# Sjögren's syndrome and other rare and complex connective tissue diseases: an intriguing liaison

C. Baldini<sup>1</sup>, L. Arnaud<sup>2</sup>, T. Avčin<sup>3</sup>, L. Beretta<sup>4</sup>, C. Bellocchi<sup>4</sup>, C. Bouillot<sup>5</sup>,
G.-R. Burmester<sup>6</sup>, L. Cavagna<sup>7</sup>, M. Cutolo<sup>8</sup>, J.K. de Vries-Bouwstra<sup>9</sup>, A. Doria<sup>10</sup>,
F. Ferro<sup>1</sup>, J.E. Fonseca<sup>11</sup>, S. Fonzetti<sup>1</sup>, G. Fulvio<sup>1</sup>, I. Galetti<sup>12</sup>, J.-E. Gottenberg<sup>13</sup>,
E. Hachulla<sup>14</sup>, T. Krieg<sup>15</sup>, G. La Rocca<sup>1</sup>, T. Martin<sup>16</sup>, M. Matucci-Cerinic<sup>17</sup>, P. Moinzadeh<sup>18</sup>,
C. Montecucco<sup>7</sup>, M. Mosca<sup>1</sup>, L. Mouthon<sup>19</sup>, U. Müller-Ladner<sup>20</sup>, S. Rednic<sup>21</sup>,
V. Smith<sup>22</sup>, R. Talarico<sup>1</sup>, J.M. van Laar<sup>23</sup>, A. Vieira<sup>24</sup>, V.C. Romão<sup>11</sup>, X. Mariette<sup>25</sup>

Affiliations: page S109.

Chiara Baldini, MD, PhD; Laurent Arnaud, MD, PhD; Tadej Avčin, MD, PhD; Lorenzo Beretta, MD; Chiara Bellocchi, MD; Coralie Bouillot; Gerd-Rüdiger Burmester, MD, PhD; Lorenzo Cavagna, MD; Maurizio Cutolo, MD; Jeska K. de Vries-Bouwstra, MD, PhD; Andrea Doria, MD, PhD; Francesco Ferro, MD; João Eurico Fonseca, MD, PhD; Silvia Fonzetti, MD; Giovanni Fulvio, MD; Ilaria Galetti; Jacques-Eric Gottenberg, MD, PhD; Eric Hachulla, MD, PhD; Thomas Krieg, MD; Gaetano La Rocca, MD; Thierry Martin, MD, PhD; Marco Matucci-Cerinic, MD, PhD; Pia Moinzadeh, MD; Carlomaurizio Montecucco, MD; Marta Mosca, MD, PhD; Luc Mouthon, MD, PhD; Ulf Müller-Ladner, MD; Simona Rednic, MD, PhD; Vanessa Smith, MD, PhD; Rosaria Talarico, MD, PhD<sup>;</sup> Jacob M. van Laar, MD, PhD; Ana Vieira; Vasco C. Romão, MD, PhD; Xavier Mariette, MD, PhD

Please address correspondence to: Chiara Baldini, Rheumatology Unit, University of Pisa, Via Roma 67, 56126 Pisa, Italy. E-mail: chiara.baldini74@gmail.com

Received on January 7, 2022; accepted in revised form on February 7, 2022.

*Clin Exp Rheumatol 2022; 40 (Suppl. 134): S103-S112.* 

© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2022.

**Key words**: Sjögren's syndrome, overlap autoimmune rheumatic diseases, systemic lupus erythematosus, systemic sclerosis

Funding and disclaimer: page S109. Competing interests: page S109.

#### ABSTRACT

Sjögren's syndrome (SS) is a systemic autoimmune disease that frequently occurs concomitantly with other systemic connective tissue disorders, including rare and complex diseases such as systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). The presence of SS influences the clinical expression of the other autoimmune diseases, thus offering the unique opportunity to explore the similarities in genetic signatures, as well as common environmental and biologic factors modulating the expression of disease phenotypes. In this review, we will specifically discuss the possibility of defining "SS/ SLE" and "SS/SSc" as distinct subsets within the context of connective tissue diseases with different clinical expression and outcomes, thus deserving an individualised assessment and personalised medical interventions.

#### Introduction

Sjögren's syndrome (SS) is a complex autoimmune disorder that may cooccur with other major rheumatic diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory myopathies (IIM) and systemic sclerosis (SSc) (1-3). The coexistence of SS with neuromyelitis optica spectrum disorder (NMOSD) (4), primary biliary cholangitis (5) and coeliac disease (6) is also well-known, thus offering a unique opportunity to explore genetic, environmental and biologic factors that may contribute to phenotypic heterogeneity in autoimmunity (7).

Historically, the diagnosis of 'secondary' SS (sSS) has been made in patients

presenting symptoms of dryness in the presence of other rare or complex rheumatic connective tissue disease (rCTDs), in contrast to the term 'primary' SS (pSS) that it is used to identify patients with SS in the absence of another underlying rheumatic disorder (8). However, nowadays it has been questioned whether the concept of 'primary' and 'secondary' may still have "une raison d'être" (8, 9). Indeed, sSS has been scarcely investigated leaving several research questions that need to be answered regarding its clinical expression, long-term outcome and targeted therapies. In this review we will summarise the most relevant literature contributions on the topic, particularly focusing on the association between SS and two other rare and complex diseases: SLE and SSc. We will specifically discuss the possibility of defining "SS/SLE" and "SS/SSc" as distinct phenotypes of autoimmunity that combine both SS features and the clinical and serological manifestations of other CTDs, thus deserving a personalised assessment and targeted medical interventions.

#### SS/SLE subset: distinctive clinical, serological features and long-term prognosis

SS and SLE are known to share multiple genetic, epigenetic, and immunological features, however, they remain different conditions with distinctive features (10, 11). The possible association between SS and SLE has been largely recognised in the literature (12-19). According to a recent meta-analysis, the frequency of SS/SLE ranges from 14 to 17.8% of SLE patients (7). However, the true prevalence of this subset might remain underestimated. This is due to two main reasons: on one hand, oral and ocular tests are not routinely performed in SLE patients in the absence of sicca symptoms (20); on the other hand, sicca symptoms often lack in younger SS patients or may due to drugs taken by the patients, making it challenging to determine the specific SS/SLE status in SLE patients (21, 22). The latter aspect often results in SLE patients being diagnosed as having "secondary" SS later into their disease. Another layer of complexity is added when considering that patients with SS who have a higher systemic disease activity profile, may have manifestations overlapping those of SLE, such as arthritis, lymphadenopathy, fever, subacute cutaneous lupus erythematosus, cytopenia, myositis, myelitis or peripheral neuropathy. Finally, this raises the question of why is SS commonly regarded as "secondary" to SLE and other rCTDs, rather than the opposite, or simply noting that more than one condition can coexist in the same patient.

In fact, nowadays, several evidences support the hypothesis that SS/SLE may represent a well-defined clinical entity, rather than the mere overlap of independent autoimmune systemic diseases.

# Temporal relationship between SS and SLE

The traditional definition of "secondary" SS has generally suggested a sort of sequential order with SS manifestations occurring afterwards in patients with a pre-existing diagnosis of SLE (9). However, the diagnosis of SS may precede or occur concomitantly with the diagnosis of SLE. For instance, in a cohort study by Manoussakis et al. (14), in 18 out of 26 SS/SLE patients (69.2%), sicca manifestations preceded the onset of SLE by a median time of 4 years, 4 out of 26 patients developed SS and SLE manifestations at the same time, and finally, in the remaining 4 patients SLE was diagnosed 2-3 years before SS. Szanto et al. analysed the disease onset of 53 SS/SLE patients, and found that in 15% of cases, SS preceded SLE (15). In a larger cohort of SS/SLE patients, SS diagnosis preceded SLE onset by more than 1 year in 15% patients (median 3 years). On the contrary, SS was documented within 1 year of the onset of SLE in 47% patients, and after more than 1 year in 42% patients (median 7 years) (23).

### Epidemiological, clinical and serological features

Since the first descriptions of SLE and SS, many distinctive clinical-serological features have been identified in SS/ SLE patients (Table I) (24-26). From an epidemiological point of view, according to the vast majority of the studies, SS/SLE patients are predominantly females and significantly older than SLE patients (7), but younger than patients with pSS (14). Moreover, from a clinical point of view, SS/SLE patients seem to have a lower prevalence of kidney involvement than SLE patients (14, 27). Noteworthy, Nossent et al. (12) showed a statistically significant superior overall 20 years survival rate in SS/SLE patients as compared to isolated SLE patients. Interestingly, some studies showed a lower prevalence of associated SS in SLE black patients, who are known to suffer more frequently of an aggressive disease course, with higher prevalence of renal involvement. Despite experiencing less internal organ involvement, a systemic inflammatory state with higher levels of proinflammatory cytokines (i.e. TNF-α, IL-6, MCP-4, MIP-1β, IL12/IL-23p40, and IP-10) has been described in the SS/SLE subgroup compared to SLE, with possible clinical and therapeutic implications (19). Finally, as Gal et al. (28) have described differences of anti-Ro52-kD/ SSA and the anti-Ro60-kD/SSA distribution were found between the pSS and SS/SLE patients, with anti-Ro60-kD/ SSA autoantibodies being significantly more frequent in the latter group than in pSS. By contrast, isolated anti-Ro52 reactivity has been primarily found in pSS patients (29). The most relevant differences in clinical phenotype and autoantibodies profile between isolated SLE and SS/SLE patients are summarised in Table I.

On the opposite side, SS/SLE patients appear to present more frequently with Raynaud's Phenomenon (RP), arthritis,

serositis and central nervous system involvement when compared with pSS patients (14). Moreover, in the study from Szanto et al. (15) a higher frequency of antiphospholipid syndrome, anaemia, leukopenia, lymphopenia, renal, lung, central nervous system, and skin involvement was reported in SS/ SLE patients compared to primary SS patients. On the contrary, pSS patients have been found to display more often sicca symptoms, parotid enlargement and lymphadenopathy (11, 14). Finally, concerning the immunologic profile, a higher prevalence of ANA, antidsDNA, anti-cardiolipin antibodies, anti-B2GPI, anti-U1snRNP has been observed in SS/SLE compared to primary SS (14). Szanto et al. also found higher frequency of anti-Ro and anti-La autoantibodies and lower frequency of RF in SS/SLE patients (15).

Although the distinctive features of SS/SLE have been clearly defined, the key question as whether considering SS/SLE patients as a distinct subgroup might have clinical, prognostic and therapeutic implications remains unsolved. Interestingly, the recent ACR/ EULAR 2019 criteria of SLE and ACR/ EULAR 2016 criteria of SS allow to distinguish SLE from primary SS and are both fulfilled by patients with SS/ SLE (30).

Regarding the risk for lymphoproliferation, SS/SLE subset has been scarcely investigated. Lofstrom *et al.* noticed a statistically significant association between sicca syndrome, parotid enlargement and non-Hodgkin's lymphoma in SLE patients (31). Furthermore, Bernatsky *et al.* (32) showed that a diagnosis of SS could be made in 20% of SLE patients who developed lymphoma, but indeed, this aspect deserves further investigations.

#### Treatment options

Regarding the possibility that SS/SLE subset may respond differently to specific therapeutic strategies, interesting data have recently come out (9, 20). Indeed, targeting B cells has been widely seen as a potential therapeutic option for both SLE and pSS (33). A variety of B cell disturbances has been described in both diseases. B cells do not only

| Authors, year                        |            |                                                                                                                                               | SS/SLE vs. SLE patients                        |                                             |  |
|--------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|
|                                      | Prevalence | Clinical phenotype                                                                                                                            | Autoantibody profile                           | SS classification criteria                  |  |
| Nossent et al. 1998 (12)             | 19.6%      | Older age<br>Less renal involvement<br>More thrombocytopenia<br>Superior survival rate                                                        |                                                | Preliminary European Criteria 1993 (101)    |  |
| Gilboe et al. 2001 (13)              | 11.1%      | Less renal involvement<br>Lower SF-36 vitality score<br>Higher VAS fatigue score                                                              | More anti-Ro and anti-La                       | Preliminary European Criteria 1993 (101)    |  |
| Manoussakis <i>et al</i> . 2004 (14) | 9.2%       | Older age<br>More Raynaud ph.<br>Less renal involvement<br>Less lymphadenopathy<br>Less thrombocytopenia                                      | More anti-La and RF                            | European Classification criteria 1996 (102) |  |
| Szanto et al. 2006 (15)              | 15.5%      | Older age<br>More thyroid disease                                                                                                             | More anti-Ro and anti-La                       | AECG 2002 (103)                             |  |
| Scofield et al. 2007 (17)            | 14.9%      | More thyroid disease                                                                                                                          |                                                | AECG 2002 (103)                             |  |
| Pan et al. 2008 (18)                 | 6.5%       | Older age<br>Less renal involvement                                                                                                           | More anti-Ro and anti-La, anti-dsDNA           | AECG 2002 (103)                             |  |
| Baer et al. 2010 (23)                | 14.5%      | Older age<br>More white<br>More photosensitivity<br>More oral ulcers<br>More Raynaud ph.<br>Lower renal involvement<br>Higher SLICC/ACR score | More anti-Ro and anti-La, anti-dsDNA, anti RNP | Bloch Criteria 1965 (104)                   |  |
| Ruacho et al. 2020 (19)              | 23%        | Older age<br>More leukocytopenia<br>More peripheral neuropathy<br>Lower renal involvement                                                     | More anti-La and RF                            | AECG 2002 (103)                             |  |

#### Table I. Clinical-serological features identified in SS/SLE patients.

contribute to the production of autoantibodies, they are also involved in abnormal cytokine secretion, presentation of autoantigens, B cell receptor signalling deregulation and increased expression of the co-stimulatory molecules(34). The main alteration of B cell homeostasis in SLE is the expansion of peripheral CD27<sup>high</sup> plasmablasts. Likewise, increased plasmablasts have been also observed in the blood of patients with primary SS as well as increased plasma cells in the salivary glands of these patients (35). Several abnormalities have also been described regarding transitional B cells in SLE (36). Similarly, increased transitional B cells have been described in serum and glandular infiltrates of patients with SS, where they receive survival signals via BlyS thus contributing to the progression of organ damage (37, 38). BLyS has also been found in high concentrations in serum of SLE patients

(39). The two large phase III trials [BLISS-52 (40) and BLISS-76 (41)] with belimumab, a humanised monoclonal antibody against soluble BLyS, carried out in moderately active nonnephritis SLE patients met their primary efficacy end-point of clinical superiority compared to placebo plus standard of care. BLyS inhibition induces slow, selective B cell depletion particularly affecting transitional, naive B cell lines and the CD27-isotype-switched memory population (42). In parallel, BLyS has also been found elevated in the serum of primary SS patients correlating with the level of RF and anti-SSA antibodies. In the Belimumab in Sjögren's syndrome (BELISS) study, an open-label trial assessing the efficacy and safety of belimumab in primary SS, showed that 60% of patients receiving belimumab achieved a clinical response in dryness score, fatigue score, pain score, and systemic activity score

reduction as well as in B cell activation biomarkers improvement (43).

Among B depleting strategy, another interesting option for both SLE and associated SS is represented by rituximab, a chimeric mouse/human monoclonal antibody against CD20 and both mature B cells and B cell precursors from the pre-B cell stage onwards (44). Rituximab treatment led to a long-standing reduction of peripheral memory B cells with a delayed recovery of blood memory B cells compared to memory B cells in tissue (44). A number of open-label prospective and retrospective studies have demonstrated the effectiveness of rituximab in the management of moderately severe to severe SLE (42). Moreover, although the rituximab Phase III randomised controlled trials, the EXPLORER trial (45) (non-renal SLE patients) and the LUNAR trial (46) (lupus nephritis patients), did not reach the endpoints, noteworthy, B cell-

depleting therapy was associated with statistically significant improvement in complement C3 levels and dsDNA antibodies. Analogously, in primary SS, despite encouraging preliminary evidences, two large randomised trials, TRACTISS(47) and TEAR (48) did not demonstrate a clear superiority of rituximab versus placebo (49). On the basis of the new insights acquired, future approaches are currently being investigated in both diseases to induce a more profound B depletion including the combination of rituximab and belimumab (50-52).

Concrete data on the efficacy of B depleting therapy in SS/SLE patients have been recently pointed out in the post hoc analysis of the EMBODY phase III trials with epratuzumab, a humanised anti-CD22 monoclonal antibody(20). CD22 is an adhesion molecule and co-receptor for BCR, and attenuates BCR signalling. The post hoc analysis has shown that epratuzumab improved SLE-specific clinical outcomes at week 48, compared with placebo in patients with a diagnosis of associated SS. Epratuzumab infusion resulted in a reduction of CD27- transitional and naive B cells, B cell reduction was faster in patients with associated SS. The authors concluded that patients with SLE and associated SS treated with epratuzumab showed improvement in SLE disease activity, which was associated with bioactivity, such as decreases in B cell number and IgM level (20).

Recognising patients with SS/SLE as a distinct subset of disease based on immunological and molecular mechanisms may open new avenues for targeting shared common pathogenic cells and pathways. From this perspective, given that the interferon signature is shared by SLE and SS, targeting the interferon pathways may represent a promising strategy for the treatment of SS/SLE subset. The Janus kinase inhibitor tofacitinib that inhibits both type I and type II interferon has been recently shown as well-tolerated in subjects with mild-to-moderately active SLE(53). Similarly, phase III of the studies BRAVE I (NCT03616912) and BRAVE II (NCT03616964) aim to assess the effects of baricitinib in patients

with SLE, and are currently recruiting patients. Tofacitinib (NCT04496960) and baricitinib (NCT04916756) will be also assessed in SS in randomised controlled trials that are still recruiting. Noteworthy, several new strategies are in the pipeline and they appear extremely interesting (54). For instance, the possibility of modulating CD40-CD40 ligand interaction or targeting kinases (i.e. Bruton's tyrosine kinase (BTK) and phosphatidylinositol 3-kinase (PI3K)) have all appeared particularly promising preclinically and ongoing trials may confirm these preclinical data (50, 55).

In conclusion, there is an increasing awareness that SS/SLE may indeed offer a unique opportunity to understand the expression, long-term evolution and outcome of autoimmune phenotypes among patients affected by CTDs.

#### SS/SSc subset: distinctive clinical, serological features and long-term prognosis

The interplay between SS and SSc is generally considered as particularly complex encompassing a wide spectrum of clinical intermediate and overlapping phenotypes. Indeed, sicca symptoms are quite common in SSc, but they have been generally attributed to fibrotic changes in the salivary glands (56). Still, the "true" association of SSc and SS has been reported in up to one-third of SSc patients, especially in limited cutaneous SSc subtypes with a prevalence varying from 17%-29% of SSc patients (57-62). Intriguingly, according to the current literature, approximately the 10% of patients with pSS may present a scleroderma-like patternat the nailfold videocapillaroscopic analysis (63). Differential features in patients with positive lip biopsy or in relation to positivity of anti-anti-SSA/ Ro or anti-SSB/La antibodies were not detected. The presence of marked capillary dilation in pSS patient with associated RP indicates the need to exclude an overlapping syndrome (63).

Table II summarises the most relevant differences in clinical phenotype and autoantibodies profile among SSc, SS and SS/SSc patients. As shown in the Table, similarly to SLE, there might be evidence that SS/SSc patients actually represent a distinct subset within the autoimmunity rCTDs spectrum.

#### Serological and clinical features

From a serological point of view, patients with SS and SSc show more frequently anticentromere antibodies (ACA) and a spreading of autoimmunity, with additional autoantibodies and autoimmune diseases, particularly primary biliary cholangitis (PBC) (56, 62, 64, 65).

In fact, ACA might also be detected in approximately 5-10% of SS patients without evidence of full-blown SSc, but in presence of severe glandular and extra-glandular SS-related manifestations (66-72). In patients with SSc, ACA recognise 3 centromeric proteins (CENP) identified as autoantigens localised at the kinetochore plates: CENP-A, CENP-B, and CENP-C(73). In SS/SSc, the specific target of ACA is unknown. Salliot et al. showed that all their SS/ACA patients recognised the same target, CENP-B(67). Gelber et al. showed that while patients with SS predominantly recognised CENP-C alone, dual recognition of CENP-B and CENP-C was most frequently detected in SSc (74). Recently, Kajio et al. (73) carried out a comprehensive detailed analysis of the ACAs specificity in 241 patients with SSc, SS and PBC. The authors found a broad spectrum of serum autoantibodies against the centromere-kinetochore macrocomplex and they found that the prevalence of each antibody specificity was shared across the three diseases SS, SSc and PBC. Moreover, the authors found that immunostaining of SS/ACA salivary glands showed the accumulation of antibody-secreting cells specific for kinetochore, whereas little reactivity against CENP-B was seen. Based on these findings, the authors proposed the term 'ACA-related disease' to embrace the spectrum of phenotypes encompassing SSc and SS features. By contrast, although relatively common in SS/SSc patients, no conclusive data are available regarding the possible role of anti-Ro52 as a putative biomarker of SS in SSc patients (75).

| Fable | II. | The r | nost r | elevant | t difference | s in | clinical | phenoty | pe and | autoantibodies | profile amon | g SSc | , SS : | and SS/SS | c patients | • |
|-------|-----|-------|--------|---------|--------------|------|----------|---------|--------|----------------|--------------|-------|--------|-----------|------------|---|
|       |     |       |        |         |              |      |          |         |        |                |              | A 1   |        |           |            |   |

| Authors, year                    | SS/SSc vs SSc patients |                                                                                                                                                                   |                                                                                                                     |                                                                                         |  |  |  |  |  |
|----------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
|                                  | Population             | SS/SSc vs SSc patients                                                                                                                                            | SS/SSc vs SS patients                                                                                               | SS/SSc classification criteria                                                          |  |  |  |  |  |
| Avouac <i>et al</i> . 2006 (64)  | SS/SSc                 | Less lung fibrosis                                                                                                                                                |                                                                                                                     | AECG 2002 (103)/<br>LeRoy 1988 (105)                                                    |  |  |  |  |  |
| Salliot <i>et al</i> . 2007 (67) | SS/ACA                 |                                                                                                                                                                   | More Raynaud's phenomenon<br>More peripheral neuropathy,<br>More KCS<br>More PBC<br>Less anti-Ro and anti-La        | AECG 2002 (103)/<br>LeRoy 1988 (105)                                                    |  |  |  |  |  |
| Salliot <i>et al.</i> 2007 (62)  | SS/SSc                 | Less lung fibrosis                                                                                                                                                | More peripheral neuropathy<br>More arthritis                                                                        | AECG 2002 (103)/<br>LeRoy 1988 (105)                                                    |  |  |  |  |  |
| Bournia <i>et al</i> . 2010 (66) | SS/ACA                 | Less telangiectasia<br>Less puffy fingers<br>Less sclerodactyly<br>Less Raynaud Phenomenon<br>Less digital ulcers<br>Less gastrointestinal,<br>Less lung fibrosis | Less dry eye<br>Less hypergammaglobulinemia<br>Less anti-Ro and anti-La<br>More Raynaud Phenomenon<br>More dysfagia | AECG 2002 (103)/<br>Preliminary American criteria (106)<br>and Early SSc criteria (107) |  |  |  |  |  |
| Kobak <i>et al</i> . 2012 (65)   | SSc/SS                 | Less PAH<br>Less lung fibrosis<br>Less sclerodactyly<br>Less telangiectasia                                                                                       |                                                                                                                     | Preliminary European Criteria 1993 (101)/<br>LeRoy 1988 (105)                           |  |  |  |  |  |
| Baldini <i>et al.</i> 2013 (68)  | SS/ACA                 | Less PAH<br>Less sclerodactyly<br>Less telangiectasia<br>Less digital ulcers                                                                                      | Less anti-Ro and anti-La<br>Less hypergammaglobulinemia<br>More SGE<br>More NHL                                     | AECG 2002 (103)/<br>Preliminary American criteria (106)<br>and Early SSc criteria (107) |  |  |  |  |  |
| Lee et al. 2015 (69)             | SS/ACA                 |                                                                                                                                                                   | Less anti-Ro<br>More Raynaud Phenomenon<br>More sclerodactyly                                                       | AECG 2002 (103)/<br>Preliminary American criteria (106)<br>and Early SSc criteria (107) |  |  |  |  |  |
| Baer et al. 2016 (72)            | SS/ACA                 |                                                                                                                                                                   | Older age<br>Less anti-Ro and anti-La, RF<br>Less hypergammaglobulinemia<br>Higher FS<br>More glandular dysfunction | ACR criteria 2012 (108)/n.a.                                                            |  |  |  |  |  |
| Tsukamoto et al. 2018 (70)       | SS/ACA                 |                                                                                                                                                                   | More Raynaud Phen.<br>More sclerodactyly<br>Less hypergamma,<br>Less leukocytopenia                                 | ACR/EULAR SS 2016 (109)/<br>ACR/EULAR SSc 2013 (110)                                    |  |  |  |  |  |
| Li et al. 2020 (71)              | SS/ACA                 |                                                                                                                                                                   | Less anti-Ro and anti-La<br>More glandular dysfunction                                                              | AECG 2002 (103)/n.a                                                                     |  |  |  |  |  |
| Can et al. 2020 (56)             | SS/SSc                 | Older age<br>More<br>anti-Ro                                                                                                                                      |                                                                                                                     | AECG 2002 (103)/<br>Preliminary American criteria [106]<br>and Early SSc criteria (107) |  |  |  |  |  |

SS: Sjögren's syndrome; SSc: systemic sclerosis; ACA: anticentromere antibodies; PAH: pulmonary artery hypertension; KCS: keratoconjunctivitis sicca; PBC: primary biliary cholangitis; RF: rheumatoid factor; AECG: American European Consensus Group.

Clinically, the so called "ACA-related disease" defines patients with a less serious SSc. Subjects with SS/ACA or SS/SSc have less frequently telangiectasia, sclerodactyly, digital ulcers, pulmonary hypertension or lung fibrosis; although it remains controversial whether the concomitant presence of anti-Ro52 may increase the frequency of interstitial lung involvement in specifically subsets of SS/SSc overlap patients (62, 64, 76).

On the other hand, with respect to patients with pSS, SS/SSc subjects present more commonly, Raynaud's phenomenon, peripheral neuropathy and less frequently hypergammaglobulinaemia, leukocytopenia, rheumatoid factor, anti-La/SSB, and anti-Ro/SSA, thus implying that ACA antibody governs some clinical features and controls the expression of autoimmune phenotype among patients who have another connective tissue disease (66-72, 77). Moreover, regarding SS-related glandular dysfunction, the individuals with overlap SS/SSc present more severe subjective and objective dryness (67, 72). In addition, histology data have concordantly shown that the glandular dysfunction is apparently associated with more pronounce labial salivary gland inflammation but not fibrosis suggesting that the typical "SS autoimmune epithelitis" can be also detected in overlap patients(71). From this perspective, Baer et al. (72) showed that SS/SSc patients presented a higher percentage of MSGB with FS >2 and a higher mean FS than patients with pSS. No difference was detected among the subgroups regarding glandular fibrosis. Notarstefano et al. (78) also compared the number of germinal-centre structures in patients with SS and in SS/ACA individuals describing a similar number and frequency of GC-like structures between the two groups. Intriguingly, according to Lee et al. (79), salivary gland ultrasonography revealed that the proportion of patients with OMERACT grades  $\geq 2$  was significantly higher in SSc and primary SS groups than those in the idiopathic sicca syndrome group whereas no difference in fibrosis was observed between SSc and pSS groups. Finally, several authors have highlighted that SS/SSc patients may have a comparable risk for lymphoproliferative complications when compared to primary SS patients (66). In a single centre study by Baldini et al. we have found that the frequency of lymphoma in the overlap patients was even higher than the one detected in the pSS group (68). Scherlinger et al. (80) found that the occurrence of SS was significantly associated with mortality in SSc. The main causes of mortality were infections and diffuse B cell lymphoma. The authors found that with respect to treatments, patients with overlap SSc were more likely to receive corticosteroids, immunosuppressive drugs, and biologic DMARDs than non-overlap SSc patients.

#### Treatment options

Likewise in SS/SLE patients, targeting B cells may be justified also in patients with SS/SSc (81). A dysregulation of B cell homeostasis has been widely recognised in SSc, with a decrease of both regulatory B cells and CD19<sup>+</sup> CD27<sup>+</sup> memory B cells (82). Moreover, accumulating evidence have highlighted a crosstalk between B cells and fibroblasts, ultimately leading to skin and organ fibrosis. BAFF levels have been correlated with disease activity and increased IL-6 production by B cells. In turn, IL-6 level correlates with the extent of skin fibrosis, linking B cell activity to fibrosis (82). Two recent meta-analyses have shown that rituximab may be a relatively safe and promising therapeutic option for SSc skin and lung involvement in certain patients however, larger studies are still required to determine whether it stabilises disease progression in general (83, 84). Recently, on the basis of the results of Fascinate (85) and FocuSSced (86) studies, the FDA has also approved tocilizumab to block IL-6 signalling and to slow the rate of decline in pulmonary function in patients with SSc-ILD, regardless of the cutaneous subset (87). IL-6 concentrations are increased in the serum and saliva of SS patients; however, the ETAP study a phase 2/3 RCT performed with tocilizumab in SS patients - did not reach the endpoints suggesting that cell activation was probably not mediated by IL-6 in most patients with pSS (88). Other therapeutic approaches have been recently evaluated in phase II trials or are ongoing for SSc including abatacept and Jak-inhibitors and it is likely that these drugs may have a rationale also for SS/SSc patients (81).

Intriguingly, from this point of view, Petitdemange et al. (89) have recently analysed targeted therapies which development was shared between at least two of the most common autoimmune systemic diseases. The authors identified five targeted therapies shared between SSc and SS including: rituximab, the combination rituximab and belimumab, abatacept, tocilizumab and tofacitinib. The most frequently targeted molecules and pathways were: JAK-STAT pathways, IL-6, costimulation molecules, BAFF and CD20. This is actually not surprising since it reflects the overlap of pathogenic pathways of all these diseases: it also highlights the potential of drug repurposing. The "endotypic" characterisation of SS/SSc subset need to be further supported by the identification of novel molecular and cellular markers and will then help in the future to pave the way for novel approaches that move from the actual classification based on clinical signs and symptoms to patients' clustering based on shared common immunological and molecular mechanisms.

## SS and other connective tissue disease, a till now unexplored area

To date only few studies reported the overlap between SS and idiopathic inflammatory myopathies (IIM). In particular, Felten et al. (90) described a cohort of 395 pSS followed for more than 60 months, and reported that the occurrence of IIMs was about the 1%, mainly in the form of inclusion body myositis (IBM). A similar prevalence was previously described in another multicentre study performed on 1320 Italian SS, although with a low prevalence of IBM (91). However, it is interesting to observe that the frequency of anti-Ro antibodies in general, and of anti-Ro52 antibodies in particular, in IIMs is common. More specifically, anti-Ro52 antibodies have been identified in about the 50% of patients with antisynthetase syndrome (ASSD) (92) and in about the 30% of patients with anti-MDA5 syndrome (93), but clinical information about dryness and the tests necessary to rule-out a SS were lacking, thus suggesting the potential risk of SS missed diagnosis. Recent advances showed also that anti-Ro52 positivity is associated with isolated ILD (94), with these patients being commonly classified under the heterogeneous umbrella of IPAF (95). Furthermore, anti-Ro52 seems to indicate by itself an ILD with a more aggressive course, independently of patient classification (96-99). In a similar setting, the multidisciplinary approach involving both rheumatologists and pulmonologists may have an added values in term of increased diagnostic performance (100).

#### Conclusions

Literature data intriguingly suggest that identifying as distinct disease subsets those patients with SS and other autoimmune disorders may offer a unique opportunity to rethink and reclassify complex and rare autoimmune diseases. Indeed, we may now avoid the term of secondary SS and replace it with the term associated SS. Novel approaches based on diseases deconstruction/diseases reconstruction and applying omics techniques may allow to identify more homogeneous target population and pave new avenues for innovative therapeutic approaches based on common "endotype" rather than "phenotype" stratification.

#### Affiliations

<sup>1</sup>Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Italy;

<sup>2</sup>Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, IN-SERM UMR-S 1109, Centre National de Référence des Maladies Auto-Immunes Systémiques Rares (RESO), Strasbourg, France;

<sup>3</sup>Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Slovenia; <sup>4</sup>Referral Centre for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy;

<sup>5</sup>European Federation of Sjögren's Syndrome Patient Associations (Sjögren Europe), Bienne, Switzerland, and ePAG Representative for Sjögren's Syndrome, ERN ReCONNET;

<sup>6</sup>Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany;

<sup>7</sup>Rheumatology Department, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy;

<sup>8</sup>Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy; <sup>9</sup>Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands;

<sup>10</sup>Rheumatology Unit, Department of Medicine, University of Padova, Italy; <sup>11</sup>Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre, Lisbon, and Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; <sup>12</sup>Federation of European Scleroderma Associations (FESCA), Milan, Italy; <sup>13</sup>Strasbourg University Hospital, National Reference for Systemic Rare Auto-Immune Diseases, Department of Rheumatology, IBMC, CNRS UPR 3572, Strasbourg, France;

<sup>14</sup>Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Autoimmunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), University of Lille, Inserm, CHU Lille, U1286 - IN-FINITE - Institute for Translational Research in Inflammation, Lille, France; <sup>15</sup>Translational Matrix Biology and Department for Dermatology, Medical Faculty, Cologne, Germany;

<sup>16</sup>Clinical Immunology Department, Strasbourg University Hospital, National Reference Center for Systemic Autoimmune Diseases (ESO), France; <sup>17</sup>Department of Experimental and Clinical Medicine, University of Florence, and Department of Geriatric Medicine, Division of Rheumatology, AOUC, Florence, and Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy;

<sup>18</sup>Dept. of Dermatology and Venereology, University of Cologne, Germany;
<sup>19</sup>Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France;

<sup>20</sup>Department of Rheumatology and Clinical Immunology, Justus-Liebig University Giessen, Kerckhoff Clinic Bad Nauheim, Germany;

<sup>21</sup>Department of Rheumatology, Emergency County Teaching Hospital, University of Medicine and Pharmacy, Cluj-Napoca, Romania;

<sup>22</sup>Department of Internal Medicine, Ghent University; Dept. of Rheumatology, Ghent University Hospital, and Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Centre (IRC), Ghent, Belgium; <sup>23</sup>Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands; <sup>24</sup>Liga Portuguesa Contra as Doenças Reumáticas, Núcleo Síndrome de Sjögren, Lisbon, Portugal, and ePAG Representative for Sjögren's Syndrome, ERN ReCONNET;

<sup>25</sup>Université Paris-Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, INSERM UMR1184, Reference Centre for Rare Systemic Autoimmune Diseases, Le Kremlin Bicêtre, France.

#### **Competing interests**

J.K. de Vries-Bouwstra received consulting fees from Abbvie, Janssen and Boehringer Ingelheim, and research grants from Roche, Galapagos and Janssen. J.-E. Gottenberg has received honoraria from BMS and UCB, and research grants from BMS and Pfizer. J.M. van Laar has received honoraria from Abbvie, Boehringer Ingelheim, Celltrion, Galapagos, Magenta, Roche, and grants from Astra Zeneca, Boehringer Ingelheim, Roche and Thermofischer. The other authors have declared no competing interests.



#### Disclaimer

This publication was funded by the European Union's Health Programme (2014-2020).

ERN ReCONNET is one of the 24 European Reference Networks (ERNs) approved by the ERN Board of Member States. The ERNs are co-funded by the EC (European Commission). The content of this publication represents the views of the authors only and it is their sole responsibility; it cannot be considered to reflect the views of the EC and/or the European Health and Digital Executive Agency (HaDEA) or any other body of the European Union. The EC and HaDEA do not accept any responsibility for use that may be made of the information it contains.

#### References

- AMADOR-PATARROYO MJ, ARBELAEZ JG, MANTILLA RD et al.: Sjögren's syndrome at the crossroad of polyautoimmunity. J Autoimmun 2012; 39: 199-205.
- BRITO-ZERÓN P, BALDINI C, BOOTSMA H et al.: Sjögren syndrome. Nat Rev Dis Primers 2016; 2: 16047.
- CAFARO G, BURSI R, CHATZIS LG et al.: One year in review 2021: Sjögren's syndrome. Clin Exp Rheumatol 2021; 39 (Sup-

pl. 133): \$3-13.

- CRUZ RA, CHAUDHARY S, GUEVARA M, MELTZER E: Neuromyelitis optica spectrum disorders (NMOSD) and connective tissue disease (CTD): an update for the rheumatologist. *Curr Rheumatol Rep* 2021; 23: 33.
- SELMI C, GERSHWIN ME: Chronic autoimmune epithelitis in Sjögren's syndrome and primary biliary cholangitis: a comprehensive review. *Rheumatol Ther* 2017; 4: 263-79.
- BARTOLONI E, BISTONI O, ALUNNO A et al.: Celiac disease prevalence is increased in primary Sjögren's syndrome and diffuse systemic sclerosis: lessons from a large multicenter study. J Clin Med 2019; 8: 540.
- ALANI H, HENTY JR, THOMPSON NL, JURY E, CIURTIN C: Systematic review and metaanalysis of the epidemiology of polyautoimmunity in Sjögren's syndrome (secondary Sjögren's syndrome) focusing on autoimmune rheumatic diseases. *Scand J Rheumatol* 2018; 47: 141-54.
- MAVRAGANI CP, MOUTSOPOULOS HM: Primary versus Secondary Sjögren Syndrome: is it time to reconsider these terms? *J Rheumatol* 2019: 46: 665-6.
- KOLLERT F, FISHER BA: Equal rights in autoimmunity: is Sjögren's syndrome ever 'secondary'? *Rheumatology* (Oxford) 2020; 59: 1218-25.
- BLOKLAND SLM, VAN DEN HOOGEN LL, LEIJTEN EFA et al.: Increased expression of Fas on group 2 and 3 innate lymphoid cells is associated with an interferon signature in systemic lupus erythematosus and Sjögren's syndrome. *Rheumatology* (Oxford) 2019; 58: 1740-5.
- PASOTO SG, ADRIANO DE OLIVEIRA MAR-TINS V, BONFA E: Sjögren's syndrome and systemic lupus erythematosus: links and risks. Open Access Rheumatol 2019; 11: 33-45.
- NOSSENT JC, SWAAK AJ: Systemic lupus erythematosus VII: frequency and impact of secondary Sjögren's syndrome. *Lupus* 1998; 7: 231-4.
- 13. GILBOE IM, KVIEN TK, UHLIG T, HUSBY G: Sicca symptoms and secondary Sjögren's syndrome in systemic lupus erythematosus: comparison with rheumatoid arthritis and correlation with disease variables. *Ann Rheum Dis* 2001; 60): 1103-9.
- 14. MANOUSSAKIS MN, GEORGOPOULOU C, ZINTZARAS E et al.: Sjögren's syndrome associated with systemic lupus erythematosus: clinical and laboratory profiles and comparison with primary Sjögren's syndrome. Arthritis Rheum 2004; 50: 882-91.
- SZANTO A, SZODORAY P, KISS E, KAPITANY A, SZEGEDI G, ZEHER M: Clinical, serologic, and genetic profiles of patients with associated Sjögren's syndrome and systemic lupus erythematosus. *Hum Immunol* 2006; 67: 924-30.
- SCOFIELD RH: Genetics of systemic lupus erythematosus and Sjögren's syndrome. *Curr Opin Rheumatol* 2009; 21: 448-53.
- 17. SCOFIELD RH, BRUNER GR, HARLEY JB, NAMJOU B: Autoimmune thyroid disease is associated with a diagnosis of secondary Sjögren's syndrome in familial systemic lu-

pus. Ann Rheum Dis 2007; 66: 410-3.

- PAN HF, YE DQ, WANG Q et al.: Clinical and laboratory profiles of systemic lupus erythematosus associated with Sjögren syndrome in China: a study of 542 patients. *Clin Rheumatol* 2008; 27: 339-43.
- RUACHO G, KVARNSTRÖM M, ZICKERT A et al.: Sjögren syndrome in systemic lupus erythematosus: a subset characterized by a systemic inflammatory state. J Rheumatol 2020; 47: 865-75.
- 20. GOTTENBERG JE, DÖRNER T, BOOTSMA H et al.: Efficacy of epratuzumab, an anti-CD22 monoclonal IgG antibody, in systemic lupus erythematosus patients with associated sjögren's syndrome: post hoc analyses from the EMBODY trials. Arthritis Rheumatol 2018; 70: 763-73.
- GOULES AV, ARGYROPOULOU OD, PEZOU-LAS VC *et al.*: Primary Sjögren's syndrome of early and late onset: distinct clinical phenotypes and lymphoma development. *Front Immunol* 2020; 11: 594096.
- 22. ANQUETIL C, HACHULLA E, MACHURON F et al.: Is early-onset primary Sjögren's syndrome a worse prognosis form of the disease? *Rheumatology* (Oxford) 2019; 58: 1163-7.
- BAER AN, MAYNARD JW, SHAIKH F, MAGDER LS, PETRI M: Secondary Sjögren's syndrome in systemic lupus erythematosus defines a distinct disease subset. *J Rheumatol* 2010; 37: 1143-9.
- HEATON JM: Sjögren's syndrome and systemic lupus erythematosus. *Br Med J* 1959; 1: 466-9.
- 25. ISENBERG DA: Systemic lupus erythematosus and Sjögren's syndrome: historical perspective and ongoing concerns. *Arthritis Rheum* 2004; 50: 681-3.
- 26. ANDONOPOULOS AP, SKOPOULI FN, DIMOU GS, DROSOS AA, MOUTSOPOULOS HM: Sjögren's syndrome in systemic lupus erythematosus. J Rheumatol 1990; 17: 201-4.
- 27. XU D, TIAN X, ZHANG W, ZHANG X, LIU B, ZHANG F: Sjögren's syndrome-onset lupus patients have distinctive clinical manifestations and benign prognosis: a case-control study. *Lupus* 2010; 19: 197-200.
- GÁL I, LAKOS G, ZEHER M: Comparison of the anti-Ro/SSA autoantibody profile between patients with primary and secondary Sjögren's syndrome. *Autoimmunity* 2000; 32: 89-92.
- 29. ZAMPELI E, MAVROMMATI M, MOUTSO-POULOS HM, SKOPOULI FN: Anti-Ro52 and/ or anti-Ro60 immune reactivity: autoantibody and disease associations. *Clin Exp Rheumatol* 2020; 38 (Suppl. 126): S134-41.
- 30. ASSAN F, SEROR R, MARIETTE X, NOC-TURNE G: New 2019 SLE EULAR/ACR classification criteria are valuable for distinguishing patients with SLE from patients with pSS. *Ann Rheum Dis* 2019 Sep 9, online ahead of print, PMID 31501139.
- 31. LÖFSTRÖM B, BACKLIN C, SUNDSTRÖM C, EKBOM A, LUNDBERG IE: A closer look at non-Hodgkin's lymphoma cases in a national Swedish systemic lupus erythematosus cohort: a nested case-control study. Ann Rheum Dis 2007; 66: 1627-32.
- 32. BERNATSKY S, RAMSEY-GOLDMAN R, JOSEPH L *et al.*: Lymphoma risk in systemic

lupus: effects of disease activity versus treatment. *Ann Rheum Dis* 2014; 73: 138-42.

- 33. REED JH, VERSTAPPEN GM, RISCHMUEL-LER M, BRYANT VL: When B cells break bad: development of pathogenic B cells in Sjögren's syndrome. *Clin Exp Rheumatol* 2020; 38 (Suppl. 126): S271-82.
- 34. VOSSENKÄMPER A, LUTALO PM, SPEN-CER J: Translational Mini-Review Series on B cell subsets in disease. Transitional B cells in systemic lupus erythematosus and Sjögren's syndrome: clinical implications and effects of B cell-targeted therapies. *Clin Exp Immunol* 2012; 167: 7-14.
- 35. MINGUENEAU M, BOUDAOUD S, HASKETT S et al.: Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren's signature correlating with disease activity and glandular inflammation. J Allergy Clin Immunol 2016; 137: 1809-21.e12.
- WEISSENBERG SY, SZELINSKI F, SCHRE-ZENMEIER E *et al.*: Identification and characterization of post-activated B cells in systemic autoimmune diseases. *Front Immunol* 2019; 10: 2136.
- 37. HANSEN A, LIPSKY PE, DÖRNER T: B cells in Sjögren's syndrome: indications for disturbed selection and differentiation in ectopic lymphoid tissue. *Arthritis Res Ther* 2007; 9: 218.
- HANSEN A, DARIDON C, DÖRNER T: What do we know about memory B cells in primary Sjögren's syndrome? *Autoimmun Rev* 2010; 9: 600-3.
- 39. SAMY E, WAX S, HUARD B, HESS H, SCHNEIDER P: Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. *Int Rev Immunol* 2017; 36: 3-19.
- 40. NAVARRA SV, GUZMÁN RM, GALLACHER AE et al.: Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377: 721-31.
- 41. FURIE R, PETRI M, ZAMANI O *et al.*: A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. *Arthritis Rheum* 2011; 63: 3918-30.
- MURPHY G, ISENBERG DA: New therapies for systemic lupus erythematosus - past imperfect, future tense. *Nat Rev Rheumatol* 2019; 15: 403-12.
- 43. MARIETTE X, SEROR R, QUARTUCCIO L et al.: Efficacy and safety of belimumab in primary Sjögren's syndrome: results of the BELISS open-label phase II study. Ann Rheum Dis 2015; 74: 526-31.
- 44. LEE DSW, ROJAS OL, GOMMERMAN JL: B cell depletion therapies in autoimmune disease: advances and mechanistic insights. *Nat Rev Drug Discov* 2021; 20: 179-99.
- 45. MERRILL JT, NEUWELT CM, WALLACE DJ et al.: Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, doubleblind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 2010; 62: 222-33.
- 46. ROVIN BH, FURIE R, LATINIS K *et al.*: Efficacy and safety of rituximab in patients

with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. *Arthritis Rheum* 2012; 64: 1215-26.

- 47. FISHER BA, EVERETT CC, ROUT J et al.: Effect of rituximab on a salivary gland ultrasound score in primary Sjögren's syndrome: results of the TRACTISS randomised double-blind multicentre substudy. Ann Rheum Dis 2018; 77: 412-6.
- DEVAUCHELLE-PENSEC V, MARIETTE X, JOUSSE-JOULIN S et al.: Treatment of primary Sjögren syndrome with rituximab: a randomized trial. Ann Intern Med 2014; 160: 233-42.
- 49. FASANO S, ISENBERG DA: Present and novel biologic drugs in primary Sjögren's syndrome. *Clin Exp Rheumatol* 2019; 37 (Suppl. 118): S167-74.
- SEROR R, NOCTURNE G, MARIETTE X: Current and future therapies for primary Sjögren syndrome. *Nat Rev Rheumatol* 2021; 17: 475-86.
- 51. SHIPA M, EMBLETON-THIRSK A, PARVAZ M et al.: Effectiveness of belimumab after rituximab in systemic lupus erythematosus: a randomized controlled trial. Ann Intern Med 2021; 174: 1647-57.
- 52. MARIETTE X, BALDINI C, BARONE F et al.: OP0135. Safety and efficacy of subcutaneous belimumab and intravenous rituximab combination in patients with primary Sjögren's syndrome: a phase 2, randomised, placebo-controlled 68-week study. Ann Rheum Dis 2021; 80 (Suppl. 1): 78.
- 53. HUANG JF, YAFAWI R, ZHANG M et al.: Immunomodulatory effect of the topical ophthalmic Janus kinase inhibitor tofacitinib (CP-690,550) in patients with dry eye disease. *Ophthalmology* 2012; 119: e43-50.
- 54. FELTEN R, SCHER F, SIBILIA J, GOTTEN-BERG JE, ARNAUD L: The pipeline of targeted therapies under clinical development for primary Sjögren's syndrome: A systematic review of trials. *Autoimmun Rev* 2019; 18: 576-82.
- 55. PONTARINI E, VERSTAPPEN GM, GRI-GORIADOU S, KROESE FGM, BOOTSMA H, BOMBARDIERI M: Blocking T cell costimulation in primary Sjögren's syndrome: rationale, clinical efficacy and modulation of peripheral and salivary gland biomarkers. *Clin Exp Rheumatol* 2020; 38 (Suppl. 126): S222-7.
- 56. CAN G, SARIOĞLU S, BIRLIK M et al.: The prevalence of Sjögren's syndrome and sicca symptoms in patients with systemic sclerosis and alpha-smooth muscle actin expression in biopsy specimens from minor salivary glands. Turk J Med Sci 2021; 51: 1875-82.
- COLL J, RIVES A, GRIÑÓ MC, SETOAIN J, VIVANCOS J, BALCELLS A: Prevalence of Sjögren's syndrome in autoimmune diseases. Ann Rheum Dis 1987; 46: 286-9.
- CIPOLETTI JF, BUCKINGHAM RB, BARNES EL *et al.*: Sjögren's syndrome in progressive systemic sclerosis. *Ann Intern Med* 1977; 87: 535-41.
- 59. OSIAL TA, WHITESIDE TL, BUCKINGHAM RB et al.: Clinical and serologic study of Sjögren's syndrome in patients with progressive systemic sclerosis. Arthritis Rheum

1983; 26: 500-8.

- 60. DROSOS AA, ANDONOPOULOS AP, COSTOPOULOS JS, STAVROPOULOS ED, PAPADIMITRIOU CS, MOUTSOPOULOS HM: Sjögren's syndrome in progressive systemic sclerosis. J Rheumatol 1988; 15: 965-8.
- PAKOZDI A, NIHTYANOVA S, MOINZADEH P, ONG VH, BLACK CM, DENTON CP: Clinical and serological hallmarks of systemic sclerosis overlap syndromes. *J Rheumatol* 2011; 38: 2406-9.
- 62. SALLIOT C, MOUTHON L, ARDIZZONE M et al.: Sjogren's syndrome is associated with and not secondary to systemic sclerosis. *Rheumatology* (Oxford) 2007; 46: 321-6.
- 63. MELSENS K, LEONE MC, PAOLINO S et al.: Nailfold capillaroscopy in Sjögren's syndrome: a systematic literature review and standardised interpretation. *Clin Exp Rheumatol* 2020; 38 (Suppl. 126): S150-7.
- 64. AVOUAC J, SORDET C, DEPINAY C et al.: Systemic sclerosis-associated Sjögren's syndrome and relationship to the limited cutaneous subtype: results of a prospective study of sicca syndrome in 133 consecutive patients. *Arthritis Rheum* 2006; 54: 2243-9.
- 65. KOBAK S, OKSEL F, AKSU K, KABASAKAL Y: The frequency of sicca symptoms and Sjögren's syndrome in patients with systemic sclerosis. *Int J Rheum Dis* 2013; 16: 88-92.
- 66. BOURNIA VK, DIAMANTI KD, VLACHOY-IANNOPOULOS PG, MOUTSOPOULOS HM: Anticentromere antibody positive Sjögren's Syndrome: a retrospective descriptive analysis. Arthritis Res Ther 2010; 12: R47.
- 67. SALLIOT C, GOTTENBERG JE, BENGOUFA D, DESMOULINS F, MICELI-RICHARD C, MARIETTE X: Anticentromere antibodies identify patients with Sjögren's syndrome and autoimmune overlap syndrome. *J Rheumatol* 2007; 34: 2253-8.
- 68. BALDINI C, MOSCA M, DELLA ROSSA A et al.: Overlap of ACA-positive systemic sclerosis and Sjögren's syndrome: a distinct clinical entity with mild organ involvement but at high risk of lymphoma. Clin Exp Rheumatol 2013; 31: 272-80.
- 69. LEE KE, KANG JH, LEE JW et al.: Anti-centromere antibody-positive Sjögren's syndrome: A distinct clinical subgroup? Int J Rheum Dis 2015; 18: 776-82.
- TSUKAMOTO M, SUZUKI K, TAKEUCHI T: Clinical and immunological features of anti-centromere antibody-positive primary Sjögren's syndrome. *Rheumatol Ther* 2018; 5: 499-505.
- LI Y, BOOKMAN AAM: Comparison of effect on sicca symptoms of anticentromere antibody-positive sjögren syndrome and primary Sjögren syndrome alone. *J Rheumatol* 2020; 47: 876-80.
- 72. BAER AN, MEDRANO L, MCADAMS-DE-MARCO M, GNIADEK TJ: Association of anticentromere antibodies with more severe exocrine glandular dysfunction in Sjögren's syndrome: Analysis of the Sjögren's International Collaborative Clinical Alliance Cohort. Arthritis Care Res (Hoboken) 2016; 68: 1554-9.
- 73. KAJIO N, TAKESHITA M, SUZUKI K et al.: Anti-centromere antibodies target cen-

tromere- kinetochore macrocomplex: a comprehensive autoantigen profiling. *Ann Rheum Dis* 2021; 80: 651-9.

- 74. GELBER AC, PILLEMER SR, BAUM BJ et al.: Distinct recognition of antibodies to centromere proteins in primary Sjögren's syndrome compared with limited scleroderma. Ann Rheum Dis 2006; 65: 1028-32.
- 75. FUJIMOTO M, SHIMOZUMA M, YAZAWA N et al.: Prevalence and clinical relevance of 52-kDa and 60-kDa Ro/SS-A autoantibodies in Japanese patients with systemic sclerosis. Ann Rheum Dis 1997; 56: 667-70.
- KOBAK S, KOBAK AC, KABASAKAL Y, DOGANAVSARGIL E: Sjögren's syndrome in patients with ankylosing spondylitis. *Clin Rheumatol* 2007; 26: 173-5.
- VLACHOYIANNOPOULOS PG, MOUTSO-POULOS HM: Anticentromere (ACA)-positive Sjögren's syndrome: a disease entity? *Clin Exp Rheumatol* 2013; 31: 163-4.
- NOTARSTEFANO C, CROIA C, PONTARINI E et al.: A clinical and histopathological analysis of the anti-centromere antibody positive subset of primary Sjögren's syndrome. *Clin Exp Rheumatol* 2018; 36 (Suppl. 112): S145-9.
- LEE KA, CHOI W, KIM J, KIM HS: High prevalence of salivary gland ultrasound abnormalities in systemic sclerosis. *Joint Bone Spine* 2021; 88: 105113.
- 80. SCHERLINGER M, LUTZ J, GALLI G et al.: Systemic sclerosis overlap and non-overlap syndromes share clinical characteristics but differ in prognosis and treatments. *Semin Arthritis Rheum* 2021; 51: 36-42.
- LESCOAT A, ROOFEH D, KUWANA M, LAFY-ATIS R, ALLANORE Y, KHANNA D: Therapeutic approaches to systemic sclerosis: recent approvals and future candidate therapies. *Clin Rev Allergy Immunol* 2021 Sep 1, PMID: 34468946.
- MELISSAROPOULOS K, DAOUSSIS D: B cells in systemic sclerosis: from pathophysiology to treatment. *Clin Rheumatol* 2021; 40: 2621-31.
- 83. GOSWAMI RP, RAY A, CHATTERJEE M, MUKHERJEE A, SIRCAR G, GHOSH P: Rituximab in the treatment of systemic sclerosis-related interstitial lung disease: a systematic review and meta-analysis. *Rheumatology* (Oxford) 2021; 60: 557-67.
- 84. TANG R, YU J, SHI Y et al.: Safety and efficacy of Rituximab in systemic sclerosis: A systematic review and meta-analysis. Int Immunopharmacol 2020; 83: 106389.
- 85. KHANNA D, DENTON CP, JAHREIS A et al.: Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. *Lancet* 2016; 387: 2630-40.
- 86. KHANNA D, LIN CJF, FURST DE et al.: Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Respir Med* 2020; 8: 963-74.
- 87. KHANNA D, LESCOAT A, ROOFEH D et al.: Systemic sclerosis-associated interstitial lung disease: how to incorporate two food and drug administration-approved therapies in clinical practice. Arthritis Rheumatol 2022; 74: 13-27.

- FELTEN R, DEVAUCHELLE-PENSEC V, SEROR R et al.: Interleukin 6 receptor inhibition in primary Sjögren syndrome: a multicentre double-blind randomised placebocontrolled trial. Ann Rheum Dis 2020 Nov 18, PMID 33208345.
- 89. PETITDEMANGE A, BLAESS J, SIBILIA J, FELTEN R, ARNAUD L: Shared development of targeted therapies among autoimmune and inflammatory diseases: a systematic repurposing analysis. *Ther Adv Musculoskelet Dis* 2020; 12: 1759720X20969261.
- 90. FELTEN R, GIANNINI M, NESPOLA B et al.: Refining myositis associated with primary Sjögren's syndrome: data from the prospective cohort ASSESS. *Rheumatology* (Oxford) 2021; 60: 675-81.
- COLAFRANCESCO S, PRIORI R, GATTAME-LATA A et al.: Myositis in primary Sjögren's syndrome: data from a multicentre cohort. *Clin Exp Rheumatol* 2015; 33: 457-64.
- 92. CAVAGNA L, TRALLERO-ARAGUÁS E, MEL-ONI F et al.: Influence of antisynthetase antibodies specificities on antisynthetase syndrome clinical spectrum time course. J Clin Med 2019; 8: 2013.
- 93. CAVAGNA L, MELONI F, MEYER A et al.: Clinical spectrum time course in non-Asian patients positive for anti-MDA5 antibodies. *Clin Exp Rheumatol* 2022; 40(2): 274-83.
- 94. SCLAFANI A, D'SILVA KM, LITTLE BP et al.: Presentations and outcomes of interstitial lung disease and the anti-Ro52 autoantibody. *Respir Res* 2019; 20: 256.
- 95. FISCHER A, ANTONIOU KM, BROWN KK et al.: An official European Respiratory Society/American Thoracic Society research statement: interstitial pneumonia with autoimmune features. Eur Respir J 2015; 46: 976-87
- 96. XU A, YE Y, FU Q et al.: Prognostic values

of anti-Ro52 antibodies in anti-MDA5-positive clinically amyopathic dermatomyositis associated with interstitial lung disease. *Rheumatology* (Oxford) 2021; 60: 3343-51.

- XING X, LI A, LI C: Anti-Ro52 antibody is an independent risk factor for interstitial lung disease in dermatomyositis. *Respir Med* 2020; 172: 106134.
- SHI J, LI S, YANG H *et al.*: Clinical profiles and prognosis of patients with distinct antisynthetase autoantibodies. *J Rheumatol* 2017; 44: 1051-7.
- 99. SABBAGH S, PINAL-FERNANDEZ I, KISHI T et al.: Anti-Ro52 autoantibodies are associated with interstitial lung disease and more severe disease in patients with juvenile myositis. Ann Rheum Dis 2019; 78: 988-95.
- 100. TIRELLI C, MORANDI V, VALENTINI A et al.: Multidisciplinary approach in the early detection of undiagnosed connective tissue diseases in patients with interstitial lung disease: a retrospective cohort study. Front Med (Lausanne) 2020; 7: 11.
- 101. VITALI C, BOMBARDIERI S, MOUTSOPOU-LOS HM *et al.*: Preliminary criteria for the classification of Sjögren's syndrome. Results of a prospective concerted action supported by the European Community. *Arthritis Rheum* 1993; 36: 340-7.
- 102. VITALI C, BOMBARDIERI S, MOUTSOPOU-LOS HM *et al.*: Assessment of the European classification criteria for Sjögren's syndrome in a series of clinically defined cases: results of a prospective multicentre study. The European Study Group on Diagnostic Criteria for Sjögren's Syndrome. *Ann Rheum Dis* 1996; 55: 116-21.
- 103. VITALI C, BOMBARDIERI S, JONSSON R et al.: Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-Europe-

an Consensus Group. *Ann Rheum Dis* 2002; 61: 554-8.

- 104. BLOCH KJ, BUCHANAN WW, WOHL MJ, BUNIM JJ: Sjögren's syndrome. A clinical, pathological, and serological study of sixtytwo cases. *Medicine* (Baltimore) 1965; 44: 187-231.
- 105. LEROY EC, BLACK C, FLEISCHMAJER R et al.: Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988; 15(2): 202-5.
- 106. MASI A: Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum 1980; 23: 581-90.
- 107. LEROY EC, MEDSGER TA: Criteria for the classification of early systemic sclerosis. *J Rheumatol* 2001; 28: 1573-6.
- 108. SHIBOSKI SC, SHIBOSKI CH, CRISWELL L et al.: American College of Rheumatology classification criteria for Sjögren's syndrome: a data-driven, expert consensus approach in the Sjögren's International Collaborative Clinical Alliance cohort. Arthritis Care Res (Hoboken) 2012; 64: 475-87.
- 109. SHIBOSKI CH, SHIBOSKI SC, SEROR R et al.: 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren's syndrome: A consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis 2017; 76: 9-16.
- 110. VAN DEN HOOGEN F, KHANNA D, FRANSEN J et al.: 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2013; 65: 2737-47.