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Effectiveness of dismantling 
strategies on moderated vs. 
unmoderated online social 
platforms
Oriol Artime1*, Valeria d’Andrea1, Riccardo Gallotti1, Pier Luigi Sacco2,3,4 & 
Manlio De Domenico  1

Online social networks are the perfect test bed to better understand large-scale human behavior 
in interacting contexts. Although they are broadly used and studied, little is known about how 
their terms of service and posting rules affect the way users interact and information spreads. 
Acknowledging the relation between network connectivity and functionality, we compare the 
robustness of two different online social platforms, Twitter and Gab, with respect to banning, or 
dismantling, strategies based on the recursive censor of users characterized by social prominence 
(degree) or intensity of inflammatory content (sentiment). We find that the moderated (Twitter) 
vs. unmoderated (Gab) character of the network is not a discriminating factor for intervention 
effectiveness. We find, however, that more complex strategies based upon the combination of 
topological and content features may be effective for network dismantling. Our results provide useful 
indications to design better strategies for countervailing the production and dissemination of anti-
social content in online social platforms.

Online social networks provide a rich laboratory for the analysis of large-scale social interaction and of their 
social effects1–4. They facilitate the inclusive engagement of new actors by removing most barriers to participate 
in content-sharing platforms characteristic of the pre-digital era5. For this reason, they can be regarded as a social 
arena for public debate and opinion formation, with potentially positive effects on individual and collective 
empowerment6. However, some of the structural and functional features of these networks make them extremely 
sensitive to manipulation7–9, and therefore to anti-social or plainly dysfunctional influencing aimed at fueling 
hate toward social groups and minorities10, to incite violence and discrimination11, and even to promote criminal 
conduct and behaviors12. As such platforms have been functioning for a very short time on a historical scale, our 
experience with them is still limited, and consequently our awareness of their critical aspects is fragmented13. 
As a consequence, the governance of such platforms is carried out on a trial-and-error basis, with problematic 
implications at many levels, from the individual to the institutional14, 15. The most fundamental issue is the lack 
of widely agreed governance principles that may reliably address the most urgent social challenges16, and this is a 
consequence of the fact that we are still at the beginning of the learning curve. On the one hand, we are becoming 
increasingly aware that certain features of human social cognition that were culturally selected in a pre-digital 
era may call for substantial and quick adaptations to tackle the challenges of massive online social interaction17, 

18. On the other hand, the massive potential public exposure that characterizes such interactions may reinforce 
typical human biases that lead to people’s self-embedding in socially supportive environments19, with the forma-
tion of echo chambers built on the assortative matching to, and reciprocal support from, like-minded people20, 21. 
Moreover, the presence of strong incentives to the acquisition of visibility and social credibility via the building 
of large pools of followers, and the strong competition for limited attention tend to favor the production and 
selective circulation of content designed to elicit strong emotional arousal in audiences22, rather than to cor-
rectly report information and reliably represent facts and situations23, with the well-known proliferation of fake 
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news and more generally of intentionally manipulative content24, 25. A further critical element is the possibility 
to disseminate across such platforms purposefully designed artificial agents whose goal is that of generating 
and amplifying inflammatory content that serves broader strategies of audience manipulation26, conceived and 
undertaken at higher levels of social agency by large sophisticated players that may reflect the agendas of interest 
groups, organizations, and governments27.

On the basis of such premises, it becomes very important to understand the relationship between the struc-
tural features of such networks and their social effects, for instance in terms of manipulation vs. effective control 
of the production and dissemination of anti-social and inflammatory content. In this perspective, two main 
approaches have developed: one that relies upon extensive regulation of user-generated content28, and one that 
basically leaves this task to the community itself, entrusting the moderation of content production and dissemi-
nation to the users29. A meaningful question that arises in this regard is: which approach is more desirable as it 
comes to countering anti-social group dynamics? If socially dysfunctional content is being generated and spread 
across a certain online social platform, in which case can this be handled more effectively through a targeted 
removal from the network of problematic users? And how does this change when the network is moderated, 
and when it is not? Scattered in the literature, we find some examples in which the role of moderation is evalu-
ated in particular online environments, for instance in suicide and pro-eating disorder prevention30, 31, in public 
participation32 and educative workshops33. Quite surprisingly, though, at the moment the existing literature does 
not provide us with general answers to the above fundamental questions, and this powerfully illustrates how 
fragmented and precarious our understanding of such phenomena still is.

Online social networks often represent typical examples of complex social systems34, and therefore lend 
themselves to be studied and analyzed through the conceptual toolbox of network science35. This is the approach 
that we follow here, where we comparatively analyze two different online social platforms, Twitter and Gab, 
from the point of view of the robustness with respect to different types of ‘attacks’, namely of targeted removals 
of some of their users from the respective networks. These attacks induce a dismantling of the network, so the 
possible pathways through which information can flow are modified, and they can be identified as the banning 
of the users from the online social platform. Thus, throughout the article we employ dismantling strategies and 
banning strategies as equivalent concepts. This kind of analysis may be seen as an experiment in understanding 
the effectiveness of alternative strategies to counter the spreading of socially dysfunctional content in online 
social platforms, thereby providing us with some first insights that may be of special importance in designing 
the governance of current and future platforms. The reason why we chose Twitter and Gab for our study is that, 
primarily, they clearly reflect the two main options we want to test in our analysis: Twitter is a systematically 
moderated platform, whereas Gab is essentially unmoderated36, 37. On the other hand, the two platforms are 
very similar in many other features, and this makes of them a good basis for a comparison, as opposed to other 
online social platforms with substantially different features. In addition to this, data on these platforms can be 
collected with relative ease, and this allows the construction of scientifically sound databases more easily than 
it is the case with other platforms.

The implementation of the degree-based banning strategy, which turns out to be a very effective one, shows 
that, surprisingly, the moderated or unmoderated nature of the networks does not induce clear robustness 
patterns. To understand the way the different networks respond to this type of intervention we resort to higher-
order topological correlations: the degree assortativity and a novel concept, the inter-k-shell correlation, which 
is designed to give an idea of how the different centrality hierarchies in the network are connected among them. 
We complement our analysis by proposing banning strategies based on the sentiment of the users, aiming at 
evaluating how robust are the networks under the removal of a certain type of users. We find that the networks 
are indeed quite robust, hence global communicability is guaranteed, if one blindly removes the users based 
only on their sentiment. For a faster network dismantling, we propose strategies that combine topological and 
sentimental information.

Results
To analyze the robustness of Twitter vs. Gab to targeted attacks, that is, the structural consequences of the removal 
of certain users from the network according to specific criteria, we had to select a topic that would provide the 
criterion to identify users in terms of their participation in the online debate, of the inflammatory content of their 
posts, of their structural position in the online community, and so on. We chose to focus on posts referring to the 
current president of the United States of the America, Donald Trump, and containing the following keywords: 
‘trump’, ‘potus’. The choice of Donald Trump as the reference topic is due to the high salience and popularity 
of this public figure in online social media debates, which are typically characterized by highly polarizing and 
inflammatory content, thus making of it an ideal test bed for our analysis38.

For Gab we consider data from a time window spanning 3 months of 2018, gathering a total of almost 450k 
posts, has been made publicly available from https​://pushs​hift.io/. As Twitter is much more populated than Gab 
and characterized by much higher volumes of online activity, here we collected content in a time window of two 
months in 2018 (overlapping with Gab’s time window), gathering a total of almost 45M posts. More detailed 
information and technical specifications may be found in the “Methods” section.

To reconstruct the behavioral networks from the online social platforms, we represent users as nodes and 
interactions between users as links of a social network. For both Twitter and Gab, we considered two differ-
ent types of networks, capturing different facets of social interactions. The first one is replies: whenever a user 
replies to the message of another user, a link between the two respective nodes is established. The second one 
is mentions: whenever a user mentions another user in one message, a link between the two respective nodes is 
established. We consider the networks as un-directed, i.e., no information is encoded about who is the sender 
and who is the receiver of the messages, and unweighted, i.e., no information about the number of interactions. 

https://pushshift.io/
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These approximations are appropriate as far as one is mainly interested in the potential pathways through which 
information could flow after applying the removal of users. So the assumption is that, although there is always 
a source and a receiver in the communication, when both users interact they are symmetrically aware of the 
interaction and of the existence of each other. If, on the contrary, one is interested in the most probable informa-
tion pathways or on influence maximization problems, then the direction and weights of the links should not be 
avoided. For the sake of simplicity, we also consider the networks time-aggregated, i.e., the information about 
the timing of the interactions is not taken into account.

Replies and mentions correspond to two different aspects of social interaction39. In the case of replies, users 
are engaged in an active conversation between them, which can also be unilateral if one user responds but the 
other does not in turn. In the case of mentions, one user is pointing attention of other users toward a third user, 
but the mentioning and mentioned users need not be engaged in a direct conversation between themselves. 
Replies are therefore part of a dyadic interaction as in a typical conversation (where clearly one user may estab-
lish several conversations at the same time if multiple other users reply to his/her posts), whereas mentions are 
typically part of a multi-lateral conversation that may intrinsically involve several users at the same time, and 
even be targeted to reach an indefinite number of users.

On this basis, it is possible to construct analogous networks for Twitter and Gab users replying to, or mention-
ing, other users in messages that contain Donald Trump related hashtags. The sizes of the networks are N = 7,103 
and 19,719 for the Gab replies and mentions, respectively, and N = 1,429,509 and 3,476,066 for the Twitter 
replies and mentions, respectively. The purpose of our analysis is to investigate to what extent such networks are 
resilient to different types of attacks consisting of the removal of a number of users with specific characteristics, 
on the basis of the different nature and characteristics of the two online social networks in terms of moderation.

Robustness and topological properties.  We study the robustness of the reconstructed networks by 
means of percolation theory40. The basic procedure is to delete nodes according to a given criterion and, as the 
process unfolds, compute several properties of the damaged system. In the context of online social networks, 
node deletion can be identified, as already hinted, with the banning or temporary inhibition of a specific user, 
see Fig. 1. A good topological proxy to assess the robustness of the network is the largest connected component 
(LCC), which is the largest connected sub-network remaining after user removal. When the normalized size of 
the LCC, S, is close to 0, the network is completely disintegrated in many small clusters, and therefore there is 
no possibility to observe propagation of information at a global scale. On the contrary, when S is close to 1, the 
removal of nodes barely affects the overall topology, and information can potentially flow between almost every 
pair of actors. The passage from S  = 0 to S = 0 is called the percolation phase transition41, and the exact value 
of the fraction of removed nodes for which the size of the LCC becomes null is called the percolation point. The 
theory of percolation assumes that we deal with infinite systems, hence the percolation phase transition and the 
percolation point are well-defined only in this regime. In a finite system, though, the size of the largest connected 
component is exactly 0 only when all nodes are removed. Although the drop from S ∼ O(1) to S ≃ 0 tends to 
be relatively abrupt and localized in finite systems, there is no general criterion to identify the percolation point 
directly from the size of the LCC. An alternative and accurate method, which is the one we employ, is to identify 
the percolation point with the fraction of removed nodes for which the size of the second largest connected 

Figure 1.   (A) Sketch showing the mapping between the online dynamics and the reconstructed behavioral 
networks. Attacks are identified with the removal of agents and might split the network in smaller components. 
In our case, two sub-networks appear once the actor B is attacked: {A,D,E} and {C} . The overall robustness of a 
system is related to its capacity of maintaining a component as large as possible when suffering attacks. (B) and 
(C): Curves of the largest connected component under degree-based attacks in the network of replies and the 
network of mentions, respectively. “Moderated” corresponds to Twitter and “Unmoderated” to Gab. The above 
bubble plots show the connected components remaining at the percolation point. The size of the bubbles is 
related to the logarithm of the component size.
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component is maximum. Roughly speaking, a network is considered robust when it can handle a large amount 
of node removals without being disintegrated.

The most basic procedure to study network robustness is the random removal of nodes, which is equivalent 
to the classic percolation process with degree heterogeneity42. Random attacks are known to be a poor strategy 
to break a network, and especially when the degree distribution is broad43, 44, which is a hallmark of social 
networks45. This is because random node selection will pick with high probability low-degree nodes, which do 
not play any significant role in keeping the network connected. A more effective strategy to destroy a network 
consists in selecting nodes by degree, and remove those with the highest degree first. In this case, the percolation 
point is significantly reduced43, 46. This response—weak to targeted attack but strong to random failures—has 
been dubbed the robust-yet-fragile effect47.

As an alternative to random attacks, here we perform degree-based attacks in our reconstructed networks 
(Fig. 1B,C), thus targeting structurally prominent users rather than randomly picked ones. To implement such 
attacks, we use an adaptive scheme: after each removal, we recalculate the degrees and recursively choose the 
node with the highest degree to be deleted next. For all networks we find, as expected, a relatively low percolation 
point, i.e., low robustness, a result that agrees with the idea that actors in social networks are heterogeneously 
connected among each other. Another quantity that is heterogeneously distributed is the size of the connected 
components at the percolation point. Their sizes are shown as bubble plots in Fig. 1B,C, where the radius of each 
bubble is proportional to the logarithm of the number of actors in the components. The cluster size probability 
density function is shown in Fig. 2A. These plots indicate that at the precise moment the communication in our 
social networks cannot be held global anymore, it is very likely to find large clusters with sizes that are very far 
away from the mean cluster size. Indeed, the distribution turns out to be power-law p(s) ∝ s−α , with exponent 
α smaller than 3, a signature of infinite variance. This property only holds at the percolation point, whereas away 
from it the finiteness of the variance is recovered due to an exponential cutoff in the component size distribution.

We observe that the presence or absence of content control in the online social network does not induce a 
clear robustness pattern. Indeed, in the network of replies the percolation point for Gab is larger than the one for 
Twitter, whereas in the network of mentions the result is reversed. This leads us to conclude that content poli-
cies cannot be directly correlated to robustness assessments in online social networks. To better understand the 
response to degree-based attacks, we need to shed light on the topological properties of the networks. The first 
thing to note is that since for uncorrelated networks, i.e., those networks where the degree of an actor is independ-
ent of her neighbor’s degree, the percolation point is known to only depend on the first and second moment of 
the degree distribution48, and the degree distribution for all networks we considered is very similar (Fig. 2B), the 
reason for the variability in the robustness must therefore be hidden in topological correlations. A topological 

Figure 2.   (A) Component size distribution at the dismantling points of networks analyzed in Fig. 1B,C. The 
dashed line is not a fit, but is drawn to show that the distributions decay with an exponent smaller than 3, i.e., 
the second moment of the distribution diverges. (B) Degree distribution for the different networks and a curve 
scaling as k−2.2 to guide the eye. Degree correlations for the networks of replies (C) and for the networks of 
mentions (D). The solid curve is computed by averaging the data within k-bins, and the dashed horizontal line 
corresponds to 〈k2〉/〈k〉 , which is the value that 〈knn〉 would take if correlations are washed out.
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correlation that is known to affect the percolation point is the mixing assortativity49, known as homophily in the 
social sciences50, which reflects the tendency of actors to interact with peers with similar characteristics. At the 
topological level we have the degree assortativity, which is positive when nodes are mainly connected to other 
nodes of similar degree, and is negative when the opposite is found. A broadly used measure to capture the level 
of homophily is the assortativity coefficient45

where �·�l denotes average over all links, and q and q′ are the excess degrees of the nodes at the end of a link, that 
is, the number of edges attached to a node other than the one we reached out to. r is nothing else than the Pearson 
correlation coefficient of the degrees at either end of an edge, and is normalized within the interval [−1, 1] . The 
assortativity coefficient is appealing because it encodes the correlations into a single number, which is usually 
employed to infer the robustness of the network. The percolation point of a network with positive (negative) 
assortativity is higher (lower) than the percolation point of a network with r = 0 , assuming the same underlying 
degree distribution in all cases51. The larger the assortativity coefficient (in absolute value), the greater the separa-
tion with respect to the percolation point of r = 0 . In our case, we find that for the network of replies 
rgab = −0.16 < rtwitter = −0.05 and for the network of mentions rgab = −0.26 < rtwitter = −0.04 (Equation 1 
is not a useful expression when it comes to compute the assortativity coefficient directly from degree sequences. 
We have used, instead, a much more convenient expression, namely, r =

∑
ij(Aij−kikj/2m)kikj

∑
ij(kiδij−kikj/2m)kikj

 ). The values of the 
assortativity coefficient agree well with the robustness patterns in the networks of mentions, but not with those 
in the network of replies. Hence, the information brought by r is not sufficient to successfully explain the response 
of our system to degree-based attacks.

The implicit assumption behind the assortativity coefficient is that the degree correlation—the mean degree 
of the neighbors of all degree-k nodes �knn(k)� =

∑
k′ k

′P(k′|k) , where P(k′|k) is the conditional probability that 
following a link of a k-degree node we arrive at a degree-k′ node—has a linear dependence on the degree, with 
slope r. If �knn(k)� ∼ rk does not apply, the value (and even the sign) of r can be misleading, as well as the correct 
interpretation of the location of the percolation point as a function of r. We show in Fig. 2C,D that the linear 
assumption does not hold, although in all cases we observe a monotonically decreasing tendency, concluding 
that all networks are dis-assortative. One could argue that in the network of replies, Twitter’s 〈knn(k)〉 decays 
faster than in Gab, thus ensuring a higher robustness to the latter. This very same argument, though, fails when 
applied to the network of mentions.

At this point we must consider higher-order topological correlations to have a satisfactory explanation of 
why the mention networks do not respond as expected from the assortative profiles. To this purpose, we use the 
k-shell decomposition52, which conveys information about the hierarchical structure of networks. The concept 
of k-shell is intimately related to the one of k-core53, 54, which is the sub-network that survives after removing 
all nodes with degree less than or equal to k from the original network, see Fig. 3A. The k-shell is the subset of 
nodes that belong to the k-core but not to the ( k + 1)-core. A network representation in k-shells offers a qualita-
tive way to assess the connectivity and clustering inside k-shells, and the degree-shell correlation, i.e., how hubs 
are central with respect to their k-coreness, see55 for further details. In k-shell decomposition one plots a series 
of concentric circumferences, the smaller the diameter, the larger the shell index. On each circumference one 
places as many markers as nodes belonging to that shell index, with the marker size proportional to the node’s 
degree. We can indicate the nodes that were connected in the original graph by grouping them together on the 
circumference, hence leading to a heterogeneous angular distribution of nodes. The most important informa-
tion for our discussion is the fact that hubs, indicated by larger markers in the first rows of Fig. 3B,C, are mainly 
located in the largest k-shell for both Twitter networks, and in the replies of Gab. For Gab mentions, on the 
contrary, there is a larger density of hubs across k-shells (first row of Fig. 3B). The presence of hubs in different 
shells denotes a low degree-coreness correlation; put otherwise, there is an important number of highly con-
nected nodes at the periphery of the network.

In order to quantitatively support the qualitative observation of the degree-coreness correlation, we propose 
here to inspect the connections among k-shells. Let K be the maximum k-shell index. We can compute a symmet-
ric matrix of dimension K × K , whose elements (i, j) are the number of links between nodes of k-shells indexes 
i and j. By plotting this matrix as a heat map different patterns can emerge, and they can be interpreted as an 
indicator of the tendency of nodes to communicate with their peers of same level of k-coreness, hence giving a 
global idea of how centralized is the communication in the network that cannot be captured by the assortativity 
or degree correlations. See Fig. 3A for further details, where we distinguish among possible behaviors. Thus, we 
call centralized networks those networks in which most of the nodes in low and intermediate k-shells are con-
nected only to those nodes in the largest k-shell. Likewise, a decentralized network is characterized by nodes 
of all k-shells connected among them with a similar density of links. We plot in the last row of Fig. 3B,C such 
heat maps. In both Twitter networks and in Gab replies we find that almost all inter-k-shell interactions occur 
between the nodes in the largest k-shell and the others, i.e., they are centralized. Surprisingly, the heat map of Gab 
mentions is much more homogeneously populated, indicating that each k-shell has a significant portion of links 
to distribute, and that this distribution covers all the other shells with no particular preference, i.e., the network 
is decentralized. In light of this inter-k-shell connectivity, we can explain why the Twitter mention network is 
more robust than the Gab one. Since in the former all large-degree nodes are very interconnected among them 
in the largest k-core, deleting them leads to a slow disintegration of the network. In the latter case, the hubs are 
not so well compacted in the largest k-core, but decentralized across different levels in the topological hierarchy, 
therefore deleting them by degree leads to an easier network disintegration.

(1)r =
�qq′�l − �q�l�q

′�l

�q2�l − �q�2l
,
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Figure 3.   (A) Sketches showing the k-core structure of a toy network and heat maps with a decentralized and 
centralized network organization. The patterns exemplified in the heat maps A1 to A4 represent scenarios in 
which the connectivity is involving predominantly a single k-shell. In A1 most connections are between nodes 
of the central core ( K = 4 ) and other central shells (as in assortative networks). In A2 most connections are 
between the central core and nodes of external shells (as in dis-assortative networks). In A3 and A4 most 
connections involve the most external shell ( K = 1 ). This can also happen in an assortative way (A3), where 
most communication will be between isolated couples of nodes of the external shells, or a dis-assortative 
way (A4) where most communication is between a large external shell of leaves and the central shells (core-
periphery structure). The patterns of heat maps A5 and A6 describe instead networks where connections are 
distributed between multiple shells in such a way that nodes in a k-shell are mostly connected to the same shell 
or to shells below and above in the hierarchy. They can be obtained by overlapping single shell effects similar to 
that of A1. In A5, connections are homogeneously distributed across shells, while in A6 connections are more 
abundant in the central shells. In (B) and (C), k-shell decomposition and associated heat map for Twitter and 
Gab, respectively. The distribution of nodes and their degrees across the different k-shells can be appreciated by 
representing the different nodes in concentric circumferences (plotted above using LaNet-vi52). In the heat maps 
we focus instead on the connectivity. In the light of the pattern exemplified above, we observe how the Twitter 
reply and mention and the Gab reply networks can be seen as an overlap of A1 and A2 (with the A3 patterns 
also playing a minor role in Twitter). The Gab mention network differs notably, and can be seen as an overlap 
of the A2, A4 and A6 patterns: more communication is thus seen in the intermediate shells (A6) and between 
marginal and central nodes (A4).
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Sentiment‑based attacks.  So far we have analyzed the robustness of the Twitter vs. Gab networks to 
attacks that are based on the degrees of users in the online network, that is, on targeting the most relationally 
prominent individuals. Attacks of this kind test the topological properties of the network, and they are known to 
effectively dismantle the underlying graph, but are at the same time totally blind to any users metadata. However, 
there can be situations, and this is especially the case in the context of social networks, in which we would like 
to assess the response of the system to the removal of certain type of users, e.g., fake news generators or hate 
spreaders. In this section we discuss the effects of carrying out attacks based on the sentiment of the users, as 
obtained from the body of the messages they write. We will consider only the network of replies in this case, 
because it has a much higher number of active users with well-defined sentiment than the network of mentions. 
We characterized the amount of user’s text emotional content by a text-based analysis that distinguish three dif-
ferent components of emotions, namely valence, arousal and dominance (see “Methods” section). We leave for 
the “Supplementary Material” the same analysis for other three sentiment classifiers, where we reach identical 
conclusions to the ones presented below.

We perform the attacks by sorting nodes with decreasing intensity of the (numerical indicators of the) differ-
ent sentiments, and deleting the nodes following that order. In other words, at each round we delete those users 
whose posts are the most emotionally charged (i.e., potentially most inflammatory) among those still present 
in the network. We display the results of this process in Fig. 4A,B. The most striking result is that the percola-
tion point is quite large, that is, one needs to remove practically all actors to break apart the main component. 
Moreover, the percolation curves are similar to the typical response of a scale-free network subject to random 
attacks, therefore indicating that either most of the extreme sentiments are located in the low-degree regime, or 
that, at least, there is no significant correlation between the position of a user in a network and the sentiment 
of the messages s/he writes.

Figure 4C sheds some light on the interplay between topology and sentiment. We can observe that, indeed, the 
most extreme sentiments values are located in the area of low degrees, which explains why the sentiment-based 
attacks do not result in a very effective dismantling of the networks. Another particularity of the sentiment-
topology correlation is that the sentiment score becomes independent of the degree as k grows. This is somewhat 
surprising, as one would expect non-trivial effects of the network structure on the sentiment distribution. A 
plausible explanation of this result is that, as users become more active (larger degree), their sentiment values, 
which are computed over all their written posts, average out resulting in a neutral sentiment value.

An important consequence of this particular sentiment-topology correlation is that when it comes to protect 
a network against certain type of content or type of users, blind removal proves to be a very efficient strategy at 
a global level, in the sense that guarantees the potential exchange of information between all the remaining pair 
of nodes. However, if the goal is to use sentiment information to achieve an efficiently network dismantling, the 
implemented strategy must be combined with some topological information. One of the options is to sort from 
highest to lowest the users according to a sentiment, but ignoring those below a certain degree threshold kthr . 

Figure 4.   Size of the largest connected component for the sentiment-based attacks in Twitter (A) and in Gab 
(B). Each curve corresponds to the sentiment targeted for the removal. (C) Correlation between the sentiment 
score and the degree of the nodes. The corresponding sentiment is written in the vertical axes. For the sake of 
clarity, in Twitter networks we only plot a random 20% selection of all users.
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That is, for example, remove users that generate hateful content as far as these users are active above a certain 
threshold. With this simple modification, we see a significant decrease in the percolation point, i.e., the networks 
become less robust. The percolation curves for different values of kthr are shown in Fig. 5. We indeed see that 
passing from kthr = 0 to 1 already reduces the percolation point by about 45% in Gab and 40% in Twitter, while 
passing from kthr = 0 to 2 leads to a reduction of about 61% in Gab and 56% Twitter.

Discussion
In scholarly and policy debates, great emphasis is placed on the issue of whether online social platforms should 
be moderated or not56. Clearly, one of the main issues is to what extent moderation can be effective in leading 
users to a more responsible use of the platform and to keep anti-social attitudes and contents under control57. 
One would expect that the presence of moderation or the lack thereof would make a big difference in terms of 
the effectiveness of network dismantling interventions against the production and diffusion of dysfunctional 
content promoting hate, violence, discrimination, and the like. However, a somewhat surprising result of our 
analysis is that moderation does not seem to be a crucial factor to consider in the assessment of the effectiveness 
of network dismantling, and therefore in evaluating which type of online social platform may be more easily 
governed in this regard.

Looking into the results in more detail gives some extra insight. We have considered two different kinds of 
networks, one based upon replies to posts by another user, and the other upon mentions of another user in the 
body of text of someone’s post. In terms of anti-social content, the replies network is typically bound to capture 
the dysfunctional evolution of online conversations (e.g., flames), whereas the mentions network is more geared 
toward capturing invitations to group-based attacks (e.g. shaming). What we find is that, when considering ban-
ning strategies based upon topological network features (i.e. users’ degrees), Gab proves to be more robust in the 
replies network whereas Twitter is more robust in the mentions network. In unmoderated networks, group-based 
attacks to users may rapidly escalate and become particularly virulent, and therefore removing those haters who 
are most connected may effectively power down the circulation of information across the network. In the case 
of a moderated platform, such escalation is partly already filtered out and so the attack could turn out relatively 
less effective. This seems to be a good reason why Gab proves to be less robust than Twitter in this context. On 
the other hand, when moderation is present in the network, group-based attacks are more easily detected and 
filtered out, whereas dysfunctional conversations are more elusive and can more easily survive the filter. When 
the filter is relatively less effective, network breakdown may make the difference. In this case, removing the most 
connected users may dismantle an information flow that would be difficult to block otherwise, and this is a pos-
sible reason why Twitter is relatively more affected by attacks to the replies network. Note that our discussion 
has been oriented towards understanding the effectiveness of banning strategies in moderated and unmoderated 
platforms by means of the topological properties of the interaction networks. We acknowledge, though, that the 
different policies might be partially responsible for generating the observed networks and their correlations. This 
question has not been addressed because it lies outside of the scope of the present work, but in the future it will 
be definitely interesting to come up with a mechanistic model that is able to reproduce the observed correlations 
while including the moderation or unmoderation as a feature in the model rules.

Considering higher-order topological correlations, and therefore the hierarchical structure of networks by 
means of k-shell decomposition, it turns out that the network hubs tend to be located in hierarchically central 
parts of the network in the case of both Twitter networks and in the replies network of Gab, In the mentions 
network of Gab we find instead a different structure where network hubs are more distributed and therefore also 
marginal areas of the network maintain high levels of connectivity. Even if the global network architecture may 
be dismantled, therefore, in the Gab mentions network the marginal parts may remain highly active and cohesive 
nevertheless. In this case, therefore, the dismantling of global information flow cannot be regarded as a fully 
satisfactory outcome in terms of network attacks. In particular, a substantial risk remains that once the core users 
have been successfully removed, previously marginal pockets that survive the attack may subsequently gain more 
centrality in the remaining network and launch a new cycle of dysfunctional content creation and propagation.

One could consider, however, a more intuitive way of designing and carrying out the attacks—namely, directly 
targeting the users who create and spread the most inflammatory content. We have therefore analyzed, for the 

Figure 5.   Size of the largest connected component for sentiment-based attack applied to nodes with degree 
k > kthr in Twitter (A) and Gab (B). Line color corresponds to the attacked sentiment and the line style to the 
low-degree threshold. Note that the S curves do not arrive at 0 because the gap reflects the nodes that are not 
slated for deletion (either k ≤ kthr or they do not have an assigned sentiment).
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replies network, an alternative strategy of sentiment-based attacks where the emotional charge of posted content 
may be evaluated with respect to the scale of a specific target sentiment. The users who rank higher in sentiment 
activation may therefore be recursively targeted and removed. However, this alternative strategy seems to be less 
effective, so that actual network dismantling calls for a high number of cycles of removal that may practically 
amount to break down the whole network. The reason for this is intuitive: users who post the most inflamma-
tory content need not be socially prominent, and one might even argue that it is the most marginal users who 
have the strongest incentive to post the most inflammatory content to gain more credit and visibility in their 
online community58. As a consequence, a lot of energy is spent in removing users who have very little effect on 
the network structure. The corollary of this result is that communication properties remain almost untouched 
while cutting off a large amount of extreme emotional content. By combining the results from the analysis of the 
two strategies, we obtain a viable proposal for an effective strategy of attack, namely combining topological and 
content information to define the criterion for removal. If removal is carried out by targeting the more inflam-
matory users above a minimal degree threshold, network dismantling proves to be significantly more effective. 
A smart combination of topological and content criteria may therefore provide the basis for a new generation of 
attack strategies that can inform new approaches to the governance of online platforms.

Throughout our analysis we have focused on networks build from interactions that mention Donald Trump 
and related concepts. This choice is motivated by the fact that the president of the US has a well-known public 
image and normally the conversations and the news around his figure are polarized. It is not clear yet whether 
our results are robust to the choice of other topics, e.g., those that are less inflammatory, or to the choice of user 
profiles that are more homogeneous, e.g., same race, socioeconomic status, location, etc. These are certainly 
worthwhile questions to explore in the future. What we can conclude is that, for a single topic and a heterogene-
ous pool of users, the role of moderation as a key component of governance remains ambiguous. Our analysis 
elicits that sentiment based censorship can be a suitable strategy to implement when the objective is not to dis-
mantle the communication network but to maintain the potential exchange of information across the network 
while limiting the sharing of dysfunctional content. This appears to be possible because extreme users social 
relevance is very weak in both platforms analyzed.

Methods
Data.  We collected messages from both Twitter and Gab, selecting a set of keywords that refer to Donald 
Trump, including ‘trump’ or ‘potus’. In the Gab database there are 447,965 messages, spanning a time window 
of 3 months, from Wednesday 1 August 2018 0:53:10 (GMT) to Monday 29 October 2018 3:03:58 (GMT). In 
the Twitter database (accessed via the public API) we have 44,934,988 messages, spanning a time window of 2 
months, from Sunday 26 August 2018 17:28:20 (GMT) to Saturday 27 October 2018 18:24:37 (GMT).

Sentiment analysis.  We used emotional classification of texts to estimate sentiment spectra of single user’s 
corpus of messages. To this aim, we performed text-based sentiment analysis by employing widespread algo-
rithms to classify user’s text corpus. Note that for each message, pre-processing steps were carried out to nor-
malize various aspects of the text before analyzing it (all text have been lower-cased, “broken” unicode fixed).

The text classification employed in the main text is divided in three dimensions, namely valence, arousal and 
dominance59, where the first is related to the pleasantness, the second to the intensity of emotion and the latter 
is related to the degree of control exerted by a specific word. To make our analysis more general and flexible, 
we only include lemmas (that is the base form of the word) in our database. Emotional ratings of about 14,000 
English lemmas, with scale ranges from 1 (happy, excited , controlled) to 9 (unhappy, annoyed, dominant), are 
contained in our database.

To further support our results, we have repeated the analysis—reported in the “Supplementary Material”—
with other three algorithms, that we detail next. One uses the Big Five personality traits model60, 61, that describes 
personality as a vector of five values corresponding to bipolar traits, namely Extroversion, Neuroticism, Agreea-
bleness, Conscientiousness and Openness. Personality detection from text was performed using a database 
containing ratings of about 1,000 lemmas or short sentences.

Another method aiming at measure the perceived individual well-being was also performed62, 63. The overall 
satisfaction present in the text is estimated through multiple components of well-being, that were measured as 
separate, independent dimensions: Positive Emotions, Engagement, Relationships, Meaning and Accomplishment 
(PERMA). For each dimension, there is a further specification of its positive and negative acceptation, resulting 
in ten different sentiment dimensions.

Finally, the last method we have used to characterize corpus sentiment is based on the eight emotions pos-
tulated by Plutchik64, namely Acceptance, Anger, Anticipation, Disgust, Joy, Fear, Sadness and Surprise, that are 
considered to be the basic and prototypical emotions65.
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