference compounds 

can be noticed, contrary to what happens when the IFPCS scoring protocol is utilized. This 

can be explained considering the different nature of the two scoring functions: the VINA 

protocol is biased towards bigger, therefore higher scoring, compounds, while the IFPCS 

protocol favors compounds that respect the interaction pattern of the reference 

crystallographic ligand, regardless of their size. For this reason, the IFPCS protocol tends to 

favor smaller compounds in the first generations, as long as they are complying with the 

constraint imposed by the reference interaction fingerprint, increasing the possibility to 

maintain in the population high-quality fragment to be optimized via the mutation and 

crossover operation of the genetic algorithm. On the contrary, the VINA protocol selects 

high MW compounds in the first generation that have little to no space for meaningful 

chemical modifications, giving low priority to those smaller compounds that will have a 

lower number of interactions with the target, thus resulting in lower docking score. 

Overall, our IFPCS protocol seems preferable in those cases where structural data is 

available in the form of protein-ligand complex structure, as is the case for a good number 

of targets nowadays, while the traditional protocol seems a valid choice in those cases 

where such structural information is missing.  

A recent virtual screening campaign performed in our laboratory led to the identification 

of 7 novel fragment compounds that are ATP competitive CK1δ inhibitors42. Curious to 

see if our protocol would have been able to produce novel potential CK1δ that incorporate 

structural features of our 7 fragments, we performed a second denovo run, using the same 

conditions as for the benchmark one, except for the introduction in the starting library of 

those 7 fragment compounds. The same analysis performed on the benchmark runs 

showed that the performance of our IFPCS scoring protocol is even better when the 

Autogrow protocol is seeded with high-quality fragments that have the right structural 

feature to interact with the target. Usually, in a typical fragment-based drug discovery 
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campaign, the identification of fragment binders either through virtual or experimental 

screening leads to the discovery of several potential starting points for the hit-to-lead 

fragment optimization phase. Our preliminary study showed that it is possible to obtain 

meaningful results even in those cases where the starting library is populated by 

fragments that are randomly selected and not specifically tuned for the target of choice, 

but it certainly benefits from the contamination of the starting library with fragments that 

are known binders, indicating that the application of the IFPCS protocol could lead to some 

interesting results in those cases where the known binders constitute a bigger fraction of 

the starting library. Concerning this, this approach could be utilized to evaluate the 

competitiveness of newly found scaffolds with already existing ones, based on the 

simplicity to derive those scaffolds with common and feasible chemical reactions, 

therefore, producing a good number of derivatives with increased affinity for the target. 

Conclusions 

In the present work, we presented and benchmarked a custom version of the open-source 

Autogrow4 which implements an alternative scoring protocol based on the similarity 

between protein-ligand interaction fingerprint of query compounds compared to a crystal 

reference. To demonstrate the applicability of our protocol in a pharmaceutically relevant 

scenario, we tested its capability to generate compounds that have similar binding and 

structural features to known inhibitors of the protein kinase CK1δ, a protein that is 

involved in several neurodegenerative diseases such as Alzheimer’s Disease, Parkinson’s 

Disease, and Amyotrophic Lateral Sclerosis. 

A benchmark denovo run and a lead-optimization one were both carried out to compare 

the performance of our IFPCS scoring protocol against the traditional one implemented in 

the original version of the Autogrow code, using the same conditions as the one reported 

in the original publication by Spiegel et al. Compared to the traditional Autogrow protocol, 

which uses the default scoring function of the Vina docking software, our IFPCS protocol 

was able to generate, on average, compounds that were bigger and more similar from a 

shape and electrostatic properties point of view to crystallographic ligands, while 

retaining the key protein-ligand interaction features required for the inhibition of CK1δ. 
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The custom Autogrow version used in this work, which implements our alternative IFPCS 

scoring protocol, along with the JSON configuration files used for each run and a YAML 

file to reconstitute the Python environment to run the custom version of the code, are 

available in the Supplementary Material.  
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Abstract 

Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, 

which causes a progressive loss of movement ability, usually leading to death within 2 to 

5 years from the diagnosis. Much effort has been put into research for an effective therapy 

for its eradication, but still, no cure is available. The only two drugs approved for this 

pathology, Riluzole and Edaravone, are only able to slow down the inevitable disease 

progression. As assessed in the literature, drug targets such as protein kinases have 

already been extensively examined as potential drug targets for ALS, with some molecules 

already in clinical trials. Here, we focus on the involvement of another very important and 

studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and 

progression of ALS. This work aims to give an overview of what has been already 
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discovered on the topic, providing useful information and insights that can be used by 

scientists all around the world who are putting efforts into the fight against this very 

important neurodegenerating disease. 
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1. Introduction 

Amyotrophic Lateral Sclerosis (ALS, also referred to as “motor neuron disease”) indicates 

a clinical situation in which the motor neurons of patients undergo a progressive loss in 

their function and number1. This type of neuronal cell, whose cell body is localized in the 

motor cortex, the brainstem, and the spinal cord, is responsible for the innervation and 

the control of muscle fibers, essential for voluntary muscle contraction2. Their loss has 

very important consequences on the patient’s life, firstly impairing the ability to chew and 

walk, then to speak and to move, until even the ability to breath is affected, leading, after 

2–5 years, to death due to respiratory failure3. ALS can be classified into two main types, 

“sporadic ALS” (the great majority of all cases), which has no known cause and typically 

has its onset between the ages of 58 and 63 years, and “familial ALS” (about 5–10% of 

cases), which is linked to genetic factors, and has its onset between the ages of 47 and 52 

years4. 

In both scenarios, the pathology starts with the manifestation of muscle weakness and 

atrophy, with methods and timing very variable based on the patient and on the parts of 

the motor neurons that are affected first5. Indeed, a classification of the onset of the 

pathology can be made with reference to the site of its onset. For two-thirds of patients, 

the limb muscles are affected first (“spinal ALS”), with manifestations mainly in the distal 

muscles of the dominant hand for the upper limb and in the hamstrings for the lower limb. 

For the greater part of the remaining patients, the bulbar muscles represent the onset site 

(“bulbar ALS”), and in this case, dysphagia and chewing problems represent the first 

manifestations of the pathology6.  

The next steps of the disease involve the progressive spreading of the neurodegeneration 

process to the unaffected motor neurons, causing an increasing worsening in the patient’s 

daily life, making activities such as eating and walking continuously more difficult and 

leading to their complete loss. The final and worst clinical scenario has its onset when the 

respiratory function is significantly affected, progressively increasing the risk of 

respiratory failure, which is the main cause of death due to ALS7. 
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Even if much effort has been made among both academic and industrial scientific groups, 

no cure has yet emerged for ALS. Riluzole8 and the recently FDA-approved drug 

Edaravone9 (both represented in Figure 1) constitute the only two small molecules used 

for the ALS treatment, and only succeed in slowing down the disease’s progression10.  

 

Figure 1. The chemical structures of Riluzole (A) and Edaravone (B), which are the only two small-

molecule drugs approved currently for ALS treatment. 

Such a neurodegenerating process, affecting 1.75–3 people per 100,00011, has, in the 

great majority of cases, no known cause12, making it even harder to design a therapy for 

this disease. From a biochemical point of view, the hallmark of ALS is considered to be the 

presence of inclusion bodies in the cytoplasm of motor neurons. These aggregates are 

formed by the TAR DNA-binding protein 43 (TDP-43)13, a protein involved in several 

important physiological functions such as DNA repair, splicing, and transcriptional 

regulation. Even if its main localization site is the nucleus, processes such as its 

hyperphosphorylation or the mutation of its gene (TARDBP) lead to its aggregation in the 

cytoplasm14. This mislocalization directly causes the dysregulation of several cellular 

events related to RNA metabolism, DNA replication, and oxidative stress management, 

leading to the loss of the motor neurons affected15. Other molecular targets that have 

been demonstrated to be important for ALS onset and progression are superoxide 

dismutase (SOD1)16 and DNA/RNA-binding protein FUS/TLS (FUused in 

Sarcoma/Translocated in LipoSarcoma, also called “FUS”)17, which appear to be mutated 

in the patients.  

The knowledge that hyperphosphorylation of TDP-43 is one of the main processes leading 

to its aggregation has led the scientific community to devote some effort to identifying 
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the protein kinases responsible for such processes, in order to find proper inhibitors for 

such species18. Recent work by Guo et al. goes deep in the examination of the involvement 

of kinases in ALS progression, enucleating species such as CK1, ERK, GSK3 β, and JAK3 as 

promising targets for the treatment of this neurodegenerating disease19. Another article 

by Palomo et al. gives an exhaustive panoramic view of the protein kinase inhibitors 

currently in clinical trials for ALS treatment20. Riluzole has proven to increase life 

expectancy by about 2–3 months21, and even if its main target still remains  the NMDA 

receptor, recent work by Bissaro et al. suggested that this mechanism could be due to its 

action on the delta isoform of CK122. 

Many molecular candidates (both new chemical entities and compounds coming from 

repurposing strategies) are nowadays in clinical trials for ALS23, acting on different 

biological pathways, with the common aim being to restore the neuronal health status in 

the affected patients, possibly trying to go in the direction to find a proper cure for this 

pathology24. A comprehensive list of the potential small-molecule drugs now being 

evaluated by the FDA in clinical phases is reported in Table 1. 

 

Molecule Target/Mechanism Developer Clinical Phase 

Ibudilast 
Macrophage migration inhibitory factor 

inhibitor 
MediciNova Phase II/III 

Prosetin Mitogen-activated protein kinase inhibitor ProJenX Phase I 

Sotuletinib 
Macrophage colony-stimulating factor 

receptor antagonist 
Novartis Phase II 

EPI 589 NAD(P)H dehydrogenase modulator PTC Therapeutics Phase II 

DNL 343 Eukaryotic initiation factor 2b stimulant Denali Therapeutics Inc Phase I 

Celecoxib/ciprofloxacin 
Cyclo-oxygenase 2 inhibitors/DNA gyrase 

inhibitors 

NeuroSense 

Therapeutics 
Phase I 

Fingolimod 
Apoptosis stimulant and 

immunosuppressant 

ALS Therapy 

Development Institute 
Phase II 

Trehalose 
Autophagy stimulant and protein 

aggregation inhibitor 

Massachusetts General 

Hospital 
Phase II/III 

Sodium cromoglicate Glial cell modulator and mast cell stabilizer AZTherapies Phase II 

Dexpramipexole Antioxidant and apoptosis inhibitor Knopp Biosciences Phase II 

Masitinib Tyrosine kinase inhibitor AB Science Phase III 

NP 001 Macrophage modulator Neuvivo Phase II 
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Fasudil 
Rho-associated kinase inhibitor and 

vasodilatator 

Woolsey 

Pharmaceuticals 
Phase II 

Levosimendan 
Calcium-sensitising phosphodiesterase 

inhibitor and potassium channel agonist 
Orion Phase III 

Apilimoddimesylate 
Interleukin 12 inhibitor and interleukin 23 

inhibitor 
AI Therapeutics Phase II 

Verdiperstat Peroxidase inhibitor 
Biohaven 

Pharmaceuticals 
Phase II/III 

Pridopidine Sigma-1 receptor agonist 

Massachusetts General 

Hospital, Prilenia 

Therapeutics 

Phase II/III 

Triheptanoin Triglyceride replacement agent 
Ultragenyx 

Pharmaceutical 
Phase I/II 

Reldesemtiv Troponin stimulant Cytokinetics Phase III 

BIIB 100 Exportin-1 protein inhibitor Biogen Phase I 

AGX 201 Histamine receptor modulator 
AgoneX 

Biopharmaceuticals  
Phase I 

Ranolazine extended release Sodium channel antagonist Gilead Sciences Phase II 

GDC 0134 
Mitogen-activated protein kinase 12 

inhibitor 
Genentech Phase I 

NPT520 34 Phosphatidylinositol 3 kinase modulator Neuropore Therapies Phase I 

Table 1. Table reporting the different small molecules currently in FDA clinical trials for ALS 

treatment (updated 13 April 2022). 

Even if some effort has been directed toward trying to highlight the role of protein kinases 

in ALS progression, this has not been recently or extensively done with respect to G-

protein coupled receptors, biological actors which have been demonstrated to be 

detrimental to neuronal and physiological conditions. It is important to remember that 

ALS is a non-cell-autonomous disease, which means that the neuronal damage 

characterizing the pathology is caused by aberrant processes also happening outside the 

neurons themselves. Indeed, ALS progression has been demonstrated to be strongly 

related to glial cell dysregulation (mainly microglia and astrocytes)25. GPCRs are very 

widely expressed proteins in the human organism26, and so a beneficial effect could also 

be obtained by targeting extraneuronal receptors, which could trigger biological 

processes that, in the overall scenario, could mitigate if not reverse the disease 

progression.  
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GPCRs are membrane receptors and constitute one of the main protein families encoded 

by human genes, with more than 800 members already identified27, divided into six 

different classes (identified alphabetically with letters from “A” to “F”) based on their 

similarities in sequence and function. They all share a common architecture formed of a 

seven-α-helix transmembrane domain (usually referred to as “7-TM”), an extracellular N-

terminal domain, and an intracellular C-terminal domain. These proteins exert their roles 

by coupling with an intracellular messenger called “heterotrimeric G protein”, which is 

formed by α,β, and γ subunits, and interacts with different intracellular partners based on 

its type. The α subunit is displaced from the βγ-complex upon GPCR–ligand binding, and 

its fate depends on its Gα family belonging. Indeed, activated Gi/0 proteins inhibit adenylyl 

cyclase (AC), reducing the production of the second messenger cyclic adenosine 

monophosphate (cAMP); Gs, conversely, activates adenylyl cyclase, and Gqα subunits 

activate phospholipase C (PLC), leading to an increase in Ca2+ influx in the cytoplasm28. The 

physiological roles of GPCRs include homeostasis modulation, mood balancing, immune 

system regulation, neuronal plasticity, and many more29. The goal of the present work is 

to give a panoramic view of the GPCRs which have been linked to ALS onset and 

progression, presenting what has already been done to modulate their action, and 

highlighting new potential therapeutical scenarios. Table 2 summarizes the outcomes of 

our study, listing the GPCR targets that will be discussed and highlighting the new possible 

paths that can be taken in order to exploit their therapeutic potential for ALS. Our work 

will be beneficial for all of the scientists who are dedicating their knowledge and efforts 

to the eradication of ALS. 

Receptor/Receptor Family Cellular Expression Potential for ALS Treatment References 

Adenosine receptors 
Circulatory, immune, respiratory, and 

nervous systems 
Ambiguous [32–39] 

Purinergic receptors P2Y Almost all human tissues Antagonism [44–49] 

Chemokine receptors Predominantly on leukocytes surface 
CXCR3, CXCR4, and CCR2 

Antagonism 
[53–56] 

Angiotensin II receptors 
Adrenal cortex, kidneys, vascular and 

cardiac muscles, nervous system 
AT1 Antagonism [64–66] 

Dopamine receptors Arteries, heart, kidneys, CNS D2R Agonism [71–78] 

Serotonin receptors Almost all human tissues Ambiguous [84–88] 

GPR17 receptor CNS, kidneys, heart Antagonism [95–102] 
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Adrenergic receptor β2 
GI tract, respiratory system, blood 

vessels, pancreas, nervous system 
Agonism [106,107] 

Histamine receptors 
GI tract, circulatory, immune, and 

nervous systems.  
Ambiguous [111–114] 

Cannabinoid receptors CNS and immune system CB2 agonism [119–122] 

Prostaglandin E2 receptor 

GI tract, kidneys, reproductive, 

skeletal, immune, and nervous 

systems. 

Ambiguous [136–138] 

Vasoactive intestinal peptide 

receptors 
Almost all human tissues Agonism [145–149] 

Metabotropic glutamate 

receptors 
Nervous system 

mGluR I antagonism/ 

mGluR II and mGluR III agonism 
[152–156] 

Table 2. Table summarizing the evidence about the therapeutic potential of the GPCRs examined 

in this article for ALS treatment. 

2. GPCRs Involved in ALS 

2.1. Puringergic Receptors P2Y and Adenosine Receptor A2AAR 

Purinergic receptors are a peculiar class of membrane receptors, sensitive to a wide series 

of purinergic ligands such as ATP, ADP, UTP, UDP, UDP-glucose, and adenosine. The kind 

of molecules interacting with them defines their classification into one of the three 

subfamilies forming this class. The first group, called “P1 receptors”, is formed of GPCRs 

activated upon adenosine binding (and for these reasons are also known as “adenosine 

receptors”), while “P2Y receptors” are GPCRs that can bind to ATP, UDP, and their 

diphosphate analogs ADP and UDP (with the addition of UDP-glucose). The last subfamily, 

named “P2X receptors”, are ligand-gated ion channels exclusively sensitive to ATP30. Being 

the P2X family not formed by GPCRs, our evaluations will focus on the first two families 

of receptors.  

The “P1” subfamily, more commonly referred to as adenosine receptors (ARs), is a group 

of purinergic class A GPCRs divided into four subtypes, A1AR, A2AAR, A2BAR, and A3AR, each 

involved in many different physiological processes. While the functions of A2BAR and A3AR 

are mainly related to the circulatory, immune and respiratory systems, the A1AR and 

A2AAR proteins are importantly present in the central nervous system (CNS)31. Moreover, 

the A1AR and the A2AAR receptors have been demonstrated to play a crucial role in 
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neuroprotection, neuronal survival, and neuroinflammation32. A study from Vincenzi et al. 

reported an upregulation of A2AAR receptors in the lymphocytes of people affected by 

ALS33, while Yoshida et al. measured adenosine levels in the cerebrospinal fluid of ALS 

patients, finding out that these were significantly higher with respect to the control 

subjects34. Unexpectedly, treatment with the A2AAR antagonist caffeine (Figure 2, panel 

A), which is usually referred to as a protective agent against Alzheimer’s Disease (AD) and 

Parkinson’s Disease (PD), was demonstrated to shorten the survival of ALS-affected 

SOD1G93A mice, a well-known experimental model for ALS (Potenza et al.)35, even if some 

explanation for this phenomenon can be provided by the non-selectivity of caffeine36. 

Indeed, Ng et al. showed that suppression of A2AAR signaling delays the progression of ALS 

in the same SOD1G93A mouse model37. This is in accordance with the study of Mojsilovic-

Petrovic et al., which demonstrated that A2AAR inhibitors (such as the non-selective 

enprofylline (Figure 2, panel B), and the A2AAR-selective KW-6002 (Figure 2, panel C), also 

called Istradefylline) protect motor neurons from toxic insult, highlighting the beneficial 

effects of such activity for ALS patients38. 

 

Figure 2. The chemical structures of the non-selective adenosine receptors antagonists caffeine 

(A) and Enprofylline (B), and the selective A2AAR antagonist Istradefylline (C). 

Despite all this evidence, a study from Liu et al. showed that A2AAR activation, suppressing 

AMPK activation, suppressed TDP-43 mislocalization39. The multifactorial nature of ALS 

makes it very difficult to define sharply whether agonism or antagonism of the A2AAR 

receptor has the best risk/benefit ratio, but the literature clearly defines this GPCR 

(represented in Figure 3) as one of the promising targets for ALS treatment. 
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Figure 3. Representation of the structure of the A2AAR receptor (sourced from the Protein Data 

Bank40, PDB code: 5IU441, method: X-ray diffraction, resolution: 1.72 Å). The image was created 

and rendered with the Molecular Operating Environment (MOE) suite42. 

The second subfamily of purinergic receptors, “P2Y”, is present in a great variety of human 

tissues, but their main biological roles are identifiable in blood clotting, vasodilatation, 

and immune response43. The P2Y family comprises eight different isoforms, among which 

P2Y12 has gained the interest of the scientific community for its role in neuroinflammation, 

as addressed by Morillas et al.44 and Amadio et al.45. 

Jacobson et al. recently highlighted the proinflammatory effect of P2Y agonists, reporting 

that antagonizing this class of GPCRs could be considered a way of treating inflammatory 

conditions46. Even if inhibitors of the P2Y12 isoform are already marketed as antiplatelet 

drugs (e.g., Clopidogrel, Prasugrel, Ticagrelor, all represented in Figure 4), Jacobson et al. 

pointed out that there is a lack of selective and versatile P2Y ligands for each subtype, 

meaning that the drug discovery process is still very active in this specific field. 
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Figure 4. The chemical structures of the selective and irreversible P2Y12 receptor antagonists 

Clopidogrel (A) and Prasugrel (B). Ticagrelor, a selective, reversible, allosteric P2Y12 receptor 

antagonist, is also reported (C). 

Specifically, D’Ambrosi et al. reported an upregulation of P2Y6 receptors in the microglia 

SOD1 mutant models of ALS, also remembering that this phenomenon is associated with 

brain damage47. Moreover, P2Y12 (represented in Figure 5) is upregulated in spinal cord 

microglia upon nerve injury, as pointed out by Kobayashi et al.48. Converging information 

is provided by a study from Moore et al.49, further confirming P2Y12 as a potential target 

for modulating neuroinflammation and neuronal damage. The data currently available 

help in suggesting the practical possibility of ALS regulation through purinergic receptor 

modulation, and this will be realizable as soon as proper inhibitors can be designed, 

potentially avoiding the non-desired antiplatelet effect of these molecules. 

 

Figure 5. Representation of the structure of the P2Y12 receptor (sourced from the Protein Data 

Bank, PDB code: 4NTJ50, method: X-ray diffraction, resolution: 2.62 Å). The image was created and 

rendered with MOE. 

2.2. Chemokine Receptors 

Chemokine receptors constitute a group of about 20 classes of GPCRs found mainly on 

the surface of leukocytes, which respond to specific ligands to control chemotaxis. The 

ligands for these proteins are called chemokines and are a peculiar kind of cytokine used 

for inducing a directional movement of certain types of cells, such as epithelial and 

immune ones. The chemokines, as well as the receptors they act on, can be divided into 

four families, namely CC (e.g., chemokine CCL4), CXC (e.g., chemokine CXCL8, also known 
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as IL-8), XC (e.g., XCL1), and CX3C (of which the only member today is CX3CL1, also called 

neurotactin)51. The activation of chemokine receptors leads to Ca2+ influx and cell 

mobilization52. Several of these receptors are important in the progression of motor 

neuron damage. La Cognata et al. highlighted an upregulation of CXCR2 in both sporadic 

ALS patients and SOD1G93A mice, showing that treating the mouse models with the CXCR2 

allosteric inhibitor Reparixin (Figure 6, panel B), the neuromuscular function of the 

subjects was improved53. Another interesting paper published by Rabinovich-Nikitin et al. 

highlighted the benefits in terms of lifespan and motor function obtained on SOD1G93A 

mouse models through the administration of the CXCR4 antagonist AMD3100 (also known 

as “Plerixafor”, Figure 6, panel A)54. 

 

Figure 6. The chemical structures of the CXCR4 antagonist AMD3100 (also known as “Plerixafor”, 

(A) and the inhibitor of CXCR1 and CXCR2 known as Reparixin (B). 

Several scientific works have reported an increase in circulating chemokines and cytokines 

in ALS patients, as recently detailed by Liu et al.55, and the upregulation of chemokine 

receptors CXCR3, CXCR4, and CCR2 was also highlighted in the pathology of interest by 

Perner et al.56, who also proposed CXCR3 and its ligands as possible therapeutic targets 

for ALS. These scientific works converge in addressing chemokine receptor modulation as 

a possibility for ALS treatment, focusing on the antagonism of certain isoforms. The three-

dimensional structures of CXCR2, CXCR3, and CXCR4 are represented in Figure 7. 
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Figure 7. Representation of the three-dimensional structures of the chemokine receptors that 

could be considered for ALS treatment.CXCR2 (A) receptor (sourced from the Protein Data Bank, 

PDB code: 6LFM57, method: cryo-EM, resolution: 2.50 Å), CXCR3 (B) (with no experimentally 

resolved structure available, the model from the AlphaFold58 database is presented), and CXCR4 

(C) receptor (sourced from the Protein Data Bank, PDB code: 3ODU59, method: X-ray diffraction, 

resolution: 2.50 Å). The images were created and rendered with MOE. 

2.3. Angiotensin II Receptors (ATRs) 

Angiotensin II receptors (ATRs) are a group of GPCRs that have gained fame for their 

importance in the therapy of hypertension. Indeed, their main physiological role is related 

to the renin–angiotensin–aldosterone system, one of the main physiological pathways for 

blood pressure regulation and fluid and electrolyte balance60. Briefly, the peptide 

hormone angiotensinogen is secreted by the liver and cleaved by renin to form 

angiotensin I, which is then converted to angiotensin II by the angiotensin-converting 

enzyme (ACE), produced by the lungs. Angiotensin II acts on its receptors and modulates 

several processes, such as aldosterone secretion (in the adrenal glands), water and 

sodium retention (in the kidneys), sanguine pressure, and vasopressin production (in the 

CNS)61. To treat hypertension, many efforts have been directed towards the creation of 

drugs acting as ATRs inhibitors. The most famous drug family designed for this purpose is 

represented by the “Sartans”, which selectively bind to the first isoform of angiotensin 

receptors62. Indeed, ATRs can be divided into four isoforms, AT1, AT2, AT3, and AT4. While 

the latter two are still in the early stages of research, the first two isoforms have been 

more deeply characterized. AT1 is mainly found in blood vessels, heart, kidney, brain, and 

adrenal cortex, mediating vasoconstrictive effects60. AT2 receptors are more concentrated 
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in the fetus and neonate, and their functions are more strongly related to neuronal 

development and excitability63. A study by Kawajiri et al. highlighted a reduction in 

angiotensin II levels in the CSF coming from ALS patients, reporting two opposite 

consequences: the reduction of protection and repair mediated by AT2, on the one hand, 

and the reduction of oxidative stress due to AT1 on the other. Indeed, Kawajiri et al. 

hypothesized that angiotensin II could be downregulated in CSF of ALS patients as a 

protective reaction, avoiding excessive activation of AT1
64. The benefits of AT1 antagonism 

have also been underlined by Iwasaki et al., who reported evidence of the neurotrophic 

effects on spinal motor neurons of the drug Olmesartan (Figure 8, panel A), specifically 

referring to its potential application in ALS65. Furthermore, an article by Mammana et al. 

highlighted the AT1 antagonism-mediated neuroprotective effects of Telmisartan (Figure 

8, panel B), also outlining the decrease in neuronal injury and microglial activation caused 

by it66. 

 

Figure 8. The chemical structures of the AT1 antagonists Olmesartan (A) and Telmisartan (B). 

Summing up the information obtainable from the literature, AT1 inhibition could be 

examined as a potential new therapeutic method of fighting ALS conditions. Both AT1 and 

AT2 receptors are represented in Figure 9 below. 
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Figure 9. Representation of the three-dimensional structures of the angiotensin II receptors that 

could be considered for ALS treatment. AT1 receptor (A) (sourced from the Protein Data Bank, PDB 

code: 4ZUD67, method: X-ray diffraction, resolution: 2.80 Å) and AT2 receptor (B) (sourced from 

the Protein Data Bank, PDB code: 7JNI68, method: X-ray diffraction, resolution: 3.00 Å). The images 

were created and rendered with MOE. 

2.4. Dopamine Receptors 

Dopamine receptors are among the most important and widely studied G-protein coupled 

receptors, mainly for their important physiological roles in neurotransmission. This class 

of GPCRs is divided into five isoforms, which are separated into two classes. The first, also 

called the “D1-like family”, comprises the D1R and D5R receptors, which are coupled to a 

Gs protein responsible for adenylyl cyclase activation upon binding. The second family, 

also known as the “D2-like” family, comprises the D2R, D3R, and D4R proteins, all coupled 

with a Gi protein with inhibitory activity on adenylyl cyclase. Dopamine receptors are 

localized in different peripheral parts of the organism, such as arteries, heart, and kidneys, 

but their activities much more determinant within the CNS. Indeed, dopamine is the main 

neurotransmitter involved in the reward system, and its signaling is of crucial importance 

for processes such as cognition, memory, and motor control69. Dysregulation of the 

dopaminergic system in the brain represents the main cause of very important diseases 

such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and Parkinson’s 

disease70. Several articles highlight a correlation between dopamine signaling and ALS 

development71. We have previously reported what was assessed by Liu et al. regarding 

the protective effect of the A2A receptor on TDP-43 mislocalization39. A recent study by Lai 

et al. details how this beneficial activity can be blocked by D2R activation72. Despite this, 
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D2R was also identified as important for the modulation of motor neuron excitability by 

Huang et al.73 

Fujimori et al. showed how the treatment with Ropinirole (Figure 10, panel A), an agonist 

for receptors D2R, D3R, and D4R mainly used for Parkinson’s disease, has neuroprotective 

effects in ALS models74. Additionally, D2R agonists such as Bromocriptine and Sumanirole 

(both represented in Figure 10, panels B and C, respectively) were tested by Huang et al., 

who reported that the final effect of such activity on ALS models was an increase in motor 

neuron survival75. Another agonist for the “D2-like family” of dopamine receptors is the 

R(+) enantiomer of the Parkinson’s disease drug Pramipexole, known as Dexpramipexole 

(Figure 10, panel D). 

 

Figure 10. The chemical structures of the dopamine receptor agonists Ropinirole (A), which has 

an affinity for D2R, D3R, and D4R, Bromocriptine (B), also non-selective with an affinity for D2R, 

D3R, and D4R, and Sumanirole (C), selective for D2R. (D) Chemical structure of Dexpramipexole 

(its neuroprotective effects are attributed to dopaminergic-independent activities). 

Even if Pramipexole is a powerful agonist of D2R, D3R, and D4R (all depicted in Figure 

11)76, its R(+) enantiomer has a very low affinity for dopamine receptors, so its 

neuroprotective effects have to be due to a non-dopaminergic action77. This molecule has 

been considered a promising candidate for ALS conditions78. After the phase III clinical 

trial, however, its development in Europe was discontinued79. 

D2R is still a very relevant target for Parkinson’s disease treatment, but the presented 

literature concords in considering it also a protein of high therapeutic potential for 

treating ALS. 
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Figure 11. Representation of the three-dimensional structures of the dopamine receptors that 

could be considered for ALS treatment. (A) D2R (sourced the Protein Data Bank, PDB code: 7JVR80, 

method: cryo-EM, resolution: 2.80 Å), (B) D3R (sourced from the Protein Data Bank, PDB code: 

7CMU81, method: cryo-EM, resolution: 3.00 Å), and (C) D4R (sourced from the Protein Data Bank, 

PDB code: 5WIV82, method: X-ray diffraction, resolution: 2.14 Å). All of the images were created 

and rendered with MOE. 

2.5. Serotonin (5-HT) Receptors 

Serotonin (also called 5-hydroxytryptamine, or 5-HT) receptors represent one of the most 

populated subfamilies of class A GPCRs, consisting of 13 G-protein coupled receptor 

isoforms (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-

HT5B, 5-HT6, and 5-HT7) distributed throughout the entire human organism, and a cation 

channel (5-HT3), mainly involved in gastrointestinal motility83. It is also interesting to note 

that almost all of these isoforms are present in the CNS84. Concerning ALS, the serotonin 

receptor which has gained the greatest popularity is 5-HT2B. An article from Oussini et al. 

reported that the activity of this biological entity could limit the degeneration of spinal 

cord mononuclear phagocytes, which is a process typical of neurodegenerative diseases. 

This article highlighted that the ablation of the 5-HT2B gene resulted in an acceleration of 

ALS progression in mutant SOD1 mouse models. Indeed, they showed that the 

administration of a 5-HT2B selective antagonist (SB204741, Figure 12, panel A) caused an 

important reduction in microglia viability, while treatment with the agonist BW723C86 

(Figure 12, panel B) induced an increase in viability85. Another work by Dentel et al. 

reported that the spasticity associated with ALS progression could be strongly alleviated 

by the administration of inverse agonists of 5-HT2B/C such as SB206553 and 
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Cyproheptadine (both depicted in Figure 12, panels C and D, respectively)86. A recent 

article by Arnoux et al., on the other hand, highlighted the lack of beneficial effects when 

ALS-affected SOD1G86R mutants were treated with the 5-HT2B agonist BW723C8687. The 

main factor that has always limited the development of 5-HT2B agonists is their inherent 

cardiotoxicity, which can determine valvular heart disease88. Two randomized, double-

blind, placebo-controlled multicenter studies (phase III) were conducted in 2004 by 

Meininger et al. to evaluate the potential benefits of Xaliproden (Figure 12, panel E), a 5-

HT1A receptor agonist with neuroprotective effects, in ALS patients. 

 

Figure 12. The chemical structures of the serotonin receptor modulators are treated in this review. 

The selective 5-HT2B antagonist SB204741 (A), the 5-HT2B agonist BW723C86 (B). (C) Structure of 

the 5-HT2B/C mixed inverse agonist SB206553; (D) chemical structure of Cyproheptadine, a non-

selective mixed serotonin receptor antagonist (which is an inverse agonist of 5-HT2B). (E) Structure 

of the 5-HT1A receptor agonist Xaliproden. 

Despite the promising outcomes of the prior experiments89, no effective slowing down in 

the progression of the pathology was evidenced. Even if some limitations have been 

encountered in serotoninergic modulation for motor neuron disease, the 5-HT receptors 
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have been demonstrated to be targets of relevance in the ALS scenario. The three-

dimensional structures of 5-HT1A, 5-HT2B, and 5-HT2C are represented in Figure 13. 

 

Figure 13. Three-dimensional structures of the serotonin receptors that could be considered for 

ALS treatment. (A) 5-HT1A (sourced from the Protein Data Bank, PDB code: 7E2Y90, method: cryo-

EM,resolution: 3.00 Å), (B) 5-HT2B (sourced from the Protein Data Bank, PDB code: 6DS091, 

method: X-ray diffraction, resolution: 3.19 Å), and (C) 5-HT2C (sourced from the Protein Data Bank, 

PDB code: 6BQG92, method: X-ray diffraction, resolution: 3.00 Å). All of the images were created 

and rendered with MOE. 

2.6. GPR17 Receptor 

GPR17 (also known as “uracil nucleotide/cysteinyl leukotriene receptor”) is a protein 

belonging to the 15th subfamily of class A GPCRs. One of its peculiarities is that its 

structure is phylogenetically related to both cysteinyl leukotriene (CysLT) receptors and 

to purinergic P2Y receptors93. This receptor is activated by uracil nucleotides such as UDP, 

UDP-glucose, and UDP-galactose, but is also sensitive to CysLTs, like Leukotriene D4 and 

C494. GPR17 is mainly expressed in the CNS (but also in kidneys, heart, and generally in 

organs that can experience ischemic damage), and a more pronounced presence of this 

protein has been highlighted in oligodendrocyte precursor cells (OPCs). Upregulation of 

GPR17 can be observed in neuronal cells surrounding an ischemic-injured area, making 

this protein a marker for cellular stress and death. It has been reported in the literature 

that in the case of a demyelinating event, GPR17 is involved in the remyelination process, 

but the mechanism of its involvement is still debated95. What is known is that GPR17 is 

deputed to accompany the OPCs in the early stages of their differentiation process, and 

so its downregulation is necessary for these cells to complete their maturation. As a result 
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of this, overexpression of this protein leads to incomplete OPC development, impairing 

myelination and promoting inflammatory responses96. Moreover, GPR17 upregulation in 

neurons was linked to increased cell damage by Zhao et al., who also observed that its 

knockdown attenuated neuronal injury and microgliosis97. In the field of ALS, GPR17 was 

demonstrated by Bonfanti et al. to be upregulated in the spinal cord of SOD1G93A mouse 

models98. As reported in a recent study by Raffaele et al., while the application of non-

selective GPR17 antagonists such as HAMI3379 (Figure 14, panel A) or Montelukast (a 

marketed CysLT receptor inhibitor, which is represented in Figure 14, panel B) has been 

shown to improve remyelination processes (as also demonstrated by Merten et al. for the 

first of these two molecules99), the implementation of agonists has also been 

demonstrated to be beneficial in pushing OPCs to start differentiating100. Jin et al. asserted 

that the inhibition of GPR17 by Cangrelor (Figure 14, panel C) results in the amelioration 

of cognitive deficits through the inhibition of oxidative stress and neuroinflammation in 

Alzheimer’s Disease mouse models101. 

 

Figure 14. The chemical structures of the GPR17 inhibitors. The non-selective inhibitors 

HAMI3397, Montelukast (sold as a CysLT receptors inhibitor for asthma), and Cangrelor (an 

antiplatelet drug, reversible inhibitor of P2Y12 receptor), respectively (A–C). 

Marschallinger et al., in a recent paper, highlighted a restoration in cognitive function and 

a reduction in neuroinflammation in rats treated with Montelukast102. Another study by 

Burnstock et al. indicated that the in vivo knockdown of GPR17 markedly reduced brain 

damage103. 

The information available nowadays converges in indicating GPR17 (which three-

dimensiona structure is provided in Figure 15) as a promising target for 

neuroinflammation and neurodegeneration diseases. Even if, at the present moment, 
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these efforts are more focused on multiple sclerosis treatment, GPR17 regulation for ALS 

is also attracting increasing interest from the scientific community. 

 

Figure 15. Structure of the GPR17 receptors (with no experimentally resolved structure available, 

the model sourced from the AlphaFold database is presented). The image was created and 

rendered with MOE. 

2.7. Adrenergic Receptor β2 

Adrenergic receptors are part of the 17th subfamily of class A GPCRs and are divided into 

nine different isoforms (α1A, α1B, α1D, α2A, α2B, α2C, β1, β2, β3), which are involved in very 

important physiological functions such as smooth muscle contraction and relaxation, 

heart muscle contraction (mainly receptors β1 and β2)104, and glycogenolysis105. The 

research to find a link between adrenergic transmission and ALS has been focused on the 

β2 isoforms of this GPCR. Historically, β2 agonists represent one of the main solutions for 

asthma therapy106, and drugs such as Salbutamol, Clenbuterol, and Formoterol (all 

depicted in Figure 16) are an example of this. A recent work by Bartus et al. highlighted 

the potentialities of β2 agonists for ALS, reporting that the downstream effects of these 

molecules can be useful for protecting spinal cord neurons, both preserving and/or 

restoring their function107. 
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Figure 16. The chemical structures of the adrenergic β2 receptor agonists Salbutamol (A), 

Clenbuterol (B), and Formoterol (C). 

The pathways responsible for such outcomes presented by Bartus et al. are very 

biologically important for cell homeostasis, such as the cAMP/PKA/CREB pathway, the 

PI3K-Akt-mTOR pathway, and the PKA/SIRT1 pathway. Other than neuroprotection, other 

effects attributed by the authors to this class of ligands are the increase in muscle strength 

and the amelioration of mitochondrial function. Another study by Teng et al. reported a 

favorable effect of the β2 agonist Clenbuterol on SOD1G93A mice108. The outcomes of these 

studies open new possibilities in drug discovery for ALS, focusing special attention on 

adrenergic β2 receptor modulation. A three-dimensional representation of the adrenergic 

β2 receptor is provided in Figure 17. 

 

Figure 17. Representation of the structure of the adrenergic β2 receptor (sourced from the Protein 

Data Bank, PDB code: 7DHI109, method: cryo-EM, resolution: 3.26 Å). The image was created and 

rendered with MOE. 
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2.8. Histamine Receptors 

Histamine receptors represent a group of class A GPCRs that has attracted a lot of interest 

in the pharmaceutical world in recent decades. This family is composed of four different 

members (H1, H2, H3, and H4), each with a specific localization in the organism. Their 

functions, vary from one isoform to another, ranging from vasoconstriction (H1) to gastric 

acid secretion (H2), to neurotransmitter release (H3), to immunoregulation (mainly H2 and 

H4)110. For each histamine receptor, the research has mainly focused on the mechanism of 

antagonism, of which several marketed drugs are still now relevant examples (e.g., 

Cetirizine, Figure 18, panel A, for H1 antagonism; or Famotidine, represented in Figure 18, 

panel B, for H2 blockage)111. 

 

Figure 18. The chemical structures of the H1 receptor antagonists Cetirizine (A) and Clemastine 

(B). The H2 receptor antagonist Famotidine is also reported (C). 

An article from Apolloni et al. reported the involvement of histaminergic signals in ALS 

progression, highlighting that histamine receptors are dysregulated in the cortex, spinal 

cord, and hypothalamus of SOD1G93A ALS-affected mice112. This study reported that 

histamine could counteract the pro-inflammatory phenotype of microglia, mainly through 

its H1 and H4 receptor isoforms. This would be mediated by both the reduction of NOX-2 

and NF-kB expression and the increase in production of other species, such as IL-6 and IL-

10. Another work by Volontè et al. highlighted the neuroprotective effects of histamine 

signaling in ALS, again giving higher relevance to H1R (represented in Figure 19, panel A) 

and H4R113. On the other hand, Zhang et al. described H1 and H4 receptors as being 

responsible for pro-inflammatory cytokine release in microglia, while H2 and H3 were 

considered to be the main actors of anti-inflammation in that environment (the H2 
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receptor is depicted in its three-dimensional structure in Figure 19, panel B)114. Another 

article by Apolloni et al. reported an amelioration in ALS progression of SOD1G93A mice 

treated with the anti-histaminergic drug Clemastine115. Even if much more remains to be 

understood about the specific role of each histamine receptor isoform in ALS progression, 

what is certain is that this GPCR family has already proven to be a promising target for 

drug development against neuroinflammation and neurodegeneration. 

 

Figure 19. Representation of the three-dimensional structures of the histamine receptors that 

could be considered for ALS treatment. (A) The H1 receptor (sourced from the Protein Data Bank, 

PDB code: 7DFL 116, method: cryo-EM, resolution: 3.30 Å) and (B) the H2 receptor (with no 

experimentally resolved structure available, the model sourced from the AlphaFold117 database is 

presented). The images were created and rendered with MOE. The H3 and H4 receptors both lack 

experimentally resolved structures, but their AlphaFold models are available. 

2.9. Cannabinoid Receptors 

A group of class A GPCRs that are of high interest at the present date is certainly the 

cannabinoid receptors. These biological entities are the main actors in the 

endocannabinoid system, and play relevant roles in several physiological processes. 

Indeed, the first of its two main isoforms, called CB1, is mainly located in both the central 

and peripheral nervous system, acting as a neurotransmitter release modulator in 

response to the binding of its agonists (mainly anandamide, but also 2-

arachidonoylglycerol, both represented in Figure 20, panels A and B, respectively). In the 

majority of cases, CB1 is coupled with Gi/o protein, leading to adenylyl cyclase inhibition 

and consequent decrease in cAMP upon activation. The final effect of such an action is 

the reduction of neurotransmitter release in the synapse. On the other hand, the CB2 
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receptor is mainly localized on the surface of the immune system cells. Its main agonist is 

2-arachidonoylgycerol, binding of which leads to the inhibition of adenylyl cyclase through 

Gi/o subunit action118. The final main effect is immunosuppression119. As reported by an 

article from Giacoppo and Mazzon, several studies have shown how the application of 

cannabinoid receptor agonists in SOD1G93A mouse models of ALS could be beneficial for 

the neuroprotective effects mediated by them120. Similarly, in 2019, Urbi et al. performed 

a meta-analysis on the studies regarding the application of cannabinoids in ALS murine 

models, highlighting the effective concordance in assessing that their application leads to 

a delay in disease progression121. A study by Shoemaker et al. highlighted that the increase 

in survival could be more addressable to the CB2 isoform, showing that the administration 

of the CB2 selective agonist AM-1241 (Figure 20, panel C) increased survival by 56%122. This 

molecule was also examined for cannabinoid-mediated ALS treatment by Kim et al., with 

similar results123. 

 

Figure 20. The chemical structures of the endogenous CB1 and CB2 receptors agonists anandamide 

(A) and 2-arachidonoylglycerol (B). The selective CB2 receptor agonist AM-1241 is also reported 

(C). 

In addition to this, Bilsland et al. reported that the knock-out of CB1 receptors in SOD1G39A 

ALS-affected mice had no appreciable effect on disease onset124, and regarding this, 

Shoemaker et al. reported that the activation of CB1 could exacerbate disease 

progression122. The literature available today regarding the application of molecules acting 

on the endocannabinoid system for ALS treatment converges in the possible evaluation 
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of a therapy based on CB2 selective agonists. A three-dimensional representation of both 

CB1 and CB2 receptors is provided in Figure 21. 

 

Figure 21. The structures of (A) the CB1 receptor (sourced from the Protein Data Bank, PDB code: 

6KPG125, method: cryo-EM, resolution: 3.00 Å) and (B) the CB2 receptor (sourced from the Protein 

Data Bank, PDB code: 6PT0126, method: cryo-EM, resolution: 3.20 Å). The images were created and 

rendered with MOE. 

2.10. Prostaglandin E2 Receptor (PGE2R) 

Prostaglandin E2 receptors (PGE2) are a series of class A GPCRs that selectively bind to 

prostaglandin E2 (also known as dinoprostone), an endogenous arachidonic acid 

derivative of high importance for several physiological functions. PGE2 can be divided into 

four isoforms, named E1, E2, E3, and E4 (all represented in their three-dimensional 

structure in Figure 22). With the exception of the first, which stimulates phospholipase C 

if agonized, the other isoforms act on adenylyl cyclase and, specifically, the EP2 and EP4 

isoforms (coupled with a Gs subunit) stimulate its function when agonized, while EP3 

inhibits AC through its action (being coupled to a Gi/o subunit)127. EP1 function has been 

correlated with hyperalgesia128, immunoregulation129, and colon cancer progression130. 

EP2, which is active in the reproductive, visual, cardiovascular, skeletal, and nervous 

systems, has also been strictly related to tumor promotion, as highlighted in a 2018 study 

by Sun and Li131. Minor correlations with cancer have been reported for EP3, which is also 

important for a large variety of functions, ranging from digestion132 to blood pressure133 

and clotting134, in addition to pain management135. The spectrum of systems in which the 

fourth isoform of PGE2 receptors, EP4, is involved is also very wide. Additionally, in this 
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case, EP4 has been reported to be hyper-expressed in various types of cancer, mainly 

prostate cancer136. Talking about ALS onset and progression, Iłzecka found increased levels 

of PGE2 in the cerebrospinal fluid of ALS patients, and therefore concluded that this 

mediator could play a role in disease progression, suggesting that its inhibition could be 

beneficial137. Additionally, Kosuge et al. highlighted the role of PGE2 in the ROS generation 

pathway, focusing on its impact on ALS conditions. The same conclusion was reported in 

2008 by Liang et al., who suggested EP2 inhibition as a novel way to treat the 

neuroinflammation typical in ALS138. On the other hand, PGE2 receptors were proposed to 

have an unexpected neuroprotective effect on motor neurons by Bilak et al., who 

reported that the neuroinflammatory process typical of ALS was mainly due to COX-2-

mediated, prostaglandin-independent processes139. Taken together, all of these studies 

converge in evaluating PGE2 receptors as interesting pharmacological targets for ALS, 

being strongly correlated with the significant neuroinflammation characterizing the 

pathology. 

 

Figure 22. Structure of the PGE2 receptors (A) EP1 (with no experimentally resolved structure 

available, the model sourced from the AlphaFold database is presented), (B) EP2 (sourced from 

the Protein Data Bank, PDB code: 7CX2140, method: cryo-EM, resolution: 2.80 Å), (C) EP3 (sourced 

from the Protein Data Bank, PDB code: 6AK3141, method: X-ray diffraction, resolution: 2.90 Å), and 

(D) EP4 (sourced from the Protein Data Bank, PDB code: 7D7M142, method: cryo-EM, resolution: 

3.30 Å). All of the images were created and rendered with MOE. 

2.11. Vasoactive Intestinal Peptide Receptors 

The receptors for the vasoactive intestinal peptide are part of the first subfamily of class 

B GPCRs. As part of this group of proteins, these receptors are responsive to signals 
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mediated by the peptide hormone VIP (vasoactive intestinal polypeptide), formed by 28 

amino acids and belonging to the glucagon/secretin superfamily143. After being produced 

by organs such as the gut, pancreas, and brain, VIP act in different physiological functions 

depending on the target tissue and the receptor isoform interacting with it. Indeed, two 

vasoactive intestinal polypeptide receptor isoforms are known, namely VPAC1 and VPAC2 

(both represented in Figure 23). Both of these proteins are highly expressed throughout 

the human body, from the smooth muscle of the GI tract and blood vessels to the 

reproductive system, lungs, spleen, and brain144. Their activity is mediated by a Gs protein, 

and involves the activation of adenylyl cyclase upon binding to VIP, consequently 

activating the protein kinase A (PKA)145. 

The implication of VIP in the CNS has been noticed when studying both the circadian 

rhythm and schizophrenia144, but its importance as a potential target for ALS therapy is of 

more recent discovery. In 2008, Staines considered the possibility of studying vasoactive 

neuropeptides for degenerating pathologies such as MS and ALS146, and a previous article 

by Iwasaki et al. specifically referred to the neurotrophic properties exerted by VIP in the 

degenerating diseases of motor neurons147. Solés-Tarrés et al. analyzed the 

neuroprotective effects of both VIP and PACAP (pituitary adenylate cyclase-activating 

polypeptide, a peptide hormone binding to both VPACs and PACAP receptors), also 

evaluating the synthetic derivatives available to mimic their action, with a special focus 

on the intrinsic pharmacokinetic problems of these species148. Waschek already identified 

both VIP and PACAP as promising targets for neuroinflammation in the CNS149, as pointed 

out again in recent work by Martinez et al.150. 

The interaction with receptors of vasoactive peptides has been demonstrated to be a 

promising way to counteract the neuroinflammatory and degenerative effects of ALS, 

mainly through biological and/or chemical species mimicking the functions of the 

endogenous peptides. Further research on this topic will define the best way to 

accomplish this task. 
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Figure 23. Structure of the receptors (A) VPAC1 (sourced from the Protein Data Bank, PDB code: 

6VN7151, method: cryo-EM, resolution: 3.20 Å), and (B) VPAC2 (with no experimentally resolved 

structure available, the model sourced from the AlphaFold database is presented). The images 

were created and rendered with MOE. 

2.12. Metabotropic Glutamate Receptors (mGluRs) 

Metabotropic glutamate receptors (mGluRs) are GPCRs belonging to class C of this family 

of proteins. As the name suggests, these entities bind to the neurotransmitter glutamate, 

exerting different functions in both the central and peripheral nervous systems. They can 

be divided into three groups, with the first being composed of mGluR1 and mGluR5, 

predominantly postsynaptic, which, once activated, cause the stimulation of 

phospholipase C (PLC) through Gq-mediated signaling. Group II (formed by mGluRs 2 and 

3) and III (of which mGluRs 4,6,7, and 8 are a part) receptors are mainly presynaptic and 

are all coupled with a Gi/0 subunit, which inhibits the activation of adenylyl cyclase, causing 

presynaptic inhibition. The functions of this family of proteins are majorly related to the 

nervous system, from the modulation of neurotransmission (e.g., gabaergic and 

dopaminergic) and of other proteins’ signaling (e.g., NMDA receptors), to synaptic 

plasticity regulation152. This being said, it appears clear that the possibility of their 

involvement in ALS onset and progression is more than possible. Anneser et al. found a 

strong upregulation of mGluRs in the spinal cord with ALS, leading to the propagation of 

glial proliferation153. Hyperactivity of group I mGluRs has been correlated with 

neuroinflammation. Indeed, as demonstrated by Milanese et al., SOD1G93A ALS-affected 

mice with mGluR1 knockdown experience a reduction in microglia and astrocyte 
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activation, decreasing mitochondrial damage and improving survival154, and this 

phenomenon was also highlighted by Rossi et al.155 

Anneser et al. showed the beneficial and protective effects of both agonism and 

antagonism of group I mGluRs for motor neuron disease, while less promising effects were 

derived from modulation of other mGluRs156. Crupi et al. recently pointed out that the 

beneficial therapeutic modulation of mGluRs is usually achieved through the reduction of 

the excitotoxicity drive via mGluR I inhibition or mGluR II and III agonism157. In conclusion, 

the literature supports the possibility of investing resources in the treatment of motor 

neuron diseases via mGluR modulation. A three-dimensional representation of mGluR1, 

mGluR2, and mGluR4 receptors is provided in Figure 24. 

 

Figure 24. One example of each group of the metabotropic glutamate receptors. (A) mGluR1, a 

member of the first group of mGluRs (sourced from the Protein Data Bank, PDB code: 7DGE158, 

method: cryo-EM, resolution: 3.65 Å), (B) mGluR2 (owing to mGluRs group II, sourced from the 

Protein Data Bank, PDB code: 7MTS159, method: cryo-EM, resolution: 3.20 Å), and (C) mGluR4, part 

of group III of the mGluRs (sourced from the Protein Data Bank, PDB code: 7E9H160, method: cryo-

EM, resolution: 4.00 Å). All of the images were created and rendered with MOE. 

3. Conclusions 

In this review, we provided a panoramic view of the involvement of different G-protein-

coupled receptors in the onset and progression of ALS, evaluating what has already been 

discovered on these biological entities, and highlighting what the next steps in research 

could be, always on the basis of the present literature on the topic. Our analysis shows 
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that a GPCR-based therapy for ALS could be considered a practical possibility for the 

eradication of the ALS condition, and we encourage scientific groups all around the world 

in directing efforts towards this field. 
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Abstract 

The function of the allosteric sodium ion in stabilizing the inactive form of GPCRs has been 

extensively described in the past decades. Its presence has been reported to be essential 

for the binding of antagonist molecules in the orthosteric site of these very important 

therapeutical targets. Among the GPCR–antagonist crystal structures available, in most 

cases, the sodium ion could not be experimentally resolved, obliging computational 

scientists using GPCRs as targets for virtual screening to ask: “Should the sodium ion affect 

the accuracy of pose prediction in docking GPCR antagonists?” In the present study, we 

examined the performance of three orthogonal docking programs in the self-docking of 

GPCR antagonists to try to answer this question. The results of the present work highlight 

that if the sodium ion is resolved in the crystal structure used as the target, it should also 

be taken into account during the docking calculations. If the crystallographic studies were 

not able to resolve the sodium ion then no advantage would be obtained if this is manually 

inserted in the virtual target. The outcomes of the present analysis are useful for 
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researchers exploiting molecular docking-based virtual screening to efficiently identify 

novel GPCR antagonists. 

1. Introduction 

G protein-coupled receptors (GPCRs) represent one of the most important protein 

superfamilies encoded by the human genome. The members of this protein superfamily 

(more than 800 entities1) have been proven to perform a great variety of biological 

functions in the organism. Among these, very remarkable are the regulation of senses 

(e.g., smell, taste, gustatory), the regulation of the nervous and immune systems, 

homeostasis modulation, pain control, and mood balancing2. Indeed, it becomes clear 

why GPCRs are one of the most interesting protein superfamilies for drug discovery, with 

more than 160 validated drug targets among them3. The fact that encourages the 

scientific community in putting efforts into the research about GPCRs is their huge 

therapeutic potential. At the present date, about 35% of the FDA-approved drugs are 

directed towards a GPCR4,5, and more than 300 molecules are currently in clinical trials, 

with near one-fifth targeting a novel GPCR protein4. These data make clear that the drug 

discovery research in this field is very active, and much about this superfamily of proteins 

has yet to be understood. 

GPCRs are cataloged into six classes based on their sequence and function similarities: 

class A (rhodopsin-like receptors), class B (known as “secretin family”), class C 

(metabotropic glutamate receptors), class D (fungal mating pheromone receptors), class 

E (cyclic adenosine monophosphate (cAMP) receptors), and class F (frizzled and 

smoothened receptors)6. All GPCRs share a similar organization in their three-dimensional 

structure; they are membrane protein receptors constituted of a transmembrane domain 

formed by seven α-helices (7TM domain), which are linked by three extracellular and 

three intracellular loops (three ECLs and three ICLs, respectively). The N-terminal (N-ter) 

domain is located in the extracellular side, while the C-terminal (C-ter) is found 

intracellularly. The functions of GPCRs are strongly dependent on their conformation and 

on the changes of this confirmation in time. They exist in an equilibrium between an active 

and an inactive state7, and this balance can be shifted upon ligand binding. Indeed, three 

main families of GPCR ligands have been reported: agonists, antagonists, and inverse 
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agonists. The first group of binders shifts the equilibrium towards the active arrangement 

of the receptor, while inverse agonists exert the opposite effect, increasing the 

conformational inactive population and decreasing the GPCR basal activity. Antagonists 

simply bind to the receptor and prevent the binding of other ligands, without affecting 

the conformational balance of the GPCR8. 

In drug discovery campaigns aimed to find new molecular entities for GPCR binding, 

several techniques are used to select, prioritize, and optimize the most promising 

compounds. Computational tools have acquired a very important role in the latest 

decades for drug design and discovery, strongly reducing both the time and money 

required to obtain new drug candidates and elucidating the most important features 

required to achieve a desired therapeutic effect. The approach chosen from 

computational medicinal chemistry to reach these ambitious goals depends on the data 

available about the target of interest. The presence of a three-dimensional structure of 

the drug target implies the possibility to exploit a structure-based drug design (SBDD) 

procedure, while its absence prompts the prioritization of the ligand-based drug design 

(LBDD) techniques. SBDD has proven to be very successful through the pharmaceutical 

history9,10, with several campaigns leading to approved drugs or the repositioning of 

existing drugs on different targets. The most applied technique belonging to the SBDD 

family is surely “molecular docking”11.  

Molecular docking is a computational approach that aims to find the conformation in 

which a molecule binds to its recognition site, forming a stable complex12. Specifically, in 

the case of drug discovery, the main goal is to elucidate how a ligand (which could be a 

small molecule, a peptide, or a macromolecule) binds to a biological target of interest 

(usually a protein or a nucleic acid). Docking algorithms are composed of two main parts: 

a conformational search algorithm and a scoring function. The first aims to search through 

the conformational space of the ligand, while the second has the goal of ranking the 

conformations obtained based on their eligibility for target binding. This fitness evaluation 

is based on several factors, taking into account different geometrical and energetical 

parameters. Molecular docking has been successfully applied multiple times for virtual 

screening (VS) aimed at GPCR drug discovery, both in academic and industrial 
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environments13. In these specific cases, attention must be paid to obtain reasonable 

results from the VS, tuning the docking experiment with respect to both the specific target 

and the family of ligands considered. A recent study demonstrated that the results of 

molecular docking on adenosine receptor A2A change if the sodium ion stabilized in the 

transmembrane domain is considered or not during the calculations14. Specifically, that 

work highlighted a concordance between the computational data and the literature 

regarding A2A receptor modulation, showing that docking algorithms tend to more 

efficiently reproduce antagonists’ crystallographic binding modes when the sodium ion 

also is taken into consideration during the calculations. Indeed, the sodium ion has been 

reported to be present in the middle of the 7TM region of the receptor in several 

structures of class A GPCRs, helping stabilize the inactive conformation. The sodium ion, 

together with its solvation sphere, has been demonstrated to negatively modulate the 

binding of agonists, without influencing the binding of antagonists15. 

To date, the GPCR group which has prevailed for importance for drug discovery is class A 

(known as rhodopsin-like receptors), mainly for their centrality in the diseases in which 

they are involved, as well as for the abundance of resolved structures16. These proteins 

are divided into 19 subfamilies (A1–A19) based on phylogenetic analysis17, including some 

receptors which have already become very famous in the pharmaceutical world, such as 

opioid, adrenergic, histaminergic, cannabinoid, and adenosine receptors.  

Our evaluation starts from the already cited work of Margiotta et al.14 to explore the 

influence of the allosteric sodium ion when molecular docking experiments for the diverse 

class A GPCR antagonists are performed. Indeed, we evaluated the performance of three 

different and orthogonal docking algorithms (GOLD, Glide, and PLANTS) in reproducing 

the ligand crystallographic pose of protein–ligand complexes involving an antagonist 

bound to a class A GPCR. We extended the study to the class A subfamilies of which some 

antagonist–protein experimental structure is available, also taking into consideration the 

eventually present complexes involving a reverse agonist bound to the orthosteric binding 

site. 
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2. Results and Discussion 

The complete results of the docking runs are reported in the Supplementary Materials 

(files “Selfdocking_without_sodium.csv” and “Selfdocking_with_sodium.csv”), while a 

brief per-protocol report is here described by Tables 1 and 2. A graphical representation 

of the outcomes of the docking runs is also reported using a colormap representation in 

Figures 1 and 2. In these plots, the colorimetric scale delineating the RMSD values starts 

from 0 Å, corresponding to a docking pose perfectly superposable to the crystallographic 

one (maximum docking performance, represented by the dark blue color), and reaches 

values of 4 Å or higher (minimum docking performance, all represented by the dark red 

color), which stands for a very suboptimal overlay between the coordinates of the pose 

produced and the ones of the crystallographic conformation. The results have been 

reported using three different metrics: “RMSD_average”, which represents the mean 

RMSD of all the poses obtained; “RMSD_scor_func”, which is the average value of the 

RMSDs obtained by the poses which were top-ranked by the scoring functions in each 

docking run; and “RMSD_sorted”, which represents the mean value of the RMSDs 

obtained from the poses with the lowest RMSD value in each docking calculation. As 

mentioned, the analysis of the results has also been executed on each docking program–

scoring function pair exploited in the study (Tables 1 and 2). Moreover, to better inspect 

the effect of the sodium ion in the docking simulations, the analysis has also been applied 

to separate the group of proteins in which the sodium ion is present in the crystallographic 

structure considered (26 systems) from the other entries (92 complexes). The per-

protocol inspections of these last results are reported in the Supplementary Materials 

(Tables S2–S5).  

Self-Docking Results—Na+ and H2O Not Considered 

 RMSD_average (Å) RMSD_scor_func (Å) RMSD_sorted (Å) 

GOLD-goldscore 3.60 2.83 1.86 

GOLD-chemscore 4.45 3.25 2.46 

GOLD-asp 3.87 2.91 2.14 
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GOLD-plp 4.60 3.48 2.56 

Glide-SP 4.16 2.57 1.73 

Glide-XP 2.67 2.46 1.89 

PLANTSCHEMPLP 4.96 2.12 1.35 

PLANTSPLP 5.18 2.58 1.54 

All the molecular docking experiments 4.19 2.78 1.94 

Table 1. Table showing the results of the self-docking calculations executed without considering 

the sodium ion. 

 

Figure 1. Colormaps show the results of the self-docking calculations not considering the sodium ion within 

the GPCR receptor 7TM region of the 118 complexes examined in this study. The three plots depict 

respectively: (A) the outcomes derived from the average of the RMSDs of all the poses for each docking run 

(“RMSD_average”); (B) the results obtained just from the RMSD between the crystallographic ligand 

coordinates and the best-ranked pose from the scoring function (“RMSD_scor_func”); (C) the results of the 

self-docking experiments if just the pose showing the best RMSD value between its coordinates and the 

crystallographic ones are considered (“RMSD_sorted”). The x-axis enumerates all the different GPCR–

antagonist complexes, which are plotted against the different docking program–scoring function pairs used 

for our study, reported on the y-axis. 

Self-Docking Results—Na+ and H2O Placed at 4 Å or Nearer to It Both Considered 

 RMSD_average (Å) RMSD_scor_func (Å) RMSD_sorted (Å) 

GOLD-goldscore 4.07 3.93 2.33 

GOLD-chemscore 4.53 3.90 2.82 

GOLD-asp 4.13 3.25 2.40 
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GOLD-plp 4.52 3.51 2.56 

Glide-SP 4.40 2.55 1.67 

Glide-XP 2.81 2.62 1.90 

PLANTSCHEMPLP 5.16 2.60 1.49 

PLANTSPLP 5.14 2.76 1.62 

All the molecular docking 

experiments 
4.34 3.14 2.10 

Table 2. Table showing the results of the self-docking calculations executed considering the sodium ion 

and the water molecules surrounding it. 

 

Figure 2. Colormaps show the results of the self-docking calculations executed considering the sodium ion 

and the water molecules at 4 Å or nearer to it within the GPCR receptor 7TM region of the 118 complexes 

examined in this study. The three plots depict respectively: (A) the outcomes derived from the average of 

the RMSDs of all the poses for each docking run (“RMSD_average”); (B) the results obtained just from the 

RMSD between the crystallographic ligand coordinates and the best-ranked pose from the scoring 

function (“RMSD_scor_func”); (C) the results of the self-docking experiments if just the pose showing the 

best RMSD value between its coordinates and the crystallographic ones are considered (“RMSD_sorted”). 

The x-axis enumerates all the different GPCR–antagonist complexes, which are plotted against the 

different docking program–scoring function pairs used for our study, reported on the y-axis. 

The outcomes of our experiment highlight how all the algorithms used show an overall 

good performance in GPCR–antagonist self-docking. Among the others, the pairs “Glide-

SP”, “PLANTSCHEMPLP”, and “PLANTSPLP” were always able to produce an “RMSD_sorted” 

value of less than 2 Å with respect to the crystallographic coordinates. Even if the scoring 

functions allowed obtaining reasonable RMSD values (as observable from the 

“RMSD_scor_func” columns in Tables 1 and 2), the solutions are given by them rarely 
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corresponded to the ones with the lowest RMSD. As expected, an ant colony optimization 

algorithm such as PLANTS tends to produce poses with less three-dimensional 

conservation compared to a genetic algorithm such as GOLD or a systematic method such 

as Glide, and this is evidenced by the higher values of “RMSD_average” given by both 

docking program–scoring function pairs involving PLANTS. On the other hand, the higher 

variability in the poses produced could be the reason for the fact that PLANTS can obtain 

solutions with very low RMSD, as demonstrated by the “RMSD_sorted” results, which are 

far below 2 Å in all the cases reported in this study (also when the complexes are 

separated based on the presence of the sodium ion in the original PDB structure, as 

depicted in Supplementary Materials, Tables S2–S5). GOLD and Glide both performed 

remarkably, with “goldscore” giving the best results among the scoring functions 

implemented for GOLD in all the metrics used for the analysis (exception made for the 

“RMSD_scor_func” value when considering the sodium ion and the water molecules at 4 

Å or nearer to it in the calculations). Comparing “Glide-SP” and “Glide-XP” outcomes, even 

if the first can obtain lower “RMSD_sorted” values, is important to notice that the XP 

protocol is the overall best performing when considering the “RMSD_average”, always 

giving a value below 3 Å for this parameter. The choice between the two for GPCR 

antagonist virtual screening (VS) should so be based on the specific case examined. 

Indeed, “Glide-SP” would be more beneficial in the VS of a GPCR antagonist with already 

known scaffold and properties (eventually coming from “focused libraries”), while “Glide-

XP” would be more effective when a library with molecules characterized by higher 

diversity is taken into account. When considering the use of “Glide-XP” instead of “Glide-

SP” for large VS of high-diversity entities for GPCR antagonism, the medicinal chemists 

should always consider the higher computational times required for the XP function 

(passing from the 10 s/compound of “Glide-SP” to about 2 min/compound of “Glide-XP”, 

as reported on the developer’s page18).  
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Figure 3. Plot representing the comparison of the overall performance of the different docking algorithms 

implemented in this study when the sodium ion is not considered during the calculation (on the left) and 

when both the sodium ion and the crystal water molecules at 4 Å or nearer to it are included (on the right). 

The metrics used for the comparison are the “RMSD_average”, the “RMSD_scor_func”, and the 

“RMSD_sorted” values already described in the present study. 

 

Figure 4. Panel (A) Plot representing the comparison of the overall performance of the different docking 

algorithms implemented in this study when the sodium ion is not considered during the calculation (on the 

left) and when both the sodium ion and the crystal water molecules at 4 Å or nearer to it are included (on 

the right), focusing just on the 26 GPCR–antagonist complexes in which the sodium ion is already present 

in the crystal structure. Panel (B) Graphical representation of the comparison of the overall performance of 

the different docking algorithms used in this study when the sodium ion is not considered during the 

calculation (on the left) and when both the sodium ion and the crystal water molecules at 4 Å or nearer to 

it are included (on the right), focusing just on the 92 GPCR–antagonist complexes in which the sodium ion 

is not present on the original crystal structure. 
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A graphical representation of the comparison between the performance of the algorithms 

when the sodium ions are considered or not is reported in Figure 3, while two analog 

diagrams are reported in Figure 4 (based on Tables S2–S5, which can be examined in the 

Supplementary Materials) to give a more immediate visualization of the outcomes divided 

based on whether the sodium ion is present in the original crystallographic complexes. 

The results obtained show a small decrease in all the metrics used when the sodium ion 

is not considered in the docking runs. Specifically, the decrement in “RMSD_average” is 

3.46%, the reduction in “RMSD_scor_func” is 11.47% (this higher value has to be 

attributed to the scoring functions), and the diminution in “RMSD_sorted” is 7.62%. 

Considering the decreases in the order of magnitude of the RMSD of the docking results 

(which is around the very promising value of 2 Å for the best pose obtained and around 3 

Å for the best solution given by the scoring functions), we can conclude that no big 

difference in the docking performance regarding a GPCR–antagonist system is achieved if 

the sodium ion is taken into account during the calculation.  

The metrics used for the comparisons are the “RMSD_average”, the “RMSD_scor_func”, 

and the “RMSD_sorted” values already described in the present study. The overall figure 

is useful to compare the performance of the docking algorithms when the sodium is 

present in the original crystal structure and when it is not. 

With an examination of the data coming from Tables S2–S5, of which the comparison of 

the overall results is plotted in Figure 4, we can see an analog trend of the outcomes when 

sodium is considered or not during the docking runs. It is interesting to notice that when 

the sodium is already present in the crystal structure, the RMSD values obtained from the 

docking poses tend to be more promising, but this has to be weighed on the fact that, in 

that case, the exact position of the sodium is known, and so the possible error coming 

from the manual placing of this alkaline ion in the 7TM region is removed. Moreover, a 

comparison should be made very carefully when data coming from only 26 complexes 

(the ones having the sodium crystallographically resolved) are juxtaposed to the ones 

derived from a larger set of 92 structures (the complexes in which the sodium ion is 

missing in the crystal structure). 
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On the contrary, important information is obtainable if the comparison is limited between 

the two groups of proteins. Indeed, as shown in Figure 4 (as well as Tables S2–S5), if the 

sodium ions are already present in the GPCR–antagonist crystallographic complex, no 

relevant difference can be noticed between the results coming from the docking runs in 

which the alkaline ion is considered and the ones derived from the calculation in which 

also sodium and the water molecules surrounding it are taken into account. Furthermore, 

the analysis shows a very slight decrease in the RMSD values when the crystallographic 

sodium and the water molecules at 4 Å or nearer to it are retained during the calculations. 

On the other side, more important changes in the RMSD metrics used are highlightable 

comparing the outcomes of the docking runs for the complexes in which the sodium ion 

is not present in the crystal structure. In this case, all “RMSD_average”, 

“RMSD_scor_func”, and “RMSD_sorted” values show an increase if the alkaline ion with 

its surrounding water molecules is inserted in the complex and considered during the 

calculation.  

The results of our study show that when performing molecular docking experiments on 

GPCR antagonists, the sodium ion present in the allosteric 7TM pocket should be 

considered during the calculation only if it is already present in the crystal structure used 

as the protein target. If the GPCR on which the research is based does not have antagonist-

bound crystallographic structures in which the sodium ion is present, any advantage will 

be obtained if it is manually placed in its allosteric pocket, and so the execution of the 

docking calculations without this alkaline ion should be considered. A possible reason for 

this behavior could be related to the fact that the small benefit coming from taking into 

account the sodium ion when performing the virtual screening would be demolished by 

the inevitable error coming from the manual placing of this ion in its allosteric pocket. We 

also assert that this type of uncertainty would not be canceled even if advanced 

computational approaches would be used for sodium placement, because of the errors 

that these techniques inexorably bring with them. 

The importance of the allosteric sodium ion for the binding of antagonists to class A GPCRs 

has been extensively described in the literature15,19. Moreover, as observable from Figure 

5, the side chains of the amino acids located in the allosteric sodium binding site are 
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conservatively orientated towards the alkaline ion location even if all the structures 

represented do not have the sodium ion present in the crystallographic complex, showing 

that this alkaline ion has to be present in its site to guarantee the antagonist activity.  

 

Figure 5. (A) Representation of the allosteric sodium binding site of all the 26 GPCR–antagonist complexes 

considered in this study which had the sodium ion present in their crystallographic structures. As depicted, 

the position of the sodium (the orange atoms in the image) is well conserved, as are the type and orientation 

of the side chains of the amino acids surrounding it, which help stabilize the alkaline ion. (B) Representation 

of the allosteric sodium binding site of all the 92 GPCR–antagonist complexes considered in this study in 

which the sodium ion is not present in the crystallographic structures. As can be seen, the potential position 

of the sodium (the purple atom in the image, which comes from the crystal upon which all proteins have 

been superposed, PDB code: 5IU4) is well conserved, as are the type and orientation of the side chains of 

the amino acids surrounding it, which help to stabilize the alkaline ion in its 7TM allosteric pocket. 

Molecular docking techniques are known for not being able to distinguish agonism from 

antagonism. Indeed, this family of computational approaches has the goal of highlighting 

the potential binders for a target, but their results cannot be related to a specific type of 

outcomes that this binding will have on the target itself (which has to be evaluated by the 

medicinal chemistry experts, based on their expertise and the communication with other 

professionals of the pharmaceutical world). These limitations of the technique of 

molecular docking may be the reason for the very low difference between the results 

coming from the cases in which sodium is considered or not in the calculations. 
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3. Materials and Methods 

For each of the 19 GPCR class A subfamilies, the crystal structures available in the Protein 

Data Bank20 (PDB, latest access 15 January 2022) were inspected. Each entry with a human 

GPCR protein complexed with a small molecule orthosteric antagonist crystallized 

together was selected to build the starting database of our study. If multiple crystals of a 

protein bound to the same ligand existed, only the highest resolution crystal with the 

sodium ion present was selected. To give a more comprehensive panoramic of the role of 

allosteric sodium in GPCR binding, the structures with an inverse agonist were also 

considered for this study (e.g., 6K1Q, 7F83, 7B6W, 7BVQ). In the end, 118 protein–ligand 

complexes involving a GPCR and a small molecule antagonist were obtained (a 

comprehensive list is reported in the Supplementary Materials, Table S1). 

The 118 complexes were downloaded from the PDB and imported into Molecular 

Operating Environment (MOE) suite21, the main molecular modeling program that we 

used in this work. Each system was then prepared with a protocol involving the tools 

included in the MOE package. First, the “Structure Preparation” program was used to 

rebuild the small missing loops in the structures and to adequately select the orientation 

of alternate crystallographic residues based on occupancy. Then, the most proper 

protonation state for each amino acid was determined with the “Protonate 3D” tool, 

setting 7.4 as the pH value for the environment. Subsequently, the added hydrogen atoms 

were minimized with the AMBER10:EHT22 force field implemented in MOE. Finally, each 

non-protein, non-ligand, and non-sodium molecule was deleted from the systems, with 

an exception made for the water molecules solvating the sodium ion (we used 4 Å as the 

cut-off radius), when present.  

The systems were then separated based on whether they had the sodium ion crystallized 

in their original PDB structure. Among all the complexes downloaded, 26 already had the 

sodium present in the crystal, while 92 did not (the distinction is highlighted in the 

Supplementary Materials, Table S1). All the systems in which the sodium was not present 

were properly treated, inserting the sodium ion with its solvation water molecules. The 

position of the sodium and the water molecules was chosen according to the PDB crystal 

5IU4, the complex with the best resolution, R-value, and R-free value balance among all 
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the entries considered. This choice was also supported by the fact that when superposing 

all the 7TM regions of the protein–ligand systems with the sodium crystallized, the 

position of this alkaline ion is very conservative, as observable from Figure 5 (the average 

RMSD between the coordinates of the sodium ions and the sodium ion of the reference 

structure 5IU4 was calculated to be 0.75 Å). It is important to mention that the crystal 

5IU4 was not considered for the docking calculations because, even if its resolution is 

optimal, it is significantly mutated in the 7TM region. Another ADORA2 crystal structure 

bearing the same ligand (ZMA), 6LPJ, shows a very similar resolution (1.80 Å versus the 

1.72 Å of 5IU4) and does not show mutations in the 7TM domain. 

Our self-docking approach consisted of the separation of each ligand from its 

crystallographic GPCR structure, its preparation, and its molecular docking inside the 

orthosteric binding site with three different orthogonal programs, namely GOLD23 (based 

on a genetic algorithm, developed and licensed by CCDC), Glide24(a systematic docking 

program developed and distributed by Schrödinger), and PLANTS25 (an ant colony 

optimization algorithm developed by the University of Tübingen). For each of the 

programs, all the scoring functions supported were used. Specifically, GOLD was used in 

four different parallel runs, applying the scoring functions “goldscore”, “chemscore”, 

“asp”, and “plp”. The two Glide calculations for each ligand were executed first with 

“Glide-SP” and then with “Glide-XP”, while the docking runs with PLANTS exploited the 

scoring functions “PLANTSCHEMPLP” and “PLANTSPLP”. For each program–scoring function 

pair, five poses were produced for each ligand, and each of those was compared with the 

crystallographic pose to calculate the root-mean-square deviation (RMSD) between the 

coordinates of the two conformations. 

This whole procedure was executed twice, first setting the docking programs to not 

consider the sodium ion and the water molecules solvating it and then setting the 

programs to take into account both sodium and the water molecules placed at 4 Å or 

nearer to the alkaline ion.  
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4. Conclusions 

In the present study, we examined the effect of considering the allosteric sodium ion 

when molecular docking approaches are applied to GPCR antagonists. To accomplish our 

task, we collected 118 GPCR–antagonist complexes, both with and without the sodium 

ion present in the crystallographic structure. For the systems in which this alkaline ion was 

not present, a manual insertion of the sodium and its surrounding water molecules was 

executed based on superposition with a very high resolution structure (PDB: 5IU4), after 

having established that the position of the ion is very conservative in the GPCR–antagonist 

crystals. Then, we executed self-docking experiments of the orthosteric GPCR ligands with 

three orthogonal docking programs (GOLD, Glide, and PLANTS) both considering and not 

considering the sodium ion and its surrounding water molecules. What emerged from the 

present work is the finding that the performance of the docking programs (enucleated in 

three different metrics, “RMSD_average”, “RMSD_sorted”, and “RMSD_scor_func”) does 

not significantly change between the two cited scenarios. Going deeper into the analysis 

of the results, we highlighted that a small increment in the docking programs’ 

performance is observable if the sodium ion is kept during the docking runs just for those 

crystal structures in which the alkaline ion was resolved, while for the other complexes 

the trend is the opposite, favoring the solution of not considering sodium during the 

docking calculations. The outcomes of the present work are helpful to increase the 

knowledge about the performance of docking programs when applied to research about 

GPCR antagonists, and we are confident that the pharmaceutical experts that are putting 

effort into this fascinating field will benefit from our work. 
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Abstract 

Adenosine receptors have been a promising class of targets for the development of new 

therapies for several diseases. In recent years a renewed interest in this field has risen, 

thanks to the implementation of a novel class of agonists that lack the ribose moiety, once 

considered essential for the agonistic profile. Recently an X-ray crystal structure of A2A 

Adenosine Receptor has been solved providing insights about the receptor activation from 

this novel class of agonists. Starting from this structural information, we have performed 

supervised molecular dynamics (SuMD) simulations to investigate the binding pathway of 

a non-nucleoside adenosine receptor agonist, as well as one of three classic agonists. 

Furthermore, we analyzed the possible role of water molecules in receptor activation. 
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1. Introduction 

Adenosine is the endogenous agonist of a group of class A G protein-coupled receptors 

(GPCRs) named adenosine receptors (AR); four receptors belong to this family: A1, A2A, 

A2B, and A3. A1 and A3 are generally coupled to Gαi protein (so they inhibit adenylate cyclase 

enzyme upon activation), A2A and A2B are coupled to Gαs protein (and therefore stimulate 

the production of cAMP upon activation)1. 

AR are targets of interest for the treatment of several diseases2: Parkinson’s disease3,4, 

asthma5, pain treatment6, several cancer types7, and cardiovascular diseases8. Despite 

this broad range of potential therapeutic applications, only two AR ligands have been 

approved: the A2A antagonist Istradefylline, approved for the treatment of Parkinson’s 

disease, and the A2A agonist Regadenoson, used as a coronary vasodilator. One of the 

main problems in the translation of AR ligands into therapeutic agents is the presence of 

unacceptable side effects due to the lack of selectivity of the drug candidates among 

different AR subtypes as well as off-target effects9. 

Progress was made in the field of AR agonists as therapeutic agents10 with the publication 

by Bayer of some patents regarding non-nucleoside AR agonists11. While this novel class 

of AR agonists presents several advantages over classic adenosine-derived ligands (easier 

synthesis, improved pharmacokinetics, and oral bioavailability), the AR activation for this 

class of compounds has been difficult to understand since they lack the ribose moiety 

which was considered essential for the agonistic profile of AR ligands12. Some 

modifications on this moiety are tolerated and can improve both metabolic stability and 

potency, but often these alterations on the ribose unit lead to inactive compounds or 

switch the ligand activity toward an antagonistic profile13. 

To gain some insights on the structural basis of AR activation several site-directed 

mutagenesis data have been collected over the years14. Interestingly it was proven that 

the non-nucleoside A2A agonist LUF5834 is sensitive to mutagenesis experiments in a 

different way compared to classic adenosine-like AR agonists like CGS2168015. In 

particular, the agonistic profile of LUF5834 is not affected when Ser-277 and Thr-88 are 

mutated in alanine (note that the enumeration, as well as in all this work, refers to A2A). 
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These two residues are essential for the agonistic activity of classic AR agonists along with 

His-278.  

 

Figure 10. Binding modes of Adenosine (left) and of LUF5833 (right) as observed in X-ray crystal structures 

(PDB code 2YDO and 7ARO respectively). Please note that the AR used to obtain the crystal structure with 

LUF5833 presents some thermostabilizing mutations including Ser-277. Other AR agonists, like CGS21680 

and NECA, also interact with His-250 and Thr-88. The binding mode of these two ligands can be found in 

Figure 2. 

 

Fundamental progress in the comprehension of the structural basis of the agonistic action 

of non-nucleoside agonists has been made recently with the obtainment of the X-ray 

crystal structure of A2A AR in complex with a close analog of LUF5834, LUF583316. 

Interestingly the ligand does not form any hydrogen bonds with the abovementioned 

residues that are considered essential for the activation of A2A AR (Thr-88, Ser-277, His-

278).  

In Figure 1, a comparison of the binding mode (as observed in X-ray crystal structures) 

that the endogenous agonist adenosine and of LUF5833 adopt in the orthosteric binding 

site of A2A AR is reported. 
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Starting from this structural information, in the present work we have investigated the 

recognition process of LUF5833 and different classic adenosine-like agonists: CGS21680, 

NECA, and adenosine itself. The study has been carried out using supervised molecular 

dynamics simulations (SuMD) in order to gain structural information beyond the observed 

final bound state. SuMD is indeed a molecular dynamics-based approach that allows the 

sampling of events involving infrequent particle collision such as protein-ligand binding, 

without applying any energetic bias to the system. 

The comparison between the binding trajectories collected for the two different classes 

of AR agonists reveals a different recognition pathway. Moreover, a detailed analysis of 

the behavior of water molecules during the binding event provides some insights into the 

possible role of the solvent molecules in the activation of the A2A adenosine receptor. 

2. Materials and Methods 

2.1. System Setup 

The three-dimensional structure of the protein-ligand complexes examined in this work 

(PDB codes: 2YDO, 2YDV, 4UG2, and 7ARO) was retrieved from the Protein Data Bank 

(PDB) and prepared for subsequent calculations using various tools provided by the 

Molecular Operating Environment (MOE) suite, version 2019.0117. Residues with 

alternate conformation were assigned to the one with the highest occupancy. Missing 

hydrogen atoms were added to the system with the Protonate3D tool, assigning each 

titratable residue to the most probable protonation state at pH = 7.4. Crystallographic 

water molecules, ions, and other molecules present in the crystallization buffer were then 

removed, and the ligand was moved away from the binding site into the bulk, at a distance 

of at least 30 Å from the nearest receptor atom (higher than the cutoff chosen for 

electrostatic interaction computation). 

The system preparation for Supervised Molecular Dynamics (SuMD) simulations was 

carried out with Visualize Molecular Dynamics (VMD18) version 1.9.3. At first, the protein-

ligand system was explicitly solvated in a cubic TIP3P19 water box, ensuring a distance of 

15 Å between the box borders and any protein atom. Then, the system charge was 

neutralized by the addition of sodium and chlorine ions until a physiological concentration 
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(0.154 M) was reached. Finally, the receptor was embedded in a lipid bilayer consisting of 

phosphatidylcholine (POPC) units.  

From a methodological point of view, one main limitation of the SuMD technique, as is 

the case for traditional molecular dynamics (MD), is the fact that simulations are carried 

out assuming fixed protonation states. The prediction of the protonation state of 

titratable residues relies on a static structure (the crystal complex, which is the starting 

point for the simulations) and can sometimes be imprecise in those cases where the 

protein is flexible20 or the residues are highly buried21. Furthermore, the co-existence of 

protonated and deprotonated states and dynamical processes coupled to a change in 

protonation states cannot be directly studied if the protonation states are fixed.  

A second limitation is represented by the fact that the lipid constitution of the 

phospholipid membrane does not include the presence of cholesterol, which could exert 

some form of allosteric modulation on AR22. 

2.2. Molecular Dynamics 

All simulations were carried out using the ACEMD23 molecular dynamics engine. The 

system was described using parameters from the CHARMM3624 force field (protein, lipids, 

ions, and water molecules), while ligand parameters were retrieved from Paramchem25, 

a web front-end for the CgenFF26 force field. If the parameters associated with specific 

dihedral angles of ligands presented high penalties, these have been parametrized using 

FFParam27. A QM scansion of the dihedral angle has been performed using MP2 level of 

theory with 6-31G** basis set, then the QM profile has then been fitted to retrieve the 

new force field parameters.  

The simulation protocol consisted of a four-stage equilibration phase, followed by a 

productive SuMD simulation phase. For both equilibration and productive simulations, 

the integration timestep was set to 2 fs, the temperature was set to 310 K through a 

Langevin thermostat (friction coefficient = 0.1 ps-1), the M-SHAKE algorithm was employed 

to constrain the length of bonds involving hydrogen atoms and the particle-mesh Ewald 

(PME28) was exploited to compute electrostatic interactions (grid length = 1 Å). Finally, a 

9.0 Å cutoff was applied to long-term interactions. 
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2.3. Equilibration phase 

Before equilibration MD simulations, 1500 steps of energy minimization using the 

conjugate-gradient method were performed, to remove clashes and bad contacts within 

the system. The first three equilibration MD simulations were carried out in the 

isothermal-isobaric ensemble (NPT), maintaining the system pressure fixed at 1 atm 

through the Berendsen barostat29, while the fourth and final one was performed in the 

isothermal ensemble (NVT). 

The first equilibration stage consisted of a 5 ns simulation with 1 Kcal mol-1 Å-2 harmonic 

positional constraints applied on each receptor, ligand, and membrane atom. The second 

equilibration stage consisted of a 10 ns simulation with the same constraints applied only 

on each protein, ligand, and phosphorus atom. The third equilibration stage consisted of 

a 5 ns simulation with the same constraints applied only on the protein alpha carbons and 

on ligand atoms. Finally, a 10 ns equilibration MD simulation was performed without any 

constraints applied to the system. 

2.4. Supervised Molecular Dynamics simulations 

SuMD30 is an enhanced sampling MD method that allows investigating molecular 

recognition processes at an atomistic level of detail in the nanosecond timescale without 

any energetic bias. The SuMD code is written in Python 2.7 and mainly exploits the Numpy 

and ProDy31 packages to perform geometric supervision over a series of short classic MD 

trajectories (defined as “SuMD steps”) carried out with the ACEMD engine. As reported in 

the original publication, each suMD step lasts 600 ps. 

During each SuMD step, the distance between the center of mass (i.e., the hypothetical 

point where the entire mass of an object is assumed to be concentrated) of both the ligand 

and the binding site is monitored and collected at 5 evenly spaced time intervals. At the 

end of each step, these data are fitted in a straight line, which is then processed by a tabù-

like algorithm: if the line slope is negative (indicating that the ligand is approaching the 

binding site), the step is considered productive and retained for the generation of the final 

MD trajectory, while the final state of this simulation is set as the initial state for the 

successive step. On the contrary, in the case where the slope is positive (indicating that 
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the ligand is not approaching the binding site), the step is considered not productive and 

is discarded: in this case, the step is repeated reassigning the velocities through the 

Langevin thermostat. This process continues until the distance between the two centers 

of mass gets below 5 Å: from that point on, the supervision is turned off and the simulation 

proceeds as a classic MD simulation for other 30 SuMD steps. 

2.5. Trajectory analysis 

A per-residue energetic analysis was performed using an in-house developed Python 

script.  

At first, the MDAnalysis32,33 Python package is exploited to parse each MD trajectory and 

compute the number of contacts between the ligand and each protein residue, using a 

cutoff distance of 4.5 Å.  

Afterward, the interaction energy (defined as the sum of the electrostatic and van der 

Waals contribution) is computed between the ligand and each one of the top 25 most 

contacted residues alongside each MD trajectory using the NAMD Energy Plugin34 for 

VMD (version 1.4). 

Finally, a heatmap is generated exploiting the Seaborn Python package: on the horizontal 

axis the simulation time in nanoseconds is reported, while on the vertical axis the residue 

name and index are reported for each residue considered for this analysis. The interaction 

energy is then plotted onto the heatmap using a colormap which ranges from red 

(indicating positive energy values, i.e., a repulsive interaction) to blue (indicating negative 

energy values, i.e., an attractive interaction). The first and the third quartile with regards 

to the distribution of interaction energy values are used as mask values for the heatmap 

generation.  

To inspect the peculiar hydrodynamic profile of ligand LUF5833, the trajectory was 

analyzed with AquaMMapS35, an in-house developed tool that allows investigating the 

behavior of water molecules within a receptor, based on their persistency across an MD 

trajectory. For this purpose, the simulation box is discretized in a voxel grid and the 

occupancy value for each cell is calculated as the ratio between the number of frames in 

which a water molecule occupies that cell and the total number of frames.   
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3. Results and Discussion 

For all the four ligands a SuMD trajectory where the crystallographic observed binding 

mode is well reproduced has been collected. In Figure 2 the crystallographic binding mode 

and the final pose obtained with SuMD for the four ligands under examination are 

reported: as it can be seen the experimentally observed binding mode is well reproduced.  

 

 

 

Figure 2. The crystallographic binding mode (green) and the final pose obtained using SuMD (orange) for 

the four agonists used in this study (A: LUF5833; B: NECA, C: Adenosine; D: CGS21680). 
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Figure 3. Per-residue energetic analysis of the SuMD trajectory of CGS21680. 

 

Figure 4. Per-residue energetic analysis of the SuMD trajectory of Adenosine.  
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Figure 5. Per-residue energetic analysis of the SuMD trajectory of NECA. 

 

Figure 6. Per-residue energetic analysis of the SuMD trajectory of LUF5833.  
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Detailed analysis on each trajectory has been performed to understand the recognition 

process for the four agonists (Figures 3-6). This analysis consists of a per-residue 

decomposition of the interaction energy between the ligand and the protein, during the 

binding event.  

The binding pathway for the four ligands as well as the most contacted regions of the 

protein can be visualized in Figure 7 and the videos collected in the Supplementary 

Information. 

 

Figure 7. In the upper part of the Figure the protein surface is colored according to the number of contacts 

with the ligand during the trajectory (scale white to red, from less contacted to more contacted residues). 

In the lower part the SuMD trajectory is displayed superposing each frame. A: LUF5833; B: NECA; C: 

Adenosine; D: CGS21680. 

 

The trajectory of LUF5833 has been prolonged for 25 ns at the end of the SuMD 

simulation. This prolonged trajectory has been analyzed using AquaMMapS (see Materials 

and Methods) to gain information on the possible role of the solvent in the activation 

mechanism of AR by non-nucleoside agonists.  

For comparison also the first part (before the ligand reaches the orthosteric site) of the 

SuMD trajectory of LUF5833 has been analyzed using AquaMMapS. This analysis can 
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provide some additional information on the solvent behavior in the apo form of the 

receptor. The results of these analyses are reported in Figure 8.  

 

Figure 8. Results of the AquaMMapS analysis for the “APO” trajectory on the left and for the prolonged 

SuMD trajectory of LUF5833. The cells where the water molecules have an occupancy value higher than 

25% are displayed as spheres coloured according to the occupancy value (from white to blue). 

 

As it can be observed, the three classic ribose-containing agonists approach the protein 

taking contacts in a region that includes residues of the extracellular loop (ECL) 2 and 3 

and transmembrane helical segments (TMs) 4, 5, and 6. This meta-binding site has already 

been described in our previous works36,37. LUF5833 instead approaches the receptor from 

the other side, making contacts in the region between the extracellular portion of TMs 1, 

2, and 7. This suggests a different binding pathway for the two classes of AR agonists. 

Trajectory analysis correctly highlights the pivotal role that is played by Phe-168 (which is 

involved in a π-stacking with both types of agonists), according to mutagenesis studies 

which flagged this residue as fundamental for ligand binding15. Moreover, Asn-253, which 

establishes a double hydrogen bond with the adenine moiety of ribose agonists and a 

single hydrogen bond through one of the two nitrile groups of LUF5833, is also marked as 

an important residue for the recognition of both classes of agonists, according to 

mutagenesis data that illustrate how an N253A mutation would be detrimental for the 

activity of both ribose and non-ribose agonists15. Aside from these common interaction 



SCIENTIFIC PUBLICATIONS 

 

Bolcato et al., 2022 435 
 

features that regard the adenine or “pseudo-adenine” portion of the molecule, the main 

difference in the recognition pattern of these two classes of agonists is related to the role 

of Ser-277 and Thr-88: as highlighted by our trajectory analysis, neither of these two 

residues establishes a direct interaction with LUF5833, in agreement with mutagenesis 

data which shows that mutation of these two residues negatively impact ribose agonists 

but have no effect on the affinity of non-ribose one15. 

Regarding the solvent behavior in the orthosteric site, it is interesting to note that the 

water molecules in the apo form of the receptor seem to adopt an interactive pattern that 

mimics the one observed for agonists ligands. Indeed, key residues for the activation of 

the receptor, like Thr-88, His-250, Ser-277, and His-278 are well solvated and stabilize 

water molecules through hydrogen bonds.  

It is tempting to argue that this observation (the organization of solvent molecules in a 

way that mimics agonists interactions) can provide a possible explanation for the concept 

of receptor basal activity, defined as the activation of the receptor in the absence of the 

ligand.  

In detail, it seems that the stable water molecule interacting with Ser-277 is displaced 

upon LUF5833 binding while the water molecule interacting with His-278 is further 

stabilized by the cyano group in position 3. This water molecule is displayed in Figure 8. 

So, while it is true that LUF5833 does not interact directly with any key residues for the 

receptor activation, at least one of these interactions (the one with His-278) is still present 

and is mediated by a stable water molecule. Interestingly also the interaction between 

Adenosine and His-250 is mediated by a bridging water molecule, while NECA and 

CGS21680 interact with this residue using their amide tail.  

Concerning water-bridged interactions, AquaMMapS analysis illustrates how LUF5833 

seems to stabilize two water molecules that form a hydrogen bond bridge between His-

250 and Thr-88 (Figure 8), playing a similar role to the amide tail of both NECA and CGS. 

Mutation of both residues has a detrimental role on ribose agonists' affinity, coherently 

with their direct interaction with the ribose moiety38,39. This could indicate that, while not 

interacting with His-250 and Thr-88, non-ribose agonists such as LUF5833 could stabilize 
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a water molecule network that mimics the same interaction pattern of ribose agonists. 

The hydrophobic pocket which houses these stable water molecules is completed by Leu-

85: this residue was determined to have a big impact on the affinity of ribose agonists 

such as CGS but has a smaller effect on the affinity of non-ribose agonists such as 

LUF583315. This could be explained by the fact that this residue interacts directly with the 

ligand in the case of CGS, while in the case of LUF5833 its main involvement seems to be 

in the definition of a “hydrophobic” trap for these two water molecules that mimic the 

interaction pattern of ribose agonists. Notably, this bound water network extends also 

towards Asn-253: based on mutagenesis studies which show that, in the case of non-

ribose agonists, the reduction of potency is mainly related to efficiency rather than on 

binding affinity, it is also tempting to speculate that this water network stabilized by 

LUF5833 is somehow involved in receptor activation, thereby validating the role of 

LUF5833 as a partial agonist. 

Altogether, our SuMD simulations provide an overview of the mechanistic details 

regarding the recognition process between AR and their agonists, shedding light upon 

differences in the binding event between nucleoside and non-nucleoside ones. Despite 

the useful information that can be gathered from our simulations, some AR-specific 

features cannot be captured by the SuMD technique, thereby impairing a clear and 

complete depiction of the agonist mechanism. Firstly, our simulations consider the 

interaction between one single ligand molecule and an individual receptor in a defined 

lipidic and ionic environment: despite being a sufficiently accurate approximation of 

reality for the evaluation of geometric properties related to the binding event, these 

boundary conditions cannot take into account the complex network of interactions of AR 

within a cellular environment, including the ones with themselves, other GPCRs and a 

plethora of ancillary factors40, which leads to surprising pharmacological properties41,42. 

Secondly, a key aspect of AR agonist signaling is portrayed by the ligand residence time, 

which has been flagged as a more efficient predictor of “in vivo” functional efficacy than 

binding affinity43. Although the evaluation of this aspect of agonist signaling was beyond 

the scope of this scientific work, it is important to underline that the association process 

is only the first part of a more complex and intricate story.  
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Abstract 

New therapeutic strategies for glioblastoma treatment, especially tackling the tumour’s 

glioblastoma stem cell (GSC) component, are an urgent medical need. Recently, 

mitochondrial translation inhibition has been shown to affect GSC growth, clonogenicity, 

and self-renewal capability, therefore becoming an attractive therapeutic target. The 

combination of streptogramins B and A antibiotics quinupristin/dalfopristin (Q/D), which 

inhibits mitochondrial ribosome function, affects GSCs more effectively in vitro than the 

standard of care temozolomide. Here, docking calculations based on the cryo-EM 

structure of the Q/D-bound mitochondrial ribosome have been used to develop a series 

of streptogramin A derivatives. We obtained twenty-two new and known molecules 

starting from the dalfopristin and virginiamycin M1 scaffolds. A structure-activity 

relationship refinement was performed to evaluate the capability of these compounds to 

suppress GSC growth and inhibit mitochondrial translation, either alone or in combination 

with quinupristin. Finally, quantitative ultra HPLC-mass spectrometry allowed us to assess 

the cell penetration of some of these derivatives. Among all, the fluorine derivatives of 

dalfopristin and virginiamycin M1, (16R)-1e and (16R)-2e, respectively, and flopristin 
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resulted in being more potent than the corresponding lead compounds and penetrating 

to a greater extent into the cells. We, therefore, propose these three compounds for 

further evaluation in vivo as antineoplastic agents. 

 

1. Introduction 

IDH-wild type glioblastoma (GBM) is the most common primary brain tumour in adults, 

classified as grade IV by the World Health Organisation1. GBM is highly aggressive and 

inevitably lethal. Indeed, despite the radical standard of care treatment, based on 

extensive surgical resection, cycles of radiotherapy and temozolomide-based 

chemotherapy, the median survival rate is around 12-15 months after diagnosis, and the 

patients’ 5-year survival remains very low, around 5.5%2,3. Therefore, new therapeutic 

approaches for GBM treatment are desperately needed. 

We recently showed that inhibition of mitochondrial translation suppresses glioblastoma 

stem cell (GSC) growth in vitro4. Among the different cell types comprising the tumour, 

GSCs are responsible for tumour initiation and development, treatment resistance, and 

hence disease recurrence5,6 and are a promising therapeutic target. GSCs have been 

shown to rely on oxidative phosphorylation (OXPHOS) for their metabolic and energetic 

demands7,8, along with several types of other cancer stem cells9–11. OXPHOS complexes 

are composed of proteins most of which are translated by the cytosolic ribosomes while 

a minor part, thirteen proteins, are translated by the mitoribosomes. Thus, the assembly 

of functional OXPHOS complexes depends both on the cytosolic and mitochondrial 

translation machinery. Human mitoribosomes are descendants of bacterial ribosomes 

and, despite the evolutionary changes that occurred, still share with their bacterial 

counterparts structural and functional similarities, particularly considering the functional 

ribosomal core12,13. Based on these similarities, we hypothesised that antibiotics targeting 

bacterial ribosomes could bind to mitoribosomes and inhibit mitochondrial translation4. 

Among the different compounds screened, the combinations of streptogramins B and A 

quinupristin/dalfopristin (Q/D) and quinupristin/virginiamycin M1 (Q/VM1) were selected 

as the most potent (structures depicted in Fig. 1)4. Dalfopristin (D, 1) is a semisynthetic 

derivative of virginiamycin M1 (VM1, 2), and it rapidly hydrolyses to VM1 (2) at pH 7.4 and 
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37 °C14. Given that Q/D (30:70 w/w, natural ratio preserved in the therapeutic 

formulation) is an FDA-approved antibiotic for the treatment of skin infections15, it was 

selected for further investigation. Via Cryo-EM, we showed that Q/D acts by binding to 

the large subunit of the mitoribosome, with Q (3) at the entrance to the exit tunnel for 

nascent polypeptides and VM1 (2), the hydrolysis product of D (1), at the peptidyl-

transferase centre (PDB ID: 6I9R). Upon binding, Q/D inhibits mitochondrial protein 

synthesis, affecting functional OXPHOS complexes assembly, finally leading to detrimental 

effects on GSCs viability4. Interestingly, we found that Q/D is almost 15 times more 

effective than temozolomide (TMZ) in terms of growth inhibition of GSCs, regardless of 

MGMT promoter methylation status. Indeed, the growth inhibition 50 (GI50) value for Q/D 

was 6.5 ± 1.1 μM and 20.2 ± 1.4 μM, for COMI and VIPI GSCs, respectively, whereas the 

GI50 value for TMZ was 96.5 ± 15.2 μM and 337.7 ± 35.5 μM, for COMI and VIPI cells, 

respectively4. 

 

 

Figure 1. Molecular structures of dalfopristin (1), virginiamycin M1 (2), and quinupristin (3). 

Although Q/D is an already FDA-approved bacterial antibiotic traded with the name of 

Synercid®, we wondered if Q and D specificity and potency could be improved by 



SCIENTIFIC PUBLICATIONS 

 

Sighel et al., 2022 444 
 

increasing their affinity toward the mitoribosome by selectively introducing suitable 

modifications.  

Herein, we report the assessment of the biological activity of Q (3) and D (1) tested as 

separate molecules, and the docking-supported design, synthesis, and biological 

evaluation of D (1) and VM1 (2) derivatives as anti-IDH-wt glioblastoma agents. All 

derivatives were obtained by introducing chemical modifications on different positions of 

the D scaffold by a semisynthetic approach. All compounds were tested for their ability to 

suppress GSC growth, either alone or in combination with Q (3), and the deriving growth 

inhibition 50 (GI50) values were calculated. In addition, all compounds were evaluated for 

their ability to inhibit mitochondrial translation. At last, we developed a quantitative 

ultrahigh-performance liquid chromatography-mass spectroscopy (UHPLC-MS) method to 

evaluate the capability of some derivatives to enter the cell and determine the extent of 

such penetration compared to D (1) and VM1 (2).  

2. Results and Discussion 

2.1 Choosing between quinupristin and dalfopristin 

The cryo-EM structure of Q/D bound to the human mitoribosome showed the specific 

binding sites of the two molecules and the consequent rearrangements they induce4. This 

structural information sets the basis for the rational design of new chemical derivatives. 

To determine whether to focus on one or both the molecular scaffolds, D (1) and Q (3) 

were evaluated as separate molecules, taking into account their effect on GSC growth and 

their ability to inhibit mitochondrial translation.  

Two GSC lines, namely COMI and VIPI, were treated with a range of drug concentrations 

for 48 h, and cell viability was determined using Hoechst 33342 and propidium iodide (PI). 

In detail, PI-positive cells were subtracted from Hoechst 33342 positive cells, in order to 

calculate the number of live cells. Dose-response curves were constructed, and the 

deriving GI50 values were calculated. Both D (1) and Q (3) inhibited GSC growth more or 

less to the same extent as the Q/D combination (Fig. 2a).  

Next, the effect of the single molecules on mitochondrial translation was determined 

using two different techniques: 35S metabolic labelling, which allows the detection of 

nascent proteins, and immunoblotting. Regarding immunoblotting, the expression levels 
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of NADH dehydrogenase 3 (ND3), which belongs to complex I of the electron transport 

chain, and of cytochrome c oxidase subunit 1 (COX1), cytochrome c oxidase subunit 2 

(COX2) and cytochrome c oxidase subunit 4 (COX4), three proteins belonging to complex 

IV of the electron transport chain, were taken into account as representative of 

mitochondrial and cytosolic translation activity. Indeed, ND3, COX1, and COX2 are 

mitochondrially encoded and translated by the mitochondrial translation system, 

whereas COX4 is nuclearly encoded and translated by the cytosolic translation system.  

 

Figure 2. Comparison of quinupristin (Q, 3) and dalfopristin (D, 1). 

a. Representative dose-response curves for Q/D, Q (3), and D (1) on COMI and VIPI cells. The GI50 values 

were calculated from n=3 biological replicates, n=4 technical replicates each, mean ± SD. b. Effects of Q/D, 

Q, and D 24 h treatment on mitochondrial translation on COMI cells as assayed by 35S metabolic labelling 

assay. Chloramphenicol (CAM) was used as a positive control. One representative result is shown, n=3 

biological replicates. c. Immunoblotting on COMI cells after 48 h treatment with Q/D, D, or Q. Effects on 
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ND3, COX1, COX2, and COX4 proteins are shown. Beta tubulin was used as a loading control. One 

representative result, n=3 biological replicates. 

If the mitochondrial translation is inhibited, a decrease or absence of newly synthesised 

mitochondrial proteins and a selective decrease in ND3, COX1, and COX2 expression 

levels, but not in those of COX4, should be observed. 

While D (1) inhibited mitochondrial translation as efficiently as Q/D, Q (3) did not (Fig. 2b-

c). The incapability of Q (3) alone to inhibit mitochondrial translation could be related to 

the observation in bacteria that streptogramins B alone have a lower affinity for the 

ribosome compared to the combination of streptogramins A and B16,17. In fact, when 

streptogramins A bind to the bacterial ribosome, they induce a conformational change of 

the A2062 residue (corresponding to A2725 in the mitoribosome), which favours the 

subsequent binding of streptogramins B14. On the contrary, streptogramins A do not 

require streptogramins B to bind to the bacterial ribosome, even though the presence of 

streptogramins B potentiates their activity in bacteria. Based on these results, we decided 

to focus on D (1) to design and synthesise derivatives with increased affinity for the 

mitoribosome. 

 

2.2 Chemistry  

Dalfopristin (D, 1) belongs to group A streptogramins, which are 23-membered 

macrocyclic polyketide/non-ribosomal peptide hybrids. It was developed by Rhône-

Poulenc as a water-soluble salt derivative starting from virginiamycin M1 (VM1, 2) upon 

the introduction of an N,N-diethylaminoethylsulfonyl chain on C26. 

 

Figure 3. Sites of structural modifications on dalfopristin (D, 1) scaffold.  
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We identified three accessible positions on the D (1) scaffold to introduce structural 

modifications by semisynthesis: C10/C13, C16, and C26, as depicted in Fig. 3. Some of the 

derivatives produced are already known; others instead are new. D (1) was obtained by 

chromatographic isolation from the commercial Synercid®; VM1, of which a total 

synthesis consisting of 6-8 linear steps from simple chemical building blocks has been 

recently reported18,19, was obtained by D (1) hydrolysis (Fig. 1) in suitable amount for the 

production of derivatives. 

 

2.2.1 C10/C13 modifications 

A visual inspection of the VM1 (2) binding mode within the mitoribosome streptogramin 

A binding site (PDB ID: 6I9R) showed a relatively unoccupied region near the C10/C13 

diene. This observation led us to investigate the possibility of obtaining new Diels-Alder 

products in this position.  

The reaction of D (1) or VM1 (2) with maleic anhydride or maleimide as dienophiles 

produced the Diels-Alder adducts 1a, 1b, and 2a, 2b, respectively, in moderate to good 

yields under AlCl3 catalysis. Our choice for the dienophiles was led by the possibility of 

introducing groups with different properties for interacting with the mitoribosome space. 

Docking calculations were performed to evaluate the putative binding mode of these four 

Diels-Alder derivatives within the mitoribosome streptogramin A binding site. As well 

known, Diels-Alder cycloaddition generates up to four stereocentres in a single concerted 

reaction step, increasing significantly the molecular complexity. Each of the four possible 

diastereomers generated (structures depicted in Fig. S1) was evaluated independently. 

The results of the docking calculations for these compounds and the comparison between 

the predicted binding mode for these derivatives and the reference VM1 (2) are reported 

in Fig. S2 and Video V1. As can be seen by the per-residue decomposition of electrostatic 

and hydrophobic interactions, the diastereomer presenting all syn substituents on the 

stereocentres in the cyclohexane ring (diastereomer 4, Fig. S1) has the most favourable 

interaction profile out of all four possible combinations. In detail, the added moiety 

stretches below the plane defined by the macrocycle ring, while the defining features of 

VM1 (2) binding mode, such as interaction with residues G2724, A2725, A2938, C2939, 

G2992, U2993, and U3072, are generally conserved or strengthened (Fig. 4). On the 
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contrary, the other diastereomers likely have a worse predicted interaction with the 

mitoribosome streptogramin A binding site. This can be because the orientation of the 

added moiety causes steric hindrance or conformational changes to the macrocycle ring 

preventing the conservation of the key VM1 interaction features, as highlighted by the 

per-residue interaction energy analysis (Fig. S2).  

Since interactions with the target are predicted to involve mainly the carbonyl groups, 

which are shared between the maleimide and the maleic anhydride derivatives, there is 

no notable difference in the predicted interaction pattern between them. 

Aside from the predicted interaction pattern, the cyclization with the maleic anhydride or 

maleimide dienophiles leads to the reduction of the conformational freedom of the 

macrocycle ring increasing, in principle, the fraction of time that the compounds spend in 

the conformation competent for the binding to the mitoribosome.  

 

Figure 4. a. Superposition between the Cryo-EM structure of VM1 (2) within the mitoribosome 

streptogramin A binding site (PDB ID: 6I9R, green) and the docking pose of compound 2b-4 (VM1 maleimide 

adduct, orange). The surface of the binding site is coloured according to residue lipophilicity, ranging from 

green (lipophilic) to violet (hydrophilic). b. 2D interaction diagram of the same pose reported in panel A for 

compound 2b-4. 

 

When we performed the Diels-Alder reaction, only one of the possible stereoisomers was 

produced in a substantial yield. Because of NMR spectra complexity20,21, which is also 

increased by the presence of conformational equilibria, and the difficult crystallisation of 

these macrocycles, the stereochemistry of the major isomers produced was not 

determined. However, according to several examples in the literature22,23, the major 
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product obtained may be the one resulting from the less hindered endo approach of the 

dienophile to the diene in its cis conformations as shown in Scheme 1 (diastereomer 1, 

Fig. S1). This is further supported by the use of AlCl3 as a catalyst, which is known to 

enhance the stereoselectivity of Diels-Alder reactions through stabilisation of the endo 

transition state24.  

 

 

 

 

Scheme 1. Diels-Alder derivatives obtained by reaction of C10/C13 diene of 1 or 2 with either maleic 

anhydride or maleimide as dienophiles. Reagents and conditions: (a) maleic anhydride or maleimide, 

dichloromethane, N2, rt, 1 h; AlCl3, -35 °C, 3 h; reflux, 16-36 h.  

 

2.2.2 C16 modifications 

Due to the chemical versatility of the carbonyl group present in C16, this position has been 

already extensively investigated in the past25–27. Fig. 5 shows the comparison between the 

VM1 (2) binding mode and the docking-predicted binding mode of a possible C16 

derivative (specifically, the 16R-hydroxyl derivative). As can be seen, the presence of a 

small, slightly hydrophilic and unoccupied subpocket near the C16 carbonyl group of 2 

suggests that the introduction of small substituents in the C16 position could theoretically 

improve the interaction with the mitoribosome.  
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Figure 5. a. Superposition between the Cryo-EM structure of VM1 (2) within the mitoribosome 

streptogramin A binding site (PDB ID: 6I9R, green) and the docking pose of compound (16R)-2c (VM1 

hydroxyl derivative, orange). The surface of the binding site is coloured according to residue lipophilicity, 

ranging from green (lipophilic) to violet (hydrophilic). b. 2D interaction diagram of the same pose reported 

in panel A for compound (16R)-2c. 

Several substituents were considered for the C16 positions, and their putative binding 

mode within the mitoribosome streptogramin A binding site was evaluated through 

docking calculations. These results and the comparison between the predicted binding 

mode for these derivatives and the reference VM1 (2) are reported in Fig. S3 and Video 

V2. Altogether, all examined substitutions are predicted not to alter the binding mode of 

VM1 (2), maintaining the binding features present in the 6I9R structure. In detail, the 

hydroxyl and N-methyl derivatives are predicted to improve the affinity for the receptor, 

respectively establishing hydrogen bonds or charge-π interactions with residues G2992, 

U2991 and C2939. In contrast, the fluorine derivative is predicted to ameliorate the 

affinity for the receptor through improved hydrophobic interaction with C2939 and 

U2991. 

Based on the computational analysis, the C16 derivatives reported in Scheme 2 were 

synthesised.   
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Scheme 2. Synthetic pathways to introduce C16 modifications.  

Series 1 R = SO2CH2CH2N(CH2CH3)2; series 2 R = H, Δ26,27. Reagents and conditions: (a) NaBH4, EtOH, 0 °C, 1 

h, C16 epimers separated by column chromatography on silica gel; (b) CH3NH2, CHCOOH (0.1 eq.), 

acetonitrile, N2, 0 °C to rt, 48 h; NaCNBH3, 0 °C, 3 h, C16 epimers separated by column chromatography on 

silica gel; (c) ethyl vinyl ether, pyridinium p-toluenesulfonate, dichloromethane, rt, 16 h; (d) NaBH4, ethanol, 

0 °C, 5 h, C16 epimers separated by column chromatography on silica gel; (e) diethylaminosulfur trifluoride, 

dichloromethane, N2, 0 °C to rt, 24 h; (f) pyridinium p-toluenesulfonate, methanol, rt, 24 h; (g) NaBH4, 

ethanol, 0 °C, 1 h; (h) Propyl isocyanate, 4-dimethylaminopyridine, pyridine, dichloromethane, 16 h.   
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The selective reduction of the C16 keto group led to the formation of an additional 

stereocentre, resulting in a diastereoisomeric mixture of 16R and 16S diols, which were 

successfully separated through column chromatography28. Compounds (16R)-1c, (16S)-1c 

and (16R)-2c, (16S)-2c were obtained starting from 1 and 2, respectively. 

The C16 reductive amination by reacting 1 or 2 with methylamine followed by NaBH3CN 

addition provided the corresponding secondary amines ((16R)-1d, (16S)-1d, and (16R)-2d, 

(16S)-2d) (Scheme 2) as a mixture of the two possible epimers, which were separated 

through column chromatography29. 

Fluorinated compounds are frequently considered in medicinal chemistry to increase 

metabolic stability, modulate physicochemical properties and favour the binding affinity 

for the biological target, leading to the development of a wide series of highly effective 

drugs30. During the optimisation of the antibacterial activity of 2 in the 1990s, fluorine 

introduction was the most interesting and promising modification performed on the C16 

position26,27. Therefore, we have considered the production of 16R and 16S fluorine 

derivatives starting from either 1 or 2. Compounds (16R)-1e, (16S)-1e and (16R)-2e, (16S)-

2e were obtained as depicted in Scheme 2. The hydroxyl group in C14 of 1 or 2 was 

protected via acetal formation using ethyl vinyl ether (EVE) in solvent-free conditions and 

pyridinium p-toluenesulfonate (PPTS) as a weakly acidic catalyst. The use of EVE led to the 

introduction of a further stereocentre on the inserted protecting group. The two epimeric 

acetals, obtained in comparable amounts, were not separated for the subsequent steps 

since the stereocentre introduced is removed in the deprotection step. Subsequently, the 

C16 carbonyl group was reduced, obtaining a diastereomeric mixture of 16R and 16S 

compounds, which were successfully separated through column chromatography on silica 

gel. Fluorination of the C16 hydroxyl group occurred rapidly using diethylaminosulfur 

trifluoride (DAST), as previously reported26,27,31,32. The DAST-mediated SN2 reaction 

occurred with the inversion of the configuration of the incoming substituent and 

proceeded till the complete conversion of the starting material. Removal of the protecting 

group was obtained in high yields under mildly acidic conditions.  

After FDA approval of Q/D, Rhône-Poulenc (then Aventis Pharma, now Sanofi) actively 

worked on the synthesis of second-generation orally available streptogramin analogues. 

This campaign led to the selection of the combination of the streptogramin A flopristin (4) 
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and the streptogramin B linopristin, also known as NXL103. NXL103 is now in phase II 

clinical trials for acute bacterial skin and skin structure infections and community-acquired 

pneumonia33. Since flopristin (4) was not available on the market, we produced it starting 

from (16R)-2e by C26-C27 double bond reduction using NaBH4 in ethanol. As expected, 

the reaction produced a highly complex mixture of products, but we managed to isolate 

flopristin (4) in pure form (Scheme 2).  

As previously mentioned, it has been reported that heating or treating 2 with strong acids 

leads to dehydration of the C14 hydroxyl group to give a highly stable trienone25. 

Effectively, we obtained the formation of 1i and 2i, the trienone derivatives of 1 and 2, 

respectively, even in the presence of mild acidic conditions (Scheme 2).  

 

2.2.3 C26 modifications 

A visual comparison of the docking-predicted binding mode for D (1) and VM1 (2) in the 

6I9R complex showed that 1 retains the key features of the binding mode of 2, and that is 

capable of forming two additional hydrogen bonds with U3072 through the N,N-

diethylaminoethylsulfonyl chain on C26 (Fig. 6). As previously reported (Fig. 1), the N,N-

diethylaminoethylsulfonyl chain on C26 is known to rapidly hydrolyse at pH = 7.4 and 37 

°C14, leading to the formation of 2. Given the increased number of interactions of 1, 

introducing a non-hydrolysable chain in C26 would potentially increase the affinity for the 

mitoribosome and hence the compound's activity in suppressing GSC growth.  
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Figure 6. Superposition between the Cryo-EM structure of VM1 (2) within the mitochondrial ribosome 

streptogramin A binding site (PDB ID: 6I9R, green) and the docking pose of D (1, orange). Ribosome residues 

within 4.5 Å from the VM1 (2) solved structure are reported and depicted as sticks in the figure. Hydrogen 

bonds between the ligand and the receptor are shown as light blue dashed lines. 

 

Structural modifications at the C26 position have already been investigated and exploited 

to introduce the N,N-diethylaminoethylsulfonyl chain which led to dalfopristin (D, 1) 

development. The introduction of this chemical moiety in C26 conferring greater water-

solubility was achieved by the 1,4-addition of a thiol-based nucleophile, which was 

successively oxidised to the sulfone derivative and converted into a mesylate salt25,34. 

Following the conjugate addition of a nucleophile in C26, four different diastereomers are 

expected to be produced. Kinetic factors, and in particular the temperature parameter, 

have been reported to play a fundamental role in stereochemical control25,34. The addition 

of 2-diethylaminoethanethiol to the α,β-unsaturated ester of 2 gave the (26R,27S) 

derivative 5 in good yield, in agreement with literature data25,34,35 (Scheme 3). By oxidising 

5 with sodium tungstate in combination with hydrogen peroxide, 1 was obtained, further 
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confirming 5 stereochemistry. Indeed, the 1H and 13C NMR signals and the retention time 

by HPLC analysis of 5 after oxidation were completely superimposable with data of 1. 

 

 

Scheme 3. 1,4-addition of a nucleophile in C26. Reagents and conditions: (a) S-, N- or O-nucleophile, 

methanol, 10-72 h; O-nucleophile generated in situ: NaH, tetrahydrofuran, 0 °C, 1 h. 

 

Aiming at introducing non-hydrolysable chains, other types of nucleophiles, such as 

amines and alkoxides, were considered. Since the C16 carbonyl group of compound 2 

could also undergo a nucleophilic attack, we used the R hydroxyl derivative (16R)-2c as 

starting material.  

The conjugate addition of the N-nucleophile on (16R)-2c proceeded in a few days at room 

temperature with the almost full conversion of the starting material, giving 6 in good yield 

as a single isomer (Scheme 3). Even the reaction with the O-based nucleophile, generated 

in situ by deprotonation of the corresponding alcohol, produced the more abundant 

diastereomer 7, which was isolated through HPLC purification (Scheme 3). Working at a 

lower temperature (-78 °C) significantly increased the stereoselectivity of the conjugate 

addition. Because of NMR complexity and the difficult crystallization of these compounds, 

the stereochemistry of the C26 derivatives produced was not determined, except for 

compound 5.  

Docking calculations were performed to evaluate the putative binding mode of C26 

derivatives, considering each of the four possible diastereomers formed by each reaction 

independently. Docking results and the comparison of predicted binding modes for these 
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compounds with respect to the reference VM1 (2) are summarized in Fig. S4 and Video 

V3. 

Regarding the thiol derivative 5, the favorite diastereomer retains the same (26R,27S) 

configuration as D (1). Also for compounds 6 and 7, the favorite diastereomer seems to 

be the one presenting the added moiety oriented relatively to the macrocycle ring as the 

N,N-diethylaminoethylsulfonyl of D (1). Of note, in this case, the preferred configuration 

is (26R,27R), based on the lower priority of N or O atoms compared to S. Docking analysis 

suggests that these compounds could theoretically retain all the characterizing interaction 

features of VM1 (2) while improving the affinity for the mitoribosome through 

additional/strengthened interaction with U3072 through the C26 chain.  

 

2.3 Evaluation of streptogramin A derivatives as mitochondrial translation inhibitors to 

suppress glioblastoma stem cells growth 

The effects of the synthesised derivatives on cell growth were evaluated by treating COMI 

cells with a range of drug concentrations for 48 hours, and by determining cell viability 

using Hoechst 33342 and propidium iodide. We constructed dose-response curves and 

calculated the deriving GI50 values. Table 1 summarises the GI50 values obtained for the 

different derivatives tested alone or in combination with Q (3) in a 70:30 w/w ratio since 

streptogramins are known to act synergistically in bacteria.  

 

 

 
alone + Q (3) 

 
alone + Q (3) 

D (1) 8.65 ± 0.9 6.50 ± 1.10 VM1 (2) 17.06 ± 1.10 7.25 ± 1.39 
 

1a  > 100 14.75 ± 2.00 2a  > 100 19.59 ± 2.51 

1b  > 100 14.46 ± 1.76 2b > 100 16.39 ± 1.06 
 

(16R)-1c  18.79 ± 1.52 5.17 ± 0.78 (16R)-2c  21.65 ± 3.02 5.28 ± 1.34 

(16S)-1c 37.53 ± 1.54 7.05 ± 1.02 (16S)-2c 52.45 ± 2.55 8.74 ± 0.51 

(16R)-1d  14.25 ± 1.17 4.85 ± 0.39 (16R)-2d  19.45 ± 4.95 6.57 ± 0.6 

(16S)-1d 1.56 ± 0.15 1.32 ± 0.15 (16S)-2d 1.16 ± 0.55 1.5 ± 0.81 

(16R)-1e  6.73 ± 1.24 5.71 ± 1.2 (16R)-2e  4.82 ± 1.23 5.42 ± 1.67 

(16S)-1e 20.53 ± 2.31 8.37 ± 1.08 (16S)-2e 36.14 ± 0.84 12.26 ± 2.56 
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flopristin (4) 7.37 ± 1.44 5.83 ± 1.04 
   

1i 10.91 ± 2.39 9.9 ± 2.27 2i 20.52 ± 1.93 15.62 ± 0.71 

5 7.02 ± 0.75 8.00 ± 1.46 
   

6 > 100 16.88 ± 1.93 
   

7 85.27 ± 5.01 13.99 ± 1.52 
   

 

Table 1. GI50 values in μM for dalfopristin and virginiamycin M1 derivatives1: Diels-Alder (a, b), C16-hydroxyl 

(c), C16-NHMethyl (d), C16-fluoro (e), trienone (i), and C26 (5-7) products. 

1GI50 values were calculated upon treating COMI cells with different concentrations of the derivatives for 48 

h, alone or in combination with Q (3), in a 70:30 w/w ratio. The GI50 values were calculated from n=3 

biological replicates, n=3 technical replicates each, mean ± SD.  

 

In parallel, the capability of the derivatives to inhibit mitochondrial translation was also 

evaluated by assessing the expression of ND3, COX1, COX2, and COX4 proteins via 

immunoblotting. As previously mentioned, ND3, COX1, and COX2 are translated by the 

mitochondrial translation system, whereas COX4 is translated by the cytosolic translation 

system. Therefore ND3, COX1, and COX 2 were taken into account as representatives of 

the mitochondrial translation activity, while COX4 was taken into account as a 

representative of the cytosolic translation activity. 

Concerning the C10/C13 derivatives, none of the four derivatives 1a, 1b, 2a, and 2b 

suppressed the growth of the GSC line tested, as evident by the GI50 values resulting above 

the maximum concentration tested (100 µM). Accordingly, none of the Diels-Alder 

derivatives was able to inhibit mitochondrial translation (Fig. S5). This result is not 

surprising. Indeed, based on docking calculations, the stereoisomer produced 

(diastereomer 1) showed a worse binding profile compared to the more favourable 

diastereomer 4 or D (1) or VM1 (2). Of note, the growth inhibition effect observed for the 

Diels-Alder derivatives in combination with Q (3) is only due to the Q contribution. Indeed, 

dose-response curves of these derivatives in combination with Q plotted as a function of 

Q contribution are superimposable with that of Q used as a single agent. 

As previously observed for the antibacterial properties, by modifying the C16 position it is 

possible to modulate activity. The stereochemistry at this position has also been reported 

to play an important role in the activity26. Indeed, compounds with (16R) configuration 
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have been reported to be more potent than the S epimers26. In our hands, the R epimers 

displayed lower GI50 values than the S epimers when considering the diols ((16R)-1c, (16S)-

1c and (16R)-2c, (16S)-2c) and the fluorine ((16R)-1e, (16S)-1e and (16R)-2e, (16S)-2e) 

derivatives. In detail, the R diols ((16R)-1c and (16R)-2c) were slightly less potent than the 

corresponding lead compound, while the S diols ((16S)-1c and (16S)-2c) displayed much 

higher GI50 values. The R fluorine derivatives ((16R)-1e, (16R)-2e and 4) were, instead, 

slightly more active than the corresponding lead compounds, while the S epimers ((16S)-

1e and (16S)-2e) were less potent. Accordingly, all the tested compounds were able to 

inhibit mitochondrial translation, with the R epimers presenting the highest activity (Fig. 

7, Fig. S6, Fig. S7). All these compounds presented GI50 values comparable to those of the 

lead compounds when tested in combination with Q (3).  

The bioisosteric substitution of the C16 keto group with a C-F bond increases lipophilicity 

which is expected to favour cell penetration, explaining the improved GI50 values 

compared to the more hydrophilic diols ((16R)-1c, (16S)-1c and (16R)-2c, (16S)-2c) and 

the lead compounds (1 and 2). Unfortunately, the higher lipophilicity has been reported 

to result in a reduced aqueous solubility and increased metabolization rate in vivo27, which 

is in turn compensated by the overcome of the chemical instability of streptogramins A at 

acidic/basic pH due mainly to the sensitive β-hydroxy ketone system27. Our in vitro data 

show that compounds (16R)-1e, (16R)-2e, and 4, the last of them developed as an orally 

available second-generation streptogramin A, are more potent than the corresponding 

lead compounds, and are, therefore, good candidates for further studies aimed at 

evaluating their pharmacokinetics properties and their in vivo activity in xenografted 

mouse models.  
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Figure 7. (16R) fluoro derivatives inhibit mitochondrial translation. Immunoblotting on COMI cells after 48 

h treatment with different concentrations (μM) of (16R)-1e, (16R)-2e, and 4, alone (left column) or in 

combination with Q (3) (right column). Effects on ND3, COX1, COX2, and COX4 proteins are shown. Beta 

tubulin was used as a loading control. One representative result, n=3 biological replicates. 

 

Among all the C16 derivatives, compounds (16S)-1d and (16S)-2d had the lowest GI50 

values. Based on the in vitro results, the compounds having (16S) configuration were more 

active in comparison to the R epimers ((16R)-1d and (16R)-2d). This observation contrasts 

with what has been previously observed for the bacterial activity or for our 16R and 16S 

diols and fluorine derivatives.  

Surprisingly, when evaluating the capability of these compounds to inhibit mitochondrial 

translation, we observed no effect. Indeed, in COMI cells treated with increasing 

concentrations of (16S)-1d, (16S)-2d, (16R)-1d and (16R)-2d, the expression levels of the 

mitochondrially encoded proteins ND3, COX1, and COX2 remained unaltered, as well as 

those of the nuclearly encoded protein COX4 (Fig. 8 and Fig. S8). Based on these results, 
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we speculated that the capability of the C16-NHMe derivatives to suppress GSC growth 

derives from an unknown mechanism of action different from mitochondrial translation 

inhibition, and therefore we did not further investigate these compounds. 

 

 

 

Figure 8. (16S) NHMe derivatives do not inhibit mitochondrial translation. Immunoblotting on COMI cells 

after 48 h treatment with different concentrations (μM) of (16S)-1d, and (16S)-2d, alone (left column) or in 

combination with Q (3) (right column). Effects on ND3, COX1, COX2, and COX4 proteins are shown. Beta 

tubulin was used as a loading control. One representative result, n=3 biological replicates. 

 

Compounds 1i and 2i inhibited GSC proliferation slightly less efficiently than the 

respective lead compounds. Of note, the loss of the C14 hydroxyl group to produce the 

trienone unit has been reported to cause a major reduction of the antibacterial activity25, 

which instead was not observed for GSC growth inhibition. 

Compound 5 inhibited GSC growth to the same extent as 1 (Table 1). Unexpectedly, the 

introduction of an N- or O-non-hydrolysable moiety in the C26 position resulted in a major 

reduction of GSC growth inhibition capability (Table 1). Indeed, 6 displayed a GI50 value 

above the maximum concentration tested (100 µM), while 7 displayed a GI50 value of 

85.27 ± 5.01 µM. Accordingly, 6 and 7 inhibit mitochondrial translation only at very high 

concentrations (> 25 µM) (Fig. S9). The immunoblotting results suggest that 6 and 7 can 
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permeate the cellular membranes, enter the cells and bind to the mitoribosome at least 

to a certain extent. It has to be clarified whether the low potency observed is due to low 

membrane permeability or low affinity for the target. 

 

2.4 Evaluation of streptogramin A derivative capability to permeate the cellular 

membrane and enter the cell via UHPLC-MS 

To evaluate whether the lack of the effect observed for the Diels-Alder derivatives (1a, 

1b, 2a, and 2b) and especially for the derivatives presenting N- or O-non-hydrolysable 

chain in C26 (6, 7) was due to their low membrane permeability, we developed a sensitive 

ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-

MS) method for the determination of the amount of these compounds inside the cells. 

Compounds 1 and 2 were used as a reference, while 1b, 2b, and 6 were used as 

representatives for Diels-Alder and N- or O-non-hydrolysable chain C26 derivatives, 

respectively. Moreover, we assessed compounds (16R)-1c and (16R)-2c since they present 

a (16R)-hydroxyl group as compound 6. Finally, we also evaluated the fluorinated 

derivatives (16R)-1e and (16R)-2e, which are slightly more potent than 1 and 2 in GSC 

growth inhibition. After incubating COMI cells with 1 or 2 derivatives at 100 µM for 3 h, 

the metabolites were extracted with methanol and the chromatographic separation was 

carried out using a C18 column, with a linear gradient of acetonitrile-water-formic acid as 

the mobile phase.  

For each compound, a calibration curve was constructed by spiking pure compound in 

non-treated-cell metabolite extracts resuspended in acetonitrile-water-formic acid 

(95:5:0.1%, v/v/v) and performing serial dilutions to obtain five different concentrations, 

ranging from 0.005 ng/µL to 50 ng/µL. The calibration curves were linear over the five 

orders of magnitude tested (Fig. S10-12, Table S1). The lower limit of quantification of this 

method was 0.005 ng/µL for all compounds. To be noted that for 1 and its derivatives, 

which are readily hydrolysed in water, each point of the calibration curve was loaded on 

the instrument just after preparing the spike solution and the contribution of both the 

hydrolysed and non-hydrolysed peaks was taken into account. By doing so, more than 

95% of the compounds were detected in the non-hydrolysed form.   
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Subsequently, the metabolite extracts derived from cells treated with the compounds 

were loaded on the UHPLC-MS and the concentration was inferred using the respective 

calibration curve. In 1-derivative-treated samples, more than 99% of the compound 

resulted in the hydrolysed form, coherent with a treatment of 3 hours in an aqueous 

environment. Still, the hydrolysed and non-hydrolysed peaks were considered and their 

concentration was derived by comparison to their respective calibration curve. The final 

concentration of these samples was determined by summing the concentrations of both 

forms.  

Table 2 shows the concentrations of the evaluated compounds.  

 

 
 

C (ng/µL) 
 

C (ng/µL) 

D (1) 12.5 ± 0.9 VM1 (2) 11.5 ± 1.6 

1b  9.6 ± 1.7 2b  13.3 ± 1.2 

(16R)-1c  2.3 ± 1.3 (16R)-2c  4.6 ± 0.9 

(16R)-1e  25.7 ± 4.9 (16R)-2e  38.4 ± 4.4 

5 10.8 ± 2.8 
  

6 6.2 ± 1.6 
  

 

Table 2. Concentrations inside the cells calculated for dalfopristin and virginiamycin M1 and their 

derivatives1: Diels-Alder (b), C16-hydroxyl (c), C16-fluoro (e), and C26 (5-6) products. 

1COMI cells were treated with 100 µM of a given compound for 3 h. Successively, the metabolite extracts 

were loaded on the HPLC-MS/MS. The concentration values (expressed in ng/µL) were inferred using the 

compound calibration curve. The concentration values were calculated from n=5 replicates, mean ± SD. 

 

In detail, compounds 1 and 2 showed similar membrane permeability, with final 

calculated concentrations of around 12.5 ± 0.9 ng/µL and 11.5 ± 1.6 ng/µL, respectively.   
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Compounds 1b and 2b presented similar permeability compared to their precursors 1 and 

2, respectively, suggesting that these derivatives can enter the cells to the same extent as 

their precursors. Instead, the lack of effect in mitochondrial translation inhibition could 

be due to an excessive steric hindrance around the C10/C13 diene moiety that could 

prevent the molecule from entering and/or interacting with the mitoribosome. 

The diol derivatives (16R)-1c and (16R)-2c displayed a significantly reduced membrane 

permeability compared to 1 and 2, with concentration values of 2.3 ± 1.3 ng/µL and 4.6 ± 

0.9 ng/µL, respectively, in line with what has been previously observed by Bacque et al.27. 

In contrast, the fluorine derivatives (16R)-1e and (16R)-2e showed a greatly increased 

permeability compared to their precursors, with concentrations around two to three 

times those of 1 and 2. Interestingly, (16R)-2e had a higher permeability than (16R)-1e.  

The reduced or increased permeability of the diol or fluorinated compounds can be 

explained, at least in part, by the hydrophilic/lipophilic properties that the inserted group 

bears, which contribute to modulating the passage through the biological membranes. 

Indeed, the more hydrophilic diol derivatives present reduced permeability that could 

explain, at least in part, the decreased capability of these compounds to inhibit GSC 

growth. On the contrary, the increased permeability of the fluorine derivatives could 

justify their increased biological activity due to a higher amount of the compound reaching 

the mitoribosome and being able to interact.  

Compound 5, which presents an N,N-diethylaminoethylthioether chain in the C26 

position, showed a similar membrane permeability to 1 and 2, which are its N,N-

diethylaminoethylsulfonyl analogue and its precursor, respectively. Indeed, compound 5 

presents similar GSC growth inhibition capability to 1 and 2.  

Finally, compound 6, which bears a (16R)-hydroxyl group, had reduced membrane 

permeability compared to 1 and 2, in line with what was observed for (16R)-2c, which is 

its precursor. As previously described, compounds 6 and 7 displayed a strong reduction in 

biological activity compared to 1. There are two factors to be considered to explain this 

reduction: the entrance into the mitoribosome and the stereochemistry of the C26 

moiety. Indeed, based on the immunoblotting results, 6 and 7 can enter the cells and bind 

to the ribosome to a certain extent. Moreover, the docking calculations show that the 

addition of a tertiary amine-bearing non-hydrolysable moiety in C26 increases the 
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interactions of the derivatives inside the mitoribosome binding site. However, the 

presence of this moiety could hamper the entrance of the compound inside the 

mitoribosome itself, a parameter that is not taken into account by the docking 

calculations. Finally, the stereochemistry of the C26 for compounds 6 and 7 has not been 

clarified yet. It could also be possible that the moiety added in C26 clashes against the 

mitoribosome while entering or even inside the binding site. 

 

3. Conclusions 

In conclusion, a series of streptogramin A derivatives possibly endowed with a higher 

affinity for the mitochondrial ribosome was designed with the support of docking 

calculations and was produced by semisynthesis. Three accessible positions (C10/C13, 

C16, and C26) were identified to introduce structural modifications, and twenty-two 

derivatives were synthesised, including novel and already reported compounds.  

For all the synthesised derivatives, the capability of suppressing GSC growth and of 

inhibiting mitochondrial translation was evaluated, either alone or in combination with 

quinupristin (3). Moreover, a quantitative UHPLC-MS method was developed to assess 

the cell penetration of some of these derivatives. The Diels-Alder derivatives in C10/C13 

position and the derivatives presenting an N- or O-non-hydrolysable moiety in C26, 

although being able to enter the cells as well as the reference compounds, did not 

suppress GSC growth or inhibit mitochondrial translation at low concentrations. 

Unfortunately, this was probably because the diastereomers produced did not preserve 

the interaction pattern inside the mitoribosome of the reference compounds (1 and 2), 

and the introduced moiety clashed against the mitoribosome cavity. On the other hand, 

most of the C16 derivatives did preserve the binding mode of the reference compounds 

inside the mitoribosome and their biological activity. In general, the R epimers were more 

potent than the S epimers. Among all the derivatives tested, the N-methyl derivatives 

(16S)-1d and (16S)-2d were the most potent in suppressing GSC growth, but surprisingly, 

they could not inhibit mitochondrial translation and thus were not further investigated. 

The fluorine derivatives (16R)-1e, (16R)-2e, and flopristin (4) displayed GI50 values lower 

than the corresponding lead compounds and penetrated to a greater extent into the cells.   
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Further in vivo experiments using xenograft models of glioblastoma are needed to 

evaluate the activity of the fluorine derivatives, alone or in combination with quinupristin, 

in comparison to Q/D, to assess which molecule or molecule combination is worthier to 

be further developed as an antineoplastic drug. 

 

4. Experimental Section 

4.1. Chemistry  

All chemicals and reagents were purchased from Sigma Aldrich, Alfa Aesar and Apollo 

Scientific. Thin-layer chromatography (TLC) was performed using Merck silica gel F254 or 

reversed-phase Merck RP-18 F254, using short-wave UV light as the visualising agent and 

KMnO4 or Ce(SO4)2 as developing agents upon heating. Preparative thin-layer 

chromatography (PLC) was performed using 20x20 cm Merck Kieselgel 60 F254 0.5/2-mm 

plates. Column chromatography was performed using Merck Si 45-60 µm as the stationary 

phase. NMR spectra were recorded on a Bruker-Avance 400 spectrometer using a 5-mm 

BBI probe 1H at 400 MHz and 13C at 100 MHz and calibrated using residual non-deuterated 

solvent for CDCl3 (relative to δH 7.27 and δC 77.0 ppm, respectively) or CD3OD (δH 3.31 and 

δC 49.0 ppm) with chemical shift values in ppm and J values in Hz. The following 

abbreviations were used to describe multiplicities: s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet, br = broad. NMR data were analysed using BrukerTopspin software 

3.6.1 version. Electrospray ionisation ESI(+)MS mass spectra were recorded using a Bruker 

Esquire-LC spectrometer by direct infusion of a methanol solution (source temperature 

300 °C, drying gas N2, 4 L/min, scan range m/z 100:1000). High-resolution ESI(+)MS spectra 

were obtained by direct infusion of a methanol solution using an Orbitrap Fusion Tribrid® 

mass spectrometer. The exact mass of compounds has been derived from an average of 

30 spectra sets.  Infrared spectra were recorded by using an FT-IR Tensor 27 Bruker 

spectrometer equipped with an Attenuated Transmitter Reflection (ATR) device at 1 cm−1 

resolution in the absorption region Δν 4000–1000 cm−1. Spectral processing was made 

using the Opus software package. Polarimetric data were obtained with a Jasco DIP-181 

apparatus, using Na source. The purity of the compounds was determined by High-

Performance Liquid Chromatography (HPLC) using an Agilent 1200 HPLC system equipped 
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with an autosampler, a binary pump, a diode array detector (Agilent Technologies 

Waldbronn, Germany) and Phenomenex® Gemini 5u C18 110A column, in gradient 

conditions with eluent water:acetonitrile (acetonitrile t0 30%, t8 min min 80%, t22 min 80%) 

flow 1 mL/min (HPLC method A) or Luna 5u C18 100A column, in isocratic conditions with 

eluent water/acetonitrile 70:30 + 0.1% TFA, flow 1 mL/min (HPLC method B), unless 

otherwise specified. All tested compounds are >95% pure by HPLC analysis. 1H-NMR, 13C-

NMR and High-resolution ESI(+) MS spectra and high-performance liquid chromatograms 

of tested compounds are reported in the Appendix A Supplementary Data section (Fig. 

S13-S77).  

4.1.01. Isolation of Dalfopristin (1)  

The compound was isolated from the commercial Synercid® (500 mg of Q/D combination 

in a ratio of 30:70 w/w) by liquid chromatography on silica gel or using 0.5 mm PLC using 

DCM/EtOH 80:20 as the eluting solution (D: Rf = 0.86; Q: Rf = 0.12).  

4.1.01.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S)-33-((2-(diethylamino)ethyl)sulfonyl)-17-

hydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10,19-tetraone (1) 

White powder; 347 mg (99%); Rf = 0.44 (DCM/EtOH = 90:10); 1H-NMR (400 MHz, CDCl3) δ: 

8.06 (s, 1H), 6.74 (brt, 1H), 6.58 (dd, J = 16.5, 4.5 Hz, 1H), 6.13 (d, J = 15.9 Hz, 1H), 5.79 (d, 

J = 16.5 Hz, 1H), 5.66 (ddd, J = 15.9, 7.7, 4.1 Hz, 1H), 5.40 (d, J = 7.7 Hz, 1H), 5.33 (s, 1H), 

4.90 (dq, J = 9.7, 5.6 Hz, 1H), 4.83 (d, J = 10.3 Hz, 1H), 4.26 (m, 1H), 4.19 (m, 1H), 3.85 (m, 

1H), 3.79 (d, J = 8.8 Hz, 2H), 3.72 (m, 1H), 3.56 (ddd, J = 14.9, 9.8, 5.6 Hz, 1H), 3.24 (m, 2H), 

3.03 (m, 3H), 2.87 (dd, J = 16.5, 5.2 Hz, 1H), 2.76 (m, 1H), 2.56 (m, 5H), 2.14 (m, 1H), 1.93 

(m, 1H), 1.71 (s, 3H), 1.01 (t, J = 7.4 Hz, 9H), 0.94 (d, J = 6.7 Hz, 6H); 13C-NMR (100 MHz, 

CDCl3) δ: 201.9, 168.6, 165.7, 160.3, 157.2, 145.1, 144.3, 136.8, 136.2, 134.4, 132.9, 125.1, 

124.1, 82.8, 64.9, 62.6, 59.7, 49.2, 49.1, 47.0, 46.8 (2C), 45.4, 43.3, 40.7, 29.4, 25.6, 19.7, 

18.6, 12.8, 11.5 (2C), 11.0; HPLC: 15.095 min (acetonitrile/water = 30:70 + 1% TFA); 

ESI(+)MS: m/z 691 [M+H]+, 713 [M+Na]+, 673 [M+H−H2O]+.  
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4.1.02. Hydrolysis of Dalfopristin to Virginiamycin M1 (2)  

Compound 1 (230 mg, 0.33 mmol) was dissolved in THF (12 mL) and phosphate-buffered 

saline (60 mL). The resulting solution was sonicated for 5 min and stirred at rt for 5 h. THF 

was evaporated under vacuum and the remaining aqueous phase was extracted with DCM 

(3x40 mL). The combined organic phases were washed with brine (40 mL), dried over 

anhydrous Na2SO4 and concentrated under low pressure to give compound 2. The crude 

product was used in the next steps without further purification. 

4.1.02.1. (12Z,6R,7R,8E,13E,15E,17S)-17-hydroxy-6-isopropyl-7,15-dimethyl-32,33-

dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-8,13,15-triene-

2,4,10,19-tetraone (2) 

Light-yellow powder; 172 mg (99%); Rf  = 0.70 (DCM/EtOH = 90:10); 1H-NMR (400 MHz, 

CDCl3) δ: 7.89 (s, 1H), 7.53 (brt, 1H), 6.61 (dd, J = 7.2, 15.7 Hz, 1H), 6.15 (t, J = 2.9 Hz, 1H), 

6.03 (dd, J = 16.3, 1.0 Hz, 1H), 5.84 (brd, 1H), 5.60 (ddd, J = 16.3, 3.7 Hz, 1H), 4.97 (dd, J = 

10.0, 1.9 Hz, 1H), 4.92 (d, J = 9.2 Hz, 1H), 4.8 (m, 1H), 4.35 (m, 2H), 4.23 (m, 1H), 3.93 (d, J 

= 13.0 Hz, 2H), 3.72 (m, 2H), 3.17 (dd, J = 14.2, 9.5 Hz, 1H), 2.77 (dd, J = 14.0, 3.4 Hz, 1H), 

2.03 (m, 2H), 1.59 (s, 3H), 1.13 (d, J = 6.7 Hz, 3H), 0.99 (t, J = 6.7 Hz, 6H); 13C-NMR (100 

MHz, CDCl3) δ: 200.9, 167.5, 160.8, 160.0, 156.0, 145.4, 143.0, 137.0, 136.0, 134.6, 133.6, 

126.1, 125.2, 122.8, 81.3, 66.0, 50.4, 47.5, 45.7, 37.6, 30.11, 29.8, 19.5, 18.8, 12.7, 12.2; 

HPLC: 21.020 min (HPLC method B); ESI(+)MS: m/z 548 [M+Na]+, 508 [M+H−H2O]+. 

4.1.03. General procedure for the synthesis of Diels-Alder adducts 1a, 1b, 2a and 2b 

The diene (1.5 eq.) was added to a solution of 1 or 2 (0.04 mmol scale, 1 eq.) in anhydrous 

DCM (0.015 M) and stirred for 1 h at room temperature. The solution was cooled to -35 

°C and AlCl3 (1.5 eq.) was added. After 3 h at -35 °C, the reaction was left to rise back to 

room temperature overnight and finally heated under reflux conditions for 16 h. The 

reaction mixture was treated with saturated NaHCO3 (1 mL), extracted with DCM (3x5 mL) 

and dried over anhydrous Na2SO4. The crude product was then purified via PLC.  

4.1.03.1. (12S,13R,32Z,7S,12E,14R,15R)-13-((2-(diethylamino)ethyl)sulfonyl)-7-hydroxy-15-

isopropyl-85,14-dimethyl-81,83,83a,84,87,87a-hexahydro-16-oxa-10-aza-3(4,2)-oxazola-
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1(1,2)-pyrrolidina-8(4,7)-isobenzofuranacycloheptadecaphan-12-ene-81,83,2,5,11,17-

hexaone (1a)  

The title compound was obtained from 1 (40 mg, 0.076 mmol) and maleic anhydride as 

diene (1.5 eq.) using the general procedure.  

White powder; 25 mg (56%); Rf =  0.2 (DCM/EtOH = 90:10); [α]D = +70° (c 0.21, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.21 (s, 1H), 6.83 (d, J = 12.6 Hz, 1H), 5.92 (d, J = 15.2 Hz, 1H), 

5.38 (s, 1H), 5.13 (s, 1H), 4.80 (d, J = 9.9 Hz, 1H), 4.24 (brs, 1H), 4.03-3.44 (m, 10H), 3.39-

3.25 (m, 2H), 3.24-3.18 (m, 3H), 2.99-2.53 (m, 10H), 2.29 (brs, 1H), 1.95 (brs, 1H), 1.62 (s, 

3H), 1.28-1.15 (m, 6H), 1.08 (brs, 3H), 0.95 (brs, 6H). 13C-NMR (100 MHz, CDCl3) δ: 200.8, 

178.1, 174.8, 169.7, 167.7, 167.4, 159.7, 157.7, 147.8, 144.8, 136.6, 135.2, 123.1, 83.0, 

65.5, 62.4, 59.4, 49.1, 48.9, 47.2, 46.9 (2C), 45.3, 44.4, 43.5, 43.1, 42.7, 40.2, 37.1, 35.7, 

29.2, 26.1, 19.7, 19.6, 18.7, 11.7 (2C), 9.9; FT-IR: 2980, 2940, 1746, 1624, 1618, 1495, 

1190, 1135, 880, 731 cm-1; HPLC: 6.632 min (acetonitrile/water = 35:65 + 1% TFA); 

ESI(+)MS: m/z  789 [M+H]+, 811 [M+Na]+; HR-ESI(+)MS: calcd for C38H53N4O12S m/z 789.3380; 

found m/z 789.3381. 

 

4.1.03.2. (12S,13R,32Z,7S,12E,14R,15R)-13-((2-(diethylamino)ethyl)sulfonyl)-7-hydroxy-15-

isopropyl-85,14-dimethyl-82,83,83a,84,87,87a-hexahydro-81H-16-oxa-10-aza-3(4,2)-oxazola-

8(4,7)-isoindola-1(1,2)-pyrrolidinacycloheptadecaphan-12-ene-81,83,2,5,11,17-hexaone 

(1b) 

The title compound was obtained from 1 (20 mg, 0.038 mmol) and maleimide as diene 

(1.5 eq.) using the general procedure.  

Pale yellow powder; 9.8 mg (43%); Rf = 0.34 (DCM/EtOH = 9:1); [α]D = +14° (c 0.22, DCM); 

1H-NMR (400 MHz, CDCl3) δ: 8.18 (s, 1H), 6.55 (m, 1H), 6.54 (dd, J = 16.4, 5.2 Hz, 1H), 5.79 

(d, J = 16.4 Hz, 1H), 5.41 (brs, 1H), 5.36 (brs, 1H), 4.77 (dd, J = 9.8, 1.8 Hz, 1H), 4.74-4.69 

(m, 1H), 4.40 (dt, J = 10.3, 7.6 Hz, 1H), 4.14-3.75 (m, 5H), 3.58-3.53 (m, 1H), 3.43 (t, J = 8.0 

Hz, 1H), 3.37-3.01 (8H), 2.98-2.87 (m, 1H), 2.84-2.73 (m, 1H), 2.62-2.54 (m, 6H), 2.39-2.23 

(2H), 2.05-1.93 (m, 1H), 2.88 (s, 3H), 2.13-2.03 (m, 9H), 0.98 (t, J = 7.4 Hz, 6H); 13C-NMR 

(100 MHz, CDCl3) δ: 201.2, 180.4, 178.1, 168.7, 166.5, 159.9, 157.9, 145.0, 144.2, 138.9, 
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136.4, 125.4 124.3, 82.9, 65.4, 62.3, 59.4, 49.1, 48.9, 47.3, 47.0 (2C), 45.3, 44.4, 43.5, 43.1, 

42.7, 40.2, 37.1, 35.7, 29.2, 26.1, 19.7, 19.6, 18.6, 11.7 (2C), 9.9; FT-IR: br 3367, 2967, 

2927, 1713, 1669, 1620, 1578, 1423, 1312, 1191, 1136, 1046, 988, 891, 813, 748, 635 cm-

1; HPLC: 5.343 min (acetonitrile/water = 65:35 + 1% TFA); ESI(+)MS: m/z 788 [M+H]+, 810 

[M+Na]+; HR-ESI(+)MS: calcd for C38H54N5O11S m/z 788.3540; found m/z 788.3533. 

4.1.03.3. (32Z,7S,12E,14R,15R)-7-hydroxy-15-isopropyl-85,14-dimethyl-

12,13,81,83,83a,84,87,87a-octahydro-11H-16-oxa-10-aza-3(4,2)-oxazola-1(1,5)-pyrrola-8(4,7)-

isobenzofuranacycloheptadecaphan-12-ene-81,83,2,5,11,17-hexaone (2a) 

The title compound was obtained from 2 (15 mg) and maleic anhydride as diene (3 eq.) 

using the general procedure A without AlCl3 catalysis. 

White powder; 12 mg (76%); Rf = 0.60 (DCM/EtOH = 9:1); [α]D = +16° (c 0.43, DCM); 1H-NMR 

(400 MHz, CD3OD) δ: 8.35 (s, 1H), 6.78 (dd, J = 14.1, 4.4 Hz, 1H), 6.39 (s, 1H), 6.36 (d, J = 

12.6 Hz, 1H), 6.26 (s, 1H), 6.15 (d, J = 11.2 Hz, 1H), 5.95 (d, J = 15.7 Hz, 1H), 5.37 (brs, 1H), 

4.22 (q, J = 7.8 Hz, 2H), 4.10-3.95 (m, 3H), 3.63 (dd, J = 12.7, 6.3 Hz, 1H), 3.46 (dd,  J = 15.6, 

4.8 Hz, 1H), 3.28-3.12 (m, 2H), 3.05 (d,  J = 16.6 Hz, 1H), 2.89-2.71 (m, 2H), 2.65-2.53 (m, 

1H), 2.51-2.41 (m, 1H), 2.12-1.95 (m, 1H), 1.77 (s, 3H), 1.31 (t,  J = 6.7 Hz, 3H), 1.18 (d, J = 

6.2 Hz, 3H), 1.01 (dd, J = 9.5, 7.2 Hz, 6H); 13C-NMR (100 MHz, CD3OD) δ: 201.8, 178.4, 173.4, 

169.3, 167.5, 166.2, 160.7, 159.6, 158.9, 146.7, 144.1, 136.4, 136.2, 135.6, 135.3, 132.9, 

127.4, 126.5, 123.2, 122.5, 81.5, 78.4, 60.5, 51.4, 42.6, 41.7, 40.9, 38.8, 36.7, 29.5, 29.2, 

19.2, 18.7, 17.3, 12.8, 9.2; FT-IR: 3386 (br), 2970, 2930, 1767, 1720, 1663, 1619, 1577, 

1416, 1369, 1214, 1172, 1039, 989, 868, 743, 729 cm-1; HPLC: 13.394 min (HPLC method 

B); ESI(+)MS m/z 646 [M+Na]+; HR-ESI(+)MS calcd for  C32H38N3O10 624.2552; found m/z 

624.2553. 

4.1.03.4. (32Z,7S,12E,14R,15R)-7-hydroxy-15-isopropyl-85,14-dimethyl-

12,13,82,83,83a,84,87,87a-octahydro-11H,81H-16-oxa-10-aza-3(4,2)-oxazola-8(4,7)-isoindola-

1(1,5)-pyrrolacycloheptadecaphan-12-ene-81,83,2,5,11,17-hexaone (2b) 

The title compound was obtained from 2 (10 mg, 0.015 mmol) and maleimide as diene 

(1.5 eq.) using the general procedure. 
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Pale yellow solid; 5 mg (42%); Rf = 0.48 (DCM/EtOH = 9:1);  [α]D =  −80° (c 0.22, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.15 (s, 1H), 6.91-6.86 (m, 1H), 6.54 (dd, J = 16.7, 5.6 Hz, 1H), 

6.23 (t, J = 2.8 Hz, 1H), 5.85 (d, J = 16.5 Hz, 1H), 5.36 (brs, 1H), 4.87 (brdd, J = 10.3, 1.7 Hz, 

1H), 4.71-4.64 (m, 1H), 4.28-4.02 (m, 4H), 3.76 (d, J = 14.8 Hz, 1H), 3.48-3.42 (m, 2H), 3.21-

3.11 (m, 2H), 2.96 (dd, J = 15.7, 4.9 Hz, 1H), 2.79-2.72 (m, 3H), 2.49-2.40 (m, 1H), 2.30-

2.24 (m, 1H), 2.06-1.95 (m, 2H), 1.88 (s, 3H), 1.12 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.8 Hz, 

6H); 13C-NMR  (101 MHz, DMSO-d6) (mixture of isomers in a 1:1 ratio) δ: 202.2, 178.2, 

174.2, 168.10, 161.2, 159.6, 147.1, 144.31, 136.5, 136.1, 126.9, 125.8, 123.4, 122.8, 120.9, 

81.0, 55.3, 54.7, 53.4, 51.3, 43.0, 41.5, 41.2, 37.0, 34.7, 31.7, 29.6, 28.2, 22.3, 22.0, 20.8, 

20.5, 19.2, 18.8, 17.6, 17.5, 13.0, 8.9, 7.7; FT-IR: 3278 (br), 2958, 2916, 2853, 1725, 1706, 

1621, 1406, 1263, 1263, 1404, 1177, 1017, 802 cm-1; HPLC: 14.847 min (HPLC method B); 

ESI(+)MS m/z 645 [M+Na]+; HR-ESI(+)MS calcd for C32H38N4O9Na m/z 645.2531; found m/z 

645.2563. 

4.1.04. General procedure for the synthesis of C16 alcohol compounds (16R)-1c, (16S)-

1c, (16R)-2c and (16S)-2c. 

NaBH4 (0.5 eq.) was added at 0 °C to a solution of 1 or 2 (0.05 mmol scale) in EtOH (3 mL). 

The solution was stirred for 1 h and was subsequently quenched with 100 µL of acetone. 

The solvent was removed under reduced pressure, the residue was resuspended in DCM 

(5 mL), and extracted with DCM (3x). The combined organic phases were washed with 

water (10 mL) and brine (10 mL), dried over anhydrous Na2SO4 and evaporated under low 

pressure to give a white solid powder. The raw reaction was purified via PLC or column 

chromatography (silica gel, DCM/EtOH = 80:20). 

4.1.04.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19R)-33-((2-(diethylamino)ethyl)sulfonyl)-

17,19-dihydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16R)-1c) 

The title compound was obtained from 1 (32 mg, 0.05 mmol) and purified via PLC 

(DCM/EtOH = 80:20).  

White powder: 17.3 mg (54%); Rf = 0.43 (DCM/EtOH = 90:10); [α]D = −71° (c 0.16, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.15 (s, 1H), 6.66 (dd, J = 16.0, 4.3 Hz, 1H), 6.22 (d, J = 15.7 Hz, 
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1H), 6.15 (dd, J = 6.8, 4.9 Hz, 1H), 5.80 (dd, J = 16.0, 1.8 Hz, 1H), 5.66 (ddd, J = 15.5, 13.1, 

4.2 Hz, 1H), 5.45 (m, 2H), 4.89 (dd, J = 10.3, 1.9 Hz, 1H), 4.82 (dt, J = 9.1, 6.5 Hz, 1H), 4.24 

(m, 3H), 3.99 (dt, J = 9.5, 3.8 Hz, 1H), 3.65 (m, 2H), 3.24 (m, 2H), 3.75-3.55 (m, 2H), 3.00 

(dd, J = 16.1, 5.4 Hz, 1H), 2.82 (dd, J = 16.4, 6.7 Hz, 1H), 2.90-2.73 (m, 1H), 2.59 (dq, J = 7.2, 

2.8 Hz, 4H), 2.60-2.42 (m, 1H), 2.19-1.90 (m, 1H), 2.00-1.95 (m, 1H), 1.92-1.83 (m, 2H), 

1.80 (s, 3H), 1.12 (d, J = 7.0 Hz, 3H), 1.07 (t, J = 7.1 Hz, 6H), 0.97 (t, J = 6.0 Hz, 6H); 13C-NMR 

(100 MHz, CDCl3) δ: 168.0, 165.3, 161.6, 160.3, 146.0, 143.9, 136.5, 135.8, 134.6, 134.0, 

124.6, 123.7, 82.8, 68.0, 67.3, 62.4, 59.2, 49.1, 47.0, 46.9 (2C), 45.2, 43.3, 40.9, 36.4, 35.7, 

29.3, 25.5, 19.7, 18.4, 13.1, 11.6 (2C), 10.6; FT-IR: br 3409, 2362, 2339, 1747, 1669, 1617, 

1428, 1188, 1048, 968, 892, 747, 542 cm-1; HPLC: 15.125 min (isocratic ACN/water 70:30 + 

1% TFA); ESI(+)MS: m/z 693 [M+H]+, 715 [M+Na]+, 675 [M+H−H2O]+; HR-ESI(+)MS calcd for 

C34H53N4O9S m/z 693.3528; found m/z 693.3546. 

4.1.04.2. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19S)-33-((2-(diethylamino)ethyl)sulfonyl)-

17,19-dihydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16S)-1c) 

The title compound was obtained from 1 (32 mg, 0.05 mmol) and purified via PLC 

(DCM/EtOH = 80:20). 

White powder; 11.8 mg (37%); Rf = 0.56 (DCM/EtOH = 90:10); [α]D= −83° (c 0.58, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.15 (s, 1H), 6.61 (dd, J = 16.2, 4.1 Hz, 1H), 6.27 (d, J = 15.6 Hz, 

1H), 5.98 (brs, 1H), 5.82 (d, J = 9.4 Hz, 1H), 5.77 (dd, J = 16.2, 2.0 Hz, 1H), 5.86-5.65 (m, 

1H), 5.38 (s, 1H), 5.02 (dt, J=9.4, 4.0 Hz, 1H), 4.84 (dd, J = 10.4, 1.9 Hz, 1H), 4.52 (brt, 1H), 

4.30-4.15 (m, 1H), 4.11 (dt, J = 11.2, 8.2 Hz, 1H), 3.94 (dt, J = 10.3, 3.9 Hz, 1H), 3.57 (m, 

1H), 3.49 (brdt, J = 8.0, 1.9 Hz, 1H), 3.36-3.25 (m, 1H), 3.26-3.13 (m, 1H), 3.12-3.00 (m, 

3H), 2.92 (dd, J = 16.7, 9.9 Hz, 1H), 2.81 (m, 1H), 2.59 (dq, J = 7.2, 1.9 Hz, 2H), 2.47-2.41 

(m, 1H), 2.17 (brd, J = 14.3 Hz, 1H), 2.18-2.00 (m, 1H), 2.00-1.92 (m, 2H), 1.76 (s, 3H), 1.11 

(d, J = 7.0 Hz, 3H), 1.08 (t, J = 7.2 Hz, 6H), 1.00 (dd. J = 15.2, 6.6 Hz, 6H); 13C-NMR (100 MHz, 

CDCl3) δ: 168.8, 165.7, 161.3, 160.3, 145.7, 143.9, 137.4, 136.0, 133.6, 133.6, 125.0, 123.5, 

82.9, 67.6, 66.7, 62.3, 59.3, 49.2, 47.0 (2C), 46.7, 45.2, 41.4, 41.2, 36.6, 35.2, 29.3, 25.8, 

19.8, 18.5, 12.7, 11.7 (2C), 9.9; FT-IR: 3303 (br), 2968, 2929, 2358, 1748, 1669, 1620, 1582, 

1427, 1189, 1134, 1063, 967, 891, 749, 541 cm-1; HPLC: 15.732 min (isocratic 
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acetonitrile/Water 70:30 + 1% TFA); ESI(+)MS: m/z 693 [M+H]+, 715 [M+Na]+, 675 

[M+H−H2O]+; HR-ESI(+)MS: calcd for C34H53N4O9S m/z 693.3528; found m/z 693.3546. 

4.1.04.3. (12Z,6R,7R,8E,13E,15E,17S,19R)-17,19-dihydroxy-6-isopropyl-7,15-dimethyl-

32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-8,13,15-

triene-2,4,10-trione ((16R)-2c) 

The title compound was obtained from 2 (40 mg, 0.076 mmol) and purified via PLC 

(DCM/EtOH = 90:10). 

White powder; 16 mg (40%); Rf = 0.55 (DCM/EtOH = 90:10); [α]D = −102° (c 0.87, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 7.97 (s, 1H), 6.88 (brt, 1H), 6.60 (dd, J = 16.1, 6.4 Hz, 1H), 6.16 (s, 

1H), 6.00-5.90 (m, 2H), 5.64 (dt, J = 15.7, 5.4 Hz, 1H), 5.09 (d, J = 8.9 Hz, 1H), 4.94 (d, J = 

9.7 Hz, 1H), 4.73-6.64 (m, 1H), 4.36-4.14 (m, 2H), 4.14-4.05 (m, 1H), 4.04-4.90 (m, 2H), 

3.03 (dd, J = 15.0, 4.6 Hz, 1H), 2.93 (dd, J = 15.0, 8.2 Hz, 1H), 2.77 (m, 3H), 2.08-1.80 (m, 

3H), 1.76 (s, 3H), 1.13 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 6.1 Hz, 6H); 13C-NMR (100 MHz, CDCl3) 

δ: 167.3, 161.5, 160.8, 160.5, 144.0, 143.7, 137.1, 135.6, 134.6, 134.6, 132.8, 125.4, 124.8, 

123.8, 81.2, 67.7, 67.2, 50.9, 43.9, 40.7, 37.5, 36.6, 30.1, 29.8, 19.6, 18.9, 13.4, 12.0; FT-

IR: 3309 (br), 2919, 1728, 1617, 1586, 1416, 1224, 1179, 1161, 1109, 1063, 987, 941, 886, 

746 cm-1; HPLC: 6.973 min (HPLC method A); ESI(+)MS: m/z 550 [M+Na]+, 532 [M+Na−H2O]+; 

HR-ESI(+)MS: calcd for C28H37N3O7Na m/z 550.2524; found m/z 550.2542. 

 

4.1.04.4. (12Z,6R,7R,8E,13E,15E,17S,19S)-17,19-dihydroxy-6-isopropyl-7,15-dimethyl-32,33-

dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-8,13,15-triene-

2,4,10-trione ((16S)-2c) 

The title compound was obtained from 2 (40 mg, 0.076 mmol) and purified via PLC 

(DCM/EtOH = 90:10). 

White powder; 13 mg (32%); Rf = 0.76 (DCM/EtOH = 90:10); [α]D = −66° (c 0.18, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.08 (s, 1H), 6.52 (dd, J = 16.2, 5.3 Hz, 1H), 6.43 (brd, J = 7.4 Hz, 

1H), 6.09 (d, J = 15.4 Hz, 1H), 6.07 (d, J = 3.0 Hz, 1H), 5.91 (d, J = 16.2 Hz, 1H), 5.61 (d, J = 

8.4 Hz, 1H), 5.58 (dd, J = 10.0, 4.0 Hz, 1H), 4.98-4.91 (m, 2H), 4.55-4.42 (m, 2H), 4.31-4.13 

(m, 2H), 3.45-3.33 (m, 1H), 3.11 (dd, J = 15.9, 3.3 Hz, 1H), 2.89 (dd, J = 15.9, 10.3 Hz, 1H), 
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2.81-2.62 (m, 3H), 2.10-1.94 (m, 3H), 1.69 (s, 3H), 1.13 (d, J = 7.2 Hz, 3H), 1.00 (t, J = 6.2 

Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ: 167.4, 161.4, 161.2, 159.8, 143.9, 143.3, 137.3, 136.2, 

135.9, 133.6, 133.1, 125.6, 124.8, 123.5, 80.9, 67.6, 66.7, 50.4, 42.2, 41.5, 37.2, 35.5, 30.0, 

29.7, 19.6, 18.8, 13.0, 11.2; FT-IR: 3330 (br), 2919, 1728, 1617, 1416, 1224, 1179, 1161, 

1109, 1063, 987, 941, 886, 746 cm-1; HPLC: 7.206 min (HPLC method A); ESI(+)MS: m/z 550 

[M+Na]+, 532 [M+Na−H2O]+; HR-ESI(+)MS: calcd for C28H37N3O7Na m/z 550.2524; found m/z 

550.2542. 

4.1.05. General procedure for the synthesis of NHMe-C16 compounds (16R)-1d, (16S)-

1d, (16R)-2d and (16S)-2d 

Methylamine (5 eq.) and acetic acid (0.1 eq.) were added to a stirred solution of 1 or 2 

(0.04 mmol scale, 1 eq.) in dry ACN (3 mL) at 0 °C under N2 atmosphere. After 48 h, 

NaCNBH3 (1.5 eq.) was added to the reaction mixture and stirred for 3 h at 0 °C. The 

reaction was quenched with acetone (1 mL), evaporated under reduced pressure and 

resuspended in DCM (10 mL). The organic phase was then washed with saturated NaHCO3 

(2x5 mL).  

4.1.05.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19R)-33-((2-(diethylamino)ethyl)sulfonyl)-17-

hydroxy-6-isopropyl-7,15-dimethyl-19-(methylamino)-5-oxa-11-aza-1(4,2)-oxazola-

3(1,2)-pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16R)-1d) 

The title compound was obtained from 1 (30 mg, 0.043 mmol) and purified via PLC 

(DCM/MeOH = 90:10 + 1% TEA). 

White powder; 2.4 mg (7.8%); Rf = 0.41 (DCM/EtOH = 90:10 + 1% of TEA); [α]D = −35° (c 

0.19, DCM); 1H-NMR (400 MHz, CDCl3) δ: 8.12 (s, 1H), 6.70 (dd, J = 16.0, 4.1 Hz, 1H), 6.24 

(d, J = 15.8 Hz, 1H), 6.12 (br, 1H), 5.80 (d, J = 16.0 Hz, 1H), 5.66 (ddd, J = 15.3, 8.6, 4.5 Hz, 

1H), 5.46 (d, J = 8.4 Hz, 1H), 5.39 (s, 1H), 4.90 (d, J = 10.1 Hz, 1H), 4.75-4.68 (m, 1H), 4.28-

3.76 (m, 3H), 3.60 (d, J = 8.1 Hz, 1H), 3.36-2.68 (m, 10H), 2.67-2.57 (m, 4H), 2.53 (s, 3H), 

2.50-2.24 (m, 2H), 2.09-2.03 (m, 3H), 1.80 (s, 3H), 1.13-1.06 (m, 9H), 0.99 (t, J = 6.5 Hz, 

6H); 13C-NMR (100 MHz, CDCl3 + CD3OD) δ: 168.1, 165.3, 160.9, 160.6, 146.3, 143.8, 137.4, 

135.9, 134.4, 133.9, 124.4, 123.6, 82.8, 68.1, 62.7, 59.3, 57.3, 47.1, 46.9 (2C), 45.0, 40.7, 

40.3, 36.6, 32.6, 31.9, 29.3, 25.5, 22.6, 19.6, 14.1, 12.9, 11.5 (2C), 10.3; FT-IR: 3332 (br), 
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2922, 2840, 1743, 1621, 1430, 1187, 1122, 1039, 969, 891, 810, 747 cm-1; HPLC: 14.293 

min (HPLC method B); ESI(+)MS: m/z 705 [M+H]+, 728 [M+Na]+; HR-ESI(+)MS: calcd for 

C35H56N5O8S m/z 706.3844; found m/z 706.3841. 

4.1.05.2. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19S)-33-((2-(diethylamino)ethyl)sulfonyl)-17-

hydroxy-6-isopropyl-7,15-dimethyl-19-(methylamino)-5-oxa-11-aza-1(4,2)-oxazola-

3(1,2)-pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16S)-1d) 

The title compound was obtained from 1 (30 mg, 0.043 mmol) and purified via PLC 

(DCM/MeOH = 90:10 + 1% TEA). 

White powder; 3.2 mg (10%); Rf = 0.41 (DCM/EtOH = 90:10 + 1% of TEA); [α]D = −50° (c 0.11, 

DCM); 1H-NMR (400 MHz, CDCl3) δ: 8.14 (s, 1H), 6.62 (dd, J = 16.6, 4.3 Hz, 1H), 6.29 (d, J = 

15.6 Hz, 1H), 5.83-5.74 (m, 2H), 5.73-5.61 (m, 1H), 5.38 (brs, 1H), 4.89 (brd, J = 9.6 Hz, 1H), 

4.37-3.41 (m, 8H), 3.38-2.87 (m, 7H), 2.87-2.56 (m, 6H), 2.53 (s, 3H), 2.13-1.82 (m, 4H), 

1.76 (s, 3H), 1.08-1.05 (m, 3H), 1.02-0.95 (m, 6H), 0.88 (t, J = 6.5 Hz, 6H); 13C-NMR (100 

MHz, CDCl3 + 5% CD3OD) δ: 168.1, 165.7, 160.5, 159.9, 146.0, 144.0, 138.0, 136.1, 134.5, 

133.3, 124.2, 123.4, 82.8, 67.0, 62.4, 59.3, 54.8, 47.0 (2C), 46.7, 45.0, 36.6, 33.5, 32.4, 

31.9, 29.3, 25.9, 22.7, 19.7, 14.0, 12.5, 11.6 (2C), 9.9; FT-IR: 3274 (br), 2970, 1741, 1623, 

1431, 1191, 1123, 970, 809 cm-1; HPLC: 13.958 min (HPLC method B); ESI(+)MS: m/z 705 

[M+H]+, 728 [M+Na]+; HR-ESI(+)MS: calcd for C35H56N5O8S m/z 706.3844; found m/z 

706.3841. 

 

4.1.05.3. (12Z,6R,7R,8E,13E,15E,17S,19R)-17-hydroxy-6-isopropyl-7,15-dimethyl-19-

(methylamino)-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-

pyrrolacycloicosaphane-8,13,15-triene-2,4,10-trione ((16R)-2d) 

The title compound was obtained from 2 (30 mg, 0.06 mmol) and purified via PLC 

(DCM/EtOH = 90:10 + 1% TEA). 

White powder; 3.6 mg (11.5%); Rf = 0.35 (DCM/EtOH = 90:10 + 0.1% TEA); [α]D = −60° (c 

0.16, DCM); 1H-NMR (400 MHz, CDCl3) δ: 7.90 (s, 1H), 7.33 (m, 1H), 6.60 (dd, J = 16.5, 7.3 

Hz, 1H), 6.13 (t, J = 2.8 Hz, 1H), 6.01 (d, J = 16.2 Hz, 1H), 5.90 (d, J = 15.7 Hz, 1H), 5.62 (dt, 

J = 15.9, 4.9 Hz, 1H), 4.95 (dd, J = 10.3, 1.5 Hz, 1H), 4.90 (d, J = 8.8 Hz, 1H), 4.52 (ddd, J = 
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14.6, 9.2, 3.8 Hz, 1H), 4.39-4.20 (m, 3H), 3.88 (brd, J = 17.8 Hz, 1H), 3.10 (d, J = 12.0 Hz, 

1H), 2.90-2.78 (m, 1H), 2.78-2.63 (m, 4H), 2.57 (s, 3H), 2.10-1.90 (m, 4H), 1.85-1.77 (m, 

1H), 1.72 (s, 3H), 1.12 (d, J = 6.7 Hz, 3H), 1.00-0.96 (m, 6H); 13C-NMR (100 MHz, CDCl3) δ: 

167.9, 161.2, 161.1, 160.7, 144.7, 144.1, 136.8, 135.2, 133.8, 133.6, 132.2, 124.6, 124.5, 

123.6, 81.5, 57.7, 55.4, 50.7, 41.3, 40.0, 37.6, 31.8, 30.1, 19.4, 18.8, 17.8, 13.9, 13.0, 12.0; 

FT-IR: 3343 (br), 2969, 2921, 2850, 1727, 1667, 1610, 1587, 1420, 1372, 1164, 1117, 978, 

746 cm-1; HPLC: 1.945 min (HPLC method A); ESI(+)MS: m/z 541 [M+H]+, 563 [M+Na]+, 523 

[M−H2O]+; HR-ESI(+)MS: calcd for C29H41N4O6 m/z 541.3021; found m/z 541.3015. 

4.1.05.4. (12Z,6R,7R,8E,13E,15E,17S,19S)-17-hydroxy-6-isopropyl-7,15-dimethyl-19-

(methylamino)-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-

pyrrolacycloicosaphane-8,13,15-triene-2,4,10-trione ((16S)-2d) 

The title compound was obtained from 2 (30 mg, 0.06 mmol) and purified via PLC 

(DCM/EtOH = 90:10 + 1% TEA). 

White powder; 4.1 mg (13%); Rf = 0.35 (DCM/EtOH = 90:10 + 0.1% TEA); [α]D = −77° (c 0.26, 

DCM); 1H-NMR (400 MHz, CDCl3) δ: 8.07 (s, 1H), 6.79 (m, 1H), 6.55 (dd, J = 15.8, 5.5 Hz, 

1H), 6.09 (brs, 1H), 6.01 (d, J = 15.5 Hz, 1H), 5.94 (d, J = 15.8 Hz, 1H), 5.56-5.42 (m, 2H), 

4.94 (d, J = 9.4 Hz, 1H), 4.89-4.83 (m, 1H), 4.55-4.38 (m, 2H), 4.20-4.11 (m, 1H), 3.62-3.53 

(m, 1H), 3.45-3.38 (m, 1H), 3.35 (d, J = 15.3 Hz, 1H), 3.15-3.08 (m, 1H), 3.07-2.97 (m, 1H), 

2.77-2.73 (m, 2H), 2.69 (s, 3H), 2.06-1.90 (m, 4H), 1.78-1.72 (m, 1H), 1.61 (s, 3H), 1.14 (d, 

J = 7.2 Hz, 3H), 0.99 (d, J = 6.6 Hz, 6H); 13C-NMR (100 MHz, CD3OD) δ: 165.3, 160.5, 160.1, 

159.9, 145.4, 144.3, 137.0, 136.6, 135.2, 134.2, 132.3, 124.6, 123.7 (2C), 80.1, 65.9, 54.0, 

42.1, 40.5, 36.9, 35.6, 34.6, 31.7, 22.3, 17.4, 13.0, 11.4, 10.2, 9.1; FT-IR: 3329 (br), 2955, 

2919, 2850, 1730, 1667, 1617, 1587, 1417, 1371, 1227, 1163, 1109, 1056, 997, 746 cm-1; 

HPLC: 2.118 min (HPLC method A); ESI(+)MS: m/z 541 [M+H]+, 563 [M+Na]+, 523 [M−H2O]+; 

HR-ESI(+)MS: calcd for C29H41N4O6 m/z 541.3021; found m/z 541.30162. 

4.1.06. General procedure for the synthesis of C14-EVE protected compounds 1f and 2f 

Compound 1 or 2 (0.1-0.01 mmol scale) was dissolved in DCM/EVE 1:1, and successively 

PPTS (1 eq.) was added. The reaction was stirred overnight at room temperature. The 

solvents were evaporated under vacuum, the residue was resuspended in DCM (10 mL) 
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and washed with water (3x15 mL) and brine (15 mL). The organic phase was dried over 

anhydrous Na2SO4 and evaporated under low pressure. The crude oil was used in the next 

step without further purification. 

4.1.06.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S)-33-((2-(diethylamino)ethyl)sulfonyl)-17-(1-

ethoxyethoxy)-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10,19-tetraone (1f) 

The title compound was obtained from 1 (100 mg, 0.15 mmol) in 0.3 mL DCM and 0.3 mL 

EVE as a mixture of isomers in a 1:1 ratio. 

Yellow oil; 77 mg (70.6%); Rf  = 0.37 (DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 8.03 [8.02] (s, 1H), 6.91 [6.91] (bs, 1H), 6.59 [6.55] (dd, 

J = 16.0, 1.6 Hz, 1H), 6.09 [6.09] (d, J = 15.6 Hz, 1H), 5.84 [5.84] (d, J = 15.6 Hz, 1H), 5.71-

5.58 [5.71-5.58] (m, 1H), 5.33 [5.33] (s, 1H), 5.28 [5.13] (d, J = 9.2 Hz, 1H), 4.87-4.53 [4.87-

4.53] (m, 4H), 4.31-4.13 [4.31-4.13] (m, 3H), 3.88 [3.88] (d, J = 15.6 Hz, 1H), 3.83-3.77 

[3.83-3.77] (m, 1H), 3.69 [3.69] (d, J = 16.0 Hz, 1H), 3.65-3.20 [3.65-3.20] (m, 6H), 2.97 

[2.93] (d, J = 7.6 Hz, 1H), 2.88-2.78 [2.88-2.78] (m, 1H), 2.77-2.47 [2.77-2.47] (m, 5H), 2.29-

2.14 [2.29-2.14] (m, 1H), 1.90-1.49 [1.90-1.49] (m, 2H), 1.72 [1.68] (s, 3H), 1.28-1.12 [1.28-

1.12] (m, 6H), 1.09 [1.09] (t, J = 6.8 Hz, 6H), 1.08 [1.02] (d, J = 6.8 Hz, 3H), 0.93 [0.91] (d, J 

= 6.4 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ (mixture of isomers in a 1:1 ratio): 199.9 [199.8], 

168.5 [168.4], 165.8 [165.7], 160.3 [160.3], 157.1 [157.0], 144.6 [144.6], 144.3 [144.2], 

136.8 [136.5], 136.2 [134.2], 132.3 [131.1], 129.1 [125.6], 125.3 [125.1], 124.5 [124.5], 

98.9 [97.2], 82.6 [82.5], 67.9 [67.4], 62.9 [62.9], 61.0 [61.0], 59.5 [59.5], 48.8 [48.8], 47.8 

[47.7], 47.0 [47.0], 49.9 [46.9] (2C), 45.6 [45.6], 43.7 [43.7], 40.6 [40.5], 36.5 [36.5], 29.4 

[29.4], 25.9 [25.9], 20.3 [20.2], 19.6 [19.6] (2C), 18.7 [18.7], 12.7 [12.7], 11.2 [11.1], 10.9 

[10.9] (2C); ESI(+)MS: m/z 763 [M+H]+, 785 [M+Na]+. 

4.1.06.2. (12Z,6R,7R,8E,13E,15E,17S)-17-(1-ethoxyethoxy)-6-isopropyl-7,15-dimethyl-32,33-

dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-8,13,15-triene-

2,4,10,19-tetraone (2f) 

The title compound was obtained from 2 (30 mg, 0.0571 mmol) in 0.2 mL DCM and 0.2 

mL EVE as a mixture of isomers in a 1:1 ratio. 
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Yellow oil; 34 mg (98%); Rf = 0.77 (DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ (mixture 

of isomers in a 1:1 ratio): 7.83 [7.81] (s, 1H), 7.71 [7.65] (brdd, J = 8.0, 3.0 Hz, 1H), 6.60 

[6.59] (dd, J = 16.3, 7.6 Hz, 1H), 6.13 [6.13] (m, 1H), 6.01 [6.01] (brd, J = 16.4, 1H), 5.83 

[5.82] (dd, J = 15.9, 4.8 Hz, 1H), 4.95 [4.95] (d, J = 10.3 Hz, 1H), 4.89 [4.89] (d, J = 9.6 Hz, 

1H), 4.84 [4.84] (m, 1H), 4.7-4.57 (m, 2H), 4.47 [4.47] (m, 1H), 4.42-4.20 (m, 3H), 3.95 

[3.94] (d, J = 13.3 Hz, 1H), 3.90-3.73 [3.90-3.73] (m, 1H), 3.65 [3.64] (d, J = 13.5 Hz, 1H), 

3.45-3.35 [3.45-3.35] (m, 1H), 3.28-3.14 [3.28-3.14] (m, 1H), 2.96-2.82 [2.96-2.82] (m, 1H), 

2.76-2.58 [2.76-2.58] (m, 3H), 2-08-2.00 [2.00] (m, 1H), 1.56 [1.56] (s, 3H), 1.55 [1.55] (s, 

3H), 1.23- 1.07 (m, 6H), 0.95 [0.95] (m, 6H); 13C-NMR (100 MHz, CDCl3) δ (the values of the 

other isomer are reported in brackets): 200.0 [199.8], 167.5 [167.5], 160.8 [160.7], 160.3 

[160.3], 155.9 [155.9], 145.4 [145.3], 142.9 [142.9], 137.0 [136.9], 136.6 [135.8], 134.6 

[133.8], 133.3 [132.9], 129.8 [128.9], 125.9 [125.8], 125.4 [125.2], 122.9 [122.7], 98.3 

[97.1], 81.4 [81.2], 68.4 [68.2], 61.2 [60.4], 50.6 [50.5], 46.5 [46.2], 45.8 [45.7], 40.3 [40.0], 

37.8 [37.6], 30.1 [30.1], 29.9 [29.8], 20.4 [20.3], 19.5 [19.5], 18.8 [18.8], 15.4 [15.0], 12.7 

[12.6], 12.3 [12.23]; ESI(+)MS: m/z 620 [M+Na]+. 

4.1.07. Synthesis of OH-C16 C14-protected compounds (16R)-1g, (16S)-1g, (16R)-1g and 

(16S)-1g 

Starting from 1f or 2f the general procedure reported in section 4.1.04 was followed. 

4.1.07.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19R)-33-((2-(diethylamino)ethyl)sulfonyl)-17-

(1-ethoxyethoxy)-19-hydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-

3(1,2)-pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16R)-1g) 

The title compound was obtained from 1f (97 mg, 0.13 mmol) and separated from 16S 

enantiomer via PLC (silica gel, DCM/EtOH = 95:5).  

Yellow solid; 25 mg (25.7%); Rf = 0.22 (DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 8.16 [8.15] (s, 1H), 6.66 [6.62] (dd, J = 9.5, 4.0 Hz, 1H), 

6.23 [6.22] (d, J = 15.7 Hz, 1H), 6.08-6.00 [6.04] (m, 1H), 5.78 [5.78] (d, J = 15.7 Hz, 1H), 

5.63 [5.63] (m, 1H), 5.46 [5.46] (d, J = 7.8 Hz, 1H), 5.43 [5.43] (d, J = 9.4 Hz, 1H), 4.88 [4.87] 

(d, J = 10.3 Hz, 1H), 4.85-4.69 [4.85-4.69] (m, 1H), 4.72-4.63 [4.72-4.63] (m, 1H), 4.30-4.17 

[4.30-4.17] (m, 3H), 4.00 [4.00] (dq, J = 10.6, 4.1 Hz, 1H), 3.74-3.45 [3.74-3.45] (m, 4H), 
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3.33-3.17 [3.33-3.17] (m, 2H), 3.16-2.90 [3.16-2.90] (m, 3H), 2.88-2.71 [2.88-2.71] (m, 2H), 

2.65-2.45 [2.65-2.45] (m, 5H), 2.15-1.69 [2.15-1.69] (m, 4H), 1.82 [1.80] (s, 3H), 1.30 [1.27] 

(d, J = 5.3 Hz, 3H), 1.22 [1.15] (t, J = 7.2 Hz, 3H), 1.11 [1.11] (d, J = 7.0 Hz, 3H), 1.07 [1.07] 

(t, J = 7.2 Hz, 6H), 0.96 [0.96] (t,  J = 7.2 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ (mixture of 

isomers in a 1:1 ratio): 168.4 [168.3], 165.3 [165.2], 162.1 [161.9], 160.2 [160.1], 145.9 

[145.7], 144.3 [144.1], 136.9 [136.8], 135.9 [135.6], 134.1 [133.7], 132.7 [132.7], 124.7 

[124.6], 123.6 [123.6], 98.9 [97.5], 82.6 [82.6], 70.9 [70.9], 68.1 [65.5], 62.5 [62.4], 61.4 

[59.9], 59.3 [59.3], 49.2 [49.1], 47.0 [47.0] (2C), 45.3 [45.2], 41.3 [41.3], 41.3 [41.2], 36.5 

[36.4], 35.7 [35.4], 29.3 [29.3], 28.5 [28.5], 25.5 [25.5], 20.6 [20.4], 19.8 [19.8], 18.5 [18.5], 

15.5 [15.1], 13.2 [13.1], 11.6 [11.6] (2C), 10.6 [10.5]; ESI(+)MS: m/z 787 [M+Na]+. 

 

4.1.07.2. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19S)-33-((2-(diethylamino)ethyl)sulfonyl)-17-

(1-ethoxyethoxy)-19-hydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-

3(1,2)-pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16S)-1g) 

The title compound was obtained from 1f (97 mg, 0.13 mmol) and separated from 16R 

enantiomer via PLC (silica gel, DCM/EtOH = 95:5).Yellow solid; 60 mg (67.6%); Rf = 0.36 

(DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ (the values of the other isomer are 

reported in brackets): 8.14 [8.14] (s, 1H), 6.58 [6.57] (dd, J = 16.4, 4.0 Hz, 1H), 6.27 [6.27] 

(dd, J = 15.6, 4.4 Hz, 1H), 6.05-5.94 [6.05-5.94] (m, 1H), 5.83-5.64 [5.83-5.64] (m, 3H), 5.36 

[5.36] (s, 1H), 5.01-4.80 [5.01-4.80] (m, 1H), 4.81 [4.81] (d, J = 10.4 Hz, 1H), 4.73 [4.64] (q, 

J = 5.2 Hz, 1H), 4.48-4.25 [4.48-4.25] (m, 2H), 4.15-3.85 [4.15-3.85] (m, 3H), 3.73-3.60 

[3.73-3.60] (m, 1H), 3.56-3.37 [3.56-3.37] (m, 2H), 3.31-3.13 [3.31-3.13] (m, 2H), 3.12-2.97 

[3.12-2.97] (m, 3H), 2.84 [2.82] (d, J = 10.0 Hz, 1H), 2.64-2.53 [2.64-2.53] (m, 4H), 2.51-

2.40 [2.51-2.40] (m, 1H), 2.30-2.18 [2.30-2.18] (m, 1H), 2.16-1.89 [2.16-1.89] (m, 4H), 1.78 

[1.75] (s, 3H), 1.29 [1.29] (d, J = 6.0 Hz, 3H), 1.21 [1.16] (t, J = 6.8 Hz, 3H), 1.26-1.05 [1.26-

1.05] (m, 9H), 1.03 [0.98] (d, J = 6.4 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ (mixture of isomers 

in a 1:1 ratio): 169.1 [169.1], 165.8 [165.8], 161.4 [161.3], 160.2 [160.2], 145.3 [145.2], 

143.8 [143.8], 137.6 [137.5], 136.0 [135.1], 133.1 [132.8], 131.6 [131.6], 125.0 [124.7], 

123.6 [123.6], 99.3 [97.4], 82.9 [82.9], 70.7 [70.5], 66.2 [66.2], 62.3 [62.2], 61.7 [59.8], 

59.5 [59.5], 49.3 [49.3], 47.0 [47.0] (2C), 46.7 [46.6], 45.3 [45.3], 41.4 [41.1], 41.3 [41.3], 
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36.7 [36.7], 34.9 [34.8], 29.2 [29.2], 25.8 [25.8], 20.4 [20.3], 19.8 [19.8], 18.5 [18.5], 15.4 

[15.1], 12.7 [12.6], 11.7 [11.7] (2C), 9.7 [9.7]; ESI(+)MS: m/z 787 [M+Na]+. 

 

4.1.07.3. (12Z,6R,7R,8E,13E,15E,17S,19R)-17-(1-ethoxyethoxy)-19-hydroxy-6-isopropyl-

7,15-dimethyl-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-

pyrrolacycloicosaphane-8,13,15-triene-2,4,10-trione ((16(R)-2g) 

The title compound was obtained from 2f (34 mg, 0.057 mmol) using the general 

procedure reported in 4.1.04 section and separated from 16S enantiomer via PLC (silica 

gel, DCM/EtOH = 95:5). 

Colourless oil; 18.8 mg (56.9%); Rf = 0.78 (DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 7.97 [7.96] (s, 1H), 6.92 [6.81] (brt, 1H), 6.59 [6.59] (dd, 

J = 16.4, 6.4 Hz, 1H), 6.20-6.13[6.20-6.13] (m, 1H), 6.03-5.89 [6.03-5.89] (m, 2H), 5.64-5-

54 [5.64-5.54] (m, 1H), 5.16 [4.98] (d, J = 9.2 Hz, 1H), 4.94 [4.94] (d, J = 10.8 Hz, 1H), 4.76-

4-49 [4.76-4.49] (m, 2H), 4.85-4.30[4.85-4.30] (m, 4H), 3.78-3.34 (m, 3H), 3.07-2.99 [3.07-

2.99] (m, 1H), 2.09-2.58 (m, 4H), 2.10-1.81 [2.10-1.81] (m, 3H), 1.76 [1.76] (s, 3H), 1.28-

1.10 [1.28-1.10] (m, 9H), 0.98 [0.98] (d,  J = 6.4 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 167.2 [167.2], 161.7 [161.5], 160.7 [160.7], 160.5 

[160.4], 143.9 [143.7], 143.6 [143.5], 137.1 [135.9], 135.6 [135.5], 134.9 [134.5], 134.0 

[132.1], 131.1 [131.0], 125.1 [124.9], 124.8 [124.7], 123.6 [123.5], 98.5 [97.4], 81.2 [81.1], 

70.2 [70.1], 67.8 [67.5], 60.2 [60.2], 50.8 [50.8], 42.3  [42.1], 40.9 [40.6], 37.5 [37.4], 36.6 

[36.6], 30.0 [30.0], 29.7 [29.7], 20.4 [20.4], 19.4 [19.4], 18.9 [18.9], 15.4 [15.0], 13.4 [13.2], 

11.9 [11.9]; ESI(+)MS: m/z  622 [M+Na]+. 

 

4.1.07.4. (12Z,6R,7R,8E,13E,15E,17S,19S)-17-(1-ethoxyethoxy)-19-hydroxy-6-isopropyl-

7,15-dimethyl-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-

pyrrolacycloicosaphane-8,13,15-triene-2,4,10-trione ((16S)-2g) 

The title compound was obtained from 2f (34 mg, 0.057 mmol) using the general 

procedure and separated from 16R enantiomer via PLC (silica gel, DCM/EtOH = 95:5). 
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Colourless oil; 14.2 mg (41.6%); Rf = 0.61 (DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 8.01 [8.00] (s, 1H), 6.53 [6.53] (bs, 1H), 6.51 [6.51] (dd, 

J = 5.5, 3 Hz, 1H), 6.09 [6.05] (d, J = 3.5 Hz, 1H), 6.05 [6.05] (d, J = 2.9 Hz, 1H), 5.88 [5.88] 

(dd, J = 16.4, 1.0 Hz, 1H), 5.51 [5.51] (m, 2H), 4.90 [4.90] (dd, J = 10.0, 1.9 Hz, 1H), 4.83 

[4.83] (m, 1H), 4.77-4.68 [4.77-4.68] (m, 2H), 4.49-4.39 [4.49-4.39] (m, 1H), 4.39-4.28 

[4.39-4.28] (m, 1H), 4.28-4.16 [4.28-4.16] (m, 1H), 4.16-4.03 [4.16-4.03] (m, 1H), 3.73-3.62 

(m, 1H), 3.57-3.37(m, 6H), 3.31-3.14(m, 2H), 3.12-2.98 (m, 2H), 3.09 [3.04] (t, J = 3.07 Hz, 

1H), 2.83 [2.79] (dd, J = 10.4, 1.9 Hz, 1H), 2.70-2.50 [2.70-2.50] (m, 4H), 2.00-1.90 [2.00-

1.90] (m, 3H), 1.66 [1.63] (s, 3H), 1.27-1.12 [1.27-1.12] (m, 6H), 1.14-1.00 [1.14-1.00] (m, 

3H), 0.97 [0.97] (t, J = 6.4 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ (mixture of isomers in a 1:1 

ratio): 167.4 [167.4], 161.4 [161.4], 161.2 [161.3], 159 [159.6], 144.0 [143.9], 143.1 

[143.1], 137.3 [137.3], 136.3 [136.3], 135.9 [135.9], 134.9 [133.0], 132.7 [131.3], 125.6 

[125.4], 124.9 [124.9], 123.3 [123.3], 99.1 [99.1], 98.1 [98.1], 80.8 [80.8], 71.0 [70.3], 66.5 

[66.4], 61.8 [60.4], 50.3 [50.3], 41.9 [41.7], 41.6 [41.6], 37.2 [37.2], 35.3 [35.2], 30.0 [30.0], 

29.8 [29.8], 20.5 [20.4], 19.6 [19.6], 18.7 [18.7], 12.8 [12.8], 11.1 [11.0]; ESI(+)MS: m/z 622 

[M+Na]+. 

4.1.08. General procedure for the synthesis of F-C16 C14-protected compounds (16R)-

1h, (16S)-1h, (16R)-2h and (16S)-2h 

To a solution of C14-protected alcohol (1 eq., 0.06 mmol scale) in anhydrous DCM (0.2 

mL), DAST (2 eq.) was added at 0 °C under nitrogen atmosphere. After stirring for 24 h, 

the reaction mixture was quenched with saturated NaHCO3 (10 mL) and the aqueous phase 

was extracted with DCM (3x10 mL). The combined organic phases were washed with 

saturated NaHCO3, dried over anhydrous Na2SO4 and evaporated under vacuum to 

dryness.  

4.1.08.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19R)-33-((2-(diethylamino)ethyl)sulfonyl)-17-

(1-ethoxyethoxy)-19-fluoro-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-

3(1,2)-pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16R)-1h) 

The title compound was obtained from (16S)-1g. The crude product was checked by NMR 

and used in the next step without further purification.  



SCIENTIFIC PUBLICATIONS 

 

Sighel et al., 2022 481 
 

Brown oil; 15 mg (80.4%); Rf = 0.53 (DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 8.12 [8.12] (s, 1H), 6.60 [6.59] (dd, J = 16.4, 4.8 Hz,1H), 

6.24 [6.24] (brd, J = 15.2 Hz, 1H), 6.07-6.01 (m, 1H), 5.82 [5.81] (dd, J = 16.0, 2.0 Hz, 1H), 

5.75-5.62 (m, 1H), 5.50-5.45 (m, 1H), 5.36 [5.25] (d, J = 9.2 Hz, 1H), 5.16-5.09 [5.04-4.99] 

(m, 1H), 4.87 [4.87] (dd, J = 10.4, 2.4 Hz, 1H), 4.80-4.54 (m, 2H), 4.50-4.39 (m, 1H), 4.27-

4.18 (m, 1H), 4.08-4.00 (m, 1H), 3.69-3.62 (m, 1H), 3.60-3.40 (m, 4H), 3.30-2.80 (m, 7H), 

2.83-2.73 (m, 1H), 2.64-2.46 (m, 1H), 2.58 [2.57] (q, J = 7.2 Hz, 4H), 2.01-1.92 (m, 1H), 1.82 

[1.80] (s, 3H), 1.70-1.54 (m, 1H), 1.28 [1.27] (d, J = 5.2 Hz, 3H), 1.22-1.00 (m, 6H), 1.06 

[1.06] (t, J = 7.2 Hz, 6H), 0.96 [0.96] (t,  J = 6.8 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ (mixture 

of isomers in a 1:1 ratio): 168.7 [168.7], 165.5 [165.5], 160.2 [160.1], 159.9 [159.6], 145.6 

[145.5], 143.7 [143.7], 136.9 [136.1], 136.0 [136.0], 135.6 [135.0], 132.9 [131.9], 125.1 

[124.8], 123.8 [123.7], 98.8 [97.2], 88.7 [88.7] (1JCF = 170.6 Hz), 82.7 [82.6], 68.8 [68.5], 62.4 

[62.4], 61.1 [59.5], 58.8 [58.8], 49.1 [49.1], 46.9 [46.9], 46.9 [46.9] (2C), 45.2 [45.2], 41.1 

[40.9], 40.5 [40.4] (2JCF = 25.1 Hz), 36.4 [36.4], 33.7 [33.6] (2JCF = 25.1 Hz), 29.6 [25.6], 29.2 

[29.2], 20.4 [20.3], 19.8 [19.8], 18.4 [18.4], 15.4 [15.2], 13.0 [13.0], 11.6 [11.6] (2C), 10.7 

[10.7]; ESI(+)MS: m/z 789 [M+Na]+. 

4.1.08.2. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19S)-33-((2-(diethylamino)ethyl)sulfonyl)-17-

(1-ethoxyethoxy)-19-fluoro-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-

3(1,2)-pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16S)-1h) 

The title compound was obtained from (16R)-1g. The crude product was purified via PLC 

(DCM/EtOH = 95:5).  

Brown oil; 15 mg (65.1%); Rf = 0.57 (DCM/EtOH = 95:5); 1H-NMR (400 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 8.13 [8.12] (s, 1H), 6.67 [6.67] (dd, J = 16.0, 4.4 Hz,1H), 

6.26 [6.26] (dd, J = 16.0, 2.0 Hz, 1H), 6.14-6.06 (m, 1H), 5.78 [5.78] (dd, J = 16.0, 1.2 Hz, 

1H), 5.70-5.50 (m, 1H), 5.58 [5.43] (d, J = 9.2 Hz, 1H), 5.48 [5.48] (d, J = 4.8 Hz, 1H), 5.14-

4.95 (brd, 1H), 4.90 [4.90] (d, J = 10.4 Hz, 1H), 4.82-4.53 (m, 2H), 4.30-3.95 (m, 3H), 3.79-

3.36 (m, 3H), 3.34-3.15 (m, 3H), 3.14-2.90 (m, 3H), 2.84-2.75 (m, 1H), 2.67-2.55 (m, 4H), 

2.57-2.44 (m, 2H), 2.12-1.86 (m, 4H), 1.81 [1.77] (s, 3H), 1.32 [1.30] (d, J = 5.2 Hz, 3H), 

1.26-1.15 (m, 6H), 1.08 [1.08] (t, J = 6.8 Hz, 6H), 0.99 [0.97] (d,  J = 6.2 Hz, 6H); 13C-NMR 

(100 MHz, CDCl3) δ (mixture of isomers in a 1:1 ratio): 168.3 [168.3], 165.2 [165.2], 160.5 
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[160.5], 159.6 [159.5] (2JCF )=18.8 Hz), 145.9 [145.8], 143.7 [143.7], 137.7 [137.6], 136.2 

[136.2]. 134.8 [134.2], 133.1 [132.9], 124.5 [124.3], 123.7 [123.7], 99.1 [97.3], 88.5 [88.3] 

(1JCF =173.6 Hz), 82.7 [82.7], 68.2 [67.4] (3JCF = 3.9 Hz), 62.6 [62.6], 61.2 [59.5], 59.3 [59.2], 

49.1 [49.1], 46.9 [46.9], 46.9 [46.9] (2C), 45.2 [45.2], 41.3 [41.3], 40.0 [39.8], 36.6 [36.6], 

33.2 [33.1] (2JCF = 24.2 Hz), 29.4 [29.4], 25.4 [25.4], 20.4 [20.3], 19.8 [19.8], 18.5 [18.5], 15.4 

[15.1], 12.7 [12.6], 11.7 [11.7] (2C), 10.3 [10.3]; ESI(+)MS: m/z 789 [M+Na]+. 

 

4.1.08.3. (12Z,6R,7R,8E,13E,15E,17S,19R)-17-(1-ethoxyethoxy)-19-fluoro-6-isopropyl-7,15-

dimethyl-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-

8,13,15-triene-2,4,10-trione ((16R)-2h) 

The title compound was obtained from (16S)-1g. The crude product was checked by NMR 

and used in the next step without further purification. Brown oil; 77 mg (95%); Rf = 0.32 

(DCM/EtOH = 93:7); 1H-NMR (400 MHz, CDCl3) δ (mixture of isomers in a 1:1 ratio): 7.94 

[7.92] (s, 1H), 7.18 [7.04] (br t, 1H), 6.63 [6.59] (dd, J = 6.6, 1.6 Hz, 1H), 6.18 [6.17] (d, J = 

2.8 Hz, 1H), 5.98 [5.98] (m, 2H), 5.67 [5.55] (ddd, J = 16.0, 6.2, 4.17 Hz, 1H), 5.02 [4.82] (d, 

J = 9.1 Hz, 1H), 4.95 [4.95] (dd, J = 9.9, 2.0 Hz, 1H), 4.61-4.44 [4.61-4.44] (m, 3H), 4.30-4.19 

[4.30-4.19 ] (m, 2H), 3.60-3.41 [3.60-3.41] (m, 2H), 3.12-2.96 [3.12-2.96] (m, 2H), 2.86-

2.69 [2.86-2.69] (m, 3H), 2.24 [2.24] (m, 1H), 2.00-1.90 [2.00-1.90] (m, 2H), 1.78 [1.78] (s, 

3H), 1.80-1.59 [1.80-1.59] (m, 2H), 1.47 [1.47] (t, J = 7.3 Hz, 3H), 1.22-1.14 [1.22-1.14] (m, 

6H), 0.98 [0.98] (dd, J = 6.9, 2.6 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ (mixture of isomers 

in a 1:1 ratio): 167.3 [167.3], 160.7 [160.7], 159.6 [159.5], 144.3 [144.0], 143.5 [143.4], 

137.0 [137.0], 136.7 [135.6], 135.6 [134.7], 134.2 [133.7], 131.2 [130.1], 125.5 [125.3], 

124.9 [124.7], 123.9 [123.8], 98.3 [96.9], 88.7 [88.6] (1JCF = 174.0 Hz), 81.2 [81.1], 68.8 [68.7] 

(3JCF = 3.0 Hz), 61.1 [59.8], 51.0 [50.9], 41.1 [40.9] (2JCF =23 Hz), 40.5 [40.3], 37.6 [37.5], 34.7 

[34.6] (2JCF = 29 Hz), 30.1 [30.0], 29.7 [29.7], 20.4 [20.2], 19.5 [19.5], 18.9 [18.9], 15.4 [15.1], 

13.4 [13.3], 12.1 [12.1]; ESI(+)MS: 624 [M+Na]+. 

4.1.08.4. (12Z,6R,7R,8E,13E,15E,17S,19S)-17-(1-ethoxyethoxy)-19-fluoro-6-isopropyl-7,15-

dimethyl-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-

8,13,15-triene-2,4,10-trione ((16S)-2h) 
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The title compound was obtained from ((16R)-1g. The crude product was checked by NMR 

and used in the next step without further purification. 

Brown oil; 14.2 mg (71%); Rf = 0.46 (DCM/EtOH = 93:7); 1H-NMR (400 MHz, CDCl3) δ 

(mixture of isomers in a 1:1 ratio): 8.02 [8.00] (s, 1H), 7.12 [7.06] (bt, 1H), 6.60 [6.57] (t, J 

= 6.0 Hz, 1H), 6.13-6.10 [6.13-6.10] (m, 1H), 5.99-5.95 [5.99-5.95] (m, 2H), 5.56 [5.50] (ddd, 

J = 15.2, 8.4, 3.6 Hz, 1H), 5.23 [5.08] (d, J = 8.0 Hz, 1H), 5.20-5.00 [5.20-5.00] (m, 1H), 4.80-

4.30 [4.80-4.30] (m, 5H), 3.95-3.75 (m, 2H), 3.69-2.90 (m, 5H), 2.41-2.22 (m, 1H), 2.09-

1.54 (m, 4H), 1.69 [1.69] (s, 3H), 1.27 [1.27] (d, J = 8.0 Hz, 3H), 1.15-1.06 (m, 6H), 0.98 

[0.98] (dd, J = 6.9, 3.0 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ (mixture of isomers in a 1:1 

ratio): 167.3 [167.2], 161.0 [161.0], 159.9 [159.8], 159.6 [159.1], 144.6 [144.2], 143.3 

[143.1], 137.3 [137.2], 135.8 [135.7], 135.5 [135.3], 133.4 [133.4], 131.7 [130.7], 125.6 

[125.5], 125.1 [125.0], 124.9 [124.7], 97.8 [97.1], 87.8 [87.8] (1JCF = 178 Hz), 80.8 [80.8], 67.6 

[67.3] (3JCF = 4.2 Hz), 60.3 [59.7], 59.6 [59.5], 42.1 [42.1], 42.0 [41.4] (2JCF = 23 Hz), 37.1 [36.5], 

34.4 [34.0] (2JCF = 29 Hz), 29.9 [29.9], 29.6 [29.6], 20.2 [20.1], 19.5 [18.9], 15.4 [15.2], 15.6 

[13.8], 12.9 [12.1], 10.9 [10.9]; ESI(+)MS: m/z 624[M+Na]+. 

4.1.09. General procedure for the synthesis of F-C16 compounds (16R)-1e, (16S)-1e, 

(16R)-2e and (16S)-2e 

C-14 protected alcohols (1 eq., 0.1 mmol scale) were dissolved in 10 mL of MeOH or in 10 

mL 10% acetic acid/THF 9:1 aqueous solution and PPTS (1 eq.) was added. The reaction 

was stirred at room temperature for 24 hours. The solvent was then evaporated under 

vacuum and the residue was resuspended in DCM (5 mL). The organic solution was 

washed with water (5 mL) and brine (5 mL), dried over anhydrous Na2SO4 and concentrated 

under low pressure. 

4.1.09.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19R)-33-((2-(diethylamino)ethyl)sulfonyl)-19-

fluoro-17-hydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16R)-1e) 

The title compound was obtained from (16R)-1h solubilized in MeOH. The crude product 

was purified via PLC (DCM/EtOH = 95:5). 
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White solid; 4 mg (63,1%); Rf = 0.65 (DCM/EtOH = 95:5); [α]D = −68° (c 0.10, DCM); 1H-NMR 

(400 MHz, CDCl3) δ: 8.14 (s, 1H), 6.66 (dd, J = 16.0, 4.8 Hz, 1H), 6.23 (d, J = 15.9 Hz, 1H), 

6.04-5.98 (m, 1H), 5.85 (dd, J = 16.1, 1.8 Hz, 1H), 5.73 (ddd, J = 15.8, 8.10, 4.1 Hz, 1H), 5.47 

(d, J = 1.5 Hz, 1H), 5.42 (d, J = 8.9 Hz, 1H), 5.17-4.98 (m, 1H), 4.90 (dd, J = 10.4, 2.1 Hz, 1H), 

4.82 (ddd,  J = 13.8, 9.2, 4.6 Hz, 1H), 4.46-4.38 (m, 1H), 4.27-4.19 (m, 1H), 4.08-4.00 (m, 

1H), 3.67-3.57 (m, 2H), 3.34-2.92 (m, 7H), 2.83-2.76 (m, 1H), 2.64-2.57 (m, 5H), 2.23-2.12 

(m, 1H), 2.06-1.93 (m, 2H), 1.84 (s, 3H), 1.13 (d, J = 6.9 Hz, 3H), 1.08 (t, J = 7.2 Hz, 6H), 0.98 

(t, J = 7.3 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ: 168.7, 160.5, 160.2, 159.8 (3JCF = 11.5 Hz), 

145.8, 143.8, 136.2, 135.8, 135.6, 133.3, 125.4, 123.8, 89.1 (1JCF = 173 Hz), 82.7, 65.8, 62.5, 

58.8, 53.4, 48.8, 46.9 (2C), 45.2, 42.2 (2JCF = 21 Hz), 40.8, 36.5, 33.5 (2JCF = 26.2 Hz), 29.7, 29.3, 

25.9, 19.7, 13.0, 11.4 (2C), 10.6; FT-IR: br 2964, 2919, 2874, 1747, 1670, 1621, 1425, 1259, 

1189, 1134, 1053, 968, 812, 745 cm-1; HPLC: 11.173 min (HPLC method B); ESI(+)MS: 

m/z  695 [M+H]+, 717 [M+Na]+; HR-ESI(+)MS: calcd for C34H51FN4O8S m/z 695.3484; found 

m/z 695.3478. 

4.1.09.2. (12Z,32S,33R,6R,7R,8E,13E,15E,17S,19S)-33-((2-(diethylamino)ethyl)sulfonyl)-19-

fluoro-17-hydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione ((16S)-1e) 

The title compound was obtained from (16S)-1h solubilized in MeOH. The crude product 

was purified via PLC (DCM/EtOH = 95:5). 

White powder, 7 mg (77.2%); Rf = 0.67 (DCM/EtOH = 95:5); [α]D = −126° (c 0.10, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.15 (s, 1H), 6.67 (dd, J = 16.0, 4.3 Hz, 1H), 6.26 (d, J = 15.6 Hz, 

1H), 6.06 (brs, 1H), 5.80 (dd, J = 15.9, 1.8 Hz, 1H), 5.72-5.62 (m, 2H), 5.30-5.12 (m, 1H), 

5.47 (s, 1H), 4.88 (dd, J = 10.5, 2.1 Hz, 1H), 4.86-4.82 (m, 1H), 4.27-4.18 (m, 1H), 4.16-4.08 

(m, 1H), 4.02-3.94 (m, 1H), 3.70-3.62 (m, 1H), 3.60 (d, J = 7.6 Hz, 1H), 3.36-3.04 (m, 7H), 

2.85-2.77 (m, 1H), 2.64-2.45 (m, 5H), 2.42-2.29 (m, 1H), 2.16-1.92 (m, 3H), 1.79 (s, 3H), 

1.10 (t, J = 7.4 Hz, 9H), 0.98 (t, J = 6.2 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ: 167.6, 165.1, 

160.2, 159.4 (3JCF = 10 Hz), 146.0, 143.9, 137.2, 134.0, 133.4, 129.2, 125.6, 123.7, 88.5 (1JCF = 

163 Hz), 82.5, 65.3, 62.9, 58.2, 49.7, 47.2 (2C), 46.8, 45.6, 41.3 (2JCF = 17 Hz), 41.0, 36.7, 33.3 

(2JCF = 25 Hz), 29.7, 29.3, 26.4, 19.8, 12.7, 10.1, 9.8 (2C); FT-IR: br 3328, 2967, 2923, 1748, 

1670, 1622, 1582, 1544, 1425, 1294, 1227, 1191, 1125, 1049, 987, 813 cm-1; HPLC: 13.501 
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min (HPLC method B); ESI(+)MS: m/z  695 [M+H]+, 717 [M+Na]+; HR-ESI(+)MS: calcd for 

C34H51FN4O8S m/z 695.3484; found m/z 695.3476. 

4.1.09.3. (12Z,6R,7R,8E,13E,15E,17S,19R)-19-fluoro-17-hydroxy-6-isopropyl-7,15-

dimethyl-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-

8,13,15-triene-2,4,10-trione ((16R)-2e) 

The title compound was obtained from (16R)-2h solubilized in 10% acetic acid/THF 9:1. 

The crude product was purified via preparative RP-HPLC with an eluent solution of 

acetonitrile/water = 1:1. 

Ochre powder; 60 mg (88.2%); Rf = 0.40 (DCM/EtOH = 95:5); [α]D = −78° (c 0.06, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 7.94 (s, 1H), 7.09 (brt, 1H), 6.61 (dd, J = 16.3, 7.0 Hz, 1H), 6.18 (t, 

J = 3.0 Hz, 1H), 5.99 (dd, J = 16.3, 1.1 Hz, 1H), 5.97 (brd, J = 15.8 Hz, 1H), 5.69 (ddd, J = 

15.9, 5.9, 4.2 Hz, 1H), 4.95 (brdd, J = 9.9, 2.0 Hz, 2H), 4.81-4.59 (m, 2H), 4.36-4.25 (m, 1H), 

4.23-4.09 (m, 2H), 3.98 (brd, J = 16.4 Hz, 1H), 3.25 (dt, J = 14.5, 3.9 Hz, 1H), 3.12-3.01 (m, 

1H), 2.90-2.79 (m, 1H), 2.78-2.65 (m, 2H), 2.38-2.20 (m, 1H), 2.00-1.86 (m, 2H), 1.78 (s, 

3H), 1.13 (d, J = 7.0 Hz, 3H), 0.99 (dd, J = 6.7, 2.8 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ: 

167.3, 160.8, 160.5, 159.5 (3JCF = 15.6 Hz), 144.3, 143.5, 137.2, 135.7, 135.4, 133.9, 131.6, 

125.9, 124.9, 123.6, 88.7 (1JCF = 173 Hz), 81.3, 66.2 (3JCF = 3 Hz), 50.9, 42.5 (2JCF = 22.5 Hz), 40.4, 

37.5, 34.6 (2JCF = 28 Hz), 30.1, 29.8, 19.6, 18.9, 13.3, 12.0; HPLC: 8.241 min (HPLC method 

A); ESI(+)MS: m/z 552 [M+Na]+, 534 [M+Na−H2O]+; HR-ESI(+)MS: calcd for C28H36FN3O6Na m/z 

552.2481; found m/z 552.2487. 

4.1.09.4. (12Z,6R,7R,8E,13E,15E,17S,19S)-19-fluoro-17-hydroxy-6-isopropyl-7,15-

dimethyl-32,33-dihydro-31H-5-oxa-11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-

8,13,15-triene-2,4,10-trione ((16S)-2e) 

The title compound was obtained from (16S)-2h solubilized in 10% acetic acid/THF 9:1. 

The crude product was purified via preparative RP-HPLC with an eluent solution of 

acetonitrile/water = 1:1. 

Ochre powder; 15 mg (70%); Rf = 0.85 (DCM/EtOH = 95:5, [α]D = −58° (c 0.10, DCM); 1H-NMR 

(400 MHz, CDCl3) δ: 8.02 (s, 1H), 6.93 (brt, 1H), 6.57 (dd, J = 16.4, 6.4 Hz, 1H), 6.10 (s, 1H), 

5.97 (s, 1H), 5.93 (d, J = 4.0 Hz, 1H), 5.55 (ddd, J = 13.6, 9.2, 4.0 Hz, 1H), 5.25 (d, J = 8.0 Hz, 
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1H), 5.16-5.08 (m, 1H), 4.93 (d, J = 9.6 Hz, 1H), 4.80-4.71 (m, 1H), 4.48-4.36 (m, 2H), 3.58-

3.47 (m, 1H), 3.28 (dt, J = 14.8, 3.2 Hz, 1H), 3.16-3.02 (m, 1H), 2.87-2.64 (m, 3H), 2.35-2.19 

(m, 1H), 2.08-1.05 (m, 2H), 1.77-1.69 (m, 1H), 1.65 (s, 3H), 1.12 (d, J = 6.8 Hz, 3H), 0.97 (t, 

J = 6.4 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ: 167.3, 161.2, 159.4(3JCF = 5.6 Hz), 159.4, 144.5, 

143.3, 137.2, 135.9, 135.5, 134.4, 131.9, 126.0, 124.8, 123.1, 87.8 (1JCF = 172.0 Hz), 81.0, 

65.3 (3JCF = 3 Hz), 50.3, 41.4, 41.2(2JCF = 20.4 Hz), 37.2, 34.3 (2JCF = 29.3 Hz), 30.0, 29.9, 19.6, 

18.9, 13.0, 11.9; FT-IR: 2959 (br), 2918, 2850, 1732, 1669, 1616, 1417, 1179, 1163, 1054, 

968, 745 cm-1; HPLC: 8.029 min (HPLC method A); ESI(+)MS: m/z 552 [M+Na]+; HR-

ESI(+)MS: calcd for  C28H37FN3O6 m/z 530.2661; found m/z 530.2657. 

4.1.10. General procedure for the synthesis of trienones 1i and 2i 

Propylisocyanate (3 eq.) was added at room temperature to a stirring solution of 1 or 2 

(0.02 mmol scale) in anhydrous DCM (500 μl). Successively, pyridine (3 eq.), and 

dimethylaminopyridine (DMAP, 3 eq.) were added and the solution was stirred overnight. 

0.5 mL of MeOH were added and the mixture was treated with 5 mL of saturated NaCl 

solution containing 0.1 mL of conc. HCl and extracted with DCM (3x5 mL). The organic 

phases were washed with brine, dried over anhydrous Na2SO4 and evaporated under 

reduced pressure. 

4.1.10.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17E)-33-((2-(diethylamino)ethyl)sulfonyl)-6-

isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-pyrrolidinacycloicosaphane-

8,13,15,17-tetraene-2,4,10,19-tetraone (1i) 

The title compound was obtained from 1 using the general procedure G. The crude was 

purified via PLC (DCM/EtOH = 92:8).  

Yellow powder; 8.5 mg (58.1%); Rf = 0.75 (DCM/EtOH = 90:10; [α]D = −38° (c 0.31, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.18 (s, 1H), 7.59-7.50 (m, 1H), 6.78 (dd, J = 15.9, 5.6 Hz, 1H), 

6.41 (d, J = 14.9 Hz, 1H), 6.36 (d, J = 14.9 Hz, 1H), 6.22 (d, J = 11.2 Hz, 1H), 6.01-5.89 (m, 

2H), 5.41 (s, 1H), 4.88 (dd, J = 10.6, 1.8 Hz, 1H), 4.33-4.28 (m, 1H), 4.25-4.17 (m, 1H), 4.10-

4.02 (m, 1H),  3.93 (d, J = 8.2 Hz, 2H), 3.89-3.79 (m, 2H), 3.67 (d, J = 8.0 Hz, 1H), 3.47-3.08 

(m, 5H), 2.78-2.65 (m, 5H), 2.32-2.23 (m, 2H), 1.99 (s, 3H), 1.24-1.20 (m, 3H), 1.15-1.10 (d, 

J = 6.3 Hz, 3H), 1.00-0.85 (m, 9H); 13C-NMR (100 MHz, CDCl3) δ: 192.7, 168.1, 165.1, 160.1, 
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158.1, 147.2, 144.4, 144.1, 138.8, 136.6, 129.1, 128.9, 128.4, 123.4, 82.9, 63.1, 47.5, 47.0 

(2C), 45.0, 42.4, 41.8, 40.3, 36.7, 31.9, 29.3, 23.4, 22.6, 19.6, 14.1, 13.7, 11.3 (2C), 10.2; 

FT-IR: 2959, 2920, 2890, 1742, 1625, 1575, 1423, 1189, 1136, 971, 892, 811, 749 cm-1; 

HPLC: 7.078 min (HPLC method B); ESI(+)MS: 673 [M+H]+; HR-ESI: calcd for C34H49N4O8S m/z 

673.3266; found m/z 673.3279. 

4.1.10.2. (12Z,6R,7R,8E,13E,15E,17E)-6-isopropyl-7,15-dimethyl-32,33-dihydro-31H-5-oxa-

11-aza-1(4,2)-oxazola-3(1,5)-pyrrolacycloicosaphane-8,13,15,17-tetraene-2,4,10,19-

tetraone (2i) 

The title compound was obtained from 2. The crude product was purified via PLC 

(DCM/EtOH = 92:8).  

Yellow powder; 6.5 mg (44.8%); Rf  = 0.55 (DCM/EtOH = 95:5); [α]D = −46° (c 0.44, DCM); 1H-

NMR (400 MHz, CDCl3) δ: 8.03 (s, 1H), 7.83-7.74 (m, 1H), 7.39-7.33 (m, 1H), 6.76 (d,  J = 

15.3 Hz, 1H), 6.49 (dd, J = 16.7, 7.2 Hz, 1H), 6.30 (brs, 1H), 6.10-5.89 (m, 4H), 4.90 (d, J = 

9.7 Hz, 1H), 4.40-4.05 (m, 4H), 4.00 (d, J = 14.8 Hz, 1H), 3.82-3.74 (m, 1H), 2.94-2.81 (m, 

2H), 2.71-2.59 (m, 2H), 1.95 (s, 3H), 1.10 (d, J = 6.7 Hz, 3H), 0.98-0.86 (m, 6H); 13C-NMR 

(100 MHz, CDCl3) δ: 192.8, 167.6, 160.3, 160.1, 159.9, 146.3, 143.0, 142.9, 142.4, 136.9, 

136.3, 131.6, 129.2, 126.8, 126.3, 125.4, 125.2, 81.2, 51.7, 41.8, 47.3, 37.4, 29.9, 29.8, 

21.3, 19.5, 18.7, 11.9; FT-IR: 3317 (br), 2966, 2924, 2852, 1729, 1665, 1616, 1530, 1417, 

1315, 1223, 1074, 980 cm-1; HPLC: 9.359 min (HPLC method A); ESI(+)MS: m/z  508 [M+H]+; 

HR-ESI(+)MS: calcd for C28H34N3O6 m/z 508.2442; found m/z 508.2433. 

4.1.11 General procedure for the synthesis of C26-derivatives 5-7 

To a solution of 2 or (16R)-2c (0.1 mmol scale) in MeOH (2 mL), the suitable nucleophile 

(2-6 eq.) was added at 0 °C and the reaction was stirred at RT for 48-72 h. The solvent was 

evaporated under reduced pressure and the crude reaction mixture was purified via PLC. 

4.1.11.1. (12Z,32S,33R,6R,7R,8E,13E,15E,17S)-33-((2-(diethylamino)ethyl)thio)-17-hydroxy-

6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10,19-tetraone (5) 
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The title compound was obtained from 2 with 2 eq. of 2-diethylaminoethanethiol 

hydrochloride as nucleophile and 2 eq. of TEA. The crude product was purified via PLC 

(DCM/EtOH = 80:20).  

White powder; 2.3 mg (32%); Rf = 0.30 (DCM/MeOH = 90:10 + 0.1% TEA); [α]D = −44° (c 0.18, 

DCM); 1H-NMR (400 MHz, CDCl3) δ: 8.14 (s, 1H), 6.65 (dd, J = 16.7, 4.4 Hz, 1H), 6.18 (d, J = 

15.8 Hz, 1H), 5.88 (d, J = 16.4 Hz, 1H), 5.67 (ddd, J = 15.4, 9.1, 4.3 Hz, 1H), 5.50 (d, J = 8.5 

Hz, 1H), 4.97-4.92 (m, 1H), 4.80 (dd, J = 10.1, 1.5 Hz, 2H), 4.71 (s, 1H), 4.42-4.29 (m,1H), 

4.16-4.03 (m, 3H), 3.91-3.85 (m, 1H), 3.82 (s, 2H), 3.56-3.44 (m,1H), 3.40 (d, J = 6.0 Hz, 

1H), 3.15 (dd, J = 18.0, 4.4 Hz, 1H), 2.90 (dd, J = 18.0, 4.4 Hz, 1H), 2.80-2.60 (m, 9H), 2.18-

1.97 (m, 5H), 1.72 (s, 3H), 1.09 (d, J = 6.6 Hz, 6H), 0.97 (t, J = 6.6 Hz, 6H); 13C-NMR (100 

MHz, CDCl3) δ: 202.5, 170.1, 166.1, 160.4, 157.0, 144.8, 144.2, 136.9, 136.3, 134.2, 132.8, 

125.3, 124.0, 81.9, 66.1, 65.4, 65.0, 52.3, 49.0, 47.0, 46.9 (2C), 45.2, 42.9, 40.9, 40.5, 36.6, 

31.8, 29.4, 19.7, 18.6, 12.7 (2C), 10.2; FT-IR: 3330 (br), 2969, 2925, 2825, 1740, 1670, 1621, 

1579, 1424, 1367, 1354, 1217, 1176, 1107, 961 cm-1; HPLC: 2.251 min (HPLC method A); 

ESI(+)MS: m/z 659 [M+H]+, 681[M+Na]+, 641 [M−H2O]+; HR-ESI(+)MS: calcd for C34H51N4O7S 

m/z 659.3473; found m/z 659.3467. 

 

4.1.11.2. (12Z,6R,7R,8E,13E,15E,17S,19R)-33-((2-(diethylamino)ethyl)amino)-17,19-

dihydroxy-6-isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-

pyrrolidinacycloicosaphane-8,13,15-triene-2,4,10-trione (6) 

The title compound was obtained from (16R)-2c with 6 eq. of N,N-diethylethylenediamine 

as the nucleophile. The crude product was purified via PLC (DCM/EtOH = 80:20 + 1% TEA).  

White solid; 9.3 mg (54%); Rf = 0.10 (DCM/EtOH = 90:10 + 1% TEA); [α]D = −32° (c 0.10, 

DCM); 1H-NMR (400 MHz, CDCl3) δ: 8.13 (s, 1H), 6.61 (dd, J = 15.9, 4.3 Hz, 1H), 6,51 (m, 

1H), 6.20 (d, J = 15.6 Hz, 1H), 5.87 (dd, J = 16.0, 1.7 Hz, 1H), 5.67 (ddd, J = 15.6, 9.4, 4.3 Hz, 

1H), 5.46 (d, J = 9.4 Hz, 1H), 4.87-4.79 (m, 2H), 4.75 (brs, 1H), 4.94-4.24 (m, 1H), 4.22-4.12 

(m, 1H), 4.05-3.99 (m, 2H), 3.35 (s, 1H), 3.03 (dd, J = 16.8, 5.3 Hz, 1H), 2.88-2.72 (m, 13H), 

1.99-1.88 (m, 2H), 1.87-1.81 (m, 2H), 1.79 (s, 3H), 1.18 (t, J = 7.1 Hz, 6H), 1.10 (d, J = 6.8 

Hz, 3H), 0.99-0.94 (m, 6H); 13C-NMR (100 MHz, CDCl3) δ: 170.4, 167.0, 161.7, 160.7, 145.2, 
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143.6, 136.8, 136.4, 135.0, 133.6, 124.7, 123.9, 81.4, 68.1, 67.2, 64.5, 60.2, 52.2, 46.9 (2C), 

45.2, 43.2, 41.2, 39.6, 36.5, 35.8, 31.4, 29.4, 19.8, 18.6, 13.0, 11.5 (2C), 10.3; FT-IR: 3291 

(br), 2918, 1741, 1669, 1614, 1581, 1432, 1177, 1090, 970, 892, 753, 603 cm-1; HPLC: 2.844 

min (HPLC method A); ESI(+)MS: m/z 644 [M+H]+, 666 [M+Na]+, 626 [M+H−H2O]+; HR-

ESI(+)MS: calcd for C34H54N5O7 m/z 644.4018; found m/z 644.4029. 

4.1.11.3. (12Z,6R,7R,8E,13E,15E,17S,19R)-33-(2-(diethylamino)ethoxy)-17,19-dihydroxy-6-

isopropyl-7,15-dimethyl-5-oxa-11-aza-1(4,2)-oxazola-3(1,2)-pyrrolidinacycloicosaphane-

8,13,15-triene-2,4,10-trione (7)  

The title compound was obtained from (16R)-2c with 3 eq. of nucleophile prepared in-situ 

from 2-(diethylamino)ethanol. Alkoxide was produced by adding 1 eq. of NaH in dry THF 

at 0 °C for 1 h. The crude product was purified via PLC (DCM/MeOH = 90:10 + 1% TEA). 

White powder; major isomer: 4 mg (19%); Rf = 0.39 (DCM/EtOH = 90:10 + 1% TEA); [α]D = 

−36° (c 0.13, DCM); 1H-NMR (400 MHz, CDCl3) δ: 8.14 (s, 1H), 6.68 (ddd, J = 16.3, 3.7 Hz, 

1H), 6.24 (d, J = 15.6 Hz, 1H), 5.97 (d, J = 16.3 Hz, 1H), 5.70 (ddd, J = 14.9, 9.7, 6.3 Hz, 1H), 

5.50 (d, J = 8.6 Hz, 1H), 4.91 (s, 1H), 4.87 (d, J = 9.8 Hz, 1H), 4.38-4.30 (m, 1H), 4.19-3.83 

(m, 7H),  3.10-3.72 (m, 11H), 2.09-1.92 (m, 5H), 1.80 (s, 3H), 1.32-1.27 (m, 6H), 1.13 (d, J = 

6.8 Hz, 3H), 0.97 (t, J = 6.5 Hz, 6H); 13C-NMR (100 MHz, CDCl3) δ: 169.9, 165.8, 161.7, 160.8, 

145.3, 143.6, 136.7, 136.4, 134.3, 134.3, 134.2, 125.2, 123.9, 81.4, 68.3, 67.7, 64.3, 60.0, 

52.0, 46.9, 46.8, 43.0, 41.1, 36.6, 35.6, 31.4, 29.7, 29.4, 19.8, 18.6, 13.1, 10.3, 10.1; FT-IR: 

3291 (br), 2918, 1741, 1614, 1432, 1177, 1109, 970, 892, 753, 674, 603 cm-1; HPLC: 1.935 

min (HPLC method A); ESI(+)MS: m/z  645 [M+H]+, 667 [M+Na]+, 627 [M−H2O]+; HR-

ESI(+)MS: calcd for C34H53N4O8 m/z 645.3858; found m/z 645.3865. 

4.2. Molecular Modelling 

The evaluation of the putative binding mode of 1 and 2 derivatives within the 

mitochondrial ribosome streptogramin A binding site was conducted using molecular 

docking calculations. Each molecular modelling operation was performed on an 8 core 

Intel Xeon® CPU E5-1620 CPU, running Ubuntu 16.04 as its operative system. 
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4.2.1. Structure preparation 

The structure of the mitochondrial ribosome in complex with VM1 (2) (PDB ID: 6I9R) was 

retrieved from the Protein Data Bank and prepared for further calculations exploiting 

various tools implemented in the Molecular Operating Environment (MOE) 2019.01 

suite36. At first, minor structural issues were addressed with the Structure Preparation 

tool: ACE and NME capping residues were added to protein chains with missing residues 

at the N and C terminal, while structural gaps in the central part of protein chains were 

addressed using the Loop Modeller tool. Secondly, missing hydrogen atoms were added 

to the system according to the most probable protonation state at pH 7.4 with the 

“Protonate 3D” and their coordinates were then energetically minimized according to the 

AMBER10: EHT force field. The co-crystallized VM1 (2) and Q (3), as well as magnesium 

ions, were removed from the final structure used for docking calculations. The centre of 

mass of VM1 (2) was used to define the location of the streptogramin A site in subsequent 

calculations. 

4.2.2. Ligand preparation 

Each ligand evaluated in this scientific work was prepared for docking calculations as 

follows, making use of several tools from the OpenEye suite37. At first, the most probable 

tautomeric state at pH 7 was determined using the “tautomers” program. Then, the 3D 

coordinates were generated by exploiting the macrocycle protocol of the OMEGA 

package. Finally, the most probable protonation state at pH 7 was determined using the 

“fixpka” tool, while partial charges were attributed using the “molcharge” tool according 

to the MMFF94 force field. 

4.2.3. Docking calculations 

Docking calculations were performed using the PLANTS38–40 software, which is free for 

academic use. The docking was centred on the streptogramin A binding site of the 

mitochondrial ribosome, defined as a sphere with a 12 Å radius wrapped around the 

centre of mass of the crystal VM1 (see section 4.2.1). The best ten poses for each 

compound were retained. Afterwards, the van der Waals and electrostatic interaction 

energy values were calculated for each pose using MOE, filtering out those poses with 
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repulsive interaction energy values. The best scoring pose for each compound was then 

stored for further analysis. 

4.2.4. Results analysis 

Docking poses, obtained as described in section 4.2.3, were characterised and compared 

to the binding mode of the reference compound (VM1) making use of an in-house Python 

script. First, a per-residue decomposition of the electrostatic and hydrophobic 

contribution to the ligand-receptor was calculated using a SVL script within MOE. 

Afterwards, values coming from this analysis were used for the generation of an 

interaction energy map, which depicts the strength of interaction between the most 

important receptor residues and the ligand. Values are reported on the map according to 

a divergent colourimetric scale: for electrostatic interaction, values are reported in 

Kcal/mol with a colour palette ranging from black (indicating an attractive interaction) to 

red (indicating a repulsive interaction), while for hydrophobic interaction values are 

reported in arbitrary units with a colour palette ranging from white (indicating the 

absence of interaction) to dark teal (indicating a strong interaction). The same Python 

script was also used for the generation of a video, which reports each docking pose 

associated with its interaction energy profile in comparison with the ones of structurally 

related compounds and with the crystal reference. 

 

4.3. Biology 

4.3.1. Cell culture 

Human glioblastoma stem cell lines COMI and VIPI were a kind gift from Antonio Daga 

(Azienda Ospedaliera Universitaria San Martino di Genova, Italy). The cell lines were 

cultured in DMEM/F-12 and Neurobasal media (Thermo Fisher Scientific, 1:1 ratio), 

supplemented with GlutaMAX (2 mM; Thermo Fisher Scientific), B27 supplement (1%; 

Thermo Fisher Scientific), Penicillin G (100 U/mL; Sigma Aldrich), recombinant human 

fibroblast growth factor-2 (bFGF) (10 ng/mL; R&D Systems), recombinant human 

epidermal growth factor (EGF) (20 ng/mL; R&D Systems) and heparin (2 µg/mL; Sigma 

Aldrich) at 37 °C, 5% CO2 on laminin-coated flasks where they maintain intact self-renewal 

capacity41.  
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4.3.2. Viability assays  

For the evaluation of the effect of D (1) and VM1 (2) derivatives on GSCs viability, COMI 

and VIPI cells grown in culture flasks were detached using Accutase. Cells were then 

counted using a trypan blue staining and an automated cell counter and seeded in 96-well 

laminin-coated microtiter plates at a density of 3,500-4,000 cells/well in a final media 

volume of 100 μL. The plates were incubated for 24 hours before drug treatment. Serial 

drug dilutions were prepared in phosphate-buffered saline (PBS) to provide a total of 

seven drug concentrations plus control. 5 μL of these dilutions were added to each well, 

and the plates were incubated for 48 hours. Each treatment was performed in technical 

triplicate. After the drug treatment, the cells were stained with Hoechst 33342 (1 μg/mL; 

Thermo Fisher Scientific, cat. H1399) and propidium iodide (1 μg/mL; Sigma Aldrich, cat. 

P4170) and incubated for 1 hour at 37 °C, 5% CO2. The fluorescent signal was then 

measured using the Operetta-High Content Imaging System (Perkin Elmer) and analysed 

using the Harmony Software. The number of viable cells was calculated by subtracting PI-

positive cells from the total number of cells estimated by Hoechst 33342 staining and 

normalised to the control. 

4.3.3. Mitochondrial and cytosolic protein synthesis assay 

COMI cells grown in culture flasks were detached using Accutase. Cells were then counted 

using trypan blue staining and an automated cell counter and seeded in a 6-well plate at 

a density of 180,000 cells/well. The plate was incubated for 24 hours at 37 °C, 5% CO2 and 

then treated with Q/D for further 24 h before 35S labelling. To assay for mitochondrial 

protein synthesis, the growth medium was removed and cells were washed twice with 

methionine/cysteine-free DMEM medium, followed by incubation in 

methionine/cysteine-free DMEM medium containing 96 μg/mL Cysteine, 1% B27 

supplement, 1% GlutaMax; 1% Sodium Pyruvate, 10 ng/mL bFGF, 20 ng/mL EGF, 2 μg/mL 

heparin and 80 μg/mL emetine (Sigma Aldrich, cat. E2375) for 15 min at 37 °C. Emetine 

was used to inhibit cytosolic translation. Subsequently, [35S]-methionine (Perkin Elmer, cat. 

NEG709A005MC) was added to a final concentration of 166.6 μCi/mL and the labelling 

was performed for 20 min at 37 °C. The cells were then detached and centrifuged at 4,000 

rpm for 5 min. The pellet obtained was washed three times with 1 mL of PBS. Cell pellets 
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were resuspended in protein lysis buffer containing protease inhibitors and 1.25 U/μL 

benzonase. Protein concentrations were measured with PierceTM BCA Protein Assay Kit 

(Thermo Fisher Scientific, cat. 23227), as per the manufacturer’s instructions, and equal 

amounts of protein samples were separated on SDS-PAGE gels (NuPAGETM 12% Bis-Tris 

Protein Gels, Thermo Fisher Scientific, cat. NP0343BOX). The labelled proteins were 

visualised and quantified using a PhosphorImager system and ImageQuant software 

(Molecular Dynamics, GE Healthcare).  

4.3.4. Immunoblotting 

COMI cells grown in culture flasks were detached using Accutase. Cells were then counted 

using a trypan blue staining and an automated cell counter and seeded in a 6-well plate 

at a density of 180,000 cells per well in a final media volume of 2 mL. The plates were 

incubated for 24 hours before drug treatment. A 1 mM solution of the compound was 

prepared in PBS starting from the 10 mM stock. From this solution, cells were treated with 

the right volume to obtain 4 different concentrations of compound plus control. The 

plates were incubated for 48 hours. After the treatment, cells were washed once with cold 

PBS, detached using a cell scraper and harvested in 1.5 mL tubes. Cells were centrifuged 

at 5,000 rpm for 5 minutes to obtain a pellet and the supernatant was discarded. Protein 

extraction was performed using RIPA lysis buffer (Merck Millipore, cat. 20-188) 

supplemented with protease inhibitors. The protein content of the lysates was quantified 

using the Pierce BCA assay (Thermo Fisher Scientific), as per the manufacturer’s 

instructions. Equal amounts of protein were separated on SDS-PAGE and transferred to a 

PVDF membrane. Membranes were blocked with 5% nonfat dry milk prepared in TBS-

Tween and probed with anti-MTCO1 (COX1, Abcam, cat. ab14705), anti-COX4 (Cell 

Signaling, cat. 4850), anti-MTCO2 (COX2, Abcam, cat. ab110258), anti-ND3 (ND3, Abcam, 

cat. ab192306), anti-β-tubulin (Santa Cruz, cat. sc-53140) overnight at 4 °C. After three 

washes with TBS-Tween, they were incubated with secondary HRP-conjugated antibodies 

(Santa Cruz Biotechnology) for 1 hour at room temperature. Detection was performed 

using Amersham ECL Prime or Select Western Blotting Detection Reagent (GE Healthcare 

Life Sciences) and ChemiDoc Imaging System (Bio-Rad). Data were analysed using 

ImageLab software. 
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4.4. UHPLC-MS ANALYSIS 

4.4.1. Sample extraction and preparation 

COMI cells were seeded in a 6-well plate at a density of 180,000 cells/well in a final volume 

of 2 mL. The plates were incubated for 72 hours at 37 °C, 5% CO2 before drug treatment. 

Cells were treated with different compounds at a concentration of 100 μM and incubated 

for 3 hours. For the sample extraction, culture media was removed and cells were washed 

with 1 mL of cold 150 mM ammonium acetate. 750 µL of 80% v/v methanol (LCMS grade), 

previously cooled to -80 °C, were added to each well. Plates were incubated for 20 

minutes at -80 °C, then cells were detached using a cell scraper and harvested in 1.5 mL 

tubes. The wells were washed with another 250 µL of 80% v/v methanol. The samples 

were vortexed at 2,000 rpm for 5 minutes at 4 °C and subsequently centrifuged at 14,000 

g for 10 minutes at 4 °C. The supernatant was transferred to a new tube. The samples 

were centrifuged again at 14,000 g for 10 minutes at 4 °C and the supernatant was 

transferred to a new tube. The samples were dried using a SpeedVac vacuum chamber 

and then stored at -80 °C. 

Just before the analysis, samples were equilibrated to room temperature, resuspended in 

30 µL of 5% acetonitrile/0.1% formic acid aqueous solution, and thoroughly mixed. 20 µL 

of each sample were transferred to a v-bottom 96-well plate and the plate was loaded in 

the LC-MS autosampler.  

4.4.2. Preparation of calibration standards 

To prepare the standards for the calibration curves of each compound, five serial drug 

dilutions, ranging from 0.005 to 50 ng/µL, were prepared in non-treated metabolite 

extracts resuspended in 5% acetonitrile/0.1% formic acid aqueous solution starting from 

a 10 mM stock of compound. 20 µL of each dilution plus a blank sample were transferred 

to a v-bottom 96-well plate and the plate was loaded in the LC autosampler. For D (1) 

derivatives, that are readily hydrolysed in water, each solution was prepared just a few 

minutes before loading into the column. The lower limit of detection (LOD) was 

determined by comparing the signals from a set of samples with known low 

concentrations of analyte with those of blank samples. The minimum signal to noise ratio 

for the LOD was set to the ratio of 10:1.   
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4.4.3. Data acquisition 

The analytes of each prepared sample subjected to UHPLC-MS analysis were injected into 

an Ultimate 3000RS (Thermo Scientific) chromatography apparatus and analysed by 

Fusion Tribrid (Thermo Scientific) mass spectrometer. A Hypersil Gold C18 column 

(Thermofisher, 100 x 2.1 mm, particle size: 1.9 µm) was used for separation. The LC 

method consisted of a linear gradient from 5 to 100% B (B: acetonitrile 0.1% of formic 

acid; A: water + 0.1% formic acid) over 15 min, followed by 4 min at 100% at the flow of 

0.2 ml/min. The MS spray voltage was set at 3500V with an ion transfer tube temperature 

of 300 °C (sheath and auxiliary gasses were set at 20 and 5 Arb, respectively). The MS data 

were acquired in full scan at 120.000 FWHM (200 m/z) in the scan range of m/z 100-1000.  

4.4.4. Data analysis 

The area under the peak of each precursor ion and the total ion current (TIC) were 

extracted using Skyline (MacCoss Lab Software) for standards and samples42. The software 

derived precise m/z values as well as isotope distributions for each precursor. Each 

analyte was also investigated for common adducts, [M+H]+, [M+K]+, [M+NH4]+, [M+Na]+, and 

the [M−H2O+H]+ ions, for each considering the three most abundant isotopes. The 

normalisation of the area under the peak of each ion by the TIC of the sample was 

performed to account for variations in sampling volumes across conditions. After 

normalisation, the precursor level of each ion was determined by taking the median of 

the different isotopes. Finally, the total area of precursor ions was calculated by summing 

all precursor levels. 

The log-transformed value of the total area of precursor ions of each standard sample was 

plotted in function of the concentration to construct the standard curves of each 

compound. Standard linear regression was performed to obtain the linear predictors that 

were used to compute a concentration value of the compound expressed in ng/µL. In the 

case of hydrolysable compounds, the contribution of both full molecule and hydrolysed 

form was taken into consideration. Each molecule form was analysed using its calibration 

curve and the two concentrations were then summed to obtain the total concentration. 
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Abstract 

Ribonucleic acid (RNA) plays a key regulatory role within the cell, cooperating with 

proteins to control the genome expression and several biological processes. Due to its 

characteristic structural features, this polymer can mold itself into different three-

dimensional structures able to recognize target biomolecules with high affinity and 

specificity, thereby attracting the interest of drug developers and medicinal chemists. One 

successful example of the exploitation of RNA’s structural and functional peculiarities is 

represented by aptamers, a class of therapeutic and diagnostic tools that can recognize 

and tightly bind several pharmaceutically relevant targets, ranging from small molecules 

to proteins, making use of the available structural and conformational freedom to 
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maximize the complementarity with their interacting counterparts. In this scientific work, 

we present the first application of Supervised Molecular Dynamics (SuMD), an enhanced 

sampling Molecular Dynamics-based method for the study of receptor-ligand association 

processes in the nanoseconds timescale, to the study of recognition pathways between 

RNA aptamers and proteins, elucidating the main advantages and limitations of the 

technique while discussing its possible role in the rational design of RNA-based 

therapeutics.  
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Introduction 

According to the central dogma of molecular biology, ribonucleic acid (RNA) is considered 

the functional link between deoxyribonucleic acid (DNA), which is involved in the storage 

of genetic information, and proteins, which are the effectors of most pivotal cell 

functions1. Complementing this ancestral and simplistic description of the biological role 

of RNA, in recent times this polymer has been linked with a variety of regulatory activities 

within the cell, cooperating with proteins to finely tune the genome expression and other 

biological processes2. The consideration that the vast majority of human RNA is not 

translated into proteins3 in conjunction with the fact that a large number of newly 

discovered non-coding RNAs are associated with various pathologies and illnesses4,5, 

caused an increase in the popularity of RNA among the scientific community, both from a 

biological and a therapeutic perspective6,7.  

From a structural point of view, RNA exists mainly as a double-stranded molecule with a 

chain length that can span from a few tens of nucleobases, as in small hairpins8, to few 

thousand nucleotides, as in long non-coding sequences9. Compared to DNA, the higher 

conformational freedom of ribonucleic acids implies that they can assume a wide variety 

of three-dimensional structures in solution10,11, organizing themselves in functional 

domains specifically designed to recognize other nucleic acids12, proteins13, glycated 

derivatives14 or small organic molecules15.  

From a functional perspective, successful exploitation of RNA’s ability to mold itself into 

different three-dimensional structures able to recognize target biomolecules with high 

affinity and specificity is represented by aptamers16. This class of single-stranded 

oligonucleotides that fold into defined and complex architectures including stems, loops, 

bulges, hairpins, pseudoknots, triplexes, or quadruplexes, can bind several molecular 

targets, such as proteins, small organic molecules, and ions, thus classifying as a useful 

tool both for a therapeutic and diagnostic purpose17,18.  

As is the case for other nucleic acids, interactions between aptamers and proteins are 

characterized by a complex network of van der Waals, hydrogen bond, stacking, and 

general non-polar interactions that define the complementarity of shape and electrostatic 

properties at the surface between the two interactors and determine the specificity of 

binding to a certain target19,20. To the present date, the rising amount of experimentally 
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solved three-dimensional RNA structures, especially concerning their complexes with 

both macro and small molecules, has led to an increased interest by the scientific 

community in the investigation of RNA structures at an atomistic level of detail, to apply 

Structure-Based Drug Design (SBDD) strategies for the rational design of novel therapeutic 

entities21,22.  

Among the tools that are routinely used, both in the academic and industrial environment, 

for investigating the structural determinants of biological entities’ recognition, molecular 

docking is by far the most widely and successfully adopted23. Originally developed for 

predicting the interaction between small organic molecules and proteins24, throughout 

the years this computational technique has been also applied to the investigation of 

protein-protein25, protein-peptides26, and antigen-antibodies27 complexes with various 

degrees of success. Contrary to proteins, the application of molecular docking to the study 

of complexes involving nucleic acids has been so far very limited, and mainly applied to 

the prediction of the binding mode of small molecules28. Compared to the 

aforementioned established docking protocols, a smaller number of methods are 

available for the investigation of nucleic acids-protein complexes, due to some intrinsic 

structural peculiarities of nucleic acids, particularly in the case of RNA29. The first 

limitation is represented by the distinctive charge distribution that characterizes the RNA 

surface compared to that of proteins30, the second one is portrayed by the neglected 

treatment of the role of solvent31 and the third one is the lack or limited consideration of 

the structural flexibility and dynamicity of ribonucleic acids32.  

One possible approach to overcome the limitations of molecular docking is represented 

by molecular dynamics (MD) simulations. Despite the enhanced description of the binding 

event derived from the explicit treatment of solvent molecules and the consideration of 

both receptor and ligand flexibility, MD simulations are rarely carried out to investigate 

the whole binding event due to the long simulation times and computational effort 

required to sample these infrequent events and are therefore mostly exploited for the 

refinement of docking results33.  

To mitigate the time constraints of classic molecular dynamics, one possible strategy is 

the exploitation of enhanced sampling techniques that allow increasing the frequency of 

observing desired events, such as the receptor-ligand association34. Among the plethora 
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of enhanced sampling protocols that have been developed throughout the years, 

Supervised Molecular Dynamics (SuMD) has proven to be particularly successful in 

investigating ligand-receptor recognition pathways at an atomistic level of detail without 

applying any energetic bias to the system while contemporarily reducing by orders of 

magnitude the simulation time compared to classic MD simulations35. Particularly, from a 

ligand perspective, SuMD simulations have proven useful to work with a variety of 

molecular entities, ranging from small organic molecules (both fragment36–41 and mature, 

lead-like, compounds42–44), to more complex chemical species such as macrocycles45 and 

peptide ligands46. From a receptor point of view, instead, SuMD was successfully applied 

to the study of both soluble47,48 and membrane49–51 systems, including both protein52,53 

and nucleic54 targets. 

 

In this scientific work, SuMD simulations were applied for the first time to the study of the 

recognition process between RNA macromolecules and proteins, to extend the 

applicability domain of the methodology. Particularly, we decided to focus our attention 

on RNA aptamers, due to their relevance as diagnostic and therapeutic tools and due to 

the variety of their structural landscape.  

Briefly, we present four different applications of the SuMD methodology to RNA aptamer-

protein complexes. Three test cases, involving systems in which the three-dimensional 

structure of the complex is known and deposited in the Protein Data Bank55, are used to 

validate the ability of the SuMD protocol to correctly reproduce the experimental data 

while giving additional useful information that goes beyond the final state of the 

recognition process. The fourth and final case, concerning instead a complex whose 

structure has not yet been experimentally determined, is presented to show a possible 

prospective application of the SuMD protocol, discussing at the same time the advantages 

and limitations of the technique other than its possible role in a typical drug discovery 

pipeline.   
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MATERIAL AND METHODS 

Hardware Overview 

General molecular modeling operations, such as the preparation of RNA aptamer-protein 

complex structures, the system setup for molecular dynamics simulations, and trajectory 

analysis were performed on an 8 CPU Linux workstation equipped with an Intel Xeon E5-

1620 3.50 GHz processor. All molecular dynamics simulations were performed on a GPU 

cluster composed of 20 NVIDIA devices ranging from GTX980 to Titan V. 

Structures Preparation 

The three-dimensional coordinates of the three RNA aptamer-protein complex used as 

control cases in this study were retrieved from the Protein Data Bank56 (PDB ID: 3DD2, 

4PDB, 5VOE) and prepared for subsequent simulations exploiting several modules from 

the Molecular Operating Environment (MOE) 2019.01 suite57. At first, structures were pre-

processed through the “Structure Preparation” tool, to assign each residue with alternate 

conformations to the one with the highest occupancy, build missing loops through 

homology modeling, and correct inconsistencies between the primary sequence and the 

tertiary structure. For compatibility with each piece of software used in this work and for 

consistency with previous studies involving the SuMD approach, structures were manually 

edited to mutate each non-natural nucleic residue (e.g.: fluorinated nucleotides) to the 

corresponding natural alternative. Afterward, titratable residues were assigned to the 

most probable protonation state at pH = 7.40 exploiting the “Protonate3D” tool. Finally, 

each non-protein or non-nucleic residue was removed, and the nucleic ligand was moved 

away from the binding site at a distance of at least 30 Å from the nearest receptor atom, 

in order to explore the conformational degree of freedom of the ligand throughout the 

recognition process.  

For the investigation of the recognition process between the SARS-CoV-2 Spike RNA 

aptamer, the structure of the Spike Receptor Binding Domain (RBD) was retrieved from 

the Protein Data Bank (accession code: 6M0J58). Concerning the RNA aptamer, the 

experimental structure was not available, therefore the primary sequence was obtained 

from the Supplementary Material of the original work from Valero et al.59 and sequentially 
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submitted to the NUPACK60 and 3DRNA61 webservers to retrieve the predicted secondary 

and tertiary structure respectively. In both cases, default parameters were chosen, and 

the lowest energy structure coming from the 3DRNA webserver was used for both docking 

calculations and MD simulations. Every other preparation passage is identical to the ones 

executed for the three control cases.  

System Setup and Equilibration Protocol 

Nucleic-protein systems coming from the preliminary preparation stage were then further 

processed making use of both Visual Molecular Dynamics (VMD) 1.9.262 and several tools 

from the Ambertools14 suite63. Each protein or nucleic atom was parameterized 

according to the ff14SB force field with χ modification tuned for RNA (χOL3)64–66. At first, 

each system was solvated in a cubic box of TIP3P67 water molecules with a padding of 35 

Å. Afterward, each solvated system was neutralized through the addition of an 

appropriate number of Na+ and Cl- counterions until a salt concentration of 0.154 M was 

reached. Before Molecular Dynamics (MD) simulations, each system was subjected to a 

1500-step energy minimization phase with the conjugate-gradient algorithm.  

Each minimized system underwent then a two stages equilibration protocol. The first 

stage consisted of 1 ns of simulation in the canonical ensemble (NVT), applying a 5 kcal 

mol-1 Å-2 harmonic positional restraint on each protein and nucleic atom. The second stage 

consisted instead of a 2 ns simulation in the isothermal-isobaric ensemble (NPT), with the 

same restraints applied only to the backbone atoms of both the protein and the nucleic 

acid. For each MD simulation performed in this scientific work, an integration step of 2 fs 

was used, the temperature was kept at a constant value of 310 K through a Langevin 

thermostat68, and the M-SHAKE algorithm69 was used to constrain the length of bonds 

involving hydrogen atoms, the particle-mesh Ewald (PME)70 method was exploited to 

compute electrostatic interactions using cubic spline interpolation and a 1 Å grid spacing, 

while a 9.0 Å cutoff was set for calculation of Lennard-Jones interactions. For simulations 

in the NPT ensemble, the pressure was kept at a constant value of 1 atm through a Monte 

Carlo barostat71. Finally, all MD simulations were run through the ACEMD 372 engine, 

which is based upon OpenMM 773.  
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Supervised Molecular Dynamics (SuMD) Simulations 

Supervised Molecular Dynamics (SuMD) is a well-established enhanced-sampling 

molecular dynamics approach that has been successfully applied to the study of the 

recognition process between various molecular entities at an atomic level of details on 

the nanosecond timescale35.  

The main advantage of the SuMD approach compared to traditional molecular dynamics 

simulations is the improved ability to sample infrequent events such as molecular 

association processes, thus reducing the timescale of the simulation that is required to 

spontaneously observe a binding event from the microseconds range to a few 

nanoseconds.  

In detail, this task is accomplished by performing a sequence of short, unbiased, MD 

simulations followed by an evaluation of the simulation progress by a tabu-like algorithm. 

In this case, each of these MD simulations, defined as the “SuMD-step”, is run in the 

canonical ensemble at a constant temperature of 310 K for 300 ps, but the length of the 

“SuMD-step” can vary and is chosen according to the system that is studied. At the end of 

each “SuMD-step”, the distance between the center of mass of the ligand and one of the 

user-defined binding sites is computed at each step of the simulation, and this data is then 

fitted into a linear function: if the slope of the resulting straight-line is negative, indicating 

that the ligand is approaching the binding site, the “SuMD-step” is considered productive 

and retained for the generation of the final trajectory, while the final state of the 

simulation is used as the starting point for the successive step. On the contrary, if the 

slope is positive, thereby indicating that the ligand is not approaching the binding site, the 

“SuMD-step” is considered not productive and therefore discarded: in this case, the step 

is repeated by randomly reassigning the particle velocities through the Langevin 

thermostat and retaining the final coordinates from the end of the previous “SuMD-step”. 

The supervision algorithm is switched off when the distance between the two centers of 

mass falls below a threshold value (10 Å, in this case): from that point on, the simulation 

proceeds for the other 10 ns of classic molecular dynamics, allowing the system to relax 

and reach the final state of the simulation without any external geometric biased imposed 

by the supervision. For each control case study, 10 SuMD simulations were collected: 
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while every single one was visually inspected, only the best one according to the 

geometrical agreement with the reference (based on the RMSD between the ligand 

coordinates in the final step of the simulation and the ligand coordinate in the reference 

experimental structure after optimal superposition of the protein backbone) was 

thoroughly analyzed and discussed in the manuscript. In the case where the structure of 

the complex was not available, the best replica was chosen based on the MMGBSA 

interaction energy instead. In the current implementation, the SuMD code is written in 

Python and exploits the Numpy and ProDy74 modules to perform the aforementioned 

geometrical supervision throughout the simulation. A list of residues utilized to define the 

ligand and protein binding site for each case is provided in Table S4 (Supplementary 

Materials).  

Trajectory Analysis 

The SuMD trajectories were analyzed by making use of an-in house tool written in Python 

3 which represents an evolution and customization of the original one which is described 

in the work of Salmaso et al.46.  

Initially, trajectories representing each single “SuMD-step” were merged into a single 

collective trajectory. Then, obtained trajectories were pre-processed by applying a stride 

and retaining one frame every 20 ps, superposing and aligning each frame on the protein 

backbone atoms of the first frame, and wrapping it into an image of the system simulated 

under periodic boundary conditions (PBC). Both geometric and energetic analyses were 

performed on the so-obtained SuMD trajectories. 

Concerning the geometric properties of the system, regarding both the nucleic ligand and 

the protein receptor, the time-dependent evolution of both backbone RMSD and radius 

of gyration, a global and a time-dependent per-residue decomposition of the backbone 

RMSF were collected and reported in an aggregated panel. Furthermore, the geometric 

performance of the SuMD protocol in reproducing the experimental bound conformation 

of the ligand was evaluated by computing the ligand backbone RMSD compared to the 

experimental reference throughout the entire simulation. All these geometric analyses 

were performed making use of the appropriate functions of the MDAnalysis75,76 Python 

library and plotted through the Matplotlib77 module.  
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Regarding the energetic analysis, an estimation of the ligand-receptor interaction energy 

alongside the SuMD trajectory was obtained both through the MMGBSA protocol, as 

implemented in AMBER 14, and through the “NAMD Energy” plugin for VMD, which 

exploits the NAMD78 package to retrieve an estimate of the interaction energy defined as 

the sum of the van der Waals and electrostatic contribution calculated according to the 

user-defined force field (AMBER 14, in this case). The energy values were then plotted 

both as a function of the simulation time and of the RMSD to the reference pose, giving 

both a time-dependent and a geometry-dependent energetic profile of the trajectory.  

Finally, a per-residue interaction energy decomposition analysis was carried out exploiting 

once again the “NAMD Energy” plugin for VMD: plots report a time-dependent per-

residue decomposition of the interaction energy for both the receptor and the ligand and 

a bidimensional interaction energy matrix in which interacting residues on the ligand side 

are correlated with the corresponding interacting residues on the receptor side. For all 

these per-residue analyses, the 25 most frequently contacted residues throughout the 

trajectory are considered (25 for the receptor, as well as for the ligand), defining 

contacting residues as the ones that are at a maximum distance of 4.5 Å from the nearest 

atom of the counterpart, either the ligand or the receptor.  

A movie representation of the trajectory alongside the dynamic evaluation of its 

geometric and energetic features is also provided by the same analysis tool, which exploits 

VMD for the visual rendering of the simulated system. For uniformity reasons, in each plot 

and video, residue numbering is related to the fasta sequence for the wild-type receptor, 

as retrieved from the UniProt database. 

 

Docking 

To evaluate SuMD's ability to reproduce the native conformation of the RNA aptamer-

protein complex, we decided to compare its performance with the one of molecular 

docking. The program chosen to accomplish this task was HADDOCK25 (“High Ambiguity 

Driven protein-protein DOCKing”, version 2.4) since it has already been extensively used 

for dealing with protein-nucleic acid complexes79 and it uses a priori information to steer 

the docking calculation in a similar way to how SuMD works. 
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Each one of the crystal structures used as control (the ones coming from PDB codes 3DD2, 

4PDB, and 5VOE) was subjected to a docking run. For all these cases, the nucleic acid was 

treated as the ligand, while the protein was considered as the receptor. The binding site 

was defined based on residues at the contact surface in the crystallographic structures, 

both on the protein and nucleic acid sides.  

Concerning the SARS-CoV-2 Spike RBD RNA aptamer, the selected protein residues were 

chosen instead based on the contact surface with human ACE2 in the structure 6M0J, 

while for the aptamer the residues were selected based on the information coming from 

the original paper by Valero et. al. The list of protein and aptamer residues used as input 

for each docking calculation is reported in Table S3 (Supplementary Material). All user-

definable parameters for molecular docking were kept as default. 

HADDOCK starts with a randomization stage, in which the docking partners are placed far 

in space from one another (about 150 Å) and randomly rotated around their centers of 

mass. The following step consists of a rigid body energy minimization, which is followed 

by the rigid-body docking of the ligand and the receptor, allowing to obtain 1000 

complexes. The 200 best solutions in terms of intermolecular energies obtained at this 

stage are subjected to simulated annealing refinements. Both the intra- and inter-

molecular energies are evaluated by HADDOCK using full electrostatic and van der Waals 

energy terms with an 8.5 Å distance cutoff using the OPLS80 nonbonded parameters. The 

final complexes are then clustered based on the Fraction of Common Contacts81 (FCCs) 

with a 0.6 cutoff similarity for clustering, and the clusters are then ranked for energetics. 

RNA Aptamer-Protein Complexes Molecular Dynamics Simulations 

To evaluate the dynamic behavior of aptamer-bound protein complexes, we performed 

several classic molecular dynamics simulations. At first, each system was subjected to a 

preparation step exploiting both AmberTools14 and VMD 1.9.2, as previously mentioned 

in the preparation stage for SuMD simulations. Specifically, each protein-nucleic acid 

complex was singularly solvated in an explicit TIP3P water box with a 40 Å padding. Each 

of these simulation boxes was then neutralized using Na+/Cl- ions until reaching a 

physiological salt concentration of 0.154 M. The preparation phase was followed by a two-

step equilibration protocol. The first equilibration was carried out in the canonical 
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ensemble (NVT) and was composed of 1500 steps of energy minimization with a 

conjugate-gradient algorithm followed by a 1 ns MD simulation. In this first passage, 

harmonic positional restraints of 5 kcal mol−1 Å−2 were applied on both the protein and 

the nucleic acid, while the temperature was kept at the constant value of 310 K exploiting 

a Langevin thermostat (with friction coefficient set to 0.1 ps−1). The second equilibration 

was performed in the isothermal-isobaric ensemble (NPT), also this time for 1 ns of MD 

simulation in which the harmonic positional restraints of 5 kcal mol−1 Å−2 were applied just 

on the protein and nucleic acid backbones. The pressure was kept constant at the value 

of 1.0 atm using a Monte Carlo barostat. In each of the equilibration steps, a 2 ps 

integration step was adopted, the bonds involving the hydrogen atoms were constrained 

through the M-SHAKE algorithm, and a 9.0 Å cutoff was used for the calculation of the 

Lennard-Jones interaction. For the electrostatic interaction, a particle-mesh Ewald 

method (PME) was used. After this preparation phase, three different 50 ns replicates of 

classic MD simulation in the NVT ensemble at 310 K were executed. 

Free RNA-Aptamer Molecular Dynamics Simulations 

To complement the investigation of the structural dynamicity of investigated RNA 

aptamer-protein complexes, we also performed a classic MD simulation of the free RNA 

aptamer. To accomplish this task, we retrieved the coordinates for each nucleic acid 

molecule from the previously mentioned complexes. Each of these aptamers was then 

subjected to the same protocol described before for RNA aptamer-protein complexes, 

except for the parts related to the protein which, in this case, was not part of the system.  
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Results 

To assess the applicability domain and accuracy of Supervised Molecular Dynamics 

simulation in the context of the nucleic acids-protein recognition processes, we opted for 

a retrospective validation approach, evaluating the ability of the protocol to correctly 

reproduce the binding mode of nucleic ligands found in experimentally solved complex 

structures, focusing both on the sampling and ranking capabilities of the protocol. 

Particularly, we decided to focus our attention on the class of RNA aptamers, both for 

their therapeutical relevance and for their challenging nature due to their peculiar 

structural features such as intrinsically higher flexibility and density of negative charge 

compared to ligands considered in the past applications of the SuMD protocol. In the 

following paragraphs, we present the application of SuMD to three different case studies 

for which the experimental structure of the RNA aptamer-protein complex is available on 

the Protein Data Bank, focusing on the geometrical accuracy of the technique in 

reproducing the experimentally determined binding mode and monitoring both the 

geometric and energetic features of the recognition process, stretching beyond the final 

state of the simulation. The three test cases are reported in chronological order, starting 

from the oldest structure to the most recent one. Furthermore, we also present a 

prospective application of the SuMD protocol to the investigation of a complex whose 

structure has not yet been experimentally determined, to present and discuss the role, 

the advantages, and the limitations of implementing the SuMD protocol in a pipeline for 

the rational design of RNA-based therapeutics. Information about each SuMD simulation 

reported in the manuscript are encompassed in Table S2 (Supplementary Material).  

RNA aptamer bound to human thrombin (PDB ID: 3DD2) 

Due to its ability to process several proteins that are part of the coagulation cascade, 

including the cleavage of soluble fibrinogen into fibrin, which is responsible for the 

formation of clots, human thrombin is a serine protease that exerts a pivotal role in blood 

coagulation and is, therefore, a target of interest for anticoagulation therapy82–84. Two 

surface regions of thrombin (exosite-1 and exosite-2), which are located on opposite sides 

of the molecule and away from the catalytic site, are responsible for its ability to interact 

with various macromolecular substrates. Particularly, exosite-2 is responsible for the 
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binding of thrombin to heparin, a clinically used oligosaccharide that mediates its 

anticoagulant effect by facilitating the interaction of thrombin with its endogenous 

inhibitor antithrombin85.  

In 2001, White et al. reported the discovery of Toggle-25, an RNA aptamer that was 

developed to bind with a high affinity to both human and porcine thrombin, leading to 

the inhibition of both plasma clot formation and platelet activation86. In 2008, Long et. al. 

were able to solve the crystal structure of Toggle-25t, a 25 nucleotide truncated version 

of Toggle-25, bound to the exosite-2 of human thrombin at a resolution of 1.90 Å (PDB ID: 

3DD287), thereby allowing a structural characterization of the complex which nicely 

complements previous biochemical analysis87. As reported in the original publication, the 

aptamer recognizes the thrombin exosite-2 in its native state, since no conformational 

changes can be observed between the unbound and bound state. Despite a relatively 

simple secondary structure, defined by a stem-loop with an internal bulge, Toggle-25t can 

achieve a selective and high-affinity binding to human thrombin (Kd = 0.54±0.1 nM) thanks 

to the good complementarity of shape and electrostatic properties between the 

negatively charged aptamer and the basic protein region responsible for its recognition. 

The absence of significant structural alteration of the protein upon binding, the 

therapeutic relevance of the target, and the relatively modest size of the aptamer (25 

residues), make this complex an ideal target for the application of the SuMD protocol to 

the study of RNA aptamer-protein interactions. As previously introduced, two 

simplifications were introduced in the system investigated through SuMD: firstly, each 2’ 

fluoro substituted pyrimidine residue was retro-mutated to the correspondent naturally 

occurring nucleotide, secondly, the divalent Mg2+ ion was not included in the system. The 

choice of retro mutating the fluorine-containing nucleotides was done for compatibility 

reasons since some of the software used in this scientific work (e.g., HADDOCK) could not 

work with non-natural nucleic residues. According to the original publication by Long et 

al.87, the introduction of fluorine mainly impacted the aptamer resistance to ribonuclease 

rather than the binding affinity, as also underlined by the fact that only one single 2’ fluoro 

group is in direct contact with the protein, specifically at the level of the U17-Arg126 

interaction. Concerning the presence of Mg2+ ions, despite their undisputable importance 
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in the field of RNA folding, we opted not to include them at all in the simulations due to 

some intrinsic molecular mechanics limitations that hamper the possibility of fully and 

accurately describing their interaction with RNA88, other than the difficulties in accurately 

predicting their locations without hints from experimental data89.  

 

Figure 1. This panel encompasses the putative recognition pathway between the RNA aptamer Toggle-25t 

and the exosite-2 of human thrombin described by the best trajectory obtained through the SuMD protocol 

(the one with the lowest RMSD to the crystal reference). (A) Visual representation of the Toggle-25t 

conformation sampled in the last frame of the SuMD trajectory (green) superposed with the native Toggle-

25t conformation (yellow), as found in the crystal structure deposited in the Protein Data Bank with 

accession code 3DD2 (RMSDSuMD-Crystal: 6.41 Å). The aptamer is represented as a ribbon, while the protein is 

represented as a Connolly surface colored according to the electrostatic potential as calculated with the 

APBS software90, where red indicates a negatively charged area while blue indicates a positively charged 

one. (B) Profile of the ligand-receptor interaction energy (defined as the sum of the electrostatic and van 

der Waals contribution) throughout the recognition process as a function of both the simulation time and 

the RMSD between the ligand position during the trajectory and the ligand position in the crystal. (C) 

Receptor per-residue decomposition of the receptor-ligand interaction energy throughout the SuMD 

trajectory as a function of the simulation time: the 25 most-contacted residues are reported in the plot. (D) 

Per-residue interaction energy matrix: the 25 most-contacted residues for both the receptor and the ligand 

are considered, while each square composing the heatmap represents the average value of the interaction 

energy between the two paired residues alongside the trajectory.  
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As can be seen in Video 1 (Supplementary Material), about 15 ns of simulation time was 

sufficient to sample a putative molecular recognition event between the Toggle-25t RNA 

aptamer and the human thrombin exosite-2. This is a quite remarkable result, considering 

the usual hundreds of nanoseconds that are necessary to spontaneously sample a binding 

event with classic MD simulations. As illustrated by Video 1 and summarized in Figure 1, 

the final state of the SuMD simulation converged quite well both from a geometrical and 

an interactive point of view toward the crystal reference.  

Concerning the geometric accuracy, the RMSD between the ligand backbone 

conformation in the final state of the simulation and the native ligand backbone 

conformation observed in the crystal structure is 6.41 Å, which is quite impressive 

considering the intrinsic structural flexibility of these objects, which is also confirmed by 

the structural deviation than can be observed in classic MD simulations of both the crystal 

complex (average RMSD of the nucleic acid backbone in the final step of the simulation 

across three MD replicates: 2.87 Å) and the free aptamer (average RMSD of the nucleic 

acid backbone in the final step of the simulation across three MD replicates: 3.85 Å). It is 

not surprising, therefore, that SuMD performs worse compared to molecular docking 

from a geometrical point of view (RMSD between the best docking pose and the crystal 

binding mode of the aptamer: 2.51 Å). 

Despite a lower geometrical accuracy of the method compared to the one of docking, that 

derives mainly from the high intrinsic flexibility of the nucleic ligand during the simulation 

(see also Figure S4, Supplementary Material, which reports the pairwise RMSD matrix of 

the free RNA aptamer during classic MD simulations), SuMD can correctly pose the 

negatively charged RNA-aptamer in a native-like conformation that maximizes the 

complementarity of shape and electrostatic features with the electropositive concave 

surface of the thrombin exosite-2, as highlighted in Figure 1 (panel A). 

Concerning the capability of the protocol to correctly recapture the pivotal binding 

features despite a suboptimal geometric accuracy, SuMD can accurately describe the 

main interaction determinants, as illustrated by a comparison between the per-residue 

energy decomposition of the first 300 ps of the crystal complex classic MD simulation and 

the last 300 ps of the SuMD simulation (Figure S5, Supplementary Material). Particularly, 
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as can be seen in Figure 1 (panels C and D), SuMD correctly captures the pivotal role of 

both Arg 101 (461) and Arg 233 (608) in driving the recognition mechanism, serving as 

electrostatic recruiters in the initial phases of the process and acting as anchors to stabilize 

the bound state in the final part of the simulation, in agreement with mutagenesis data 

that assess how mutation of each of this two residue completely abrogates any aptamer’s 

effect91. Particularly, Arg 233 (608) along with Arg 165 (533) are responsible for the 

formation of a stacked interaction domain motif defined as an “A-Arg zipper” which 

involves five unpaired adenine residues on the ligand side, A4, A5, A7, A15, and A18 

respectively. As can be seen in Figure 1 panel D, SuMD individuates all these five adenine 

residues as key interaction determinants, in agreement with the experimental data. 

Finally, SuMD also discriminates the non-relevance of Gln 239 (614), which is not reported 

in the analysis as it is not one of the 25 most contacted residues during the trajectory, 

coherently with mutagenesis data that shows how a mutation of this residue does not 

affect the aptamer binding91. 

On the ligand side, SuMD once again correctly encompasses the different roles portrayed 

by different nucleotides. As can be seen in Figure 1 (panel D), the interaction between 

U17 and Arg 126 (486) is retrieved by the SuMD simulation: mutagenesis data shows how 

the mutation of U17, one of the flipped-out nucleotides, with adenine has essentially no 

effect on the aptamer’s affinity for the target. Looking at our ligand-based interaction map 

it can be noticed how this interaction is the only one in which this nucleotide is involved, 

other than being less intense compared to more prominent interaction such as the 

aforementioned “A-Arg zipper”, which suggest a non-pivotal contribution to the binding 

affinity. This can be related to the fact the U17 interacts with Arg126 through the 

backbone and not through its sidechain so that, as pointed out by the work of Jeter et al., 

this interaction would be maintained even when substituting the base91. Substitution of 

U12 with adenine results in a nearly three-orders-of-magnitude diminished binding 

affinity: this is due to the stabilizing role that U12 plays towards A15 through a non-

Watson-Crick base pairing, one of the bases involved in the formation of the “A-Arg 

zipper”91. Once again, as depicted in Figure 1 panel D, SuMD correctly recognizes the 

pivotal role portrayed by A15, while contemporarily elucidating the indirect role of U12, 



SCIENTIFIC PUBLICATIONS 

 

Pavan et al., 2022 516 
 

which is not involved in any major interactions with protein residues. All other geometric 

and energetic analyses performed on the trajectory are summarized in Figures S1-S3 

(Supplementary Materials).  

To assess the predictive power of the method, we retrospectively analyzed all trajectories 

using two different metrics, i.e. the electrostatic interaction energy and the MMGBSA 

interaction energy of the final state of the simulation. The idea to use these two metrics 

stems from the consideration that RNA binding to proteins usually requires a good level 

of complementarity of steric and electrostatic properties at the binding interface. As 

reported in Figure S19, both metrics can successfully distinguish the native and native-like 

poses, i.e. the ones with a superimposable interaction pattern with the reference 

(measured through the Mean Signed Error and the Root-Mean Squared Error of the per-

residue interaction energy decomposition, panels C and D respectively), from the decoys. 

This observation suggests that both metrics could be utilized in a prospective application 

of SuMD to rank poses coming from different simulations prioritizing the ones that are 

most similar to the native binding mode. 
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RNA aptamer bound to Bacillus anthracis ribosomal protein S8 (PDB ID: 4PDB) 

Thanks to its central function in the vital cycle of bacteria, the bacterial ribosome, complex 

machinery responsible for protein synthesis in prokaryotic organisms, has been 

extensively studied, both from a structural and a functional perspective, and has been 

validated as a target for multiple antibiotic drugs92. Protein-RNA interactions play a key 

role in the assembly, maturation, and function of the bacterial ribosome93. Among these, 

association processes involving ribosomal protein S8 are particularly relevant since it not 

only participates in the 30s subunit assembly by binding to 16S rRNA but, additionally, it 

also serves as a translational repressor of the spc operon mRNA, which encodes for 11 

ribosomal proteins including S8 itself94. 

Due to its relevance, the complex formed between bacterial ribosomal protein S8 and 16S 

rRNA has been thoroughly characterized through different techniques, allowing us to 

establish that most of the protein–RNA contacts involve helices 21 and 25 and that a small 

RNA portion located in helix 21 is sufficient to confer specificity and high affinity to the 

S8-RNA interaction95. Furthermore, the interaction determinants between S8 and its RNA 

targets are largely conserved, and the same degree of conservation applies also to the 

overall fold of various S8 proteins96–98. Finally, the complementarity of shape and 

electrostatic properties that is required for the binding entails a high level of nucleotide 

sequence and secondary structure conservation, to impose an RNA shape that optimizes 

interaction properties with the protein surface99.   

To fetch RNA secondary structures that deviate from the conserved bacterial motif while 

retaining the ability to bind the S8 protein, in 2014 Davlieva et al. performed a SELEX 

experiment that led to the discovery of a 38-mer RNA aptamer that can bind the Bacillus 

anthracis S8 protein with high affinity (Kd = 110 ± 30 nM), determining at the same time 

the structure of the bound complex between the RNA aptamer and its protein target99. 

The selection process was based on an RNA stem-loop scaffold containing symmetric and 

asymmetric internal loops of 16 randomized nucleotides, with the resulting aptamer 

sequence forming a secondary structure with a symmetric internal loop99. The absence of 

major structural rearrangements on the protein side of the interaction (0.65 Å 

RMSDbackbone between the free and the bound form) and the relevance of this interaction 
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from a mechanistic perspective led us to consider this complex as a suitable casestudy to 

validate the SuMD protocol. 

 

 

Figure 2. This panel encompasses the putative recognition pathway between the RNA aptamer and the S8 

ribosomal protein of Bacillus anthracis described by the best trajectory obtained through the SuMD protocol 

(the one with the lowest RMSD to the crystal reference). (A) Visual representation of the RNA aptamer 

conformation sampled in the last frame of the SuMD trajectory (green) superposed with the native RNA 

aptamer conformation (yellow), as found in the crystal structure deposited in the Protein Data Bank with 

accession code 4PDB (RMSDSuMD-Crystal: 2.61 Å). The aptamer is represented as a ribbon, while the protein is 

represented as a Connolly surface colored according to the electrostatic potential as calculated with the 

APBS software90, where red indicates a negatively charged area while blue indicates a positively charged 

one. (B) Profile of the ligand-receptor interaction energy (defined as the sum of the electrostatic and van 

der Waals contribution) throughout the recognition process as a function of both the simulation time and 

the RMSD between the ligand position during the trajectory and the ligand position in the crystal. (C) 

Receptor per-residue decomposition of the receptor-ligand interaction energy throughout the SuMD 

trajectory as a function of the simulation time: the 25 most-contacted residues are reported in the plot. (D) 

Per-residue interaction energy matrix: the 25 most-contacted residues for both the receptor and the ligand 

are considered, while each square composing the heatmap represents the average value of the interaction 

energy between the two paired residues alongside the trajectory.  
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As can be deducted from Video 2 (Supplementary Materials), less than 15 ns of simulation 

time were needed to sample a putative recognition mechanism between the RNA 

aptamer and the ribosomal S8 protein. As underlined by both Video 2 and Figure 2, the 

final state of the SuMD simulation converged impressively well with the experimental 

data, both from a geometric and an interactive point of view. 

Specifically, regarding the geometric accuracy of the method, the RMSD between the 

ligand backbone conformation in the final state of the simulation and the native ligand 

backbone conformation observed in the crystal structure is only 2.61 Å, a result 

comparable with the performance of molecular docking (RMSD between the best docking 

pose and the crystal binding mode of the aptamer: 2.20 Å). The higher geometric accuracy 

of the SuMD protocol, compared to 3DD2 case, can be partially explained by the lower 

degree of conformational freedom available to the aptamer, as can be seen in Figure S9 

(Supplementary Materials, average RMSD of the nucleic acid backbone in the final step of 

the simulation across three MD replicates: 2.27 Å), despite similar stability of the bound 

state (average RMSD of the nucleic acid backbone in the final step of the simulation across 

three MD replicates: 2.80 Å). 

Intriguingly, despite the impressive geometric convergence of the trajectory with the 

experimental data, the comparison between the per-residue energy decomposition from 

the last 300 ps of the SuMD simulation and the first 300 ps of the classic MD simulation 

of the crystal complex reveals a slightly lower congruence of the binding mode compared 

to the 3DD2 case (Figure S10, Supplementary Materials). It is important to notice that, in 

this case, the difference is not due to the interaction pattern, which for the most part is 

correctly depicted by the SuMD simulation analysis, but instead to the relative strength 

of the interactions. Indeed, as can be noticed in Figure 2 panel A, the final state of the 

SuMD simulation is slightly shifted compared to the crystal reference, considering that the 

predominant electrostatic component to the total interaction energy is proportional to 

the squared distance between the two interactors, even small differences in the relative 

position of interacting residues can alter the quantitative estimation of the interaction 

energy. Coherently with this interpretation of the data coming from the simulation 
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analysis, our SuMD protocol can qualitatively describe the vast majority of the key 

interaction determinants. 

In the crystal structure, the interaction between the S8 protein and the RNA aptamer 

involves a strip of electropositive charge (as is also visible in Video 2 and Figure 2, panel 

A) along which the phosphate backbone of the aptamer traverses from residues A4-C7 

and U27-A29: this behavior is correctly captured by our simulation, as depicted in Figure 

2 panel D. Moreover, as can be noticed in Figure 2 panels C and D, SuMD correctly 

intercepts the polar interactions that form between the backbone of aptamer residues 

C16, C17, A24, U25, U27, and A26 and their counterparts on the protein side such as Glu 

126, Ser 107, Gly 124, Lys 110, Ser 109, Ala 91 and Thr 123. Additionally, as depicted in 

Figure 2 panel D, the SuMD protocol is also able to spot some water-mediated interactions 

such as the contact between U27 to Glu 126. Finally, as can be depicted in Figure 2 panel 

D, SuMD can retrieve the stacked interaction between the peptide bond of highly 

conserved residues Ser 107 – Thr 108 – Ser 109 and the purine ring of A26: an analogous 

stacking interaction, involving A642, is present also in the complexes between the S8 

protein and its natural RNA interactors, where it represents the only base-specific 

contacts of the complex99. All other geometric and energetic analyses performed on the 

trajectory are summarized in Figures S6-S8 (Supplementary Materials).  

As for the previous case, we once again retrospectively analyzed all trajectories using the 

same metrics utilized before (electrostatic interaction energy and MMGBSA interaction 

energy), to assess the predictive power of the method. As reported in Figure S20, also in 

this case both metrics can successfully distinguish the native and native-like poses from 

the decoys. This observation further supports the idea that either of the two metrics could 

be utilized in a prospective application of SuMD to rank poses coming from different 

simulations to prioritize the most similar to the native binding mode. 
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RNA aptamer bound to human factor Xa (PDB ID: 5VOE) 

One of the key events of the coagulation cascade is represented by the formation of the 

prothrombinase complex, macromolecular machinery formed by the serine protease 

factor Xa (FXa) and its cofactor factor Va (FVa)100,101: this membrane-mediated interaction 

enhances the catalytic activity of the FXa, leading to increased conversion of prothrombin 

into thrombin by a factor of approximately 105 and is, thereby, an interesting target for 

anticoagulation therapy102,103. Despite a great effort devoted to the development of both 

small-molecule inhibitors of the FXa catalytic site and peptide inhibitors directed at 

epitopes on the binding interface with FVa, both these approaches have led to 

disappointing therapeutic results since the interaction surface is large and involves 

multiple hotspots104,105 and the inhibition at the catalytic site-level interferes with natural 

regulatory agents such as antithrombin III106.  

To avoid the limitations of traditional small molecule ligands, in 2010 Buddai et. al. 

developed RNA11f7t, an RNA aptamer that exerts a potent anticoagulant effect by binding 

to FXa with high affinity (Kd 1.1 ± 0.2 nM) and selectivity (~3000 fold over other 

coagulation proteases) and inhibiting its interaction with FVa107.  

In 2018, Gunaratne et al. were able to solve the crystal structure of 11F7t bound to FXa, 

allowing us to better comprehend the key structural features that characterize this 

interaction108. Specifically, in agreement with previous biochemical data, the analysis of 

the structure confirmed that the interaction occurs at a protein site which is implicated in 

the binding of both anticoagulant drug heparin and coagulation factor Factor Va (FVa)109, 

with the interaction surface involving a central aptamer loop formed by residues C8, A10, 

A21, and C28-C30 and a protease exosite formed by Leu 59, Arg 64, Val 88, Ile 89, Asn 92, 

Arg 93, Lys 236, and Arg 240108. The absence of notable structural alterations of the 

protease upon aptamer binding, the therapeutical relevance of the target, and the 

relatively contained size of the aptamer (36 residues) induced us to consider it to validate 

the SuMD protocol. As in the case of structure 3DD2, 2’ fluoro-modified nucleotides were 

retro-mutated to the corresponding natural alternatives, and the presence of the two 

Mg2+ ions was not considered in the simulations.  
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Figure 3. This panel encompasses the putative recognition pathway between the 11F7t RNA aptamer and 

human factor Xa described by the best trajectory obtained through the SuMD protocol (the one with the 

lowest RMSD to the crystal reference). (A) Visual representation of the RNA aptamer conformation sampled 

in the last frame of the SuMD trajectory (green) superposed with the native RNA aptamer conformation 

(yellow), as found in the crystal structure deposited in the Protein Data Bank with accession code 5VOE 

(RMSDSuMD-Crystal: 9.12 Å). The aptamer is represented as a ribbon, while the protein is represented as a 

Connolly surface colored according to the electrostatic potential as calculated with the APBS software90, 

where red indicates a negatively charged area while blue indicates a positively charged one. (B) Profile of 

the ligand-receptor interaction energy (defined as the sum of the electrostatic and van der Waals 

contribution) throughout the recognition process as a function of both the simulation time and the RMSD 

between the ligand position during the trajectory and the ligand position in the crystal. (C) Receptor per-

residue decomposition of the receptor-ligand interaction energy throughout the SuMD trajectory as a 

function of the simulation time: the 25 most-contacted residues are reported in the plot. (D) Per-residue 

interaction energy matrix: the 25 most-contacted residues for both the receptor and the ligand are 

considered, while each square composing the heatmap represents the average value of the interaction 

energy between the two paired residues alongside the trajectory.  

As can be deemed by Video 3 (Supplementary Materials), in this case about 20 ns of 

simulation time were sufficient to sample a presumptive association pathway between 

the RNA aptamer 11F7t and human coagulation factor Xa. As can be noticed in Figure 3 

(panel A), in this case, the geometric accuracy of the SuMD protocol in reproducing the 

crystal complex was worse compared to the first two cases, as also denoted by the 9.12 Å 
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RMSD value between the final state of the simulation and the crystal reference. A first 

explanation of the lower geometric accuracy of the method can be found in the analysis 

of the classic MD simulation performed on both the crystal complex and the free aptamer: 

as highlighted by Figure S14 (Supplementary Materials) and by the RMSD of the nucleic 

backbone in the crystal complex MD (5.98 Å) and the free aptamer MD (4.93 Å), this 

aptamer has a significantly higher degree of conformational freedom compared to the 

previous two cases, which increase the difficulty of sampling the binding event due to the 

reduced amount of time that the aptamer spends in the binding competent conformation. 

Intriguingly, in this case, also, molecular docking compared worse than in the previous 

one, with the most correct pose having an RMSD of 3.17 Å to the crystal reference, 

indicating that the structural flexibility of the object (which is not considered by molecular 

docking) is not the only determinant of the performance of the protocol. 

Contrary to the expectations, SuMD converged quite well from an interactive point of 

view with the experimental data: as can be seen in Figure S15 (Supplementary Materials), 

SuMD can qualitatively retrieve most of the native crystal interactions even if, as in the 

case of complex 4PDB, the estimation of the relative interaction strength is not always 

congruent.  

Specifically, as can be noticed in Figure 3 panel D, the SuMD protocol can correctly retrieve 

the pivotal part played by residues A10, A21, and C29-C30, while slightly missing out on 

the importance of contacts with residues C8 and C28. On the protein side, as illustrated 

by Figure 3 panel C, SuMD precisely describes the central role portrayed by residues Arg 

64 (283), Val 88 (308), Ile 89 (309), Asn 92 (312), Arg 93 (313), Lys 236 (460) and Arg 240 

(464), while only passing up on the interaction with Leu 59 (278). Interestingly, Arg 240 

(464) and Lys 236 (460) are key residues for the binding of heparin, according to 

mutagenesis studies110. Finally, SuMD analysis highlights how Arg 165 (387) and Lys 169 

(391), two critical residues in the recognition of factor FXa by either factor Va and/or 

prothrombin, are not contacted during the trajectory, in agreement with both the crystal 

structure and previous observations which pointed out to the possibility that the 

abrogation of factor Va binding happened through an indirect effect rather than through 

occlusion of the interaction surface107,108. All other geometric and energetic analyses 
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performed on the trajectory are summarized in Figures S11-S13 (Supplementary 

Materials).  

Finally, encouraged by the promising insights provided by the first two cases, we 

retrospectively analyzed all trajectories using the same scoring metrics defined before, to 

establish if they were once again able to distinguish the native and native-like poses from 

the decoys. As can be noticed in Figure S21, disappointingly both metrics fail to prioritize 

the most geometrically accurate solution, preferring instead the second-best one. 

Curiously, the reference crystal is also scored poorly by both metrics, indicating even if 

the SuMD protocol would have been able to sample it we would not have been able to 

prioritize it. As can be noticed in Table S1, this case also HADDOCK fails to rank the most 

geometrically accurate pose as the top solution, attributing to it a lower rank than a 

completely incorrect pose (RMSD: 19.79 Å), which ranks as the second best one. The 

observation that HADDOCK, despite incorporating information about native contacts in 

its scoring protocol, has trouble in correctly ranking poses for this case, combined with 

the intrinsic instability of the crystal complex, as indicated by the high RMSD value (5.98 

Å) in the classic MD simulations and the low interaction energy values attributed by both 

metrics, indicate how this case might be an outlier, thus justifying the hypothesis of using 

the previously proposed metrics in prospective applications of the SuMD protocol.  

RNA aptamer bound to SARS-CoV-2 Spike glycoprotein Receptor Binding Domain (RBD) 

The outbreak of the COVID-19 pandemic in December 2019 caused an unprecedented 

worldwide public health crisis, leading to the death of more than six million people all over 

the world111,112. This illness is caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), a betacoronavirus able to infect human cells by expressing a 

surface glycoprotein known as spike (S) glycoprotein, which interacts through its receptor-

binding domain (RBD) with the human angiotensin-converting enzyme 2 (hACE2) that 

mediates the viral uptake process in conjunction with the associated transmembrane 

serine protease 2 (TMPRSS2)113. Due to the central role that this interaction plays in SARS-

CoV-2 infectivity, the vast majority of therapeutic and prophylactic efforts in contrasting 

the COVID-19 pandemic have therefore been directed towards the inhibition of the spike-
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hACE2 interaction, either through vaccination or administration of monoclonal 

antibodies114,115.  

To overcome the main disadvantages of monoclonal antibodies, such as their high 

production costs, poor room temperature stability, and immunogenicity, in 2021 Valero 

et al. performed a SELEX experiment for the identification of a serum-stable RNA aptamer 

that could tightly bind the RBD of SARS-CoV-2 spike protein preventing the interaction 

with hACE2 thereby neutralizing viral infectivity59. This experiment led to the 

identification of RBD-PB6, an elongated stem-loop RNA aptamer that can selectively 

interact with the RBD with low nanomolar affinity (KD ≈ 18 nM), inhibiting the binding of 

RBD to hACE2 in a concentration-dependent manner59.  

Considering the encouraging results shown by the three applications of the SuMD 

protocol to the study of recognition processes between RNA aptamers and proteins and 

to illustrate a possible application of the protocol in a prospective scenario, we used SuMD 

simulations to shed light on the possible association pathway between the RBD-PB6 

aptamer and the SARS-CoV-2 spike RBD. A model of the RNA aptamer structure was 

obtained through the 3dRNA webserver, based on the input primary sequence retrieved 

from the original publication and on the secondary structure prediction by the NUPACK 

webserver, while the structure of the SARS-CoV-2 spike RBD was retrieved from the crystal 

structure of the complex between the RBD and hACE2, deposited in the PDB with 

accession code 6M0J. The RBD structure that is present in this crystal comprises protein 

residues ranging from Thr 333 to Gly 526, slightly shorter than the construct used in the 

SELEX experiment which included residues from Arg 319 to Asn 532. However, residues 

that are not experimentally solved in the crystal structure are on the opposite side relative 

to the hACE2 interaction interface, so their absence should not impact the validity of the 

simulation. In agreement with experimental data that indicate how the RBD-PB6 RNA 

aptamer and hACE2 compete for the same binding site on the RBD surface, SuMD 

simulations were carried out to sample a putative recognition mechanism between RBD-

PB6 and RBD surface that is responsible for interaction with hACE2.  
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Figure 4. This panel encompasses the putative recognition pathway between the RBD-PB6 RNA aptamer 

and the SARS-CoV-2 Spike RBD described by the best trajectory obtained through the SuMD protocol 

according to the MMGBSA interaction energy. (A) Visual representation of the RNA aptamer conformation 

sampled in the last frame of the SuMD trajectory (green) superposed with the best docking-predicted RNA 

aptamer conformation (yellow). The aptamer is represented as a ribbon, while the protein is represented 

as a Connolly surface colored according to the electrostatic potential as calculated with the APBS software90, 

where red indicates a negatively charged area while blue indicates a positively charged one. (B) Profile of 

the ligand-receptor interaction energy (defined as the sum of the electrostatic and van der Waals 

contribution) throughout the recognition process as a function of both the simulation time and the RMSD 

between the ligand position during the trajectory and the ligand position in the crystal. (C) Receptor per-

residue decomposition of the receptor-ligand interaction energy throughout the SuMD trajectory as a 

function of the simulation time: the 25 most-contacted residues are reported in the plot. (D) Per-residue 

interaction energy matrix: the 25 most-contacted residues for both the receptor and the ligand are 

considered, while each square composing the heatmap represents the average value of the interaction 

energy between the two paired residues alongside the trajectory.  

As can be observed in Video 4 (Supplementary Materials), about 20 ns of simulation time 

was enough to sample a putative recognition mechanism between the RBD-PB6 aptamer 

and the SARS-CoV-2 spike RBD. Interestingly, as can be noticed in Figure 4 panel A, there 

is a discrete level of convergence between the final state of the simulation and the 

docking-predicted binding mode, especially in the region ranging from A10 to A61, which 

is the minimal portion of the full-length aptamer which fully retains its binding capabilities 
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to the RBD (RMSDbackbone SuMD-docking: 11.69 Å). Regarding the recognition mechanism 

proposed by the SuMD protocol, an analysis of the interaction pattern reveals that the 

first contacts on the aptamer side involve residues A10-A14 and G48-G52, all of which fall 

into the conserved aptamer moiety that is required for binding to RBD. After these initial 

contacts take place and steer the binding event, other ancillary stabilizing interactions 

occur, such as the one with residues U24-U26 and the one involving residues U62-U66. 

On the protein side, instead, the main contacts involve polar and charged residues, such 

as Thr 376, Lys 378, Arg 403, Arg 408, Tyr 449, Gln 498, Thr 500, Asn 501, and Tyr 505. 

Interestingly, the most contacted residues during the trajectory do not include either Lys 

417 or Glu 484, which are involved in the mutations K417N and E484K that characterize 

most viral variants with augmented infectivity compared to the wild-type virus. This 

evidence is in agreement with experimental data showing the RBD-PB6 affinity for the 

spike protein is practically unaffected by these mutations59. On the contrary, SuMD 

simulations indicate Asn 501 (involved in the N501Y mutation) as one of the most 

important residues in the recognition process: contrary to other previously mentioned 

residues, Asn 501 is surrounded by other interacting residues that can be found both in 

the complex between hACE2 and RBD and in the final state of the SuMD simulation, such 

as Gln 498, Thr 500 and Tyr 505, which could justify the contained impact of this mutation 

on the binding affinity of the aptamer compared to the other two. Interestingly, the most 

recent viral variants of concern include mutations such as Q498R, Y505H, and D405N that 

increase the positive charge on the spike surface: based on the analysis of the interaction 

pattern predicted by SuMD (Figure 4, panel C), all these mutations should increase the 

affinity with the negatively charged RBD-PB6 RNA aptamer, not only justifying its affinity 

towards the alpha and beta variant of SARS-CoV-2 but also towards the one from omicron 

on116,117. All other geometric and energetic analyses performed on the trajectory are 

summarized in Figures S16-S18 (Supplementary Materials).   
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Discussion 

In this scientific work, we presented the first-ever application of Supervised Molecular 

Dynamics (SuMD) to the study of recognition processes between RNA macromolecules 

and proteins. Specifically, we concentrated our efforts on the aptamer class, due to their 

relevance as both therapeutic and diagnostic tools.  

Three different retrospective case studies, where the structure of the RNA aptamer-

protein complex was available, were presented to validate the ability of the SuMD 

protocol to reproduce the experimental data. In all three cases, despite the intrinsic 

limitations derived from the relatively high conformational freedom of the ribonucleic 

ligands, SuMD was able to converge quite well, both from a geometric and interactive 

point of view, with the experimentally solved complex structures. The lower geometric 

accuracy did not impair the ability to retrieve most if not all the binding determinants of 

the native complex, with the increased RMSD compared to docking being related to the 

portion of the ligand not directly involved in the binding interface. Despite the increased 

complexity of the considered system compared to the usually investigated protein-small 

molecule complexes, the simulation times required to sample a putative recognition 

mechanism between the RNA aptamers and their protein target were comparable: in all 

presented cases, indeed, 10-20 ns of simulation time were sufficient to capture the entire 

association pathway, from the unbound state to the final complex. The reduced 

computational effort that the SuMD platform provides compared to classic, unsupervised, 

molecular dynamics simulation, makes it more suitable for its implementation in a drug 

discovery pipeline, flanking and complementing the role of already established 

approaches such as molecular docking. Due to the limited sampling capability of 

molecular dynamics-based methods compared to molecular docking, now the optimal 

strategy would be to combine the two techniques rather than using them in a mutually 

exclusive fashion: the rapidity of molecular docking could be useful to generate a series 

of a reasonable binding hypothesis that could be then more thoroughly investigated 

through SuMD simulations. The rapid increase in computational power available to 

scientists will hopefully make it possible to solve the sampling issue of MD-based 
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methods, allowing them to fully replace more physically approximate methods such as 

molecular docking.  

Concerning the applicability of the SuMD protocol in a prospective scenario, we also 

presented a case study where the experimental structure of the RNA aptamer-protein 

complex was not experimentally solved. Particularly, due to its therapeutic relevance, we 

decided to investigate the recognition process between the RBD-PB6 RNA aptamer, 

developed by Valero et al. in 202159, and the SARS-CoV-2 spike protein receptor-binding 

domain RBD. We showed how, even in the absence of an experimentally solved structure 

of the aptamer, the SuMD protocol can be coupled with structure prediction tools to give 

a structural prediction congruent with experimental evidence.  

Regarding the ability of the SuMD protocol to be applied in a prospective scenario, one 

crucial point regards the capability to discriminate between the native-like binding mode 

and decoys. In the three presented cases, the simulation that was carefully analyzed and 

discussed in the manuscript was the one that presented the best geometric agreement 

with the crystal reference but such a metric could not be applied to a prospective 

investigation of complexes whose structures have not already been solved. By 

retroactively analyzing the geometric and energetic profile of the generated trajectories, 

we noticed that the electrostatic component of the interaction energy plays a 

fundamental role in steering the association process. Particularly, as can be noticed in 

Figures S19-S21 (Supplementary Materials), both the MMGBSA interaction energy and the 

electrostatic component on its own can discriminate and prioritize the native complex and 

native-like poses from decoys in two out of three case studies. The only exception to this 

rule is represented by the complex between the RNA aptamer 11F7t and human factor Xa 

(PDB ID: 5VOE), for which both the electrostatic and MMGBSA scoring metrics indicate 

the second most geometrically accurate pose as the one with the most favorable 

energetic profile. Interestingly, in this case, molecular docking also fails to prioritize the 

most geometrically accurate pose, ranking it as the third-best one (Table S1, 

Supplementary Materials). The indication that docking and SuMD, despite using different 

scoring metrics, failed to prioritize the native-like conformation suggests that there is still 

room for improvement regarding the scoring of complexes involving nucleic acids. 

However, despite this, the use of MMGBSA and or electrostatic interaction energy as 
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scoring metrics can still be relatively accurate in suggesting reasonable binding mode 

hypotheses that are congruent with experimental evidence, as also previously pointed out 

by a benchmark study by Chen et al. from 2018118. Due to these considerations, we opted 

for using MMGBSA as a scoring metric for our prospective study of the interaction 

between the RNA aptamer RBD-PB6 and the SARS-CoV-2 spike RBD. 

The last aspect that is worth addressing is related to the choice of the residues to consider 

for the supervision of the association process throughout the SuMD trajectory. As is the 

case for molecular docking, where the binding site is defined by the user through a sphere 

or a box wrapped around the area of interest, SuMD also requires the user to specify a 

residue selection on both the receptor and ligand sides that are used to compute the 

distance between the center of mass of the binding site and of the ligand that is fed to the 

supervision algorithm. The choice of residues is usually based on prior knowledge of the 

interaction site derived from experimental evidence, but there could be some cases 

where this choice is not obvious. A first possible solution to this problem is represented 

by the analysis of the electrostatic potential of the receptor surface: as can be seen in 

Video 1-4, the recognition between the RNA aptamers and their protein targets usually 

involves a high level of complementarity of electrostatic properties, with the negatively 

charged ribonucleic surface being nicely harbored by positively charged patches on the 

protein side. A second possible solution is to perform a docking calculation to have a first 

indication of the preferable binding mode of the object, followed by a more extensive 

characterization of the binding mode through SuMD simulations. This solution was used 

in the context of this article for the study of the interaction between the RBD-PB6 RNA 

aptamer and the SARS-CoV-2 spike RBD. 

The possibility to investigate different binding sites and binding mode hypotheses can also 

be viewed as a strong point of the SuMD technique: for example, in the case of complex 

ribosomal protein S8, two different RNA recognition sites are available for the aptamer, 

specifically the site involved in the interaction with helix 21 and the site that mediates 

interaction with helix 2599. SuMD simulations would allow investigating both possibilities 

at the same time, elucidating the mechanistic details that determine the preferential 

recognition of the primary binding site thereby helping the rational development of 

selective binders.  
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Furthermore, concerning the exploration of different binding hypotheses, SuMD would 

allow deciphering the possibility of alternative stoichiometries. For example, in the case 

of aptamer 11F7t, Buddai et al. noticed a peculiar and difficult to rationalize binding 

stoichiometry, other than a strong Ca2+ dependence of the interaction107. The authors 

discussed various possibilities, including a possible effect on the protein and/or aptamer 

structure, but also a possible calcium-induced aptamer dimerization107. In this case, the 

exploitation of the SuMD technique would have allowed the exploration of all these 

different hypotheses, which could not be investigated through static, time-independent 

techniques such as molecular docking.   
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Abstract 

The prediction of ligand efficacy has long been linked to thermodynamic properties such 

as the equilibrium dissociation constant, which considers both the association and the 

dissociation rate of a defined protein-ligand complex. In the last fifteen years, there has 

been a paradigm shift, with an increased interest in the determination of kinetic 

properties such as the drug-target residence time, since they better correlate with ligand 

efficacy compared to other parameters. In this article, we present Thermal Titration 

Molecular Dynamics (TTMD), an alternative computational method that combines a series 

of molecular dynamics simulations performed at progressively increasing temperatures 

with a scoring function based on protein-ligand interaction fingerprints for the qualitative 

estimation of protein-ligand binding stability. The protocol has been applied to four 

different pharmaceutically relevant test cases, including protein kinase CK1δ, protein 

kinase CK2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease, on a 
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variety of ligands with different sizes, structures, and experimentally determined affinity 

values. In all four cases, TTMD was successfully able to distinguish between high-affinity 

compounds (low nanomolar range) and low-affinity ones (micromolar), proving to be a 

useful screening tool for the prioritization of compounds in a drug discovery campaign.  

Introduction 

At the beginning of the 20th century, Paul Ehrlich’s famous quote “Corpora non agunt nisi 

fixata” marked a pivotal moment in the history of modern pharmacology, molecular 

medicine, and drug development1. His statement, combined with independent 

observations about “receptive substances” by John Newport Langley2, defined the birth 

of the receptor theory of drug action, which postulates that a drug can only work as long 

as it is bound to its target receptor3,4. 

Although the basic ideas of this cornerstone principle were formulated more than one 

hundred years ago5, it was only in the 1970s that molecular receptors could be 

successfully isolated and purified6,7. This allowed for the development of different 

biochemical and cellular assays for the direct determination of the extent to which a drug 

is bound to its receptor under thermodynamic equilibrium conditions, i.e., the binding 

affinity8,9. Traditionally, this parameter is quantified either through the equilibrium 

dissociation constant (Kd) or through other proxy metrics such as the drug concentration 

responsible for the half-maximal inhibition/effect (IC50/EC50), and the inhibition constant 

(Ki)10.  

Although in principle, these measurements are all adequate predictors for in vivo efficacy, 

i.e., the capability of the drug to induce the desired response, they are all related to in 

vitro assays portrayed under closed system conditions11. Since in an open, in vivo, system 

the drug concentration is not a fixed variable and indeed varies over time because of 

various physiological processes, several authors thus suggested that the observables 

related to drug-receptor binding kinetics, such as the association (kon) and dissociation 

(koff) constant, could be better descriptors for drug efficacy12–15. Accordingly, while the 

binding affinity only depends on the free energy difference between the bound and 
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unbound state, which can be directly correlated to the Kd, association and dissociation 

rates depend on the energy barriers that separate those states10. 

Thermodynamics and kinetics of bindings are interlinked by the equation 𝐾𝑑 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛

10. 

While, in theory, both kinetic constants should equally contribute to the determination of 

the Kd, physicochemical and pharmacological limitations on the kon value16 render the in 

vivo duration of a receptor-ligand complex almost entirely dependent on the koff value11. 

Based on this observation, Copeland et al. first suggested that the key determinant of in 

vivo pharmacological activity and duration is not the binding affinity but, instead, the 

lifetime of the receptor-ligand complex, defined as the residence time12. Furthermore, 

Copeland et al. proposed a mathematical formulation for the quantification of this 

parameter, defining it as the reciprocal of the koff (τ=1/koff)12.  

From an experimental perspective, a plethora of methods for the determination of 

binding kinetics is available17–20. Each of them relies on monitoring the time-dependent 

evolution of a signal in response to the binding event21. The first strategy revolves around 

the radio-22 and spectroscopic20,23 labeling of ligands and includes techniques such as 

fluorescent resonance energy transfer (FRET)24 and bioluminescence resonance energy 

transfer (BRET)25. An alternative approach revolves around the exploitation of label-free 

approaches such as surface plasmon resonance (SPR)26,27, nuclear magnetic resonance 

(NMR)28, surface acoustic wave method29, and various declinations of isothermal titration 

calorimetry (ITC)30,31. Finally, another possible method is based on following enzymatic 

reactions, usually through the monitoring of spectroscopic parameters32.  

Alongside the aforementioned experimental protocols, various computational 

approaches exist than can flank and expand on the information that they provide by 

showcasing mechanistic information about the underlying process at an atomic level of 

detail21,33,34. Particularly, Molecular Dynamics (MD) simulations have been exploited to 

estimate thermodynamic properties such as the binding affinity for protein-ligand 

complexes, and due to the growing interest in the study of kinetics for drug discovery, 

they have recently been applied also to the estimation of kinetic properties35. Although it 

would theoretically be possible to exploit unbiased MD simulations for the determination 
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of kinetics observables, biologically relevant events such as drug-target unbinding occur 

at much longer timescales than that of typical MD simulations, heavily restricting its 

limitations in terms of computational resources’ availability36 and neglecting any real-

world application of the technique37. For this reason, several different methods have been 

developed throughout the years that implement smart sampling strategies to reduce the 

required computational effort, such as various instances of metadynamics38–41, which are 

based on repeatedly ‘filling’ the potential energy of the system by a sum of Gaussians 

centered along the trajectory followed by an appropriately chosen ensemble of collective 

variables (CVs)42, scaled Molecular Dynamics (sMD), which relies on smoothing the 

potential energy surface (PES) by applying an appropriate scaling factor43–45, and τ-

Random Acceleration Molecular Dynamics (τ-RAMD), in which a small randomly oriented 

force vector is applied to the ligand46–48. 

In the present study, we present the first application of Thermal Titration Molecular 

Dynamics (TTMD), an alternative MD-based approach for the qualitative estimation of 

protein-ligand complex stability. The method relies on evaluating the conservation of the 

native binding mode for a ligand of interest throughout a series of molecular dynamics 

trajectories performed at progressively increasing temperature values. For validation 

purposes, the protocol has been applied to four different biomolecular targets of 

pharmaceutical interest: casein kinase 1δ (CK1δ), casein kinase 2 (CK2), pyruvate 

dehydrogenase kinase 2 (PDK2), and SARS-CoV-2 main protease (Mpro).  

MATERIALS AND METHODS 

Hardware Overview 

Each general molecular modeling operation, such as the preparation of protein-ligand 

complex structures, the setup for molecular dynamics simulations, and trajectory analyses 

were conducted on a 20 CPU Linux workstation equipped with an Intel Core i9-9820X 3.3 

GHz processor. All molecular dynamics simulations were carried out on a GPU cluster 

composed of 20 NVIDIA drivers ranging from GTX980 to RTX2080Ti.   
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Structures Preparation 

The three-dimensional coordinates of the protein-ligand complexes used in this study 

were retrieved from the Protein Data Bank (PDB)49 and processed before molecular 

dynamics simulations through several tools provided by the Molecular Operating 

Environment (MOE) 2019.01 suite50. Four different macromolecular targets were 

considered in this work: casein kinase 1δ (CK1δ), casein kinase 2 (CK2), pyruvate 

dehydrogenase kinase 2 (PDK2), and SARS-CoV-2 main protease (Mpro). For each 

macromolecular target, the considered structures are reported in Table 1. 

CK1δ 3UZP51 4TN652 5IH553 5IH653 5MQV54 

CK2 2ZJW55 3H3056 3PE157 3PE257 6HOU58 

PDK2 4MP259 4V2560 5J7161 5M4M62 7EA063 

Mpro 6M2N64 7LTJ65 7M8P66 7M9166 7N4467 

 

Table 1: List of the protein-ligand complex structures used in this work. Complexes are grouped by 

macromolecule target. 

Each protein-ligand system was simulated in the monomeric form, except for SARS-CoV-

2 Mpro, which was simulated in the dimeric form by applying a symmetric crystallographic 

transformation to each asymmetric unit. Firstly, all structures were pre-processed using 

the “Structure Preparation” tool, assigning alternates to the highest occupancy 

conformation, rebuilding missing loops through homology modeling, and correcting 

inconsistencies between the primary sequence and the tertiary structure. Secondly, the 

“Protonate3D” tool was exploited to add missing hydrogens to the system and to 

determine the most probable protonation state of titratable residues at pH = 7.4. Finally, 

every non-protein and non-ligand atom of the system was removed before saving the 

structure for further calculations, except for water molecules within 4.5 Å of the ligand 

that were not removed and were indeed considered in the simulations. Concerning the 

protonation state of the ligand, the most abundant protomer at pH 7.4 according to the 

“Protomers” tool was considered in the calculations, besides CK2 complex 2ZJW where 

two different protonation states were considered. Particularly, in the case of 2ZJW, the 
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predominant form at pH 7.4 should be the neutral, non-charged one. However, in the 

context of the binding pocket, the interaction network of the hydroxyl in position 3 (the 

one facing Lys68 and the conserved water molecule W1) suggests the prevalence of a 

monocharged, ionized form. Since experimental data published in the literature does not 

clarify the correct protonation state for ellagic acid in the context of CK2 recognition55,68,69, 

we opted to consider both hypotheses equally relevant (50/50).  

System Setup for Molecular Dynamics Simulations and Equilibration Protocol 

Each protein-ligand complex prepared as described before was further processed through 

various tools from Visual Molecular Dynamics (VMD) 1.9.270 and the Ambertools1471 

suite. Protein atoms were parametrized through the ff14SB72 force field, while the 

General Amber Force Field (GAFF)73 was utilized to parametrize the ligands. Partial 

charges were attributed to the ligand through the AM1-BCC method74. Each investigated 

system was solvated in a cubic box with a padding of 15 Å utilizing the TIP3P75 model for 

water molecules. The proper number of sodium and chloride ions were added to 

neutralize the system and reach a salt concentration of 0.154 M. Before undergoing 

Molecular Dynamics (MD) simulations, each system was energy minimized for a total of 

500 steps with the conjugate-gradient algorithm to remove clashes and bad contacts.  

Afterward, each minimized system was subjected to a two-step equilibration protocol. 

During the first stage, a 0.1 ns simulation in the canonical ensemble (NVT) was performed, 

with harmonic positional restraints (5 Kcal mol-1Å-2 force constant) applied on both 

protein and ligand atoms. The second stage, instead, consisted of a 0.5 ns simulation 

carried out in the isothermal-isobaric ensemble (NPT), applying the same restraints only 

to the ligand position and the protein backbone. 

Each MD simulation presented in this work, both in the equilibration and the production 

stage, was performed using an integration timestep of 2 fs, keeping the temperature at a 

constant value of 310 K through a Langevin thermostat76, constraining the length of bonds 

involving hydrogen bonds through M-SHAKE algorithm77, exploiting the particle-mesh 

Ewald (PME)78 method to compute electrostatic interactions using cubic spline 

interpolation and a 1 Å grid spacing, and setting a 9.0 Å cutoff for the calculation of 
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Lennard-Jones interactions. Simulations in the NPT ensemble were carried out keeping 

the pressure at a constant 1 atm value making use of a Monte Carlo barostat79. All MD 

simulations were run through the ACEMD 380 engine, which is based upon the open-

source library for molecular simulations OpenMM 781.  

Thermal Titration Molecular Dynamics (TTMD) simulations 

Thermal Titration Molecular Dynamics (TTMD) is an alternative enhanced sampling 

molecular dynamics approach for the qualitative estimation of protein-ligand complex 

stability. The method relies on evaluating the conservation of the native binding mode for 

a ligand of interest throughout a series of molecular dynamics trajectories performed at 

progressively increasing temperature values. The protocol described herein is 

implemented as a Python 3.10 code, which relies on the Numpy, MDAnalysis82,83, Open 

Drug Discovery Toolkit84, and Scikit-learn libraries.  

 

Figure 11: Computational workflow for a Thermal Titration Molecular Dynamics (TTMD) simulation.  

The workflow for a TTMD simulation is reported in Figure 1 and detailed hereafter. In 

detail, the task is accomplished through a series of short, unbiased, MD simulations 

performed at different, progressively increasing, temperatures in the NVT ensemble with 

the ACEMD3 engine. For each TTMD run, the duration of each simulation window (defined 

as “TTMD-step”) is fixed and user-defined (10ns, in this case). The starting and final 
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temperature values as well as the temperature increase between each “TTMD-step” are 

also defined by the user based on prior knowledge of the target, particularly regarding the 

conservation of the protein fold at higher simulation temperatures (which, in the context 

of this article, is carried out by monitoring the protein backbone RMSD throughout the 

simulation). In this work, the starting temperature was set to 300 K, the ending 

temperature was set to 450 K, while the temperature increase between each “TTMD-

step” was set to 10 K.  

The progress of the simulation is monitored through a scoring function based on protein-

ligand interaction fingerprints. The scoring function, defined as IFPCS and originally 

described in previous scientific work from our laboratory85, exploits the Open Drug 

Discovery Toolkit Python library to calculate protein-ligand interaction fingerprints for 

each frame of the TTMD trajectory and compare it through the cosine similarity metric as 

implemented in the Scikit-learn Python module to a reference fingerprint, based on the 

last trajectory frame extracted from the second and last equilibration stage. Specifically, 

each protein-ligand interaction fingerprint is an integer vector composed of rx8 elements, 

where r is the number of protein residues. Each protein residue is encoded into eight bits 

of information, one for each type of intermolecular interaction considered (hydrophobic 

contacts, aromatic face to face, aromatic edge to face, hydrogen bond with protein acting 

as donor, hydrogen bond with protein acting as acceptor, salt bridge with protein acting 

as the positively charged member, salt bridge with protein acting as the positively 

negative member, and ionic bond with a metal ion respectively). The mathematic 

formulation of the IFPCS scoring function is reported in Equation 1: 

 
𝐼𝐹𝑃𝐶𝑆 =

𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
∗ −1 (1) 

The IFPCS value ranges from -1, indicating a total superposition between the reference and 

the query fingerprint, to 0, which indicates that every interaction determinant of the 

reference fingerprint is lost in the query.  

At the end of each “TTMD-step”, the average IFPCS score for the step is calculated: if the 

value is null, indicating that for the whole duration of the step the original binding mode 
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was not sampled, the TTMD trajectory is terminated, while if the value is not null the 

simulation proceeds to the next“TTMD-step”.  

TTMD Trajectory Analyses 

Each TTMD trajectory is analyzed by making use of an in-house Python 3.10 script. The 

root-mean-squared deviation of atomic coordinates (RMSD) for both the ligand and the 

protein backbone is calculated for each frame through the MDAnalysis package. The per-

residue decomposition of the protein-ligand interaction energy is computed for each 

frame by exploiting the NAMD Energy plugin (version 1.4)86 for VMD. Three different plots 

are then generated, making use of the Matplotlib and seaborn Python packages. The first 

plot (“Titration Profile”) reports the average IFPCS value for each TTMD step as a function 

of the step temperature. A straight line joining the start and final state of the simulation 

is also drawn in the graph, and its slope is reported in the legend and stored for further 

analysis. The second graph illustrates the time-dependent per-residue decomposition of 

the interaction energy, with the 25 most contacted residues alongside the TTMD 

trajectory being considered. The third and final plot reports the time-dependent evolution 

of the ligand and protein backbone RMSD and the IFPCS value.  

MS coefficient determination 

For each TTMD simulation, a proxy value for the protein-ligand complex stability based on 

the conservation of the binding mode throughout the trajectory is calculated as reported 

in Equation 2: 

𝑀𝑆 =
𝑚𝑒𝑎𝑛 𝐼𝐹𝑃𝐶𝑆

𝑇𝑒𝑛𝑑
− (−1)

𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡
 (2) 

The MS coefficient is the slope of the straight line that interpolates the first and the last 

point of the “Titration Profile” plot described in the previous paragraph.  In Equation 2, 

𝑚𝑒𝑎𝑛 𝐼𝐹𝑃𝐶𝑆
𝑇𝑒𝑛𝑑

 is the average IFPCS value for the last temperature explored in the TTMD 

trajectory, -1 is the IFPCS value for the initial state of the simulation, 𝑇𝑒𝑛𝑑 and 𝑇𝑠𝑡𝑎𝑟𝑡 are 

the final and starting temperatures of the simulation. Values are positive and can vary 

between 0 (indicative of a strong binding) and 1 (related to a weak binding).  
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For each ligand, five independent TTMD simulations are performed, and the average MS 

coefficient is then calculated upon three of them, discarding the highest and the lowest 

value. 

Results 

To test and validate the applicability of the Thermal Titration Molecular Dynamics (TTMD) 

protocol, we performed four different case studies on three different pharmaceutically 

relevant targets of interest for our laboratory, specifically casein kinase 1δ (CK1δ), casein 

kinase 2 (CK2), pyruvate dehydrogenase kinase 2 (PDK2), and SARS-CoV-2 main protease 

(Mpro). For each protein target, five different protein-ligand complexes were chosen, 

based on the availability of binding affinity data. A list of all protein-ligand complexes used 

in the present work can be found in Table 1 at the beginning of the Materials and Methods 

section, while detailed information about the ligands utilized in each test case can be 

found in Tables S1-S4 (Supplementary Materials). For each protein-ligand complex 

investigated in the article, five independent TTMD simulations were carried out. The 

results for each test case are reported hereafter in separate paragraphs and discussed 

aggregately in the Discussion section of the manuscript. For each target, the conservation 

of the protein fold throughout the simulation is carried out by monitoring the time-

dependent evolution of the protein backbone RMSD, as reported in the detailed analysis 

for each representative replicate illustrated in Figures S1-S21 (Supplementary Materials). 

Protein Kinase CK1δ 

Protein Kinase CK1δ is a serine-threonine kinase that belongs to the family of CK1 Kinases 

(Casein Kinase 1)87. Due to its pleiotropic nature (about 140 substrates have been 

reported so far), this kinase is involved in the regulation of several different cellular 

pathways87,88. Particularly relevant from a medicinal chemistry perspective is its 

involvement in several neurodegenerative diseases such as Alzheimer’s Disease (AD), 

Parkinson’s Disease (PD), and amyotrophic lateral sclerosis (ALS) by phosphorylating 

protein targets such as the Tau protein, α-synuclein, and TDP-43 (TransActivate Response 

DNA Binding Protein 43)89. 34 crystal structures of CK1δ, among which several protein-

ligand complexes can be found, are deposited in the Protein Data Bank, with the affinity 
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of co-crystallized inhibitors ranging over three orders of magnitude, making it a suitable 

target for the application of our computational protocol. The results of TTMD simulations 

performed on CK1δ crystal complexes are summarized in Table 2 and Figure 2, while a 

detailed analysis for a representative trajectory for each protein-ligand complex (the one 

highlighted in green in Table 2) is reported in Figures S1-S5 in the Supplementary 

Materials. 

PDB ID LIG ID IC50 (nM) MSMD1 MSMD2 MSMD3 MSMD4 MSMD5 MSaverage 

3UZP 0CK 13 0.00203 0.00333 0.00228 0.00212 0.00275 0.0024 

4TN6 PFO 3.9 0.00300 0.00345 0.00307 0.00214 0.00309 0.0031 

5IH5 AUE 500 0.00539 0.00446 0.00357 0.00909 0.00347 0.0045 

5IH6 AUG 2500 0.00380 0.00769 0.00420 0.00557 0.00594 0.0052 

5MQV D5Q 9 0.00283 0.00295 0.00317 0.00256 0.00340 0.0030 

 

Table 2. Results for the Thermal Titration Molecular Dynamics (TTMD) simulations performed on the five 

investigated CK1δ complexes. For each protein-ligand complex, the PDB accession code, the ligand three-

letter code, the experimentally determined affinity value, the MS coefficient for each simulation, and the 

average MS coefficient are reported. In each row, the lowest MS value is highlighted in red, while the highest 

value is highlighted in blue: both values were discarded for the calculation of the average MS coefficient 

reported in the last column. The most representative replicates, the one with the nearest MS coefficient to 

the average MS, is highlighted in green. 

As can be deduced by the analysis of the data extracted from the various TTMD 

simulations, the ligands respond differently to the protocol based on the experimental 

affinity value. As can be noticed in Figure 2, complexes 5IH5 and 5IH6, which are 

characterized by the lowest affinity values (500 and 2500 µM, respectively), are the ones 

with the highest MS coefficient value, indicating a loss of the native binding mode 

throughout the simulations. On the contrary, ligands with a good experimental affinity 

towards the target (in the low nanomolar range), are associated with good conservation 

of the native binding mode, as highlighted by the lower MS coefficient value. Based on 

this observation, a cutoff MS value of 0.004, able to distinguish between the tight and 
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weak binders for CK1δ, can be determined. The detailed trajectory analyses provided in 

Figures S1-S5 illustrate how the loss of the native binding mode is primarily driven by the 

loss of crucial hydrogen bond interactions with the hinge region, particularly with Leu85 

and Glu83. This evidence is in agreement with previously published works from our 

laboratory, which indicates how using an appropriate pharmacophore filter that takes into 

account the crucial hydrogen bond with the backbone of Leu85 leads to good results in 

virtual screening85,90,91. For visual reference, a comparison between the representative 

replicate for the 3UZP and 5IH6 is reported in Video S1.  

 

Figure 2. Aggregate results of the Thermal Titration Molecular Dynamics (TTMD) simulations performed on 

the five investigated CK1δ complexes. On the horizontal axis, the experimentally determined affinity value 

(expressed as IC50) is reported, while on the vertical axis the average MS coefficient is indicated. Each dot is 

color-coded as green or red and classified as a tight or weak binder based on the MS cutoff value of 0.004.  

Protein Kinase CK2 

Protein Kinase CK2 is a serine-threonine kinase and represents one of the first identified 

protein kinases92. Similar to CK1δ, CK2 can phosphorylate a plethora of different 
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substrates, being therefore involved in the regulation of several biological pathways93. 

The variety of biologically relevant scenarios in which CK2 is involved makes it a hot target 

from a pharmaceutical perspective, being related to several types of cancer, different 

neurodegenerative diseases (similarly to CK1δ), and also viral infections94. As of today, 

214 crystal structures of CK2, among which several protein-ligand complexes can be 

found, are deposited in the Protein Data Bank, with the affinity of co-crystallized inhibitors 

ranging over five orders of magnitude, making it also a suitable target for the application 

of our computational protocol.  

PDB ID LIG ID Kd (nM) MSMD1 MSMD2 MSMD3 MSMD4 MSMD5 MSaverage 

2ZJW (0) REF 40 0.00318 0.00282 0.00269 0.00391 0.00205 0.0029 

2ZJW (-) REF 40 0.00192 0.00189 0.00227 0.00205 0.00133 0.0020 

3H30 RFZ 13000 0.00504 0.00484 0.00395 0.00450 0.00453 0.0046 

3PE1 3NG 1.5 0.00178 0.00231 0.00198 0.00219 0.00373 0.0022 

3PE2 E1B 2.3 0.00179 0.00179 0.00171 0.00169 0.00170 0.0017 

6HOU V55 53400 0.0035 0.00667 0.00769 0.00364 0.00667 0.0057 

 

Table 3. Results for the Thermal Titration Molecular Dynamics (TTMD) simulations performed on the five 

investigated CK2 complexes. For each protein-ligand complex, the PDB accession code, the ligand three-

letter code, the experimentally determined affinity value, the MS coefficient for each simulation, and the 

average MS coefficient are reported. In each row, the lowest MS value is highlighted in red, while the highest 

value is highlighted in blue: both values were discarded for the calculation of the average MS coefficient 

reported in the last column. The most representative replicates, the one with the nearest MS coefficient to 

the average MS, is highlighted in green. For the complex 2ZJW, two different protonation states were 

independently considered in the simulations and are reported separately. 

The results of TTMD simulations carried out on CK2 crystal complexes are summarized in 

Table 3 and Figure 3, while a detailed analysis for a representative trajectory for each 

protein-ligand complex (the one highlighted in green in Table 3) is reported in Figures S6-

S11 in the Supplementary Materials. As explained in the Materials and Methods section, 

two different ligand protonation states are considered for the 2ZJW complex, the neutral 
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and the negatively charged one. Although they are reported separately in both Table 3 

and Figures S6-S7, they are considered as a single entity in Figure 3, where the average 

MS value between the two different protonation states is reported. 

 

Figure 3. Aggregate results of the Thermal Titration Molecular Dynamics (TTMD) simulations performed on 

the five investigated CK2 complexes. On the horizontal axis, the experimentally determined affinity value 

(expressed as Kd) is reported, while on the vertical axis the average MS coefficient is indicated. Each dot is 

color-coded as green or red and classified as a tight or weak binder based on the MS cutoff value of 0.004. 

For the complex 2ZJW, two different ligand protonation states were considered, but only one aggregate 

result (the average of the two states) is reported in the plot.  

As in the case of CK1δ, the investigated ligands show a different behavior during the TTMD 

simulations based on their experimental affinity value. The complexes characterized by a 

lower protein-ligand binding affinity (13 µM for 3H30, 53,4 µM for 6HOU), are also the 

ones characterized by the highest MS coefficient value (0.0046 and 0.0057, respectively). 

On the contrary, as observed for CK1δ, ligands with a binding affinity in the low nanomolar 

range are characterized by a conservation of the native binding mode throughout the 

simulation, resulting in a lower MS coefficient (below 0.003). Once again, an empirical 
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threshold MS value of 0.004 can be extracted from this test set and utilized to distinguish 

between tight and weak binders.  

As can be noticed by the evolution of the interaction pattern between ligands and the 

binding pocket throughout the trajectories (Figures S6-S11), the ligands with the most 

stable binding mode are the ones that tightly interact with Lys68 and Ile174: this is 

particularly noticeable in the case of ellagic acid (2ZJW), for which two different 

protonation states have been simulated. In the neutral form, the ellagic acid binding mode 

is less stable throughout the trajectory, while in the monocharged form, the ellagic acid 

binding mode is very stable even at high simulation temperatures, due to a favorable 

interaction with Lys68. A comparison between the representative replicate for complexes 

3PE2 and 6HOU is shown in Video S2. 

Pyruvate Dehydrogenase Kinase 2 (PDK2) 

Pyruvate Dehydrogenase Kinase 2 (PDK2) is a pivotal enzyme in cellular energy 

metabolism that has previously been implicated in cancer95. PDK2 is a member of the 

GHKL ATPase/kinase superfamily and exerts its activity by phosphorylating and regulating 

the pyruvate dehydrogenase complex (PDC), which is a central control point in cellular 

energy metabolism since it links glycolysis with the tricarboxylic acid cycle96,97. Due to its 

involvement in the regulation of the energetic metabolism of cells, it is a drug target both 

from a metabolic and an antitumoral perspective. At the present moment, 33 crystal 

structures of PDK2, among which several protein-ligand complexes can be found, are 

deposited in the Protein Data Bank, with the affinity of co-crystallized inhibitors ranging 

over six orders of magnitude, making it a suitable target for the application of our 

computational protocol.  

The results of TTMD simulations performed on PDK2 crystal complexes are summarized 

in Table 4 and Figure 4, while a detailed analysis for a representative trajectory for each 

protein-ligand complex (the one highlighted in green in Table 4) is reported in Figures S12-

S16 in the Supplementary Materials.  



SCIENTIFIC PUBLICATIONS 

 

Pavan et al., 2022 554 
 

 

Table 4. Results for the Thermal Titration Molecular Dynamics (TTMD) simulations performed on the five 

investigated PDK2 complexes. For each protein-ligand complex, the PDB accession code, the ligand three-

letter code, the experimentally determined affinity value, the MS coefficient for each simulation, and the 

average MS coefficient are reported. In each row, the lowest MS value is highlighted in red, while the highest 

value is highlighted in blue: both values were discarded for the calculation of the average MS coefficient 

reported in the last column. The most representative replicates, the one with the nearest MS coefficient to 

the average MS, is highlighted in green. 

The analysis of results for the TTMD simulations performed on PDK2 protein-ligand 

complexes matches the ones already shown for CK1δ and CK2. Indeed, the ligands with 

the lowest binding affinity (3.57 µM for 4MP2, 958 µM for 7EA0), are the ones with the 

highest MS coefficient (0.0105 and 0.007, respectively), while on the contrary ligands 

characterized by a good binding affinity are also the ones characterized by the lowest MS 

coefficient (below 0.003). The same threshold value used for previous cases (MS < 0.004) 

can also be utilized in this case to distinguish between the weak and the tight binders. 

Looking at the evolution of the interaction pattern of various ligands throughout the 

simulations, it can be noticed that tight binders are characterized by persistent attractive 

interactions with Asp290 and Thr354. These residues are buried within the binding 

pocket, which contributes to the persistence of their interaction with the ligand compared 

to other more solvent-exposed residues such as Asn255, Arg258, and Glu262, that instead 

seem to be less relevant in retaining the ligand within the binding site. Noticeably, in the 

case of complex 4MP2, a repulsive interaction with Asp290 is present at the beginning of 

the simulation, and this could be a possible explanation for the low persistence of the 

PDB ID LIG ID Kd(nM) MSMD1 MSMD2 MSMD3 MSMD4 MSMD5 MSaverage 

4MP2 PV1 3570 0.00603 0.01429 0.025 0.01111 0.00579 0.0105 

4V25 SZ6 150 0.00216 0.00247 0.00194 0.00221 0.00332 0.0023 

5J71 P35 110 0.00296 0.00296 0.00269 0.00243 0.00331 0.0029 

5M4M 7FW 1 0.0028 0.0025 0.00286 0.00261 0.00318 0.0027 

7EA0 W6P 958000 0.00347 0.00769 0.00667 0.00769 0.00665 0.0070 
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native binding mode. Moreover, as can be noticed in Figures S14 and S15, in the case of 

complexes 5J71 and 5M4M, the fraction of the ligand which interacts with Asp290 and 

Thr354 barely moves from the starting position, fully retaining this interaction for the 

whole duration of the simulation, while partially losing the interactions with other more 

exposed residues which increases the ligand RMSD despite most of the binding 

determinants being conserved. A comparison between the representative replicate for 

complexes 4V25 and 4MP2 is illustrated in Video S3.  

 

Figure 4. Aggregate results of the Thermal Titration Molecular Dynamics (TTMD) simulations performed on 

the five investigated PDK2 complexes. On the horizontal axis, the experimentally determined affinity value 

(expressed as Kd) is reported, while on the vertical axis the average MS coefficient is indicated. Each dot is 

color-coded as green or red and classified as a tight or weak binder based on the MS cutoff value of 0.004.  

SARS-CoV-2 Main Protease (Mpro) 

SARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic which, to date, 

has caused the death of more than 6.5 million people around the world98,99. A pivotal 

enzyme in the virus’ replication cycle is represented by its main protease (Mpro), a cysteine 
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peptidase that is involved in the proteolytic cleavage of the pp1a/pp1ab polyproteins into 

several mature nonstructural proteins100,101. Due to its crucial role in the ability of the virus 

to replicate itself, the main protease is a validated antiviral target102 and, as such, has 

become the focus of several different drug discovery campaigns103–105, leading to 613 

experimentally solved structures deposited on the Protein Data Bank, a marketed drug 

(Paxlovid, therapeutic association of Nirmatrelvir and Ritonavir)106,107 and several 

inhibitors, with affinity values ranging from low nanomolar to micromolar and beyond. Its 

pharmaceutical relevance and the abundance of structural data make the SARS-CoV-2 

main protease a good target for the validation of the TTMD protocol. The results of TTMD 

simulations performed on SARS-CoV-2 Mpro crystal complexes are summarized in Table 5 

and Figure 5, while a detailed analysis for a representative trajectory for each protein-

ligand complex (the one highlighted in green in Table 5) is reported in Figures S17-S21 in 

the Supplementary Materials. 

 

Table 5. Results for the Thermal Titration Molecular Dynamics (TTMD) simulations performed on the five 

investigated SARS-CoV-2 Mpro complexes. For each protein-ligand complex, the PDB accession code, the 

ligand three-letter code, the experimentally determined affinity value, the MS coefficient for each 

simulation, and the average MS coefficient are reported. In each row, the lowest MS value is highlighted in 

red, while the highest value is highlighted in blue: both values were discarded for the calculation of the 

average MS coefficient reported in the last column. The most representative replicates, the one with the 

nearest MS coefficient to the average MS, is highlighted in green. 

The analysis of the TTMD simulations performed on Mpro protein-ligand complexes 

matches the ones already shown for the previous cases. Once again, the ligands 

PDB ID LIG ID IC50(nM) MSMD1 MSMD2 MSMD3 MSMD4 MSMD5 MSaverage 

6M2N 3WL 940 0.00714 0.00714 0.00557 0.00714 0.00909 0.0071 

7LTJ YD1 4200 0.00909 0.00642 0.00595 0.00667 0.00664 0.0066 

7M8P YSJ 20 0.00401 0.00336 0.00379 0.00317 0.00254 0.0034 

7M91 YU4 25 0.00316 0.00437 0.00315 0.00313 0.00383 0.0034 

7N44 06I 42 0.00325 0.00598 0.00398 0.00384 0.00383 0.0039 
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characterized by the lowest experimental binding affinity (0.94 µM for 6M2N, 4.2 µM for 

7LTJ) are the ones associated with the highest MS coefficient (0.0071 and 0.0066, 

respectively). Accordingly, the ligands that present the highest binding affinity are 

associated with low MS coefficients, indicative of a persistent binding mode. Even for the 

SARS-CoV-2 Mpro it is possible to reutilize the previously determined threshold value (MS 

< 0.004) to separate the strong and the weak binders.   

 

Figure 5. Aggregate results of the Thermal Titration Molecular Dynamics (TTMD) simulations performed on 

the five investigated SARS-CoV-2 Mpro complexes. On the horizontal axis, the experimentally determined 

affinity value (expressed as IC50) is reported, while on the vertical axis the average MS coefficient is 

indicated. Each dot is color-coded as green or red and classified as a tight or weak binder based on the MS 

cutoff value of 0.004.  

Regarding the evolution of the interaction pattern for the protein-ligand complexes that 

were investigated, it is possible to notice how the most persistent ligands are 

characterized by strong and stable interactions with key residues such as Met164-Glu166, 

located in a β-sheet that constitutes the central portion of the binding site lining several 
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subpockets that precede the catalytic dyad such as S1, S2 and S3, and residues Leu141-

Cys145, which line the S1 subpocket and constitute the so-called oxyanion loop, a 

structure that portrays a crucial role in the catalytic cycle of the protease101.  On the 

contrary, interactions with residues lining the S2 and S4 subpocket seem to not be pivotal 

for the interaction with the catalytic site. As can be seen in Figures S20-S21, for example, 

the ligands partially lose their interactions with residues Asp187-Gln192: this causes a 

slight increase in the ligand RMSD towards the end of the simulation without overall 

altering the conservation of the native binding mode, as depicted by the interaction 

fingerprint analysis. Interestingly, in the case of complex 6M2N, a repulsive interaction 

with Glu166 is present at the beginning of the simulation: considering the pivotal role that 

this residue portrays both in the dimerization process108 (it forms a salt bridge through its 

side chain with the side chain of Ser1 of the second protomer) and in the binding of 

ligands, this could well explain the low persistence of the native binding mode for this 

ligand throughout the simulation. A comparison between the representative replicate for 

complexes 7LTJ and 7M91 is illustrated in Video S4.  

Discussion 

The Thermal Titration Molecular Dynamics (TTMD) method is an alternative protocol for 

the qualitative estimation of the protein-ligand complex stability based on the persistence 

of the native binding mode throughout a series of molecular dynamics simulations 

performed at progressively increasing temperatures. To evaluate the protocol 

capabilities, we performed four different case studies on an equal number of 

pharmaceutically relevant test cases, i.e. protein kinase CK1δ, protein kinase CK2, 

pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease (Mpro). Despite its 

simplicity, the TTMD workflow was able to correctly discriminate between tight binders 

(with affinity values in the low nanomolar range) and weak binders (the ones with affinity 

values superior to the micromolar threshold) by applying an appropriate MS coefficient 

cutoff. This classification was performed on ligands with different scaffolds, and different 

interaction features, making its application interesting in real-world drug-discovery 

campaigns, where compounds from different chemical classes are usually identified in the 
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first stages and are then subjected to an iterative optimization of their binding affinity 

towards the target of interest through chemical modification of their structures.  

Contrary to most protocols that aim at predicting or estimating the drug-target residence 

time or other proxy values for the ligand affinity, TTMD does not require simulating the 

full unbinding event. Although this results in a rawer prediction compared to other similar 

protocols, this approach has two major advantages. The first one is that the simulation 

time is limited and can be accurately estimated right from the start. This is particularly 

useful in the case of a batch application of the protocol across a library of different 

compounds resulting from a screening campaign or an optimization process. Moreover, it 

facilitates the automatization of the process and its incorporation into existing drug-

discovery pipelines. The second advantage is that by determining a relative metric (the 

MS coefficient) rather than an absolute one (i.e., the time required to observe the 

unbinding), there is no need for the definition of an arbitrary cutoff value for the detection 

of the unbinding event. Concerning this, most protocols exploit geometric descriptors 

such as the distance between the center of masses of the ligand and the binding site, or 

the distance between the ligand and the protein to define whether the ligand detached 

from the binding site43,46. This poses the problem of choosing the right distance because, 

in the case of deep and buried binding sites, the chosen cutoff value could not consider 

the whole unbinding process, leading once again to an underestimation of the residence 

time. On the contrary, arbitrarily increasing the distance could elongate the simulation 

time without improving the prediction accuracy. Furthermore, using an interaction 

fingerprint-based metric instead of the standard RMSD for monitoring the evolution of 

the binding mode throughout the simulation results in lower sensitivity toward the 

chemical structure of the ligand: as highlighted in some of our trajectory analyses (Figures 

S14 and S15, for example), the presence of some ligand moieties that do not directly 

interact with the binding pocket or are slightly solvent exposed, leading to a less stable 

interaction with the target, could lead to an increase in the ligand RMSD without 

compromising the key binding determinants of the compounds. This could lead to a false 

perception of the unbinding event, causing errors in the evaluation of the persistence of 

the receptor-ligand complex, especially if very low cutoffs are utilized, such is the case in 
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some studies in which classic MD simulations are used as a way to refine docking results 

and distinguish between native-like poses and decoys109,110.  

Another major advantage is related to the accessibility of the method. First, although the 

protocol in its current form exploits the ACEMD3 program to run molecular dynamics 

simulations, it can be easily and readily adapted to be utilized with any other major 

molecular dynamics engine such as OpenMM, GROMACS, or AMBER. Secondly, compared 

to other approaches TTMD is easier to implement. For example, contrary to 

metadynamics-based approaches, where the choice of the collective variable to monitor 

is not trivial38, in the case of TTMD the user only needs to choose a temperature ramp 

where that ensures the conservation of the protein fold by monitoring a simple geometric 

descriptor such as the protein backbone RMSD. Although some attempts at optimizing 

the temperature ramp to decrease the simulation time without reducing the accuracy of 

the method are already going on in our laboratory, the temperature ramp proposed in 

this article should represent a good starting point for the third-party implementation of 

the method. Theoretically, increasing the simulation time for each “TTMD step” should 

provide an increase in the resolution of the technique, but would also result in an 

increased computational effort. On the contrary, reducing the simulation time for each 

TTMD step would reduce the computational effort, making the protocol more affordable, 

especially for those setups where a large number of different ligands is evaluated at a 

given time, but would also flatten the difference in MS coefficient between the ligands, 

thus decreasing the sensitivity of the technique. One possible solution could be to use 

different simulation times at different temperatures, for example simulating longer steps 

at lower temperatures and shorter ones at higher temperatures. The pool of test cases 

provided in this article should, in principle, aid the user in the choice of a non-default 

temperature ramp, since the user could compare the results of its custom temperature 

ramp with the ones originally obtained and evaluate on its own the performances of a 

different ramp.   

Other than estimating the protein-ligand binding affinity, the TTMD protocol could be 

easily adapted to perform mechanistic evaluations on the unbinding event, by 

appropriately tuning the temperature ramp and the simulation time to carry on the 
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simulation until the native binding mode is completely lost. Although in the current form 

this protocol is not specifically designed for this purpose, it can be already used to 

discriminate different protein-ligand interactions based on their effect on the binding 

affinity. This indication could be very useful in the generation and refinement of 

pharmacophore filters, which are commonly used to reduce the false positive rates in 

docking-based virtual screening campaigns.  

Another possible application of the TTMD protocol could be to distinguish the native 

binding pose from a set of decoy ones. This could be particularly useful in the case of 

fragment compounds, which can have several plausible binding modes, and are usually 

evolved into mature ligands by rationally modifying their scaffold to expand on their 

binding determinants without altering the existing interaction profile. Work in this sense 

is already going on in our laboratory and will be the scope of a future paper.  

The last element that needs to be addressed in the nearest future is the applicability of 

the method to membrane proteins: so far, the protocol has been applied only to globular 

targets, but a wide variety of pharmaceutically relevant targets are membrane systems. 

Membrane systems are intrinsically more complicated to manage, because other than 

monitoring the protein fold throughout the simulations one has to decide how to manage 

the membrane. A possible solution could be to remove the membrane and treat the 

protein as soluble, possibly with the implementation of restraints on the atomic positions 

of atoms outside the binding site43. Evaluations in this sense are already going on in our 

laboratory to tune the protocol to be utilized also for this class of targets.  

Conclusions 

In this scientific work, we presented the first application of Thermal Titration Molecular 

Dynamics (TTMD), an alternative protocol for the qualitative estimation of protein-ligand 

complex stability by monitoring the conservation of the native ligand binding mode 

throughout a series of classic molecular dynamics simulations performed at progressively 

increasing temperatures through a scoring function based on protein-ligand interaction 

fingerprints. Four different test cases regarding the application of the technique on three 

different pharmaceutically relevant targets were presented. For each case, TTMD 



SCIENTIFIC PUBLICATIONS 

 

Pavan et al., 2022 562 
 

simulations were able to distinguish between tight (low nanomolar) from weak 

(micromolar) binders. The simplicity of the protocol, particularly regarding the choice of 

user-defined parameters to run the simulations, the agnosticism concerning the selection 

of the molecular dynamics engine, and the limited simulation time make it a viable choice 

for various medicinal chemistry projects, especially as a screening tool in the early stages 

of drug discovery campaigns. Further work is needed to extend the applicability domain 

of the technique to membrane proteins, and evaluations in this sense are already going 

on in our laboratory. 
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The present work was conceived amid the COVID-19 pandemic, one of the hardest striking 

illnesses that the human genre has faced in a long period. To alleviate the socio-economic 

burden that the global society had to sustain, an unprecedented cooperative effort was 

carried out by scientists from all over the world to accelerate the usually long time 

required to identify a cure for emerging diseases.  

In a constantly evolving scenario, where decisions must be taken promptly to avoid 

unnecessary collateral damage associated with the pandemic, computer simulations 

played a pivotal role in providing quick and accurate responses to the ever-emerging 

doubts of the scientific community. Specifically, in the field of drug discovery various 

existing computational strategies were successfully exploited to guide the rational 

development of efficient treatments against COVID-19, other than excluding harmful or 

ineffective ones.  

The remarkable amount of structural information rendered available to scientists, 

coupled with highly efficient structural prediction methodologies, enabled the 

exploitation of state-of-the-art structure-based drug discovery protocols. Molecular 

docking, a central player within SBDD drug discovery, played a prominent role also in 

several campaigns, aimed at targeting different viral targets with different therapeutic 

tools, ranging from small organic molecules to macromolecules such as peptides, 

monoclonal antibodies, and aptamers.  

Despite its indisputable usefulness, docking on its own was not sufficient, therefore 

several complementary techniques like pharmacophore modeling, molecular dynamics, 

and binding free energy estimation methods were often exploited to create unique 

pipelines.  

Although the combination of various existing tools proved useful in identifying several 

different active molecules, some of which even advanced to clinical stage 

experimentation or even reached approval by regulatory agencies, various works 

highlighted how there is still much room for improvement of already established 

pipelines. The centrality of molecular docking causes most structure-based campaigns to 

focus only on the final state of the ligand-receptor recognition process, disregarding the 
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long process that precedes the bound state, other than the time-dependent evolution of 

such a complex. Techniques such as molecular dynamics, which could be readily applied 

to mechanistic binding studies, are not routinely utilized within most SBDD campaigns yet 

due to the long simulation times that are required to obtain meaningful pieces of 

information, which hamper the high-throughput nature of modern days drug discovery 

pipelines.  

To bridge the gap between the existence of techniques that more thoroughly describe the 

binding event and their actual implementation in drug discovery projects, we developed 

two MD-based enhanced sampling protocols. The first protocol is an evolved version of 

Supervised Molecular Dynamics (SuMD), an established methodology for studying 

receptor-ligand association processes, applied to the study of RNA-protein interactions. 

The centrality of RNA-based therapeutics, of which aptamers represent the most 

prominent example, led us to expand on the applicability domain of the technique and 

make it suitable also for the study of these systems. This work will not only impact the 

discovery of RNA-based therapeutic or diagnostic tools aimed toward COVID-19 but would 

most likely become a central point of other projects soon, thanks to the increasing 

relevance of RNA within the drug discovery environment. 

The second protocol, instead, is a brand-new methodology named Thermal Titration 

Molecular Dynamics (TTMD), an MD-based enhanced sampling protocol for studying 

receptor-ligand dissociation processes. The marked interest of medicinal chemists in the 

determination and prediction of binding kinetic parameters that sparked in the last fifteen 

years render TTMD a potentially precious tool for drug development, thanks to its ease of 

use compared to similar existing protocols, and to its feasible simulation times.  

Overall, the present work constitutes the basis for the development of efficient 

therapeutics against COVID-19 and for future similar scenarios, thanks to the structural 

and methodological information collected. Furthermore, the development of novel CADD 

methodologies represents a good starting point for their broader application, especially 

for systems that have not yet been thoroughly disclosed. Further development of the 

TTMD protocol to extend its applicability domain to systems involving membrane protein 

or nucleic acids, and different purposes such as the docking pose selection are already 
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going on within the Molecular Modeling Section laboratory and will be part of future 

scientific works. 


