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Abstract. We prove the existence of a global Lipschitz minimizer of functionals of the form
\scrI (u) =

\int 
\Omega f(\nabla u(x)) + g(x, u(x)) dx, u \in \phi + W 1,1

0 (\Omega ), assuming that \phi satisfies the bounded slope
condition (BSC). Our assumptions on the Lagrangian allow the function f to be strongly degenerate.
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1. Introduction. In this paper we address the problem of regularity of scalar
minimizers of integral functionals of the type

\scrL (u) =
\int 
\Omega 

L(x, u,\nabla u) dx, u \in \phi +W 1,1
0 (\Omega ),

where \Omega is an open, bounded, and convex subset of \BbbR n and \phi satisfies the bounded
slope condition (BSC). In order to contextualize the problem, we recall some results
available in literature. In the pioneering paper [33], it has been proven that, for
L = L(\xi ) strictly convex and for a given function \phi satisfying the BSC of rank K (see
Definition 4.3 below), there exists a Lipschitz function with the same rank of \phi that
is a minimizer of

\scrL (u) =
\int 
\Omega 

L(\nabla u) dx(1.1)

in the class of Lipschitz functions coinciding with \phi on \partial \Omega . More recently [7], under
the same assumptions, Cellina proved that if v is a minimum of the functional (1.1)
in \phi +W 1,1

0 (\Omega ), then v is Lipschitz of rank K. A remarkable feature of these results
is that neither the uniform convexity nor the growth of L plays any role as it happens
in the huge amount of literature on regularity theory in the calculus of variations.

This observation leads naturally to the question of whether the same approach
can be used for functionals depending also on (x, u).

In the proofs of both papers cited above, the key tools are a comparison principle
between the minimum and the affine functions, the invariance of the minimizers with
respect to translations, and a sort of a maximum principle for the gradient of the
minimum (see also [22]).

The use of these instruments can be delicate when considering a more general
framework. First, we point out that the comparison principle may fail when dropping
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1348 F. GIANNETTI AND G. TREU

the strict convexity of L, as it happens even in very simple cases where L depends
only on the gradient (see Example 1 in [6]). Anyway, the validity of comparison
principles for general functionals, depending also on (x, u), has been widely studied,
and, in particular, it has been shown that they hold for very general scalar functionals
but only for special minimizers (see, for example, [27], [29], [28], [8], [26]). Moreover,
another difficulty arises from the fact that the role of the BSC in both [33] and [5]
is strictly related to the minimality property of the affine functions, which gets lost
in the case of dependence on (x, u, \xi ). Last but not least, in this case the minimizers
lose both the invariance property with respect to translations and the validity of the
maximum principle for their gradients.

Here, we renounce to a general structure of L and study functionals of the form

\scrI (u) =
\int 
\Omega 

f(\nabla u) + g(x, u) dx, u \in \phi +W 1,1
0 (\Omega ),(1.2)

where f is convex and g satisfies suitable assumptions with respect to both variables,
and we prove the existence of a Lipschitz minimizer of (1.2); see Theorem 4.8. We
underline that our assumptions on f will be very mild: they do not imply particular
growth properties of the Lagrangian, and they allow us to consider also functions with
anisotropic growth with respect to the gradient variable; see Example 5.3.

The reasons for which we have chosen a functional of the type (1.2) are due to
some considerations. On the one hand, many regularity results show that functionals
of sum type exhibit better behavior; on the other hand, for such functionals a Haar--
Rad\`o type theorem (see [30] and Theorem 2.2 below) was proved that leads to the
maximum principle for the gradients. A strong inspiration for the present paper arises
from the results in [17] where it has been proven the existence of a Lipschitz minimizer
of

\scrJ (u) =

\int 
\Omega 

f(| \nabla u| ) + g(x, u) dx, u \in \phi +W 1,1
0 (\Omega ),

under the assumptions that \Omega is uniformly convex and \phi satisfies the BSC. In partic-
ular, we shall borrow from [17] a comparison principle between a minimizer of \scrI (u)
and suitable minimizers of a conveniently constructed functional (see [7] for the con-
struction of the special minimizers and Theorem 2.4 below for the precise statement
of the comparison principle).

We underline that in [17] the radial structure of f is heavily used in the long
computations leading to the construction of two barriers that bound the minimizers.
Here we remove the assumption of radial structure of f and prove first the existence
of Lipschitz barriers and then the existence of a Lipschitz minimizer, assuming only
that the boundary datum satisfies the BSC. Finally, we recall that the authors of [17]
assume the uniform convexity of f only in some small annuli. Similarly, we assume
the uniform convexity of f only in some small regions of the domain.

We point out that many authors faced the question of how to weaken the as-
sumption of everywhere uniform convexity. In particular, there is a vast literature
concerning the Lipschitz regularity of the local minimizers of functionals depending
on (x, \xi ) under the assumption of uniform convexity only at infinity. The study of
the regularity of local minimizers of nonuniformly convex functionals started with [9]
(see also [21]), where integrands enjoying a p-Laplacian-type structure at infinity were
considered. Actually, for nonsmooth functions, the p-uniform convexity expressed as

1

2
[F (x, \xi 1) + F (x, \xi 2)] \geq F

\biggl( 
x,
\xi 1 + \xi 2

2

\biggr) 
+ \nu (1 + | \xi 1| 2 + | \xi 2| 2)

p - 2
2 | \xi 1  - \xi 2| 2,
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LIPSCHITZ REGULARITY UNDER BSC 1349

for every \xi 1, \xi 2 \in \BbbR nN \setminus B(0, \=R) endpoint of a segment contained in \BbbR nN \setminus B(0, \=R), was
already revealed to be sufficient for the Lipschitz continuity of the local minimizers
(see [18]). Recently, in [1] the authors considered the functional\int 

\Omega 

f(\nabla u(x)) + h(x)u(x) dx,

with f uniformly convex outside a ball and h \in L\infty (\Omega ), and used the BSC to prove
the global Lipschitz regularity of minimizers.

Moreover, we mention the contributions of [25] and [20] and those appearing in
[4], [12], [19] for the nonstandard growth condition case. All these results concern
Lagrangians regular with respect to the x variable. Later on, in [14] the Lipschitz
regularity was obtained also for the solutions of systems with ellipticity conditions at
infinity under a Sobolev regularity assumption on x (see also [14], where integral func-
tionals with variable exponent are considered). Finally, we recall the results of higher
integrability for the gradients of the minimizers and of higher differentiability for the
minimizers themselves in [10] and [11], respectively, under standard and nonstandard
growth conditions. In particular, [10] renounced to the Lipschitz regularity assuming
a weaker condition on the integrand with respect to x. To conclude, we mention [32]
and [13] where a functional not uniformly convex and depending on (x, \xi ) with a very
special structure. We underline that this class of functionals includes the case of the
area functional in the Heisenberg group.

The paper is organized as follows. In section 2 we recall some notation and
known results useful for the construction of the barriers. Section 3 is devoted to the
regularity properties of the polar function of f which will be used to describe in detail
the functions appearing in the comparison principle. Section 4 is the core of the paper
since it contains proofs of both the existence of the barriers and the existence of a
Lipschitz minimizer. Finally, section 5 is dedicated to some examples and remarks.
Once again, we note that our assumptions do not imply any special growth conditions
on the integrand, and, in particular, we allow f to behave differently in different
directions.

2. Preliminary results and a comparison principle. We consider an open
bounded domain \Omega \subset \BbbR n and an integral functional on W 1,1(\Omega ) of the form

\scrI (u) :=
\int 
\Omega 

\Bigl[ 
f(\nabla u(x)) + g(x, u(x))

\Bigr] 
dx(2.1)

for some functions f : \BbbR n \rightarrow \BbbR and g : \Omega \times \BbbR \rightarrow \BbbR .
Definition 2.1. A function u \in W 1,1(\Omega ) is a minimizer of the functional \scrI if

\scrI (u) \leq \scrI (v) for every v \in u+W 1,1
0 (\Omega ).

A standard application of the direct method of the calculus of variations ensures
the existence of a minimizer of \scrI in \phi +W 1,1

0 (\Omega ) for any \phi \in W 1,1(\Omega ), provided f

is convex and superlinear, i.e., lim| x| \rightarrow \infty 
f(x)
| x| = +\infty , and g satisfies suitable assump-

tions.
We recall here a special case of a Haar--Rad\`o-type theorem, which has been proven

in its general form in [30, Theorem 5.2].

Theorem 2.2. Let f be convex and superlinear, and let g be measurable and
convex in the second variable. Assume, moreover, that there exists a positive constant
K such that

\forall x, y \in \BbbR n, \forall u, v \in \BbbR , v \geq u+K| y  - x| \Rightarrow g+v (y, v) \geq g+v (x, u),
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1350 F. GIANNETTI AND G. TREU

where g+v denotes the right derivative of g with respect to the second variable. If there
exist two Lipschitz continuous functions l - , l+ \in \phi +W 1,1

0 (\Omega ) of rank L on \=\Omega such
that

l - (x) \leq u(x) \leq l+(x) a.e. in \Omega ,

where u \in \phi +W 1,1
0 (\Omega ) is the maximum or the minimum of the minimizers of \scrI , then

| u(x) - u(y)| \leq L| x - y| for every Lebesgue point x and y.

Remark 2.3. Note that in [29], it has been proven that the pointwise minimum
and the pointwise maximum of the minimizers of \scrI belong to \phi +W 1,1

0 (\Omega ) and are
still minimizers of the same functional provided f is superlinear.

We now define the integral functionals I\pm \alpha on W 1,1(\Omega ) by setting

I\pm \alpha (u) :=

\int 
\Omega 

\Bigl[ 
f(\nabla u(x))\pm \alpha u(x)

\Bigr] 
dx,

where \alpha is a positive constant. A result by Cellina (see [7]) states that if f is convex
and superlinear, then for every x0 \in \BbbR n and c \in \BbbR the functions \omega \pm \alpha (x) : \BbbR n \rightarrow \BbbR 
defined by

\omega \pm \alpha (x) :=
n

\pm \alpha 
f\ast 

\Bigl( 
\pm \alpha 

x - x0
n

\Bigr) 
+ c(2.2)

are unique minimizers of I\pm \alpha in the sense that I\pm \alpha (\omega \pm \alpha ) < I\pm \alpha (v) for every v \in \omega \pm \alpha +
W 1,1

0 (\Omega ). We remark that the hypotheses on f guarantee that \omega \pm \alpha \in W 1,\infty 
\mathrm{l}\mathrm{o}\mathrm{c} (\BbbR n).

In order to state a comparison result between the minimizers of \scrI and the mini-
mizers of I\alpha , I - \alpha , we have to be precise about what we mean when we say that two
Sobolev functions satisfy an inequality on the boundary of \Omega : for given u, v \in W 1,1(\Omega ),
we shall write u \leq v on \partial \Omega if (u - v)+ \in W 1,1

0 (\Omega ).

Theorem 2.4 ([17, Theorem 2.4]). Assume that f : \BbbR n \rightarrow \BbbR is convex and
superlinear, and suppose that g : \Omega \times \BbbR \rightarrow \BbbR is measurable with respect to x and
Lipschitz continuous in the second variable, with Lipschitz constant equal to \alpha , that
is,

| g(x, u1) - g(x, u2)| \leq \alpha | u1  - u2| 

for every x \in \Omega and u1, u2 \in \BbbR . Let u be a minimizer of \scrI , and let \omega \alpha , \omega  - \alpha be as in
(2.2) for some x0 and c. If u \geq \omega +\alpha on \partial \Omega , then u \geq \omega +\alpha a.e. in \Omega , and if u \leq \omega  - \alpha 

on \partial \Omega , then u \leq \omega  - \alpha a.e. in \Omega .

We conclude this section with the following lemma that will be instrumental in
what follows.

Lemma 2.5. Consider a convex function f : \BbbR n \rightarrow \BbbR , and assume that \eta \in \partial f(\xi )\cap 
\partial f(\zeta ), \xi \not = \zeta . Then f is affine on the segment joining \xi and \zeta , i.e.,

f(t\xi + (1 - t)\zeta ) = tf(\xi ) + (1 - t)f(\zeta ) \forall t \in [0, 1].(2.3)

Moreover, \eta \in \partial f(t\xi + (1 - t)\zeta ) \forall t \in [0, 1].

Proof. Since f is convex, we have

f(t\xi + (1 - t)\zeta ) \geq f(\xi ) + \eta \cdot (t\xi + (1 - t)\zeta  - \xi )

= f(\xi ) + (1 - t)\eta \cdot (\zeta  - \xi )(2.4)
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LIPSCHITZ REGULARITY UNDER BSC 1351

and

f(t\xi + (1 - t)\zeta ) \geq f(\zeta ) + \eta \cdot (t\xi + (1 - t)\zeta  - \zeta )

= f(\zeta ) + t\eta \cdot (\xi  - \zeta ).(2.5)

At this point, we multiply the inequality in (2.4) for t and the inequality in (2.5) for
1 - t and sum term to term, obtaining

f(t\xi + (1 - t)\zeta ) \geq tf(\xi ) + (1 - t)f(\zeta ).

Therefore the equality (2.3) follows thanks to the convexity.
Moreover, by using that \eta \in \partial f(\xi ) and that (2.4) is actually an equality, we

obtain

f(\vargamma ) \geq f(\xi ) + \eta \cdot (\vargamma  - \xi )

= f(t\xi + (1 - t)\zeta ) + \eta \cdot (\xi  - (t\xi + (1 - t)\zeta )) + \eta \cdot (\vargamma  - \xi )

= f(t\xi + (1 - t)\zeta ) + \eta \cdot (\vargamma  - (t\xi + (1 - t)\zeta ))(2.6)

for every \vargamma \in \BbbR n, which concludes the proof.

3. Regularity properties of the polar function. In what follows we give
some basic results on the polar f\ast of a convex function f : \BbbR n \rightarrow \BbbR that will be useful
in the next section.

We recall that f\ast : \BbbR n \rightarrow [ - \infty ,+\infty ] is defined by

f\ast (\xi ) := sup
x\in \BbbR n

\{ x \cdot \xi  - f(x)\} \forall \xi \in \BbbR n

(see [16]) and denote the effective domain of f by

domf = \{ x \in \BbbR n : f(x) \in \BbbR \} .

The following lemma holds.

Lemma 3.1. Assume that f is convex, domf = \BbbR n, f(\xi ) \geq 0, and f(0) = 0.
Then f is superlinear if and only if domf\ast = \BbbR n.

Proof. We first prove that the superlinearity of f implies that the effective domain
of its polar function f\ast is \BbbR n. Indeed, let us assume by contradiction that dom f\ast \not =
\BbbR n. This implies the existence of \eta \in \BbbR n with

sup
\xi \in \BbbR n

\{ \xi \cdot \eta  - f(\xi )\} = f\ast (\eta ) = +\infty .

Therefore, we can find a sequence (\xi k)k \subset \BbbR n, such that

f(\xi k) + k < \xi k \cdot \eta \leq | \xi k| | \eta | .

Hence, limk| \xi k| = +\infty and limk
f(\xi k)
| \xi k| \leq | \eta | , which contradicts the superlinearity

condition lim| \eta | \rightarrow +\infty 
f(\eta )
| \eta | = +\infty .

In order to prove the reverse implication, we show that if f is not superlinear,
then domf\ast \varsubsetneq \BbbR n.
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1352 F. GIANNETTI AND G. TREU

Let k \in \BbbR n, k \not = 0, such that limt\rightarrow +\infty 
f(tk)

t = l > 0. Without loss of generality,

we assume k = e1 so that limt\rightarrow +\infty 
f(te1)

t = l. It follows that

f(te1) \leq lt+ c \forall t > 0.(3.1)

Consider \eta = (\eta 1, 0, . . . , 0) \in \BbbR n, \eta 1 > l, and prove that f\ast (\eta ) = +\infty :

f\ast (\eta ) = sup
\xi \in \BbbR n

\{ \xi \eta  - f(\xi )\} = sup
\xi \in \BbbR n

\{ \xi 1\eta 1  - f(\xi )\} 

\geq sup
t\in \BbbR 

\{ t\eta 1  - f(te1)\} \geq sup
t\in \BbbR 

\{ t(\eta 1  - l) - c\} = +\infty ,(3.2)

where, in the last estimate, we used (3.1).

In the next corollary we list the properties of the polar function f\ast .

Corollary 3.2. Assume that f is convex, domf = \BbbR n, f(\xi ) \geq 0, and f(0) = 0.
Moreover, assume that f is superlinear. Then f\ast (\xi ) verifies the same properties of f .

Proof. First, observe that it is immediate to verify that f\ast is convex, f\ast (\xi ) \geq 0,
and f\ast (0) = 0 since f verifies the same properties. The superlinearity of f implies
that dom f\ast = \BbbR n by using Lemma 3.1. Finally, assume by contradiction that f\ast 

is not superlinear. Lemma 3.1 implies that domf\ast \ast \varsubsetneq \BbbR n, which is absurd since
f\ast \ast = f .

We conclude the section with the following.

Lemma 3.3. Assume that f is convex and that domf = \BbbR n. Moreover, assume
that there exist \tau 1 < \tau 2 and \epsilon > 0 such that

f(\xi ) \geq f(\zeta ) + \eta \zeta (\xi  - \zeta ) +
\epsilon 

2
| \xi  - \zeta | 2(3.3)

for every \eta \zeta belonging to the subdifferential \partial f(\zeta ) and for every \xi , \zeta \in Ac
1 \cap A2, where

Ai := \{ \xi \in \BbbR n : f(\xi ) < \tau i\} , i = 1, 2.

Then f\ast is C1,1((A\ast 
1)

c \cap A\ast 
2), with

A\ast 
i := \{ x \in \BbbR n : \exists \xi \in Ai : x \in \partial f(\xi )\} , i = 1, 2,

and for every \eta \xi \in (A\ast 
1)

c \cap A\ast 
2 such that \nabla f\ast is differentiable, the second derivatives

of f\ast satisfy

| \partial ijf\ast (\eta \xi )| \leq 
1

\epsilon 
.(3.4)

Proof. First, we observe that (3.3) implies the strict convexity of f on Ac
1 \cap A2.

As a first step we show that \partial f\ast (\eta ) is a singleton for every \eta \in (A\ast 
1)

c \cap A\ast 
2. Let us

suppose that it is not. This means that there exist \xi \not = \zeta in \partial f\ast (\eta ) and therefore
\eta \in \partial f(\xi )\cap \partial f(\zeta ). By Lemma 2.5 f is affine on the segment joining \xi and \zeta , and hence
f is not strictly convex on it. We shall obtain a contradiction once we prove that the
segment intersects Ac

1 \cap A2. By the definitions of A\ast 
2 and (A\ast 

1)
c we can deduce that

at least one of the two points, say \xi , belongs to Ac
1 \cap A2 while \zeta \in Ac

1. It is enough to
conclude that the intersection above is not empty. Since \partial f\ast (\eta ) is a singleton, from
now on we shall denote it by \nabla f\ast (\eta ).
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LIPSCHITZ REGULARITY UNDER BSC 1353

By assumption (3.3), for any \xi , \zeta \in Ac
1 \cap A2, we have

f(\xi ) - f(\zeta ) - \eta \zeta (\xi  - \zeta ) \geq \epsilon 

2
| \xi  - \zeta | 2,(3.5)

f(\zeta ) - f(\xi ) - \eta \xi (\zeta  - \xi ) \geq \epsilon 

2
| \xi  - \zeta | 2(3.6)

for every \eta \zeta \in \partial f(\zeta ) and \eta \xi \in \partial f(\xi ). By adding term by term (3.5) and (3.6), we get

(\eta \xi  - \eta \zeta )(\xi  - \zeta ) \geq \epsilon | \xi  - \zeta | 2.

Applying the Cauchy--Schwarz inequality on the left-hand side, dividing both sides
by \epsilon | \xi  - \zeta | , and recalling that \xi = \nabla f\ast (\eta \xi ) and \zeta = \nabla f\ast (\eta \zeta ), we get

| \nabla f\ast (\eta \xi ) - \nabla f\ast (\eta \zeta )| \leq 
1

\epsilon 
| \eta \xi  - \eta \zeta | ,(3.7)

proving that f\ast is C1,1((A\ast 
1)

c \cap A\ast 
2). The Hessian matrix is then defined almost

everywhere in (A\ast 
1)

c \cap A\ast 
2. In order to estimate its sup norm we fix a point \eta \xi where

\nabla f\ast is differentiable. Inequality (3.7) implies that \forall i, j = 1, . . . , n,

| \partial if\ast (\eta \xi ) - \partial if
\ast (\eta \xi + tej)| \leq 

1

\epsilon 
| t| ,

and hence,

| \partial ijf\ast (\eta \xi )| \leq 
1

\epsilon 
,

which completes the proof.

4. Construction of the barriers. From now on, we assume that the function
f : \BbbR n \rightarrow \BbbR in (2.1) satisfies the following hypotheses:

(F1) f is convex, f(\xi ) \geq 0 and such that f(0) = 0;
(F2) dom f = \BbbR n;
(F3) for every k \in \BbbN there exist \epsilon k > 0 and \tau k+1

1 > \tau k2 > \tau k1 > k such that

(i) f(\xi ) \geq f(\zeta ) + \eta \zeta (\xi  - \zeta ) + \epsilon k
2 | \xi  - \zeta | 2 for every \xi , \zeta \in (Ak

1)
c \cap Ak

2 and
\eta \zeta \in \partial f(\zeta ), where

Ak
i := \{ \xi \in \BbbR n : f(\xi ) < \tau ki \} , i = 1, 2,

are bounded sets.
(ii) \exists \alpha ,R > 0 such that limk\rightarrow +\infty \epsilon kd

k
i > 2\alpha 

nR, where d
k
i = inf\partial Ak dist(x, \partial Ak

i ),

i = 1, 2, and Ak = \{ \xi \in \BbbR n : f(\xi ) < \tau k\} with \tau k =
\tau k
1 +\tau k

2

2 .

(iii) 1
\epsilon k| \xi | <

1
R \forall \xi \in (Ak

1)
c \cap Ak

2 .

Remark 4.1. We note that hypotheses (F1) and (F3)(i) imply that f is not iden-
tically equal to zero.

The first result of this section will be the existence of Lipschitz barriers for the
minimizers of the functional (2.1) with a fixed boundary datum in C1,1(\Omega ) (see The-
orem 4.5). Later, in Theorem 4.6 we shall prove that there exists a minimizer of (1.2)
inheriting the global Lipschitz regularity of such barriers.

Before stating and proving the mentioned results, we need some definitions.

Definition 4.2. An open bounded subset \Omega of \BbbR n is R-uniformly convex, R > 0,
if for every \gamma \in \partial \Omega there exists a vector b\gamma \in \BbbR n, with | b\gamma | = 1, such that

Rb\gamma \cdot (\gamma \prime  - \gamma ) \geq 1

2
| \gamma \prime  - \gamma | 2 \forall \gamma \prime \in \partial \Omega .(4.1)
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1354 F. GIANNETTI AND G. TREU

We recall that the definition of the BSC, introduced by Hartman and Stampacchia
in [24], is the following.

Definition 4.3 (BSC). The function \phi satisfies the BSC of rank M \geq 0 if for
every \gamma \in \partial \Omega there exist z - \gamma , z+\gamma \in \BbbR n, and M \in \BbbR such that

\forall \gamma \prime \in \partial \Omega \phi (\gamma ) + z - \gamma \cdot (\gamma \prime  - \gamma ) \leq \phi (\gamma \prime ),

\forall \gamma \prime \in \partial \Omega \phi (\gamma ) + z+\gamma \cdot (\gamma \prime  - \gamma ) \geq \phi (\gamma \prime ),

and | z\pm \gamma | \leq M for every \gamma \in \partial \Omega .

Remark 4.4. The BSC implies that \phi is Lipschitz of rank M . Moreover, it forces
\Omega to be convex unless \phi is affine. Necessary and sufficient conditions for the BSC are
studied, respectively, in [23] and [31]. In particular, we shall use the characterization
of functions satisfying the BSC on uniformly convex sets given in [31] that states that
\phi satisfies the BSC on a uniformly convex set \Omega if and only if \phi is C1,1 . To be precise,
we shall use it on R-uniformly convex sets.

Theorem 4.5. Let \Omega be an open bounded R-uniformly convex set, and let f : \BbbR n \rightarrow 
\BbbR satisfy hypotheses (F1)--(F3). Let g : \Omega \times \BbbR \rightarrow \BbbR be measurable in x and Lipschitz
continuous in the second variable with Lipschitz constant equal to \alpha .

For every fixed function \phi : \Omega \rightarrow \BbbR \in C1,1(\Omega ), there exists a minimizer of the
functional (2.1). Moreover, there exist \ell +, \ell  - : \Omega \rightarrow \BbbR , both Lipschitz of rank L =
L(R, f, \phi ), such that

\ell  - (\gamma ) = \phi (\gamma ) = \ell +(\gamma ) for every \gamma \in \partial \Omega 

and

\ell  - (x) \leq u(x) \leq \ell +(x)

for almost every x \in \Omega and for every minimum u.

Proof. In order to prove the existence of a minimizer for the functional (2.1), it
will be sufficient to prove that f is superlinear or, equivalently, by virtue of Lemma
3.1, that domf\ast = \BbbR n.

Let us consider the sets Ak
i and Ak involved in assumptions (F3)(i),(ii) and denote

(Ak
i )

\ast := \{ x \in \BbbR n : \exists \xi \in Ak
i : x \in \partial f(\xi )\} , i = 1, 2,

and (Ak)\ast the set defined analogously. It is easy to check that, thanks to the assump-
tion that domf = \BbbR n, all these sets are bounded. Moreover, they enjoy the following
useful properties proven below:

1. (Ak
2)

\ast \subseteq (Ak+1
1 )\ast for every k \in \BbbN .

2. (Ak
1)

\ast \subset (Ak
2)

\ast for every k \in \BbbN .
3. There exists a ball B(0, r) \subseteq (A1

1)
\ast .

The inclusion in property 1 obviously follows from the definitions of the sets them-
selves. To prove property 2, we first observe that assumptions (F1) and (F2), together
with the definitions of Ak

1 , A
k
2 and the fact that Ak

i are bounded, imply that the set

Ak
2 \setminus Ak

1 is open and nonempty. So, consider \xi \in Ak
2 \setminus Ak

1 and x \in \partial f(\xi ). Obviously,

x \in (Ak
2)

\ast but x /\in (Ak
1)

\ast . Indeed, let us assume by contradiction that x \in (Ak
1)

\ast .
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LIPSCHITZ REGULARITY UNDER BSC 1355

Then there exist a sequence \{ xh\} h\in \BbbN \subset (Ak
1)

\ast such that xh converges to x and a
sequence \{ \xi h\} h\in \BbbN \subset Ak

1 such that xh \in \partial f(\xi h) \forall h \in \BbbN . Up to a subsequence, \xi h con-

verges to \zeta \in Ak
1 , and the semicontinuity of the subdifferential implies that x \in \partial f(\zeta ).

Hence x \in \partial f(\xi ) \cap \partial f(\zeta ) and, arguing as in the proof of Lemma 3.3, we get that f is

affine on the segment joining \xi and \zeta that has a nontrivial intersection with Ak
2 \setminus Ak

1

contradicting (F3). Therefore the desired inclusion holds true.
Now it remains to prove the third assertion. To this aim, we shall prove that

0 \in int(A1
1)

\ast \not = \emptyset . Observe that 0 \in (A1
1)

\ast . Indeed, 0 \in A1
1, and assumption (F1)

implies that it is a minimum for f . Hence 0 \in \partial f(0).
Consider the set A1

1, and observe that 0 \in intA1
1 and that A1

1 is a bounded set.
Then for every x \in Sn - 1, the (n  - 1)-dimensional sphere, there exist \xi x \in \partial A1

1 and
tx > 0 such that txx \in \partial f(\xi x). Denote t := inf\{ tx : x \in Sn - 1 and txx \in \partial f(\xi x)\} ,
and observe that t \not = 0. Otherwise, there would exist \{ txh

\} h \subset \BbbR + and \{ \xi xh
\} h \subset \partial A1

1

such that txh
x \in \partial f(\xi xh

) and, up to subsequences,

txh
\rightarrow 0,

\xi xh
\rightarrow \xi \in \partial A1

1.

The semicontinuity of the subdifferential would imply that 0 \in \partial f(\xi ) and hence
f(\xi ) = 0, which is absurd since f \equiv \tau 11 > 1 on \partial A1

1.
In order to conclude, observe that for every 0 < s < t and for every x \in Sn - 1,

there exists \xi x,s \in intA1
1 such that sx \in \partial f(\xi x,s). It follows that sx \in (A1

1)
\ast , and

hence B(0, r) \subseteq (A1
1)

\ast for every 0 < r < t.
At this point, to prove that domf\ast = \BbbR n, it is sufficient to show that \lambda x \in domf\ast 

for every \lambda > r and for every x \in Sn - 1.
To this aim, let us fix x \in Sn - 1 and consider xki \in \partial (Ak

i )
\ast , i = 1, 2, k \in \BbbN , such

that there exists \lambda ki > 0 such that \lambda ki x = xki . We remark that, thanks to the inclusions
1 and 2, it follows that \lambda k1 < \lambda k2 \leq \lambda k+1

1 and

\lambda h2 \geq 
\sum 

k=1,...,h

(\lambda k2  - \lambda k1).(4.2)

Let (yn)n \subset (Ak
i )

\ast such that (yn)n \rightarrow xki . Then for every yn there exists \zeta n \in Ak
i

such that yn \in \partial f(\zeta n). Up to a subsequence, \zeta n \rightarrow \zeta \in Ak
i , and hence, thanks to

the semicontinuity of \partial f , we obtain xki \in \partial f(\zeta ). Arguing similarly we can prove the

existence of \zeta \prime \in (Ak
i )

c such that xki \in \partial f(\zeta \prime ). It follows that xki \in \partial f(\eta ) for every
\eta belonging to the segment joining \zeta and \zeta \prime (see Lemma 2.5) that intersects \partial Ak

i .
Denoting by \xi ki the point on \partial Ak

i such that xki \in \partial f(\xi ki ), we can apply assumption
(F3)(i) to obtain

f(\xi k2 ) - f(\xi k1 ) \geq xk1(\xi 
k
2  - \xi k1 ) +

\epsilon k
2
| \xi k2  - \xi k1 | 2

and

f(\xi k1 ) - f(\xi k2 ) \geq xk2(\xi 
k
1  - \xi k2 ) +

\epsilon k
2
| \xi k2  - \xi k1 | 2.

Adding these two inequalities term by term, we obtain

(xk2  - xk1)(\xi 
k
2  - \xi k1 ) \geq \epsilon k| \xi k2  - \xi k1 | 2,
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1356 F. GIANNETTI AND G. TREU

and, applying the Cauchy--Schwarz inequality on the left-hand side, we get

| xk2  - xk1 | \geq \epsilon k| \xi k2  - \xi k1 | \geq \epsilon k(d
k
1 + dk2).

Hence, by the definition of \lambda ki and (4.2), we have

\lambda h2 | x| \geq 
\sum 

k=1,...,h

(\lambda k2  - \lambda k1)| | x| =
\sum 

k=1,...,h

| xk2  - xk1 | \geq 
\sum 

k=1,...,h

\epsilon k(d
k
1 + dk2).

Assumption (F3)(ii) implies that limh \lambda 
h
2 | x| = +\infty , and hence domf\ast = \BbbR n.

For the second assertion of the theorem, it is sufficient to construct the function
\ell  - (the construction of \ell + follows in exactly the same way).

As we pointed out in Remark 4.4, note that \phi satisfies the BSC. Fix a point
\gamma \in \partial \Omega , and consider the vector z - \gamma involved in the definition of the BSC at the point
\gamma . The proof of the theorem will be achieved once we show that there exist x\gamma , c\gamma 
such that the set

\Omega x\gamma ,c\gamma :=
\Bigl\{ 
x \in \BbbR n :

n

\alpha 
f\ast 

\Bigl( \alpha 
n
(x - x\gamma )

\Bigr) 
+ c\gamma  - z - \gamma \cdot (x - \gamma ) - \phi (\gamma ) < 0

\Bigr\} 
(4.3)

contains \Omega and \gamma \in \partial \Omega x\gamma ,c\gamma \cap \partial \Omega . In fact, by this last property, we have immediately
that the inequality

lx\gamma ,c\gamma (x) :=
n

\alpha 
f\ast 

\Bigl( \alpha 
n
(x - x\gamma )

\Bigr) 
+ c\gamma \leq z - \gamma \cdot (x - \gamma ) + \phi (\gamma ) \leq \phi (x)

holds for any x \in \partial \Omega . The comparison principle in Theorem 2.4 then implies that

lx\gamma ,c\gamma (x) \leq u(x) a.e. on \Omega 

for every minimizer u with boundary datum \phi . We get the result by simply setting

\ell  - (x) = sup
\gamma \in \partial \Omega 

lx\gamma ,c\gamma (x).

We divide the core of the proof into different steps.
Step 1. Define the auxiliary domain as follows: fix a \in \BbbR n, b > 0, and let

\Omega b :=
\Bigl\{ 
x \in \BbbR n :

n

\alpha 
f\ast 

\Bigl( \alpha 
n
x
\Bigr) 
 - a \cdot x - b < 0

\Bigr\} 
.

Whenever we assume that (F1) and (F2) hold, Lemma 3.1 implies that \Omega b is bounded
for every b and that 0 is contained in its interior for b > 0.

Fix \tau k \in (\tau k1 , \tau 
k
2 ). For Ak := \{ \xi \in \BbbR n : f(\xi ) < \tau k\} , consider A\ast 

k := \{ x \in \BbbR n : \exists \xi \in 
Ak : x \in \partial f(\xi )\} for which (Ak

1)
\ast \subset A\ast 

k \subset (Ak
2)

\ast obviously hold, and let k be such that\bigm| \bigm| \bigm| \nabla f\ast \Bigl( \alpha 
n
x
\Bigr) \bigm| \bigm| \bigm| > | a| for every

\alpha 

n
x \in \partial A\ast 

k.(4.4)

This is guaranteed, for k sufficiently large, because Corollary 3.2 yields that f\ast is
superlinear and domf\ast = \BbbR n so that

lim
k\rightarrow +\infty 

diam(Ak
i )

\ast = +\infty , i = 1, 2.(4.5)

Now let us select a special domain of type (4.4). Fix k such that (4.4) holds and
\eta \in Sn - 1. There exist \alpha 

nx\eta \in A\ast 
k and \lambda \eta > 0 such that

\lambda \eta \eta = \nabla f\ast 
\Bigl( \alpha 
n
x\eta 

\Bigr) 
 - a.(4.6)
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LIPSCHITZ REGULARITY UNDER BSC 1357

If we define
b\eta :=

n

\alpha 
f\ast 

\Bigl( \alpha 
n
x\eta 

\Bigr) 
 - a \cdot x\eta ,

we can deduce from the definitions above that x\eta \in \partial \Omega b\eta and therefore, by (4.6), that
the outward normal to \Omega b\eta in x\eta is \eta .

Now we are interested in proving that we can find a ball of radius R contained in
\Omega b\eta that touches \partial \Omega b\eta in x\eta . Hence, in the next step we shall compute the principal
curvatures of \partial \Omega b\eta in a neighborhood of x\eta , and in Steps 3 and 4 we will show the
existence of such a ball.

Step 2. Since \partial \Omega b\eta is described by the equation G(y) = 0, where

G(y) :=
n

\alpha 
f\ast 

\Bigl( \alpha 
n
y
\Bigr) 
 - a \cdot y  - b\eta ,(4.7)

the principal curvatures of \partial \Omega b\eta in a neighborhood of x\eta can be found through the
calculation of the second derivatives of the function \psi implicitly defined by G(y) = 0.
Without loss of generality, we can suppose yn = \psi (y1, y2, . . . , yn - 1) = \psi (\^y).

Observe that, by Lemma 3.3, the function f\ast \in C1,1((Ak
2)

\ast \setminus (Ak
1)

\ast ), and hence

for a.e. y \in (Ak
2)

\ast \setminus (Ak
1)

\ast it has second derivatives. Therefore, if we consider the

points y \in \partial \Omega b\eta such that \alpha 
ny \in (Ak

2)
\ast \setminus (Ak

1)
\ast , we assume, without restriction, that

for \scrH n - 1-a.e. y, we can compute the second derivatives of the function \psi (\^y).
Otherwise, a simple measure theory argument implies that we can choose \tau \prime k suf-

ficiently close to \tau k such that the corresponding set \Omega b\eta satisfies the desired property.
Therefore we have to estimate

\partial ij\psi (\^y)

(1 + | \nabla \psi (\^y)| 2)3/2
for i, j = 1, . . . , n - 1.

By the implicit function theorem, we have \alpha 
ny = \alpha 

n (\^y, \psi (\^y)) \in (Ak
1)

\ast c \cap (Ak
2)

\ast , so that

\partial ij\psi 

(1 + | \nabla \psi | 2)3/2

=
 - \partial ijG(\partial nG)2 + \partial inG\partial jG\partial nG+ \partial jnG\partial iG\partial nG - \partial nnG\partial iG\partial jG

| \nabla G| 3

=

\Biggl[ 
n\sum 

i=1

\Bigl[ 
\partial if

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - ai

\Bigr] 2\Biggr]  - 3
2

\cdot \alpha 
n

\Bigl\{ 
 - \partial i,jf

\ast 
\Bigl( \alpha 
n
y
\Bigr) \Bigl[ 
\partial nf

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - an

\Bigr] 2
+ \partial inf

\ast 
\Bigl( \alpha 
n
y
\Bigr) \Bigl[ 
\partial jf

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - aj

\Bigr] 
\cdot 
\Bigl[ 
\partial nf

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - an

\Bigr] 
+ \partial jnf

\ast 
\Bigl( \alpha 
n
y
\Bigr) \Bigl[ 
\partial if

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - ai

\Bigr] 
\cdot 
\Bigl[ 
\partial nf

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - an

\Bigr] 
 - \partial nnf

\ast 
\Bigl( \alpha 
n
y
\Bigr) \Bigl[ 
\partial if

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - ai

\Bigr] 
\cdot 
\Bigl[ 
\partial jf

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - aj

\Bigr] \Bigr\} 
.

It follows that\bigm| \bigm| \bigm| \bigm| \partial ij\psi 

(1 + | \nabla \psi | 2)3/2

\bigm| \bigm| \bigm| \bigm| \leq 
\Biggl[ 

n\sum 
i=1

\Bigl[ 
\partial if

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - ai

\Bigr] 2\Biggr]  - 3
2

\cdot \alpha 
n

\Bigl\{ n - 1\sum 
i,j=1

\bigm| \bigm| \bigm| \partial ijf\ast \Bigl( \alpha 
n
y
\Bigr) \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \partial nnf\ast \Bigl( \alpha 

n
y
\Bigr) \bigm| \bigm| \bigm| 

\cdot 
n\sum 

i,j=1

\bigm| \bigm| \bigm| \Bigl( \partial if\ast \Bigl( \alpha 
n
y
\Bigr) 
 - ai

\Bigr) 
\cdot 
\Bigl( 
\partial jf

\ast 
\Bigl( \alpha 
n
y
\Bigr) 
 - aj

\Bigr) \bigm| \bigm| \bigm| \Bigr\} .D
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1358 F. GIANNETTI AND G. TREU

Now observe that, thanks to Lemma 3.3, we have | \partial ijf\ast | \leq 1
\varepsilon k

, and hence by assump-
tion (F3)(iii) we get

| Hf\ast (\alpha ny)| 
| \nabla f\ast (\alpha ny)| 

<
1

R
\forall y \in \partial \Omega b\eta and

\alpha 

n
y \in (Ak

1)
\ast c \cap (Ak

2)
\ast .

Step 3. Now we fix \tau k =
\tau k
1 +\tau k

2

2 and prove that dist(\alpha nx\eta , \partial (A
k
i )

\ast ) \geq 2\alpha 
nR, i = 1, 2.

We follow exactly the same argument that we used to show the superlinearity of f .
Let us give the proof for (Ak

1)
\ast ; the proof for the other one is similar. To this aim, let

us estimate the dist(\alpha nx\eta , x) for x \in \partial (Ak
1)

\ast . Let \xi \in \partial Ak
1 and \xi \eta \in \partial Ak, respectively,

be such that x \in \partial f(\xi ) and \alpha 
nx\eta \in \partial f(\xi \eta ). From assumption (F3)(i) we have that

f(\xi \eta ) - f(\xi ) \geq x(\xi \eta  - \xi ) +
\epsilon k
2
| \xi \eta  - \xi | 2,

f(\xi ) - f(\xi \eta ) \geq 
\alpha 

n
x\eta (\xi  - \xi \eta ) +

\epsilon k
2
| \xi \eta  - \xi | 2.

Adding these two inequalities term by term, we obtain\Bigl( 
x - \alpha 

n
x\eta 

\Bigr) 
(\xi  - \xi \eta ) \geq \epsilon k| \xi  - \xi \eta | 2,

and, applying Cauchy--Schwarz inequality to the left-hand side, we get\bigm| \bigm| \bigm| x - \alpha 

n
x\eta 

\bigm| \bigm| \bigm| \geq \epsilon k| \xi  - \xi \eta | \geq \epsilon kd
k
1 .

Assumption (F3)(ii) implies that | x - \alpha 
nx\eta | \geq 2\alpha 

nR.
It follows that the ball B(\alpha nx\eta  - 

\alpha 
nR\eta ,

\alpha 
nR) is certainly contained in B(\alpha nx\eta , 2

\alpha 
nR)

and hence in the set (Ak
1)

\ast c \cap (Ak
2)

\ast .
Step 4. In order to construct the sets \Omega x\gamma ,c\gamma in (4.3) and the corresponding

functions lx\gamma ,c\gamma , choose a = z - \gamma , x\gamma := \gamma  - x\eta , and c\gamma := \phi (\gamma ) - n
\alpha f

\ast (\alpha nx\eta ) so that

\gamma  - x\eta +\Omega b\eta 

=
\Bigl\{ 
x :

n

\alpha 
f\ast 

\Bigl( \alpha 
n
(x - \gamma + x\eta )

\Bigr) 
 - z - \gamma \cdot (x - \gamma + x\eta ) - b\eta < 0

\Bigr\} 
=

\Bigl\{ 
x :

n

\alpha 
f\ast 

\Bigl( \alpha 
n
(x - x\gamma )

\Bigr) 
+ \phi (\gamma ) - z - \gamma \cdot x\eta  - b\eta  - z - \gamma \cdot (x - \gamma ) - \phi (\gamma ) < 0

\Bigr\} 
=

\Bigl\{ 
x :

n

\alpha 
f\ast 

\Bigl( \alpha 
n
(x - x\gamma )

\Bigr) 
+ c\gamma  - z - \gamma \cdot (x - \gamma ) - \phi (\gamma ) < 0

\Bigr\} 
= \Omega x\gamma ,c\gamma 

since

z - \gamma \cdot x\eta + b\eta =
n

\alpha 
f\ast 

\Bigl( \alpha 
n
x\eta 

\Bigr) 
.

Now let us consider y \in B(x\eta  - R\eta ,R) so that \alpha 
ny \in B(\alpha nx\eta  - \alpha 

nR\eta ,
\alpha 
nR) and

hence, from the conclusion of Step 3, \alpha 
ny \in (Ak

1)
\ast c \cap (Ak

2)
\ast . Then for \scrH n - 1-a.e.

y \in B(x\eta  - R\eta ,R) \cap \partial \Omega b\eta the principal curvatures of \partial \Omega b\eta can be estimated as in
Step 2, with 1

R . It follows, by the convexity of \Omega b\eta that B(x\eta  - R\eta ,R) \subseteq \Omega b\eta .
In this way, using also the fact that \Omega is R-uniformly convex, we have

\Omega \subseteq B(\gamma  - R\eta ,R) = \gamma  - x\eta +B(x\eta  - R\eta ,R) \subseteq \gamma  - x\eta +\Omega b\eta = \Omega x\gamma ,c\gamma .

Moreover, it is immediate to verify that \gamma \in \partial \Omega x\gamma ,c\gamma \cap \partial \Omega , and this concludes the
proof.
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Now, combining the results in Theorems 2.2 and 4.5, we have the following.

Theorem 4.6. Let \Omega be an open bounded R-uniformly convex set. Assume that
f : \BbbR n \rightarrow \BbbR satisfies hypotheses (F1)--(F3) and that g : \Omega \times \BbbR \rightarrow \BbbR is measurable in x,
convex, and Lipschitz continuous in the second variable, with Lipschitz constant equal
to \alpha . Moreover, assume there exists a positive constant K such that

\forall x, y \in \BbbR n, \forall u, v \in \BbbR , v \geq u+K| y  - x| \Rightarrow g+v (y, v) \geq g+v (x, u),

where g+v denotes the right derivative of g with respect to the second variable.
Then, for every \phi \in C1,1(\Omega ), there exists a minimizer u \in \phi +W 1,1

0 (\Omega ) of (1.2)
that is actually in \phi +W 1,\infty 

0 (\Omega ).

Proof. By Theorem 4.5 we know there exist two Lipschitz functions l - and l+

such that for every minimum u of the functional \scrI (u) it holds that

l - (x) \leq u(x) \leq l+(x) a.e. in \Omega .

Then, Theorem 2.2 guarantees that the minimum and the maximum of the minimizers
belong to \phi +W 1,\infty 

0 (\Omega ).

Let us note that for a fixed \phi \in C1,1(\Omega ) with a known Lipschitz constant K,
the construction of the barriers as in Theorem 4.5 holds true assuming a weaker
condition on the function f . More precisely, we could replace assumption (F3) with
the following:

(F3') There exist constants 0 < \tau 1 < \tau 2 and \epsilon > 0 such that
(i) f(\xi ) \geq f(\zeta )+\eta \zeta (\xi  - \zeta )+ \epsilon 

2 | \xi  - \zeta | 
2 for every \xi , \zeta \in (A1)

c\cap A2 and \eta \zeta \in \partial f(\zeta ),
where

Ai := \{ \xi \in \BbbR n : f(\xi ) < \tau i\} , i = 1, 2.

(ii) \epsilon \cdot di > 2\alpha 
n R, where di = inf\partial A dist(x, \partial Ai), i = 1, 2, and A = \{ \xi \in \BbbR n :

f(\xi ) < \tau \} , \tau = \tau 1+\tau 2
2 .

(iii) 1
\epsilon | \xi | <

1
R \forall \xi \in (A1)

c \cap A2.

(iv) the set A1 \supset B(0,K) and is bounded.
We underline that assumption (F3') doesn't require that for any k \in \BbbN we find sets
in which (i)--(iii) hold true but only the existence of a unique region in which those
conditions are valid. Actually, under assumption (F3'), we are able to construct the
barriers as we did in Theorem 4.5 also for the case when f grows only linearly. More
precisely we have the following.

Theorem 4.7. Let \Omega be an open bounded R-uniformly convex set, and let \phi :
\Omega \rightarrow \BbbR be a C1,1(\Omega ) function with Lipschitz constant K. Assume that f : \BbbR n \rightarrow \BbbR 
satisfies hypotheses (F1), (F2), and (F3') and g : \Omega \times \BbbR \rightarrow \BbbR measurable in x, and
Lipschitz continuous in the second variable with Lipschitz constant equal to \alpha .

Then there exist \ell +, \ell  - : \Omega \rightarrow \BbbR , both Lipschitz of rank L = L(R, f, \phi ), such that

\ell  - (\gamma ) = \phi (\gamma ) = \ell +(\gamma ) for every \gamma \in \partial \Omega 

and

\ell  - (x) \leq u(x) \leq \ell +(x) for almost every x \in \Omega 

for every minimizer u of the functional (1.2).
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The proof follows the ideas of the proof of Theorem 4.5 provided in Step 1. We
consider only a \in \BbbR n such that | a| < K. The assumption (F3')(iv) implies the
boundedness of the sets \Omega b and that for opportune values of b the estimate of the
curvature in Step 2 holds.

We conclude this section by underlining that a version of Theorem 4.6 also holds
which replaces assumption (F3) with (F3'). Actually, we need to assume that f is
superlinear in order to have both the existence of a minimizer and the maximum and
the minimum of the minimizers (see Remark 2.3).

Theorem 4.8. Let \Omega be an open bounded R-uniformly convex set, and let \phi :
\Omega \rightarrow \BbbR be a C1,1(\Omega ) function with Lipschitz constant K. Assume that f : \BbbR n \rightarrow \BbbR 
satisfies hypotheses (F1), (F2), and (F3') and is superlinear. Moreover, assume g :
\Omega \times \BbbR \rightarrow \BbbR satisfies the assumption of Theorem 4.6. Then there exists a minimizer
\=u \in \phi +W 1,1

0 (\Omega ) of \scrI (u) that is actually in \phi +W 1,\infty 
0 (\Omega ).

5. Remarks and examples. In this section we comment on the results obtained
above.

Since, as we pointed out in the introduction, there is a vast literature dealing
with functionals where the Lagrangian is uniform convex outside a ball, we will show
that Theorem 4.7 holds under this kind of assumption instead of (F3). Moreover,
assuming suitable hypotheses on the function g, we shall obtain that every minimizer
of the functional \scrI (u) is Lipschitz continuous.

Theorem 5.1. Let \Omega be an open bounded R-uniformly convex set. Assume that
f satisfies hypotheses (F1)--(F2), and suppose there exist a ball B = B(0, r) and a
constant \epsilon > 0 such that

f(\xi ) \geq f(\zeta ) + \eta \zeta (\xi  - \zeta ) +
\epsilon 

2
| \xi  - \zeta | 2

for every \xi , \zeta \in \BbbR n \setminus B and \eta \zeta \in \partial f(\zeta ). Let g be measurable in x and Lipschitz
continuous with respect to the second variable. For any \phi : \Omega \rightarrow \BbbR \in C1,1(\Omega ) there
exists a minimizer u of the functional\int 

\Omega 

\bigl[ 
f(\nabla v) + g(x, v)

\bigr] 
dx, v \in \phi +W 1,1

0 (\Omega ),

and \ell +, \ell  - : \Omega \rightarrow \BbbR , both Lipschitz of rank L = L(R, f, \phi ), such that

\ell  - (\gamma ) = \phi (\gamma ) = \ell +(\gamma ) for every \gamma \in \partial \Omega 

and

\ell  - (x) \leq u(x) \leq \ell +(x) for almost every x \in \Omega .

Moreover, if g is convex and there exists a positive constant K such that

\forall x, y \in \BbbR n, \forall u, v \in \BbbR , v \geq u+K| y  - x| \Rightarrow g+v (y, v) \geq g+v (x, u),

then every minimizer u \in \phi +W 1,1
0 (\Omega ) is actually in W 1,\infty 

0 (\Omega ).

Proof. The assumption of the uniform convexity outside B implies the superlin-
earity of the function f , and therefore the existence of the minimizer follows.

The existence of the barriers \ell  - and \ell + follows by applying Theorem 4.7, since
assumption (F3') holds provided A1 = B and A2 = \BbbR N . Moreover, Theorem 4.6
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yields, and hence the existence of a Lipschitz minimizer u follows. To conclude, let
us show that every minimizer v in \phi +W 1,1

0 (\Omega ) has the same regularity of u. Let us
define

\Omega \prime =
\Bigl\{ 
x \in \Omega : f

\biggl( 
1

2
\nabla u(x) + 1

2
\nabla v(x)

\biggr) 
<

1

2
f(\nabla u(x)) + 1

2
f(\nabla v(x))

\Bigr\} 
and assume that | \Omega \prime | > 0. By using the definition of \Omega \prime and the convexity of both
functions f and g, we have

\scrI 
\biggl( 
1

2
u+

1

2
v

\biggr) 
=

\int 
\Omega \prime 
f

\biggl( 
1

2
\nabla u(x) + 1

2
\nabla v(x)

\biggr) 
+ g

\biggl( 
x,

1

2
u+

1

2
v

\biggr) 
dx

+

\int 
\Omega \setminus \Omega \prime 

f

\biggl( 
1

2
\nabla u(x) + 1

2
\nabla v(x)

\biggr) 
+ g

\biggl( 
x,

1

2
u+

1

2
v

\biggr) 
dx

<

\int 
\Omega \prime 

1

2
(f(\nabla u) + g(x, u)) +

1

2
(f(\nabla v) + g(x, v)) dx

+

\int 
\Omega \setminus \Omega \prime 

1

2
(f(\nabla u) + g(x, u)) +

1

2
(f(\nabla v) + g(x, v)) dx

=
1

2
\scrI (u) + 1

2
\scrI (v) \leq 1

2
\scrI (u) + 1

2
\scrI (u) = \scrI (u),(5.1)

which contradicts the minimality of u and, obviously, the minimality of v if we ex-
change u and v in the last line of the above inequality.

We deduce that | \Omega \prime | = 0, and hence

(\nabla u(x), f(\nabla u(x))) and (\nabla v(x), f(\nabla v(x)))

belong to the same face of the epigraph of f for a.e. x \in \Omega . It follows that \nabla u(x) \not =
\nabla v(x) if and only if | \nabla u(x)| < r and | \nabla v(x)| < r, and therefore we have the Lipschitz
continuity of v.

Let us now discuss the assumptions on the function f . We remark that (F3) is a
key tool in the proofs of the theorems in section 4; in particular, it is fundamental to
prove the superlinearity of f (see the first part of the proof of Theorem 4.5).

In the following Example 5.2 we show that for any superlinear \psi , we can construct
a function that satisfies assumption (F3) and has the same growth as \psi . Consequently,
we deduce that the functions f we have in mind could have any superlinear growth
(see also Example 5.3).

Example 5.2. Let \psi (t) : [0,+\infty ) \rightarrow \BbbR be a superlinear, strictly convex, and C1

function, and define a strictly increasing sequence (\tau k)k\in \BbbN such that \psi \prime (\tau k) = k.
Consider the constant R > 0 as in (F3)(ii), and fix \epsilon k = 8R

\tau k+1 - \tau k
. Now define the

function n(t) = [\psi \prime (t)].
For

h\prime \prime (t) =

\Biggl\{ 
\epsilon n(t) if t \in (\tau n(t),

\tau n(t)+\tau n(t)+1

2 ),

0 otherwise
(5.2)

define

f(\xi ) = h(| \xi | ) =
\int | \xi | 

0

\biggl( \int s

0

h\prime \prime (t)dt

\biggr) 
ds.
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We have

h\prime (t) \leq 
n(t)\sum 
k=0

\epsilon k
(\tau k+1  - \tau k)

2
= 4R(n(t) + 1) = 4R([\psi \prime (t)] + 1)

and

h\prime (t) \geq 
n(t) - 1\sum 
k=0

\epsilon k
(\tau k+1  - \tau k)

2
= 4Rn(t) = 4R[\psi \prime (t)].

It follows that

lim
| \xi | \rightarrow +\infty 

f(\xi )

\psi (| \xi | )
= lim

| \xi | \rightarrow +\infty 

h(| \xi | )
\psi (| \xi | )

= lim
t\rightarrow +\infty 

h(t)

\psi (t)
= lim

t\rightarrow +\infty 

h\prime (t)

\psi \prime (t)

and

lim
t\rightarrow +\infty 

4R[\psi \prime (t)]

\psi \prime (t)
\leq lim

t\rightarrow +\infty 

h\prime (t)

\psi \prime (t)
\leq lim

t\rightarrow +\infty 

4R([\psi \prime (t)] + 1)

\psi \prime (t)
.(5.3)

The fact that the first and last limits in (5.3) are positive and finite implies that f
grows as \psi .

We underline that by the definition, the function f satisfies (F1), (F2), and (F3).
On the other hand, it does not hold true that there exist a ball B and a constant
\epsilon > 0 such that

f(\xi ) \geq f(\zeta ) + \eta \zeta (\xi  - \zeta ) +
\epsilon 

2
| \xi  - \zeta | 2

for every \xi , \zeta \in \BbbR n \setminus B and \eta \zeta \in \partial f(\zeta ).

We point out that for simplicity in the previous example, we constructed a radially
symmetric function f . It is straightforward to consider functions with different growth
in the different directions as in the following example.

Example 5.3. For \xi = (\xi 1, \xi 2), with \xi 1 \in \BbbR k, \xi 2 \in \BbbR n - k, let us consider

f(\xi ) = h1(| \xi 1| ) + h2(| \xi 2| ),

where h1, h2 are constructed as in Example 5.2 by means of two functions \psi 1, \psi 2 with
independent behaviors at infinity. To clarify this assertion, we consider, for example,

\psi 1(| \xi 1| ) = | \xi 1| p log(e+ | \xi 1| ), \psi 2(| \xi | ) = | \xi 2| q,

where we underline that the exponents p, q could not be related.

We conclude this section with some examples of functions g satisfying the as-
sumptions of Theorems 4.6 and 4.8.

Example 5.4. It is easy to check that the function

g(x, u) = \alpha 
\sqrt{} 

1 + u2, \alpha > 0,

fulfills the requirements of the theorems cited above.
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Example 5.5. The function

g(x, u) = (\lambda u - a(x))u

with a(x) \in W 1,\infty (\Omega ) and \lambda \geq 0 is such that the assumptions above are satisfied
provided u is assumed to be bounded.

Note that for f(\nabla u) = 1
2 | \nabla u| 

2 and such a choice of g, the functional we obtain
appears in elasto-plastic torsion problems. See, for example, [2].

Example 5.6. A central problem in image restoration is the reconstruction of an
image u from a degraded datum a(x). The most common model linking u to a is the
following: a(x)  - Ru = v, where R is a linear operator typically modeling blur, and
v is the noise, and the goal is to minimize a functional whose model case is

\scrI (u) =
\int 
\Omega 

f(\nabla u) + v2dx.

The functional \int 
\Omega 

f(\nabla u) + g(x, u)dx,

with

g(x, u) = | a(x) - \lambda u| 2, a(x) \in C1(\=\Omega ), \lambda \in \BbbR ,

satisfies the assumptions of Theorems 4.6 and 4.8 provided u is bounded. Moreover,
such a functional is of type \scrI (u).

It is well known that the assumption of the boundedness of the minimizers often
appears in the study of higher regularity in the calculus of variations. In [3] the
boundedness of the minimizers of functionals of type\int 

\Omega 

f(x,\nabla u) + a(x)u dx,

with a(x) such that a(x)u \in L1 and f satisfying only a growth assumption from
below, is proven provided the boundary datum is bounded. In this spirit, the request
of the boundedness of the minimizer u in Examples 5.5 and 5.6 makes sense since, in
this paper, we consider a boundary datum \phi satisfying the bounded slope condition.
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