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Abstract: We investigate the relation between energy minimizing maps valued into spheres having
topological singularities at given points and optimal networks connecting them (e.g., Steiner trees,
Gilbert-Steiner irrigation networks). We show the equivalence of the corresponding variational
problems, interpreting in particular the branched optimal transport problem as a homological Plateau
problem for rectifiable currents with values in a suitable normed group. This generalizes the pioneering
work by Brezis, Coron and Lieb [10].
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1. Introduction

In their celebrated paper [10], Brezis, Coron and Lieb showed, in the context of harmonic maps
and liquid crystals theory, the existence of a close relation between sphere-valued harmonic maps
having prescribed topological singularities at given points in R3 and minimal connections between
those points, i.e., optimal mass transportation networks (in the sense of Monge-Kantorovich) having
those points as marginals. This relation was further enlightened by Almgren, Browder and Lieb in [4],
who recovered the results in [10] by interpreting the (minimal connection) optimal transportation
problem as a suitable Plateau problem for rectifiable currents having the given marginals as prescribed
boundary.

Our aim is to consider minimizing configurations for maps valued into manifolds and with
prescribed topological singularities when the energy is possibly more general than the Dirichlet energy,
and investigate the connection with Plateau problems for currents (or flat chains) with coefficients in
suitable groups. The choice of these groups is linked to the topology of the involved target manifolds.
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In this paper we will consider the particular case where the manifold is a product of spheres
and the maps have assigned point singularities, and we will show, in Theorem 1 below, that energy
minimizing configurations are related with Steiner-type optimal networks connecting the given points,
i.e., solutions of the Steiner problem or solutions of the Gilbert-Steiner irrigation problem. The
investigation of maps with values into product of spheres arises in several physical problems, such
as the study of the structure of minimizers of two-component Ginzburg-Landau functionals, where the
reference (ground state) manifold is a torus (S1×S1) (see [1]), or the case of Dipole-Free 3He-A, where
the order parameter takes values into (S2× SO(3))/Z2, whose covering space is S2 × S3 (see [18, 24]).
In a companion paper in preparation we will discuss and state the results which correspond to more
general situations. Let us also stress that the generalization of the results to a broader class of energies
(and thus different norms) is not moot, this being the case, for instance, for dislocations in crystals
(see [15]).

Steiner tree problems and Gilbert-Steiner (single sink) problems can be formulated as follows:
given n distinct points P1, . . . , Pn in Rd, where d, n ≥ 2, we are looking for an optimal connected
transportation network, L = ∪n−1

i=1 λi, along which the unit masses initially located at P1, . . . , Pn−1 are
transported to the target point Pn (single sink); here λi can be seen as the path of the ith mass flowing
from Pi to Pn, and the cost of moving a mass m along a segment with length l is proportional to lmα,
α ∈ [0, 1]. Therefore, we are led to consider the problem

(I) inf

Iα(L) : L =

n−1⋃
i=1

λi with {Pi, Pn} ⊂ λi, for every i = 1, . . . , n − 1


where the energy Iα is computed as Iα(L) =

∫
L
|θ(x)|αdH1(x), with θ(x) =

∑n−1
i=1 1λi(x). Let us notice

that θ stands for the mass density along the network. In particular, we consider the range α ∈ [0, 1]:

• when α = 0 the problem is equivalent to optimize the total length of the graph L, as in the Steiner
Tree Problem (STP);
• when α = 1 the problem (I) becomes the well-known Monge-Kantorovich problem;
• and when 0 < α < 1 the problem is known as the Gilbert-Steiner problem, or, more generally,

as a branched optimal transport problem, due to the fact that the cost is proportional to a concave
function θα, which favours the clustering of the mass during the transportation, thus giving rise to
the branched structures which characterize the solutions (we refer the reader to [5] for an overview
on the topic).

In the last decade, the communities of Calculus of Variations and Geometric Measure Theory made
some efforts to study (Gilbert-)Steiner problems in many aspects, such as existence, regularity, stability
and numerical feasibility (see for example [6–9, 13, 14, 20, 21, 23, 25–27] and references therein).
Among all the significant results, we would like to mention recent works in [20, 21] and [6, 7],
which are closely related to the present paper. To be more precise, in [20, 21] the authors turn the
problem (I) into the problem of mass-minimization of integral currents with multiplicities in a suitable
group. For the sake of readability we postpone proper definitions about currents to Section 2, in this
introduction we only recall that a 1-dimensional integral current with coefficients in a group can be
thought as a formal sum of finitely many curves and countably many loops with coefficients in a given
normed abelian group. For instance, considering the group Zn−1 and assigning to the boundary datum
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P1, P2, . . . , Pn−1, Pn the multiplicities e1, e2, . . . , en−1,−(e1 + . . . + en−1), respectively (where {ei}1≤i≤n−1

is the basis of Rn−1), we recover the standard model in [20, 21].
In fact we can interpret the network L =

⋃n−1
i=1 λi as the superposition of n − 1 paths λi connecting

Pi to Pn labelled with multiplicity ei. This point of view requires a density function with values in
Zn−1, which corresponds to the so-called 1-dimensional current with coefficients in the group Zn−1.
Furthermore, by equipping Zn−1 with a certain norm (depending on the cost of the problem), we may
define the notion of mass of those currents, and problem (I) turns out to be equivalent to the Plateau
problem.

(M) inf
{
M(T ) : ∂T = e1δP1 + e2δP2 + . . . + en−1δPn−1 − (e1 + e2 + . . . + en−1)δPn

}
where T is a 1-dimensional current with coefficients in the group Zn−1 (again, we refer the reader
to the Section 2 for rigorous definitions). For mass minimization, there is the very useful notion of
calibration (see section 3), that is, a tool to prove minimality when dealing with concrete configurations
(see Example 16). To be precise, a calibration is a sufficient condition for minimality, see Definition 11
and the following remarks.

In [6, 7], by using [20, 21], a variational approximation of the problem (I) was provided through
Modica-Mortola type energies in the planar case, and through Ginzburg-Landau type energies (see [3])
in higher dimensional ambient spaces via Γ-convergence. The corresponding numerical treatment is
also shown there.

Following [6, 7, 20, 21], and the strategy outlined in [4] (relating the energy of harmonic maps
with prescribed point singularities to the mass of 1-dimensional classical integral currents) we provide
here a connection between an energy functional with its energy comparable with k-harmonic map
problem with prescribed point singularities and (Gilbert-)Steiner problems (I). More precisely, let
P1, . . . , Pn−1, Pn in Rd be given, and consider the spaces Hi defined as the subsets of W1,d−1

loc (Rd;Sd−1)
where the functions are constant outside a neighbourhood of the segment joining Pi, Pn and have
distributional Jacobian αd−1

d (δPi − δPn), respectively. Here αd−1 is the surface area of the unit ball in
Rd.

Let ψ be a norm on Rn−1 which will be specified in Section 3 (see (3.1)), and set

H(u) =

∫
Rd
ψ(|∇u1|

d−1, |∇u2|
d−1, . . . , |∇un−1|

d−1) dx (1.1)

where u = (u1, . . . , un−1) ∈ H1 × H2 × . . . × Hn−1 is a 2-tensor. The functional H is the so-called k-
harmonic energy, it is modeled on the (d−1)-Dirichlet energy. We will consider here a class of energies
E for maps in H1 × H2 × . . . × Hn−1 which are suitably related toM and H, according to Definition 13
below. In this case, we investigate the problem of characterizing

(H) inf {E(u) : u ∈ H1 × H2 × . . . × Hn−1} .

The main contribution of this paper is the following equivalence result in the minimization problem for
the massM and an energy E which is suitably related toM and H.

Theorem 1. Assume that a minimizer of the problem (M) admits a calibration (see Definition 11).
Consider an energy functional E which is suitably related to M and H, in the sense of Definition 13.
Then, we have

inf E = αd−1 infM (1.2)
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or equivalently, in view of paper [20, 21],

inf E = αd−1 inf Iα . (1.3)

Currently, we cannot evade the assumption on the existence of a calibration, because it is still not
known if a calibration, or even a weak version of it, is not only sufficient but also a necessary condition
for minimality (see Section 2). Nonetheless, dropping this assumption we can still state some partial
result as follows.

Remark 2. (i) If α = 1, ψ = ‖ · ‖1, E = 1

(d−1)
d−1

2
H, then we are able to prove that (1.2) still holds true,

as a variant of the main result in [10].
(ii) In case 0 ≤ α < 1, we obtain the following inequality

αd−1 infM = αd−1 inf Iα ≥ inf E ≥ αd−1 inf N . (1.4)

The investigation of equality in (1.4) when 0 ≤ α < 1 is delicate and will be considered in
forthcoming works.

Remark 3. We believe that the assumption of the existence of a calibration is not too restrictive. We
actually conjecture that minimizing configurations for the problem (M) admit a calibration in case
of uniqueness, which is somehow a generic property (see [11]). We carry out in Example 16 the
construction of configurations of n points in Rn−1 with n − 2 branching points which are generic in
character and these configurations admit a calibration.

The organization of the paper is as follows: in Section 2, we briefly review some basic notions of
Geometric Measure Theory which will be used in the paper, in Section 3 we recall (Gilbert-) Steiner
problems and briefly describe their connection with Plateau’s problem for currents with coefficients in
a group. Finally, in Section 4 we prove the Theorem 1.

2. Preliminaries and notations

2.1. Rectifiable currents with coefficients in a group G

In this section, we present the notion 1-dimensional currents with coefficients in the group Rn−1 in
the ambient space Rd with n, d ≥ 2. We refer to [22] for a more detailed exposition of the subject.

Consider Rn−1 equipped with a norm ψ and its dual norm ψ∗. Denote by Λ1(Rd) the space of 1-
dimensional vectors and by Λ1(Rd) the space of 1-dimensional covectors in Rd.

Definition 4. An (Rn−1)∗-valued 1-covector on Rd is a bilinear map

w : Λ1(Rd) × Rn−1 −→ R .

Let {e1, e2, . . . , en−1} be an orthonormal basis of Rn−1, and let {e∗1, e
∗
2, . . . , e

∗
n−1} be its dual. Then,

each (Rn−1)∗-valued 1-covector on Rd can be represented as w = w1e∗1 + . . . + wn−1e∗n−1 , where wi is a
“classical” 1-dimensional covector in Rd for each i = 1, . . . , n − 1. To be precise, the action of w on a
pair (τ, θ) ∈ Λ1(Rd) × Rn−1 can be computed as

〈w; τ, θ〉 =

n−1∑
i=1

θi〈wi, τ〉 ,
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where the scalar product on the right hand side is the standard Euclidean scalar product in Rd. We
denote by Λ1

(Rn−1,ψ)(R
d) the space of (Rn−1)∗-valued 1-covectors in Rd, endowed with the (comass) norm:

|w|c,ψ := sup{ψ∗(〈w; τ, ·〉) : |τ| ≤ 1} .

Similarly, we can define the notion of space (Rn−1)-valued 1-vectors in Rd, Λ1,(Rn−1,ψ)(Rd), endowed
with pre-dual (mass) norm: for any v ∈ Λ1,(Rn−1,ψ)(Rd) we define:

|v|m,ψ := sup{〈w, v〉 : |w|c,ψ ≤ 1,w ∈ Λ1
(Rn−1,ψ)(R

d)}

= inf

 L∑
l=1

ψ(zl)|τl| : τ1, . . . , τl ∈ Λ1(Rd), z1, . . . , zk ∈ R
n−1 s.t. v =

L∑
l=1

zl ⊗ τl

 .
(2.1)

Definition 5. An (Rn−1)∗-valued 1-dimensional differential form defined on Rd is a map

ω : Rd −→ Λ1
(Rn−1,ψ)(R

d) .

Let us remark that the regularity of ω is inherited from the components ωi, i = 1, . . . , n − 1. Let
ϕ = (ϕ1, . . . , ϕn−1) be a function of class C1(Rd;Rn−1). We denote

dϕ := dϕ1e∗1 + . . . + dϕn−1e∗n−1,

where dϕi is the differential of ϕi. Thus dϕ ∈ C(Rd; Λ1
(Rn−1,ψ)(R

d)).

Definition 6. A 1-dimensional current T with coefficients in (Rn−1, ψ) is a linear and continuous map

T : C∞c
(
Rd; Λ1

(Rn−1,ψ)(R
d)
)
−→ R .

Here the continuity is meant with respect to the (locally convex) topology on C∞c (Rd; Λ1
(Rn−1,ψ)(R

d))
defined in analogy with the topology on C∞c (Rd;R) which allows the definition of distributions. The
mass of T is defined as

M(T ) := sup
{

T (ω) : sup
x∈Rd
|ω|c,ψ ≤ 1

}
.

Moreover, if T is a 1-dimensional current with coefficients in (Rn−1, ψ), we define the boundary ∂T of
T as a distribution with coefficients in (Rn−1, ψ), ∂T : C∞c (Rd; (Rn−1, ψ)) −→ R, such that

∂T (ϕ) := T (dϕ) .

The mass of ∂T is the supremum norm

M(∂T ) := sup
{

T (dϕ) : sup
x∈Rd

ψ∗(ϕ) ≤ 1
}
.

A current T is said to be normal ifM(T ) +M(∂T ) < ∞.
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Definition 7. A 1-dimensional rectifiable current with coefficients in the normed (abelian) group
(Zn−1, ψ) is a (1-dimensional) normal current (with coefficients in (Rn−1, ψ)) such that there exists a
1-dimensional rectifiable set Σ ⊂ Rd, an approximate tangent vectorfield τ : Σ −→ Λ1(Rd), and a
density function θ : Σ −→ Zn−1 such that

T (ω) =

∫
Σ

〈ω(x)τ(x), θ(x)〉 dH1(x)

for every ω ∈ C∞c
(
Rd; Λ1

(Rn−1,ψ)(R
d)
)
. We denote such a current T by the triple ~Σ, τ, θ�.

Remark 8. The mass of a rectifiable current T = ~Σ, τ, θ� with coefficients in (Zn−1, ψ) can be
computed as

M(T ) := sup
{

T (ω) : sup
x∈Rd
|ω|c,ψ ≤ 1

}
=

∫
Σ

ψ(θ(x)) dH1(x) .

Moreover, ∂T : C∞c (Rd; (Rn−1, ψ)) −→ R is a measure and there exist x1, . . . , xm ∈ R
d, p1, . . . , pm ∈ Z

n−1

such that

∂T (ϕ) =

m∑
j=1

p jϕ(x j).

Finally the mass of the boundaryM(∂T ) coincides with
∑m

j=1 ψ(p j).

Remark 9. In the trivial case n = 2, we consider rectifiable currents with coefficients in the discrete
group Z and we recover the classical definition of integral currents (see, for instance, [16]).

Finally, it is useful to define the components T with respect to the index i ∈ {1, . . . , n− 1}: for every
1-dimensional test form ω̃ ∈ C∞c (Rd; Λ1(Rd)) we set

T i(ω̃) := T (ω̃e∗i ) .

Notice that T i is a classical integral current (with coefficients in Z). Roughly speaking, in
some situations we are allowed to see a current with coefficients in Rn−1 through its components
(T 1, . . . ,T n−1).

For future convenience we adopt the notation

inf N := min{M(T ) : T is a 1-dimensional normal current with coefficients in Rn−1 and ∂T = S } ,
(2.2)

where S = e1δP1 + . . .+en−1δPn−1−(e1 +e2 + . . .+en−1)δPn is a given boundary (and {ei}
n
i=1 is the canonical

basis of Rn−1).
When dealing with the Plateau problem in the setting of currents, it is important to remark a couple

of critical features. For the sake of understandability, we recall them here for the particular case of
1-dimensional currents, but the matter does not depend on the dimension.

Remark 10. If a boundary {P1, . . . , Pn} ⊂ R
d is given, then the problem of the minimization of mass

is well posed in the framework of rectifiable currents and in the framework of normal currents as well.
In both cases the existence of minimizers is due to a direct method and, in particular, to the closure of
both classes of currents. Obviously

inf N ≤min{M(T ) : T rectifiable current with coefficients in Zn−1 and boundary {P1, . . . , Pn}} ,
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but whether the inequality is actually an identity is not known for currents with coefficients in groups.
The same question about the occurence of a Lavrentiev gap between normal and integral currents
holds for classical currents of dimension bigger than 1 and it is closely related to the problem of the
decomposition of a normal current in rectifiable ones (see [22] for a proper overview of this issue).

A formidable tool for proving the minimality of a certain current is to show the existence of a
calibration.

Definition 11. Consider a rectifiable current T = ~Σ, τ, θ� with coefficients in Zn, in the ambient space
Rd. A smooth (Rn)∗-valued differential form ω in Rd is a calibration for T if the following conditions
hold:

(i) for a.e. x ∈ Σ we have that 〈ω(x); τ(x), θ(x)〉 = ψ(θ(x));
(ii) the form is closed, i.e., dω = 0;

(iii) for every x ∈ Rd, for every unit vector t ∈ Rd and for every h ∈ Zn, we have that

〈ω(x); t, h〉 ≤ ψ(h) .

It is straightforward to prove that the existence of a calibration associated to a current implies the
minimality of the current itself. Indeed, with the notation in Definition 11, if T ′ = ~Σ′, τ′, θ′� is a
competitor, i.e., T ′ is a rectifiable current with coefficients in Zn and ∂T ′ = ∂T , then

M(T ) =

∫
Σ

ψ(θ) =

∫
Σ

〈ω; τ, θ〉 =

∫
Σ′
〈ω; τ′, θ′〉 ≤

∫
Σ′
ψ(θ′) = M(T ′) .

We stress that fact that the existence of a calibration is a sufficient condition for the minimality of
a current, so it is always a wise attempt when a current is a good candidate for mass minimization.
Nonetheless, it is also natural to wonder if every mass minimizing current has its own calibration
and this problem can be tackled in two ways: for specific currents or classes of currents (such as
holomorphic subvarieties) one has to face an extension problem with the (competing) constraints (ii)
and (iii), since condition (i) already prescribes the behaviour of the form on the support of the current.
In general, one may attempt to prove the existence of a calibration as a result of a functional argument,
picking it in the dual space of normal currents, but this approach has two still unsolved problems:

• the calibration is merely an element of the dual space of normal currents, thus it is far to be
smooth;
• this argument works in the space of normal currents and it is not known whether a minimizer in

this class is rectifiable as well (see Remark 10).

Anyway, in this specific case of currents with coefficients in Zn which match the energy minimizing
networks of a branched optimal transport problem (with a subadditive cost), we think that the
Lavrentiev phenomenon cannot occur, as explained in Remark 3.

2.2. Distributional Jacobian

We recall the definition of distributional Jacobian of a function u ∈ W1,d−1
loc (Rd;Rd) ∩ L∞loc(R

d;Rd),
see also [2, 19].
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Definition 12. Let u be in W1,d−1
loc (Rd;Rd) ∩ L∞loc(R

d;Rd), we define the pre-jacobian ju ∈ L1
loc(R

d;Rd)
as

ju := (det(u, ux2 , . . . , uxd ), det(ux1 , u, . . . , uxd ), . . . , det(ux1 , . . . , uxd−1 , u)) ,

where ux j is a Ld−1
loc (Rd;Rd) representative of the partial derivative of u with respect to the jth direction.

Thus we define the Jacobian Ju of u as 1
d d( ju) in the sense of distributions. More explicitly, if ϕ ∈

C∞c (Rd;R) is a test function, then one has∫
Rd
ϕ Ju dx = −

1
d

∫
Rd
∇ϕ · ju dx . (2.3)

The identity required in (2.3) is clearer if one notices that ju has been chosen in such a way that
div(ϕũ) = ∇ϕ · jũ + dϕ det Dũ whenever ũ is smooth enough to allow the differential computation.

Once the singularities of the problem P1, . . . , Pn have been prescribed, we can also introduce the
energy spaces Hi, for each i = 1, . . . , n − 1. By definition a map u ∈ W1,d−1

loc (Rd;Sd−1) belongs to
Hi if Ju =

αd−1
d (δPi − δPn), and there exists a radius r = r(u) > 0 such that u is constant outside

B(0, r(u)) 3 Pi, Pn, where B(0, r) is the open ball of radius r centered at 0.
For any u ∈ H1 × . . . × Hn−1, we define the (matrix-valued) pre-jacobian of u by

ju = ( ju1, . . . , jun−1) (2.4)

and its Jacobian by
Ju = (Ju1, . . . , Jun−1) . (2.5)

We observe that ju is actually a 1-dimensional normal currents with coefficients in Rn−1. Moreover

1
d
∂ ju = −Ju . (2.6)

Definition 13. Given P1, . . . , Pn ∈ R
d and a norm ψ on Rn−1, a functional E defined on H1 × . . .×Hn−1

is said to be suitably related toM and H (see (1.1) for its definition) if the following properties hold.

(i) M(ju) ≤ E(u), where ju is the normal current defined by the pre-jacobian.
(ii) If there exist an open set U ⊂ Rd and a subset I of the set of labels 1, . . . , n − 1 such that ui = ul

for every pair i, l ∈ I and ui = 0 otherwise, we have

E(uXU) ≤
1

(d − 1)
d−1

2

H(uXU) , (2.7)

where XU is the characteristic function of U.
(iii) When k = 1, the functional E coincides with the harmonic energy considered in [10].

Let us point out that requirement (ii) is taylored on the dipole construction maps u = (u1, . . . , un−1)
in the Step 1 of the proof of Theorem 1.

We consider the following problem:

(H) inf {E(u), u = (u1, . . . , un−1) ∈ H1 × H2 × . . . × Hn−1} .
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As indicated in the introduction, the inspiration for considering the problem (H) and comparing it
with the irrigation problem (I) is coming from the works [20, 21] and [4]. More precisely, [20, 21]
provided a new framework for the problem (I) by proving it to be equivalent to the problem of mass-
minimizing currents with coefficients in the group Zn−1 with a suitable norm. The point is to look at
each irrigation network L =

⋃n−1
i=1 λi encoded in the current T = (T 1, . . . ,T n−1) where T i is a classical

current supported by λi, and the irrigation cost of L is the mass of the current T . Then, combining
this point of view with [4] (see also [10]), where the energy of harmonic maps with prescribed point
singularities was related to 1-dimensional classical currents, we are led to investigate the problem (H)
in connection with problem (I).

Before moving to the next section, we provide a candidate for the functional E satisfying the
properties in Definition 13. Let u = (u1, . . . , un−1) ∈ H1 × . . . × Hn−1. Let e1, . . . , en−1 be the canonical
basis of Rn−1, and let I be a subset of {1, . . . , n − 1}, then we denote by eI the sum

∑
i∈I ei. We define

the energy density e(u) at a point x ∈ Rd as

e(u)(x) = (d − 1)−
d−1

2 inf
{∑

I∈I

‖eI‖α|∇uI(x)|d−1 : where ju(x) =
∑
I∈I

juI(x) ⊗ eI (2.8)

and I is a partition of {1, . . . , n − 1}
}
.

To be precise, here the matrix ju(x) is decomposed according to a partition I of the set {1, . . . , n − 1}
in such a way that jui(x) = jul(x) for every pair i, l ∈ I.

As an example, take u = (u1, u2) ∈ H1 × H2 for some choice of the points P1, P2, P3 ∈ R
d. Then, at

some point x ∈ Rd, either ju1(x) , ju2(x) or ju1(x) = ju2(x).

• If ju1(x) , ju2(x), then the unique decomposition that we are allowing is j(u)(x) = ju1(x)e1 +

ju2(x)e2 and e(u)(x) = cd(|∇u1(x)|d−1 + |∇u2(x)|d−1), where we abbreviated cd = (d − 1)−
d−1

2 .
• If ju1(x) = ju2(x), then, thanks to the subadditivity of ‖ · ‖α, the most convenient decomposition

is j(u)(x) = ju1(x)(e1 + e2) and e(u)(x) = cd‖e1 + e2‖α|∇u1(x)|d−1.

Finally, we consider the functional

E(u) =

∫
Rd

e(u)(x) dx. (2.9)

Proposition 14. Let ψ be the norm defined as

ψ(h) =

|| · ||α =
(∑n−1

j=1 |h j|
1
α

)α
in case α ∈ (0; 1], h ∈ Zn−1

|| · ||0 = max{h1, . . . , hn−1} in case α = 0, h ∈ Zn−1 .
(2.10)

Let E be the functional defined above, in (2.9). If α = 1, i.e., ψ = ‖ · ‖1, we choose E = 1

(d−1)
d−1

2
H. Then

E is suitably related toM and H in the sense of Definition 13.

Proof. We start with property (i). Let ω ∈ C∞c
(
Rd; Λ1

(Rn−1,ψ)(R
d)
)

be a test form with comass norm
supx∈Rd |ω |c,ψ ≤ 1. By using the very definition of | · |m,ψ, see (2.1), we obtain

| ju(ω) | =
∣∣∣∣∣∫
Rd
〈ju(x), ω(x)〉 dx

∣∣∣∣∣ ≤ ∫
Rd
|ju(x)|m,ψ dx . (2.11)
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On the other hand, as already observed, for a.e. x ∈ Rd we have

|ju(x)|m,ψ ≤ inf

∑
I∈I

‖eI‖α| juI(x)| : where ju(x) =
∑
I∈I

juI(x) ⊗ eI , I part. of {1, . . . , n − 1}

 .

Observe that for any v ∈ Hl, l = 1, . . . , n − 1, one has for a.e. x ∈ Rd

| jv(x)| ≤
1

(d − 1)
d−1

2

|∇v(x)|d−1 , (2.12)

see also [10, Page 64], [4, A.1.3]. Therefore, we obtain that for a.e. x ∈ Rd

|ju|m,ψ(x) ≤ e(u)(x) (2.13)

This in turn implies that
| ju(ω) | ≤ E(u) . (2.14)

So, by the arbitrariness of ω, we conclude that

M(ju) ≤ E(u). (2.15)

Concerning property (ii), assume that, in some open set U, each ui is equal to either 0 or a given
function v ∈ W1,d−1

loc (Rd,Sd−1), thus in U the jacobian ju can be written as ju = jveI , for some I ⊂
{1, . . . , n}. This implies that

e(u)(x) ≤ ‖eI‖α
1

(d − 1)
d−1

2

|∇v(x)|d−1 (2.16)

for a.e. x in the dipole, so we can conclude that

E(uXU) ≤ H(uXU) . (2.17)

Finally, if k = 1 (i.e., we have just one component u = u), it is obvious that

e(u) =
1

(d − 1)
d−1

2

|∇u|d−1. (2.18)

To conclude the proof, we observe that, in case α = 1, that is, ψ = ‖ · ‖1, E = 1

(d−1)
d−1

2
H and this

functional obviously satisfies the three properties. �

3. (Gilbert-)Steiner problems and currents with coefficients in a group

Let us briefly recall the Gilbert-Steiner problem and the Steiner tree problem and see how it can be
turned into a mass-minimization problem for integral currents in a suitable group.

Let n distinct points P1, . . . , Pn in Rd be given. Denote by G(A) the set of all acyclic graphs L =⋃n−1
i=1 λi, along which the unit masses located at P1, . . . , Pn−1 are transported to the target point Pn

(single sink). Here λi is a simple rectifiable curve and represents the path of the mass at Pi flowing
from Pi to Pn. In [20, 21], the occurrence of cycles in minimizers is ruled out, thus the problem (I) is
proved to be equivalent to
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(I) inf


∫

L
|θ(x)|αdH1(x), L ∈ G(A), θ(x) =

n−1∑
i=1

1λi(x)


where θ is the mass density along the network L. Moreover, in [20, 21] the problem (I) can be turned
into a mass-minimization problem for integral currents with coefficients in the group Zn−1: the idea
is to label differently the masses located at P1, P2 . . . , Pn−1 (source points) and to associate the source
points P1, . . . , Pn−1 to the single sink Pn. Formally, we produce a 0-dimensional rectifiable current
(a.k.a. a measure) with coefficients in Zn−1, given by the difference between

µ− = e1δP1 + e2δP2 + . . . + en−1δPn−1 and µ+ = (e1 + . . . + en)δPn .

We recall that {e1, e2, . . . , en} is the canonical basis of Rn−1. The measures µ−, µ+ are the marginals of
the problem (I). To any acyclic graph L =

⋃n−1
i=1 λi we associate a current T with coefficients in the

group Zn−1 as follows: to each λi associate the current Ti = ~λi, τi, ei�, where τi is the tangent vector of
λi. We associate to the graph L =

⋃n−1
i=1 λi the current T = (T1, . . . ,Tn−1) with coefficients in Zn−1. By

construction we obtain
∂T = µ+ − µ− .

Choosing the norm ψ on Zn−1 as

ψ(h) =

|| · ||α =
(∑n−1

j=1 |h j|
1
α

)α
in case α ∈ (0; 1], h ∈ Zn−1

|| · ||0 = max{h1, . . . , hn−1} in case α = 0, h ∈ Zn−1 ,
(3.1)

in view of Remark 8, the problem (I) is equivalent to

(M) inf
{
M(T ), ∂T = µ+ − µ−

}
.

We refer the reader to [20,21] for more details. From now on we restrict our attention to the coefficients
group (Zn−1, || · ||α), 0 ≤ α ≤ 1.

Remark 15. Let u = (u1, . . . , un−1) ∈ H1 × . . . × Hn−1. One has

1
αd−1

∂ ju = µ+ − µ− (3.2)

We remark that turning the problem (I) into a mass-minimization problem allows to rely on the
(dual) notion of calibration, which is a useful tool to prove minimality, especially when dealing with
concrete configurations. We also recall that the existence of a calibration (see Definition 11) associated
with a current T implies that T is a mass-minimizing current for the boundary ∂T .

Example 16. Let us consider an irrigation problem with α = 1
2 . We will consider a minimal network

joining n + 1 points in Rn, the construction of the network is explained below. Let us stress that in
this example the coincidence of the dimension of the ambient space with the dimension of the space of
coefficients is needed.

Adopting the point of view of [17], we propose a calibration first, and only a posteriori we construct
a current which fulfills the requirement (i) in Definition 11. We briefly remind that the problem (I) can
be seen as the mass-minimization problem for currents with coefficients in Zn with the norm ‖ · ‖ 1

2
.
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Let {dx1, . . . , dxn} be the (dual) basis of covectors of Rn = span(e1, . . . , en). We now prove that the
differential form

ω =


dx1

dx2
...

dxn


satisfies conditions (ii) and (iii) in Definition 11. Obviously dω = 0. Moreover, let τ = (τ1, τ2, . . . , τn) ∈
Rn be a unit vector (with respect to the Euclidean norm). Thus, for our choice of the norm ψ = ‖ · ‖ 1

2

we can compute ‖〈ω; τ, ·〉‖
1
2 = (τ2

1 + τ2
2 + τ2

3 + . . . + τ2
n)

1
2 = 1.

We will build now a configuration of n + 1 points P1, P2, . . . , Pn+1 in Rn calibrated by ω. Notice
that the network has n − 1 branching points and is somehow generic in character. More precisely, our
strategy in building such a configuration is to choose end points, and branching points following the
directions parallel to e1, e2, e3, . . . , en, e1 + e2, e1 + e2 + e3, . . . , e1 + e2 + . . .+ en−1, e1 + e2 + . . .+ en. We
illustrate the construction in R3,R4. This process can be extended to any dimension.

• In R3, let us consider P1 = (−1, 0, 0), P2 = (0,−1, 0), P3 = (1, 1,−1), P4 = (2, 2, 1), as in Figure 1.
Take, as branching points, G1 = (0, 0, 0), G2 = (1, 1, 0). Now consider the current T = ~Σ, τ, θ�

with support Σ obtained by the union of the segments P1G1, P2G1,G1G2, P3G2,G2P4.

Figure 1. The picture illustrates the construction of T .

The multiplicity θ is set as

θ(x) =



e1 if x ∈ P1G1

e2 if x ∈ P2G1

e1 + e2 if x ∈ G1G2

e3 if x ∈ P3G2

e1 + e2 + e3 if x ∈ G2P4

0 elsewhere.

We observe that T is calibrated by ω, thus T is a minimal network for the irrigation problem with
sources P1, P2 and P3 and sink P4. Notice that edges of the network meet at the branching points
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with the 90 degrees angles, as known for branched optimal structures with cost determined by
α = 1/2.
• In R4, we keep points P1 = (−1, 0, 0, 0), P2 = (0,−1, 0, 0), P3 = (1, 1,−1, 0) and, in general, the

whole network of the example above as embedded in R4. We relabel G3 := (2, 2, 1, 0). We now
pick P4 and P5 in such a way that

−−−−→
P4G3 = e4 and

−−−−→
G3P5 = e1 + e2 + e3 + e4. For instance, we

choose P4 = (2, 2, 1,−1) and P5 = (3, 3, 2, 1). As before, the marginals of the irrigation problem
are P1, P2, P3, P4 as sources and P5 as sink, while G1,G2,G3 are branching points.
Let us now consider the current T = ~Σ, τ, θ� supported on the union of segments
P1,G1, P2G1,G1G2, P3G2,G2G3, P4G3,G3P5 and multiplicity θ given by

θ(x) =



e1 if x ∈ P1G1

e2 if x ∈ P2G1

e1 + e2 if x ∈ G1G2

e3 if x ∈ P3G2

e1 + e2 + e3 if x ∈ G2G3

e4 if x ∈ P4G3

e1 + e2 + e3 + e4 if x ∈ G3P5

0 elsewhere.

It is easy to check that the orientation of each segment coincides with the multiplicity, therefore
T is calibrated by ω.
• This procedure can be replicated to construct a configuration of n + 1 points P1, P2, . . . , Pn+1 in
Rn calibrated by ω, always in the case α = 1/2.

Example 17. We now consider a Steiner tree problem. As in the previous example, we aim to construct
calibrated configurations joining n+1 points in Rn (with n−1 branching points). Consider the following
differential form:

ω =



1
2dx1 +

√
3

2 dx2
1
2dx1 −

√
3

2 dx2
−1
2 dx1 −

√
3

2 dx3
−1
4 dx1 +

√
3

4 dx3 −
√

3
2 dx4

−1
8 dx1 +

√
3

8 dx3 +
√

3
4 dx4 −

√
3

2 dx5
...

−1
2n−2 dx1 +

√
3

2n−2 dx3 +
√

3
2n−3 dx4 + . . . +

√
3

2n−k dxk+1 + . . . +
√

3
4 dxn−1 −

√
3

2 dxn


.

It is easy to check that the differential form ω is a calibration only among those currents having
multiplicities e1, e2, e3, . . . , en, e1 + e2, e1 + e2 + e3, . . . , e1 + e2 + . . . + en−1, e1 + e2 + . . . + en and hence
it will allow to prove the minimality of configurations in the class of currents with those multiplicities
(cf. [12] for the notion calibrations in families). Nevertheless, it is enough to prove the minimality of
global minimizers in some configurations.

• Consider n = 3 and P1 =
(
−1
2 ,
√

3
2 , 0

)
, P2 =

(
−1
2 ,
−
√

3
2 , 0

)
, P3 =

( √
6

2 −
1
2 , 0,

√
3

2

)
, P4 =( √

6
2 −

1
2 , 0,−

√
3

2

)
(see also the example in [7, Section 3]). Indeed, we observe that the lengths
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|P1P2| = |P1P3| = |P1P4| = |P2P3| = |P2P4| = |P3P4| =
√

3, meaning that the convex envelope
of points P1, P2, P3, P4 is a tetrahedron: this observation allows us to restrict our investigation
among all currents having multiplicities e1, e2, e3, e1 +e2, e1 +e2 +e3. More precisely, given any 1-
dimensional integral current T with ∂T = (e1+e2+e3)δP4−e1δP1−e2δP2−. . .−e3δP3 whose support
is an acyclic graph with two additional Steiner points, we can always construct a corresponding
current L with multiplicities e1, e2, e1 + e2, e1 + e2 + e3 having the same boundary with T such that
M(T ) = M(L) thanks to the symmetric configuration P1, P2, P3, P4 combined with the fact that
any minimal configuration cannot have less than two Steiner points. Indeed, by contradiction, if a
minimal configuration for the vertices of a tetrahedron had 1 Steiner point, then this configuration
would violate the well-known property of the 120 degrees angles at Steiner points. Therefore, ω
calibrates the current T = ~Σ, τ, θ�, where S 1 = (0, 0, 0), S 2 =

( √
6

2 − 1, 0, 0
)

are the Steiner points,
Σ = P1S 1 ∪ P2S 1 ∪ S 1S 2 ∪ P3S 2 ∪ S 2P4 and the multiplicity is given by

θ(x) =



e1 if x ∈ P1S 1

e2 if x ∈ P2S 1

e1 + e2 if x ∈ S 1S 2

e3 if x ∈ P3S 2

e1 + e2 + e3 if x ∈ S 2P4

0 elsewhere .

• Using the same strategy of Example 16, we can build a configuration P1, P2, P3, P4, P5 in R4

starting from the points P1, P2, P3, P4 above, in such a way that the new configuration is calibrated
by ω among all currents with multiplicities e1, e2, e3, e4, e1 + e2, e1 + e2 + e3, e1 + e2 + e3 + e4. This
construction can be extended to any dimension.

4. Proof of the main results

The proof of Theorem 1 is much in the spirit of the dipole construction of [4, 10] (in the version
of [2]), the properties of the functional E, and making use of the existence of calibration.

Proof. Let E be the functional which fulfills the requirements of Definition 13. In the first steps we
prove the inequality

inf E ≤ αd−1 inf Iα.

We briefly recall the dipole construction (see, for instance, [10, Theorem 3.1, Theorem 8.1]). Given
a segment AB ⊂ Rd and a pair of parameters β, γ > 0, we define

U := {x ∈ Rd : dist(x, AB) < min{β, γ dist(x, {A, B})}} ⊂ Rd (4.1)

to be a pencil-shaped neighbourhood with core AB and parameters β, γ. For any fixed ε > 0, the dipole
construction produces a function u ∈ W1,d−1

loc (Rd;Sd−1) with the following properties:

• u ≡ (0, . . . , 0, 1) in Rd \ U;
• Ju =

αd−1
d (δA − δB);
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• moreover the map u satisfies the following inequality

1

(d − 1)
d−1

2 αd−1

∫
Rd
|∇u|d−1dx ≤ |AB| + ε , (4.2)

Step 1. Let L =
⋃n−1

i=1 λi be an acyclic connected polyhedral graph, and T be the associated current with
coefficients in Zn−1 corresponding to L. Since L is polyhedral, it can also be written as L =

⋃k
j=1 I j,

where I j are weighted segments. For each segment I j we can find parameters δ j, γ j > 0 such that
the pencil-shaped neighbourhood U j =

{
x ∈ Rd : dist(x, I j) ≤ min

{
β j, γ jdist(x, ∂I j)

}}
(modelled after

(4.1), see also Figure 2) is essentially disjoint from U` for every ` , j. Then, for every i = 1, . . . , n− 1,
let Vi =

⋃
j∈Ki

U j be a sharp covering of the path λi. To be precise, we choose Ki ⊂ {1, . . . , k} such that
Vi ∩ U` is at most an endpoint of the segment I`, if ` < Ki.

Figure 2. A dipole construction of a Y-shaped graph connecting 3 points.

For each path λi, i = 1, . . . , n − 1, we build the map ui ∈ Hi in such a way that it coincides with a
dipole associated to the segment I j in the neighbourhood U j for each j ∈ Ki. We put ui ≡ (0, . . . , 0, 1)
in Rd \ Vi.

We obtain that ui ∈ W1,d−1
loc (Rd;Sd−1) and satisfies Jui =

αd−1
d (δPi − δPn). Moreover, summing up

inequality (4.2) repeated for each segment I j with j ∈ Ki, the following inequality holds

1

(d − 1)
d−1

2 αd−1

∫
Rd
|∇ui|

d−1dx ≤ M(Ti) + kε ,

where Ti is the (classical) integral current corresponding to the ith component of T .
In particular, let us stress that the maps u1, . . . , un−1 have the following further property: if some

paths λi1 , λi2 , . . . , λim have a common segment I j for some j ∈ Ki1 ∩ Ki2 ∩ . . . ∩ Kim , then ui1 , . . . , uim

agree in U j. Furthermore, setting hi1,i2,...,im = (0, . . . , |∇ui1 |
d−1, . . . , |∇uim |

d−1, . . . , 0), we obtain

1

(d − 1)
d−1

2 αd−1

∫
U j

||hi1,i2,...,im ||αdx ≤ mα(|I j| + kε) ,

where hi1,i2,...,im = (0, . . . , |∇ui1 |
d−1, . . . , |∇uim |

d−1, . . . , 0). This holds for every α ∈ [0, 1].
Combining all the previous observations, we can conclude that, given any ε̃ > 0 , there exist ui ∈ Hi,

i = 1, . . . , n − 1 such that∫
Rd
||(|∇u1|

d−1, |∇u2|
d−1, . . . , |∇un−1|

d−1)||α dx ≤(d − 1)
d−1

2 αd−1

∫
L
|θ(x)|αdH1(x) + ε̃
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=(d − 1)
d−1

2 αd−1M(T ) + ε̃ ,

where θ(x) =
∑n−1

i=1 1λi(x). Thus, by the properties of E, one obtain that

inf E ≤ E(u) ≤
1

(d − 1)
d−1

2

H(u) ≤ αd−1M(T ) + ε̃. (4.3)

Step 2. Considering an arbitrary acyclic graph L =
⋃n−1

i=1 λi, there is a sequence of acyclic polyhedral
graphs (Lm)m≥1, Lm =

⋃n−1
i=1 λ

m
i such that the Hausdorff distance dH(λm

i , λi) ≤ 1
m , moreover (see [6,

Lemma 3.10]) denoting by T and Tm the associated currents with coefficients in Zn−1 we also have that

M(Tm) =

∫
Lm

|θm(x)|α dH1(x) ≤ M(T ) =

∫
L
|θ(x)|α dH1(x) +

1
m
.

here θm(x) =
∑n−1

i=1 1λm
i
(x). On the other hand, by previous construction there exists a sequence {um}m,

um = (u1,m, . . . , un−1,m) ∈ H1 × . . . × Hn−1 such that

inf E ≤ E(um) ≤
1

(d − 1)
d−1

2

H(um) ≤ αd−1

∫
Lm

|θm(x)|αdH1(x) +
1
m

= αd−1M(Tm) +
1
m

≤ αd−1M(T ) +
1 + αd−1

m

= αd−1

∫
L
|θ(x)|αdH1(x) +

1 + αd−1

m
. ,

This implies that
inf E ≤ αd−1 inf Iα = αd−1 infM. (4.4)

On the other hand, by the properties (i) of Definition 13, we also have that for any u = (u1, . . . , un−1) ∈
H1 × . . . × Hn−1

αd−1 inf N ≤ M(ju) ≤ E(u) (4.5)

(see Remark 15 to see why the constant αd−1 appears in front of inf N and also see (2.2) for the definition
of inf N). This allows us to conclude that

αd−1 inf N ≤ inf E. (4.6)

Therefore we obtain the following inequality:

αd−1 inf N ≤ inf E ≤ αd−1 inf Iα = αd−1 infM. (4.7)

By assumption, a minimizer of the problem (M) admits a calibration, we have

inf N = infM = inf Iα. (4.8)

this also means that
αd−1 inf N = αd−1 infM = αd−1 inf Iα = inf E (4.9)

which is the sought conclusion. �
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Remark 18. In the proof of Theorem 1, step 3, we must assume the existence of a calibration ω.
Observe that, without this assumption, we still can deduce from that

αd−1 infM = αd−1 inf Iα ≥ inf E ≥ αd−1 inf N (4.10)

where inf N is the infimum of the problem obtained measuring the mass among 1-dimensional normal
currents with coefficients in Rn−1 (see (2.2)).

Moreover, in case α = 1, ψ = ‖ · ‖1, E = H. First, (I) turns out to coincide with the Monge-
Kantorovich problem. Then,

inf H ≥ (d − 1)
d−1

2 αd−1 inf Iα = (d − 1)
d−1

2 αd−1 infM .

To see this is to use the results of Brezis-Coron-Lieb [10] separately for each map ui, i = 1, . . . , n − 1,
for the energy

H(u) =

∫
Rd

(|∇u1|
d−1 + |∇u2|

d−1 + . . . + |∇un−1|
d−1) dx ,

where, again, u = (u1, . . . , un−1) ∈ H1 × . . . × Hn−1. The investigation of equality cases in (4.10), when
0 ≤ α < 1, will be considered in forthcoming works.
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