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Abstract: In the context of global warming, agriculture faces severe challenges such as water scarcity
and soil erosion. Key to achieving soil sustainability is the choice of farming practices, the con-
sequences of which are generally site-specific. In this study, the ability of Electrical Resistivity
Tomography (ERT) and Electro Magnetic Induction (EMI) methods were assessed for monitoring
the effects of conventional (CONV) and conservation (CONS) agricultural practices. The aim is to
highlight differences in soil water distribution caused by both short- and long-term effects of the two
different practices. Results demonstrated that both ERT and EMI provided sufficient information to
distinguish between the effects of CONV and CONS, while traditional direct measurements, being
punctual techniques, lacked sufficient spatial resolution. The ERT transects showed that the soil
was much more homogeneous as a result of CONS practices, resulting in a higher sensitivity to
changes in the water content. Conversely, due to the heterogeneous soil structure under CONV, water
distribution was more irregular and difficult to predict. Similar patterns were also observed with the
EMI surveys, with a strong link to spatial variability. Finally, we conclude that for CONV soil, the
accessible water for the plant is clearly controlled by the soil heterogeneities rather than by the forcing
atmospheric conditions. This study is a first step towards paving the way for more refined hydrology
models to identify which soil parameters are key to controlling spatial and temporal changes in soil
water content.

Keywords: agrogeophysics; ERT; EMI; proximal sensing; conservation agriculture

1. Introduction

The importance of soil structure for sustainable production is increasingly recognized
because of its central role in plant growth, soil ecological functioning, and impacts on
water and energy fluxes to/from the atmosphere [1,2]. However, as a product of the
fragile interaction of soil biological and anthropic activity [3,4], soil structure and soil inner
processes are difficult to measure, both in time and space, because of our limited capability
of monitoring the soil profile at the necessary spatial scale and time-frequency. Indeed,
measurements of relevant metrics often rely on time-consuming, invasive physical methods
that can be only episodically performed.

Geophysical methods are non-invasive sensing techniques that can measure the physi-
cal (often electrical and mechanical) properties of the investigated media. They can be used
either qualitatively by identifying anomalies and contrasts and thus spatial heterogeneities
or quantitatively by relating them to properties and states of interest through physical
relationships [5,6]. In agriculture, geophysical methods, such as electrical resistivity tomog-
raphy (ERT) and electromagnetic surveys, are increasingly playing an important role in the
characterization of soil spatial variability and hydrological processes, of primary interest
for effective management and precision farming [7–9]. ERT has been used to monitor the
spatial variability of soil physico-chemical properties [10–13] and the effects of different

Remote Sens. 2022, 14, 6243. https://doi.org/10.3390/rs14246243 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14246243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8633-1000
https://orcid.org/0000-0002-2284-7355
https://orcid.org/0000-0001-7748-5470
https://orcid.org/0000-0001-7199-2885
https://orcid.org/0000-0002-9060-5606
https://orcid.org/0000-0001-9081-868X
https://doi.org/10.3390/rs14246243
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14246243?type=check_update&version=1


Remote Sens. 2022, 14, 6243 2 of 19

agricultural practices (cover crops, compaction, irrigation, tillage, and fertilization) on
soil water dynamics and crop yields [14]. ERT has become a standard tool in agricultural
investigation due to its robust nature, proving its suitability for a range of tasks, such as
delineating soil horizons, estimation of water content, and monitoring purposes [15–18].
Surveys are performed with multi-electrodes devices in order to obtain the electrical resis-
tivity distribution of the subsoil in a 2D or 3D model. An array of dozens of electrodes is
coupled with soil (either at the surface or buried in depth) to ensure galvanic contact with
the ground. The apparent resistivities ρa (Ωm) of the subsoil are retrieved by injecting the
current I (A) in two of the electrodes (current electrodes, called A-B) and by recording the
potential difference ∆V (V) that arises between two other electrodes (the potential ones,
called M-N). The measurements are performed along the entire electrodes array, using a
number of A-B, M-N configurations, generating a pseudo-section of apparent resistivities
(i.e., the resistivity of an equivalent homogeneous subsurface producing the same ∆V/I
ratio) [19]. The spatial resolution of the survey is inversely related to the distance between
electrodes: the smaller the spacing, the higher the resolution. The current penetration
depends mainly on the electrical properties of the investigated media, the spacing and the
configuration of electrode quadrupoles [20], but also on the acquisition sequence. The in-
version process of the collected dataset finally produces an estimate of the real distribution
of the electrical resistivity in the subsoil. This can be performed by using codes which,
starting from a discretization grid, iteratively find the best subsoil resistivity model that
minimize the misfit between the measured and the computed dataset, often also satisfying
a-priori constraints such as smoothness [20,21].

Electromagnetic induction (EMI) methods are a proximal sensing approach that has
increasingly been used for soil mapping and related precision farming purposes [22–26].
Note that ERT and EMI measure, albeit in different manners, the same physical property, i.e.,
electrical resistivity (or its reciprocal electrical conductivity). EMI has been widely applied
in environmental applications [27] to rapidly map soil electrical conductivity (hereinafter
EC) of the subsoil related to variations of, e.g., salinity [28,29], water content [30,31], soil
texture [25,32], soil organic matter [33,34]. In agricultural soils, the resistivity range is
commonly low (10−1–102 Ωm), making the response adequate to the resolution limits of
EMI instruments (~0.1–1000 mS/m, www.gfinstruments.cz, accessed on 9 November 2022,
1 S/m = 1/Ωm) [28,35,36]. This fact, added to EMI’s ease of use and fast data collection
over large areas, is the main reason why this technique is particularly popular in precision
farming. Recently, the implementation of easy-to-use EMI inversion codes has led to a
major step forward, allowing the user to build quasi-3D electrical conductivity models
of the near-surface [37–39]. While EMI inversion cannot match the detailed results of
ERT, EMI’s capability to collect data over very large areas in a very short time largely
overwhelms EMI limitations. ERT and EMI together make a perfect couple of techniques
that can cover large areas with the necessary local detailed calibration.

Electrical and electromagnetic techniques have been widely and successfully used
in the characterization of soil properties (bulk density and clay content) as well as state
variables (soil salinity, water content, and water saturation), as they are sensitive, through
the effect on bulk electrical conductivity, to porosity, pore water conductivity, saturation,
grain mineralogy, and bulk density [7,40–42]. Some of these properties, such as texture, are
stable in the long term. Others, such as soil moisture, depend on the forcing conditions
and thus vary over time, demanding a time-lapse survey approach, where repeated mea-
surements are conducted using the same spatial configuration. However, although recent
developments have facilitated ERT and EMI acquisition by making it easier to perform, an
inherent uncertainty exists in the identification of the dominant factors that influence EC
variability at a specific site (such as soil moisture, temperature, and salinity).

Coupling proximal geophysical sensing with below-ground direct measurements can
increase our understanding of the soil response [43,44]. Furthermore, coupling geophysically-
based proximal measurements with meteorological data allows for a more complete under-
standing of the whole soil–plant–atmosphere continuum (SPAC) system. In this context,
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a geophysical time-lapse approach can highlight with adequate space-time resolution
the soil moisture changes induced by seasonal variations, precipitation, and root water
uptake [41,45–47].

Consequently, geophysical surveying is particularly promising in the study of agro-
nomic issues and practices [9]. Traditional farming approaches rely on soil tillage before
seeding, including plowing and secondary tillage operations. Heavy machinery is required,
on which are mounted operating tools that increase their weight even more. Plowing
modifies the natural soil structure and biological activity. Support for conservation agricul-
ture (CONS) is part of a broader view towards sustainable development where economic
and environmental objectives can be met in order to “produce more with less”. CONS is
a system of agronomic practices that minimizes mechanical soil disturbance, maintains
permanent soil cover (i.e., crop residues, cover crops), and prescribes crop rotation [48–50].
In recent years, CONS has received increasing attention as a solution to minimize soil
threats caused by intensive agricultural systems (e.g., organic content depletion, microor-
ganism habitat loss, compaction) [51,52]. However, awareness is required as CONS has
shown both negative and positive effects on soil structure properties (e.g., bulk density,
soil strength) depending on the local context [53–55]. Even though this practice has been
applied worldwide for a few decades, CONS effects on soil water dynamics are still a
subject of heated controversial debates.

The aim of this study was to investigate the potential of ERT and EMI to highlight
soil water dynamics with adequate space and time resolution, with the specific goal of
understanding the effects of CONV and CONS management practices. Both EMI and ERT
surveys can highlight differences between conservation and traditional soil management
regarding electro-magnetic properties as a function of soil structure and moisture content.
To this end, these methods have been applied at different scales: (i) at a detailed-spatial
resolution scale, where ERT measurements have been collected in time-lapse along the
same profiles, (ii) at a lower-spatial resolution scale, but larger aerial coverage, where EMI
surveys were collected to highlight spatial heterogeneities.

2. Materials and Methods
2.1. Site Description

Experimental treatments were established in 2010 in the Veneto Region (North East-
ern Italy) at an experimental farm located in the low-lying Venetian plain (45◦ 2.9080N
11◦ 52.8720E, 2 m a.s.l.) (Figure 1). The monitoring activity was conducted in 2017–2018
season On soil classified as Hypocalcic Calcisol (WRB, 2006) with a silt-loam average texture
(Table 1). The water table level ranged from about −250 cm in summer to −70 cm in winter
from the land surface. The climate is sub-humid, with an annual mean rainfall of 673 mm,
uniformly distributed throughout the year. Temperatures are lower in January (−0.2 ◦C
minimum average) and higher in July (30.6 ◦C maximum average).

The experiment compared conventional (CONV) versus conservation (CONS) man-
agement systems. Prior to the CONS transition (before 2010), the conditions of both fields
were similar in terms of BD [11] and SOC [56,57]. The CONS protocol followed a set of
practices outlined in Measure 214, Submeasure 1, “Eco-compatible management of agricul-
tural lands” of the Rural Development Programme (RDP) 2007–2013 supported by Veneto
Region. Summarizing, it required no-tillage, cover crop usage, and crop residue retention
on soil surface. Contrariwise, the CONV management system used traditional tillage prac-
tices: moldboard plowing (35 cm depth), crop residue incorporation, and disk-harrowing
to a depth of 10 cm. The experimental fields were approximately 500 m long by 30 m wide.
Until 2014, the 4-yr crop rotation consisted of wheat (Triticum aestivum L.), oilseed rape
(Brassica napus L.), maize (Zea mays L.), and soybean (Glycine max (L.) Merr.). From 2014
onwards, a simplified, 3-yr crop rotation (wheat–maize–soybean) was applied. In CONS,
cover crops were grown between the main crops. Until 2014, sorghum (Sorghum vulgare
Pers. var. sudanense) was grown during spring–summer, and a mix of vetch (Vicia sativa L.)
and barley (Hordeum vulgare L.) was grown during autumn–winter. In the following years,
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only barley or winter wheat was grown in autumn–winter. In CONV, the soil remained
bare in the time intervals between the main crops. In CONV, the base dressing fertilizer
was applied 1–2 weeks before sowing; subsurface band fertilization was applied at sowing
in CONS. In both systems, mineral fertilization was integrated by side-dressing in maize
(one treatment) and wheat (two treatments). Cover crops received no additional fertiliza-
tion. Pesticides were applied based on crop need and were the same for both treatments.
The winter cover crop was suppressed with N-(phosphonomethyl) glycine; sorghum was
suppressed by mechanical shredding. Throughout our experiment, CONV field remained
bare while CONS was covered by cover crops.
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Figure 1. The Sasse-Rami experimental farm location and zoom to the CONV and CONS fields.

Table 1. Main soil physical and chemical characteristics (top 50 cm) of the experimental farm.

Characteristic Unit Value

Sand g 100 g−1 18.4
Silt g 100 g−1 57.8

Clay g 100 g−1 23.8
pH - 8.6

Carbonate g 100 g−1 13.0
Active carbonate g 100 g−1 3.0
Organic carbon g 100 g−1 0.8

Available P mg kg−1 6.0
Exchangeable Ca2+ meq 100 g−1 15.5
Exchangeable Mg2+ meq 100 g−1 1.4

Exchangeable K+ meq 100 g−1 0.2

2.2. Data Collection

Experiments occurred between December 2017 and April 2018, coupling soil charac-
teristics measurements and geophysical surveys. During the course of the experiment, soil
was bare in CONV while winter wheat cover crop was grown between tillering to boot
stage in CONS. For each field, three monitoring stations were equipped with multi-sensor



Remote Sens. 2022, 14, 6243 5 of 19

probes (HD3510.2, Delta OHM, GHM GROUP, Selvazzano Dentro, Italy) which continu-
ously monitored soil temperature (T, ◦C) and volumetric water content (VWC, %) at three
depths (10, 30, and 55 cm). Prior to field installation, the soil moisture sensors, operating
with a frequency domain reflectometry technique, were calibrated in the laboratory to an
accuracy of ±3%. Data were recorded every 30 min and regularly monitored by a radio
frequency wireless remote control system using ISM (Industrial, Scientific, and Medical)
radio bands. The system connected the monitoring probes to a weather station (Delta OHM,
GHM GROUP, Selvazzano Dentro, Italy) via GSM technology. The weather station was
equipped with a thermometer, hygrometer, anemometer, pyranometer, and rain gauge.
Five time-lapse geophysical surveys—i.e., ERT and EMI—were conducted on 15/12/2017,
05/02/2018, 14/03/2018, 26/03/2018, and 26/04/2018. On the same date as the last survey,
soil cores were collected with a hydraulic sampler (7-cm diameter) down to 90 cm at the
same location as the monitoring stations (six in total) and then cut in 0–25, 25–50 and
50–90 cm layers. Bulk density (BD) was estimated by the core method [58], and particle size
distribution through laser diffraction (Mastersizer 2000, Malvern Instruments). A dedicated
algorithm was used to convert diffraction values into pipette values [59].

In addition, soil texture retrieved from the previous study by Longo et al. [60] was
used to analyze EC-texture correlations across the fields (Figure 1).

2.3. Electrical Resistivity Tomography

Surveys were collected using a Syscal Junior 72 resistivimeter (Iris Instruments, Or-
leans, France) with a Wenner array on a transect line of 14.1 m composed of 48 stainless-steel
electrodes spaced 0.3 m. Electrodes were hammered into the first few centimeters of the
ground, looking for the best compromise to ensure electrical contact and point-like current
injection. The measured contact resistances had values ranging from 0.1 to 5 kΩ, and the
stacking quality factor “Q” was set to 1% (3 to 6 stacks). In this study case, first, all apparent
resistivities ρa outside the range 0–30 Ωm (about ten rejected data in total) were deleted,
and then the inversion process assuming a 5% error model was performed. The inversion
process of the acquired dataset has been performed with the ResIPy software [61], based
on the R2/R3t codes based on Occam’s inversion method [21].

To process time-lapse surveys, the software takes the first dataset as background model
and then inverts for the differences between consecutive time steps [61,62]. In this way, we
obtained changes in EC (difference %) during time by subtracting the first reference survey
from the following ones, converging in few iterations to a final RMS close to 1.

2.4. Frequency-Domain Electromagnetic Method

The EMI (based on a frequency-domain—FDEM—approach) surveys were performed
on the same dates as the ERT acquisitions in order to map the apparent EC (ECa) of
the subsurface. The electro-magnetometry technique in the frequency domain utilizes
low-frequency (~1–100 kHz) time variations in electromagnetic fields that originate at or
near the surface and diffuse into the subsurface, measuring the interaction between an
induced primary electromagnetic field and the resultant secondary electromagnetic field.
In particular, the operating principle of the terrain conductivity meter is based on classical
EM induction theory [38,63]. As schematically shown in Figure 2, a time-harmonic current
(with frequency in the order of the kHz) passes through the transmitter loop (Tx), and the
primary magnetic field Hp(t) generated in the transmitter is in-phase with the current. A
conductive ground responds to the time-varying primary magnetic flux by establishing
a system of electromagnetic eddy currents, whose secondary magnetic field Hs(t) tends
to oppose the change ∂Hp/∂t of the primary flux. The secondary magnetic field Hs is the
phase-shifted from Hp as a result of the induced currents. The magnitude of the phase shift
with the primary magnetic flux depends on the electrical conductivity distribution of the
ground. In general, the secondary magnetic field is delayed (and much smaller than) with
respect to the primary magnetic field but still detectable as its phase shift is close to π/2
with respect to the primary field.
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Figure 2. Schematic representation of a frequency-domain electromagnetic (FDEM) device, with the
corresponding primary and secondary magnetic fields (Hp-Hs) amplitudes and phase lags.

When measuring, both primary and secondary electromagnetic fields are sensed by
the receiver coils, and from their ratio, a depth-weighted ECa can be derived. The ratio
Hs/Hp is a complex number composed of an in-phase component and an out-of-phase, or
quadrature, component. This ratio is related to the instrument characteristics (operating
frequency, coil separation, and orientation) but also to the ground properties (magnetic,
conductive, and dielectric). Typically, dielectric properties can be ignored in the kHz
frequency range, and considering that most of the subsoils are practically non-magnetic,
the magnetic permeability µ of the ground is assumed to be equal to that of free space
(µ0 = 1.257 × 152 10−8 H/m) [38]. Therefore, when the so-called “Low Induction Number”
(LIN) conditions are verified (i.e., when the induction number β is <<1 [64]):

β = s

√
2

ωµ0σ
(1)

[σ is the conductivity of the soil, ω is the angular frequency (ω = 2πf) of the signal,
and s is the separation of the two coils] it is possible to derive the apparent conductivity σa
of the ground, assumed as a homogeneous half-space, as:

σa =
4

µ0ωr2 ImQ (2)

where ImQ is the imaginary ratio of secondary-to-primary field (Quadrature).
In our case, EMI data were collected using the GF Instruments CMD-Mini Explorer

(GF Instruments, Brno, Czech Republic), which operates at 30 kHz with a combination of
three coil spacing (0.32 m, 0.71 m, 1.18 m). Since the focus of this study was the shallowest
portion of the soil (<1 m), only the Vertical Coplanar Orientation (VCP) mode that is more
sensitive to the shallow subsurface, with nominal exploration depths of 0.25, 0.5, and 0.9 m,
was acquired and examined.

For each survey, the device was carried at the soil surface, placed on a dedicated wood
sledge, pulled by a tractor, and linked to it by a 4-m long rope. The travel speed was
approximately 7 km h−1, and the parallel transects were set about 7 m apart from each
other. Measurements were logged every 0.5 s and paired with coordinates obtained from
ProXT GPS receiver (Trimble, Sunnyvale, CA, USA) with decimetric accuracy.
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On each survey date, an average of 5000 points were acquired for each monitored field.
The surveys were carried out five times and distributed over a five months period, for a
total of ten data sets (2 treatments—CONV or CONS—by 5 surveys each). Since rainfall
induces sudden increases in soil moisture, at least in shallowest soil layers, an attempt was
made to conduct field measurements after significant rainfall events.

The measured data were filtered from outliers (values outside the mean ± 3 standard
deviations) and applying a smoothing window, replacing each data point with the average
of its neighbors (size = 5). Since EC is also sensitive to temperature, a correction is needed
for a proper interpretation of the surveys [65]. In this study, ECa values were corrected
using the model proposed by [35]:

EC25 = ECT × 0.4470 + 1.4034−( T
26.815 ) (3)

where EC25 (mS/m) is the apparent electrical conductivity at 25 ◦C and T is the temperature
(◦C) at the time of measurement. Note that the σa measured in the EMI surveys are “appar-
ent” since they represent integrated values over depth. Inverse methods need to be used to
convert the ECa measurements to a depth profile of EC [37,38]. The datasets were inverted
with the code EMagPy [38], using the Cumulative Sensitivity (CS) forward model and the
L-BFGS-B (Broyden–Fletcher–Goldfarb–Shanno) optimization method [66] to minimize
the total misfit between observed values and predicted values from the forward model
solution. Note that under the CS simplified assumption, three measurement configurations,
as in our case, are sufficient to produce an inverted profile as a function of depth. EMagPy
has the capability to perform quasi-2D inversions, generating inverted EC depth profiles
for each point of measurement. Four layers were set in the initial inversion model, with
interfaces at 0.25, 0.50, 0.90 m and >0.90 m depth. The convergence was achieved for a final
RMS misfit close to 1 for each survey.

2.5. Statistical Analysis

Treatment (CONV vs. CONS) effects on BD at the end of the experiment were tested
through a one-way ANOVA. The regression model between EC and VWC, soil temperature,
BD, sand, and clay was estimated by multiple stepwise regression with backward selection on
samples collected close to the monitoring stations (5 dates × 2 fields × 3 stations × 3 depths).
The significance entry level for an independent variable was set as p < 0.05. The possible
correlation between field variability of EC and textural classes obtained in the 18 positions
per field was also analyzed by estimating Person’s coefficients. The same statistical method
was applied between VWC and soil physical properties (BD, sand, silt, and clay) at the
three monitoring stations. The statistical analysis was performed using Statistica (StatSoft
Inc., Tulsa, OK, USA) and R (R Core Team, Vienna, Austria).

3. Results
3.1. Weather and Soil Monitoring

Throughout the experiment, the largest rainfall events were recorded in February and
March (96 and 113 mm, respectively), while minor events (2 to 5 mm) occurred in the first
months. Rainfall cumulated in a total of 266 mm with a maximum event of around 17 mm,
prior to the third survey (Figure 3).

Except for a drop in mid-March, the average air temperature remained over zero
in the winter season (4.5 ◦C, on average), fluctuating between −6.8 ◦C and 15.7 ◦C. In
April, the temperature started rising rapidly, reaching its maximum (27.3 ◦C) on 20 April
2018. Shallow subsurface temperature (<0.1 m depth) varied between CONS and CONV,
respectively, averaging 5.1 ◦C and 5.2 ◦C in the colder months and 14.6 ◦C and 13.1 ◦C in
the warmer months. CONV was also characterized by slightly higher daily fluctuations,
considering the standard deviation equal to 4.8 ◦C, compared to 3.8 ◦C in CONS. Variations
decreased in the deeper layers, where values between the treatments were comparable,
2.6 ◦C on average.



Remote Sens. 2022, 14, 6243 8 of 19
Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Time series of rainfalls [mm] and air temperatures [°C] from the weather station (Decem-
ber 2017–May 2018). The solid black line shows daily mean temperature values. The dashed red 
lines show the time of ERT and EMI surveys. 

Except for a drop in mid-March, the average air temperature remained over zero in 
the winter season (4.5 °C, on average), fluctuating between −6.8 °C and 15.7 °C. In April, 
the temperature started rising rapidly, reaching its maximum (27.3 °C) on 20 April 2018. 
Shallow subsurface temperature (<0.1 m depth) varied between CONS and CONV, re-
spectively, averaging 5.1 °C and 5.2 °C in the colder months and 14.6 °C and 13.1 °C in the 
warmer months. CONV was also characterized by slightly higher daily fluctuations, con-
sidering the standard deviation equal to 4.8 °C, compared to 3.8 °C in CONS. Variations 
decreased in the deeper layers, where values between the treatments were comparable, 
2.6 °C on average. 

The soil of the three monitoring stations was classified as silt loam. Soil VWC also 
varied according to the treatment (CONV or CONS—Figure 4). In general, daily values of 
CONS appeared more homogenous along the soil profile, while larger variations were 
observed in CONV (variation coefficient: 0.05 vs. 0.08). For instance, lower values were 
recorded in the shallow subsurface in CONV (ranging from 26.2–39.3%) compared to 
deeper layers (25.2–44.9%). Considering the middle layer, the two treatments were com-
parable in the colder months, while CONS dropped down to 21.8% from April. At 55 cm, 
CONS remained stable at 37.5% during dry periods while settling around 45% after rain-
fall events. Conversely, CONV values had lower variations after rainfall events averaging 
38.4% from December to March and 33.9% from March to the end of the experiment. Sim-
ilar behavior was observed at the intermediate monitoring depth (35 cm). 

 

Figure 4. Time series of soil temperature [°C] and soil volumetric water content [%] from the sensors 
installed in the two field sites (CONV and CONS). Dashed red lines show the time of ERT and EMI 
surveys. Data shown are the average of the three stations for each treatment. 

Figure 3. Time series of rainfalls [mm] and air temperatures [◦C] from the weather station (December
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The soil of the three monitoring stations was classified as silt loam. Soil VWC also
varied according to the treatment (CONV or CONS—Figure 4). In general, daily values
of CONS appeared more homogenous along the soil profile, while larger variations were
observed in CONV (variation coefficient: 0.05 vs. 0.08). For instance, lower values were
recorded in the shallow subsurface in CONV (ranging from 26.2–39.3%) compared to deeper
layers (25.2–44.9%). Considering the middle layer, the two treatments were comparable
in the colder months, while CONS dropped down to 21.8% from April. At 55 cm, CONS
remained stable at 37.5% during dry periods while settling around 45% after rainfall events.
Conversely, CONV values had lower variations after rainfall events averaging 38.4% from
December to March and 33.9% from March to the end of the experiment. Similar behavior
was observed at the intermediate monitoring depth (35 cm).
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Soil BD was significantly affected by the different treatments in all three layers, be-
ing 1.28 (±0.08) g cm−3 vs. 1.08 (±0.13) g cm−3 in 0–25 cm, 1.48 (±0.08) g cm−3 vs.
1.39 (±0.09) g cm−3 in 25–50 cm, and 1.51 (±0.02) g cm−3 vs. 1.34 (±0.14) g cm−3 in
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50–90 cm in CONS and CONV, respectively. In general, BD positively affected VWC in the
top 25 cm (r = 0.464, p < 0.05) (Table 2). On the other hand, the texture influence prevailed
in the deeper layer, being negatively correlated with sand (r = −0.688) and positively
correlated with silt and clay (r = 0.703 and 0.552, respectively).

Table 2. Correlation between VWC and BD, Sand, Silt, and Clay at different soil layers. Significant
(p < 0.05) Pearson’s r is reported in bold.

Depth (cm) BD Sand Silt Clay

VWC (0–25) 0.464 0.358 −0.372 −0.267
VWC (25–50) 0.213 0.310 −0.398 0.078
VWC (50–90) −0.297 −0.688 0.703 0.552

3.2. Electrical Resistivity Tomography

Figure 5 shows the variation of the inverted electrical resistivity (hereafter ER) 2D
sections over the course of the experiment for the CONS and CONV treatments. Note that
ER reached a maximum value of 100 Ωm, although the figure scale is limited to 25 Ωm.
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conservative (left) and the conventional treatment (right).

For the CONS, the spatial distribution of ER did not vary from December 2017 to March
2018. The very shallow subsurface (down to about 0.25 m depth) was more conductive
with respect to the deeper subsurface. In April 2018, contrasts of ER were enhanced by the
presence of an intermediate resistive layer (20 Ωm, on average) ranging from 0.25 to 0.5 m
depth. Note that for the CONS treatment, there was no appreciable lateral variability, while
a clear variation is observed with depth.

Conversely, for the CONV treatment, the ER distribution is considerably more hetero-
geneous in space and in time. In this case, the shallowest layer was resistive as compared
to the underlying layers for all time steps except for the mid-March survey. The contrasts
of ER between the layers were higher in the case of the CONV treatment as compared to
the CONS treatment.

In Figure 6, the same data were inverted using a time-lapse inversion approach and
revealed variations in both treatments that occurred on 14 March as a result of an important
rainfall event (see Figure 3) with a decrease of the ER up to 10% homogeneously all over
the section in the CONS treatment. At the same time, the same trend was observed for the
CONV treatment, but with a higher decrease of ER (up to 20%) in the shallower layer. On
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March 26th, ER did not change (as compared to the background time) for the CONV, while
a strongly scattered increase and decrease of ER were observed in the CONV treatment.
Finally, the last time step (April 2018) showed an increase of ER (up to 25%) in the shallower
layer both in CONS and CONV, but involving different depths, i.e., the top 25 cm in the CONS
and 10 cm in the CONS treatment, associated with a decrease in the ER underneath (−20%).
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3.3. Frequency-Domain Electromagnetic Method

The inverted EC from EMI surveys ranged from 1.9 to 92.1 mS m−1, with increasing
values with depth. The spatial patterns of higher/lower values were similar to what was
observed in ERT surveys across depth and time. At the time of the first survey, the average
topsoil values of CONV were lower than in CONS (19.7 mS m−1 vs. 29.3 mS m−1), while
differences decreased in the middle layer and were comparable with each other in the
deeper (50–90 cm) layer (44.3 mS/m, on average) (Figure 7). As for ERT, values did not vary
much across the first four dates (coeff. var. = 0.41) (Figure 8), despite being the February
2nd conductivity slightly lower on the surface and higher in the deep layer of CONS, which
had the highest conductivities for the entire study. Conversely, the last survey showed low
EC in CONS (decreasing by 15% with respect to the initial conditions—Figure 8), averaging
6.3 mS m−1 against a value of 21.0 mS m−1 in CONV in the 0–25 cm soil layer.

3.4. Comparison between EC and Soil Properties

Soil VWC, BD, and sand content significantly influenced EC according to the multiple
linear regression results. A negative correlation was observed with sand (β2 = −0.32), while
VWC and BD positively affected EC (β2 = 0.434 and β2 = 0.366, respectively).

Considering the 18 soil samples collected in the whole fields (Figure 1), EC values were
spatially influenced by texture in both treatments (Figure 9), being significantly (p < 0.05)
positively correlated with clay and silt content (correlation coefficients were 0.21 and 0.22,
respectively) and negatively correlated with sand (−0.22). Correlations were stronger in
CONS, reaching Person’s coefficients up to 0.86 for clay. Moreover, texture-EC correlations
were higher in the 25–50 cm layer while decreased in 50–90 cm, where a higher sand content
was observed. For the same textural class, the EC values differed between the CONS and
CONV treatments, especially at the first layer (0–25 cm). For instance, for a silty clay loam
type, CONV-EC was about 25 mS m−1, while for the CONS-EC was about 45 mS m−1.
Differences between CONV and CONS tended to decrease with depth, as expected.
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4. Discussion

Soil covering has a crucial effect on VWC [67,68]. On vegetated soil, transpiration
dominates the evapotranspiration process being proportional to crop biomass and root
growth and the water input [69,70]. Moreover, different root architectures may affect water
uptake [71]. On the opposite, transpiration is considered null on bare soil. In this study,
the soil was bare on CONV while vegetated on CONS, influencing VWC dynamics [72–74].
The effects of soil properties on VWC varied along the soil profile. Indeed, the soil BD
was found as the dominant variable affecting VWC above 25 cm, presumably due to the
different treatment (i.e., tillage) effects on soil structure and, in turn, on water dynamics.
In fact, the CONV BD was lower at topsoil due to tillage operations [75]. On the contrary,
the texture effect was evidenced below 50 cm revealing how deeper soil horizon dynamics
might primarily be affected by native soil structure, which was possibly maintained in
CONV while appearing more compacted in CONS. It can be speculated that repeated
passages of heavy agricultural machinery (e.g., combine and direct driller) might have
caused subsoil compaction in this soil that was previously demonstrated to be prone to
soil compaction in the absence of tillage [11,76]. Nevertheless, the quick response of deep
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VWC at rain events, particularly from February during the rapid vegetative growth of the
winter wheat in CONS, might prove the presence of functional pores. Indeed, as already
evidenced in the same site by Camarotto et al. [57], the rapid load and discharge of the
water-filled pore space might suggest the presence of a few vertical macropores that locally
improved the hydraulic conductivity (data not shown) [77,78]. This is also supported by
the similar dynamics observed in time between the two treatments, involving however
different layers. In CONV, VWC was particularly responsive to rainfall in the 0–35 cm
and not in the deeper one. On the contrary, in CONS, the increase in the 0–35 cm was less
pronounced, while peaks were observed in the 55-cm layer, suggesting rapid infiltration
movements from surface layers. These dynamics were observed at all three replications
(i.e., monitoring stations) for field. Moreover, results from the previous two years showed
similar fluctuations between tilled soils with cover cropping and CONV, but not with
CONS [57], suggesting an effect given by the absence of tillage combined with cover crop
root apparatus [52,71]. Furthermore, a different influence of the shallow water table was
excluded being the experiment fields close one another (distance of 60 m).

The VWC dynamics are usually also affected by soil texture. The monitoring stations
had a similar texture (i.e., silt-loam), and therefore, it was not possible to directly assess the
effect of different textures on soil water dynamics. However, previous studies have already
demonstrated how sandy soils have a limited ability to retain water because the pore size
distribution consists mainly of large pores. Conversely, highly-porous fine-textured soils
strongly retain water within micropores [79,80].

Based on approximately five months of soil monitoring for the two farming practices,
it was possible to notice a significant consistency in the response of the measured parame-
ters between the different sensing methods. The results of the EMI surveys confirmed an
expected strong direct correlation between EC and soil water distribution [81,82]. Addi-
tionally, time-lapse inversions made it possible to somewhat eliminate the static effects of
soil properties (e.g., texture, mineralogy) [83], thus highlighting the dynamic part of the
response. Thus, as already reported by Blanchy et al. [84], the measured EC range rose in
the different surveys just after rainfall events, and the higher moisture areas were easily
identifiable as the most conductive portions both in the ERT and EMI inversions.

The finer resolution of ERT allowed for better observations of depth-specific properties
at the expense of a more complex setup (i.e., placing the electrodes and logistics). However,
the measurement only referred to local portions of the fields, having been conducted on
transects adjacent to the central monitoring stations. ERT models showed more homogene-
ity for the CONS treatment, resulting in a higher sensitivity to changes in the soil water
dynamics. In this case, since the soil structure remained stable over time, it was more
difficult to observe changes in ER. At the same time, the continuous structure remodeling
of the tilled soil (CONV) increased the heterogeneity of pore architecture [85]. Time-lapse
ERT measurements gave clear evidence that the increase in soil moisture following rainfall
events produced strong effects. Therefore, the persistent conductive regions within the
inverted models are likely due to higher moisture content, being in line with previous
studies [11].

Strong heterogeneities in the CONV profile at the beginning of spring may have
been associated with two distinct causes: (i) a soil crust, confirmed by visual assessment,
generated at the end of March by heavy raining events which followed the drier conditions
observed during winter and (ii) the harrowing operations in April, which broke up the
soil aggregates and helped dry the first layer [11]. This hypothesis is also supported by the
soil moisture gradient observed within the profile (i.e., drier above and wetter below). It is
plausible that the soil crust also acted as a barrier, maintaining favorable conditions for plant
growth in the deeper layers, as also illustrated in the modeling work of Assouline et al. [86]
and in the results of Cassiani et al. [12]. Similarly, the harrowing operations could have led
to air-filled macroporosity at the topsoil (more resistive layers), contributing to increasing
water storage in the deeper layers (less resistive layers). Nevertheless, a similar layering
was also observed in the CONS transect, where the increase in ER (>20% variations) at
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the topsoil (top 25 cm) can likely be related to crop water uptake. For instance, as recently
documented [83], cover crops showed considerably lower EC compared to bare soil, which
authors implied was due to lower soil moisture storage, and in this study, reflected on the
ER distribution.

BD also affected ER in CONV, showing less dense layers at the very surface and deeper
layers and higher in the intermediate layer, which is clearly visible from the ERT models
and in agreement with other authors [87]. In contrast, BD in CONS increased with depth,
slightly reducing VWC.

On the other hand, it is clear that EC distribution from the EMI inversion process is not
directly comparable with the ER tomographic transects. Notably, the clear differentiation
between CONS and CONV electrical profiling was slightly lost in the EMI models, strongly
dominated by the inherent heterogeneity of the areal survey [22,42]. Indeed, EC values
were significantly affected by field texture and bulk density which strongly contribute
to electrical properties and hydrological dynamics [22,88]. Note that the lower depth
resolution of EMI with respect to ERT has a clear impact on these results.

From a structural point of view, the different EMI sections at depth show similar
patterns over the acquisition period. Time-lapse analysis revealed that farming treatments
influenced the soil moisture dynamics, even with a magnitude of only a few mS m−1.
From December to April, soil water content was high due to some rainfall events and low
evapotranspiration (ET). Conversely, between April and May, the increased ET controlled
the soil drying at the beginning of Spring, as widely recognized [89,90].

Fluctuations of shallow EC were greater in CONS than in CONV, as mirrored by the
water content variability in the first 10 cm layer. As already observed in the ERT models,
this can be reasonably associated with the increased crop water uptake of the cover crop in
CONS at the start of Spring [90].

Considering the deepest portion of the models (0.5–0.9 m depth), the variability was
always higher in CONV than in CONS, with a coefficient of variation of 0.15–0.21 and
0.11–0.14, respectively. Most likely, the electrical behavior was affected by deep infiltration
increased by the saturated hydraulic conductivity (data not shown), two orders of magnitude
higher in CONV than in CONS, as already reported, e.g., by other authors [87,91].

It should be noted that all EMI inverted models have low depth accuracy since they are
generated by a pseudo-2D process from a depth-weighted measurement [38]. In this respect,
the penetration depth was lower than those predicted by the instrument manufacturer. We
calculated, for each coil configuration, a sensitivity profile of the measurements related
to the depth. The inverted EMI models presented here were limited to the depths where
the normalized sensitivity of the measurements reaches zero, approximately at 0.2, 0.4,
and 0.7 ratios of coils separation. Moreover, if compared to DC resistivity techniques,
EMI data are more sensitive to distortions since the propagation of the electromagnetic
field depends on more physical properties of the ground (i.e., magnetic, conductive, and
dielectric properties). Hence, EMI measurements have the great advantage of being quick
and contactless, but they are prone to more uncertainties related to a number of issues
(i.e., electronic instrumental drift, heterogeneous height and orientation of the device, air
temperature variations during the acquisition, variations of ground surface cover [27]).

5. Conclusions

This study supported the strong effects of agronomic management systems on soil
properties, such as bulk density and water content. The direct comparison between con-
ventional and conservation treatments in a five-month period confirmed that soil electrical
behavior can be a relevant proxy of the soil structure changes. The ERT survey highlighted a
strong variability of tilled soil, driven by structure remodeling, while the EMI results better
emphasized topsoil EC variations. Furthermore, our findings substantiate the importance
of coupling geophysical surveys with direct method assessments (e.g., soil samplings) for a
complete understanding of the soil processes.
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In conclusion, this study paves the way for advancing knowledge of soil dynamics by
identifying key soil parameters that can capture spatial and temporal changes in soil.
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