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Abstract 

Biorefineries are innovative processes structured as networks of tightly interconnected plants 
for sustainable production of energy, fuels, and chemicals using biomass from renewable 
sources. Individual plants process complex raw materials, characterized by a strong variability 
in properties, to obtain a limited range of products, often a single one. An integrated use of 
resources within the network minimizes waste and environmental impact. This is in sharp 
contrast with traditional refineries that are typically large, centralized plants based on relatively 
simple, consistent raw materials (oil) and producing a wide range of fuels and chemicals. 
Biorefineries based on bioconversion have the traditional structure of a biological process: the 
operations include biomass preparation, upstream processing, and downstream processing. 
Despite the key role of biorefineries in circular economy and sustainable production, their 
effective industrial implementation remains limited. Recent analyses of both the scientific 
literature and patent databases highlighted that the main challenges in biorefining are both 
technical and economical. The largest share of the current research is geared towards biomass 
pre-treatment technologies; research on upstream and downstream processing is ongoing as 
well, especially regarding process synthesis and design. 
Mathematical modeling can significantly aid biorefinery development and operation. Multiple 
opportunities have been identified for process systems engineering, which are highly relevant 
to both academia and industry. The great potential of the Industry 4.0 approach, based on 
advanced data analytics of the large datasets typically produced by modern biorefineries, has 
been highlighted to improve process operations and performance. This Thesis aspires to make 
the following contribution: the application of process systems engineering methods and 
advanced data analytics to support and improve the operations of industrial biorefineries. 
Specifically, this Thesis focuses on the world’s first industrial biorefinery producing 1,4-
butanediol by bioconversion of renewable biomass. The plant, located in Bottrighe (IT), is part 
of the Novamont S.p.A. biorefinery system and represents a remarkable achievement for 
sustainable, industrial-scale production of building block chemicals. 
Two fundamental objectives are pursued in this Thesis. 

1. Provide evidence that Industry 4.0 is a precious tool for industrial biorefineries. 
2. Contribute to the methodological advancement of data-driven modeling. 

The first objective is achieved by developing digital support systems to enhance the operations 
of the industrial biorefinery considered herein. The Industry 4.0 approach is implemented by 
leveraging advanced data analytics methods to develop process understanding, solve product 
design problems, or deploy model-based process monitoring systems and soft sensors. The 
second objective is accomplished by pursuing the opportunities offered by the unique industrial 
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environment in which the project is set and the specific modeling challenges it entails, which 
could suggest improvements to existing methods. A relevant contribution concerns the 
development of guidelines to select the most appropriate model (based on the assumptions 
the candidate models rely on) for a given task according to the characteristics of the data at 
hand. The two objectives stated above are achieved in this Thesis observing a general guiding 
principle: the incorporation of domain-specific knowledge in data-driven modeling 
workflows can significantly enhance the quality, performance, and robustness of the models. 
Two innovative paradigms are considered in particular: hybrid modeling and feature-oriented 
modeling. 
Concerning the improvement of operations of the industrial process, a thorough analysis of 
the bioconversion step in the upstream section is presented. The operation relies on an array 
of fed-batch bioreactors operating in parallel. An Industry 4.0 approach is used to gain process 
understanding and search for potential differences in performance among the bioreactors. 
Furthermore, a model of the end-of-batch product quality is developed and leveraged to 
troubleshoot a decreasing trend of the quality, affecting all the bioreactors. Model interpretation 
and inversion are used to formulate guidelines to recover the quality of the product. 
Regarding the downstream section, a comprehensive investigation of membrane fouling 
taking place in the ultrafiltration unit is discussed. Seven tightly interconnected membrane 
modules treat the mixture coming from the bioreactors to separate the biomass from the solution 
containing the biorefinery product. Membranes suffer from fouling issues due to the nature of 
the feed. However, the current monitoring strategy relies on the visual inspection of profiles of 
process variables, acquired by operator-read instrumentation installed on the plant, and plagued 
by high variability due to process settings. Furthermore, only the overall fouling state of the 
ensemble of modules is monitored, with little to no insight on the state of single membranes. 
A soft sensor for the estimation of resistances of the seven membranes is proposed. At the 
heart of the soft sensor is a hybrid model: the data-driven element estimates the trans-
membrane pressure of each module using process variables as inputs; the trans-membrane 
pressures serve as inputs to the physics-based element to obtain real-time estimates of 
membrane resistances. The advantages of monitoring fouling through resistances (rather than 
process variables) are elucidated, such as resolving effects of reversible and irreversible fouling. 
Additionally, a fouling investigation by feature-oriented modeling is carried out to identify 
the process settings most related to this phenomenon. Membrane fouling causes frequent 
interruptions of operation to clean membranes, leading the process to run in semi-continuous 
regime. This hinders the application of traditional data analytics methods for process 
understanding. On the other hand, feature-oriented modeling elegantly solves this problem, 
while simultaneously enhancing the information on the phenomenon of interest by exploiting 
process knowledge to design informative features. The results of the analysis confirm the 
effectiveness of the cleaning policies implemented in the plant and uncover a strong interaction 
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between reversible and irreversible fouling. This, in turn, offers precious guidelines to improve 
the maintenance schedule of membranes. 
Concerning the advancement of data-driven modeling, a novel method for algebraic inversion 
of latent-variable models is proposed to tackle product design problems. Model inversion can 
be performed by algebraic manipulation of the model equations, but this requires the quality 
variables (outputs of the model) to be independent. Therefore, correlated quality variables must 
be neglected in model calibration. Besides the information loss in modeling, target values 
cannot be set for the neglected variables, which are not guaranteed to fall within the acceptable 
quality specifications upon implementation of the inversion solution. Conversely, all quality 
variables can be considered in the modeling step via the proposed approach, and the numerical 
issues due to output correlation are addressed only in the inversion step by an optimal 
regularization with minimal information loss. The advantages of retaining all quality variables 
are illustrated using two case studies of simulated fermentation processes. 
Finally, a framework for the automatic selection and calibration of data-driven models for 
fault detection is proposed. First, rigorously designed criteria are used to assess three key 
characteristics of the data at hand: nonlinearity of the correlation among variables (equivalent 
to non-normality of the distribution of data); presence of dynamics in the data; availability of 
variables describing the product quality. Based on the outcomes of the preliminary data 
assessment, a subset of appropriate candidate models is selected from the ones in the model 
library provided alongside the framework. A rigorous model selection and discrimination 
procedure is then used to calibrate the candidate models, tune their hyperparameters, and select 
the best performing one for the given dataset. The framework requires data on normal operating 
conditions only and makes no prior assumption on the nature of faults. The criteria for the 
preliminary data assessment are validated through rigorous Monte Carlo studies, and the 
effectiveness of the framework is demonstrated on four case studies: a simulated linear, static 
dataset; the Tennessee Eastman Process simulator; a simulation of a process for continuous 
filtering and drying of paracetamol; data from an industrial metal etching process for 
semiconductor manufacturing. The proposed framework successfully identifies the most 
appropriate model (among those included in the library) in all case studies, based on the fault 
detection performance on data from faulty conditions (not used for model calibration). 
The studies presented in this Thesis provide strong evidence of the value of the Industry 4.0 
approach and represent significant steps in the digitalization of industrial biorefineries. 
Advanced data analytics methods can disclose valuable information on the complex operations 
implemented in modern biorefineries, such as bioreactor arrays and membrane filtration units. 
Digital support systems can significantly enhance operations. Novel frameworks for model 
selection and evaluation can make such sophisticated methods readily available to practitioners. 
Overall, the results presented in this Thesis are expected to promote the adoption of the Industry 
4.0 approach in challenging industrial environments, such as biorefineries. 
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Chapter 1 
 

Motivation and literature review 

This chapter introduces the scope of the Thesis. Concepts on biorefineries and the sustainable 
production of 1,4-butanediol (BDO), the chemical of interest in this context, are discussed first. 
The potential of process systems engineering, in particular data-driven modeling in the form of 
the Industry 4.0 approach, in this field is highlighted in a literature review. Finally, the research 
objectives of this Thesis are stated, and a roadmap of this document is outlined. 

1.1 The biorefinery concept 

1.1.1 Biorefineries: concept and introduction 

Biorefineries are facilities integrating sustainable biomass conversion processes and equipment 
to output a range of products (Cherubini, 2010; Taylor, 2008; Velidandi et al., 2023), among 
which fuels, such as ethanol (Delgenes, 1996) or biodiesel (McCurdy et al., 2014), and building-
block chemicals, such as succinic acid (Mancini et al., 2020) or BDO (Burgard et al., 2016). 
Biorefinery processes are designed not only according to profitability purposes, but also 
considering sustainability, social impact, and circular economy concepts (Ioannidou et al., 
2020). This is usually achieved integrating traditional process synthesis and design methods 
with proper sustainability metrics (Sikdar, 2003) and life cycle assessment, including its 
environmental and social variations (Julio et al., 2017). 
Substances traditionally derived from petroleum can be produced in a sustainable way in 
biorefineries (Martín et al., 2013), which is due to the main feedstock1: biomass. While both 
oil and biomass represent carbon-rich raw materials, there are significant differences between 
traditional refineries and biorefineries (Attard et al., 2020; Cherubini, 2010). Traditional 
refineries are usually large, centralized plants processing a consistent, simple raw material 
available year-round from specific locations (therefore needing massive transportation systems) 
and aimed at the production of a wide range of fuels and chemicals. On the other hand, industrial 
biorefineries are (expected to) develop as a decentralized, interconnected, and integrated 
network of plants producing a small range of products (within single plants) by processing 
local, renewable raw materials subject to seasonal variability (for example agricultural crops); 
                                                 
1 In this Thesis, the term “feedstock” is intended as defined by Cherubini (2010), that is ‘the raw material used in the 
biorefinery’. 
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further variability is added by the variety of feedstock available for biorefining (Cherubini, 
2010). The most relevant difference is, however, the paradigm-shift in how resources are used. 
In the words of Cherubini (2010): «Biorefinery represents a change from the traditional oil 
refinery based on large exploitation of natural resources and large waste production towards 
integrated systems in which all resources are used». A brief summary of the main differences 
between traditional refineries and biorefineries is reported in Table 1.1. 

Biorefineries can be distinguished according to their feedstock. An established classification 
defines three generations of biorefineries (Martín et al., 2013): 

• the first generation uses food-related biomass, as sugar, corn, or wheat (Martin, 2010); 
• the second generation is based on biomass discarded as waste from other processes, as 

wood waste or exhaust frying oil (Prunescu, 2015); 
• the third generation relies on algae (Alam et al., 2015). 

Fourth generation biorefineries are also being discussed in the literature. However, the 
designation of the feedstock is still unclear. A significant research is being devoted to fungal 
biomass as a potential fourth generation feedstock (Amerit et al., 2023; Varriale et al., 2023). 
However, other biomass categories have been proposed to the same end (even though some are 
already included in three generations mentioned above): vegetable oils (Gavrilescu, 2014), 
green crops such as grass (Gaffey et al., 2023), lignocellulose (Yadav et al., 2023), residues of 
coffee (Strieder et al., 2023) and tea (Kumar et al., 2023), or food waste (Ioannidou et al., 2020). 
The selection of the feedstock is critical, as it determines most of the main pre-treatment 
technologies for extraction of/conversion to relevant compounds. Significant research on this 
field is ongoing (Attard et al., 2020); however, four main so-called biorefinery platforms have 
been proposed and are widely accepted (Cherubini, 2010; Gavrilescu, 2014; Ubando et al., 

Table 1.1. Comparison between traditional refineries and biorefineries. 

Characteristics Traditional refinery Biorefinery 

Plant size Large plant Small plant 

Plant structure Centralized location Distributed network 

Raw materials Fossil oil Renewable biomass 

Raw materials properties Relatively simple and consistent Complex and strongly variable 

Raw material origin From centralized locations Locally sourced 

Raw material availability Year-round Subject to seasonality 

Process operations Separations and simple chemical 
conversions 

Complex pre-treatments, 
conversions, and separations 

Energy demand Energy-intensive process Energy-efficient process 

Use of resources Linear with large waste fraction Integrated with re-use and 
valorization of waste 

 



Motivation and literature review 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

3 

2020): thermal conversion, mechanical conversion, chemical conversion, and biological 
conversion. While each one of these technologies can process different biomasses and yield 
different products, as depicted in Figure 1.1, the focus of this Thesis is on biorefineries 
operating biological conversion of biomass into biochemicals, specifically by fermentation of 
sugars derived from enzymatic hydrolysis of biomass. Readers interested on different platforms 
and products are referred to the studies cited above. 

1.1.2 Process structure 

Biological conversion has gained a wide attention recently (Woodley, 2020) due to the potential 
to produce a wide range of chemicals, besides the widely established fermentative ethanol 
(Cherubini, 2010; Cuellar et al., 2020; Rosales-Calderon et al., 2019). Advancements in genetic 

 
Figure 1.1. Schematic representation of biorefinery platforms, biomass conversion 
processes, primary products, and potential secondary products. Adapted from Ubando et al. 
(2020) and Gavrilescu (2014). 
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engineering are the main enablers to this end (Barton et al., 2015; Burgard et al., 2016; Cheng 
et al., 2021; Choi et al., 2016; Lee et al., 2019; Noorman et al., 2017; Wehrs et al., 2019; 
Woodley, 2020; Yim et al., 2011). This endows biorefineries with the traditional structure of 
bio-based processes; operations typically include: feedstock and media preparation, preliminary 
growth of microorganisms, and large-scale conversion in bioreactors in the upstream section; 
broth sterilization, cell separation, and product recovery and purification in the downstream 
section (Bähner et al., 2021). 
With reference to biorefineries operating by fermentation, the first step of the process is biomass 
preparation to obtain suitable substrates for the microorganisms, most commonly fermentable 
sugars. Biomass categories that are naturally rich in sugars, such as sugar cane, can be processed 
directly in bioreactors (Ubando et al., 2020). On the other hand, starchy biomasses, such as 
corn, need to be treated to break down the biopolymer chains to their fundamental constituents; 
enzymatic hydrolysis is the preferred path for such operation (Delbecq et al., 2018). The culture 
medium has to be prepared as well, and its optimization is of paramount importance to ensure 
that expensive raw materials are not wasted and to avoid increasing the separation burden on 
the downstream section (Burgard et al., 2016). 
After biomass preparation, sugars are fed to bioreactors. Fermentation is the most common 
upstream operation in bioconversion-based biorefineries (Woodley, 2020), typically operated 
in (fed-)batch mode (Bähner et al., 2021). With focus on the production of chemicals, a range 
of relevant building blocks can be obtained using natural microorganisms (Cherubini, 2010). 
However, genetic engineering has given a tremendous impulse to fermentation-based 
bioconversion by solving problems such as low yield or productivity (Woodley, 2020), and 
even enabling the production of “unnatural” chemicals, for example succinic acid (Choi et al., 
2016) and BDO (Burgard et al., 2016; Yim et al., 2011); a large number of other molecules 
could be potentially produced by fermentation thanks to the recent developments in genetic and 
metabolic engineering (Lee et al., 2019). On the other hand, traditional, single-step fermentation 
is not the only available technology for biological conversion: the potential of alternative 
processes has been recently recognized, most notably microbial and enzymatic bio-catalysis 
(Woodley, 2020), and two-stage fermentation (Burg et al., 2016). 
The outlet of the fermentation reactor is typically a complex aqueous solution containing cells 
and a mixture of substances, among which the desired product. After sterilization, the mixture 
enters the downstream process for product recovery and purification. Due to the typically low 
concentration of the main product in fermentation broths, processing costs in this section are 
usually high (Cuellar et al., 2020; Martín et al., 2013), ranging between 40% and 60% of the 
total processing cost, with peaks of 80% in some special cases; energy and utilities are the main 
cost components (Bähner et al., 2021; Cuellar et al., 2020). 
While fermentation is a complex process taking place in a relatively simple unit, product 
purification is achieved by a complex sequence of units implementing relatively simple 
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operations (compared to fermentation), in fact a broad range of technologies is available (Hatti-
Kaul, 2010). However, the operations to be performed can be classified in four main steps, 
exemplified here with focus on BDO (Burgard et al., 2016; Cuellar et al., 2020): 

• cell removal, usually achieved by filtration on porous membranes (microfiltration and 
ultrafiltration); 

• preliminary product purification by removal of other compounds and salts, achieved by 
dense membrane separations (nanofiltration) and ion-exchange chromatography; 

• product concentration by dewatering in evaporators; 
• final product purification, achieved by traditional distillation. 

Membrane separation processes have been highlighted as a particularly promising technology 
for cell removal after fermentation (Bähner et al., 2021; Cuellar et al., 2020; Prochaska et al., 
2018). In the context of biorefineries, membrane technologies have been widely studied and 
are becoming increasingly relevant (Abels et al., 2013; Carstensen et al., 2012; Ennaceri et al., 
2022; Gerardo et al., 2014; Saha et al., 2017) thanks to their better scalability and lower 
operating costs compared to thermal separation processes (Ennaceri et al., 2022; Gerardo et al., 
2014; Jiang et al., 2013; Saha et al., 2017). Pressure-driven membrane separation processes, for 
example ultrafiltration, are particularly popular to separate biomass from the fermentation 
products when membrane-based operations are employed to this end (Rudolph et al., 2019). 
While, in principle, all the aforementioned downstream operations can operate continuously, 
they are most commonly run in batch or semi-continuous modes. This is due to the (fed-)batch 
operating regime of upstream fermentation, the product of which is available only after batch 
discharge, (Bähner et al., 2021), and to phenomena such as resin depletion (Hatti-Kaul, 2010; 
Zydney, 2016) and membrane fouling (Huang et al., 2021; Mancini et al., 2020; Prochaska et 
al., 2018; Shi et al., 2014). Both problems could be solved or mitigated by employing arrays of 
parallel units in cyclic operation (Zydney, 2016). This solution is already widely adopted in 
upstream processing of bioprocesses to make the outlet of bioreactors available continuously, 
even at the cost of a complicated scheduling (Bähner et al., 2021), while it is less common in 
the downstream processing (Zydney, 2016), where operation-cleaning/regeneration cycles are 
used preferentially (Hatti-Kaul, 2010; Shi et al., 2014). 

1.1.3 Industrial implementation of biorefineries 

A wide spectrum of fuels and commodity chemicals can be produced by fermentation of sugars 
and biomass in single-product biorefineries (Cherubini, 2010) or in integrated, multiproduct 
plants (Rosales-Calderon et al., 2019). Many technologies and microorganisms have already 
reached the maturity for industrial-scale production (Cuellar et al., 2020), and the potential of 
genetic engineering is expected to enlarge the pool of biorefinery products (Lee et al., 2019). 
Furthermore, besides the obvious monetary purposes, the transition from the linear economy 
model to the circular economy model is of paramount importance for efficient exploitation and 
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re-use of resources, and for contrasting the already dramatic effects of climate change (Attard 
et al., 2020; Ioannidou et al., 2020; Ubando et al., 2020). Last but not least, policy makers, such 
as the European Union (EU), committed to regulate, oversee, and partially fund the industrial 
and academic development of novel, environment-friendly production means like biorefineries 
(European Commission, Directorate General for Research and Innovation et al., 2021; 
European Commission, Joint Research Centre et al., 2021, 2018); furthermore, international 
agencies, as the International Energy Agency (IEA), dedicated to track and ease the realization 
of operating plants (IEA Bioenergy: Task 42 Biorefining in a circular economy et al., 2022). 
All these factors gave a strong impulse to research, development, and implementation of novel 
technologies for production of chemicals traditionally derived from oil. Ultimately, this resulted 
in the construction and startup of many plants qualified as biorefineries: according to EU data 
updated to December 10, 2022 (European Commission, Joint Research Centre et al., 2021), 
408 biorefineries are already operating worldwide: 298 within the EU (Baldoni et al., 2021a) 
and 110 in extra-EU Countries (Baldoni et al., 2021b); in 2017, 224 biorefineries were 
operating within the EU (Nova Institute, 2017), which testifies the growing industrial interest 
in this field. However, note that EU data include all plants qualified as biorefineries, with 
varying degrees of production capacity and technology maturity (European Commission, Joint 
Research Centre et al., 2021). Filtering the data to retain only biorefinery employing 
commercial technologies (pathways A, B, and C) producing chemical and liquid biofuels yields 
122 biorefineries within the EU (Baldoni et al., 2021a) and 79 outside the EU (Baldoni et al., 
2021b), which still include also small-scale plants (pilot and demonstration); therefore, the 
number of industrial-scale plants is expected to be lower than the one reported above. A general 
overview of the geographic distribution of biorefineries is reported in Figure 1.2. The reader is 
referred to EU data (Baldoni et al., 2021a, 2021b; European Commission, Joint Research Centre 
et al., 2021) for additional details. 

1.1.4 The world’s first industrial biorefinery for 1,4-butanediol production 

Among the currently operating plants, a significant one is represented by the world’s first 
industrial biorefinery for the production of BDO by bioconversion of renewable raw materials, 
located in Bottrighe (IT), and operated by Mater-Biotech S.p.A. and Novamont S.p.A. 
(Novamont S.p.A., 2016). 
BDO is a fundamental building block chemical with a remarkable market. According to a report 
by Grand View Research (2022), the estimated value of the BDO market was 7.87 billion 
United States dollars (USD) in 2022 and is forecasted to almost double in 2030, reaching 14.66 
billion USD. The Asia-Pacific region leads the BDO manufacturing market. BDO is used to 
produce a variety of chemicals, tetrahydrofuran being its main derivative, and polymers, among 
which polybutylene terephthalate and polyurethanes. Solvents, such as the γ-btyrolactone, can 
be produce from BDO as well (Rosales-Calderon et al., 2019). 
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BDO is traditionally derived from fossil raw materials with energy-intensive processes having 
a significant impact on the environment (Rosales-Calderon et al., 2019). The two-stage Reppe 
process is the most widespread route for commercial production: formaldehyde and acetylene 
react to form 1,4-butynediol in the first stage; hydrogenation completes the synthesis in the 
second stage. Alternative, yet still oil-based, processes exist. In the Mitsubishi Chemicals 

 
(a) 

 

 
(b) 

 
(c) 

Figure 1.2. Overview of the geographic distribution of biorefineries (a) in Countries within 
the EU (Baldoni et al., 2021a), (b) in Countries outside of the EU but still in Europe (Baldoni 
et al., 2021b), and (c) in the rest of the world (Baldoni et al., 2021b). Dots are colored 
according to the product category of a plant: blue for chemicals, red for composites and 
fibers, green for other products, and grey for multiple products. The biorefinery considered 
in this Thesis and described in Section 1.1.4 is marked with a golden star in (a). 
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process, butadiene is treated with acetic acid by oxidative acetoxylation, then hydrogenated and 
hydrolyzed to BDO. The Arco Chemicals route starts from propylene oxide, which is first 
isomerized to allyl alcohol, then hydroformylated with syngas (a mixture of hydrogen and 
carbon monoxide) to 4-hydroxybutyraldehyde, and finally hydrogenated to BDO. Processes 
based on maleic anhydride exist as well, such as the Davy Technology diesterification-
hydrogenation, or the British Petroleum direct esterification. 
More recently, sustainable, energy-efficient processes have been developed to produce BDO 
from renewable resources. A catalytic route to produce BDO by direct hydrogenation of 
succinic acid, a compound that can be obtained by fermentation (Cherubini, 2010) at industrial 
scale (Cuellar et al., 2020; López-Garzón et al., 2014), has been proposed (Baidya et al., 2019; 
Kang et al., 2015). A significant achievement is represented by the Genomatica process, where 
BDO is produced in a single-step bioconversion of sugars operated by genetically engineered 
microorganisms (Burgard et al., 2016; Yim et al., 2011). 
The latter technology has been acknowledged as a huge achievement for genetic engineering 
and bio-based production systems (Wehrs et al., 2019), besides being the only commercial 
process to produce BDO directly from sugars (Bodor et al., 2019); it also prompted significant 
research in the field of biorefinery process design (Noorman et al., 2017; Teh et al., 2019). 
Techno-economic analyses of the process proved its economic feasibility and competitiveness 
with routes based on fossil raw materials, highlighting that the major capital costs are due to 
the bioconversion step, while membrane separation processes in the downstream represent the 
major operating cost (Satam et al., 2019). Concerning the environmental impact, the equivalent 
emission of CO2 (as kilograms of CO2 emitted per kilograms of product formed) was estimated 
to be between 52% and 82% lower with respect to the traditional Reppe process, while the 
usage of non-renewable energy from fossil fuels was estimated to be reduced between 67% 
and 72% (Burgard et al., 2016; Forte et al., 2016). Equivalent processes, to be implemented in 
second generation biorefineries, are under study as well (De Bari et al., 2020). 
The Genomatica technology is at the heart of the aforementioned Novamont biorefinery, the 
first one implementing this process at commercial scale (Novamont S.p.A., 2016; Silva et al., 
2020). The plant, which falls within the definition of first generation biorefinery as it processes 
entirely renewable sugars by bioconversion, has been designed with a production capacity of 
30000 metric tons of BDO per year (IEA Bioenergy: Task 42 Biorefining in a circular economy 
et al., 2022; Novamont S.p.A., 2016). In the upstream section, the bioconversion is conducted 
in “micro-aerobic” conditions  (Burgard et al., 2016), which entails the need for a precise 
control of the dissolved oxygen (DO) level. Downstream of the bioreactor, the mixture is first 
sterilized, then cells, high molecular weight compounds, and salts are removed by means of 
membrane filtration and ion-exchange chromatography. These operations belong to the so-
called “purification” step, that is followed by the “refining” step, where dewatering and 
distillation complete the downstream train (Burgard et al., 2016; Cuellar et al., 2020). 
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Furthermore, the plant is equipped with a massive data acquisition and storage systems, 
providing plenty of real-time measurements to monitor and control the process. A qualitative 
scheme of the process is reported in Figure 1.3. 

The industrial BDO biorefinery described above is the object of this Thesis, carried out as a 
collaboration between Novamont S.p.A. and the Computer Aided Process Engineering 
Laboratory (CAPE-Lab) of the University of Padova (Italy). 

1.1.5 Research trends in biorefining 

In the context of circular economy and production of fuels and chemicals from sustainable 
resources with an eye for environmental and social impacts (Attard et al., 2020; Ioannidou et 
al., 2020; Ubando et al., 2020), the potential of biorefineries has been recognized in the last 
decades (Cherubini, 2010; Taylor, 2008). Such potential developed and materialized in many 
processes achieving commercial maturity (Cuellar et al., 2020; Rosales-Calderon et al., 2019) 
and in a remarkable number of biorefineries being built and operated around the world (Baldoni 
et al., 2021a, 2021b). Despite these tremendous achievements in the fields of circular economy, 
sustainable production, and biorefining, significant research is still ongoing and future outlooks 
are being given by academia (Barragán-Ocaña et al., 2023), industry (Bähner et al., 2021), and 
policy makers (European Commission, Directorate General for Research and Innovation et al., 
2021). An overview of some relevant research topics is reported in Figure 1.4. 
Recent analyses of both the scientific literature and patent databases (Barragán-Ocaña et al., 
2023) highlighted that the main challenges associated with biorefineries are both technical and 
economical. Holistic and multidisciplinary approaches are fundamental to tackle such issues. 
As the raw materials for fermentation-based biorefineries are sugars, efforts are being devoted 
to the development of technologies to pre-treat biomass derived from non-food sources. 

 
Figure 1.3. Simplified block flow diagram of the industrial biorefinery process for the 
production of BDO from renewable biomass, operated by Mater Biotech S.p.A. in Italy. 
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Variability in chemical composition, both geographical and seasonal, entails high process 
complexity and requires special unit operations, which are object of significant research (Attard 
et al., 2020; Barragán-Ocaña et al., 2023). This also calls for novel and systematic approaches 
for process synthesis and design (Ubando et al., 2020): work ongoing in this field regards new 
process design workflows (Noorman et al., 2017), systematic evaluation of potential 
technologies (Martín et al., 2013), and incorporation of environmental and social objectives in 
the traditional, profit-oriented process design paradigm  (Julio et al., 2017; Teh et al., 2019). 
Concerning the upstream process, where classic single-step (fed-)batch fermentation is still the 
dominant production regime (Bähner et al., 2021), research is focusing on alternative 
bioconversion technologies, for example microbial bio-catalysis, enzymatic bio-catalysis 
(Woodley, 2020), and two-stage fermentation (Burg et al., 2016). Bioengineering tools are 
powerful assets to this end, but also to broaden the range of products that can be manufactured 
in biorefineries (Lee et al., 2019). Scale-up, a well-known issue in biological processes, is also 
challenging (Woodley, 2020). Following the trend of the pharmaceutical industry, continuous 
processing represents an attractive solution for productivity and efficiency (Cuellar et al., 2018), 
even though the applicability to biorefineries is still limited by genetic stability of engineered 
strains (Noorman et al., 2017) and contaminations (Bähner et al., 2021). 
Challenges exists for the downstream as well (Cuellar et al., 2020). Research is focusing on 
numerous topics, among which: high throughput experimentation platforms; understanding of 
effects of the composition of fermentation media on downstream operations; cell disruption for 
recovery of intracellular compounds; membrane separation processes; dividing wall columns 

 
Figure 1.4. Significant research topics concerning biorefineries. 
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for process intensification and to solve complex separation problems. Improvement of 
operating modes of the downstream, currently limited to batch or semi-continuous modes by 
upstream operation and phenomena such as membrane fouling and resin capacity depletion, is 
also receiving a wide attention (Zydney, 2016). Finally, a significant share of research is aimed 
at “jointing” the upstream and downstream processes by in situ product recovery, for example 
by membrane bioreactors (Carstensen et al., 2012; Cuellar et al., 2018; Rudolph et al., 2019). 
A common denominator can be extracted by all the studies mentioned above: mathematical 
modeling has a remarkable potential to aid biorefinery development and operation. Multiple 
opportunities have been identified in the field process systems engineering (PSE), which are 
highly relevant to both academia and industry (Bähner et al., 2021). In particular, advanced data 
analytics, based on massive data historians produced by modern biorefineries, has been 
highlighted as a tool with a great potential to improve operation and performance of biorefinery 
plants and processes, and to enhance scale-up and scale-down in process development (Cuellar 
et al., 2020; Culaba et al., 2022; Velidandi et al., 2023). The contribution of this Thesis falls 
within this scope: the application of PSE methods and advanced data analytics to develop 
knowledge on and support the operation of the world’s first industrial biorefinery for the 
production of BDO. A detailed review of the potential of PSE and data analytics is presented 
in the next Section. 

1.2 Mathematical modeling to support biorefinery operation 
Mathematical modeling, especially data-driven approaches such as statistical, machine, and 
deep learning, have been acknowledged as essential tools to support the development of smart 
biorefineries and hasten the deployment of cutting-edge technologies (Bagheri et al., 2019; 
Cuellar et al., 2020; Culaba et al., 2022; Helleckes et al., 2022; Velidandi et al., 2023). Novel 
biorefineries have in fact a powerful ally to maximize the benefits that could potentially 
originate from such opportunities: the Industry 4.0 paradigm. 

1.2.1 Industry 4.0 relevance to industrial biorefineries 

The concept of Industry 4.0 refers to the fourth industrial revolution, that is taking place in our 
time. This is being driven by three key enablers (Reis et al., 2017, 2021b): availability of 
massive datasets (the so-called big data); maturity of computational infrastructures; power of 
modern data analytics methods. Similarly to the previous three revolutions (the first one driven 
by coal and steam, the second one by electricity, and the third one by the advent of computers), 
the industry is experiencing a significant expansion and is making its way toward the full 
implementation of the so-called smart manufacturing systems (Reis et al., 2018). Biorefineries 
are already taking advantage of these new concepts, as testified by the multitude of successful 
applications of data-driven modeling described in numerous literature reviews (Bagheri et al., 
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2019; Culaba et al., 2022; Helleckes et al., 2022; Pomeroy et al., 2022; Velidandi et al., 2023). 
However, the full potential of such methodologies is far from being achieved. In particular, two 
relevant points are worth mentioning regarding the current state of data-driven modeling in 
biorefineries: 

• the application of data-driven modeling to real, industrial plants and data is limited; 
• highly complex, heavily nonlinear, non-interpretable methods are used by default in the 

literature, with little to no attempt to explore simpler, more robust approaches first. 
While the first point is justified by the still limited presence of real industrial biorefinery plants, 
the second point may be troublesome for multiple reasons. Logically, one should first explore 
simpler modeling methodologies according to some complexity scale (Rendall et al., 2019), as 
complex models featuring more degrees of freedom have higher risk of overfitting, yielding 
misleading conclusions and poor generalization performance (Reis et al., 2018; Rendall et al., 
2019; Sun et al., 2021). Furthermore, industrial data often lack two fundamental prerequisites 
for the proper calibration of complex models: quantity and quality (Cuellar et al., 2020; Reis et 
al., 2018; Sun et al., 2021). Unawareness of these factors can seriously limit the benefits of an 
Industry 4.0 approach, especially in industrial scenarios, where it matters the most. Approaches 
to measure the quality of information that can be obtained from a data-driven study with given 
objectives and allocated resources can make a difference in such cases (Reis et al., 2018). 
This Thesis aspires to make up for the aforementioned limitations. Examples of tasks that can 
be accomplished by adopting an Industry 4.0 approach to support the operation of industrial 
biorefineries are discussed in the rest of this Section and are schematically represented in Figure 
1.5. A review of some fundamental contributions of data-driven modeling to biorefinery and 
biorefinery-like scenarios, such as batch reactors, bio-based processes, and membrane 
separation processes, is presented. Particular attention is devoted to simple approaches that 
proved to be effective in industrial case studies; an overview of more complex machine learning 
techniques can be found in recent literature reviews (Bagheri et al., 2019; Culaba et al., 2022; 
Helleckes et al., 2022; Pomeroy et al., 2022; Velidandi et al., 2023). Note that the purpose of 
this Section is just to gather relevant contributions: mathematical descriptions of some of the 
approaches that will be mentioned throughout this Section is given in Chapter 2, while research 
objectives of this Thesis are properly stated in Section 1.3. The studies through which the 
research objectives are achieved are outlined in Section 1.4. 

1.2.2 Development of knowledge by exploratory data analytics 

One ubiquitous feature of industrial process data is correlation among variables (Kourti et al., 
1995; Wise et al., 1996). This simple feature can cause many numerical issues, preventing the 
use of classic regression methods, as ordinary least-squares regression (based on the assumption 
of independent variables), and causing identifiability issues in more complex models. On the 
other hand, there exist approaches able to cope by design with correlation among variables, 
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such as variables selection combined with traditional methods, penalized regression, latent-
variable models, and tree-based ensemble models (Reis et al., 2018; Rendall et al., 2017b). 
Latent-variable methods (Burnham et al., 1999), such as principal component analysis (PCA) 
and partial least-squares (PLS) regression, are particularly attractive due to their architectural 
simplicity, ability to deal with massive numbers of variables, computational efficiency, ease of 
implementation, and straightforward interpretability. Regarding the latter aspect, the 
fundamental assumption of latent-variable models is that the process is dominated by a limited 
number of driving forces (latent variables) to which measurable variables are just proxies 
(Kourti, 2019; Wold et al., 2001). This feature of latent-variable methods enables them to aid 
process understanding solving data exploration and mining problems by interpretation of the 
models (Burnham et al., 2001; Camacho et al., 2010; Ergon, 2004; Kosanovich et al., 1996; 
Kourti, 2019; Kvalheim, 2010; Vitale et al., 2021; Wold et al., 1987a, 2001). 
Process understanding is the first, fundamental task that can support the operation of industrial 
biorefineries. The potential of latent-variable methods to this end has been widely proven in the 
literature. For example, Mortensen et al. (2006) developed a parallel factor analysis model of 
fluorescence data to produce a chemically interpretable visualization of the progress of a fed-
batch process for production of enzymes, which allowed to understand the evolution in time of 
the compounds of interest; they also developed a PLS model to investigate the relationship 
between process parameters and end-of-batch enzymatic activity, and to detect the natural end-
point of the batch process. In the context of biorefineries, exploratory data analytics methods 
are mostly used to uncover properties of different biomasses or of different pre-treatments. For 

 
Figure 1.5. Potential benefits of the application of the Industry 4.0 approach to industrial 
biorefineries. 
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examples Fernandes et al. (2020) developed a PCA model to understand the effects of fungal 
fermentation as a pre-treatment of grape stalks, while  Jiang et al. (2016) used PLS to investigate 
the effects of process parameters on carbohydrate release in thermochemical pre-treatment of 
macroalgal biomass. Concerning the upstream process, Guan et al. (2015) analyzed, by PCA, 
the properties of genetically engineered bacterial strains to produce propionic acid and 
identified  key metabolic nodes influencing the productivity. The very same methodology was 
proved to be effective to investigate a particularly complex phenomenon in the downstream: 
membrane fouling. Maere et al. (2012) extracted informative features from the pressure profile 
of a membrane bioreactor; they used them in PCA to understand the fouling trends and 
investigate the effects of process parameters. Klimkiewicz et al. (2016) applied a PCA-based 
method (multilevel simultaneous component analysis with invariant patterns) to an industrial 
ultrafiltration downstream of a fermenter for production of enzymes, with the intention of 
understanding the permeate flux decline due to fouling. 
Finally, a particularly relevant achievement of latent-variable models for process understanding 
in industrial biorefineries is represented by the study carried out by Nachtergaele et al. (2020). 
They considered an industrial biorefinery for the production of fatty acids from different kinds 
of animal fats or vegetable oils and proposed a systematic procedure for process understanding 
by multivariate data analytics. The effect of various feedstocks on the performance of the 
hydrolysis process was investigated by PCA, while PLS was employed to understand the effect 
of parameters of the distillation units on the product quality and its variability. 

1.2.3 Process monitoring and soft sensing 

The concept of process monitoring has been introduced by Shewart (1931) in an univariate 
fashion. Given the increasing availability and redundancy of process data, methods to handle 
highly multivariate cases have been developed, proposed, and reviewed in the literature (Chiang 
et al., 2001; Das et al., 2012; He et al., 2018; Kourti et al., 1995; Kresta et al., 1991; MacGregor 
et al., 1995; Qin, 2003; Reis et al., 2017). In general: «The goal of process monitoring is to 
ensure the success of the planned operations by recognizing anomalies of the behavior» (Chiang 
et al., 2001). When process monitoring is implemented by checking the conformity of new data 
to the distribution of data from normal operating conditions (NOC) by means of data-driven 
models, it is referred to as statistical process control (SPC; MacGregor et al., 1995). 
SPC can be framed in three categories according to the aim of monitoring (Kourti, 2003): 

• quality monitoring focuses on the variables quantifying the product quality alone, and 
can be achieved by means of traditional methods applicable to single or few variables 
(Jackson, 1959; Montgomery, 2009); 

• “general” process monitoring focuses on variables characterizing the process and 
follows the objective stated above, hence it can be implemented by means of latent-
variable models, such as PCA (Nomikos, 1996; Wise et al., 1996); 
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• quality-relevant monitoring aims at assessing both the product quality and the process 
variables most related to the quality itself, thus it can be implemented, for example, by 
PLS (Li et al., 2011; Nomikos et al., 1995b). 

These three categories of process monitoring can be further subdivided according to the way 
the objective is pursued. For example, if quality-relevant monitoring is to be implemented just 
to discriminate between on- and off-specification products, the problem can be solved by 
classification models such as PLS discriminant analysis (PLSDA) (Ballabio et al., 2013; Barker 
et al., 2003; Lee et al., 2018). In the context of general process monitoring, the multiclass 
extension of this method (Pomerantsev et al., 2018) can solve problems where one is interested 
in distinguishing NOC data from a set of known process faults. On the other hand, if one is 
interested in recognizing only NOC data, discriminating them from any, potentially unknown 
faulty condition (a common occurrence in the process industry), one-class modeling techniques, 
such as one-class PLS (Xu et al., 2011, 2013) or PLS density modeling (Oliveri et al., 2014), 
offer promising solutions to the problem. 
Most of the methods mentioned for process monitoring require access to measurement of the 
product quality, some with the same frequency of the process variables. However, this simple 
requirement might be impossible to satisfy. For example, variables typically used to 
characterize the quality of fermentation/bio-based processes can be very complex in nature or 
require complicated and lengthy, labor-intensive laboratory analyses to be measured (Kroll et 
al., 2017; O’Flaherty et al., 2020). Some variables may not be directly measurable at all, such 
as the hydraulic resistance of a membrane quantifying its fouling state (Huang et al., 2021; Shi 
et al., 2014). Cases like these can be handled by exploiting the relationship between process 
variables and product quality (or, more generally, between easy-to-measure variables and hard-
to-measure variables), using online measurements of the former to predict the latter: this 
concept is known as soft sensing (Camacho et al., 2008b; Kadlec et al., 2009, 2011; Lin et al., 
2009; Luttmann et al., 2012; Perera et al., 2023; Souza et al., 2016; Zhou et al., 2021; Zhu et 
al., 2020). Soft sensors are strictly related to the problem of quality-relevant monitoring 
(Mainka et al., 2019), therefore the two topics are discussed together in this Section. 
Chiang et al. (2006) monitored an industrial fermentation process comparing various 
approaches, among which PCA, a PLS model predicting a “batch maturity index”, and the 
Tucker3 tensor decomposition. The methods enabled the identification and troubleshooting of 
recurrent issues with that specific fermentation, which were solved by generating a significant 
value for the company participating in the study. Lennox et al. (2001) considered a similar 
problem, exploiting PCA to monitor an industrial fed-batch fermenter in the context of general 
process monitoring, and PLS for quality-relevant monitoring. Sá et al. (2017) investigated 
several approaches to process monitoring in a microalgae membrane harvesting process. 
Viability and concentration of microalgae can be inferred from two-dimensional fluorescence 
spectra; the significant principal components of spectra (obtained by PCA) were used as inputs 
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to develop a PLS-based soft sensor to predict cell viability and concentration. The soft sensor 
was then used for quality-relevant monitoring. A PLSDA classifier was also tuned to 
discriminate between disrupted and viable cells. A PLS soft sensor was developed by Pontius 
et al. (2020) to predict the concentration of six species of interest from spectral data of a yeast 
fermentation process, aiming at quality-relevant monitoring. 
Some studies focused on the pure predictive power of the soft sensors they developed. For 
example, Philippe et al. (2013) considered an array of four parallel membrane bioreactors for 
industrial waste-water treatment and developed a PLS soft sensor for each one of them. They 
aimed at predicting the dynamic evolution of membrane resistances, due to fouling, using 
process variables and offline measurements of the feed composition. Despite the reactors being 
identical, the performances of the soft sensors were sometimes not satisfactory. The authors 
investigated the issues and gave precious guidelines for handling predictive models in such 
complex scenarios. A similar problem was tackled by Kaneko et al. (2013), who developed two 
PLS soft sensors to estimate the evolution of trans-membrane pressures (TMPs) of two 
industrial membrane bioreactors. They noted that predicting the TMP rather than resistances 
yields good performance. 
In the context of biorefinery, the study of Holm-Nielsen et al. (2011) represents a relevant 
contribution. They considered a pilot scale biorefinery processing manure for biogas production 
by anaerobic digestion. Multiple PLS soft sensors were calibrated to predict the total 
concentration of volatile fatty acids and concentrations of specific acids of interest starting from 
near-infrared spectra of the off-gas. The models yielded excellent performance and served as 
basis to develop a quality-relevant monitoring system to aid process operation by prompt 
identification of faults. 

1.2.4 Data-driven process improvement and optimization 

The use of latent-variable models to develop process understanding, monitoring systems, and 
soft sensors is the foundation for data-driven process improvement and optimization. Soft 
sensors, as commonly intended in the process industry, allow for the estimation of the product 
quality obtained from given process conditions. One might therefore think to use the soft sensor 
“the other way around”, setting a target quality and computing process conditions that, 
according to the model, allow to manufacture a product with that assigned quality. This is the 
problem tackled by latent-variable model inversion (LVMI; Arce et al., 2021; Jaeckle et al., 
1998, 2000; Ruiz et al., 2018; Tomba et al., 2012a, 2013b). While this task could be 
accomplished by any optimization method applied to any process model relating the product 
quality to process variables (possibly both nonlinear), LVMI offers a remarkable advantage: if 
models are derived on historical process data, only the input and output spaces covered by the 
data are considered as feasible, according to the models. While this could appear as a limitation 
if one wants to design a product significantly different from the ones in the historical database, 
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it offers the advantage that process constraints and production policies are implicitly 
encapsulated in the model, hence the result of the LVMI procedure will automatically comply 
with such constraints (Jaeckle et al., 1998). This feature of latent-variable models is of 
paramount importance in data-driven process improvement. Models exclusively based on data 
rely on pure correlation rather than causality (Reis et al., 2019), thus care must be taken when 
they are used for sensitive tasks, as product design. However, latent-variable models can extract 
meaningful information from daily operation data and incorporate it in the space of latent 
variables, implicitly constraining the set of possible solution of data-driven optimization 
problems, such as LVMI, to respect the process structure, thus offering guarantees on its 
feasibility and effectiveness (Ferrer, 2021). 
One may want to make a step further: what if a product is already being manufactured in a plant 
and needs to be produced in a second, similar plant, possibly at a different scale? Joint-Y partial 
least-squares (JYPLS) regression has been proposed as a variation of PLS and combined with 
LVMI to tackle this kind of problem (García Muñoz, 2014; García-Muñoz, 2004; García-
Muñoz et al., 2005). Considering biorefineries based on the biological conversion platform, 
such as fermentation, the problem of scale-up is particularly relevant (Woodley, 2020) as it is 
known that biological processes suffer from strong scale effects (Burgard et al., 2016; Facco et 
al., 2020). Data analytics has been deemed to have a great potential to this end (Cuellar et al., 
2020). Another critical step of biorefinery development, the selection of the biomass feedstock 
(Attard et al., 2020), could draw significant advantages from the very same approach. 
However, LVMI is still a relatively young approach and found limited to no applications in the 
domain of bio-based processes. Research on LVMI mostly concerns the pharmaceutical and 
industrial chemistry sectors. For example, Liu et al. (2011a) exploited PLS model inversion 
(the most widespread LVMI approach) to define the optimal formulation of a pharmaceutical 
product to be produced in an industrial tablet manufacturing line, and also identified the best 
process conditions to this end. Tomba et al. (2013b) designed process conditions for quality 
improvement in a wet granulation operation, discussing cases where not all quality variables to 
describe the product have a specified target. In another significant application, Jaeckle et al. 
(2000) identified, by PLS model inversion, the process conditions of an industrial fed-batch 
emulsion polymerization reactor for consistent quality operation. García-Muñoz et al. (2006) 
used LVMI to design reference trajectories for the profiles of variables in an industrial pulp 
digester for paper production, operating in batch regime. 
In a similar application to the latter, García-Muñoz et al. (2005) exploited LVMI and JYPLS to 
scale-up a pulp digester, from pilot to industrial scale. Tomba et al. (2014) considered a 
nanoparticle production process, for which they developed a JYPLS model and inverted it to 
transfer a product of a small-scale unit to a pilot-scale unit. One particularly relevant application 
is the by study by Dal-Pastro et al. (2017). They considered the product transfer problem in a 
wheat milling process. A new variety of wheat (feedstock) needed to be processed at industrial-
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scale to yield a given product quality; however, limited data on that process/feedstock 
combination were available for the industrial unit, while a large dataset was available for a 
laboratory-scale unit. JYPLS model inversion successfully identified process conditions to 
achieve the goal. In the context of biological processes, Facco et al. (2020) used a JYPLS model 
inversion to aid the selection of mammalian cell lines for biopharmaceutical production while 
aiding the scale-up process. They considered six scales (from static wells to small scale shaken 
flasks), proving that JYPLS can provide precious information on common variability drivers 
across scales and point out specific differences across scales. They also showed how JYPLS 
modeling can efficiently use information on small, data-rich scales to infer important 
information on larger scales with smaller datasets, as also proved by Dal-Pastro et al. (2017). 
Finally, JYPLS has been studied to transfer not only the product across plants and scales, but 
the models themselves. Transfer of process monitoring models was achieved on both 
continuous systems (Facco et al., 2012) and batch systems (Facco et al., 2014), possibly also 
integrating prior, mechanistic knowledge on the process (Tomba et al., 2012b). Strategies to 
speed up model transfer by data culling have been proposed as well (Chu et al., 2021). 

1.3 Research objectives 
In the past decades, data-driven modeling proved to be an effective tool to support operation, 
improvement, and optimization of industrial processes, as testified by the large number of 
studies focusing on these tasks. However, as discussed in Section 1.2.1, these methods are still 
not widely applied to industrial biorefineries, partly due to the limited number of industrial-
scale biorefineries, partly because heavily nonlinear, high-complexity approaches promising 
pure performance (at the expense of interpretability and, sometimes, robustness) seem to be the 
default choice of practitioners and researchers. The second point is also related to the plethora 
of data-driven models available and to the overwhelming task of choosing the most appropriate 
one, which usually leads to the comparison of a very limited number of models, the ones the 
analyst is most accustomed with. While one could argue that this approach is simplistic and 
claim that every model relies on some assumptions that can be verified beforehand, often there 
is no established criterion to assess the “simple” proprieties models rely on (such as presence 
of nonlinear relationships) considering data alone, especially in highly multivariate scenarios. 
In light of these points, the main scientific contribution this Thesis aspires to give can be framed 
as follows. 

1. Provide evidence that Industry 4.0 is a precious tool for industrial biorefineries. 
This objective is accomplished by applying data analytics techniques to support the operation 
of the world’s first plant to produce BDO from renewable biomass, either by data-driven 
process improvement, for example process understanding or product design, or by developing 
model-based support systems, such as monitoring systems or soft sensors. The modeling 
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methodologies are selected by a rational reasoning: find the simplest model (according to some 
complexity scale) that can satisfactorily accomplish the task of interest (Rendall et al., 2019). 
Particular attention is devoted to problems typical of biorefineries and biological processes, 
such as the presence of multiple parallel units manufacturing the same product in the upstream 
(bioconversion), or issues causing processes to run in semi-continuous mode in the downstream 
(membrane filtration processes). It is important to note that, while the nature of the 
aforementioned tasks is mostly procedural and geared towards application of data-driven 
modeling, they have a remarkable research value nonetheless due to the industrial environment 
they are applied to, implementing a one-of-a-kind, highly innovative process. 
It is reasonable to conjecture that specific issues of existing methods will be found while 
pursuing the objective stated above, which could disclose paths for improvement of data-driven 
modeling. Therefore, the second fundamental objective of this Thesis can be states as follows. 

2. Contribute to the methodological advancement of data-driven modeling. 
This objective is accomplished by pursuing the opportunities for improvement uncovered in the 
application of existing techniques, or facing problems for which no existing method is fully 
appropriate. A particularly ambitious objective is to develop guidelines for selecting the most 
appropriate model for a specific task, say process monitoring. To this end, methods to check 
inherent characteristics of the data at hand must be developed as to guide the selection of the 
best candidate models (based on the assumptions they rely on) in a set of relevant models. This 
is a new approach to model discrimination, as opposed to the common “winner takes all” 
rationale based on comparison of the validation errors of a large pool of models. Some work 
has been done already on this topic, even though restricted to regression models and focusing 
on relationship between a single output variable and a limited number of input variables (Sun 
et al., 2021). 
A common rationale underly both the objectives described above: the application of data-driven 
modeling can be significantly aided by the incorporation of domain-specific knowledge, 
whether on the process generating the data or on the properties of the data themselves. This 
principle serves as a guiding light in all the studies presented in this Thesis, its nature being 
methodological rather than aimed at the solution of a specific problem or at the improvement 
of a specific method. In fact, the word “improve” may be interpreted in broad sense, for example 
as to improve the performance yielded by the models for a given objective, or to improve the 
selection process of the best model for a given application, as described above. However, a 
particularly significant interpretation is to blend highly abstracted information concealed in 
process data with mechanistic knowledge of the physics/chemistry/biology of the process. 
Among the multiple possibilities to do so, two will be prioritized in this Thesis: 

• the combination of data-driven models and knowledge-based models according to the 
hybrid modeling paradigm (Narayanan et al., 2023; Rajulapati et al., 2022; Sansana et 
al., 2021; Solle et al., 2017; von Stosch et al., 2014; Yang et al., 2020); 
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• the use of process knowledge to extract relevant information from data by synthesizing 
informative features, for example by “compression” of the time profiles of variables in 
scalar variables (or by augmentation of the data already available computing additional 
variables) according to the feature-oriented modeling paradigm (Reis et al., 2022; 
Rendall et al., 2019; Yoon et al., 2001). 

1.4 Thesis roadmap 
The research discussed in this Thesis is organized according to the two research objectives 
outlined in the previous Section. A scheme of the main topics discussed herein is reported in 
Figure 1.6. Chapter 2 sets the mathematical background of the Thesis. Support systems for the 
industrial biorefinery are discussed in Chapter 3, Chapter 4, and Chapter 5. Finally, Chapter 6 
and Chapter 7 present contributions to the advancement of data-driven modeling. 

Chapter 2 describes the fundamental mathematical methods leveraged in the studies reported 
in this Thesis. However, some of the methods are highly specific only to the study discussed in 
Chapter 7 and require a strong contextualization into the problem (fault detection), therefore 
they are introduced in Chapter 7 and not in Chapter 2. The mathematical symbols are consistent 

 
Figure 1.6. Graphical representation of the Thesis roadmap. 
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throughout this Thesis and are defined upon their first use, together with the dimensions of 
vectors and matrices, and the units of measurement of physical quantities (when relevant). 
Chapter 3 describes the data-driven improvement of the bioconversion step of the upstream 
process, where seven fed-batch bioreactors are operated in parallel. A decreasing trend in the 
end-of-batch product quality developed over several months of operations, affecting all the 
bioreactors. The properties of latent-variable models are leveraged to troubleshoot the issue. 
PCA is first used to investigate potential differences among the bioreactors and to develop 
process understanding. A JYPLS model of the end-of-batch product quality is then developed 
and interpreted to gain insight on the causes of the quality loss. Finally, a multivariate approach 
based on LVMI is adopted to develop quantitative guidelines to recover the product quality. 
Chapter 4 discusses the implementation of a support system to enhance a membrane filtration 
unit in the downstream section. Seven interconnected membrane modules realize an 
ultrafiltration of the outlet of bioreactors to separate biomass from the solution containing the 
product of the bioconversion. The equipment suffers from membrane fouling issues due to the 
nature of the feed. However, the fouling monitoring system adopted in the process relies on 
measurement of operator-read instrumentation installed on the plant, which are plagued by high 
variability and influenced by process changes, hindering the interpretation of the fouling trends 
of individual membranes. A soft sensor for online estimation of the resistances of all membrane 
modules is developed to improve process operation. The soft sensor is based on a hybrid model: 
first, a PLS model estimates trans-membrane pressures of all the membrane modules; then, the 
outputs of the PLS model are used to compute the resistances by a physics-based model, that is 
Darcy’s law. The estimated resistances are available in real time and enable the effective 
monitoring of both reversible fouling (caused by the deposition of material on the membranes) 
and irreversible fouling (causing membrane degradation over time). 
Chapter 5 outlines a comprehensive investigation of membrane fouling in the same process 
considered in the previous Chapter. The investigation is carried out by feature-oriented 
modeling. This method allows to elegantly solve issues induced by membrane fouling 
preventing the application of standard data analytics methods (for example the high variability 
of the duration of filtration batches) while simultaneously building process knowledge into the 
data analytics workflow by enhancing the information on the phenomena of interest (membrane 
fouling). Numerous process settings potentially related to fouling are considered in the analysis. 
A general screening procedure is proposed to cope with the large number of features and to 
identify the process settings most closely related to membrane fouling. The analysis confirms 
the effectiveness of the cleaning policies adopted by the plant and uncovers a strong interaction 
between reversible and irreversible fouling, offering precious guidelines to improve the 
maintenance schedule of membranes. 
Chapter 6 presents a novel method for the algebraic inversion of PLS models. PLS model 
inversion can be achieved by algebraic manipulation of the model equations. However, the 
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inversion procedure requires the output variables to be independent, prescribing to remove 
correlated output variables before model calibration. This leads to a loss of information as some 
quality variables are not considered in modeling, therefore they could not comply with the 
product quality specification upon implementation of the inversion solution. An improved 
formulation of PLS model inversion is proposed. The algorithm allows to tackle the output 
correlation by design: the information provided by all output variables is retained in the 
modeling step, while the non-systematic part is removed in the inversion step by regularization. 
The advantages of the proposed approach are demonstrated on two simulated fermentation 
processes. 
Chapter 7 introduces a framework for the automatic selection and calibration of data-driven 
models for fault detection geared towards industrial manufacturing processes. Only data from 
normal operating conditions are required by the framework, and no prior assumption on the 
fault modes of the process is made. A preliminary data interrogation is conducted to assess 
characteristics of the data relevant to model selection, such as presence of nonlinear correlation 
among variables (equivalent to non-normality of the distribution of data), presence of dynamics 
in the data, and availability of variables describing the product quality. A subset of candidate 
models able to cope with the found data properties is selected from models included in the 
library provided with the framework. Finally, the best candidate is identified by a rigorous 
model selection procedure. The effectiveness of the framework is tested of four case studies: a 
simulated linear, static dataset; the Tennessee Eastman Process simulator; a simulation of a 
process for continuous filtering and drying of paracetamol; an industrial dataset from a metal 
etching process for semiconductor manufacturing. The framework identifies the most 
appropriate model (among the ones included in the library) for fault detection in all cases, as 
proved by the fault detection performance on data from faulty conditions not used for 
calibration. 
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Mathematical background 

This Chapter introduces the fundamental mathematical methods used throughout this Thesis. 
The family of latent-variable models is of particular interest: it includes PCA, PLS, and 
canonical variate analysis (CVA). These methods have a long record of successful applications 
in (bio-)chemical engineering and are described in this Chapter. Advanced methods meant to 
handle parallel units, design process conditions to achieve a given target, and deal with data 
from batch processes are introduced as well. Finally, fundamental concepts of hybrid modeling 
are discussed. Note that some mathematical concepts will be introduced in Chapter 7 rather 
than in this Chapter, with a strong contextualization into the problem of interest: fault detection 
in manufacturing processes. 

2.1 Principal component analysis (PCA) 

2.1.1 Model calibration 

PCA (Hotelling, 1933; Pearson, 1901; Wold et al., 1987a) is a multivariate data analytics 
method aimed at dimensionality reduction of a data matrix 𝐗𝐗 ∈ ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋  containing 𝑁𝑁 
observations (rows) of 𝑉𝑉𝑋𝑋 variables (columns). The method extracts a sequence of 𝐴𝐴 
independent variables, called principal components (PCs), formulated as linear combinations 
of the original variables in 𝐗𝐗. Provided that matrix 𝐗𝐗 is autoscaled, meaning its columns are 
mean-centered and scaled to unit variance, the PCA model is defined as a matrix 
decomposition: 

𝐗𝐗 = 𝐓𝐓 ⋅ 𝐏𝐏T + 𝐄𝐄     , (2.1) 
where: 

• 𝐓𝐓 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴 is the score matrix, the columns of which represent the PCs and rows are 
the projections of the observations in 𝐗𝐗 onto the space of PCs; 

• 𝐏𝐏 ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝐴𝐴 is the loading matrix, which contains coefficients to formulate the PCs 
as linear combinations of the original variables (note that columns of 𝐏𝐏 are independent 
and scaled to unit norm); 

• 𝐄𝐄 ∈ ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋 is the residual matrix, containing the portion of 𝐗𝐗 not modeled by PCA. 
In (2.1), ⋅ represents the row-by-column matrix product and the superscript T denotes the matrix 
transposition operation. A schematic representation of the PCA model is reported in Figure 2.1. 
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The PCs are computed sequentially as to maximize the variance captured by each one of them, 
and to be orthogonal to each other. Therefore, the PCA model can be calibrated by applying 
singular-value decomposition (SVD; Golub et al., 2013). Said 𝑅𝑅𝑋𝑋 = rank(𝐗𝐗) ≤ min{𝑁𝑁,𝑉𝑉𝑋𝑋},  
the SVD of 𝐗𝐗 is: 

𝐗𝐗 = 𝐍𝐍 ⋅ 𝚺𝚺 ⋅ 𝐎𝐎T = [𝐍𝐍1 𝐍𝐍2] ⋅ �𝚺𝚺1 𝟎𝟎
𝟎𝟎 𝚺𝚺2

� ⋅ [𝐎𝐎1 𝐎𝐎2]T     , (2.2) 

where 𝐍𝐍 ∈ ℝ𝑁𝑁 × ℝ𝑅𝑅𝑋𝑋 and 𝐎𝐎 ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝑅𝑅𝑋𝑋 are orthonormal matrices the columns of which, 
called left and right singular vectors, respectively, are the bases of the row space and column 
space of 𝐗𝐗, respectively, while 𝚺𝚺 ∈ ℝ𝑅𝑅𝑋𝑋 × ℝ𝑅𝑅𝑋𝑋  is a diagonal matrix containing the singular 
values of 𝐗𝐗 sorted from the largest to the smallest on the diagonal. The SVD allows for a perfect 
reconstruction of matrix 𝐗𝐗; however, setting a value 𝐴𝐴 < 𝑅𝑅𝑋𝑋, one can truncate the SVD to obtain 
the best rank-𝐴𝐴 reconstruction of 𝐗𝐗, which is equivalent to obtain the PCA model of 𝐗𝐗 with 𝐴𝐴 
PCs. This is done splitting matrix 𝐍𝐍 into 𝐍𝐍1 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴 and 𝐍𝐍2 ∈ ℝ𝑁𝑁 × ℝ𝑅𝑅𝑋𝑋−𝐴𝐴, 𝐎𝐎 into 𝐎𝐎1 ∈
ℝ𝑉𝑉𝑋𝑋 × ℝ𝐴𝐴 and 𝐎𝐎2 ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝑅𝑅𝑋𝑋−𝐴𝐴, and 𝚺𝚺 into 𝚺𝚺1 ∈ ℝ𝐴𝐴 × ℝ𝐴𝐴 and 𝚺𝚺2 ∈ ℝ𝑅𝑅𝑋𝑋−𝐴𝐴 × ℝ𝑅𝑅𝑋𝑋−𝐴𝐴. The 
matrices of the PCA model (2.1) are then: 

𝐓𝐓 = 𝐍𝐍1 ⋅ 𝚺𝚺1     , (2.3) 
𝐏𝐏 = 𝐎𝐎1     , (2.4) 
𝐄𝐄 = 𝐍𝐍2 ⋅ 𝚺𝚺2 ⋅ 𝐎𝐎2

T     . (2.5) 
Figure 2.2 shows a geometric interpretation of the PCA model. 
The value of 𝐴𝐴 is set to include in 𝚺𝚺1 only the significant singular values. Several approaches 
exists to assess the significance of singular values: interested readers are referred to relevant 
literature resources (Bro et al., 2008; Camacho et al., 2012, 2014; Eastment et al., 1982; 
Jackson, 1991; Louwerse et al., 1999a; Saccenti et al., 2015a, 2015b; Valle et al., 1999; Vitale 
et al., 2017; Wold, 1978; Zwick et al., 1986). Given the relationship between PCA and SVD, 
scores describe the relationship among observations, while loadings allow to understand the 
relationship among variables (Kosanovich et al., 1996; Wold et al., 1987a). More sophisticated 
tools for PCA model interpretation exist nonetheless, such as the structural and variance 
information plot (Camacho et al., 2010). 

2.1.2 Model application 

Once the PCA model has been calibrated, new observations can be projected onto the space of 
PCs exploiting (2.1). Given a new observation 𝐱𝐱new ∈ ℝ𝑉𝑉𝑋𝑋 (the components of which are 
assumed to be scaled with the means and standard deviations of the columns of the calibration 

 
Figure 2.1. Schematic representation of the PCA model. Matrices involved in the 
decomposition in (2.1) are represented as rectangles. 
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matrix 𝐗𝐗), its projection, 𝐭𝐭new ∈ ℝ𝐴𝐴, can be computed as: 
𝐭𝐭newT = 𝐱𝐱newT ⋅ 𝐏𝐏     . (2.6) 

The best rank-𝐴𝐴 reconstruction of 𝐱𝐱new can then be computed using (2.1): 
𝐱𝐱�newT = 𝐭𝐭newT ⋅ 𝐏𝐏T     , (2.7) 

and the reconstruction residuals can be defined as: 
𝐞𝐞new = 𝐱𝐱new − 𝐱𝐱�new = �𝐈𝐈𝑉𝑉𝑋𝑋 − 𝐏𝐏 ⋅ 𝐏𝐏T� ⋅ 𝐱𝐱new     , (2.8) 

where 𝐈𝐈𝑉𝑉𝑋𝑋 ∈ ℝ
𝑉𝑉𝑋𝑋 × ℝ𝑉𝑉𝑋𝑋  is the identity matrix. 

2.1.3 Prediction diagnostics 

The reliability of the reconstruction of a new observation by PCA model application can be 
measured by means of two diagnostic statistics (Wise et al., 1996): 

• the 𝑇𝑇𝑋𝑋2 statistic (Jackson, 1959) measures the squared distance of the projection of a new 
observation from the center of the PC space: 
𝑇𝑇𝑋𝑋2 = 𝐭𝐭newT ⋅ 𝚲𝚲𝑇𝑇

−1 ⋅ 𝐭𝐭new = 𝐱𝐱newT ⋅ 𝐏𝐏 ⋅ 𝚲𝚲𝑇𝑇
−1 ⋅ 𝐏𝐏T ⋅ 𝐱𝐱new     , (2.9) 

where 𝚲𝚲𝑇𝑇 ∈ ℝ𝐴𝐴 × ℝ𝐴𝐴 is a diagonal matrix containing the eigenvalues of 𝐗𝐗 (squared 
singular values) from the calibration dataset: 
𝚲𝚲𝑇𝑇 = 𝐓𝐓T ⋅ 𝐓𝐓 = 𝚺𝚺1T ⋅ 𝚺𝚺1     ; (2.10) 

• the 𝑄𝑄𝑋𝑋 statistic (Jackson et al., 1979), also referred to as squared prediction error, 
measures the squared orthogonal distance between a new observation and the space of 
PCs: 
𝑄𝑄𝑋𝑋 = 𝐞𝐞newT ⋅ 𝐞𝐞new = 𝐱𝐱newT ⋅ �𝐈𝐈𝑉𝑉𝑋𝑋 − 𝐏𝐏 ⋅ 𝐏𝐏T� ⋅ 𝐱𝐱new     . (2.11) 

 
Figure 2.2. Geometric interpretation of the PCA model with A = 2 PCs (t1 and t2) derived 
from a data matrix containing VX = 3 variables (x1, x2, and x3). The PCA model identifies a 
subspace of the space of input variables defining the new coordinate systems (the PCs) as 
the directions of the maximum variability in the original space, with orthogonality 
constraints among all the PCs. 
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Note that, in this Thesis, the 𝑄𝑄𝑋𝑋 statistic is assumed to be computed on a pre-processed 
observation 𝐱𝐱new,which allows to equally weight all variables to avoid uneven contributions 
due to variables having different magnitudes and scales of variability (Fernandes et al., 2022). 
The significance of the 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 statistics can be assessed comparing their values to 
confidence limits derived from their distributions. The confidence limit for the 𝑇𝑇𝑋𝑋2 can be 
estimated on the basis of the 𝐹𝐹 distribution (Jackson, 1959), the 𝛽𝛽 distribution (Tracy et al., 
1992), or the 𝜒𝜒2 distribution with matching moments (Nomikos et al., 1995a). On the other 
hand, the confidence limit of the 𝑄𝑄𝑋𝑋 statistic can be obtained using a weighted summation of 
𝜒𝜒2 distributions (Box, 1954), a simple approximation of such distribution (Jackson et al., 1979), 
or the 𝜒𝜒2 distribution with matching moments (Nomikos et al., 1995a). More sophisticated 
methods free from distributional assumptions, for example based on kernel density estimation, 
have been proposed as well (Martin et al., 1996). A complete description of all the approaches 
to estimate the confidence limits of 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 can be found in the literature (Qin, 2003; Reis 
et al., 2021a; Thissen et al., 2001; Tracy et al., 1992), and details on some relevant methods to 
are discussed in Section 7.2.2. 
Note that the 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 statistics can also be computed for each observation in the calibration 
dataset using equations equivalent to (2.9) and (2.11). This is helpful, for example, in 
diagnosing anomalous observations that could bias the model. Such a feature is the basis for 
process monitoring by PCA (Kourti et al., 1995, 1996; Nomikos et al., 1994, 1995a; Qin, 2003; 
Wise et al., 1996) as discussed in Section 1.2.3. This feature of PCA will be further discussed 
in Section 7.2.1. 

2.2 Partial least-square (PLS) regression 

2.2.1 Model calibration 

Given a matrix 𝐗𝐗 ∈  ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋 , gathering 𝑁𝑁 obersvations of 𝑉𝑉𝑋𝑋 input (predictor) variables, and 
a matrix 𝐘𝐘 ∈  ℝ𝑁𝑁 × ℝ𝑉𝑉𝑌𝑌 , containing the same number of observations of 𝑉𝑉𝑌𝑌 output (predicted) 
variables, PLS (Geladi et al., 1986; Wold, 1966; Wold et al., 2001) provides models for both 
data matrices together with a linear regression model between them. This is done by identifying 
two sequences of 𝐴𝐴 mutually orthogonal latent variables (LVs), one for the inputs and one for 
the outputs, defined as linear combinations of the input and output variables, respectively. If 
both matrices are autoscaled, the data models are provided as: 

𝐗𝐗 = 𝐓𝐓 ⋅ 𝐏𝐏T + 𝐄𝐄     , (2.12) 
𝐘𝐘 = 𝐔𝐔 ⋅ 𝐐𝐐T + 𝐅𝐅     , (2.13) 

where: 
• 𝐓𝐓 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴 is the input score matrix, the columns of which represent the input LVs 

and rows are the projections of the observations in 𝐗𝐗 onto the space of input LVs; 
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• 𝐏𝐏 ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝐴𝐴 is the input loading matrix, which contains coefficients to formulate the 
matrix decomposition model of the input variables; 

• 𝐄𝐄 ∈ ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋 is the residual matrix of the data model for 𝐗𝐗, containing the input 
“reconstruction” residuals; 

• 𝐔𝐔 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴 is the output score matrix, the columns of which represent the output LVs 
and rows are the projections of the observations in 𝐘𝐘 onto the space of output LVs; 

• 𝐐𝐐 ∈ ℝ𝑉𝑉𝑌𝑌 × ℝ𝐴𝐴 is the output loading matrix, which contains coefficients to formulate 
the matrix decomposition model of the output variables; 

• 𝐅𝐅 ∈ ℝ𝑁𝑁 × ℝ𝑉𝑉𝑌𝑌 is the residual matrix of the data model for 𝐘𝐘, containing the output 
“reconstruction” residuals. 

However, the PLS model is not made by two mere PCA models of 𝐗𝐗 and 𝐘𝐘. In fact, LVs are 
defined to maximize the modeled cross-covariance between 𝐗𝐗 and 𝐘𝐘 (therefore between pairs 
of input and output LVs), and, at the same time, the variance of data matrices modeled by each 
LV in the data models. The first objective is accomplished defining a weight matrix 𝐖𝐖 ∈
ℝ𝑉𝑉𝑋𝑋 × ℝ𝐴𝐴, computed one column at a time. For example, this first one is the eigenvector of the 
cross-covariance 𝐗𝐗T ⋅ 𝐘𝐘 ⋅ 𝐘𝐘T ⋅ 𝐗𝐗 corresponding to its largest eigenvalue. The second objective 
is accomplished defining a matrix of adjusted (or rotated) weights, 𝐖𝐖∗ ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝐴𝐴, as: 

𝐖𝐖∗ = 𝐖𝐖 ⋅ (𝐏𝐏T ⋅ 𝐖𝐖)−1     . (2.14) 
Adjusted weights are then used to project input observations onto the space of LVs: 

𝐓𝐓 = 𝐗𝐗 ⋅ 𝐖𝐖∗     . (2.15) 
This results in the maximization of linear correlation between pairs of input and output LVs. In 
fact, the 𝐗𝐗-to-𝐘𝐘 regression model is provided as a sequence of 𝐴𝐴 additive linear regression 
models between corresponding pairs of LVs, represented in compact notation as: 

𝐔𝐔 = 𝐓𝐓 ⋅ diag(𝐛𝐛) + 𝐕𝐕     , (2.16) 
where vector 𝐛𝐛 ∈ ℝ𝐴𝐴, called inner regression coefficients, lays on the diagonal of the square 
matrix diag(𝐛𝐛), and 𝐕𝐕 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴 is the matrix of inner regression residuals. A schematic 
representation of the PLS model is reported in Figure 2.3. 
The number of LVs, 𝐴𝐴, is usually set as to maximize the predictive performance of the PLS 
model on data not used for calibration. Cross-validation is a widely used approach (Bro et al., 
2008; Geladi et al., 1986; Louwerse et al., 1999a; Wold et al., 2001); other approaches, such as 
parameter population analysis (Deng et al., 2015) or information criteria (Krämer et al., 2011), 
exist nonetheless. Once 𝐴𝐴 has been set, all the entities in the PLS model (𝐓𝐓, 𝐏𝐏, 𝐔𝐔, 𝐐𝐐, 𝐖𝐖, and 𝐛𝐛) 
can be computed by any PLS calibration algorithm, such as the nonlinear iterative partial least-
squares algorithm (Geladi et al., 1986; Wold, 1966; Wold et al., 2001) or the statistically-
inspired modification of PLS algorithm (de Jong, 1993). Additional methods exist: interested 
readers are referred to literature resources (Andersson, 2009; Burnham et al., 1996, 1999; 
Hoskuldsson, 1988). Similarly to PCA, the analysis of PLS model entities allows for data 
interpretation (Burnham et al., 2001). 
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2.2.2 Model application 

Given a new input observation 𝐱𝐱new ∈ ℝ𝑉𝑉𝑋𝑋 (assumed to be scaled in the same way as the input 
matrix 𝐗𝐗), the calibrated PLS model can be used to compute 𝐲𝐲�new, an approximation of the true, 
unknown output observation 𝐲𝐲new ∈ ℝ𝑉𝑉𝑌𝑌 (scaled as well). The first step is to project 𝐱𝐱new onto 
the space of input LVs: 

𝐭𝐭newT = 𝐱𝐱newT ⋅ 𝐖𝐖∗     . (2.17) 
An approximation of the output scores is then computed using the inner regression model: 

𝐮𝐮�newT = 𝐭𝐭newT ⋅ diag(𝐛𝐛)     . (2.18) 
Finally, the approximated output scores are projected back to the space of output variables by 
the 𝐘𝐘 matrix model: 

𝐲𝐲�newT = 𝐮𝐮�newT ⋅ 𝐐𝐐T     . (2.19) 
Equations (2.17), (2.18), and (2.19) can be jointed into a single equation: 

𝐲𝐲�newT = 𝐱𝐱newT ⋅ 𝐖𝐖∗ ⋅ diag(𝐛𝐛) ⋅ 𝐐𝐐T = 𝐱𝐱newT ⋅ 𝐁𝐁     , (2.20) 
where 𝐁𝐁 ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝑉𝑉𝑌𝑌  is the matrix of PLS outer regression coefficients. 

2.2.3 Prediction uncertainty 

As 𝐲𝐲�new is merely an approximation of the true output observation 𝐲𝐲new, the true value of which 
is generally unknown, considering the prediction uncertainty is of paramount importance to 

 
Figure 2.3. Schematic representation of the PLS model. The horizontal equations represent 
the data models provided by PLS in (2.12) and (2.13). The vertical equation represents the 
regression model composed of (2.14), (2.15), and (2.16). 
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assess the reliability of the estimate. In the case of PLS prediction uncertainty (Faber et al., 
1997, 2002), the confidence interval (CI) of the predicted value 𝐲𝐲�new at significance level 𝛼𝛼 
can be formulated as: 

CI(𝐲𝐲�new) = 𝐲𝐲�new ± 𝐬𝐬𝐲𝐲�new𝑡𝑡|𝛼𝛼2
     , (2.21) 

where 𝑡𝑡|𝑎𝑎
2
 is the value of a 𝑡𝑡-distributed variable evaluated at probability 𝛼𝛼 2� , with 𝛼𝛼 ∈ [0, 1] 

(usually 𝛼𝛼 = 0.95 or 𝛼𝛼 = 0.99). The standard deviation of 𝐲𝐲�new, 𝐬𝐬𝐲𝐲�new ∈ ℝ𝑉𝑉𝑌𝑌 , is estimated as: 

𝐬𝐬𝐲𝐲�new = 𝐌𝐌𝐌𝐌𝐄𝐄�1 + 1
𝑁𝑁

+ ℎ𝐲𝐲�new     , (2.22) 

where ℎ𝐲𝐲�new is the leverage of “observation” 𝐲𝐲new on the model: 

ℎ𝐲𝐲�new = 𝐭𝐭newT ⋅𝚲𝚲𝑇𝑇
−1⋅𝐭𝐭new

𝑁𝑁−1
     , (2.23) 

and 𝚲𝚲𝑇𝑇 ∈ ℝ𝐴𝐴 × ℝ𝐴𝐴 is a diagonal matrix containing unscaled variances of the LVs from the 
calibration dataset: 

𝚲𝚲𝑇𝑇 = 𝐓𝐓T ⋅ 𝐓𝐓     , (2.24) 
while 𝐌𝐌𝐌𝐌𝐄𝐄 ∈ ℝ𝑉𝑉𝑌𝑌 is the vector of mean-squared errors (MSE) in calibration of output variables: 

𝐌𝐌𝐌𝐌𝐄𝐄 = �∑ (𝐲𝐲𝑛𝑛−𝐲𝐲�𝑛𝑛)2𝑁𝑁
𝑛𝑛=1
𝑁𝑁−(𝐴𝐴+1)      . (2.25) 

In (2.25), 𝐴𝐴 + 1 represents the degrees of freedom of the PLS model. This is the so-called naïve 
PLS degrees of freedom, but more sophisticated estimators exist (Krämer et al., 2011; Van Der 
Voet, 1999). 

2.2.4 Prediction diagnostics 

Data models provided by PLS can also be used to reconstruct input and output observations, 
which is particularly relevant for the input ones. In fact, 𝐱𝐱new can be projected on the space of 
LVs by means of (2.17), while a projection 𝐭𝐭new can be projected back to the input space by 
(2.12), obtaining a rank-𝐴𝐴 reconstruction 𝐱𝐱�new. Therefore, the reconstruction error can be 
computed as: 

𝐞𝐞new = 𝐱𝐱new − 𝐱𝐱�new = �𝐈𝐈𝑉𝑉𝑋𝑋 − 𝐏𝐏 ⋅ (𝐖𝐖∗)T� ⋅ 𝐱𝐱new     . (2.26) 
This feature of PLS can be used to define diagnostics, similar to the ones from PCA, to identify 
anomalous observations in the calibration dataset or to assess the reliability of the PLS model 
application to new observations. Such statistics are generally defined on the space of input LVs 
due to it being representative of the input-output covariance (Kourti, 2003; Kourti et al., 1995, 
1996; Nomikos et al., 1995b): 

• the 𝑇𝑇𝑋𝑋2 statistics measures the squared distance of the projection of a new input 
observation from the center of the input LV space: 
𝑇𝑇𝑋𝑋2 = 𝐭𝐭newT ⋅ 𝚲𝚲𝑇𝑇

−1 ⋅ 𝐭𝐭new = 𝐱𝐱newT ⋅ 𝐖𝐖∗ ⋅ 𝚲𝚲𝑇𝑇
−1 ⋅ (𝑾𝑾∗)T ⋅ 𝐱𝐱new ; (2.27) 

• the 𝑄𝑄𝑋𝑋 statistics measures the squared orthogonal distance between a new input 
observation and the input space of LVs: 
𝑄𝑄𝑋𝑋 = 𝐞𝐞newT ⋅ 𝐞𝐞new     . (2.28) 
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As in the case of PCA, the 𝑄𝑄𝑋𝑋 statistics is assumed to be computed with reconstruction errors 
from a pre-processed input observation 𝐱𝐱new. 
The significance of such statistics can be assessed comparing the values of 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 to their 
confidence limits. These can be derived with the same approaches mentioned for PCA in 
Section 2.1.3. In particular, the 𝐹𝐹 distribution approach and the 𝜒𝜒2 distribution with matching 
moments can be used for 𝑇𝑇𝑋𝑋2, while the Jackson-Musholkad approach and the 𝜒𝜒2 distribution 
with matching moments can be used for 𝑄𝑄𝑋𝑋. More sophisticated approaches free from 
distributional assumptions exist also for PLS. See Section 7.2.2 for details. 
Note that statistics equivalent to 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 could be defined for the output variables. However, 
only statistics related to the input variables are available if the PLS model is applied to a new 
observation 𝐱𝐱new with the aim to estimate an unknown 𝐲𝐲new. Finally, to 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 are the basis 
of quality-relevant monitoring by PLS (Kourti et al., 1995, 1996; Nomikos et al., 1994, 1995a; 
Qin, 2003; Wise et al., 1996), as discussed in Section 1.2.3. Further details are given in Section 
7.2.1. 

2.3 Canonical correlation analysis (CCA) 
CCA (Hardoon et al., 2004; Hotelling, 1936; Uurtio et al., 2018) is a multivariate statistical 
method to explore the relationship between two set of variables. CCA is also referred to as 
canonical variate analysis (CVA), especially in the systems identification literature (Larimore, 
1983, 1990). In this Thesis, the name CCA is used to identify the model described in Section 
2.3.1, while the name CVA refers to the dynamic extension of CCA, which will be introduced 
in Section 2.3.4. Furthermore, the literature on CCA and CVA generally discusses the model 
using the random vector form. In this Thesis, the methods are outlined in their sample form. 

2.3.1 Model calibration 

Given a matrix 𝐗𝐗 ∈  ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋  containing 𝑁𝑁 obersvations of 𝑉𝑉𝑋𝑋 input variables and a matrix 
𝐘𝐘 ∈  ℝ𝑁𝑁 × ℝ𝑉𝑉𝑌𝑌  gathering the same number of observations of 𝑉𝑉𝑌𝑌 output variables, CCA aims 
at finding 𝐴𝐴 pairs of canonical variables (CV) respecting the following conditions: 

• input and output CVs are linear combinations of the input and output variables, 
respectively; 

• one input CV is orthogonal to all other input CVs; 
• one output CV is orthogonal to all other output CVs; 
• the correlation coefficient between input and output CVs in a pair, called canonical 

correlation coefficient, is maximized. 
CCA provides two matrix projection models: 

𝐂𝐂 = 𝐗𝐗 ⋅ 𝐉𝐉     , (2.29) 
𝐃𝐃 = 𝐘𝐘 ⋅ 𝐋𝐋     , (2.30) 
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where: 
• 𝐂𝐂 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴 is the input score matrix, the columns of which represent the input CVs 

and rows are the projections of the observations in 𝐗𝐗 onto the space of input CVs; 
• 𝐉𝐉 ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝐴𝐴 is the matrix of input canonical weights, which contains coefficients to 

formulate the input CVs as linear combinations of input variables; 
• 𝐃𝐃 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴 is the output score matrix, the columns of which represent the output CVs 

and rows are the projections of the observations in 𝐘𝐘 onto the space of output CVs; 
• 𝐋𝐋 ∈ ℝ𝑉𝑉𝑌𝑌 × ℝ𝐴𝐴 is the matrix of output canonical weights, which contains coefficients to 

formulate the output CVs as linear combination of output variables. 
The score matrices are orthonormal and allow to compute the canonical correlation coefficients: 

𝚪𝚪 = 𝐂𝐂T ⋅ 𝐃𝐃     , (2.31) 
where 𝚪𝚪 ∈ ℝ𝐴𝐴 × ℝ𝐴𝐴 is a diagonal matrix containing the canonical correlation coefficients on 
the main diagonal in decreasing order. The rationale of the CVA model is graphically 
represented in Figure 2.4. 

Similarly to PLS, CCA is a dimensionality reduction technique as it extracts only 𝐴𝐴 pairs of 
CVs. However, CCA defines residual CVs as well. Said 𝑅𝑅 = min{𝑉𝑉𝑋𝑋 ,𝑉𝑉𝑌𝑌}, a residual model is 
provided in the form of the matrix projections: 

𝐂𝐂r = 𝐗𝐗 ⋅ 𝐉𝐉r     , (2.32) 
𝐃𝐃r = 𝐘𝐘 ⋅ 𝐋𝐋r     , (2.33) 

where the meanings of the symbols are the same as the ones in equations (2.29) and (2.30), but 
dimensions of the matrices are now 𝐂𝐂𝑟𝑟 ∈ ℝ𝑁𝑁 × ℝ𝑅𝑅−𝐴𝐴, 𝐉𝐉r ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝑅𝑅−𝐴𝐴, 𝐃𝐃r ∈ ℝ𝑁𝑁 × ℝ𝑅𝑅−𝐴𝐴, 
and  𝐋𝐋r ∈ ℝ𝑉𝑉𝑌𝑌 × ℝ𝑅𝑅−𝐴𝐴. Residual canonical correlation coefficients are defined as: 

𝚪𝚪r = 𝐂𝐂rT ⋅ 𝐃𝐃r          , (2.34) 
where 𝚪𝚪r ∈ ℝ𝑅𝑅−𝐴𝐴 × ℝ𝑅𝑅−𝐴𝐴 is a diagonal matrix with the same characteristics of 𝚪𝚪. Note that 𝐴𝐴 <
𝑅𝑅 must hold. 

 
Figure 2.4. Schematic representation of the CVA model. The matrix projection models in 
(2.29) and (2.30) are represented by the horizontal equations. The relationship between the 
CVs in (2.31) is represented vertically. 
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The principle of CCA resembles the one of PCA. In CCA, CVs are computed sequentially as 
to maximize the cross-covariance between the input and output CVs, which are furthermore 
orthogonal to any other CV in the relevant sequence; PCA relies on a similar rationale, 
maximizing the covariance modeled by orthogonal PCs on a single data matrix. In fact, also 
CCA has a strict relationship with the SVD introduced in (2.2). Matrices 𝐗𝐗 and 𝐘𝐘 are assumed 
to be autoscaled in the following derivation. The sample covariance matrices of 𝐗𝐗 and 𝐘𝐘, 𝐌𝐌𝑋𝑋 ∈
ℝ𝑉𝑉𝑋𝑋 × ℝ𝑉𝑉𝑋𝑋  and 𝐌𝐌𝑌𝑌 ∈ ℝ𝑉𝑉𝑌𝑌 × ℝ𝑉𝑉𝑌𝑌 , respectively, are defined as: 

𝐌𝐌𝑋𝑋 = 1
N−1

𝐗𝐗T ⋅ 𝐗𝐗     , (2.35) 
𝐌𝐌𝑌𝑌 = 1

N−1
𝐘𝐘T ⋅ 𝐘𝐘     , (2.36) 

while the sample cross-covariance matrix between 𝐗𝐗 and 𝐘𝐘, 𝐌𝐌𝑋𝑋,𝑌𝑌 ∈ ℝ𝑉𝑉𝑋𝑋 × ℝ𝑉𝑉𝑌𝑌 , is given by: 
𝐌𝐌𝑋𝑋,𝑌𝑌 = 1

N−1
𝐗𝐗T ⋅ 𝐘𝐘     . (2.37) 

Recalling that 𝑅𝑅 = min{𝑉𝑉𝑋𝑋,𝑉𝑉𝑌𝑌}, the canonical weights can be obtained by first computing the 
SVD:  

𝐌𝐌𝑋𝑋
−12 ⋅ 𝐌𝐌𝑋𝑋,𝑌𝑌 ⋅ 𝐌𝐌𝑌𝑌

−12  = 𝐍𝐍 ⋅ 𝚺𝚺 ⋅ 𝐎𝐎T = [𝐍𝐍1 𝐍𝐍2] ⋅ �𝚺𝚺1 𝟎𝟎
𝟎𝟎 𝚺𝚺2

� ⋅ [𝐎𝐎1 𝐎𝐎2]T     , (2.38) 

where, once 𝐴𝐴 (the number of CVs to be retained) is set, the dimension of the matrices involved 
in the decomposition are similar to the ones elucidated introducing the SVD in Section 2.1.1; 
matrices 𝐌𝐌𝑋𝑋

−1 2⁄  and 𝐌𝐌𝑌𝑌
−1 2⁄  can be computed through the Cholesky decomposition (Chapra et al., 

2015) of the relevant covariance matrices. Then, the parameters of the CVA model can be 
obtained as: 

𝐉𝐉 = 𝐌𝐌𝑋𝑋
−12 ⋅ 𝐍𝐍1     , (2.39) 

𝐋𝐋 = 𝐌𝐌𝑌𝑌
−12 ⋅ 𝐎𝐎1     , (2.40) 

𝐉𝐉r = 𝐌𝐌𝑋𝑋
−12 ⋅ 𝐍𝐍2     , (2.41) 

𝐋𝐋r = 𝐌𝐌𝑌𝑌
−12 ⋅ 𝐎𝐎2     . (2.42) 

Finally, the score matrices of the residual and main models can be obtained by (2.29), (2.30), 
(2.32), and (2.33), which in turn allow to obtain the canonical correlation matrices by (2.31) 
and (2.34). Note that the description given above assumes that rank(𝐗𝐗) = 𝑉𝑉𝑋𝑋 and rank(𝐘𝐘) =
𝑉𝑉𝑌𝑌. However, the procedure can be easily generalized to the case where the data matrices are 
not full rank (Russell et al., 2000), for example defining 𝑅𝑅 as 𝑅𝑅 = min{𝑅𝑅𝑋𝑋 ,𝑅𝑅𝑌𝑌}, where 𝑅𝑅𝑋𝑋 =
 rank(𝐗𝐗) and 𝑅𝑅𝑌𝑌 = rank(𝐘𝐘). 
CCA is strictly connected to PLS as well. Both models are related to SVD: CCA is based on 
the decomposition of a weighted cross-covariance matrix and aims at maximizing the 
correlation coefficients between pairs of CVs; on the other hand, PLS performs a sequence of 
decompositions of the unweighted cross-covariance matrix (working on the full cross-
covariance matrix in the first iteration and on residuals from the previous decomposition in the 
subsequent iterations) and aims at maximizing both the modeled cross-covariance and the 
variances  captured by the data models of the data matrices (Sharper et al., 1994). Furthermore, 
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PLS can be seen as a penalized version of CCA (Frank et al., 1993): the penalty factors are 
introduced in the SVD and are basically provided by PCA models of the input and output spaces 
(Barker et al., 2003). 

2.3.2 Model application 

An important difference between CCA and PLS is that the latter provides an explicit regression 
model between the input variables and the output variables. CCA does not provide such a model 
directly, as it is mostly meant for interpretation and dimensionality reduction. Prediction is 
possible nonetheless, as outlined in this Section. 
Given a new input observation 𝐱𝐱new ∈ ℝ𝑉𝑉𝑋𝑋 (the components of which are assumed to be scaled 
with the means and standard deviations of the columns of the input matrix 𝐗𝐗), the first step is 
to project 𝐱𝐱new onto the space of input CVs: 

𝐜𝐜newT = 𝐱𝐱newT ⋅ 𝐉𝐉     . (2.43) 
The canonical correlation coefficients can then be leveraged to obtain an approximation of the 
unknown output scores, �̂�𝐝newT : 

�̂�𝐝newT = (𝐜𝐜newT ⋅ 𝐜𝐜new)−1 ⋅ 𝐜𝐜newT ⋅ 𝚪𝚪     . (2.44) 
Finally, the approximated output score can be projected back to the space of output variables 
solving the least-squares problem: 

𝐲𝐲�newT = �̂�𝐝newT ⋅ 𝐋𝐋T ⋅ (𝐋𝐋 ⋅ 𝐋𝐋T)     , (2.45) 
where 𝐲𝐲�new approximates the true, unknown output observation 𝐲𝐲new ∈ ℝ𝑉𝑉𝑌𝑌 (assumed to be 
scaled in the same way as matrix 𝐘𝐘). 

2.3.3 Prediction diagnostics 

The reliability in prediction of the CCA model can be assessed similarly to PCA, as outlined in 
Section 2.1.3. A first, elementary index is the projection residual of the input observation 𝐱𝐱new 
(Russell et al., 2000), defined as: 

𝐫𝐫new = �𝐈𝐈𝑉𝑉𝑋𝑋 − 𝐉𝐉 ⋅ 𝐉𝐉T� ⋅ 𝐱𝐱new     . (2.46) 
Furthermore, three diagnostic statistics can be defined for CCA: 

• the 𝑇𝑇𝑋𝑋2 statistic (Negiz et al., 1997)  measures the squared distance of the projection of 
a new observation from the center of the input CV space: 
𝑇𝑇𝑋𝑋2 = 𝐜𝐜newT ⋅ 𝐜𝐜new = 𝐱𝐱newT ⋅ 𝐉𝐉 ⋅ 𝐉𝐉T ⋅ 𝐱𝐱new     ; (2.47) 

• the 𝑄𝑄𝑋𝑋 statistic (Russell et al., 2000), measures the squared orthogonal distance between 
a new observation and the space of CVs: 
𝑄𝑄𝑋𝑋 = 𝐫𝐫newT ⋅ 𝐫𝐫new     ; (2.48) 

• the 𝑇𝑇𝑋𝑋,r
2  statistic (Russell et al., 2000),  measures the squared distance of the projection 

of a new observation from the center of the input CV space in the residual model: 
𝑇𝑇𝑋𝑋,r
2 = 𝐜𝐜rnew

T ⋅ 𝐜𝐜rnew = 𝐱𝐱newT ⋅ 𝐉𝐉r ⋅ 𝐉𝐉rT ⋅ 𝐱𝐱new     , (2.49) 
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where 𝐜𝐜rnew
T  is the projection of 𝐱𝐱new based on the residual model: 

𝐜𝐜rnew
T = 𝐱𝐱newT ⋅ 𝐉𝐉r     . (2.50) 

The significance of such statistics can be assessed comparing their values to the relevant 
confidence limits, which can be obtained with the approaches mentioned for PCA in Section 
2.1.3. Detailed descriptions can be found in the literature (Martin et al., 1996; Reis et al., 2021a; 
Russell et al., 2000, 2000; Thissen et al., 2001; Tracy et al., 1992). 

2.3.4 Dynamic extension: canonical variate analysis (CVA) 

As stated in the introduction to Section 2.3, CCA is generally referred to as CVA in the systems 
identification literature (Larimore, 1983, 1990). Specifically, CVA is tacitly defined therein as 
a dynamic generalization of CCA. In fact, CVA found numerous applications to fault detection 
in dynamic processes (Chiang et al., 2001; Negiz et al., 1997; Russell et al., 2000). Note that 
dynamic generalizations of PCA and PLS exist as well and will be introduced in Section 7.2.3 
in the context of fault detection. 
In general, PCA, PLS, and CCA are calibrated starting from covariance and cross-covariance 
matrices. These entities account for the correlation among variables but neglect the potential 
correlation among observations, a characteristic of data from dynamic processes (Bergmeir et 
al., 2012). However, the correlation among observations can be described by the autocorrelation 
coefficients (Box et al., 2016) and by the cross-correlation coefficients (Brockwell et al., 2016). 
These coefficients characterize the dynamic behavior of the data; the information they provide 
can be included in latent-variable models augmenting the data matrices by means of lagged 
measurements prior to modeling (Ku et al., 1995). 
In CVA, matrix 𝐗𝐗 ∈  ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋  is assumed to contain 𝑁𝑁 obersvations of 𝑉𝑉𝑋𝑋 control inputs of a 
dynamic system/process; the corresponding observations of the 𝑉𝑉𝑌𝑌 outputs are assumed to be 
gathered in matrix 𝐘𝐘 ∈  ℝ𝑁𝑁 × ℝ𝑉𝑉𝑌𝑌 . Such matrices are used to produce the so-called past and 
future matrices. 
The past matrix, 𝓟𝓟 ∈ ℝ𝑁𝑁−𝐿𝐿−𝐻𝐻 × ℝ(𝑉𝑉𝑋𝑋+𝑉𝑉𝑌𝑌)𝐿𝐿, contains past trajectories of the control inputs and 
of the outputs over a horizon of extension equal to 𝐿𝐿 observations and is defined as: 

𝓟𝓟 =  

⎣
⎢
⎢
⎡ 𝐲𝐲𝐿𝐿T 𝐲𝐲𝐿𝐿−1T ⋯ 𝐲𝐲1T 𝐱𝐱𝐿𝐿T 𝐱𝐱𝐿𝐿−1T ⋯ 𝐱𝐱1T

𝐲𝐲𝐿𝐿+1T 𝐲𝐲𝐿𝐿T ⋯ 𝐲𝐲2T 𝐱𝐱𝐿𝐿+1T 𝐱𝐱𝐿𝐿T ⋯ 𝐱𝐱2T
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝐲𝐲𝑁𝑁−𝐻𝐻−1T 𝐲𝐲𝑁𝑁−𝐻𝐻−2T ⋯ 𝐲𝐲𝑁𝑁−𝐻𝐻−𝐿𝐿T 𝐱𝐱𝑁𝑁−𝐻𝐻−1T 𝐱𝐱𝑁𝑁−𝐻𝐻−2T ⋯ 𝐱𝐱𝑁𝑁−𝐻𝐻−𝐿𝐿T ⎦
⎥
⎥
⎤
     , (2.51) 

where 𝐱𝐱𝑛𝑛 ∈ ℝ𝑉𝑉𝑋𝑋 and 𝐲𝐲𝑛𝑛 ∈ ℝ𝑉𝑉𝑌𝑌  represent observations (rows) in the input and output matrices, 
respectively. The future matrix, 𝓕𝓕 ∈ ℝ𝑁𝑁−𝐿𝐿−𝐻𝐻 × ℝ𝑉𝑉𝑌𝑌(1+𝐻𝐻), contains the future trajectories of the 
outputs over a horizon of extension equal to 𝐻𝐻 observations and is given by: 

𝓕𝓕 =  

⎣
⎢
⎢
⎡ 𝐲𝐲𝐿𝐿+1

T 𝐲𝐲𝐿𝐿+2T ⋯ 𝐲𝐲𝐿𝐿+𝐻𝐻+1T

𝐲𝐲𝐿𝐿+2T 𝐲𝐲𝐿𝐿+3T ⋯ 𝐲𝐲𝐿𝐿+𝐻𝐻+2T

⋮ ⋮ ⋱ ⋮
𝐲𝐲𝑁𝑁−𝐻𝐻T 𝐲𝐲𝑁𝑁−𝐻𝐻+1T ⋯ 𝐲𝐲𝑁𝑁T ⎦

⎥
⎥
⎤
     . (2.52) 
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Note that the first block of 𝑉𝑉𝑌𝑌 columns in the future matrix is regarded as the “present time”, 
and 𝐻𝐻 “lagged” measurements are added to such block to obtain a total of 𝐻𝐻 + 1 blocks of 
columns in 𝓕𝓕. The extents of the past and future horizons, 𝐿𝐿 and 𝐻𝐻, determine the order of the 
autocorrelation and cross-correlations considered by the CVA model. Note that, for 𝓟𝓟 and 𝓕𝓕 
to be valid, the following conditions should be verified: 𝐿𝐿 ≥ 1 and 𝐻𝐻 ≥ 0. In particular, note 
that 𝐻𝐻 = 0 yields a future matrix containing only the observation at the present time. 
Once the past and future matrices are formulated, the CVA model can be calibrated applying 
the workflow described in Section 2.3.1 for CCA using 𝓟𝓟 as input matrix and 𝓕𝓕 as output 
matrix (in place of 𝐗𝐗 and 𝐘𝐘, respectively). In CVA, the input canonical variables, computed as: 

𝐌𝐌 = 𝓟𝓟 ⋅ 𝐉𝐉     , (2.53) 
are named canonical states or process memory. In fact, canonical states are derived accounting 
for both correlation and autocorrelation in the data, therefore they recount the dynamic 
evolution of the process (Larimore, 1990). For the same reason, 𝐴𝐴 is known as state order or 
memory order in CVA. 
The calibration of the CVA model requires to set three hyperparameters: the memory order, 
and the extents of the past and future horizons. Hyperparameters are generally tuned by means 
of information criteria, such as the Akaike information criterion (Akaike, 1973). Furthermore, 
as the canonical states capture information on process dynamics, the matrices 𝐗𝐗, 𝐘𝐘, and 𝐌𝐌 can 
be leveraged to estimate a state-space model of the process. Readers are referred to the literature 
on CVA for details (Chiang et al., 2001; Larimore, 1990; Russell et al., 2000). 
The equations outlined in this Section are sufficient to employ CVA for fault detection (see also 
Section 7.2.1). Given a new past vector recorded at time 𝑘𝑘 and arranged with the same structure 
as (2.51): 

𝓹𝓹new = [𝐲𝐲𝑘𝑘T 𝐲𝐲𝑘𝑘−1T ⋯ 𝐲𝐲𝑘𝑘−𝐿𝐿T 𝐱𝐱𝑘𝑘T 𝐱𝐱𝑘𝑘−1T ⋯ 𝐱𝐱𝑘𝑘−𝐿𝐿T ]newT      , (2.54) 
the CVA model can be applied to compute the new states at time 𝑘𝑘: 

𝐦𝐦new
T = 𝓹𝓹new

T ⋅ 𝐉𝐉     . (2.55) 
The diagnostic statistics introduced in Section 2.3.3 hold true also for CVA. However, their 
interpretation is slightly different (Chiang et al., 2001): 

• the 𝑇𝑇𝑋𝑋2 statistic describes variations inside the state-space: 
𝑇𝑇𝑋𝑋2 = 𝐦𝐦new

T ⋅ 𝐦𝐦new = 𝓹𝓹new
T ⋅ 𝐉𝐉 ⋅ 𝐉𝐉T ⋅ 𝓹𝓹new     ; (2.56) 

• the 𝑄𝑄𝑋𝑋 statistic describes variations in the residual space: 
𝑄𝑄𝑋𝑋 = 𝐫𝐫newT ⋅ 𝐫𝐫new     , (2.57) 

where the residual 𝐫𝐫new is computed as: 
𝐫𝐫new = �𝐈𝐈(𝑉𝑉𝑋𝑋+𝑉𝑉𝑌𝑌)𝐿𝐿 − 𝐉𝐉 ⋅ 𝐉𝐉T� ⋅ 𝓹𝓹new     ; (2.58) 

• the 𝑇𝑇𝑋𝑋,r
2  statistic describes variations outside of the state-space: 

𝑇𝑇𝑋𝑋,r
2 = 𝐦𝐦rnew

T ⋅ 𝐦𝐦rnew = 𝓹𝓹new
T ⋅ 𝐉𝐉r ⋅ 𝐉𝐉rT ⋅ 𝓹𝓹new     , (2.59) 

where 𝐦𝐦rnew
T  is computed with the residual model: 

𝐦𝐦rnew
T = 𝓹𝓹new

T ⋅ 𝐉𝐉r     . (2.60) 
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Confidence limits can be computed to estimate the significance of the CVA statistics (Chiang 
et al., 2001; Russell et al., 1998). Additional details on estimation of the confidence limits are 
discussed in Section 7.2.2. 

2.4 Joint-Y partial least-square regression (JYPLS) 
Regular PLS is applicable if the available data can be arranged in two matrices 𝐗𝐗 and 𝐘𝐘. 
However, this is not always possible in some cases of industrial relevance. Considering the 
example of a biorefinery, the upstream process is carried out by operations traditionally run in 
batch or fed-batch mode, for example fermentation, while the downstream process adopts 
operations running in (semi-)continuous regime, as membrane separation and distillation 
(Bähner et al., 2021). Therefore, an array of parallel units is generally employed in the upstream 
(for example bioreactors) scheduling the production as to always keep the downstream feed 
tanks stocked up and guarantee continuous operation of the units therein (Bähner et al., 2021). 
Even though such array of units is to produce the same product, no guarantee is given on the 
units themselves to be perfectly identical, or even to be equipped with the same sensors. 
The traditional approach to data-driven modeling of parallel units relies on the development of 
separate models for each unit (Philippe et al., 2013; Shen et al., 2018), possibly aided by 
methods aimed at assessing differences between single units (Louwerse et al., 1999b). Yet, this 
method clearly disregards a key information: parallel units should ideally operate in the same 
way to produce the same product. Besides the additional burden due to the mere presence of 
multiple models, differences among units could cause models to be significantly different and 
to yield varying performance.  An alternative is the development of a single model for all units 
under the assumption that all of them produce the same data and operate identically (Tessier et 
al., 2012), a rather restrictive assumption in real, industrially relevant cases (Louwerse et al., 
1999b; Reis et al., 2018; Rendall et al., 2017a). Ideally, a model for an array of parallel units 
should exploit the relevant information that the product is the same, yet not disregard the 
potential difference among units. JYPLS (García-Muñoz, 2004; García-Muñoz et al., 2005) is 
an extension of PLS meant to account for such information. 

2.4.1 Model calibration 

JYPLS assumes that available data are arranged as two sequences: one for the input variables, 
{𝐗𝐗1, … ,𝐗𝐗𝑃𝑃}, 𝐗𝐗𝑝𝑝 ∈ ℝ𝑁𝑁𝑝𝑝 × ℝ𝑉𝑉𝑋𝑋𝑝𝑝 , and one for the output variables, {𝐘𝐘1, … ,𝐘𝐘𝑃𝑃}, 𝐘𝐘𝑝𝑝 ∈ ℝ𝑁𝑁𝑝𝑝 × ℝ𝑉𝑉𝑌𝑌, 
with 𝑝𝑝 ∈ {1, … ,𝑃𝑃}. Each couple of matrices �𝐗𝐗𝑝𝑝,𝐘𝐘𝑝𝑝� comes from plant 𝑝𝑝 in a set of 𝑃𝑃 plants. 
The number of observations, 𝑁𝑁𝑝𝑝, can vary among plants; the same holds for the number of input 
variables 𝑉𝑉𝑋𝑋𝑝𝑝, which can be in fact different among plants. On the other hand, output variables 
must be the same for all plants. The latter condition is needed as JYPLS is based on the idea 
that output variables lay on a common latent space describing the relationship between all the 
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plants. Therefore, all 𝐘𝐘𝑝𝑝 can be jointed (hence the name “joint-Y”) in a single matrix 𝐘𝐘J ∈
ℝ𝑁𝑁J × ℝ𝑉𝑉𝑌𝑌 , where 𝑁𝑁J = ∑ 𝑁𝑁𝑝𝑝𝑃𝑃

𝑝𝑝=1 , defined as: 

𝐘𝐘J = �
𝐘𝐘1
⋮
𝐘𝐘𝑃𝑃
�     . 

(2.61) 

On the other hand, input variables can belong to different spaces among different plants, 
representing within-plant correlations. All data matrices 𝐗𝐗𝑝𝑝 and 𝐘𝐘𝑝𝑝 need to be autoscaled prior 
to model calibration; furthermore, autoscaled 𝐗𝐗𝑝𝑝 and 𝐘𝐘𝑝𝑝 must be divided by �𝑁𝑁𝑝𝑝𝑉𝑉𝑋𝑋𝑝𝑝 and �𝑁𝑁𝑝𝑝, 
respectively, to ensure that all plants have the same weights on the model. 
The JYPLS model provides 𝑃𝑃 input data models, one for each plant, and only one output data 
model for the joint space: 

𝐗𝐗𝑝𝑝 = 𝐓𝐓𝑝𝑝 ⋅ 𝐏𝐏𝑝𝑝T + 𝐄𝐄𝑝𝑝       𝑝𝑝 ∈ {1, … ,𝑃𝑃}     , (2.62) 
𝐘𝐘J = 𝐓𝐓J ⋅ 𝐐𝐐J

T + 𝐅𝐅J     , (2.63) 
where input loadings, 𝐏𝐏𝑝𝑝 ∈ ℝ

𝑉𝑉𝑋𝑋𝑝𝑝 × ℝ𝐴𝐴, and residuals, 𝐄𝐄𝑝𝑝 ∈ ℝ𝑁𝑁𝑝𝑝 × ℝ𝑉𝑉𝑋𝑋𝑝𝑝 , can vary across 
plants; on the other hand, output scores lay on a space of 𝐴𝐴 output LVs common to all plants, 
therefore the joint score matrix, 𝐓𝐓J ∈ ℝ𝑁𝑁J × ℝ𝐴𝐴, can be defined with the same structure of 
(2.61). The same holds true for the output joint residuals, 𝐅𝐅J ∈ ℝ𝑁𝑁J × ℝ𝑉𝑉𝑌𝑌 . While these matrices 
can be split for single plants, the matrix of joint output loadings, 𝐐𝐐J ∈ ℝ𝑉𝑉𝑌𝑌 × ℝ𝐴𝐴, is the same 
for all plants. 
In JYPLS, weights for each plant, 𝐖𝐖𝑝𝑝 ∈ ℝ

𝑉𝑉𝑋𝑋𝑝𝑝 × ℝ𝐴𝐴, are computed column by column to 
maximize the modeled cross-covariance between each 𝐗𝐗𝑝𝑝 and the joint 𝐘𝐘J. Adjusted weight 
matrices, 𝐖𝐖𝑝𝑝

∗ ∈ ℝ𝑉𝑉𝑋𝑋𝑝𝑝 × ℝ𝐴𝐴, are then defined for each plant: 
𝐖𝐖𝑝𝑝

∗ = 𝐖𝐖𝑝𝑝 ⋅ �𝐏𝐏𝑝𝑝T ⋅ 𝐖𝐖𝑝𝑝�
−1

     , (2.64) 
and used to project input observations onto the joint space of LVs: 

𝐓𝐓𝑝𝑝 = 𝐗𝐗𝑝𝑝 ⋅ 𝐖𝐖𝑝𝑝
∗     . (2.65) 

A schematic representation of the regression model in JYPLS is given in Figure 2.5. 
The number of LVs, 𝐴𝐴, is common to all plants and is usually set to maximize the predictive 
performance of the JYPLS model on data not used for calibration. Cross-validation with a 
leave-one-out scheme is the dominant approach (Facco et al., 2014, 2020; Meneghetti et al., 
2012; Rudnitskaya et al., 2017). Readers are referred to original sources for details on the model 
calibration and interpretation procedures (García-Muñoz, 2004; García-Muñoz et al., 2005). 

2.4.2 Model application 

Once the JYPLS model has been calibrated, a new input observation coming from any of the 𝑃𝑃 
plants, 𝐱𝐱new𝑝𝑝 ∈ ℝ

𝑉𝑉𝑋𝑋𝑝𝑝  (assumed to be scaled in the same way as matrix 𝐗𝐗𝑝𝑝), can be used to 
predict the corresponding output observation using knowledge from all plants. In fact, 𝐱𝐱new𝑝𝑝 is 
first projected onto the joint space of LVs: 

𝐭𝐭newT = 𝐱𝐱new𝑝𝑝
T ⋅ 𝐖𝐖𝑝𝑝

∗     , (2.66) 
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and then projected back to the quality space: 
𝐲𝐲�newT = 𝐭𝐭newT ⋅ 𝐐𝐐J

T     , (2.67) 
where 𝐲𝐲�new is an approximation of the true, unknown output observation 𝐲𝐲new ∈ ℝ𝑉𝑉𝑌𝑌 . In 
principle, the observation 𝐲𝐲new could belong to any of the 𝑃𝑃 plants as it is predicted based on 
the space of joint output LVs, therefore using information from all the plants. Finally, (2.66) 
and (2.67) can be jointed in a single equation: 

𝐲𝐲�newT = 𝐱𝐱new𝑝𝑝
T ⋅ 𝐖𝐖𝑝𝑝

∗ ⋅ 𝐐𝐐J
T = 𝐱𝐱new𝑝𝑝

T ⋅ 𝐁𝐁𝑝𝑝     , (2.68) 
where 𝐁𝐁𝑝𝑝 ∈ ℝ

𝑉𝑉𝑋𝑋𝑝𝑝 × ℝ𝑉𝑉𝑌𝑌  is the matrix of JYPLS regression coefficients to predict an output 
observation in the joint space starting form input observations from plant 𝑝𝑝. 

2.5 Latent-variable model inversion (LVMI) 
While PLS modeling allows to estimate an unknown output observation 𝐲𝐲new given a known 
input observation 𝐱𝐱new, one may also consider the problem of finding 𝐱𝐱�des, the approximation 
of an unknown input observation 𝐱𝐱des ∈ ℝ𝑉𝑉𝑋𝑋  that should be set to obtain a desired output 
observation 𝐲𝐲des ∈ ℝ𝑉𝑉𝑌𝑌  (assumed to be scaled in the same way as the calibration matrix 𝐘𝐘). As 
stated in Section 1.2.4, this problem is particularly relevant to design process conditions given 
a desired product quality, where 𝐲𝐲des represents a target quality for a product to be 
manufactured and 𝐱𝐱des are the process conditions that allow to achieve the specified quality 
(Arce et al., 2021; Jaeckle et al., 1998, 2000; Ruiz et al., 2018; Tomba et al., 2012a, 2013b). 
The workflow of such operation is illustrated in Figure 2.6 with the example of a PLS model. 

 
Figure 2.5. Schematic representation of the JYPLS regression model. The within-plant 
correlation is captured by the corrected weight matrix for each one of the plants as in (2.65), 
while the between-plant correlation is accounted for by (2.63): the model of the joint output 
space. The joint matrices are built as in (2.61). 
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Considering JYPLS, a similar problem could be framed as product transfer between units or 
plants: one may wish to produce the same product with a given quality on a different process 
equipment similar, yet not identical, to the one currently being used, or even in an entirely new 
plant, possibly at a different scale (Dal-Pastro et al., 2017; Facco et al., 2012, 2014; García-
Muñoz et al., 2005; Tomba et al., 2014). This kind of problem can be tackled by LVMI. 
Focusing on PLS models (without loss of generality), three approaches to LVMI are available:  

• algebraic inversion, also referred to as direct inversion (DI), by manipulation of the PLS 
model equations (Jaeckle et al., 1998, 2000); 

• numerical inversion by solution of a nonlinear optimization problem, to minimize the 
squared difference between the desired output and the model output, possibly subject to 
both soft and hard constraints on the ranges of input and output variables, as well as on 
the distances of the solution from the historical process conditions and from the model 
space (García-Muñoz et al., 2006, 2008; Yacoub et al., 2004); 

• numerical inversion by solution of a multi-objective optimization problem aimed at the 
determination of the Pareto front in the presence of competing targets on multiple output 
variables in 𝐲𝐲des, to analyze the tradeoffs among possible solutions (Arce et al., 2021; 
Ruiz et al., 2018). 

 
Figure 2.6. Workflow of LVMI for design of process conditions exemplified on a PLS model. 
Data characterizing the process and the product are used in the modeling phase for model 
calibration and use (prediction). In the inversion phase, a target quality is set, and the model 
is used to design the process conditions that allow to manufacture a product with the desired 
quality. 
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While numerical approaches allow for high flexibility and in-depth analysis of the possible 
solutions and tradeoffs, this Thesis is concerned with the algebraic approach only due to its 
mathematical simplicity and computational efficiency (a critical feature in time-sensitive 
applications, for example real-time control). Therefore, DI (Jaeckle et al., 1998, 2000) is 
described in detail in this Section, while details on numerical approaches can be found in 
literature resources (Arce et al., 2021; García-Muñoz et al., 2006, 2008; Ruiz et al., 2018; 
Tomba et al., 2012a, 2013b; Yacoub et al., 2004). Furthermore, the following discussion 
regards PLS models, but it can be applied to JYPLS models as well (García-Muñoz et al., 2005). 

2.5.1 Direct inversion of PLS models 

In the literature regarding LVMI, it is customary to adopt a simplified version of the PLS model. 
Once matrix 𝐐𝐐� ∈ ℝ𝑉𝑉𝑌𝑌 ×  ℝ𝐴𝐴 has been defined as: 

𝐐𝐐� = 𝐐𝐐 ⋅ diag(𝐛𝐛)     , (2.69) 
PLS models relevant to LVMI are defined as: 

𝐗𝐗� = 𝐓𝐓 ⋅ 𝐏𝐏T     , (2.70) 
𝐘𝐘� = 𝐓𝐓 ⋅ 𝐐𝐐�T     , (2.71) 
𝐓𝐓 = 𝐗𝐗 ⋅ 𝐖𝐖∗     , (2.72) 

where (2.70) is derived from (2.12) considering only the reconstruction of 𝐗𝐗 from the PLS data 
model, therefore setting 𝐗𝐗� = 𝐗𝐗 − 𝐄𝐄, (2.71) derives from the PLS prediction path, jointing (2.18) 
and (2.19) using matrix 𝐐𝐐� defined as in (2.69), and (2.72) is the same as of (2.15). The prediction 
path of such simplified PLS model is: 

𝐭𝐭newT = 𝐱𝐱newT ⋅ 𝐖𝐖∗     , (2.73) 
𝐲𝐲�newT = 𝐭𝐭newT ⋅ 𝐐𝐐�T     . (2.74) 

Carrying out LVMI by DI requires some conditions to be set (Jaeckle et al., 1998, 2000): matrix 
𝐘𝐘 must have more rows than columns, and output variables must be independent. 
Mathematically, these two conditions imply that matrix 𝐘𝐘 is full rank and can be used to obtain 
a complete basis of its column space as rank(𝐘𝐘) = 𝑉𝑉𝑌𝑌. The discussion on why such an 
assumption is central to DI will be given in Section 6.2.1. Once the target output 𝐲𝐲des is set (and 
pre-processed), the first step of DI is to project it onto the space of LVs. Therefore, 𝐲𝐲des is used 
as 𝐲𝐲�new in (2.74), which must be inverted to obtain 𝐭𝐭des ∈ ℝ𝐴𝐴. Three cases can arise according 
to the number of LVs used in the model, and some of them require to use the concept of 
generalized matrix inverse (Rao et al., 1971). 

• If 𝐴𝐴 < 𝑉𝑉𝑌𝑌, no exact solution exists, but an optimal solution (in the least-squares sense) 
can be obtained inverting (2.74) by means of the right generalized inverse of 𝐐𝐐�T: 

𝐭𝐭desT = 𝐲𝐲desT ⋅ 𝐐𝐐�+R = 𝐲𝐲desT ⋅ 𝐐𝐐� ⋅ �𝐐𝐐�T ⋅ 𝐐𝐐��
−1

     . (2.75) 
• If 𝐴𝐴 = 𝑉𝑉𝑌𝑌, an exact solution exists as 𝐐𝐐�T is square and (2.74) can be inverted directly: 

𝐭𝐭desT = 𝐲𝐲desT ⋅ �𝐐𝐐�T�
−1

     . (2.76) 
• If 𝐴𝐴 > 𝑉𝑉𝑌𝑌, an infinite number of solutions to the inversion of (2.74) exist. A particular 
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solution can be computed using the left generalized inverse of 𝐐𝐐�T: 
𝐭𝐭des,p
T = 𝐲𝐲desT ⋅ 𝐐𝐐�+L = 𝐲𝐲desT ⋅ �𝐐𝐐� ⋅ 𝐐𝐐�T�

−1
⋅ 𝐐𝐐�     , (2.77) 

while the complete set of solutions can be found considering the null space (Jaeckle et 
al., 2000), that is an (𝐴𝐴 − 𝑉𝑉𝑌𝑌)-dimensional subspace of the space of LVs which can be 
represented as:  

 𝐭𝐭des,n
T = 𝛌𝛌 ⋅ 𝐆𝐆T     , (2.78) 

where 𝐆𝐆 ∈ ℝ𝐴𝐴 × ℝ𝐴𝐴−𝑉𝑉𝑌𝑌  is a matrix containing the (𝐴𝐴 − 𝑉𝑉𝑌𝑌) left singular vectors of 𝐐𝐐�T 
as columns, and 𝛌𝛌 ∈ ℝ𝐴𝐴−𝑉𝑉𝑌𝑌  is a vector of arbitrary real numbers. Therefore, the 
complete set of solutions to the inversion of (2.74) in the case 𝐴𝐴 > 𝑉𝑉𝑌𝑌 is: 

𝐭𝐭desT = 𝐭𝐭des,p
T + 𝐭𝐭des,n

T = 𝐲𝐲desT ⋅ 𝐐𝐐�+L + 𝛌𝛌 ⋅ 𝐆𝐆T     . (2.79) 
Regardless of the relationship between 𝐴𝐴 and 𝑉𝑉𝑌𝑌, the second step of DI is to project 𝐭𝐭des back 
to the space of input variables by means of (2.70) to obtain 𝐱𝐱�des: 

𝐱𝐱�desT = 𝐭𝐭desT ⋅ 𝐏𝐏T     , (2.80) 
where 𝐱𝐱�desT  is clearly a unique solution if 𝐴𝐴 ≤ 𝑉𝑉𝑌𝑌, while it is an (𝐴𝐴 − 𝑉𝑉𝑌𝑌)-dimensional subspace 
(infinite set of solutions) of the space of input variables if 𝐴𝐴 > 𝑉𝑉𝑌𝑌. 

2.5.2 Null space uncertainty 

The concept of null space is particularly important when LVMI is used to design new process 
conditions to achieve a given target quality. In fact, any 𝐱𝐱�des (or 𝐭𝐭des) falling on the null space 
should yield the same product quality, according to the model (Jaeckle et al., 2000), a property 
of the null space that has been proven experimentally (Tomba et al., 2014). In this context, the 
null space represents a degree of freedom to tune the designed process conditions in order to 
satisfy other objectives, for example the minimization of energy cost, while still obtaining the 
desired product quality (Jaeckle et al., 2000). The concept of null space has also been observed 
to be closely related to the concept of design space of a pharmaceutical process (Bano et al., 
2018a; Tomba et al., 2012a), which is defined as “the multidimensional combination and 
interaction of input variables (e.g., material attributes) and process parameters that have been 
demonstrated to provide assurance of quality” (ICH, 2009). The estimation of the null space 
uncertainty is of paramount importance when LVMI is used to determine the design space. 
Restricting the discussion to PLS model inversion, a number of methods has been proposed to 
the estimate the uncertainty of the null space. A data resampling approach based on jackknifing 
has been proposed first (Tomba et al., 2012a). Analytical approaches are available as well, 
based on uncertainty on prediction (Facco et al., 2015) and uncertainty on model parameters 
(Bano et al., 2017). Methods to consider observation leverage (Palací-López et al., 2019) or 
probabilistic formulations of the null space (Bano et al., 2018a) have been proposed as well. 
Two simple analytical approaches are considered in this Thesis: the one based on PLS 
prediction uncertainty proposed by Facco et al. (2015), and its extension to include the effect 
of observation leverage proposed by Palací-López et al. (2019). 



Chapter 2 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

42 

The approach by Facco et al. (2015) assumes that the target quality, 𝐲𝐲des, can be treated as a 
prediction from the PLS model; its corresponding projection onto the space of LVs is 𝐭𝐭des,p, 
obtained from (2.77). Therefore, the leverage of 𝐲𝐲des is computed as per (2.23): 

ℎ𝐲𝐲des =
𝐭𝐭des,p
T ⋅𝚲𝚲𝑇𝑇

−1⋅𝐭𝐭des,p

𝑁𝑁−1
     , (2.81) 

then used to estimate the standard deviation of 𝐲𝐲des from (2.22): 

𝐬𝐬𝐲𝐲des = 𝐌𝐌𝐌𝐌𝐄𝐄�1 + 1
𝑁𝑁

+ ℎ𝐲𝐲des      , 
(2.82) 

and its confidence interval at a given significance level 𝛼𝛼 by (2.21): 
CI(𝐲𝐲des) = 𝐲𝐲des ± 𝐬𝐬𝐲𝐲des𝑡𝑡|𝛼𝛼2

     . (2.83) 
The confidence interval of 𝐲𝐲des is then inverted by means of (2.77) as the estimate the 
confidence interval of 𝐭𝐭des,p: 

CI�𝐭𝐭des,p
T � = CI�𝐲𝐲desT � ⋅ 𝐐𝐐�+L      , (2.84) 

which are then simply “propagated linearly” as in (2.79) to estimate the confidence interval 
𝐭𝐭desT , thus of the null space: 

CI�𝐭𝐭desT � = CI�𝐭𝐭des,p
T � + 𝐭𝐭des,n

T      . (2.85) 
It is easy to understand that the method proposed by Facco et al. (2015) relies on the simple 
inversion of a “constant prediction uncertainty” at 𝐲𝐲des with constant observation leverage 
estimated at 𝐭𝐭des,p. On the other hand, the method proposed by Palací-López et al. (2019) adopts 
a more sophisticated and theoretically sound approach, which also considers variable 
observation leverage along the null space. Consider a generic point2 along the subspace 𝐭𝐭des 
defined as in (2.79), denoted as 𝐭𝐭des𝑙𝑙. The output “data model” in the simplified PLS 
formulation is first used to reconstruct 𝐲𝐲des using (2.74): 

𝐲𝐲�des𝑙𝑙
T = 𝐭𝐭des𝑙𝑙

T ⋅ 𝐐𝐐�T     , (2.86) 
which is then used to compute the residual associated to the null space: 

𝐫𝐫des𝑙𝑙 = 𝐲𝐲des − 𝐲𝐲�des𝑙𝑙     . (2.87) 
Such residual is projected back to the space of LVs according to (2.77) and used to propagate 
the inversion uncertainty onto the considered point of the null space, defining the “perturbated” 
scores as: 

�̃�𝐭des𝑙𝑙
T = 𝐭𝐭des𝑙𝑙

T + 𝐫𝐫des𝑙𝑙
T ⋅ 𝐐𝐐�+L     . (2.88) 

The perturbated scores account for the error associated with the null space on the reconstruction 
of 𝐲𝐲des, thus can be used to obtain the leverage of 𝐲𝐲�des𝑙𝑙 as: 

ℎ𝐲𝐲�des𝑙𝑙 =
�̃�𝐭des𝑙𝑙
T ⋅𝚲𝚲𝑇𝑇

−1⋅�̃�𝐭des𝑙𝑙
𝑁𝑁−1

     , (2.89) 

which allows to estimate the standard deviation of 𝐲𝐲�des𝑙𝑙: 

𝐬𝐬𝐲𝐲�des𝑙𝑙 = 𝐌𝐌𝐌𝐌𝐄𝐄�1 + 1
𝑁𝑁

+ ℎ𝐲𝐲�des𝑙𝑙      . 
(2.90) 

Finally, (2.21) is leveraged to compute the confidence interval of 𝐲𝐲�des𝑙𝑙 at a given significance 
                                                 
2 Numerically, this operation would be implemented discretizing the null space in a given number of points by means of 𝛌𝛌 in 
(2.78) and considering the 𝑙𝑙-th one. 
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level 𝛼𝛼: 
CI�𝐲𝐲�des𝑙𝑙� = 𝐲𝐲�des𝑙𝑙 ± 𝐬𝐬𝐲𝐲�des𝑙𝑙𝑡𝑡|𝛼𝛼2

     , (2.91) 
and the confidence interval of the considered null space point, 𝐭𝐭des𝑙𝑙, is obtained applying (2.77) 
to invert the quantity ±𝐬𝐬𝐲𝐲�des𝑙𝑙𝑡𝑡|𝛼𝛼2

: 
CI�𝐭𝐭des𝑙𝑙

T � = 𝐭𝐭des𝑙𝑙
T ± 𝐬𝐬𝐲𝐲�des𝑙𝑙𝑡𝑡|𝛼𝛼2

⋅ 𝐐𝐐�+L     . (2.92) 

The procedure can be repeated for any generic points in the subspace 𝐭𝐭des to estimate the 
confidence intervals on the whole subspace. 
The two approaches outlined are compared using the “example data” used by Palací-López et 
al. (2019) and reported in Table 2.1. The data consist of 𝑁𝑁 = 6 observations of 𝑉𝑉𝑋𝑋 = 5 input 
varibales and 𝑉𝑉𝑌𝑌 = 1 output variable. A PLS model is calibrated on autoscaled data with 𝐴𝐴 = 2 
LVs. The target quality for inversion is set as 𝐲𝐲des = 204.86 and inverted by (2.77). A one-
dimensional null space exists and its confidence interval is computed with both the approaches 
by Facco et al. (2015) and Palací-López et al. (2019): results are reported in Figure 2.7(a) and 
Figure 2.7(b), respectively. The approach by Facco et al. (2015) yields constant confidence 
limits. On the other hand, Palací-López et al. (2019) considers the observation leverage, 
therefore the confidence limits show a “hourglass” shape. Also note that the amplitudes of the 
confidence intervals in correspondence of 𝐭𝐭des,p (the center of the hourglass) obtained with the 
two approaches are equal. 

2.6 Analysis of batch data 
All the models mentioned in this Section thus far require data matrices for calibration. Most 
process data can be arranged in such a way. Considering, for example, continuous processes, it 
is customary to gather observations in time of many process variables as rows and columns, 
respectively, of a data matrix. However, data from batch processes pose a different challenge, 
as a third dimension is usually added: the batch dimension (Nomikos et al., 1994, 1995b). In 
general, data from a sequence of 𝐵𝐵 batches can be described as a sequence {𝐗𝐗1, … ,𝐗𝐗𝐵𝐵}, where 

Table 2.1. Example dataset from Palací-López et al. (2019) to compare approaches for null 
space uncertainty estimation in LVMI. The data comprise N = 6 observation of VX = 5 input 
variables (x1, x2, x3, x4, and x5) and VY = 1 output variable (y). 

Observation 𝐱𝐱𝟏𝟏 𝐱𝐱𝟐𝟐 𝐱𝐱𝟑𝟑 𝐱𝐱𝟒𝟒 𝐱𝐱𝟓𝟓 𝐲𝐲 

1 5.43 7.54 125.64 58.51 50.49 61.85 

2 5.43 15.97 126.20 258.48 74.44 278.99 

3 99.23 7.54 9893.38 59.29 737.15 307.89 

4 99.23 15.97 9765.16 254.11 1576.28 436.40 

5 52.33 11.76 2787.64 139.21 583.76 266.08 

6 52.33 11.76 2849.95 135.67 630.73 260.52 
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𝐗𝐗𝑏𝑏 ∈ ℝ𝐾𝐾𝑏𝑏 × ℝ𝑉𝑉𝑋𝑋, with 𝑏𝑏 ∈ {1, … ,𝐵𝐵}, is a data matrix for batch 𝑏𝑏 containing profiles of the 𝑉𝑉𝑋𝑋 
process variables (columns) recorded at 𝐾𝐾𝑏𝑏 times along the batch (rows). Note that the duration 
of batches can vary. On the other hand, the quality of the product of the batch process is usually 
measured only at the end of the batch, and can therefore be arranged in a matrix 𝐘𝐘 ∈ ℝ𝐵𝐵 × ℝ𝑉𝑉𝑌𝑌  
collecting the 𝑉𝑉𝑌𝑌 quality variables for each one of the 𝐵𝐵 batches (Nomikos et al., 1995b). 

2.6.1 Multiway methods based on unfolding 

If 𝐾𝐾𝑏𝑏 = 𝐾𝐾 ∀ 𝑏𝑏 ∈ {1, … ,𝐵𝐵}, meaning that all batches have the same duration, it is customary to 
arrange the sequence of matrices as a third order tensor 𝓧𝓧 ∈ ℝ𝐵𝐵 × ℝ𝑉𝑉𝑋𝑋 × ℝ𝐾𝐾. Multiway 
extensions of PCA (Nomikos et al., 1994) and PLS (Nomikos et al., 1995b) allow to analyze 
such data structure. Alternatively, models equivalent to multiway methods can be calibrated in 
a simpler way applying conventional PCA and PLS to matrices obtained by batch-wise 
unfolding (BWU; Wold et al., 1987b). The unfolding is operated “slicing” 𝓧𝓧 in 𝐾𝐾 matrices 
{𝐗𝐗1, … ,𝐗𝐗𝐾𝐾}, 𝐗𝐗𝑘𝑘 ∈ ℝ𝐵𝐵 × ℝ𝑉𝑉𝑋𝑋 , with 𝑘𝑘 ∈ {1, … ,𝐾𝐾}, being a matrix containing the records of all 
𝑉𝑉𝑋𝑋 variables for all 𝐵𝐵 batches at sampling time 𝑘𝑘. Matrices in the sequence are then 
concatenated horizontally to obtain the BWU matrix 𝐗𝐗BWU ∈ ℝ𝐵𝐵 × ℝ𝐾𝐾𝑉𝑉𝑋𝑋 , defined as: 

𝐗𝐗BWU = [𝐗𝐗1 … 𝐗𝐗𝐾𝐾]     . (2.93) 
Such a matrix can be analyzed directly by PCA, or in conjunction with 𝐘𝐘 by PLS. However, for 
a successful application of PCA and PLS to the BWU matrix (in fact, also of their multiway 
extensions), batches need to be synchronized. This means that all batches have the same 
duration and key events in the batches happen at the same time. However, the durations of the 
batches in a sequence are not always the same and can in fact widely vary. Even for batches 
with equal duration, key process events might be misaligned (González Martínez et al., 2014b). 
Considering the general case of uneven batch duration, where data are given as {𝐗𝐗1, … ,𝐗𝐗𝐵𝐵}, 
with 𝐗𝐗𝑏𝑏 ∈ ℝ𝐾𝐾𝑏𝑏 × ℝ𝑉𝑉𝑋𝑋 , one can still obtain a two-dimensional matrix by applying the so-called 

 
(a) 

 
(b) 

Figure 2.7. Comparison of approaches proposed by (a) Facco et al. (2015) and by (b) 
Palací-López et al. (2019) to estimate the uncertainty of the null space in LVMI. 
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variable-wise unfolding (VWU; Wise et al., 1999; Wold et al., 1998). This procedure yields a 
matrix 𝐗𝐗VWU ∈ ℝ∑ 𝐾𝐾𝑏𝑏𝐵𝐵

𝑏𝑏=1 × ℝ𝑉𝑉𝑋𝑋  obtained stacking vertically all matrices in the sequence: 

𝐗𝐗VWU = �
𝐗𝐗1
⋮
𝐗𝐗𝐵𝐵
�     . 

(2.94) 

PCA can still be applied to 𝐗𝐗VWU to explore the behavior of process variables in time over the 
sequence of all the 𝐵𝐵 batches. However, PLS is harder to apply in this case, as quality variables 
need to be measured at the same frequency as process variables, which is not always possible. 
Finally, BWU and VWU can be seen as extreme cases of the augmentation of matrix 𝐗𝐗𝑘𝑘 with 
lagged measurements. In fact, they can be generalized in the so-called batch dynamics 
unfolding (Chen et al., 2002). This unfolding method shares some properties with the lagged-
variables augmentation discussed for CVA in Section 2.3.4. Furthermore, it is the basis for the 
extension of PCA and PLS to dynamic data, which are discussed in Section 7.2.3. 
The application of PCA and PLS to unfolded matrices has been widely studied, and properties 
of models obtained on different unfolding methods exhaustively discussed in the literature. 
Interested readers are referred to notable literature resources for more information (Bro et al., 
2003; Camacho et al., 2008a, 2009; Gurden et al., 2001; Westerhuis et al., 1999). 
If batch data lacks synchronization, a proper multiway analysis can still be applied by first 
synchronizing the data. Many methods to accomplish this task have been proposed in the 
literature. Some examples are: truncation of trajectories (Rothwell et al., 1998); extension of 
trajectories with mean values (Lakshminarayanan et al., 1996); indicator variables (García-
Muñoz et al., 2003; Nomikos et al., 1994); dynamic time warping (Kassidas et al., 1998); 
correlation-optimized time warping (Fransson et al., 2006); relaxed-greedy time warping 
(González-Martínez et al., 2011); multisynchro (González Martínez et al., 2014a). An 
exhaustive treatment of synchronization approaches is not within the scope of this Thesis. 
Readers are referred to the cited studies for details on each approach. 

2.6.2 Feature-oriented models 

While the synchronization-unfolding path is the preferred approach to batch data analytics, 
complicated synchronization procedures are needed, and complex models are generally 
obtained (Rendall et al., 2019). Furthermore, synchronization can yield unsatisfactory results 
when the duration of batches vary widely and/or profiles of variables exhibit remarkable 
difference in shapes (Klimkiewicz et al., 2016). This is the case, for example, of membrane 
filtration processes used in the downstream of biorefineries: membrane fouling causes strong 
variabilities in batch duration and profile shapes (Abels et al., 2013; Klimkiewicz et al., 2016; 
Maere et al., 2012; Naessens et al., 2017). Feature-oriented modeling (Reis et al., 2022; Rendall 
et al., 2019; Yoon et al., 2001) offers an elegant way to address the lack-of-synchronization 
issue, while also emphasizing the phenomena one wants to model by properly defining features. 
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The fundamental idea on feature-oriented modeling is to employ feature engineering methods 
(Bakshi et al., 1996; Reis et al., 2022; Stephanopoulos et al., 1997) to obtain meaningful 
numerical indices from time profiles of process variables. Formally stated, feature synthesis 
can be interpreted as an operator: 

ℱ: ℝ𝐾𝐾𝑏𝑏 × ℝ𝑉𝑉 → ℝ𝐹𝐹 | 𝐗𝐗𝑏𝑏 ↦ 𝐡𝐡𝑏𝑏     , (2.95) 
where 𝐡𝐡𝑏𝑏 ∈ ℝ𝐹𝐹 is a vector containing values of 𝐹𝐹 features characterizing batch 𝑏𝑏. As one vector 
of features is obtained from each batch, a matrix 𝐇𝐇 ∈ ℝ𝐵𝐵 × ℝ𝐹𝐹 gathering features (columns) 
for each batch (rows) can be built and modeled directly by PCA or as the input data in PLS. A 
comparison between the customary synchronization-unfolding approach and the feature-
oriented approach to handle batch data is schematically presented in Figure 2.8.  

Several methods have been proposed to synthesize features from profiles of process variables. 
The first and most natural approach is based on the so-called knowledge-driven features (Wold 
et al., 2009), also called landmark features (Rendall et al., 2019), where features are defined 
exploiting process knowledge and simple mathematical operations. Considering the example 
of a membrane filtration process where the feed pressure is increased along the batch to keep a 
constant permeate flux counteracting fouling, informative features may be the average and 
maximum pressure, or the average pressure slope, which is intuitively related to the fouling-
rate (Monclús et al., 2011; Naessens et al., 2017). It is easy to understand that a proper definition 
of knowledge-driven feature could significantly aid model interpretation and process 

 
Figure 2.8. Comparison of approaches for batch data analytics in the case of lack-of-
synchronization of batches: synchronization-unfolding path and feature-oriented modeling. 



Mathematical background 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

47 

understanding, even to the price of losing or attenuating information localized on specific time 
intervals in  profiles of variables (Rendall et al., 2019). Knowledge-driven features are the 
method of interest in this Thesis. However, other methods for feature generation exist. 

• Wavelet-based features (Bakshi et al., 1996; Stephanopoulos et al., 1997): features are 
the coefficients of the multi-scale wavelet decomposition of profiles of variables. 

• Statistical pattern analysis (He et al., 2011; Wang et al., 2010): features are defined as 
statistical moments of profiles of variables. 

• Translation-invariant multiscale energy-based features (Rato et al., 2017): features are 
derived from the wavelet decomposition of profiles of variables. 

• Profile-driven features (Rendall et al., 2017a): profiles of variables are matched with 
and fitted to specific parametric archetypes in a given profile library, and parameters of 
the fitted archetypes are used as feature. 

In this Thesis, feature-oriented methods are intended as the ones mentioned above, where time 
profiles of process variables are “summarized” into a set of scalar variables. A detailed 
description of other methods is not within the scope of this Thesis. Readers are referred to the 
cited references and other relevant literature resources (Reis et al., 2018, 2022; Rendall et al., 
2019). Although not relevant for this Thesis, it is also worth noting that features can be extracted 
for other reasons, such as for batch data synchronization (Andersen et al., 2012) or as implicit 
nonlinear transformations of scalar variables, for example in the kernel methods paradigm 
(Cremers et al., 2003; Müller et al., 2001; Pilario et al., 2020; Schölkopf et al., 1999). 

2.7 Hybrid models 
All the mathematical methods discussed so far are based exclusively on data and do not require 
any knowledge on the process that generated the data. However, the integration of such 
knowledge may be beneficial to the modeling exercise and aim. One such way to introduce this 
knowledge is the feature-oriented paradigm just discussed, specifically data augmentation by 
feature engineering: process knowledge can be leveraged to synthesize additional informative 
variables to be added to the dataset by means of first-principles/mechanistic models, then the 
augmented dataset is used to develop a data-driven model (Destro et al., 2020; Ghosh et al., 
2021; Yoon et al., 2001). A different way to combine data-driven and knowledge-driven models 
is by means of hybrid modeling (Narayanan et al., 2023; Rajulapati et al., 2022; Sansana et al., 
2021; Solle et al., 2017; von Stosch et al., 2014; Yang et al., 2020). 
In their most common conception, the idea underlying hybrid models is to establish a first-
principles modeling framework and to insert data-driven elements into it (Sansana et al., 2021), 
to be used to describe phenomena that cannot be modeled by means of theoretical tools 
(Narayanan et al., 2019). This can be achieved combining the “blocks” in multiple ways. In 
general, two main structures can be defined  (Sansana et al., 2021; von Stosch et al., 2014). In 
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the serial structure, shown in Figure 2.9(a), the knowledge-based model and the data-driven 
model are connected in series, meaning that the input of one block are the outputs of the other 
one. In chemical engineering applications, especially concerning soft sensing, the data-driven 
model is most commonly the first one in the serial structure, and its outputs serve as inputs of 
the knowledge-driven model. This structure is adopted when there is the complete lack of 
theoretical knowledge on some of the phenomena to be modeled. In the parallel structure, 
reported in Figure 2.9(b), both models receive the same inputs, then their outputs are combined 
by summation, multiplication, or by fancier weighted combinations. This structure is 
particularly attractive when the knowledge-based model can approximately represent the 
phenomena of interest, therefore the data-driven element acts as a simple correction. 
While the two examples discussed assume that there are a single data-driven element and a 
single knowledge-driven model, more complex structures can be devised if multiple blocks are 
used. A relevant one is the so-called combined parallel-serial structure (Teixeira et al., 2005), 
represented in Figure 2.9(c). This structure is particularly relevant in hybrid modeling of 
bioreactors. Concentrations of biomass, products, and other species of interest are used as inputs 
to an approximate kinetic model and to a data-driven model in parallel; outputs are combined 
by multiplication to obtain the transformation rates of all species considered in the model, which 
are then fed to a second knowledge-driven block: the material balances of the reactor. 

In (bio-)chemical engineering applications, the knowledge driven part is generally given by 
material and energy balances, kinetic models, phase equilibrium and transport laws, or 
sophisticated cell biology models. The data-driven model is generally a high complexity 
machine learning method, such as artificial neural network or support vector regression. This 
choice is due to the fact that the data-driven element is usually responsible for the flexibility of 
the hybrid model, therefore nonlinear methods (possibly providing the universal approximation 

 
(a) 

 
(b) 

 
(c) 

Figure 2.9. Possible architectures of hybrid models. (a) Serial structure, (b) parallel 
structure, and (c) parallel-serial structure. 
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property) are appropriate choices (von Stosch et al., 2014). Artificial neural networks are 
particularly popular (Chen et al., 1995; Oliveira, 2004; Sansana et al., 2021; von Stosch et al., 
2014): they were used in the first hybrid model proposed in the literature (Psichogios et al., 
1992), and subsequently in many application concerning bioreactors (Marques et al., 2017; 
Psichogios et al., 1992; Schubert et al., 1994; Teixeira et al., 2005; Vande Wouwer et al., 2004; 
von Stosch et al., 2016) and membrane separation processes (Chan et al., 2017; Chew et al., 
2017; Grisales Díaz et al., 2017; Hwang et al., 2009; Piron et al., 1997). The use of latent-
variable models in the hybrid modeling context has been explored by few studies (Carinhas et 
al., 2011; Destro et al., 2020; Ghosh et al., 2021; Henneke et al., 2005; Lee et al., 2005; Reis et 
al., 2023; von Stosch et al., 2011). 
The most notable advantage of hybrid models over purely data-driven models is increased 
reliability in general (Narayanan et al., 2019; von Stosch et al., 2014): the data-driven element 
brings flexibility for adapting to different scenarios, while the knowledge-driven element 
increases the model robustness. With respect to purely data-driven model, calibration of the 
data-driven element in a hybrid model often requires less data and lower complexity to achieve 
a comparable accuracy. Last but not least, hybrid models are more reliable when it comes to 
respect the underlying physical principles of the process, which is a common issue with data-
driven models and is particularly important if extrapolation is required (Raissi et al., 2019). 
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Chapter 3 
 

Data-driven analysis and improvement 
of the upstream bioconversion process 

A structured application of data-driven methods aimed at understanding and improving the 
bioconversion step in the upstream process is presented in this Chapter. PCA is used to 
investigate the differences among units in an array of seven parallel bioreactors. JYPLS 
regression is leveraged to address a decreasing trend in the quality of the final product, then 
combined with LVMI to develop guidelines for recovering the process from the quality loss. 

3.1 Introduction 
The key to sustainability of biorefineries relies in the raw materials: biomass from renewable 
sources. While many so-called biorefinery platforms exist (Cherubini, 2010; Gavrilescu, 2014; 
Ubando et al., 2020), bioconversion-based biorefineries are particularly relevant to the process 
industry due to their potential to produce a wide range of fuels and chemicals (Cuellar et al., 
2020; Rosales-Calderon et al., 2019). Fermentation is the most common bioconversion 
technology in biorefineries (Woodley, 2020). In the typical process, biomass is first prepared 
for processing: sugar-rich biomass can be fermented directly, while starch-rich biomass must 
be pre-treated to release the fermentable sugars (Delbecq et al., 2018; Ubando et al., 2020). 
Sugars are fed to the bioconversion reactor, typically operating in (fed-)batch mode (Bähner et 
al., 2021). The product mixture processed in the bioreactor is sent to product recovery and 
purification in the downstream section after batch completion (Cuellar et al., 2020). 
Due to the downstream including many continuous operations, such as distillation, it is common 
to adopt arrays bioreactors operating in parallel in the upstream section to continuously feed 
the downstream. This strategy is typical for batch processing in general (Louwerse et al., 1999b; 
Shen et al., 2018) and is also adopted in special downstream units naturally operating in semi-
continuous mode due to phenomena such as membrane fouling or resin exhaustion (Zydney, 
2016). However, parallel units entail a number of complications, the most prominent ones 
regarding production scheduling (Bähner et al., 2019). Precise operation and monitoring of each 
one of the parallel units are of paramount importance for the array itself and for the subsequent 
units, as scheduling issues in the upstream may be propagated to the downstream (Bähner et 
al., 2021). Subtler drawbacks regard potential differences among units: while parallel units are 
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generally meant to operate in the exact same way and to yield the same performance, such 
conditions are not always met in the industrial practice (Louwerse et al., 1999b; Philippe et al., 
2013; Rendall et al., 2017a).  
The operation of arrays of parallel units can be supported by process systems engineering and, 
more in general, mathematical modeling. The potential of these approaches has been 
highlighted by several studies in the context of biorefineries and bioprocessing (Bähner et al., 
2021; Culaba et al., 2022; Velidandi et al., 2023). Data-driven models are of particular interest 
in industrial environments due to the massive dataset generally produced daily in modern plants 
(Cuellar et al., 2020). Latent-variable models, such as PCA and PLS, found many successful 
applications in scenarios involving parallel units as well. Louwerse et al. (1999b) employed 
PLSDA to understand the difference among two apparently identical batch polymerization 
reactors, identifying potential causes of unexpected different performances of the two units. A 
similar problem was tackled by Rendall et al. (2017a): they investigated differences between 
two industrial dryers in a crystallization process by feature-oriented modeling, achieving 
similar results. Tessier et al. (2012) adopted multiblock PLS to model an array of thirty-one 
parallel reactors for aluminum reduction, with the aim to set up a process monitoring system; 
they developed a single monitoring model for all the units in the array. Philippe et al. (2013) 
considered an array of four industrial membrane bioreactors for wastewater treatment and 
developed separate PLS models for each one of them aiming at predicting the dynamic 
evolution of the membrane resistances to permeation; they noted remarkable, unexpected 
differences in prediction performance of the models, despite all the units being identical in 
principle. Shen et al. (2018) proposed to merge the two approaches (a single model for all units 
or a separate model for each one of the units). They considered a system of three simulated fed-
batch reactors in parallel and developed a multi-layer monitoring system composed of: a PCA 
model for the whole array of reactors for general monitoring; single PLS models for each one 
of the reactors for quality-relevant monitoring, to account for potential difference not captured 
by the global PCA model. Their system yielded good performance, but also featured a 
remarkable complexity. 
In light of these examples, it is easy to identify two intuitive approaches to model arrays of 
parallel units. One can assume that all the units behave in the same way (meaning that they are 
characterized by the same variables and share the same correlation structure) and develop a 
single model for all of them; however, such an assumption could not be met in practice and can 
yield unsatisfactory performance in the presence of differences among units. Alternatively, 
multiple models can be developed, one for each unit in the array; no assumption on the 
similarity among units is required, but this approach could become cumbersome nonetheless 
when the number of parallel units is large. Furthermore, the latter approach effectively neglects 
the similarities among units and the valuable information that they should be driven by the same 
fundamental phenomena. This is precious information nonetheless, especially in cases where a 
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model-based analysis is to be carried out on arrays of reactors manufacturing the same product, 
for example for soft sensing or data-driven process improvement. 
An alternative approach relies on modeling strategies designed to handle arrays of parallel units. 
JYPLS (García-Muñoz, 2004; García-Muñoz et al., 2005) is one such model. JYPLS was 
originally proposed to tackle product transfer problems (García-Muñoz et al., 2005), either 
between units or between entire plants. Many successful applications of JYPLS have been 
published, including root cause analysis in process development (García-Muñoz et al., 2009), 
product transfer between units (Tomba et al., 2014) and plants (Chu et al., 2021), transfer of 
process monitoring models (Facco et al., 2012, 2014), and process scale-up (Dal-Pastro et al., 
2017; Facco et al., 2020; Liu et al., 2011b). 
However, the potential of JYPLS in scenarios involving arrays of supposedly identical parallel 
units meant to manufacture the same product has been barely explored (Rudnitskaya et al., 
2017). JYPLS is a particularly appealing choice in this case due to its ability to model both 
phenomena common to all units (between-unit correlation) and phenomena specific of single 
units (within-unit correlation) (García-Muñoz, 2004; García-Muñoz et al., 2005). In this sense, 
JYPLS can be used for data fusion (Azcarate et al., 2021), which is particularly relevant in cases 
where little data are available for each unit: models of single units would be prone to overfitting, 
while a single model for the whole array could not yield satisfactory performance due to 
potential differences among units.  
In this Chapter, we present a structured analysis of the bioconversion step in the upstream 
process of the industrial biorefinery considered in this Thesis (Novamont S.p.A., 2016). The 
operation involves seven bioreactors, which are regarded to operate equivalently despite 
featuring minor equipment differences. The study is carried out under small data conditions 
(data on few batches available for each unit).  We first carry out a data-driven analysis to spot 
potential differences among the units using real data of two and a half months of stable 
operation of the plant. We then investigate a generalized decreasing trend in the end-of-batch 
concentration of the main product affecting all the bioreactors and captured by a second dataset 
covering three months of operation. We demonstrate the potential of the selected data-driven 
method to effectively handle complex industrial processes featuring parallel units when little 
data are available for each one of them, producing significant process understanding and 
offering precious guidelines to improve process operation. 
However, while we believe in the value of our approach, we cannot provide any experimental 
evidence of its effectiveness. Significant process/equipment changes took place in the plant set-
up shortly after the completion of this study, which conflicted with the implementation of the 
guidelines we proposed. The changes were motivated by reasons other than the problem we 
investigated and caused large variations in the operation of the upstream process, including in 
the reference values of the quality variables. This effectively prevented us from testing the 
results of our approach on the plant, and from verifying the resolution of the issue of decreasing 
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end-of-batch quality, which motivated this study in the first place. However, in light of the 
evidence we present in this Chapter, we are confident that our approach offers a good solution 
to the problem we investigated. 
The reminder of this Chapter is organized as follows. The process and the available datasets are 
introduced in Section 3.2, wherein the objective of the analysis is stated as well. Section 3.3 
outlines the fundamentals of the mathematical methods relevant to this study. Results 
concerning the assessment of differences among bioreactors are discussed in Section 3.4, while 
Section 3.5 addresses the decreasing trend of end-of-batch product quality, offering some 
guidelines for process recovery. Finally, conclusions of this study are drawn in Section 3.6. 

3.2 Bioconversion process and data 
The bioconversion process is described in this Section. The available dataset and the decreasing 
trend in the end-of-batch product quality, the troubleshooting of which is the aim of the work 
described in this Chapter, are illustrated as well. 

3.2.1 Bioconversion step 

The bioconversion step is at the heart of the biorefinery upstream process and relies on seven 
bioreactors operating in parallel. In this Chapter, the seven bioreactors will be identified as 
BR𝑝𝑝, 𝑝𝑝 ∈ {1, … , 7}. A simplified scheme of a bioreactor is reported in Figure 3.1. 

The array of bioreactor operates in cycled fed-batch mode (Zydney, 2016) to ensure continuous 
feed to the downstream process. Batches are recipe-driven and generally have a predefined and 
consistent duration. 

 
Figure 3.1. Simplified scheme of a bioreactor in the upstream process. 
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In a typical batch, the bioreactor is first loaded with the culture medium and a given amount of 
substrate, then it is inoculated with the microorganism. The mixing system is activated, and the 
microorganism is grown at constant aeration rate (inlet flow rate of the air sparged at the bottom 
of the bioreactor). When a preset level of DO is achieved, the batch is conducted for a set time 
at such a constant value. The oxygen uptake rate (OUR; see Section 3.2.3) is used to monitor 
the biomass growth and the progression of the batch. Substrate and an additive substance3 
having an effect on the gas-to-liquid mass transfer are fed throughout the batch according to a 
given feeding schedule. The pH is controlled by addition of two different pH buffers (identified 
as 1 and 2 in Figure 3.1). Buffer 1 is used in the first part of the batch, until a shift in the set-
point of the pH is triggered at a preset time. When the pH reaches the new setpoint, buffer 2 is 
used up to completion of the batch. The bioreactor is then withdrawn, its content sent to a buffer 
tank before downstream processing. Profiles of process variables related to respiration and pH 
for a typical batch are reported in Figure 3.2. All variables will be reported as normalized within 
the [0, 1] interval in this Chapter due to confidentiality reasons. 

3.2.2 A decreasing trend in the end-of-batch product concentration 

A sampling valve is located on the withdrawal pipe of each bioreactor to allow the plant 
personnel to collect samples for end-of-batch quality analysis, carried out in the quality control 
laboratory according to standardized procedures. The two most important quality attributes are 
the final BDO concentration and a process-specific quality attribute, the nature of which is 
                                                 
3 The chemical nature of the additive will not be disclosed due to confidentiality reasons. 

 
(a) 

 
(b) 

Figure 3.2. Example of (a) respiration-related variables and (b) pH-related variables in a 
typical batch of the bioconversion process. 
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confidential and will thus be generically denoted as “quality index” throughout this Chapter. 
While the former quality attribute should be as high as possible, the quality index is of 
paramount importance for the downstream process and should be as low as possible. 
A decreasing trend in the end-of-batch BDO concentration has been detected by plant operators. 
An increasing trend in the quality index has been detected as well, developing simultaneously 
to the product concentration trend. Figure 3.3 shows that the trends affect all the bioreactors. 

Figure 3.3 also highlights that the quality variables suffer from high variability. This variability 
is mostly due to the production process itself and to the fact that multiple bioreactors are used. 
This is apparent in the quality index, where different units seem to yield products with different 
values of such variable. The analyses carried out by the plant personnel follow standardized 
procedures, thus the measurement-induced variability is regarded as a minor contribution to the 
total one. Despite the high variability, the trends in the quality variables are clearly visible. 
Some corrective actions have been implemented by plant operators by trial and error, which 
allowed to partially recover the BDO concentration (but not to counteract the increase of the 
quality index), as seen in the last portion of Figure 3.3 (approximately from observation no. 
140 onwards). However, the causes of such trends remain unclear. Therefore, we carry out a 
data-driven investigation to shed some light on the likely causes of the trends. We also aim at 
developing guidelines for data-driven process improvement, specifically in the form of 
corrective actions to be implemented in the future to recover the product quality. 

3.2.3 Available dataset 

Figure 3.1 reports the online sensors installed on bioreactors (all of them feature the same 
sensors). The main body features sensors for temperature, pressure, level (which allows to infer 
the volume), DO, and pH. The power required by the mixing system is measured as well. 
Volume totalizers are installed on the inlet pipes of air, substrate, pH buffers, and additive. An 

 
Figure 3.3. Trend of (a) BDO concentration and (b) quality index across several consecutive 
batches. Each point represents the value of the relevant quality attribute measured at the end 
of a batch. 
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analyzer is connected to the off-gas outlet and delivers instantaneous measurements of the 
mole-fractions of oxygen, nitrogen, carbon dioxide, and water in the off-gas. 
Besides the measured variables, some additional variables are computed and monitored 
throughout the batch by virtue of the valuable information they provide. Inlet volume-flow rates 
are computed from added volumes as: 

�̇�𝑉𝑖𝑖(𝑘𝑘) = 𝑉𝑉𝑖𝑖(𝑘𝑘)−𝑉𝑉𝑖𝑖(𝑘𝑘−1)
Δ𝑡𝑡

     , (3.1) 

where �̇�𝑉𝑖𝑖(𝑘𝑘) represents the 𝑖𝑖-th inlet volume-flow rate [m3s−1] at time 𝑘𝑘, 𝑉𝑉𝑖𝑖(𝑘𝑘) and 𝑉𝑉𝑖𝑖(𝑘𝑘 − 1) 
denote the 𝑖𝑖-th added volume [m3] at times 𝑘𝑘 and 𝑘𝑘 − 1, respectively, and Δ𝑡𝑡 is the sampling 
interval [s]; 𝑖𝑖 can be air, substrate, pH buffer 1, pH buffer 2, or additive. 
The OUR represents the rate [mol s−1] at which microorganisms consume the oxygen provided 
by the inlet air and is defined as: 

OUR = �̇�𝑉air
𝑉𝑉�
𝑟𝑟i�𝑦𝑦O2

in − 𝑦𝑦O2
out�      , (3.2) 

where 𝑉𝑉�  represent the mole-specific volume [m3mol−1] of air, while 𝑦𝑦O2
in  and 𝑦𝑦O2

out are the mole-
fractions [−] of oxygen in the inlet air and in the off-gas, respectively; furthermore, 𝑟𝑟i accounts 
for the water vapor entrained in the off-gas by the gas flowing through the liquid (Mainka et 
al., 2019) and is defined as: 

𝑟𝑟i =
1−𝑦𝑦O2

in −𝑦𝑦CO2
in

1−𝑦𝑦O2
out−𝑦𝑦CO2

out −𝑦𝑦H2O
out       . (3.3) 

Finally, the carbon dioxide evolution rate (CER) represents the rate [mol s−1] at which 
microorganisms release CO2 as product of their metabolism. The CER is defined as: 

CER = �̇�𝑉air
𝑉𝑉�
𝑟𝑟i�𝑦𝑦CO2

out − 𝑦𝑦CO2
in �      , (3.4) 

where 𝑦𝑦CO2
in  and 𝑦𝑦CO2

out  are the mole-fractions [−] of carbon dioxide in the inlet air and in the off-
gas, respectively. The process variables used is this study are summarized in Table 3.1. 
The quality of the final product is characterized at the end of each batch by laboratory analyses. 
Quality attributes include: concentration of BDO; quality index; biomass concentration 
expressed as optical density (OD); residual concentration of substrate (denoted as S); 
concentrations of three byproducts of the bioconversion (identified as B𝑖𝑖, 𝑖𝑖 ∈ {1, … , 3}); 
concentrations of seven ionic species in the solution (identified as I𝑖𝑖, 𝑖𝑖 ∈ {1, … , 7}). In 
particular, I1 and I2 are ionic species released by pH buffers 1 and 2, respectively, while the 
remaining species are introduced in the bioreactors with the culture medium. 
Two more quality variables are computed for the valuable information they provide on the 
performance of the process. The BDO productivity [mol m−3 s−1] is defined as the final BDO 
concentration divided by the batch time: 

Pr = 𝑐𝑐BDO
𝑡𝑡tot

     , (3.5) 

where 𝑐𝑐BDO is the final BDO concentration [mol m−3], and 𝑡𝑡tot is the batch duration [s]. 
Finally, the yield is defined as: 

𝑌𝑌 = 𝑉𝑉𝑀𝑀BDO𝑐𝑐BDO
𝑚𝑚S
c      , (3.6) 
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hence as the ratio between the total mass [kg] of BDO produced  (that is 𝑉𝑉𝑀𝑀BDO𝑐𝑐BDO, 𝑉𝑉 being 
the volume [m3] measured at the end of the batch and 𝑀𝑀BDO the molecular weight [kg mol−1] 
of BDO) and the total mass [kg] of substrate consumed, 𝑚𝑚S

c. The product quality variables used 
is this study are listed in Table 3.2. 
Process data are provided as time profiles of the 22 process variables measured/computed 
online for a sequence of batches, plus values of the 16 quality attributes determined in the lab 
at the end of the same batches. Two separate datasets are available for the analysis. The first 
dataset covers two and a half months of stable operation of the process, comprising 190 batches 
from six bioreactors (BR7 was under maintenance at that time, therefore not operating). This 
dataset comprise data collected before the development of the decreasing quality trend reported 
in Figure 3.3 and is referred to as “stable dataset” in this Chapter. The second dataset spans 
over three months of operation and captures the quality trends reported in Figure 3.3. On the 
timespan of the second dataset, referred to as “trend dataset” in this Chapter, all seven 
bioreactors were operating. A total of 184 batches is found in this dataset. The number of 
batches for each bioreactor in each one of the datasets is represented in Figure 3.4. 

The available datasets are used to carry out a comprehensive investigation of the bioconversion 
process. The stable dataset is used to assess potential differences among the performance of the 
bioreactors in the array in terms of both online and offline variables. The trend dataset is used 
to investigate the quality trends and to suggest corrective actions. The data analytics methods 
used to accomplish these tasks are described in the next Section. 

3.3 Process understanding by latent-variable modeling 
The aim of this Section is to recall the fundamentals of the data analytics methods used for the 
study described in this Chapter. The fundamental rationale of their application as to achieve the 
objectives stated in the previous Section is discussed as well. 

 
Figure 3.4. Number of batches for each bioreactor in the two available datasets. 
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3.3.1 Principal component analysis for data exploration 

PCA, the rationale of which has been introduced in Section 2.1, is used in this Chapter to assess 
potential differences among the seven bioreactors. Note that a simple exploratory analysis is 
carried out, rather than a proper discriminant analysis, the latter method being recommended 
by Louwerse et al. (1999b). In fact, the objective of the study carried out here is simply to verify 
the presence of grouping in the score plot induced by the correlation structures of data from 
different bioreactors, rather than to identify class separation boundaries. Therefore, using PCA 
to assess differences among bioreactors is considered appropriate in this study. 
The stable dataset is used for PCA modeling. Differences among bioreactors are sought after 
according to both process (online) and product quality (offline) data. PCA is applied to process 
data after the preprocessing operations describes in Section 3.4.1 to obtain matrix 𝐗𝐗, while it is 
applied to the matrix of product quality data directly. In both cases, the score plot is visually 
assessed to search for clusters of scores representing batches from different bioreactors. If any 
clustering is spotted, loadings are used to diagnose the differences among scores in the clusters. 

3.3.2 Joint-Y partial least-squares regression interpretation and inversion 

JYPLS (see Section 2.4) is used to develop a regression model between process variables, 
processed as described in Section 3.5.1 to obtain the matrix sequence {𝐗𝐗1, … ,𝐗𝐗𝑃𝑃}3F

4, and a 
selected subset of variables describing the product quality at the end of each batch, arranged as 
the matrix sequence {𝐘𝐘1, … ,𝐘𝐘𝑃𝑃}. The JYPLS model is interpretable as a standard PLS model 
(García-Muñoz et al., 2005), therefore regression coefficients are investigated (Burnham et al., 
2001) to search for the likely cause of the decreasing quality trend shown in Figure 3.3. 
The interpretation of JYPLS regression coefficients can offer guidance to recover from the 
decreasing quality trend according to a univariate perspective. However, a multivariate 
approach offers significant advantages, including the preservation of the correlation structure 
among process variables. To this end, the LVMI approach, introduced in Section 2.5, is used to 
understand the difference between batches yielding high-quality and low-quality products. DI 
is selected for inversion by virtue of its computational simplicity. 

3.4 Assessment of differences among bioreactors 
In this Section, PCA is used to analyze the stable dataset. The objective is to seek for potential 
differences among the six bioreactors operating in parallel at the time of acquisition of the data 
at hand. Both process and product quality data are used for the analysis. MATLAB R2022a 
(The Mathworks, 2022a) is used for all the computations (with in-house-developed code). 

                                                 
4 Recall that the subscript 𝑃𝑃 stands for “plant” in the general terminology used in JYPLS literature, but “units” or “blocks” 
have equivalent meanings. 
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3.4.1 Analysis of online data 

Results concerning online data are described first. Preliminary analyses highlighted that two of 
the online variables, the volume and the water fraction in the off-gas, feature a highly 
unstructured variability that can severely bias the models. Therefore, these two variables are 
removed from the dataset. The variables considered in the analysis described hereby are 
reported in Table 3.1. 

The data are processed by the synchronization-unfolding approach to batch data analytics 
described in Section 2.6.1. Profiles are reasonably aligned, and synchronization is deemed to 
not be needed. However, the number of observations per batch varies due to the content of the 
bioreactor being withheld for some time after batch completion if the buffer tank to which the 
bioreactors are withdrawn to is not empty. Such “tails” are not considered as parts of the batch 

Table 3.1. Process variables considered in the PCA model of online data. 

ID Variable Symbol 

X01 Temperature 𝑇𝑇 

X02 Pressure 𝑃𝑃 

X03 pH pH 

X04 DO DO 

X05 Mixing power consumption 𝑊𝑊 

X06 Substrate feed flow rate �̇�𝑉S 

X07 Air feed flow rate �̇�𝑉air 

X08 pH buffer 1 feed flow rate �̇�𝑉pHB1 

X09 pH buffer 2 feed flow rate �̇�𝑉pHB2 

X10 Additive feed flow rate �̇�𝑉A 

X11 Substrate added volume 𝑉𝑉S 

X12 Air added volume 𝑉𝑉air 

X13 pH buffer 1 added volume 𝑉𝑉pHB1 

X14 pH buffer 2 added volume 𝑉𝑉pHB2 

X15 Additive added volume 𝑉𝑉A 

X16 Off-gas O2 fraction 𝑦𝑦O2
out 

X17 Off-gas CO2 fraction 𝑦𝑦N2
out 

X18 Off-gas N2 fraction 𝑦𝑦CO2
out  

X19 OUR OUR 

X20 CER CER 
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and are assumed to not provide any additional information. Therefore, the number of 
observations per batch is made even by truncation (Rothwell et al., 1998). This operation results 
in a sequence of 190 synchronized matrices containing profiles of 20 variables recorded on 
200 time samples each. The synchronized matrices are transformed by BWU (Wold et al., 
1987b) to obtain matrix 𝐗𝐗, containing 190 rows and 20 × 200 = 4000 pseudo-variables (each 
row represents a batch and contains profiles of all process variables concatenated horizontally). 
The 𝐗𝐗 matrix is autoscaled and analyzed by PCA. Note that 𝐗𝐗 contains data from all bioreactors, 
hence the autoscaling considers mean and variance of each pseudo-variable on the whole array 
of bioreactors, thus preserving relative relationships among data from different bioreactors. 
Scores from the PCA model on the first four PCs are shown in Figure 3.5. Recall that each dot 
in the figure represents a complete batch. 

Scores of different bioreactors show a clear separation in Figure 3.5, uncovering different 
behaviors of the bioreactors in the array. BR2 shows the most defined separation, denoting a 
strong difference with respect to other bioreactors; however, also other units show some degree 
of separation, for example BR3 and BR6. Only BR2 will be discussed herein for the sake of 
brevity. Figure 3.5(a) clearly shows that BR2 forms a separate cluster with respect to other 
bioreactors, featuring negative scores on the first PC and positive scores on the second PC. 
Separation from clusters of other bioreactors is seen also in Figure 3.5(b), where BR2 shows 
negative scores on the third PC and positive scores on the fourth PC. 
The loadings of the PCA model, shown in Figure 3.6 can be interpreted to gain insight on the 
causes of the grouping. In general, loadings represent a “map” for the score plot. Specifically, 
if a score has a positive (negative) value on a given PC, variables with positive loadings on that 
PC have a high (low) value in the observation represented by the score, while variables with 
negative loadings have low (high) values. However, given the clustering detected in Figure 3.5, 
the loadings describe differences between BR2 and the other bioreactors. Scores of BR2 are 

 
(a) 

 
(b) 

Figure 3.5. Scores of the PCA model of process variables in the stable dataset: (a) first and 
second PCs; (b) third and fourth PCs. 
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mostly negative on the first and third PCs, while they are mostly positive on the second and 
fourth PCs. Therefore, when compared to the other bioreactors, BR2 features higher values of 
the variables with negative loadings on the first and third PCs, or positive loadings on the 
second and fourth PCs, and vice-versa. Recall that, in BWU, one loading is obtained for each 
time sample in the profile of each variable, hence the above considerations hold true for each 
individual time instant. Variable identifiers used in Figure 3.6 are reported in Table 3.1. 

Focusing on the first PC, Figure 3.6 reveals that OUR and CER (variables X19 and X20, 
respectively) show positive loadings in the biomass growth phase of the batch, while loadings 
are negative in the production phase. The patterns of loadings of OUR and CER are reversed 
for the second PC. These patterns hint to the fact that, when compared to the other bioreactors, 
BR2 has a lower respiration rate in the growth phase, while the rate is higher in the production 
phase. These conclusions are confirmed by fractions of oxygen and carbon dioxide in the off-
gas (variables X16 and X17, respectively), the former being lower and the latter higher in BR2 
than in other units. However, also the off-gas nitrogen fraction (variable X18) is lower: this 
hints to a better gas-to-liquid mass transfer taking place in BR2, simplifying the control the DO. 
The loadings on the third PC in Figure 3.6 also show that the DO (variable X04) in BR2 is 
consistently lower (positive loadings) than in other bioreactors. This effect is due to the additive 

 
Figure 3.6. Time profiles of loadings on the first four PCs of the PCA model for each process 
variable in the stable dataset. 
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(variable X15), the loadings of which are negative on the same PC, thus revealing that BR2 
receives a smaller volume of additive than other units. The additive used in this process can 
impact the mass transfer properties of the system. A possible explanation for the lower DO is 
that the mass transfer properties of BR2 lead to a better utilization of the DO by the 
microorganisms. However, one should note that the loadings of the additive added volume on 
the first PC in Figure 3.6 are positive, meaning that BR2 receives a larger volume of additive 
when compared to other bioreactors. The inconsistency between the interpretations of the first 
and third PCs is investigated by visual analysis of the raw profiles, which reveals that adding a 
large volume of additive actually causes the DO to decrease significantly, while no effect on 
the DO is found when the added volume of additive is below a given threshold. 
While respiration is doubtlessly a critical factor, BR2 features a different pattern also in the pH 
profiles when compared to other bioreactors. Loadings on pH (variable X03) on the second and 
third PCs show “hills” in the central part of the profiles, positive in the former PC and negative 
in the latter PC. This hints to the fact that the pH is on average higher in BR2 then in other units 
during the pH shift shown in Figure 3.2(b), which could be due to two reasons: the shift occurs 
later, and the transition to the new pH set-point is slower. However, the loadings on the added 
volume of the pH buffer 1 (variable 13) are negative on the first PC and positive on the fourth 
PC, which means that the pH control in BR2 requires a larger volume than other bioreactors 
(pH buffer 1 is alkaline). This uncovers the fact that the different respiration pattern in BR2 
could induce a tendency in the microorganisms to lower the pH in the earlier phase of the batch, 
thus the larger volume of pH buffer 1 needed, which turns out to be beneficial to the pH control 
in the later phase. A possible explanation is that the pH buffer 1 has an effect on the metabolism 
of the microorganism. This conjecture if further explored in the analysis of data related to the 
product quality. 

3.4.2 Analysis of offline data 

PCA is applied to the product quality data in the stable dataset directly. Matrix 𝐗𝐗 contains 
observations of the 16 product quality variables recorded at the end of the 190 batches analyzed 
in the previous Section. The variables considered in the analysis are reported in Table 3.2. 
PCA is applied to the matrix 𝐗𝐗 after autoscaling. Similarly to the analysis of process variables, 
observations in 𝐗𝐗 come from all the six bioreactors operating at the time of acquisition of the 
stable dataset. Therefore, autoscaling preserves the relative relationships among bioreactors. 
The interpretation of the loadings follows the same rationale described in the previous Section. 
Scores and loadings of the PCA model are reported in Figure 3.7. The labels of variables in 
Figure 3.7(b) are reported in Table 3.2. 
Figure 3.7(a) highlights a well-defined separation of scores of BR2 from scores of other 
bioreactors. The separation develops along the first PC, hence only loadings on such a PC are 
reported in Figure 3.7(b). Loadings highlight that BR2 yields higher productivity and biomass 
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concentration (variables Y02 and Y04, respectively) compared to other bioreactors, even 
though the yield (variable Y03) is slightly lower. The final BDO concentration (variable Y01) 
does not significantly differ from other bioreactors.  
The most prominent difference is found in the quality index (variable Y05) and ionic species 
(variables Y10 to Y16). All these variables feature positive loadings in Figure 3.7(b), which 
highlights that the solution processed by BR2 has lower quality index and concentration of ionic 

Table 3.2. Product quality variables considered in the PCA model of offline data. 

ID Variable Symbol 

Y01 BDO concentration 𝑐𝑐BDO 

Y02 Productivity Pr 

Y03 Yield 𝑌𝑌 

Y04 Biomass concentration OD 

Y05 Quality index 𝐼𝐼 

Y06 Residual substrate concentration 𝑐𝑐S 

Y07 Byproduct 1 concentration 𝑐𝑐B1 

Y08 Byproduct 2 concentration 𝑐𝑐B2 

Y09 Byproduct 3 concentration 𝑐𝑐B3 

Y10 Ionic species 1 concentration 𝑐𝑐I1 

Y11 Ionic species 2 concentration 𝑐𝑐I2 

Y12 Ionic species 3 concentration 𝑐𝑐I3 

Y13 Ionic species 4 concentration 𝑐𝑐I4 

Y14 Ionic species 5 concentration 𝑐𝑐I5 

Y15 Ionic species 6 concentration 𝑐𝑐I6 

Y16 Ionic species 7 concentration 𝑐𝑐I7 

 

 
(a) 

 
(b) 

Figure 3.7. (a) Scores and (b) loadings of the PCA model of product quality variables in the 
stable dataset. 
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species than other bioreactors. I1 (variable Y10) is particularly interesting. As mentioned in 
Section 3.2.3, I1 is introduced in the bioreactor with pH buffer 1. The analysis of online data 
highlights that BR2 requires a higher volume of pH buffer 1 than other bioreactors to properly 
control the pH. However, the final concentration of I1 is not larger than in other bioreactors. 
This supports the conjecture that pH buffer 1 has an effect on the metabolism of the 
microorganism, as the I1 not found in the solution must be within the cells. The metabolism of 
the microorganisms in BR2 may be slightly different overall when compared to other units, a 
point supported by the fact that the solution processed by BR2 shows a different distribution of 
ionic species uniquely introduced in the bioreactors with the culture medium (variables Y12 to 
Y16), despite the culture medium being the same for all bioreactors. Figure 3.7(b) also 
highlights that BR2 tends to yield less byproducts (variables Y07 to Y09) than other bioreactors. 
Such byproducts could cause the pH of the solution to decrease, which justifies the slower 
decrease of pH in the set-point change in BR2 discussed in the previous Section. 
In summary, BR2 shows better performance with respect to the other bioreactors in the array. 
The differences in OUR, CER, and off-gas composition indicate that BR2 has a different 
respiration pattern. This is also related to the lower volume of additive, a substance affecting 
the gas-to-liquid mass transfer, required by BR2 when compared to other bioreactors. The 
smaller additive volume improves the mass transfer and simplifies the control of the DO, which 
can be kept closer to the optimal level during the production phase, minimizing the byproducts 
obtained in the bioconversion. The byproducts tend to decrease the pH of the solution, hence a 
lower concentration of such species makes the control of the pH easier and slows down the pH 
shift when the set-point change kicks in. However, the different respiration pattern of the 
microorganisms in BR2 requires more pH buffer 1 in the early phase of the batch, with respect 
to other units. Therefore, one may conjecture that, in BR2, there is a high production rate of 
byproducts in the biomass growth phase, but, since the biomass concentration is lower in this 
phase, less byproducts are formed overall. Finally, pH buffer 1 is found to influence the 
metabolism of microorganisms, which may contribute to lower the formation of byproducts in 
the later phase of the batch. 
After discussion with the plant personnel, these findings are attributed to the fact that BR2 
features a different impeller with respect to other bioreactors. While this difference was deemed 
to not be relevant during the construction of the plant, the PCA-based analyses described in this 
Section prove otherwise. 

3.5 Troubleshooting of the decreasing trend in end-of-batch quality 
In this Section, the calibration of the JYPLS model is described, elucidating the motivations 
that lead to the choice of this sophisticated modeling approach over simpler methods. The 
interpretation of the model, aimed at understanding the likely causes of the decreasing trend in 
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product quality, is described as well. Finally, a proper multivariate approach (LVMI) is adopted 
to confirm the findings of model interpretation. The trend dataset is used for all the 
aforementioned analyses. All the computations are carried out on MATLAB R2022a (The 
Mathworks, 2022a) with in-house-developed code. 

3.5.1 JYPLS model calibration and assessment 

The outcomes of the analyses described in the Section 3.4 support the hypothesis that a single 
predictive model for the whole array of reactors may not be appropriate to investigate the 
decreasing trend in product quality shown in Figure 3.3. However, the quality trend seems to 
affect all the bioreactors. Therefore, we aim at modeling common phenomena tanking place in 
all the units, hence developing one model for each bioreactor would not be appropriate either. 
Therefore, we resort to JYPLS by virtue of its ability to model arrays of parallel units extracting 
LVs describing both general phenomena common to the whole array (between-unit correlation) 
and phenomena characteristic of each single unit (within-unit correlation). In particular, the 
former correlation is set to take place in the quality space due to the JYPLS model principles 
(García-Muñoz et al., 2005), which is the space of interest in the analysis presented herein. 
Preliminary evaluations highlighted that process variables of three of the bioreactors (BR1, 
BR2, and BR7) show highly unstructured variability over the timespan covered by the trend 
dataset, which masks the input-output relationship. For these units, unacceptable validation 
performances are obtained with both JYPLS and single PLS models. Therefore, these three 
bioreactors are not considered in the analysis described in this Section. Only batches 
manufactured in BR3, BR4, BR5, and BR6 are included in the dataset. 
The data for JYPLS modeling are arranged as two sequences of matrices: {𝐗𝐗3,𝐗𝐗4,𝐗𝐗5,𝐗𝐗6} and 
{𝐘𝐘3,𝐘𝐘4,𝐘𝐘5,𝐘𝐘6}. Matrix 𝐗𝐗𝑝𝑝 is a BWU matrix containing batches from bioreactor BR𝑝𝑝. The batch 
data from bioreactor BR𝑝𝑝 are pre-processed as described in Section 3.4.1. The volume and the 
water fraction in the off-gas are neglected for the same reasons outlined in the aforementioned 
Section. For ease of interpretation, time profiles of all four bioreactors are truncated at the same 
number of time samples: 202. The same 20 process variables listed in Table 3.1 are considered 
for all bioreactors, yielding 4040 pseudo-variables in matrix 𝐗𝐗𝑝𝑝. The numbers of observations 
for each bioreactor are reported in Figure 3.4. Matrix 𝐘𝐘𝑝𝑝 contains measurements of the end-of-
batch quality variables of bioreactor BR𝑝𝑝. Only 2 variables describing the product quality at 
the end of each batch are considered for JYPLS modeling: the concentration of BDO and the 
quality index (respectively variables Y01 and Y05 in Table 3.2), as they are the variables 
showing the most defined trends, besides being the main quality variables for the process. 
The JYPLS model is calibrated following the procedure outlined by García-Muñoz et al. (2005). 
The number of LVs is selected by leave-one-out cross-validation (Facco et al., 2014, 2020; 
Meneghetti et al., 2012; Rudnitskaya et al., 2017). Different numbers of LVs yield the best 
performances for different bioreactors. However, the optimal compromise is found to be 𝐴𝐴 = 4 
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LVs. The best performances in cross-validation are achieved for BR5 and are reported in Table 
3.3 in terms of determination coefficients of the two output variables. 

Table 3.3 highlights that using 6 or 7 LVs would yield better a performance for BR5. However, 
validation performances of other bioreactors severely degrade after 𝐴𝐴 = 4, denoting the onset 
of overfitting. The determination coefficient for the concentration of BDO is 𝑅𝑅𝑐𝑐BDO

2 = 0.6870, 
while the one for the quality index is 𝑅𝑅𝐼𝐼2 = 0.4221. Both coefficients are deemed to be 
satisfactory considering the low signal-to-noise ratio of the data. However, one must be careful 
regarding the outcomes of the model interpretation for the quality index, given the low 
determination coefficient for this output variable. 

3.5.2 Understanding the quality trend by model interpretation 

In this Section, the JYPLS model is interpreted to gain insight on the likely causes of the 
decreasing trend in end-of-batch product quality. The JYPLS scores for all the considered 
bioreactors and joint-Y loadings on the first two LVs are reported in Figure 3.8. The scores are 
colored by BDO concentration scaled for confidentiality reasons. 
Figure 3.8(a) shows that the model clearly captures the decreasing quality trend: scores move 
from the positive side to the negative side of the first LV as the concentration of BDO decreases 
over the timespan of the dataset. Furthermore, the top panel of Figure 3.8(b) highlights that the 
trends of BDO concentration and quality index are correlated, the latter variable increasing as 
the former one decreases (see Figure 3.3). Therefore, the movement of the scores along the first 
LV describes both quality variables. However, the second LV mostly models the quality index 
alone. Therefore, while the two quality variables are correlated to some extent, the quality index 
is affected by other factors not included in the data at hand. This also explains the scarce cross-
validation performance of JYPLS on the quality index shown in Table 3.3. 

Table 3.3. Determination coefficients of the JYPLS model in cross-validation for BR5. 

LV 𝑹𝑹𝟐𝟐 on 𝒄𝒄𝐁𝐁𝐃𝐃𝐎𝐎 𝑹𝑹𝟐𝟐 on 𝑰𝑰 

1 0.6556 0.1902 

2 0.6718 0.3082 

3 0.6630 0.3892 

4 0.6870 0.4211 

5 0.7423 0.4226 

6 0.7365 0.4359 

7 0.7586 0.4349 

8 0.7537 0.4248 

9 0.7543 0.4253 
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For the sake of brevity, model interpretation is discussed for BR5 only, being the best-modeled 
unit in the array. The interpretation is carried out on the basis of the JYPLS outer regression 
coefficients, as they give a quantitative measure of the input-output relationship. In particular, 
a positive regression coefficient implies that a high value of the input variable yields a high 
value of the output variable, while a negative regression coefficient implies the reverse; 
furthermore, the higher the absolute value of a coefficient, the larger the variation of the output 
corresponding to a given variation in the relevant input. The coefficients for BR5 are reported 
in Figure 3.9. Note that, as the 𝐗𝐗𝑝𝑝 matrices are obtained by BWU from batch data, one 
coefficient is obtained for each time sample in the profile of each process variable. 

Regression coefficient for the end-of-batch BDO concentration, shown in Figure 3.9(a), are 
discussed first. The DO (variable X04) shows consistently negative regression coefficients, 
hinting to the fact that high values of DO yield a low BDO concentration. This finding matches 

 
(a) 

 
(b) 

Figure 3.8. (a) Scores and (b) joint-Y loadings of the JYPLS model developed on data from 
the trend dataset. The scores are colored by BDO concentration scaled between 0 (low 
concentration) and 1 (high concentration). 

 
(a) 

 

 
(b) 

Figure 3.9. Time profiles of JYPLS outer regression coefficients for each process variable 
on (a) BDO concentration and (b) quality index for BR5. 
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the available information of the metabolism of microorganisms and the outcomes of the analysis 
of the stable dataset discussed in Section 3.4. The coefficients of OUR and CER (variables X19 
and X20, respectively) confirm that a high respiration rate yields a low BDO concentration. A 
closer analysis of the raw profiles of these three variables reveals a drift of all of them towards 
higher values in the timespan covered by the data. The drift in DO causes the process to stray 
from the optimal conditions, inducing a high respiration rate in the microorganisms, hence the 
increased OUR and CER. The suboptimal DO also causes a less efficient utilization of the 
substrate, as denoted by the negative coefficients of its added volume (variable X11). This leads 
to the formation of more byproducts, which tend to lower the pH, hence to increase the demand 
of pH buffer 2 volume (variable X14), its coefficients being negative (pH buffer 2 is alkaline). 
The increased demand of pH buffer 2 is also related to the pH profile itself. In Figure 3.9(a), 
the coefficients on pH (variable X03) show a “hill” in the central part of the profile, hinting to 
the fact that shifting the pH to the low set-point later in the batch yields a higher BDO 
concentration. This can be achieved by adding more pH buffer 1 (variable X13) at the beginning 
of the batch and overall, hence the pattern shown by the coefficients of such variable in Figure 
3.9(a). However, an analysis of the raw profiles of pH in the dataset shows that the duration of 
the pH “high shelf” steadily decreased over the timespan of the data. 
After discussions with the plant personnel, we attribute the earlier pH set-point shift to a 
deliberate action performed by plant operators. The coefficients on the quality index in Figure 
3.9(b) show that a large added volume of pH buffer 1 (variable X13) is responsible for a high 
end-of-batch quality index. In fact, throughout the timespan of the trend dataset, plant operators 
tried to decrease the end-of-batch quality index by limiting the added volume of pH buffer 1 
and triggering the pH set-point shift as soon as the preset maximum volume is achieved.  This 
action is guided by a univariate reasoning (the effect of a single variables is considered). 
However, the multivariate model-based analysis discussed here proves that such an action is 
detrimental to both the BDO concentration and the quality index, due to the pH shift happening 
earlier and causing, jointly with the DO drift, the formation of more byproducts. The latter point 
also implies a high demand of pH buffer 2 (variable X14) to control the pH, hence an increase 
in the quality index due to a large added volume of this chemical, as can be inferred by the 
positive coefficients of this variable in Figure 3.9(b). 
Figure 3.9(b) also highlights that adding a large volume of additive (variable X15) at the 
beginning of the batch contributes to increasing the end-of-batch quality index, as denoted by 
the positive coefficients. In fact, the additive has a remarkable effect on the gas-to-liquid mass 
transfer, as discussed in Section 3.4, which may in turn influence the growth phase of the 
microorganisms by affecting the DO, thus compromising the whole batch. This conclusion is 
supported by Figure 3.9(a) as well, where the coefficients of the additive added volume are 
negative in the earlier phase of the batch but become strongly positive in the later phase. This 
pattern suggests that little additive should be introduced in the bioreactor before the batch start 
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as to ease the control of the DO in the biomass growth phase, while a larger volume should be 
used in the production phase to control the mass transfer properties of the system, thus the DO. 
Other minor conclusions can be drawn exploring the coefficients in Figure 3.9. However, they 
are not discussed here for brevity. Finally, qualitatively similar conclusions can be drawn 
concerning the other bioreactors, even though the differences in the process units cause slight 
variations in the interpretation, most notably for the DO-additive interaction. 

3.5.3 Guidelines for process recovery by model inversion 

The model interpretation discussed in the previous Section offers precious guidelines to recover 
the quality loss experienced in the plant in the timespan of the trend dataset. Such an analysis 
also makes clear that both BDO concentration and the quality index are not influenced by single 
variables independently: complex interactions between the phenomena underlying the process 
exist due to the multivariate nature of the system under investigation. Therefore, the conclusions 
drawn from the JYPLS model interpretation (based on the analysis of one or few variables at a 
time) must be verified by a proper multivariate approach: LVMI is used to this end. The 
outcomes of LVMI also pave the way for future, data-driven process improvement. 
Two targets for the product quality are set for LVMI: 

• a high-quality target denoted as “HQ” and set as 𝐲𝐲des
HQ = [0.874 0.136]T; 

• a low-quality target denoted as “LQ” and set as 𝐲𝐲des
LQ = [0.241 0.768]T. 

In both cases, the first component refers to the scaled BDO concentration, while the second 
component is the scaled quality index. 𝐲𝐲des

HQ  represents a product with high BDO concentration 
and low quality index, while 𝐲𝐲des

LQ  identifies the opposite, undesirable situation. The two targets 
are visualized in the product quality space of the historical data in Figure 3.10. The points 
representing batches in the historical dataset are colored by batch number, the scale of which 
corresponds to the abscissa of the data reported in Figure 3.3. 

 
Figure 3.10. High-quality (HQ) target and low-quality (LQ) targets shown in the product 
quality space and compared to the quality of products manufactured in the historical batches 
in the dataset. The points representing batches in the historical dataset are colored by batch 
number corresponding to the abscissa of Figure 3.3. 
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The two quality targets are used in the inversion of the JYPLS model. DI is selected to perform 
the inversion by virtue of its simplicity and computational efficiency. This choice is motivated 
by the simple confirmatory nature of the LVMI. For the same reason, only the particular 
solution to DI, the 𝐭𝐭des,p defined in (2.77), is considered and the two-dimensional null space 
arising from the inversion (recall that 𝐴𝐴 = 4 and 𝑉𝑉𝑌𝑌 = 2 in this case) is disregarded. The 
resulting profiles of process variables are visualized to confirm the outcomes of the model 
interpretation outlined in Section 3.5.2. While the inversion of the JYPLS model could be used 
to design process conditions for any of the bioreactors considered in the model, only BR5 is 
discussed here for the same reasons explained in the previous Section. 
The scores obtained by DI of the two quality targets are reported in Figure 3.11, together with 
the designed profiles of two selected process variables, DO and pH, for BR5. The scores of 
batches in the historical dataset are colored by scaled BDO concentration. 

The scores in Figure 3.11(a) show that 𝐲𝐲des
HQ  and 𝐲𝐲des

LQ  are projected onto the space of joint LVs 
in a meaningful way, confirming that the model explains the quality trend. Furthermore, both 
the targets are projected within the model validity region (the confidence ellipse), hence results 
of the inversion are deemed reliable. 
Figure 3.11(b) confirms the main points outlined in Section 3.5.2. The inversion of the low-
quality target yields a DO profile with a consistently higher value for the whole production 
phase, when compared to the results of the inversion of the high-quality target. The designed 
pH profiles clearly illustrate the detrimental effects of anticipating the shift in the pH set-point, 
with the profile obtained from 𝐲𝐲des

LQ  initiating the shift as early as allowed by the data at hand 
and proceeding to the new set-point with a steep ramp. Conversely, the profile obtained from 
𝐲𝐲des
HQ  keeps a high level of pH for a longer period and reaches the new set-point with a softer 

ramp. Profiles of other process variables (not shown for conciseness) confirm these points. 

 
(a) 

 
(b) 

Figure 3.11. (a) Scores obtained by DI of the high-quality (HQ) and low-quality (LQ) targets 
compared to scores of batches in the historical dataset, colored by BDO concentration scaled 
between 0 (low concentration) and 1 (high concentration), and (b) designed profiles of two 
selected process variables compared to the historical data of BR5. 
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The outcomes of LVMI provide strong evidence on the likely causes of the decreasing trend of 
the end-of-batch product quality and offers guidelines for future data-driven process 
improvement. However, we cannot provide any experimental proof of the effectiveness of such 
guidelines. In fact, major changes to the equipment and structure of the upstream process took 
place in the plant shortly after the completion of this study. The motivation for such changes 
was unrelated to the problem we investigated and affected the reference values of the quality 
variables, thus preventing us from verifying the resolution of the issue we investigated by 
testing the proposed guidelines on the plant. We strongly believe in the value of our approach 
nonetheless, and we are confident of its effectiveness in light of the strong conclusions we put 
forward by data analytics. 

3.6 Conclusions 
In this Chapter, we carried out a comprehensive analysis of the bioconversion step in the 
upstream process of an industrial biorefinery for BDO production. The process features seven 
bioreactors operating in cycled fed-batch regime as to continuously feed the downstream 
process of the biorefinery. We addressed a decreasing trend in the end-of-batch product quality 
affecting all bioreactors, the main effects of which manifested as a gradual decrease in the final 
BDO concentration and an increase in a process-specific quality index, a fundamental variable 
for the proper operation of the downstream process following the bioreactors. 
We applied PCA to two and a half months of data recorded during stable operation of the 
process to assess differences among the bioreactors. The analysis highlighted that one of the 
bioreactors yields significantly better performances with respect to the other ones. The 
properties of PCA allowed us to diagnose the main differences between the identified 
bioreactors and the other units in terms of both process variables and product quality attributes. 
We resorted to JYPLS to address the decreasing trend in end-of-batch product quality, as 
captured by three months of data. The choice of JYPLS was motivated by its ability to model 
arrays of parallel units considering both within-unit and between-unit correlations. Model 
interpretation allowed us to attribute the decreasing trend in the BDO concentration to a drift 
of the DO towards higher values in the production phase of the batch, which lead to an increase 
in the respiration rate and to a less efficient utilization of the substrate. Furthermore, a reduction 
in the added volume of one of the pH buffers, an action gradually implemented in the plant over 
the timespan of the dataset as an effort to reduce the quality index, caused an early onset of the 
pH set-point shift, which was demonstrated to be detrimental to both the BDO concentration 
and the quality index itself. We confirmed all the conclusions drawn from model interpretation 
by LVMI, specifically by DI of two quality targets: one for a high-quality product and one for 
a low-quality product. The profiles obtained by inversion of the two quality targets provided 
clear guidelines to identify the best process conditions and can be used to recover from the 
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undesirable quality loss experienced by the plant. However, we could not validate our results 
experimentally due to significant changes taking place in the plant set-up simultaneously to the 
completion of this study (unrelated to the problem we investigated). We are nonetheless 
confident in the effectiveness of our approach. 
This study provides strong evidence of the value of a data-driven approach to process 
understanding and improvement in challenging industrial scenarios. The latent-variable models 
selected allowed to: gain a remarkable knowledge on the process and on the fundamental 
physical and biological phenomena taking place in the bioreactors; model an array of parallel 
bioreactors under limited data availability for each unit; address the decreasing trend in the end-
of-batch product quality; develop guidelines for future process improvement. The fact that these 
results were obtained in a one-of-a-kind process implementing cutting-edge technology further 
supports the value of the Industry 4.0 approach adopted in this Thesis. 
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Chapter 4 
 

Hybrid model-based monitoring 
of a membrane separation process5 

This Chapter discusses the challenges of membrane fouling monitoring in biorefineries and 
proposes a hybrid modeling strategy to characterize reversible and irreversible fouling in multi-
module membrane separation systems. While the typical approach relies on the limited insight 
offered by the average resistance of multi-module systems, the proposed strategy combines PLS 
modeling and Darcy’s equation to estimate individual resistances of all membrane modules. 
Monitoring individual resistances provides valuable insight into the fouling state of the 
membranes, offering advantages over monitoring trans-membrane pressures and permeate 
fluxes in terms of data variability, process changes, module interactions, and fouling dynamics. 

4.1 Introduction 
A typical feature of biorefineries based on bioconversion is that the mixtures processed in 
bioreactors, containing the desired products, are usually diluted solutions, which entails high 
downstream processing costs (Bähner et al., 2021; Cuellar et al., 2020; Martín et al., 2013). 
Membrane filtration has been identified as an effective technology to remove cells (and high 
molecular weight compounds) from the solutions containing the main product (Prochaska et 
al., 2018; Shimizu et al., 1993). The topic has been widely investigated: membrane operations 
are in fact becoming increasingly relevant in biorefineries (Abels et al., 2013; Carstensen et al., 
2012; Ennaceri et al., 2022; Gerardo et al., 2014; Saha et al., 2017) due to their better scalability 
and lower operating costs compared to conventional thermal separation processes (Ennaceri et 
al., 2022; Gerardo et al., 2014; Jiang et al., 2013; Saha et al., 2017). 
Among the membrane-based operations, pressure-driven membrane separation processes, for 
example ultrafiltration and nanofiltration, are the most used ones to separate biomass from the 
bioconversion products (Rudolph et al., 2019). However such processes can suffer from 
membrane fouling (Arnese-Feffin et al., 2023c; Mancini et al., 2020; Prochaska et al., 2018). 
Membrane fouling can be characterized as reversible or irreversible: the former is relatively 
fast, triggers short-term process disruption, and can be removed by hydraulic or chemical 
cleaning; the latter acts slowly and causes long-term membrane degradation (Huang et al., 2021; 

                                                 
5 Part of the research discussed in this Chapter has been published as a journal paper (Arnese-Feffin et al., 2024). 
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Shi et al., 2014). The two fouling types influence one another and affect membranes at the same 
time, causing decrease of permeate flux in constant pressure filtration (Abels et al., 2013) or 
increase of TMP (pressure difference across the membrane) in constant flux separation 
(Klimkiewicz et al., 2016), also implying an increase in energy expenditure in the latter case. 
Fouling, in particular the reversible one, typically causes membrane separation processes 
filtering the outlet of bioreactors to run in semi-continuous regime, meaning alternating 
operation and cleaning phases (Klimkiewicz et al., 2016). The effect of membrane fouling on a 
sequence of operation and cleaning cycles is schematically depicted in Figure 4.1. 

Prompt monitoring of fouling is vital for efficient operation of membrane processes. This task 
can be accomplished experimentally at the processing line (Rudolph et al., 2019), by means of 
model-based techniques (Monclús et al., 2011), or by simple visual inspection of the trends of 
process variables such as the permeate flux and the TMP. However, monitoring fouling by 
means of these process variables might be cumbersome: they have been reported to exhibit 
strong variability (Philippe et al., 2013), which is in fact determined not only by membrane 
fouling, but also by the variability of process conditions, either natural or induced by deliberate 
control actions. On the other hand, the model-based approach has been successfully 
implemented to tackle similar problems, such as fouling in heat exchangers (Diaz-Bejarano et 
al., 2020), and found several applications to membranes as well  (AlSawaftah et al., 2021). 
Microfiltration and ultrafiltration can be generally described by the integral form of Darcy’s 
equation (Meindersma et al., 1997; Whitaker, 1986), which relates the volume-flux of permeate 
and the TMP to the membrane resistance to flow (or to its reciprocal, the membrane 
permeability). In a way, membrane resistance represents the “health state” of a membrane and 
provides a measure of its fouling, as proved by several studies of membrane fouling focusing 
on resistance/permeability modeling and prediction (Dologlu et al., 2022; Geissler et al., 2005; 
Han et al., 2020, 2020; Huang et al., 2021; Kallioinen et al., 2006; Philippe et al., 2013; Ruiz-
García et al., 2016). In the context of plant operation, the assessment of fouling through online 
monitoring of membrane resistance is of paramount importance to guarantee prompt processing 

 
Figure 4.1. Action of membrane fouling on a sequence of operation-cleaning cycles. 
Reversible fouling is caused by material accumulating on the membrane (gray dots) as the 
filtration proceeds. Mechanical/chemical cleaning can remove most of the accumulated 
material, but a fraction contributes to irreversible fouling and long-term degradation of the 
membrane. 
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of products of upstream bioconversion, smooth downstream operation, and economical 
optimality of production in industrial biorefineries. 
Estimation of membrane resistance (or permeability) by Darcy’s equation is straightforward, 
provided that one has access to online measurements of permeate flux and TMP. However, 
even such simple demands might not be met in full-scale industrial processes, or even in pilot 
plants. Online measurements of permeate flux and TMP are typically available in plants 
employing a single membrane module (Chen et al., 2014; Han et al., 2020), but this is not 
usually the case when multiple modules are used, despite multi-module membrane separation 
being a common occurrence in industrial practice (Dologlu et al., 2022; Geissler et al., 2005; 
Kallioinen et al., 2006; Klimkiewicz et al., 2016; Ruiz-García et al., 2016). Given the limited 
availability of appropriate online data, only the average resistance/permeability of the ensemble 
of membranes is estimated, thus neglecting the actual resistances/permeabilities of single 
membrane modules. This clearly offers limited insight on the actual fouling state of the modules 
and hinders the identification of severe fouling events acting on single modules. 
On the other hand, online measurements are not the only data source available in industrial 
processes. In fact, offline measurements are collected during process operation to monitor 
critical variables not available through online sensors, or that cannot be acquired automatically 
by cheap and/or reliable sensors (Kadlec et al., 2009). Therefore, available data are typically 
multi-rate, featuring online variables automatically acquired by the data acquisition system at 
high sampling rate and offline variables manually measured by operators at low sampling rate. 
While the time scale of acquisition of online variables is typically seconds or minutes, the time 
scale for offline variables is not as consistent and can vary from some hours to days or even 
weeks (Lin et al., 2009). Assuming, for instance, that available data for each membrane module 
operating in the plant consist of high sampling rate permeate flux measurements coming from 
the data acquisition system and low sampling rate TMP measurements coming from operator-
read manometers installed on modules, single-module resistances can still be estimated at the 
TMP sampling rate (the lowest one). This solution might be unsatisfactory nonetheless, because 
the resolution of estimates could be too low to properly characterize relatively fast reversible 
fouling events, thus hindering punctual monitoring and prompt detection. 
Despite the aforementioned limitations, many literature studies aim at modeling the evolution 
of membrane resistance by exploiting the information concealed in process data. Recent 
literature reviews (Bagheri et al., 2019; Velidandi et al., 2023) highlight that the most common 
approach is to consider only the average resistance in multi-module systems and to focus on 
either reversible or irreversible fouling, with limited attempts to resolve the two types (Chan et 
al., 2017; Huang et al., 2021; Klimkiewicz et al., 2016). Furthermore, strongly nonlinear 
models, such as neural networks, are used by default; these models require massive datasets 
(Rendall et al., 2019; Sun et al., 2021) to ensure robustness and to discern relevant phenomena 
(fouling) from common-cause process variability (in other words, to avoid overfitting). 
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However, such datasets are typically not available for large-scale processes (Rendall et al., 
2019; Sun et al., 2021). On the other hand, simpler, linear modeling approaches are less 
demanding in terms of data amount, but are seldom used as they may require sophisticated 
measurements to achieve good performance, for example concentration of relevant compounds 
in the inlet stream acquired in specifically designed experimental campaigns (Philippe et al., 
2013). Linear models can still achieve good performance in the prediction of TMP rather than 
resistance, as proved by Kaneko et al. (2013), but TMP may not be the most appropriate variable 
to monitor when the purpose is discriminating between reversible and irreversible fouling. 
A different approach is to develop a soft sensor combining data and process knowledge in a 
hybrid modeling framework (Narayanan et al., 2023; Rajulapati et al., 2022; Sansana et al., 
2021; Solle et al., 2017; von Stosch et al., 2014; Yang et al., 2020). Whereas the potential of 
soft sensors has been recognized to enhance sustainable process operation (Perera et al., 2023), 
their application to biorefineries and membrane separation processes at the industrial scale is 
still limited. In fact, few studies (Chan et al., 2017; Chew et al., 2017; Grisales Díaz et al., 2017; 
Hwang et al., 2009; Piron et al., 1997) considered the hybrid modeling approach, and most of 
them (Chew et al., 2017; Hwang et al., 2009; Piron et al., 1997) combined neural networks to 
predict the parameters of a knowledge-driven model (the cake filtration model) aimed at 
describing the evolution of resistance due to reversible fouling, thus neglecting irreversible 
fouling. Such studies considered a single-module pilot plant (Chew et al., 2017), or multi-
module lab equipment (Piron et al., 1997) and pilot plants (Hwang et al., 2009), estimating only 
the average resistance in the latter cases. A different strategy was proposed by Grisales Díaz et 
al. (2017), where an artificial neural network was used to model two variables: the change rate 
(time derivative) of membrane permeability; a corrective term for TMP to account for possible 
osmotic pressure effects. Industrial data of a wastewater treatment plant employing a single 
membrane module were used. Chan et al. (2017) adopted yet another different approach, using 
the cake filtration model to estimate the energy requirement of single process runs and Gaussian 
process regression to model the prediction mismatch between runs, indirectly providing 
separate models for reversible and irreversible fouling. However, they achieved such results in 
a single, laboratory-scale membrane module operated under controlled fouling conditions. 
In this study, we address the problem of characterizing both reversible and irreversible fouling 
in multi-module industrial biorefinery membrane separation systems by a hybrid modeling 
strategy that enables high-frequency estimation of the resistances of individual membrane 
modules. High sampling rate process data, together with low sampling rate TMP data, are first 
used to calibrate (and then use) a PLS model (Geladi et al., 1986; Wold et al., 2001) that 
estimates the TMPs of each membrane module at high frequency. Darcy’s equation is then used 
to obtain high-frequency estimates of the resistances of each module. To test the proposed 
strategy, we use real data from two years of operation of the industrial scale biorefinery 
considered in this Thesis (Novamont S.p.A., 2016). The microfiltration section separates cells 
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from the bioconversion products and features seven interconnected membrane modules 
equipped with online sensors that measure the permeate fluxes; only offline manometers are 
available to measure the TMPs, thus requiring manual readings by operators. We show how 
monitoring individual resistances, even when done by simple visual inspection, can offer 
valuable insight on the reversible and irreversible fouling state of membranes. We also discuss 
the advantages of monitoring individual resistances, rather than TMPs and permeate fluxes, 
from the standpoints of data variability, effect of process changes, interaction between modules 
in multi-module systems, and dynamic evolution of fouling. 
The remainder of this Chapter is organized as follows. The process investigated in this study 
and the available dataset are described in Section 4.2. Section 4.3 focuses on the mathematical 
models used to develop the soft sensor. Results are discussed in Section 4.4, and conclusions 
are drawn in Section 4.5. 

4.2 Ultrafiltration process and data 
In this Section, we introduce the first operation in the downstream chain: an ultrafiltration 
process carried out on porous membranes. We also discuss the current fouling monitoring 
strategy and the dataset available for the study presented in this Chapter. 

4.2.1 Ultrafiltration process 

The ultrafiltration unit processes the mixture from the upstream process and is a critical 
operation in the downstream train due to the high fouling potential of the feed (containing the 
biomass). A simplified process flow diagram of this operation is illustrated in Figure 4.2. 

The sterilized broth is accumulated in two parallel feed tanks, which alternate in feeding an 
array of seven membrane modules filtering the broth to remove cells and high molecular weight 
compounds, yielding a clarified permeate stream containing the BDO. The retentate of a module 

 
Figure 4.2. Simplified scheme of the ultrafiltration operation in the downstream process. 
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feeds the following one, while permeates of all modules are collected through a main manifold. 
The first two modules operate a simple concentration, while the remaining five employ a 
diafiltration strategy to maximize product recovery (Mulder, 1996). The feed flow rate is fixed, 
while flow rates of retentate and diafiltration solvent are adjusted based on preset ratios to the 
feed flow rate. The overall permeate flow rate (controlled variable) is kept constant by changing 
the overall TMP through feed pressure adjustment (by acting on the feed pump speed, 
manipulated variable). 
The modules adopt the cross-flow configuration; therefore, the cross-flow velocities are 
adjusted by manipulating the speeds of the pumps incorporated into the modules (each speed 
can be manipulated independently) to counteract the effects of reversible fouling. Permeate 
flow rates of single modules are not individually controlled, but they can vary according to both 
membrane age (resistance) and applied TMP. 
The process is interrupted, and cleaning is triggered when a preset volume of feed has been 
filtered or when the feed pressure exceeds a given threshold. Ultrafiltration is therefore run in 
semi-continuous mode, alternating operating and cleaning phases (Klimkiewicz et al., 2016; 
Philippe et al., 2013). The overall feed pressure and cross-flow velocity of one module on a 
selected timespan are reported as an example in Figure 4.3, where shaded intervals identify 
cleaning operations. Note that, for confidentiality reasons, all process variables will be reported 
as normalized values within the [0, 1] interval in all figures throughout this Chapter. 

4.2.2 Monitoring of membrane fouling in the ultrafiltration process 

According to the current plant operation, the fouling state of membrane modules is monitored 
using offline measurements. Readings of manometers installed on each module can be used to 
compute the TMPs. Matching online measurements of permeate fluxes are then used to 
compute the flux-to-TMP ratios for each module, which are proportional to membrane 
permeabilities. An example is shown in Figure 4.4 for a period over which the membrane of 

 
Figure 4.3. Example of run-cleaning sequence in the ultrafiltration plant. Shaded intervals 
identify cleaning operations (large oscillations in the process variables are the result of the 
cleaning operations in these periods). 
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the relevant module was replaced (vertical solid black line), as can be clearly inferred by the 
trend of the flux-to-TMP ratio. Figure 4.4 also shows the effects of both reversible fouling 
(permeability increases after cleaning) and irreversible fouling (average permeability decreases 
across runs), though the former is harder to characterize properly due to the low frequency of 
readings. For example, a fouling event was detected on the third-to-last run shown in Figure 
4.4 only after membrane permeability was largely degraded (see arrow in the figure), while an 
earlier detection would have helped operators to take action immediately. 

4.2.3 Available dataset 

Figure 4.2 illustrates all the online variables available through the data acquisition system. 
Level, temperature, and pH are measured for each feed tank. The feed manifold features flow 
rate, pressure, and conductivity sensors. Flow rate measurements are available for the retentate 
and diafiltration solvent manifolds, while pressure sensors are installed on the retentate and 
permeate manifolds. Each cross-flow membrane module is operated with controlled cross-flow 
velocity (inferred from the measured pump powers) and features sensors for temperature, 
permeate flow rate, and diafiltration solvent flow rate (where relevant). Online pressure sensors 
are not available on membrane modules, but manometers installed on the feed and retentate 
pipes allow for manual readings of pressure, which are made available as offline data. 
The information conveyed by the 38 online variables and 14 offline variables is augmented by 
computing new variables. The overall volume-flow rate [m3 s−1] of permeate, �̇�𝑉P, is given by: 

�̇�𝑉P = ∑ �̇�𝑉𝑙𝑙P7
𝑙𝑙=1 − ∑ �̇�𝑉𝑙𝑙D6

𝑙𝑙=3      , (4.1) 
where �̇�𝑉𝑙𝑙P and �̇�𝑉𝑙𝑙D are permeate and diafiltration volume-flow rates [m3 s−1] of module 𝑙𝑙, 
respectively. The volume conversion ratio (VCR) of the multi-module system is computed as: 

VCR = min � �̇�𝑉F

1 m3 s−1
, �̇�𝑉

F

�̇�𝑉R
�     , (4.2) 

�̇�𝑉F and �̇�𝑉R being the feed and permeate volume-flow rates [m3 s−1], respectively. A saturation 
is introduced by the minimum operator to limit the maximum VCR when �̇�𝑉R approaches zero, 
typically during the startup and shutdown phases of each run. The TMP [Pa] of the multi-
module system is defined as: 

Δ𝑃𝑃 = 𝑃𝑃F+𝑃𝑃R

2
− 𝑃𝑃P     , (4.3) 

 
Figure 4.4. Example of the effect of membrane replacement (vertical solid black line) on the 
flux-to-TMP ratio. Shaded intervals identify cleaning operations. The arrow indicates the 
last observation before a significant fouling event, which was not detected until the following 
observation due to the low frequency at which measurements are performed. 
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where 𝑃𝑃F, 𝑃𝑃R, and 𝑃𝑃P  are the pressures [Pa] of the feed, retentate, and permeate manifolds, 
respectively. The multi-module TMP is hence defined as the difference between the average 
feed-side pressure (considering all modules) and the permeate-side pressure. 
The variables available through relevant offline sensors are also illustrated in Figure 4.2. These 
variables are used to compute the TMPs of single membrane modules, the definition of which 
is similar to (4.3): 

Δ𝑃𝑃𝑙𝑙 = 𝑃𝑃𝑙𝑙
F+𝑃𝑃𝑙𝑙

R

2
− 𝑃𝑃P     , (4.4) 

but here 𝑃𝑃𝑙𝑙F and 𝑃𝑃𝑙𝑙R are offline readings of the feed and permeate pressures [Pa] of module 𝑙𝑙, 
respectively, while 𝑃𝑃P is the corresponding online measurement of the pressure of the permeate 
manifold, assumed to be equal for all modules. 
Data covering almost two years of operation are available for modeling. Data for some periods 
are missing due to changes in operational production. A total of 496 batches is found in the 
datasets. The number of observations of online variables spans between 21 and 260 per batch, 
with an average of 172, thus entailing a strong variability in the batch duration. On the other 
hand, offline variables are recorded between 1 and 6 times per batch, with an average of 4; 
most offline measurements are unevenly spaced and not aligned across runs. However, 
measurements of both online and offline variables are timestamped, thus observations can be 
matched. The available data are used to build a PLS model for online prediction of TMPs of all 
membrane modules using online variables only. This will be discussed in the next Section. 

4.3 Hybrid soft sensor for membrane resistances 
In this Section, the mathematical models used to build the hybrid soft sensor are introduced. 
The architecture of the overall model is presented as well. 

4.3.1 Data-driven element: partial least-squares regression 

The data-driven element used in the hybrid soft sensor is a PLS regression model, the rationale 
of which has been introduced in Section 2.2. For the following discussion, we assume that 𝐘𝐘 
collects offline readings taken at low frequency, while 𝐗𝐗 contains observations of process 
variables acquired online with timestamps matching the ones of offline observations in 𝐘𝐘. An 
in-depth discussion of the PLS element will be given in Section 4.4.1. 

4.3.2 Knowledge-driven element: Darcy’s equation 

Permeation and filtration on dense and porous membranes are generally modeled through the 
transport theory. A thorough treatment of such a theory is out of the scope of this Chapter; 
interested readers are referred to notable literature resources (Baker, 2004; Mulder, 1996; 
Spiegler et al., 1966; Vilker et al., 1984). 
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Filtration through porous membranes can be described by the pore-flow model, represented by 
Darcy’s equation (Darcy, 1856) in its integral form (Meindersma et al., 1997; Whitaker, 1986): 

𝑅𝑅 = 1
𝜇𝜇𝜇𝜇
Δ𝑃𝑃     , (4.5) 

where 𝑅𝑅 is the membrane resistance to flow [m−1], 𝜇𝜇 is the dynamic viscosity [Pa s] of the 
permeate, 𝑣𝑣 is the volume-flux [m3 s−1 m−2] of permeate (permeate flow rate divided by the 
membrane surface), and Δ𝑃𝑃 is the TMP [Pa] (average pressure difference between the feed-
side and the permeate-side of the membrane). Osmotic pressure is usually neglected for 
membrane filtration of bioconversion products because it is negligible for solutes with high 
molecular weight (Vilker et al., 1984; Wankat, 2009). Given the available online measurements, 
(4.5) allows to compute online the average resistance of the sequence of membrane modules in 
Figure 4.2 using the multi-module TMP computed as in (4.3). However, such “global” 
resistance is helpful to quantify the overall fouling state of the ensemble of modules but gives 
no insight on the actual states of single membranes. The resistance of each module can also be 
computed using offline measurements and applying Darcy’s equation to each membrane 
module 𝑙𝑙 computing the TMP from (4.4): 

𝑅𝑅𝑙𝑙 = 1
𝜇𝜇𝑙𝑙𝜇𝜇𝑙𝑙

Δ𝑃𝑃𝑙𝑙,      𝑙𝑙 ∈ {1, … , 7}     . (4.6) 

The resistance computed in (4.6) represents the overall resistance of the membrane, including 
contributions from both reversible and irreversible fouling; it also has a well-defined physical 
meaning, as opposed to the “global” resistance computed by (4.5). However, since the 
frequency of offline measurements is low, the trend of the overall resistance does not allow to 
properly monitor reversible fouling. Therefore, we seek to obtain high-frequency estimates of 
the resistances of each membrane module in Figure 4.2. 

4.3.3 Architecture of the hybrid soft sensor 

A hybrid estimation approach is proposed, combining data-driven and knowledge-driven model 
components. Namely, offline observations of TMPs for each module, together with the 
corresponding observations of a subset of downsampled online and computed variables, are 
first used to calibrate a PLS model that estimates the TMP; subsequently, the model is used to 
obtain high-frequency estimates of TMPs based on online variables at their original sampling 
rate (details on the PLS model calibration and assessment are provided in Section 4.4.1). This 
corresponds to the data-driven component of the hybrid estimation approach. The knowledge-
driven component is given by (4.6), which is used to estimate the resistances of all modules 
once the TMP estimates are available. The architecture of the soft sensor is graphically 
represented in Figure 4.5. 
Viscosity measurements are not available online. Expert knowledge from plant operators was 
leveraged to assume a reasonable value for viscosity. Water-like behavior is postulated for 
permeate viscosities on all modules, and the effects of pressure and composition are deemed 
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negligible. The temperature effect on viscosity is modeled empirically (Perry et al., 2008): 
𝜇𝜇𝑙𝑙 = exp �−52.843 + 3703.6

𝑇𝑇𝑙𝑙
+ 5.866 ln𝑇𝑇𝑙𝑙 − (5.879 ⋅ 10−29)𝑇𝑇𝑙𝑙10�     , (4.7) 

where the temperature is in K and the viscosity is obtained in Pa s. 
Note that, even if the assumptions on viscosity could seem strong, the purpose of the soft sensor 
is not to yield extremely accurate estimates of the membrane resistance, but to accurately 
represent its trend to proper monitor the process. On the other hand, we are aware that an 
inaccurate estimation of the values of resistances could trigger membrane maintenance and 
replacement too early or too late, should the estimates be used to schedule such operations. 
Therefore, we recommend relying on the proposed model only for monitoring, while its use for 
maintenance scheduling is object of future research. 

4.4 Results and discussion 
Results of the study are presented in this Section. Section 4.4.1 presents the workflow for PLS 
model development and assessment, which are entirely achieved on MATLAB R2022a (The 
Mathworks, 2022a) with in-house-developed code. Sections 4.4.2 and 4.4.3 discuss the 
advantages of using resistances rather than fluxes and TMPs for process monitoring. 

4.4.1 PLS model calibration and assessment 

Direct prediction of membrane resistance by data-driven modeling usually requires strongly 
nonlinear models (Bagheri et al., 2019; Velidandi et al., 2023), while linear modeling may 
require to carry out ad-hoc experiments to acquire sophisticated measurements, for example 
concentration of foulants (Philippe et al., 2013). In fact, preliminary tests with a linear PLS 

 
Figure 4.5. Architecture of the proposed hybrid soft sensor. The middle column represents 
the data-driven component, while the column on the right represents the knowledge-driven 
component. 
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model to estimate resistances directly yielded very unsatisfactory results: as shown in Figure 
4.7(b) residuals featured a clear trend not captured by the model, thus denoting the need for a 
nonlinear model; furthermore, significant autocorrelation was detected in the residuals, 
indicating that the process dynamics was not modeled, as reported in Figure 4.6(c). Therefore, 
as discussed in the previous Section, we tackle the problem by using a hybrid modeling 
approach: namely, we use a linear PLS model to provide estimates of TMPs from the available 
measurements; then, we couple this model to a simple nonlinear knowledge-driven model 
(Darcy’s equation) to estimate the individual resistances from TMPs. A somewhat similar 
approach, yet in a different context, was used by Kaneko et al. (2013). The advantages of using 
a linear data-driven model are that, compared to a nonlinear data-driven model, model 
calibration is simplified, and model robustness is improved.  
With respect to the PLS model, TMPs of membrane modules, computed by (4.4) from 
observations of offline variables at low frequency, are regarded as output variables, while input 
variables are the corresponding observations of a subset of online and computed variables, as 
reported in Table 4.1. 
To build the PLS model, the online observations are downsampled to match the timestamps of 
online and offline observations; more sophisticated approaches to multi-rate modeling (Lin et 
al., 2009) were not needed for this study. Observations from all runs are stacked vertically to 
obtain the data matrices to be processed by the modeling algorithm. Stating the same in a 

Table 4.1. Input and output variables of the PLS model. 

ID Variable Symbol Category 

Input variables 

X01 Feed flow rate �̇�𝑉F Measured 

X02 Retentate flow rate �̇�𝑉R Measured 

X03 Permeate flow rate �̇�𝑉P Computed by (4.1) 

X04 Diafiltration solvent flow rate �̇�𝑉D Measured 

X05 Overall TMP Δ𝑃𝑃 Computed by (4.3) 

X06 Feed pressure 𝑃𝑃F Measured 

X07 Retentate pressure 𝑃𝑃R Measured 

X08 Permeate pressure 𝑃𝑃P Measured 

X09 VCR VCR Computed by (4.2) 

X10 to X16 Permeate flow rates of modules 1 to 7 �̇�𝑉𝑙𝑙P, with 𝑙𝑙 ∈ {1, … , 7} Measured 

X17 to X23 Temperatures of modules 1 to 7 𝑇𝑇𝑙𝑙 , with 𝑙𝑙 ∈ {1, … , 7} Measured 

X24 to X30 Pump powers of modules 1 to 7 𝑊𝑊𝑙𝑙, with 𝑙𝑙 ∈ {1, … , 7} Measured 

Output variables 

Y01 to Y07 TMP of modules 1 to 7 Δ𝑃𝑃𝑙𝑙 , with 𝑙𝑙 ∈ {1, … , 7} Computed by (4.4) 
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multivariate batch data analysis parlance, the structures of data matrices is the VWU one (Lee 
et al., 2004a). Cleaning periods are not included in the data matrices, as well as the startup and 
shutdown phases of each run, which usually feature excessive/unstructured variability and 
significant nonlinearities (Klimkiewicz et al., 2016). These preprocessing operations results in 
a 𝐗𝐗 matrix in ℝ1621 × ℝ30 and a 𝐘𝐘 matrix in ℝ1621 × ℝ7. 
The output variables feature a remarkable correlation (the minimum value is 0.9057), as can 
be inferred from the correlation matrix reported in Table 4.2. The correlation among outputs 
reflects the action of the control system, which adjusts the TMPs to compensate for the fouling 
state of each individual membrane. This guarantees the overall permeate flow rate to match the 
assigned set-point, while the permeate flow rates of single modules are free to vary according 
to the fouling state of each membrane. Since it is desirable to model such valuable information 
on the interaction among the modules, PLS is a natural choice due to its well-known ability to 
capture the correlations in input and output variables formulating LVs (Burnham et al., 1996). 

The available data feature a dynamic component (due to the effects of fouling and the control 
system), which naturally calls for the use of dynamic PLS (Baffi et al., 2000; Dong et al., 2015; 
Ricker, 1988; Zhu, 2021). However, lagged matrices (on either data or scores) would then be 
required, which would set a constraint on the time step of observations in the prediction phase. 
Furthermore, lagged matrices require an even time step, while available data are sampled 
irregularly. Therefore, a static PLS model is developed. This allows one to calibrate the soft 
sensor with low sampling rate data, and to use it with high sampling rate data in the prediction 
phase. The choice of a static model for dynamic data is also backed up by two additional 
considerations. First, latent-variable models can capture dynamic information in data using 
additional LVs (Vanhatalo et al., 2016). Secondly, dynamic modeling is not necessarily needed 
to capture the input-output relation, as the dynamics of outputs could be solely induced by 
dynamics of inputs (Sun et al., 2021). 

Table 4.2. Correlation matrix of the TMPs of the seven membrane modules (output 
variables of the PLS model). 

 Δ𝑃𝑃1 Δ𝑃𝑃2 Δ𝑃𝑃3 Δ𝑃𝑃4 Δ𝑃𝑃5 Δ𝑃𝑃6 Δ𝑃𝑃7 

Δ𝑃𝑃1 1.0000 0.9485 0.9323 0. 9196 0.9141 0.9183 0.9057 

Δ𝑃𝑃2 0.9485 1.0000 0.9570 0.9434 0.9424 0.9390 0.9417 

Δ𝑃𝑃3 0.9323 0.9570 1.0000 0.9664 0.9692 0.9567 0.9417 

Δ𝑃𝑃4 0.9196 0.9434 0.9664 1.0000 0.9678 0.9560 0.9432 

Δ𝑃𝑃5 0.9141 0.9424 0.9692 0.9678 1.0000 0.9600 0.9561 

Δ𝑃𝑃6 0.9183 0.9390 0.9567 0.9560 0.9600 1.0000 0.9561 

Δ𝑃𝑃7 0.9057 0.9216 0.9417 0.9432 0.9561 0.9561 1.0000 
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A preliminary PLS model is fitted on autoscaled data matrices by the SIMPLS algorithm (de 
Jong, 1993) selecting the number of LVs by repeated 𝑘𝑘-fold cross-validation with random 
partitioning of observations (Burman, 1989; Geisser, 1975) and one-standard-error-rule 
(Filzmoser et al., 2009; Hastie et al., 2009). The performance index is defined as the average of 
root-mean-squared errors of all 7 output variables, which results in 9 LVs. Data from nine runs 
are removed due to high values of the 𝑄𝑄𝑋𝑋 statistic for reconstruction of input data (Nomikos et 
al., 1995b), while data from three more runs are deemed as outliers and discarded due to high 
leverages (Berber et al., 2005; Rousseeuw et al., 1990). The preliminary PLS model is re-
calibrated after removal of observations, which reduces the number or rows in the 𝐗𝐗 and 𝐘𝐘 
matrices to 1579; cross-validation results in 12 LVs. 
Residuals of the new model feature remarkable dynamics, tested by the significance of 
coefficients of the autocorrelation function (ACF; Box et al., 2016) on 95% confidence limits 
computed by Bartlett’s formula (Bartlett, 1946), as can be seen in Figure 4.6(a). Therefore, 
additional LVs are included in the model to remove as much residual autocorrelation as 
possible, improving the dynamics captured by the PLS model while preserving smoothness of 
the estimates. The fitted values and ACFs of the seven outputs are visually assessed to aid the 
tuning procedure, which results in a final PLS model with 20 LVs as best compromise. Figure 
4.6(b) proves that most of the residual autocorrelation is removed. This approach was attempted 
also during the preliminary tests with the purely data-driven model for direct estimation of 
resistances, but significant dynamics was still left in the residuals even using all the available 
LVs. This further proves the value of the proposed hybrid modeling approach. As a matter of 
example, the ACF of residuals of one output of the PLS model for direct estimation of 
resistances with 20 LVs (the same as in the final PLS model for prediction of TMPs) is reported 
in Figure 4.6(c). For completeness, plots of residuals against fitted value (in calibration) of the 
PLS model for prediction of resistances and of the final PLS model for prediction of TMPs are 
reported in Figure 4.7.  Residuals on the output variables used to compute the ACFs in Figure 
4.6(b) and Figure 4.6(c) are reported in Figure 4.7(a) and Figure 4.7(b), respectively. 
The generalization performance of the final PLS model are investigated by means of nested 
cross-validation (Varma et al., 2006) employing a repeated 𝑘𝑘-fold scheme with random 
partitioning of observations in both the inner and outer loops (Filzmoser et al., 2009). Such a 
tool is also used to make sure that the manual tuning of the number of LVs does not deteriorate 
the generalization performance. Average determination coefficients of the preliminary and final 
PLS model in calibration, validation, and testing are reported in Table 4.3. The final model 
shows a satisfactory generalization performance. Furthermore, determination coefficients in 
calibration and testing are similar, denoting that the model does not overfit even after manual 
tuning of the number of LVs. This fact serves as proof that the additional LVs are explaining 
dynamic effects, rather than unstructured variability found in the data, which offers assurance 
of the robustness of the model and reliability of its predictions. 
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An example of prediction of the final PLS model using high-frequency online data is shown in 
Figure 4.8. The model successfully captures dynamic effects of both reversible and irreversible 
fouling. The effect of membrane replacements is excellently reconstructed, as can be seen in 
Figure 4.8: for instance, considering the second module, predictions “jump down” after the 
membrane replacement occurring around observation no. 1650, and this follows the trend of 
experimental data. Predictions tend to be unreliable at the very beginning of a run, which is 
especially clear considering the seventh module; however, they tend to realign to the actual 
TMPs in a relatively short time (which typically does not exceed 2 h and is comparable to the 
duration of the startup phase of a filtration batch). Prediction reliability can be assessed by 
means of the PLS model monitoring statistics introduced in Section 2.2.4, namely the 𝑇𝑇𝑋𝑋2 

 
(a) 

) 

 
(b) 

 
(c) 

Figure 4.6. Autocorrelation functions of residuals of an example output variable of the (a) 
preliminary PLS model with 12 LVs, (b) final PLS model with 20 LVs, and (c) initially 
investigated PLS model with 20 LVs for direct prediction of resistances. Significant 
coefficients are represented as red dots outside of the shaded envelope of the 95% confidence 
interval. 

 

 
(a) 

 
(b) 

Figure 4.7. Residuals of an example output variable of the (a) PLS model with 20 LVs for 
prediction of TMPs and (b) PLS model with 20 LVs for direct prediction of resistances. 

 
Table 4.3. Average determination coefficients of the preliminary and final PLS models in 
calibration, validation, and testing estimated by nested cross-validation. 

Model LVs Calibration Validation Testing 

Preliminary 12 0.9012 0.8979 0.8977 

Final 20 0.9047 0.9005 0.9002 
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statistic and the 𝑄𝑄𝑋𝑋 statistic (Nomikos et al., 1995b). Predictions are deemed as unreliable when 
𝑄𝑄𝑋𝑋 is beyond its 95% control limit, while a 𝑇𝑇𝑋𝑋2 beyond the limit denote that the process is 
drifting far from the average conditions. Control limits are computed according to the 𝜒𝜒2 
distribution with matching moments approach (Nomikos et al., 1995a). Figure 4.9 reports such 
statistics in logarithmic form and allows one to clearly identify anomalous tails at the beginning 
of runs after observation no. 1950 in Figure 4.8, which are associated to statistics well beyond 
their control limits in Figure 4.9. 

4.4.2 Membrane resistances to monitor short-term fouling trends 

The TMPs estimated by the PLS model are plugged in (4.6) with online measurements of 
permeate fluxes and temperatures (for the viscosity model) to estimate resistances of all 
membrane modules online. Resistances allow for a better monitoring and understanding of the 
filtration process as opposed to fluxes and TMPs. Some examples concerning the monitoring 
of short-term fouling are discussed in this Section. 

 
Figure 4.8. Example of predictions of TMPs by the final PLS model. Low-frequency, offline 
measurements are represented as orange triangles, while high-frequency, online estimates 
are blue solid lines. Dotted lines delimit single process runs, while vertical solid black lines 
separate runs with a replacement of the membrane of the relevant module in between. 
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The increased interpretability is clear from Figure 4.10, reporting profiles of permeate flux, 
TMP, and resistance for one of the membrane modules in during two different example batches. 
In Figure 4.10(a) the estimated TMP features an increasing trend, whereas the permeate flux 
exhibits an erratic behavior with both fast and slow variations, which somewhat casts doubt on 
the interpretation of the TMP behavior. However, the estimated resistance features a well-
defined, mostly monotonic trend, which allows one to unambiguously monitor the evolution of 
reversible fouling of the membrane under investigation along the batch. A significant fouling 
event is visible around batch time equal to 0.8, where the resistance steps up and then steadily 
increases thereafter; in fact, this specific batch had to be interrupted shortly after that event due 
to significant pressure build-up. Figure 4.10(b) highlights how membrane resistance can 
capture the occurrence of hydraulic cleaning within a batch. In this case, the material being 
filtered sedimented on the membrane surface in the initial part of the batch. Such deposition 
was removed due an increase in cross-flow velocity dictated by the control system shortly after 
batch time 0.3, which caused a decrease of the resistance. The increased flux however 
eventually enhanced membrane fouling, as can be argued from the rapid increase of the 
resistance after batch time 0.6. 
For this particular example, the trends of membrane resistance and TMP are not too different, 
and one might think that both variables are equally effective to monitor short-term membrane 
fouling. However, that is not generally the case, and in fact monitoring resistances, rather than 
TMPs, offers significant advantages from the process understanding point of view. To 
appreciate this, recall that the plant layout (Figure 4.2) consists in several separation modules, 
but only the overall permeate flow rate is controlled, and this is achieved by manipulating the 
overall feed pressure. Therefore, a linear constraint acts on permeate fluxes of single modules, 
which are thus not independent and must compensate for each other. Such a strong correlation 
between fluxes makes it difficult to trace flux variations back to the fouling state of each single 
membrane, and this can impact also TMP trends. Furthermore, promptly identifying fouling 
events that act on single modules is cumbersome or impossible if done by visual inspection of 
the recorded data, due to the low frequency of offline readings. However, both issues are fixed 

 
Figure 4.9. Example of monitoring statistics to diagnose the reliability of predictions of the 
final PLS model; results refer to the predictions of Figure 4.8. 95% control limits are 
represented as red dash-dotted lines, vertical dotted lines delimit single process runs, and 
vertical solid black lines separate runs with a replacement of the membrane of any module 
in between. 
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if membrane resistance is monitored by the proposed approach, as elucidated in Figure 4.11 for 
two different batches. The effect of interdependence of permeates fluxes is clear from Figure 
4.11(a), where fluxes of modules two to seven increase to make up for the decrease in flux of 
module one. However, TMPs of modules two to seven also increase, which makes it difficult 
to conjecture anything about the fouling state of membranes. On the other hand, resistances 
allow one to clearly understand that modules one and two are the ones mostly suffering from 
reversible fouling in this batch. Similar considerations can be done for the batch illustrated in 
Figure 4.11(b). Additionally, this figure enables one to appreciate that the onset of significant 
fouling events affecting single modules becomes clear if resistances (rather than TPMs or 
fluxes) are monitored. These events occurred in modules five and seven shortly after the batch 
start, and in module six around batch time equal 0.5, where the slope of the resistance changes.  

4.4.3 Membrane resistances to monitor long-term fouling trends 

The proposed model is helpful also in the analysis of long-term trends in fouling, which can be 
achieved by computing averages of the profiles of estimated resistances over batches. While 
this is possible also using low-frequency offline measurements, averaging the high-frequency 
estimates of resistances offers stronger reliability and increased robustness to outliers, thus 
allowing one to properly visualize and monitor long-term fouling trends for each single 
membrane module. We refer to such batch-averaged variables as features in the following. 
The most prominent advantage of using estimated resistances for long-term fouling monitoring 
is the possibility to decouple membrane ageing effects from flux interdependencies across 
modules. As an example, consider Figure 4.12, which illustrates the trends of the permeate flux, 
TMP, and resistance features for one separation module across several consecutive batches. 
The end-of-life replacement of the module membrane occurs at batch no. 112 and is indicated 
by a solid black line in the figure. This causes the flux to step up in that module. However, due 

 
(a) 

 
(b) 

Figure 4.10. Time profiles of fouling-related variables for one membrane module over two 
different batches to highlight the increased interpretability of (a) reversible fouling trend and 
(b) within-batch hydraulic cleaning phenomena due to the control system. 
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to the interdependence of fluxes across modules, the other fluxes adjust accordingly (often 
stepping down). On the other hand, TMP values are so strongly affected by variability across 
batches that membrane replacement passes almost unnoticed. We conclude that analyzing 
fluxes or TMPs confounds the diagnosis of membrane health. Indeed, the true health state of 
the membrane is represented by its resistance, which clearly decreases right after replacement, 
thus facilitating monitoring. One additional advantage of monitoring the membrane resistance 
is that it does not change when the membranes in other modules are replaced (dashed lines in 
Figure 4.12); conversely, both TMP and flux are affected by the replacement. 
The last, less apparent advantage of the proposed approach regards the decoupling of reversible 
and irreversible fouling, which can be achieved by combining the proposed model with 
knowledge of the process operation rationale. Features computed by averaging resistances over 
an entire batch mix up the effects of reversible and irreversible fouling into one single indicator. 
Intuitively, irreversible fouling is represented by the “baseline resistance” of a membrane at the 

 
(a) 

 
(b) 

Figure 4.11. Time profiles of fouling-related variables for all membrane modules over two 
different batches to highlight (a) the increased interpretability due to the monitoring of 
membrane resistances and (b) the identification of significant fouling events acting on a 
single module. 
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beginning of a batch, and the within-batch increase of the resistance above the baseline is due 
to reversible fouling. This within-batch variation is compensated for by the process control 
systems, which adjusts the cross-flow velocity on discrete levels in response to reversible 
fouling, as shown in Figure 4.13: while the first two levels are always reached under normal 
operation, the following levels are enforced only when the feed pressure rises above preset 
thresholds. Reversible fouling is assumed to be under control (in the plant being considered) 
when the cross-flow velocity is set to the two/three lowest levels.  

The outlined rationale can be exploited to decompose the overall resistance features into their 
contributions from irreversible and reversible fouling. The contribution due to irreversible 
fouling is computed as the average of the resistance profile where the cross-flow velocity is set 
to the three lowest levels; the contribution due to reversible fouling is computed as the 

 
Figure 4.12. Long-term trends of permeate flux, TMP, and resistance features of one 
membrane module across several consecutive batches. Each dot represents the average of 
profiles of the relevant variable on a batch. The vertical solid lines indicate replacements of 
the membrane of the relevant module, while vertical dashed lines are membrane 
replacements of other modules. 

 
Figure 4.13. Time profiles of fouling-related variables for one membrane module during one 
batch to illustrate the rationale of the variation of the cross-flow velocity on discrete levels 
(L.) to counteract the effects of reversible fouling. Time periods with constant cross-flow 
velocity are delimited by vertical lines. 
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difference between the average of the resistance profile over the entire batch and the 
contribution due to irreversible fouling calculated as stated above. This decomposition is 
exemplified in Figure 4.14 for the membrane of one module. The overall resistance shows a 
clear long-term trend, which is associated to irreversible fouling and provides indirect 
indication of how the membrane state changes across a production campaign. However, batch-
to-batch variability, due to the effect of within-batch reversible fouling, somewhat confounds 
the across-batch trend, particularly near membrane replacement (shortly after batch no. 290). 
The proposed resistance feature decomposition allows one to decouple the two effects: the 
resistance feature for irreversible fouling is affected by a much smaller variability, while the 
resistance feature for reversible fouling allows one to clearly identify batches that suffered from 
intense fouling, the profiles of which can therefore undergo additional, in-depth investigation. 

4.5 Conclusions 
In this Chapter, we developed a hybrid modeling strategy to estimate individual resistances of 
a multi-module membrane separation system of the industrial biorefinery considered in this 
Thesis. We combined a PLS regression model, for online estimation of the TMP of each 
membrane module, and Darcy’s equation for modeling of membrane resistances. The proposed 
modeling strategy achieved excellent generalization performance using a linear data-driven 
modeling component, as opposed to the dominant literature approaches using nonlinear data-
driven models that require massive datasets for calibration. To the best of the author’s 
knowledge, this is the first time that such results were achieved on a complex industrial 
biorefinery process with limited data. 
The main advantages of the proposed resistance-based monitoring approach for membrane 
fouling characterization are the reduced variability and increased interpretability of resistances 
with respect to permeate fluxes and TMPs. We illustrated examples of how resistances feature 

 
Figure 4.14. Decomposition of overall resistance features (averages over complete batch 
profiles) of a module in their contributions form irreversible and reversible fouling. Vertical 
solid lines indicate replacements of the membrane of the relevant module, while vertical 
dashed lines are membrane replacements of other modules. 
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clear and defined dynamics, allowing one to properly infer the fouling state of membranes and 
to promptly identify the onset of reversible fouling. We showed how the resistance of a module 
is independent of the resistances of other modules (therefore unaffected by replacements of 
other membranes in the system), a feature that fluxes lack when subject to linear constraints, 
such as a control system controlling the overall permeate flow rate. Finally, we discussed how 
to aggregate resistances as batch-averages to monitor the long-term evolution of fouling, 
proposing a method to decompose the overall membrane resistance in contributions from 
reversible and irreversible fouling by leveraging process knowledge. Results show that the 
contribution due to irreversible fouling features a monotonic trend and reduced batch-to-batch 
variability, while the contribution due to reversible fouling allows one to clearly identify 
batches that suffered from significant fouling issues, the profiles of which can be analyzed more 
in-depth for diagnostic purposes. 
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Chapter 5 
 

Understanding membrane fouling 
by data-driven feature-oriented modeling6 

A comprehensive analysis of membrane fouling in the ultrafiltration process of the industrial 
biorefinery considered in this Thesis is described in this Chapter. Feature-oriented modeling 
coupled with PCA is used to investigate the process settings most related to membrane fouling, 
aiming at identifying potential causes of the latter and devising strategies to mitigate it. 

5.1 Introduction 
In the previous Chapter, we presented a soft sensor based on a hybrid model for online 
estimation of membrane resistances in the ultrafiltration operation of the biorefinery considered 
in this Thesis. The model-based system serves as a tool for online monitoring of the fouling 
state of membranes, enhancing the biorefinery operation. Additional steps consist in fouling 
understanding and control, which are crucial for process improvement. Experimental methods 
for fouling understanding exist, but they often rely on invasive, sample-destructive procedures, 
such as membrane autopsy (Shi et al., 2014). Model-based methods can support fouling 
understanding as well and are the preferred asset to this end (AlSawaftah et al., 2021). 
Model-based understanding of membrane fouling is mostly based on first-principles and 
mechanistic models centered on (4.5), the integral form of Darcy’s equation (Meindersma et 
al., 1997; Whitaker, 1986), to estimate the membrane resistance to flow, which is then used as 
a direct measure of fouling. Therefore, models of the resistance change over time can be 
developed and interpreted to understand membrane fouling. 
Reversible fouling and irreversible fouling (see Section 4.1 and Figure 4.1) are generally 
considered one at a time in the model-based approach. Concerning reversible fouling, the 
resistance in series model and Hermia’s model can help diagnose the dominant mechanisms of 
reversible fouling (Juang et al., 2008; Vela et al., 2008; Wang et al., 2012). On the other hand, 
irreversible fouling is less understood and harder to model (Geissler et al., 2005), hence it is 
usually tackled by data-driven modeling (Dologlu et al., 2022; Han et al., 2020; Ruiz-García et 
al., 2016), often to purely predictive purposes. 
                                                 
6 Part of the research discussed in this Chapter has been included in a manuscript in preparation (Arnese-Feffin et al., 2023d), 
to be submitted for publication as a journal paper. A preliminary version of this research work has been presented at an 
international conference (Arnese-Feffin et al., 2023c, 2023e). 



   Chapter 5 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

98 

While mechanistic models can provide detailed information about the dominant fouling 
mechanism and, potentially, its causes, they require proper experimental data to be calibrated 
(Bolton et al., 2006). Their applicability to industrial processes is hindered by the quality of 
data and by the limited span of operating conditions (Cuellar et al., 2020; Reis et al., 2018; Sun 
et al., 2021). However, the wealth of data provided by modern plants can still be capitalized: 
precious information on the nature of fouling can be extracted by data-driven modeling. This 
point has been demonstrated by several studies. Maere et al. (2012) applied PCA to investigate 
the fouling trend of a laboratory membrane bioreactor. A similar study was carried out by 
Kallioinen et al. (2006), who identified critical process variables affecting fouling in a pilot-
scale pulp digester for paper production by means of PCA, DPLS, and parallel factor analysis. 
Naessens et al. (2017) exploited PCA to optimize the membrane cleaning schedule to minimize 
fouling in a pilot-scale desalination plant. An investigation on industrial-scale plant for 
wastewater treatment was carried out by Philippe et al. (2013): they used PLS regression to 
predict the fouling evolution in four parallel membrane units, and interpreted the models to 
identify critical process variables. Finally, Klimkiewicz et al. (2016) performed an analysis of 
fouling in an industrial ultrafiltration process treating fermentation broths, using multilevel 
simultaneous component analysis to investigate both reversible and irreversible fouling. 
All the aforementioned studies dealt with a peculiar issue of membrane filtration: fouling causes 
the process to run semi-continuously (recall Figure 4.1), with alternating operating periods and 
cleaning phases, in such a way that an actual steady-state is basically never achieved. This 
causes membrane filtration data to assume the typical structure of the ones collected in batch 
processes, featuring three data dimensions: batches (runs), variables, and time. However, 
fouling causes a strong variability in the duration of batches (Arnese-Feffin et al., 2024; 
Klimkiewicz et al., 2016) and in the shape of profiles of process variables (Philippe et al., 2013), 
which additionally do not show the consistent “landmarks” typical of recipe-driven batch 
processes. These conditions undermine the applicability of traditional approaches to batch data 
analytics based on synchronization of batches (González Martínez et al., 2014a; Kassidas et al., 
1998; Nomikos et al., 1994) followed by unfolding of the synchronized matrices (Camacho et 
al., 2009; Wold et al., 1987b, 1998), which can yield unsatisfactory results when strong 
variabilities in batch durations and shape of profiles of variables characterize the data at hand 
(Klimkiewicz et al., 2016). 
In this Chapter, we adopt an alternative method to solve the lack-of-synchronization issue: 
feature-oriented modeling (Rendall et al., 2019; Yoon et al., 2001). We resort to knowledge-
driven feature engineering (Wold et al., 2009) to design features capturing (and emphasizing) 
the information on fouling (Rendall et al., 2017a) starting from its observable effects. 
Knowledge-driven features also allow us to include process knowledge in the data analytics 
workflow (Severson et al., 2019). We focus on the ultrafiltration process of the industrial 
biorefinery considered in this Thesis (Novamont S.p.A., 2016). Using data from six months of 
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routine plant operation, we show how the analysis of features summarizing time profiles of 
process variables can shed light on membrane fouling in this complex industrial scenario and 
highlight some of its potential causes, paving the way for targeted experimental investigations. 
The reminder of the Chapter is arranged as follows. The process is described in Section 5.2; the 
fouling issues experiences by the plant and the data at hand for the investigation are described 
therein as well. Section 5.3 introduces the mathematical background of the model-based fouling 
investigation, including the proposed data analytics workflow to screen a large number of 
phenomena potentially unrelated to fouling. Results of the investigation are reported in Section 
5.4, and conclusions are drawn in Section 5.5. 

5.2 Ultrafiltration process and data 
The ultrafiltration operation, already considered in Chapter 4, receives the solution containing 
the BDO from the array of upstream bioreactors and is aimed at separating cells and high 
molecular weight compounds. A simplified process flow diagram of this operation is illustrated 
in Figure 4.2. A general description of the process operation can be found in Section 4.2.1. 

5.2.1 Observable effects of membrane fouling 

Online readings (acquired through the online sensors reported in Figure 4.2) make possible to 
infer the overall fouling state of the ensemble of membranes. As an example, Figure 5.1 shows 
three process variables (overall permeate flow rate, feed pressure, and cross-flow velocity of a 
membrane module) in a sequence of run-cleaning cycles on a selected timespan, where shaded 
intervals identify cleaning phases. For confidentiality reasons, all variables will be reported as 
normalized values within the [0, 1] interval in all figures throughout this Chapter. 
While the feed flow rate is effectively kept constant, the feed pressure varies noticeably as a 
consequence of reversible fouling and, by (4.3) and (4.5), is directly proportional to membrane 
resistance. Therefore, in this Chapter, we focus on feed pressure as a measure of the fouling 
state of membranes. Figure 5.1 also highlights that, depending on the level of fouling of a 
membrane, increasing the cross-flow velocity could be enough to compensate for the effect of 
fouling, or it could not be able to do that. For example, Batch 2 and Batch 3 show increasing 
trends of the feed pressure due to fouling in their first parts, which are interrupted by the 
increase in cross-flow velocity, effectively compensating for the fouling buildup. On the other 
hand, increasing the cross-flow velocity is not sufficient to counteract reversible fouling in 
Batch 4 and Batch 5, where the pressure keeps increasing due to fouling buildup. Therefore, an 
investigation of the process settings most related to fouling could be highly beneficial to 
improve the operation of this process. 
Note that this Chapter investigates the average fouling state of the overall membrane array, 
which can be inferred using data from online sensors only. Each module is also equipped with 
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offline manometers to measure the feed and retentate pressures (see Figure 4.2). While these 
variables would allow to compute the TMP of each module, hence to infer the fouling state of 
single membranes (although with low frequency), such a detailed analysis does not fall within 
the scope of this study. These additional data could be fruitfully exploited nonetheless, for 
example to calibrate a soft sensor for online resistance estimation, as done in Chapter 4. 
While effects of short-term, reversible fouling can be clearly identified in Figure 5.1, the long-
term effects of fouling can be visualized by means of permeate flow rates (or fluxes) of single 
modules. Figure 5.2 shows the average permeate flux of one of the membrane modules in a 
sequence of batches. 

The decreasing trend of the permeate flux due to irreversible fouling is clearly visible in Figure 
5.2. Furthermore, one can see that replacing the membrane of the relevant module (vertical 
solid line) leads to flux recovery. However, also replacements of membranes in other modules 

 
Figure 5.1. Example of run-cleaning sequence in the ultrafiltration plant. Shaded intervals 
identify cleaning operations (large oscillations in the process variables are the result of the 
cleaning operations in these periods). 

 
Figure 5.2. Long-term trend of permeate flux of one membrane module across several 
consecutive batches. Each dot represents the average of the profile of the relevant variable 
on a batch. The vertical solid black lines indicate replacements of the membrane of the 
relevant module, while vertical dashed lines are membrane replacements of other modules. 
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(vertical dashed lines) can cause a flux variation. This is due to the overall permeate flow rate 
of the whole array of modules being controlled. Therefore, only the sum of single permeates is 
constrained by the overall material balance around the process, while contributions to it can 
vary and are determined by the fouling state of each membrane (similarly to a system of electric 
resistors in parallel), a point widely discussed in Section 4.4.2 and Section 4.4.3. This uncovers 
a strong coupling among membrane modules, which would make an analysis of fouling based 
on mechanist models extremely difficult. On the other hand, the wealth of data produced daily 
by the online sensors installed on the plant can be leveraged in a data-driven modeling scenario 
to improve process understanding and facilitate process conduction.  

5.2.2 Available dataset 

Data from six consecutive months of operation of the microfiltration process are available for 
modeling. After preliminary screening, 177 filtration batches are found in the dataset, with a 
high variability in the number of observations (time samples) per batch. Figure 5.3 shows that 
batch duration span between 65 and 238 observations per batch, with most batches counting 
around 195 observations. The application of profile synchronization approaches typically used 
in batch data analytics (González Martínez et al., 2014a; Kassidas et al., 1998; Nomikos et al., 
1994) is hindered by the strong variabilities in batch duration and shape of profiles of variables 
across batches (see Figure 5.1), which do not show the typical landmarks of batch data 
(Klimkiewicz et al., 2016). On the other hand, this is the ideal environment for the application 
of feature-oriented modeling due to its ability to solve the lack-of-synchronization issue in a 
natural and direct way; no complex synchronization procedure is needed and simpler models 
with increased interpretability are generally obtained by feature-oriented modeling (Rendall et 
al., 2017a, 2019; Severson et al., 2019). 

Each batch in the dataset includes records of all variables measured online reported in Figure 
4.2 and described in Section 4.2.3. Furthermore, some of the engineering variables described 

 
Figure 5.3. Histogram of the duration of batches in the available dataset. 
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in Sections 4.2.3 and Section 4.3.2 are computed to augment the dataset, due to the valuable 
information they provide: 

• the overall permeate flow rate is computed as in (4.1); 
• the VCR of the multi-module system is computed as in (4.2); 
• the TMP of the multi-module system is defined as in (4.3); 
• the average resistance of the ensemble of membrane modules is defined as in (4.5). 

Profiles of additional variables are included in the dataset as well: the instantaneous energy 
consumption of the whole operation can be computed through the pump powers; characteristics 
of the feed, such as the biomass concentration, can be inferred from analyses performed in the 
upstream process and matching the production schedules of upstream and downstream; 
instantaneous slopes of the profiles of fouling-related variables (pressures, TMP, and 
resistance) can be obtained by numerical differentiation. A total of 62 variables is available in 
the final dataset. These data are processed for feature-oriented modeling, and the resulting 
features analyzed by PCA. The rationale of these methods is described in the next Section. 

5.3 Data-driven investigation of membrane fouling 
The mathematical models used for fouling investigation are introduced in this Section, together 
with the rationale of their application for the aim of the study. In particular, feature-oriented 
PCA modeling is used to investigate process settings related to fouling, aiming at identifying 
potential causes of this undesirable phenomenon and devising strategies to mitigate it. Features 
are generated from time profiles of variables leveraging the available process knowledge. We 
also propose a data analytics workflow to screen the large number of features originating from 
the several phenomena of interest for this study, which could or could not be related to fouling. 

5.3.1 Feature-oriented principal component analysis 

In this study, the data matrix, 𝐗𝐗, contains features computed from process data and PCA (see 
Section 2.1) is used for process understanding. This is achieved by interpretation of scores and 
loadings (Camacho et al., 2010; Kosanovich et al., 1996; Wold et al., 1987a). To this end, it is 
helpful to recall some of the properties of PCA that can be used for model interpretation. 
Loadings describe the correlation among variables. Variables with high magnitude loadings on 
the same PC are correlated: if the loadings have the same sign, correlation is positive, while it 
is negative if the loadings have opposite signs. Furthermore, loadings describe how the PCs are 
formulated in terms of linear combinations of original variables, hence what change in original 
variables corresponds to a given change in the PCs. The latter change is described by the scores, 
which can be used to visualize the observation in 𝐗𝐗 in a space of reduced dimensionality (the 
space of PCs). Observations with similar scores (similar in the space of PCs) are similar also in 
the space of original variables. Therefore, scores describe the correlation among observations. 
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PCA requires the process data to be arranged as a two-dimensional matrix. However, due to the 
semi-continuous nature of membrane filtration, data from these processes are commonly 
provided as a sequence of data matrices, as typical in data from batch processes. Since the batch 
duration changes across batches (recall Figure 5.3), the row dimension of the matrices in the 
sequence changes across batches as well. Such a sequence can be analyzed in a time-unresolved 
way by means of feature-oriented modeling (Rendall et al., 2019; Yoon et al., 2001). 
The principles of feature-oriented modeling have been introduced in Section 2.6.2, where some 
possible methods to generate features from time profiles have been listed. While some of these 
methods enable for fast and automatic feature generation, they may not be entirely appropriate 
if the objective of the analysis is process understanding. To this end, knowledge-based features 
(Wold et al., 2009), also referred to as landmark features (Rendall et al., 2019), are a natural 
choice. This approach proved to significantly enhance the quality of models of complex 
phenomena, formulating the features to include physical knowledge on the system in the data 
analytics exercise (Severson et al., 2019). 
Knowledge-based features are typically defined as transformations of the profiles of the original 
variables by simple mathematical operators selected based on the physical meaning of their 
results, so as to capture (and possibly emphasize) information on the phenomena of interest 
(namely, membrane fouling). Examples are averages, slopes, time integrals, minima, and 
maxima of variables in a batch. The rationale for feature design adopted in this study is 
described in the next Section. 

5.3.2 Rationale of feature design 

The knowledge-driven features used in this Chapter are based on simple mathematical 
operators. Process knowledge is leveraged before feature generation: the startup and shutdown 
phases of each filtration batch are removed from the data beforehand, as they are usually 
affected by excessive/unstructured variability and significant nonlinearities (Klimkiewicz et al., 
2016). Features are therefore computed considering only the middle portion of profiles of 
variables in filtration batches, referred to as the steady phase herein. 
Mean values of all process variables represent the most intuitive way to “compress” time 
profiles into scalars and are used as basic features. Time integrals of flow rates (total volumes) 
are included as well. The overall VCR, representing a whole batch and obtained replacing flow 
rates in (4.2) with overall feed and retentate volumes, is used as a feature as well. The run-time 
of each batch is included too. The duration of each sub-phase of the filtration (startup, steady 
phase, and shutdown) is considered as well. As the cross-flow velocity is varied on discrete 
levels by the control system to counteract reversible fouling (see Figure 5.1 and recall Figure 
4.13), the duration of each one of the “level steps” are considered as additional features. 
Averages, maxima, and average slopes of pressure-related variables are used as features to 
characterize reversible fouling. For example, the slope of the TMP vs. time curve is intuitively 
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related to the fouling rate (Monclús et al., 2011; Naessens et al., 2017), while the maximum 
TMP reached within a batch is related to the severity of reversible fouling. On the other hand, 
averages of permeate fluxes of single modules are considered as reliable indicators of the 
irreversible fouling state of membranes. The average, maximum, and average slope of the 
resistance of the multi-module system, computed as in (4.3), and the average energy 
consumption on a batch are considered representative of the overall fouling state of the system. 
Features characterizing the feed material and the upstream operations to produce it are included 
in the analysis as well. Examples are average feed properties (pH, conductivity, concentrations 
of biomass and salts, etc.), the bioreactor used to manufacture the feed being processed, and 
presence of contaminating microorganisms detected in a number of sampling points along the 
processing line. Finally, features denoting whether a given cleaning operation has been 
performed or not are considered. 
Features related to the bioreactor used in the upstream, contaminations, and cleaning operations 
derive from categorical variables. Therefore, they are encoded using a dummy variables 
approach (Hastie et al., 2009): a categorial variables spanning on 𝑀𝑀 discrete levels is 
represented by 𝑀𝑀 binary variables, and the value of the 𝑚𝑚-th logical variable is 1 if the value 
of the associated categorical variable is on its 𝑚𝑚-th level, while it is 0 otherwise. 
A total of 121 features is obtained for the analysis. Such a large number is due to the several 
phenomena that could be potentially related to fouling and to the variety of features used to 
encode them. However, not all the phenomena under investigation are necessarily related to 
membrane fouling. Therefore, some features are expected to be unrelated to the ones describing 
fouling. In the following Section, we propose a data analytics procedure for feature screening. 
Relevant features (namely, those discussed in Section 5.4) are reported in Table 5.1, along with 
their numerical identifiers, the category of physical phenomena they describe, and the 
numerical identifier of the models in which they are included (see Section 5.4). 

5.3.3 Data analytics workflow 

Given the complexities of the considered process and of membrane fouling taking place therein, 
several phenomena, which could or could not be related to fouling, need to be investigated. 
Therefore, a large number of features is obtained for PCA modeling, and many of them could 
be unrelated to fouling. This scenario is challenging for fouling investigation. 
In this Section, we propose a two-stage data analytics workflow to identify the features that are 
most related to a given phenomenon in a large set of features that could or could not be related 
to the phenomenon of interest. The proposed workflow applied to the investigation of 
membrane fouling is schematically represented in Figure 5.4. The proposed approach is divided 
in two stages. The first stage (top box of Figure 5.4) concerns the development of a model to 
identify descriptors of membrane fouling and the batches particularly suffering from it. This is 
done calibrating a PCA model on a set of the fundamental features characterizing the process 
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and membrane fouling. Significant PCs describing fouling-related features are identified in the 
model. In the study discussed herein, such model is described in Section 5.4.1. 

Table 5.1. Examples of features extracted from profiles of online variables, with the category 
of physical phenomena they describe and the PCA model in which they are used (refer to 
Section 5.4). 

   Used in model 

ID Feature Category 0 1 2 3 4 5 

F005 VCR Material balance • • • • • • 

F008 Average feed flow rate Material balance • • • • • • 

F009 Average retentate flow rate Material balance • • • • • • 

F010 Average permeate flux Material balance • • • • • • 

F011 Average diafiltration flow rate Material balance • • • • • • 

F020 Average TMP Reversible fouling • • • • • • 

F021 Average slope of TMP Reversible fouling • • • • • • 

F022 Average feed pressure Reversible fouling • • • • • • 

F023 Maximum feed pressure Reversible fouling • • • • • • 

F024 Average slope of feed pressure Reversible fouling • • • • • • 

F029 Average energy consumption Overall fouling • • • • • • 

F030 Average resistance Overall fouling • • • • • • 

F031 Maximum resistance Overall fouling • • • • • • 

F032 Average slope of resistance Overall fouling • • • • • • 

F052 Processing delay time Contaminations      • 

F053 Average feed biomass concentration Feed properties  •     

F054 Average feed conductivity Feed properties  •     

F061 Contamination in upstream unit 1 Contaminations     •  

F062 Contamination in upstream unit 2 Contaminations     •  

F065 Cleaning operation 1 Cleaning  •     

F066 Cleaning operation 2 Cleaning  •     

F067 Cleaning operation 3 Cleaning  •     

F068 Cleaning operation 4 Cleaning  •     

F069 to F075 Average permeate fluxes 
of modules 1 to 7 

Irreversible fouling   •    

F076 to F079 Average diafiltration flow rates 
of modules 3 to 6 

Irreversible fouling   •    

F108 to F114 Average temperatures 
of modules 1 to 7 

Temperature    •   
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The second stage (bottom box in Figure 5.4) is aimed at screening features unrelated to fouling 
and to identify the ones most related to the fouling-relevant features included in the PCA model 
developed in the previous stage. A new subset of features is included in the dataset and a new 
PCA model is calibrated. Loadings and scores on the significant PCs of the new model are 
visualized to spot any change with respect the PCs in the model from the first stage. If no 
relevant change in the PCs and scores is found (as in the case of the model in Figure 5.6), the 
new subset of features is deemed to be unrelated to fouling and discarded. If there are relevant 
changes (as in the case of Figure 5.7), the physical meaningfulness of the new correlation 
captured by the model is assessed: if it is not meaningful, the new correlation is deemed 
spurious, and the new subset of features is again discarded; if it is meaningful, then features in 
the new subset are deemed related to a potential cause of fouling, and engineering judgment is 
used to investigate such a cause. In the study discussed in this Chapter, the most relevant 
outcomes of the screening procedure will be outlined in Sections 5.4.2, 5.4.3, 5.4.4, and 5.4.5. 

5.4 Results and discussion 
The outcomes of the study carried out in this Chapter are discussed in this Section. Six models 
are described (refer to Table 5.1 for details on the features included in each model). 

Model 0 The base-case PCA model developed with a subset of fundamental process 
features, including fouling-relevant features, described in Section 5.4.1. 

Model 1 A PCA model including also features concerning cleaning operations and feed 
properties, described in Section 5.4.2. 

 
Figure 5.4. Scheme of the proposed data analysis workflow for feature screening. 
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Model 2 A PCA model including also features concerning irreversible fouling, described 
in Section 5.4.3. 

Model 3 A PCA model including also features concerning temperature, described in 
Section 5.4.4. 

Model 4 A PCA model including also features concerning upstream contaminations, 
described in Section 5.4.5. 

Model 5 A PCA model including also features concerning processing delay time (related 
to contaminations as well), described in Section 5.4.5. 

The data analytics workflow is implemented in MATLAB R2022a (The Mathworks, 2022a) 
with in-house-developed code. 

5.4.1 Base-case PCA model 

The data analytics workflow proposed in Section 5.3.3 begins with the calibration of a base-
case PCA model (Model 0) including a set of fundamental features characterizing the process 
and membrane fouling. Such features are identified as: 

• the overall VCR (feature F005); 
• average flow rates/fluxes in the manifolds (features from F009 to F011); 
• features related to the feed pressure (features from F022 to F024); 
• features related to the TMP (features from F020 to F021); 
• average energy consumption (feature F029) 
• features related to the average resistance of the multi-module system (features from 

F030 to F032). 
Two significant PCs are selected for Model 0, the loadings and scores of which are reported in 
Figure 5.5. The labels of features in Figure 5.5(a) correspond to the identifiers in Table 5.1. 
Figure 5.5(a) highlights that fouling-related features represent the major variability driver (first 
PC) of the process, as expected, while the second source of variability (second PC) is mostly 

 
(a) 

 
 

(b) 
Figure 5.5. (a) Loadings and (b) scores of PCA Model 0 (the base-case), developed on the 
set of fundamental process features, including fouling-related features. 
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related to the material balance of the system; the VCR (feature F005) and energy consumption 
(feature F029) impact the second PC as well. The model properly identifies batches that 
suffered from fouling issues, which are separated from the bulk of the runs in the score plot 
reported in Figure 5.5(b). Specifically, three groups are identified: normal batches (squares), 
batches suffering from mild fouling (diamonds), and batches suffering from severe fouling 
(triangles). The batches belonging to the three groups identified by Model 0 are represented 
with the same symbols used in Figure 5.5(b) in all of the following figures. 

5.4.2 Effects of feed properties and cleaning operation 

The feed of the ultrafiltration process (cells suspended in the solution containing the product) 
has a high fouling potential. This entails the need for frequent cleaning of membranes, which 
is achieved by means of four cleaning operations. Therefore, features concerning feed 
properties (features from F053 to F054) and cleaning operations (features from F065 to F069) 
are included in the dataset as a new subset in the feature screening phase of the proposed 
procedure, and a new PCA model is calibrated: Model 1. Figure 5.6 reports scores and loadings 
of the first two PCs of Model 1. 

The new subset of features is basically unmodeled by the first PC of Model 1, the loadings of 
which are shown in the top panel of Figure 5.6(a). This is confirmed by the score plot in Figure 
5.6(b), as the grouping of observations is basically unchanged with respect to Figure 5.5(b). 
While this result might seem unexpected given the nature of the new features in Model 1, it 
provides valuable information nonetheless. The fact that features encoding cleaning operations 
(features from F065 to F069) do not show any correlation with the fouling-related ones 
(features F020 to F024, and from F029 to F031) confirms that the cleaning policies adopted 
in the plant are effective in removing reversible fouling. If cleaning operations were ineffective 
in contrasting reversible fouling, we would expect to find a negative correlation between the 

 
(a) 

 
 

(b) 
Figure 5.6. (a) Loadings and (b) scores of the PCA Model 1, developed including features 
concerning the feed properties and cleaning operations. Loadings of the new subset of 
features are represented in darker color. 
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sets of features representing the two phenomena (cleaning features are encoded as logical 
variables), denoting that batches not undergoing some cleaning operations have a higher fouling 
tendency compared to the batches where those operations are performed. Conversely, the lack 
of correlation between features representing cleaning operations and the fouling-related ones 
implies that the former do not explain any variability of the latter. Therefore, engineering 
judgement suggests that the cause of fouling is not related to the cleaning operations. On the 
other hand, it would still be reasonable to expect a high biomass concentration to imply severe 
fouling. However, the second PC shows a negative correlation between the VCR (feature F005) 
and the biomass concentration (feature F053), reflecting a control action performed by plant 
operators and consisting in lowering the VCR (by increasing the retentate flow rate) to 
compensate for high biomass concentration, thus effectively limiting the fouling rate. The 
effectiveness of this action is confirmed by the analysis of data discussed herein. 

5.4.3 Interaction between reversible fouling and irreversible fouling 

Model 0 includes features related to reversible fouling and to the overall fouling state of 
membranes. Features regarding irreversible fouling, namely average permeate fluxes (features 
from F069 to F075) and diafiltration flow rates of each module (features from F076 to F079), 
are included in Model 2 to investigate interactions between reversible fouling and irreversible 
fouling. Loadings and scores on the first two PCs of Model 2 are shown in Figure 5.7. 

The new features show a significant correlation with features in the fundamental set, as can be 
seen in Figure 5.7(a), and cause a variation of the grouping pattern in the score plot, as reported 
in Figure 5.7(b). The loadings allow to conclude that reversible fouling is more intense when 
permeate fluxes of single modules are lower. This conclusion makes engineering sense, as 
permeate fluxes are proxies to the ages of membranes (thus their wear state, Figure 5.2), which 
is found to be the major factor related to reversible fouling issues. Since such fluxes are also 

 
(a) 

 
(b) 

Figure 5.7. (a) Loadings and (b) scores of the PCA Model 2, developed including the average 
permeate fluxes and average diafiltration flow rates of single modules. Loadings of the new 
subset of features are represented in darker color. 
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assumed to be reliable indicators of irreversible fouling, the newfound correlation points at the 
strong interaction between reversible fouling (manifested as high pressure reached during 
filtration) and irreversible fouling (in the form of a decrease of permeate flux batch after batch). 
Membranes operate in a normal way and reversible fouling is under control for most of their 
life, but their fouling propensity increases sharply after a given level of wear (irreversible 
fouling). This effect can be clearly visualized in Figure 5.8, reporting average permeate fluxes 
of three modules in the sequence of batches in the dataset. 

Batches suffering from reversible fouling are not evenly distributed in time but tend to group 
before membrane replacements. The analysis of values of fluxes (not reported for 
confidentiality reasons) highlights that a group appears anytime the flux of one of the modules 
falls below a given threshold. This information is extremely valuable for the operation of the 
plant, as it offers guidelines to improve the maintenance schedule of membrane units avoiding 
(or reducing) disruption due to fouling. 

5.4.4 Effect of module temperature 

The effect of temperature is investigated including the average temperatures of modules 
(features F108 to F114), yielding PCA Model 3, the scores and loadings of which are reported 
in Figure 5.9. 
A clear correlation between fouling-related features and temperature features can be inferred 
from Figure 5.9(a), which is also reflected by the scores in Figure 5.9(b). The effect of 

 
Figure 5.8. Mean permeate fluxes of three selected membrane modules across several 
consecutive batches. Each point represents the average of the profile of the relevant variable 
on a batch. The vertical solid black lines indicate replacements of the membrane of the 
relevant module, while vertical dashed lines are membrane replacements of other modules. 
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temperature can be visualized in Figure 5.10(a), reporting the average temperature of a selected 
membrane module. 

The correlation between reversible fouling and temperature appears intuitively clear: the 
frequency and severity of fouling events increases when temperature increases. For comparison, 
Figure 5.10(b) reports the steady state phase of the raw profiles of temperature used to compute 
the features in Figure 5.10(a). While the trend of profiles is qualitatively the same as the one of 
features, interpretation of the former is more cumbersome due to the within-batch variability, 
which overlaps with the between-batch variability. Within-batch variability could even 
dominate the correlation structure of data, thus “distracting” the model from the phenomena of 
interest. The advantage of using feature-oriented modeling is apparent in this case, as they allow 
to “direct the attention of the model” to the phenomena of interest. More sophisticated 

 
(a) 

 
(b) 

Figure 5.9. (a) Loadings and (b) scores of the PCA Model 3, developed including the average 
temperatures of single modules. Loadings of the new subset of features are represented in 
darker color. 

 
(a) 

 

 
(b) 

Figure 5.10. (a) Mean temperatures of one membrane module across several consecutive 
batches. Each point represents the average of the profile of the relevant variable on a batch. 
(b) Steady-state phase of the raw profiles of temperature used to compute the features. Each 
profile is centered on the relevant batch number. 
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multiscale modeling approaches accounting for both within-batch and between-batch 
variabilities exist nonetheless (Bakshi, 1998; Klimkiewicz et al., 2016; Yoon et al., 2004). 
However, a more in-depth analysis is in order concerning the effect of temperature. In fact, 
Figure 5.10(a) clearly highlights a seasonal variation of the temperature in the dataset at hand. 
This could mask the true effect of such a variable, causing the model to detect a spurious 
correlation which does not correspond to any causal relationship. Further doubts on the effect 
of temperature are casted by a deeper analysis of scores and loadings of the PCA model in 
Figure 5.9. One could note, in Figure 5.9(a), that the first PC models a positive correlation 
between fouling-related features and temperature (loadings of both groups are positive), while 
the second PC models a negative correlation (loadings of fouling-related features are positive, 
but loadings of temperate features are negative). This implies that the direction of fouling-
related features in the score plot in Figure 5.9(b) is approximately aligned with the bisector of 
the first and third quadrants; on the other hand, the direction of temperature features 
approximately lies on the bisector of the second and fourth quadrants. Being the two directions 
nearly orthogonal, the two group of features appear to be independent rather than correlated. 
Engineering judgement suggests that temperature should have an effect fouling on as it affects 
the viscosity of the fluids being processed and the characteristics of the possibly non-completely 
sterilized biomass in the feed. Furthermore, if biological fouling takes place (microorganisms 
attaching to and growing on membrane surfaces), temperature directly influences its growth 
kinetics and physical characteristics. Unclear effects of temperature were found also in other 
published studies concerning complex industrial scenarios similar to the one considered herein. 
For example, Philippe et al. (2013), highlighted that contradictory results were reported in the 
literature, concluding that there is no clear agreement regarding the effect of temperature on 
membrane fouling. 
Given the outcomes of the model-based analysis described in this Chapter and the findings from 
the literature, we deem temperature as a potentially relevant factor for fouling. However, its 
effect is unclear, and we recommend the execution of a tailored experimental investigation. 

5.4.5 Effects of upstream contaminations and processing delay time 

An investigation of the effect of contaminating microorganisms is of interest for the present 
fouling analysis. Data regarding contaminations detected in a number of sampling points on the 
upstream processing line are available and used to design logical features identifying the origin 
of the contamination of the material being processed in the ultrafiltration unit (features F061 
and F062). A PCA model including the upstream contamination-related features, Model 4 
(loadings and scores not shown for brevity), is developed. No significant new correlation with 
fouling-related features is detected. This conclusion is supported by Figure 5.11, reporting one 
of the fouling-related features (the maximum feed pressure, feature F023) with vertical arrows 
marking ultrafiltration batches that processed a contaminated feed. 
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If upstream contaminations had any effect on fouling of ultrafiltration membranes, one would 
expect Figure 5.11 to show vertical arrows (contamination indicators) on most of the batches 
represented as orange diamonds or red triangles (the ones suffering from fouling issues). 
However, this behavior is not seen. In fact, batches suffering from fouling issues processed 
mostly non-contaminated feed, confirming that upstream contaminations do not significantly 
influence fouling of ultrafiltration membranes. 
Another possible source of contaminations is the buffer tank between the array of upstream 
bioreactors and the sterilization unit. Depending on the production schedule of the plant, the 
fluid withdrawn from bioreactors could be withheld for some time in a buffer tank before 
sterilization, with the consequent risk of unpredictable behavior of the biomass, such as 
production of unwanted compounds or growth of contaminating microorganisms. A feature to 
account for this processing delay time (feature F052) is included in the PCA Model 5 (loadings 
and scores not shown for brevity) and is represented in Figure 5.12. 

The processing delay time undergone a significant variation halfway through the timespan of 
data available for the analysis due to a change in the production schedule of the biorefinery, 
and a mild correlation with fouling-related features is detected by Model 5. However, one must 
note that the processing delay time (feature F052) also shows a remarkable correlation with 
features regarding temperature of modules (features F108 to F114), which highlights that the 
increase in hold-time in the buffer tank overlaps with the seasonal variation of the temperature. 
This phenomenon might lead the model to confound the two effects, therefore the effect of 
temperature should be made clear first, and the effect of the processing delay time should be 
assessed once this new information is available. 

 
Figure 5.11. Maximum feed pressure across several consecutive batches. Each point 
represents the maximum value of the profile of the relevant variable on a batch. The vertical 
arrows mark ultrafiltration batches that processed a feed found to be contaminated in the 
upstream. 

 
Figure 5.12. Processing delay time across several consecutive batches. 



   Chapter 5 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

114 

5.5 Conclusions 
We carried out a comprehensive investigation of membrane fouling in the ultrafiltration 
operation of the industrial biorefinery considered in this Thesis. We resorted to interpretable 
data-driven models to develop knowledge on membrane fouling relying solely on data collected 
during process operation, and we proved how PCA can identify potential causes of fouling by 
analysis of data concerning the observable effects of this complex phenomenon, namely within-
batch pressure rise (reversible fouling) and between-batch flux decline (irreversible fouling). A 
feature-oriented approach was adopted to cope with the strong variabilities in duration of 
filtration batches and shape of profiles of process variables induced by fouling: instead of using 
process data directly, numerical values characterizing each operating period were obtained to 
summarize time profiles into time-independent numerical features. We leveraged process 
knowledge to design features that could enhance the phenomenon under investigation, thus 
maximizing the dataset information content. A large number or features was obtained due to 
variety of process settings that could be potentially related to fouling, therefore we developed 
a systematic procedure for feature screening. Incorporation of process knowledge into the data 
analysis workflow proved essential to identify potential causes of fouling. 
The model-based analysis allowed us to conclude that the cleaning policies and control actions 
currently adopted by plant operators can effectively manage reversible fouling up to a point 
where irreversible fouling of membranes is significant enough to neutralize such corrective 
actions, thus uncovering a strong interaction between the two fouling mechanisms in this plant. 
We also identified critical values of permeate fluxes of single modules (proxies to the 
irreversible fouling state of membranes) below which reversible fouling becomes hard to 
counteract by standard control/cleaning policies, providing precious guidelines for the 
improvement of the membrane maintenance schedule. Furthermore, we uncovered a potential 
relationship between temperature of membrane modules and severity of reversible fouling. 
However, the effect of temperature is unclear: contradictory conclusions were drawn by the 
analysis of data, therefore we recommended a tailored experimental investigation to shed light 
on this effect. Besides this, future work is directed to deeper investigations of the two fouling 
types. Detailed knowledge of the composition of the feed material would be beneficial to 
uncover the actual causes of reversible fouling by identification of the major foulants. On the 
other hand, modeling the dynamic evolution of irreversible fouling would enable us to set up 
proper predictive maintenance systems as to systematically optimize the cleaning and 
maintenance schedules of the plant. 
 



 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

Chapter 6 
 

Regularized direct inversion 
to handle correlated quality variables7 

A novel approach to algebraic inversion of PLS models is proposed in this Chapter. The popular 
DI approach to LVMI relies on the assumption that the variables describing the product quality 
are independent. However, product quality is often quantified by variables featuring varying 
degrees of correlation, which could cause singularities in DI. The method we propose in this 
Chapter can cope with this issue by design. The principle of the proposed approach is also 
leveraged to formulate an improved method to estimate the null space uncertainty. 

6.1 Introduction 
Ensuring consistent, on-target product quality and optimizing process conditions are daily 
challenges in the process industry. At the same time, the ever-growing availability of real-time 
measurements of several process variables, together with the potential of the Industry 4.0 
paradigm, offers unique opportunities for boosting the performance of manufacturing processes 
to a new level (Reis et al., 2017, 2018, 2021b; Rendall et al., 2019; Venkatasubramanian, 2019). 
Interpretable data-driven models, such PCA (Wold et al., 1987a) and PLS regression (Geladi et 
al., 1986; Wold et al., 2001), allow translating data into information that can subsequently be 
capitalized into knowledge, thus shedding light also on complex processes for which principled 
knowledge may be lacking (for example biological processes). Multivariate statistical process 
monitoring systems (Kourti et al., 1995; Qin, 2003; Reis et al., 2017) or soft sensors for online 
estimation of product quality (Kadlec et al., 2009; Souza et al., 2016; Zhu et al., 2020) are just 
a few examples of successful applications of such latent-variable modeling techniques. 
A PLS model relates input (predictor) and output (response) data from a process, and it also 
establishes models for the relevant data matrices. Therefore, if the matrix of inputs contains the 
available measurements on raw materials properties and process operating conditions 
(collectively referred to as process conditions in this Chapter), and the matrix of outputs is built 
on the available product quality measurements, the relevant PLS model encodes the relations 
between (a subset of) the process conditions and the product quality, while simultaneously 

                                                 
7 Part of the research discussed in this Chapter has been published as a journal paper (Arnese-Feffin et al., 2022) and presented 
at an international conference (Arnese-Feffin et al., 2023a, 2023b). 
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modeling the process conditions and product quality themselves (Ferrer, 2020). This feature of 
PLS models makes them particularly attractive for addressing product design problems, namely 
for finding the combinations of raw materials and operating conditions that, on the one side, 
allow one to achieve an assigned product quality target, and, on the other side, are consistent 
with the past operation of the process (Jaeckle et al., 1998). From a modeling perspective, this 
task is known as LVMI (Jaeckle et al., 2000). 
The rationale of LVMI can be stated as follows: set a target quality on the output variables, and 
run the model in “reverse mode”, in such a way to calculate the values of the input variables 
that are most related to the assigned quality target according to the correlation pattern explained 
by the model. Since its original formulation, LVMI has been applied to several domains of 
industrial relevance, some of which have been listed in Section 1.2.4; Table 6.1 reports a more 
detailed list, with specific model inversion methodology used in the cited studies (the rationale 
behind each model inversion methodology has been briefly introduced in Section 2.5). 
With respect to the formulation of the model inversion problem, Tomba et al. (2012a) proposed 
a general framework by systematizing contributions to LVMI coming from earlier studies 

Table 6.1. Some applications of latent-variable model inversion, and methodologies used to 
address model inversion. The methodologies are discussed in Section 2.5. 

Reference Application Model inversion methodology 

Jaeckle et al. (2000) Design of process conditions to achieve 
an assigned product quality in an 
industrial semi-batch emulsion 
polymerization process 

Direct inversion 

Yacoub et al. (2004) Design of process conditions for an 
industrial insert-molding process 

Inversion by optimization 

Hwang et al. (2004) Design of optimal environmental 
conditions for growing cells with desired 
levels of cellular functions in artificial 
organs engineering 

Direct inversion 

Flores-Cerrillo et al. (2004) Control of simulated batch and industrial 
semi-batch polymerization processes 

Direct inversion 

García-Muñoz et al. (2005) Product transfer between plants on a 
simulated low-density polyethylene 
polymerization reactor and scale-up of an 
industrial pulp digester 

Direct inversion 

Muteki et al. (2006)  Selection of optimal raw materials and 
blending ratios in an industrial polymer-
blend production process 

Inversion by optimization 

García-Muñoz et al. (2006) Design of reference profiles for an 
industrial pulp digester 

Direct inversion; inversion by 
optimization 

García-Muñoz et al. (2008) Design of reference profiles for an 
industrial batch polymerization process 

Inversion by optimization 
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(Flores-Cerrillo et al., 2005; García-Muñoz et al., 2006, 2008; Yacoub et al., 2004) framing 
model inversion as an optimization problem. The proposed framework is applicable also when 
some quality variables have non-assigned targets and constraints have to be enforced in the 

Table 6.1 (continued). 

Reference Application Model inversion methodology 

Liu et al. (2011a) Formulation of product and design of 
conditions of an industrial tablet 
manufacturing process 

Inversion by optimization 

Liu et al. (2011b) Scale-up of a roller compaction process Inversion by optimization 

Tomba et al. (2013b) Design of new quality profiles of 
pharmaceutical products from a lab-scale 
high shear wet granulation 

Direct inversion; inversion by 
optimization 

Tomba et al. (2014) Product transfer between lab-scale units 
for the manufacturing of nanoparticles 

Direct inversion; inversion by 
optimization 

Facco et al. (2015) Bracketing of design space of 
pharmaceutical processes demonstrated 
on three simulated case-studies 

Direct inversion 

Dal-Pastro et al. (2017) Scale-up of an industrial wheat milling 
process with near-infrared measurements 
of product quality  

Inversion by optimization 

Bano et al. (2018b) Identification of the design space in 
pharmaceutical processes demonstrated 
on three simulated case-studies 

Direct inversion 

Žuvela et al. (2018) Preliminary screening of drug molecules 
given target molecular descriptors 

Inversion by optimization 

Zhao et al. (2019) Design of operating parameters of 
simulated fed-batch penicillin production 
process 

Direct inversion 

Zhao et al. (2020) Control of a simulated beer fermentation 
process 

Direct inversion 

Wang et al. (2020) Identification of process conditions 
ensuring proper glycosylation in 
mammalian cell culture bioreactors 

Direct inversion 

Chu et al. (2021) Transfer of a simulated cobalt oxalate 
synthesis process to a new plant 

Inversion by optimization 

Ruiz et al. (2021) Achievement of non-defective products 
applied to real datasets of red wine and 
plastic pellets 

Inversion by multi-objective 
optimization 

Arce et al. (2021) Design of optimal conditions for an 
analytical procedure to assess bisphenols 
while minimizing analysis time and 
sample volume 

Inversion by multi-objective 
optimization 
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inversion (for instance, bounds of some of the input variables). The approach was further 
improved by Palací-López et al. (2019, 2020) with concern to the assignment of targets in terms 
of linear combinations of the output variables, as may occur, for example, when one needs to 
address economic target functions. An alternative formulation of LVMI based on a multi-
objective optimization problem and exploiting the concept of Pareto optimality was proposed 
by Ruiz et al. (2018). Finally, extensions of LVMI to other, possibly nonlinear latent variables 
models have been proposed, such as nonlinear PLS (Yacoub et al., 2004), JYPLS (García-
Muñoz et al., 2005), mixture-PLS (Muteki et al., 2006), total PLS (Zhao et al., 2019), kernel 
PLS (Zhu et al., 2021), and kernel JYPLS (Chu et al., 2021). 
Most of the research on PLS model inversion focuses on the development of alternative 
approaches to formulate and solve the optimization problem arising in the inversion. However, 
no study has addressed the problem of improving the algebraic formulation of the model 
inversion problem, as originally proposed by Jaeckle et al. (1998). This formulation, also 
referred to as direct inversion (DI) in the literature (Tomba et al., 2012a), develops along a 
three-case workflow depending on the relative dimensions of the product quality space and of 
the process operating space, as discussed in Section 2.5.1. Whatever the relevant case, it 
assumes that the quality variables, upon which the response matrix is built, are independent 
(Jaeckle et al., 1998). However, in most practical cases the quality variables are correlated to 
some extent (Kourti et al., 1995; Wise et al., 1996). To circumvent this problem, Jaeckle et al. 
(1998, 2000) suggested two alternative approaches. The first one is to first build a PCA model 
on the entire set of quality data, and then use columns of the relevant score matrix corresponding 
to the significant PCs to build the response matrix. However, as noted by Jaeckle et al. (1998), 
a drawback of this approach is that some people may feel uncomfortable in using PCs instead 
of true variables to represent the product quality. The second approach is to build the response 
matrix by using only a subset of the quality variables. This approach fixes the above drawback; 
however, some of the information related to the quality variables space is lost when only a 
limited number of quality variables is used, which can make the PLS model not entirely 
representative of that space. 
LVMI can yield infinite solutions in same cases (namely when the number of latent variables 
is greater than the number of quality attributes, see Section 2.5.1). In such cases, the subspace 
of solutions is referred to as null space (Jaeckle et al., 2000). In principle, any point along the 
null space should yield a product with the same quality attributes, a property that has been 
proved experimentally (Tomba et al., 2014). This gives additional degrees of freedom to 
process engineers to tune the solution to achieve some additional objective, say minimization 
of energy consumption, while still achieving the desired product quality (Jaeckle et al., 2000). 
However, the estimated null space suffers from uncertainty, an issue that must be accounted for 
in tuning the solution of LVMI. Several of approaches have been proposed to estimate the 
uncertainty of the null space (Bano et al., 2017, 2018a; Facco et al., 2015; Palací-López et al., 
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2019; Tomba et al., 2012a). All these approaches are based on DI, therefore they inherit the 
assumption of independent quality attributes. 
We propose an alternative formulation of the DI problem in order to improve the performance 
of algebraic model inversion and of null space uncertainty estimation in scenarios where the 
quality variables are correlated, exemplifying it in the case of PLS model inversion. As a side 
result, the proposed formulation simplifies the aforementioned tasks by resorting to a single-
case workflow, with equivalent performance to the original case-based workflow developed for 
independent quality variables. 
The remainder of this Chapter is organized as follows. In Section 6.2, we briefly recall the 
rationale of the mathematical methods used in this study, with a focus on the reasons why the 
existing algebraic formulation of the model inversion problem requires the model outputs to be 
independent, and we discuss the state of the art of PLS model inversion in the presence of 
correlated quality variables. We propose a new formulation of the LVMI problem, which can 
be used also when correlated outputs exist, in Section 6.3. We discuss advantages and 
limitations of the proposed approach therein and extend it to the estimation of the uncertainty 
of the null space. A comparison of the model inversion results for the existing and proposed 
formulations, with reference to two product design problems, is then presented: Section 6.4 
refers to a simulated batch fermentation process, while Section 6.5 discusses a simulated fed-
batch penicillin production process. Conclusions are drawn in Section 6.6. 

6.2 PLS model inversion in the presence of correlated outputs 
The mathematical methods relevant to this Chapter are PLS regression and LVMI in the form 
of PLS model inversion. The general form and rationale of PLS has been introduced in Section 
2.2, while LVMI has been discussed in detail in Section 2.5, together with methods to estimate 
the null space uncertainty. In this Chapter, we assume that 𝐗𝐗 and 𝐘𝐘 collect the measurements 
of process conditions and product quality variables, respectively. 

6.2.1 Importance of the assumption of independent variables 

Here, we provide a short discussion on the reasons why the original formulation of the model 
inversion problem (Jaeckle et al., 1998) is defined under the assumption of independent quality 
variables and according to a case-by-case workflow. 
We first consider the case where the 𝑉𝑉𝑌𝑌 quality variables are indeed independent, thus 𝑅𝑅𝑌𝑌 =
rank(𝐘𝐘) = 𝑉𝑉𝑌𝑌 in Figure 6.1(a). The reason why (2.75) can be used to calculate 𝐭𝐭des if 𝐴𝐴 < 𝑉𝑉𝑌𝑌, 
but not if 𝐴𝐴 > 𝑉𝑉𝑌𝑌, is because it involves the right generalized inverse of 𝐐𝐐�T, which entails the 
inversion of 𝐐𝐐�T ⋅ 𝐐𝐐�, a matrix in ℝ𝐴𝐴 × ℝ𝐴𝐴. Recalling that 𝐐𝐐� ∈ ℝ𝑉𝑉𝑌𝑌 × ℝ𝐴𝐴, one can say that 
rank�𝐐𝐐�T ⋅ 𝐐𝐐�� = min{𝐴𝐴,𝑉𝑉𝑌𝑌}, and therefore 𝐐𝐐�T ⋅ 𝐐𝐐�  becomes non-invertible if 𝐴𝐴 > 𝑉𝑉𝑌𝑌. Jaeckle et 
al. (1998) solved this issue by using (2.77) instead of (2.75) when 𝐴𝐴 > 𝑉𝑉𝑌𝑌, thus invoking a left 
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generalized inverse of 𝐐𝐐�T. This operation requires inverting 𝐐𝐐� ⋅ 𝐐𝐐�T, which is a full rank matrix 
in ℝ𝑉𝑉𝑌𝑌 × ℝ𝑉𝑉𝑌𝑌 . In the special case of 𝐴𝐴 = 𝑉𝑉𝑌𝑌, 𝐐𝐐�T is a square matrix, and it can be inverted 
directly as is (2.76). 

Next, we consider the case where the quality variables are correlated, therefore 𝑅𝑅𝑌𝑌 < 𝑉𝑉𝑌𝑌, 
meaning that the true dimension of the quality space is smaller than the number of quality 
variables, as shown in Figure 6.1(b). It follows that rank�𝐐𝐐�T ⋅ 𝐐𝐐�� = min{𝐴𝐴,𝑅𝑅𝑌𝑌}. For the 
purpose of understanding the limitations of the DI formulation when correlated outputs exist, 
we consider a situation where one addresses the model inversion problem by naïvely 
disregarding the fact that the 𝑉𝑉𝑌𝑌 quality variables are correlated. Thus, one of the following 
cases would be encountered. 

1. 𝐴𝐴 ≤ 𝑅𝑅𝑌𝑌: the dimension of the latent-variable space is smaller than, or equal to, the 
dimension of the quality space. Matrix 𝐐𝐐�T ⋅ 𝐐𝐐� is full rank, and (2.75) can be used for 
DI. 

2. 𝑅𝑅𝑌𝑌 < 𝐴𝐴 < 𝑉𝑉𝑌𝑌: the dimension of the latent-variable space falls between the dimension of 
the quality space and the number of quality variables. Matrix 𝐐𝐐�T ⋅ 𝐐𝐐� is not full rank 
because 𝐴𝐴 > 𝑅𝑅𝑌𝑌, and therefore it cannot be inverted as in (2.75). 

3. 𝐴𝐴 = 𝑉𝑉𝑌𝑌: the latent-variable space has a greater dimension than the quality space, and 
this dimension is equal to the number of quality variables. Matrix 𝐐𝐐�T is square but not 
full rank, because 𝑉𝑉𝑌𝑌 > 𝑅𝑅𝑌𝑌, and cannot be inverted as in (2.76). 

4. 𝐴𝐴 > 𝑉𝑉𝑌𝑌: the latent-variable space has a greater dimension than both the quality space 
and the number of quality variables. Matrix 𝐐𝐐� ⋅ 𝐐𝐐�T is not full rank because 𝑉𝑉𝑌𝑌 > 𝑅𝑅𝑌𝑌, 
and cannot be inverted as in (2.77). 

In conclusion, when the quality variables are correlated, DI can still be performed by means of 
(2.75), but only if 𝐴𝐴 ≤ 𝑅𝑅𝑌𝑌; however, if 𝐴𝐴 > 𝑅𝑅𝑌𝑌, none of equations (2.75), (2.76), and (2.77) can 

 
(a) 

 
(b) 

Figure 6.1. Graphical interpretation of DI cases for different values of A with (a) VY 
independent quality variables, and (b) RY independent quality variables out of VY quality 
variables in total. 
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be used, as all of them involve the inversion of matrices that are not full rank. That is why the 
assumption of independent quality variables is central to the workflow proposed by Jaeckle et 
al. (1998). We remark that this issue affects only DI and some of the cases of inversion by 
optimization, as it entails a matrix inversion. The inversion by multi-objective optimization 
approach mentioned in Section 2.5 does not suffer from it. 
In the case 𝐴𝐴 > 𝑉𝑉𝑌𝑌, a null space exists and one can estimate its uncertainty, for example, by the 
analytical methods proposed by Facco et al. (2015) and Palací-López et al. (2019). This is 
possible in the case of independent quality variables only, as both methods involve the inversion 
of matrix 𝐐𝐐� ⋅ 𝐐𝐐�T in (2.84) for Facco et al. (2015), and in (2.88) and (2.92) for Palací-López et 
al. (2019). Also other methods to estimate the null space uncertainty (Bano et al., 2017, 2018a; 
Tomba et al., 2012a) suffer from the same issue, being based on 𝐭𝐭des,p computed as per (2.77). 
However, the discussion is hereby limited to the methods by Facco et al. (2015) and Palací-
López et al. (2019) by virtue of their simple analytical formulation. 

6.2.2 Existing approaches to handle correlated quality variables 

As discussed in Section 6.1, the existence of an issue in direct model inversion when the quality 
variables are correlated was early acknowledged by Jaeckle et al. (1998, 2000), who proposed 
two alternative ways to deal with it. The first approach consists in preliminarily building a PCA 
model on the full set of quality data. The columns of the score matrix of this model represent 
linear combinations of the true quality variables and are orthogonal by design. Therefore, they 
represent “artificial quality variables” that can be used to build the 𝐘𝐘 matrix, thus enabling the 
application of the case-based workflow discussed in Section 2.5.1. However, this has the 
disadvantage that people may not be comfortable in assigning targets to artificial quality 
variables rather than to true ones (Jaeckle et al., 1998). 
As an alternative methodology, the same authors suggested to build the 𝐘𝐘 matrix by using a 
subset of the original quality variables, namely only those variables that can span the 𝑅𝑅𝑌𝑌-
dimensional quality space (Jaeckle et al., 1998). Although this is the preferred approach in the 
literature and can work effectively, it has some drawbacks. The first one is that, since only a 
subset of the quality variables is used, a subspace of the quality space is effectively ignored 
(unless the quality variables that are not included in 𝐘𝐘 are truly collinear8 with the others), and 
therefore it is not described by the PLS model. Consequently, regardless of the model accuracy, 
the solution obtained by model inversion could not be able to ensure that the quality variables 
that have not been included in 𝐘𝐘 will be close enough to their targets9. The impact of this 

                                                 
8 In this Thesis, the term “collinear” is used to denote ‘a couple of variables that are linearly dependent’, therefore that have 
unitary correlation coefficient. On the other hand, the term “correlated” means that ‘the variables feature a given degree of 
correlation’. 
9 Note that this drawback also exists for the first alternative whenever the quality variables are not collinear and the number of 
principal components used in the PCA model is smaller than the number of quality variables. 
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drawback is not known in advance, because it depends on how strongly the quality variables 
are correlated, and on the quality variables that are included in 𝐘𝐘. The second drawback of using 
only a subset of the quality variables is that some correlation between the variables that are 
included in 𝐘𝐘 always exists. Since process variability and measurement noise may partially 
mask this correlation, one may end up including in 𝐘𝐘 some quality variables that are correlated 
strongly enough to potentially give rise to an ill-conditioning issue in the matrix inversion 
calculations of (2.77) (García-Muñoz et al., 2006). Essentially, this issue is the same mentioned 
by Flores-Cerrillo et al. (2004), although in a slightly different context. 
Some attempts have been done to formulate the model inversion problem in the presence of 
correlated outputs. Palací-López et al. (2019) and Wang et al. (2020) discussed the case-based 
workflow of DI considering rank 𝑅𝑅𝑌𝑌 in place of 𝑉𝑉𝑌𝑌. García-Muñoz et al. (2006) extensively 
studied the concept of null space, including the case of correlated output variables; they 
proposed to handle the multiple solutions arising in the presence of such space by reformulating 
model inversion as an optimization problem in the space of LVs. They proved such approach 
to be effective and able to deal with ill-conditioning issues arising from the presence of 
correlation among quality variables. However, the solution of an optimization problem implies 
an increase of the computational cost. Zhao et al. (2019) extended the concept of LVMI to the 
total PLS modeling paradigm (Zhou et al., 2010), which is an extension of the PLS model based 
on the idea of “post-processing” the predictions of a PLS model to separate the output-relevant 
LVs (the ones actually relating the variance of the operating space to the variance of the quality 
space) from the output-irrelevant LVs (included in the PLS model to increase the explained 
variance of the operating space). Although not explicitly meant to address the issues related to 
correlated quality variables in LVMI, distinguishing LVs between output-relevant and output-
irrelevant can be useful to account for correlation among output variables when performing DI 
of total PLS models, thus effectively solving the ill-conditioning induced by the presence of 
correlated quality variables. However, both model development and model inversion increase 
in complexity, with several hyperparameters to be tuned and processing operations required to 
the user in order to select an appropriate solution to the inversion problem in the presence of a 
null space. No algebraic approach to the inversion of a standard PLS model for cases where 
𝐴𝐴 > 𝑅𝑅𝑌𝑌 has been proposed so far. A methodology to do this in a straightforward way is 
presented in the following Section. 

6.3 Regularized direct inversion of PLS models 
In this Section, we propose a novel framework that enables one to tackle output correlation by 
design in the formulation of the model inversion problem. Additionally, this will lead to a 
workflow that develops according to a single case, regardless of the relative values of 𝐴𝐴, 𝑉𝑉𝑌𝑌, 
and 𝑅𝑅𝑌𝑌. 
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6.3.1 Regularized direct inversion for collinear quality variables 

We consider the case where only 𝑅𝑅𝑌𝑌 out of the 𝑉𝑉𝑌𝑌 quality variables are independent, while the 
remaining ones are collinear with the former ones; therefore, 𝑅𝑅𝑌𝑌 < 𝑉𝑉𝑌𝑌, as in Figure 6.1(b). We 
assume that the output matrix 𝐘𝐘 is built by using all available quality measurements, and we 
propose an algebraic formulation of the PLS model inversion problem that can work effectively 
also in this condition. Extension to the case where the quality variables are correlated (but not 
collinear), or independent, is discussed in the next Section. 
We first consider the case where 𝐴𝐴 > 𝑅𝑅𝑌𝑌, with 𝐴𝐴 < 𝑉𝑉𝑌𝑌. We have seen that numerical issues 
arise from the computation of the inverse matrix �𝐐𝐐�T ⋅ 𝐐𝐐��

−1
. We propose a LVMI method, 

named regularized direct inversion (RDI), that builds upon (2.75), but resorts to a matrix 
inversion algorithm exploiting regularization by means of SVD (Golub et al., 2013). 
Letting 𝐌𝐌 =  𝐐𝐐�T ⋅ 𝐐𝐐� in (2.75), the first RDI equation becomes: 

𝐭𝐭desT = 𝐲𝐲desT ⋅ 𝐐𝐐� ⋅ 𝐌𝐌reg−1      , (6.1) 
where 𝐌𝐌reg−1  is a regularized version of 𝐌𝐌−1 = �𝐐𝐐�T ⋅ 𝐐𝐐��

−1
. SVD has been introduced in Section 

2.1.1 in the context of PCA. However, in order to explain how 𝐌𝐌reg−1  is computed, it is worth 
recalling some facts about matrix inversion by SVD. Given that rank�𝐐𝐐�T ⋅ 𝐐𝐐�� = min{𝐴𝐴,𝑅𝑅𝑌𝑌}, 
we have that rank(𝐌𝐌) = 𝑅𝑅𝑌𝑌, meaning that 𝐌𝐌 is not full rank. SVD decomposes 𝐌𝐌 as: 

𝐌𝐌 = 𝐍𝐍 ⋅ 𝚺𝚺 ⋅ 𝐎𝐎T = [𝐍𝐍1 𝐍𝐍2] ⋅ �𝚺𝚺1 𝟎𝟎
𝟎𝟎 𝚺𝚺2

� ⋅ [𝐎𝐎1 𝐎𝐎2]T     . (6.2) 

The meanings of 𝐍𝐍, 𝚺𝚺, and 𝐎𝐎 have already been introduced in Section 2.1.1. However, 
belonging such matrices to the SVD decomposition of the square matrix 𝐐𝐐�T ⋅ 𝐐𝐐�, they are all 
square matrices in ℝ𝐴𝐴 × ℝ𝐴𝐴. As 𝐴𝐴 > 𝑅𝑅𝑌𝑌, only the first 𝑅𝑅𝑌𝑌 singular values of 𝐌𝐌 are non-null and 
are collected on the main diagonal of 𝚺𝚺1 ∈ ℝ𝑅𝑅𝑌𝑌 × ℝ𝑅𝑅𝑌𝑌 . Consequently, the remaining 𝐴𝐴 − 𝑅𝑅𝑌𝑌 
singular values are null because of collinearity among responses, and matrix 𝚺𝚺2 ∈
ℝ𝐴𝐴−𝑅𝑅𝑌𝑌 × ℝ𝐴𝐴−𝑅𝑅𝑌𝑌 is actually the null matrix 𝟎𝟎. Coherently, 𝐍𝐍 is expressed as a block matrix 
made by 𝐍𝐍1 ∈ ℝ𝐴𝐴 × ℝ𝑅𝑅𝑌𝑌  and 𝐍𝐍2 ∈ ℝ𝐴𝐴 × ℝ𝐴𝐴−𝑅𝑅𝑌𝑌, while 𝐎𝐎 contains 𝐎𝐎1 ∈ ℝ𝐴𝐴 × ℝ𝑅𝑅𝑌𝑌 and 𝐎𝐎2 ∈
ℝ𝐴𝐴 × ℝ𝐴𝐴−𝑅𝑅𝑌𝑌. 
If 𝐌𝐌 were a generic full-rank matrix, its inverse could be computed from (6.2) according to: 

𝐌𝐌−1 = 𝐎𝐎 ⋅ 𝚺𝚺−1 ⋅ 𝐍𝐍T     , (6.3) 
However, since 𝐌𝐌 is not full rank, 𝚺𝚺−1 cannot be computed as diagonal elements of 𝚺𝚺2 are zero. 
The inversion of matrix 𝐌𝐌 with rank 𝑅𝑅𝑌𝑌 can be regularized by neglecting the last 𝐴𝐴 − 𝑅𝑅𝑌𝑌 singular 
values and singular vectors, hence by neglecting all matrices with subscript 2 in (6.2), which 
yields the second RDI equation: 

𝐌𝐌reg−1 = 𝐎𝐎1 ⋅ 𝚺𝚺1−1 ⋅ 𝐍𝐍1T     . (6.4) 
So far, we presented RDI with reference to the case 𝐴𝐴 > 𝑅𝑅𝑌𝑌 with 𝐴𝐴 < 𝑉𝑉𝑌𝑌, which is only one of 
the cases illustrated in Figure 6.1(b). However, (6.1) and (6.4) hold true for all cases in which 
𝐴𝐴 > 𝑅𝑅𝑌𝑌, because 𝐐𝐐�T ⋅ 𝐐𝐐� is an ℝ𝐴𝐴 × ℝ𝐴𝐴 matrix with rank 𝑅𝑅𝑌𝑌 regardless of the relationship 
between 𝐴𝐴 and 𝑉𝑉𝑌𝑌. On the other hand, if 𝐴𝐴 ≤ 𝑅𝑅𝑌𝑌, then 𝐐𝐐�T ⋅ 𝐐𝐐� is a full-rank ℝ𝐴𝐴 × ℝ𝐴𝐴 matrix; 
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therefore, it features no null singular value; this implies that 𝐍𝐍 = 𝐍𝐍1, 𝚺𝚺 = 𝚺𝚺1, and 𝐎𝐎 = 𝐎𝐎1, from 
which we derive that 𝐌𝐌reg−1 = 𝐌𝐌−1 = �𝐐𝐐�T ⋅ 𝐐𝐐��

−1
. This proves that RDI is equivalent to DI in the 

case 𝐴𝐴 ≤ 𝑅𝑅𝑌𝑌. In short, RDI develops through a single equation, namely (6.1): if 𝐴𝐴 > 𝑅𝑅𝑌𝑌, 
regularization according to (6.4) is required, while regularization is not needed if 𝐴𝐴 ≤ 𝑅𝑅𝑌𝑌. 
Note that if 𝐴𝐴 > 𝑅𝑅𝑌𝑌, the determination of the null space is left unchanged; therefore, (2.78) and 
(2.79) still apply. However, now the null space is an (𝐴𝐴 − 𝑅𝑅𝑌𝑌)-dimensional subspace of the 
space of the LVs, 𝐆𝐆 is a matrix in ℝ𝐴𝐴 × ℝ𝐴𝐴−𝑅𝑅𝑌𝑌, the columns of which are the last 𝐴𝐴 − 𝑅𝑅𝑌𝑌 left 
singular vectors of 𝐐𝐐�T, and 𝝀𝝀 is a vector of arbitrary numbers in ℝ𝐴𝐴−𝑅𝑅𝑌𝑌. The null space 
uncertainty cannot be estimated in this case, as all the available approaches involve the non-
invertible matrix 𝐐𝐐� ⋅ 𝐐𝐐�T. This issue will be tackled in Section 6.3.3. 
RDI also generalizes the standard DI workflow applied to the case of independent quality 
variables, that is the case 𝑅𝑅𝑌𝑌 = 𝑉𝑉𝑌𝑌 and rank�𝐐𝐐�T ⋅ 𝐐𝐐�� = min{𝐴𝐴,𝑉𝑉𝑌𝑌} shown in Figure 6.1(a), thus 
summarizing all cases discussed in Section 2.5.1. In fact, when 𝐴𝐴 ≤ 𝑉𝑉𝑌𝑌 in Figure 6.1(a), 𝐐𝐐�T ⋅ 𝐐𝐐�  
is a full-rank ℝ𝐴𝐴 × ℝ𝐴𝐴 matrix; therefore, RDI is equivalent to DI equations (2.75) and (2.76). 
Finally, when 𝐴𝐴 > 𝑉𝑉𝑌𝑌 in the same figure, since 𝐐𝐐�T ⋅ 𝐐𝐐�  is a matrix in ℝ𝐴𝐴 × ℝ𝐴𝐴 with rank 𝑉𝑉𝑌𝑌, its 
inversion can be regularized by SVD by neglecting the last 𝐴𝐴 − 𝑉𝑉𝑌𝑌 singular values and singular 
vectors, which is equivalent to RDI with 𝑅𝑅𝑌𝑌 = 𝑉𝑉𝑌𝑌. 
In conclusions, RDI can effectively deal with the issues of collinear output variables by 
regularizing the matrix inversion calculations involved in DI by means of SVD. Furthermore, 
this methodology allows one to use a single set of equations, regardless of the relationship 
between 𝐴𝐴, 𝑅𝑅𝑌𝑌 and 𝑉𝑉𝑌𝑌, thus simplifying the workflow of LVMI. 

6.3.2 Regularized direct inversion for correlated quality variables 

Unless some quality variables are computed as linear combinations of measured variables, the 
numerical rank of the 𝐘𝐘 matrix always matches 𝑉𝑉𝑌𝑌 due to measurement noise. Correlation 
among quality variables could exist nonetheless, therefore the true rank of 𝐘𝐘 could be less than 
the number of output variables (𝑅𝑅𝑌𝑌 < 𝑉𝑉𝑌𝑌) even if the quality variables are not collinear. 
The case where 𝐴𝐴 > 𝑅𝑅𝑌𝑌 with 𝐴𝐴 < 𝑉𝑉𝑌𝑌 in Figure 6.1(b) offers a physical interpretation of the 
regularization by SVD performed by RDI. Recall that the rationale of RDI is to decompose 
𝐌𝐌 = 𝐐𝐐�T ⋅ 𝐐𝐐� by SVD and to retain exactly 𝑅𝑅𝑌𝑌 singular values for regularizing the inversion. 
Physically, this means that only the information related to the systematic relationship among 
the quality variables and encoded in 𝐌𝐌 is retained, while the information related to the masking 
effect of noise is discarded. With reference to (6.2), the systematic information is represented 
by 𝚺𝚺1, while the effect of noise is represented by 𝚺𝚺2. Note that singular values in this latter 
matrix are not null anymore as they summarize the variability due to noise, but they are 
significantly smaller than singular values in 𝚺𝚺1. Therefore, two metrics quantifying the retained 
and lost information are the sum of singular values in 𝚺𝚺1 and 𝚺𝚺2, respectively, possibly divided 
by the trace of 𝚺𝚺 for normalization. 
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6.3.3 Regularized approach to the estimation of the null space uncertainty 

Existing methods for the estimation of the null space uncertainty cannot be applied if 𝑅𝑅𝑌𝑌 < 𝑉𝑉𝑌𝑌, 
as they all inherit the assumption of independent output variables from the original formulation 
of DI. Focusing on two simple analytical approaches, the method by Facco et al. (2015) 
involves the non-invertible matrix 𝐐𝐐� ⋅ 𝐐𝐐�T in (2.84), while this matrix is found in (2.88) and 
(2.92) in the method proposed by Palací-López et al. (2019). 
We therefore propose to improve these methods by employing RDI in place of DI. Starting with 
the method proposed by Facco et al. (2015), (6.1) is first used to compute the 𝐭𝐭des,p to be used 
in the estimation of the leverage, in (2.81). The confidence interval of 𝐭𝐭des,p, originally 
computed as in (2.84), is then defined exploiting the regularization proposed by RDI: 

CI�𝐭𝐭des,p
T � = CI�𝐲𝐲desT � ⋅ 𝐐𝐐� ⋅ 𝐌𝐌reg−1      . (6.5) 

This definition holds for both the cases of collinear and correlated quality variable and draws 
full advantage of RDI while being based on a PLS model built on all the available quality 
variables, which is particularly relevant the estimation of CI�𝐲𝐲desT � in (2.83). 
Concerning the method proposed by Palací-López et al. (2019), RDI is used to redefine (2.88) 
as: 

�̃�𝐭des𝑙𝑙
T = 𝐭𝐭des𝑙𝑙

T + 𝐫𝐫desT ⋅ 𝐐𝐐� ⋅ 𝐌𝐌reg−1      , (6.6) 
and (2.92) as: 

CI�𝐭𝐭des𝑙𝑙
T � = 𝐭𝐭des𝑙𝑙

T ± 𝐬𝐬𝐲𝐲�des𝑙𝑙𝑡𝑡|𝛼𝛼2
⋅ 𝐐𝐐� ⋅ 𝐌𝐌reg−1      . (6.7) 

Both these equations are independent of the selected null space point 𝐭𝐭des𝑙𝑙. However, note that 
an indirect effect exists in the case of correlated variables. If one naïvely used DI to estimate 
𝐭𝐭des,p  when 𝐴𝐴 > 𝑉𝑉𝑌𝑌 > 𝑅𝑅𝑌𝑌, numerical errors arising from the inversion of  𝐐𝐐� ⋅ 𝐐𝐐�T in (2.77), due 
to the reciprocal of the small diagonal elements of 𝚺𝚺2 in (6.2), are expected to displace 𝐭𝐭des,p  
from its true position. As the method proposed by Palací-López et al. (2019) yields a 
“hourglass-shaped” confidence interval with minimum uncertainty at 𝐭𝐭des,p, that is the same 
one estimated with the method by Facco et al. (2015), the hourglass could be misplaced due to 
the displacement of 𝐭𝐭des,p . This could clearly bias the decision of process engineers when 
considering the uncertainty while moving the inversion solution along the null space. RDI 
effectively solves this issue. 

6.3.4 Advantages and limitations of regularized direct inversion 

In light of the interpretation of RDI outlined in the previous Sections, the advantages of the 
proposed approach over the existing DI approach are apparent. Compared to standard DI where 
one retains all quality variables in 𝐘𝐘, notwithstanding the fact that they may be correlated, RDI 
effectively solves ill-conditioning issues arising when 𝐴𝐴 > 𝑅𝑅𝑌𝑌. In particular, note that this 
becomes quite important when 𝐴𝐴 > 𝑉𝑉𝑌𝑌: 𝐐𝐐� ⋅ 𝐐𝐐�T in (2.77) is still an ℝ𝑉𝑉𝑌𝑌 × ℝ𝑉𝑉𝑌𝑌  matrix, thus ill-
conditioned (the effect of singular values in 𝚺𝚺2, due to the masking effect of noise, cannot be 
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removed with the generalized inverse method). This point is even more important when it 
comes to the estimation of the null space uncertainty, as explained in Section 6.3.3.  
RDI offers advantages also over the two methods originally proposed by Jaeckle et al. (1998) 
to address the problem of correlated output variables. One method implies removing 𝑉𝑉𝑌𝑌 − 𝑅𝑅𝑌𝑌 
variables from matrix 𝐘𝐘. On the other hand, RDI enables including all the available quality 
variables in 𝐘𝐘. This enables one to encode all available information in the PLS model, even 
when the quality variables are correlated. In fact, such correlation is exploited in PLS model 
calibration to define the output LVs and is encoded in matrix 𝐐𝐐�. Such additional information is 
also used in the computation of the PLS prediction uncertainty, which is the foundation of the 
analytical methods to estimate the null space uncertainty. 
The alternative approach proposed by Jaeckle et al. (1998) to cope with output correlation 
consists in first performing a PCA on the 𝐘𝐘 matrix with all response variables, then using the 
score matrix yielded by the PCA model as quality matrix for PLS model calibration and 
inversion. In addition to the drawbacks already discussed in Section 6.2.2, this approach implies 
another subtler downside: the artificial quality variables to be used in LVMI (the scores of the 
PCA model on the real quality variables) are computed independently of the input variables. In 
a sense, this makes such an approach to LVMI similar to principal components regression 
(PCR; see Geladi et al. (1986) for details on PCR), and exposes it to a well-known drawback 
of this method. In PCR, the predictor matrix 𝐗𝐗 is replaced by scores computed by PCA on 𝐗𝐗, 
which are computed independently of the responses. It has been proved that such an approach 
is suboptimal, because disregarding the aim of modeling (prediction, in the case of PCR) when 
encoding the predictors, can be detrimental. In fact, the scores used as predictors could encode 
variance relevant for the operating space but uncorrelated to the quality space (Geladi et al., 
1986), therefore introducing noise components that may negatively impact on the predictive 
performance of the model. This in turn requires adding more PCs to “find” the variance in the 
operating space that is useful to predict the quality space (Wise et al., 1996). Translated to the 
LVMI perspective, this means that encoding the responses disregarding their relationship with 
predictors may be detrimental to the model inversion performance. On the other hand, building 
predictor LVs directly by PLS accounts for the aim of modeling and optimizes the LVs in the 
operating and quality spaces in light of this objective, therefore extracting the variance in 𝐗𝐗 
correlated to the variance in 𝐘𝐘 directly and in the first LVs. This leads to better performance in 
prediction (Geladi et al., 1986). 
A similar reasoning could also be applied to the approach to LVMI being discussed, where 
output variables are first transformed by PCA independently of input variables, and only then 
are used to build a PLS model. One cannot know in advance if the artificial quality variables 
(PCA scores) are easier or harder to predict. Furthermore, if information in the quality space 
relevant to prediction is not captured by the first 𝑅𝑅𝑌𝑌 principal components of the PCA model, 
the prediction performance of PLS surely degrades, which in turn compromises also the model 
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inversion performance. Such a drawback does not affect the proposed RDI formulation. In fact, 
the “raw” quality variables, and all of them, are used in 𝐘𝐘. Therefore, the LVs are computed 
directly by the PLS model, but starting from true quality variables, and they are optimized for 
prediction based on the operating space. 
It is worth highlighting that RDI does not solve a drawback common to both the approaches 
proposed by Jaeckle et al. (1998): an approximation is still required in order to tackle the ill-
conditioning problem. Therefore, some useful information might still be lost in regularizing the 
inversion by neglecting entities with subscript 2 in (6.2). However, RDI relies on a PLS model 
built with all response variables in 𝐘𝐘, which offers the advantage of encoding all useful 
information about the input-output relation directly into the model. Specifically, information 
about output variables is collected by matrix 𝐐𝐐�. As stated in Section 6.3.2, neglecting irrelevant 
singular values implies neglecting only information due to effect of noise (which masks the true 
relationship among response variables), while retaining the systematic information. Finally, all 
the benefits of RDI outlined in this Section are integrally inherited by the proposed approaches 
to estimate the uncertainty of the null space. 

6.4 Case study 1: batch fermentation 
The first case study is discussed in this Section and used to compare the original DI approach, 
coupled to alternative approaches to accommodate the issue of output correlation (Jaeckle et 
al., 1998), to the proposed RDI approach in order to show the advantages of including all quality 
variables in 𝐘𝐘 even when some of them are correlated. A simulated isothermal batch 
fermentation process is considered. The product design task is to find the initial conditions for 
the batch that are required to obtain an assigned multivariate specification on the end-product, 
under the simplifying assumptions that no disturbances affect the process and no noise exists 
on the measurements. The first-principles model of the systems, described in the next Section, 
is used to generate the dataset for PLS model calibration and inversion; all computations are 
carried out using MATLAB R2021a (The Mathworks, 2021) with in-house-developed code. 

6.4.1 Data generation 

The process is described by means of a simplified model of a generic batch fermentation. Three 
species are considered in the fermenter: two substrates, denoted as S1 and S2, and a growth 
inhibitor, denoted as I1, which is also assumed to be toxic for the biomass, causing cell death. 
A single product, P, is obtained. Dead cells are considered separately from viable cells. The 
model consists of the following differential equations: 

d
d𝑡𝑡
𝑋𝑋v = 𝑋𝑋v �𝜇𝜇max

𝑐𝑐S1
𝐾𝐾s,S1+𝑐𝑐S1

𝑐𝑐S2
𝐾𝐾s,S2+𝑐𝑐S2

𝐾𝐾i,I1
𝐾𝐾i,I1+𝑐𝑐I1

− 𝜇𝜇d,max
𝑐𝑐I1

𝐾𝐾s,I1+𝑐𝑐I1
�     , (6.8) 

d
d𝑡𝑡
𝑋𝑋d = 𝑋𝑋v𝜇𝜇d,max

𝑐𝑐I1
𝐾𝐾s,I1+𝑐𝑐I1

     , (6.9) 



   Chapter 6 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

128 

d
d𝑡𝑡
𝑐𝑐S1 = −𝑋𝑋v𝑘𝑘S1𝑐𝑐S1     , (6.10) 

d
d𝑡𝑡
𝑐𝑐S2 = −𝑋𝑋v𝜌𝜌S2,max 

c 𝑐𝑐S2
𝐾𝐾s,S2
c +𝑐𝑐S2

     , (6.11) 
d
d𝑡𝑡
𝑐𝑐I1 = 𝑋𝑋v𝑌𝑌I1,S1

p 𝑘𝑘S1𝑐𝑐S1     , (6.12) 
d
d𝑡𝑡
𝜔𝜔P = 𝑋𝑋v𝑚𝑚P

p     , (6.13) 

where 𝑋𝑋v represents the concentration of viable cells and 𝑋𝑋d denotes the concentration of dead 
cells, both in Mcell L−1 (million cells per liter), while 𝑐𝑐𝑖𝑖 is the concentration of species 𝑖𝑖 in 
mmol L−1, and 𝜔𝜔P is the product concentration in mg L−1. The model parameters are listed in 
Table 6.2, together with their definitions and nominal values.  

The model reported in equations (6.8) to (6.13) is a continuous-time state-space model 
comprising 6 state variables (𝑋𝑋v, 𝑋𝑋d, 𝑐𝑐S1, 𝑐𝑐S2, 𝑐𝑐I1, and 𝜔𝜔p). The initial values of 4 of them (𝑋𝑋v, 
𝑐𝑐S1, 𝑐𝑐S2, and 𝑐𝑐I1) are used to build the predictor matrix 𝐗𝐗; the response matrix 𝐘𝐘 may comprise 
only one or both end-point values for the two of the states (𝑋𝑋v and 𝜔𝜔p). 51 different initial 
conditions for the 6 state variables are obtained by sampling them within the intervals listed in 
Table 6.3. Quasi-random sampling is performed using a Sobol sequence by virtue of its space-
filling properties (Garud et al., 2017). Each batch is simulated for a fixed duration of 200 h.  

6.4.2 Model calibration and inversion 

A graphical representation of the available dataset is provided in Figure 6.2: initial conditions 
and end-point quality of the historical batches are reported in Figure 6.2(a) and Figure 6.2(b), 
respectively. Figure 6.2(b) clarifies that the end-point quality variables are correlated, yet not 

Table 6.2. Case study 1. Parameters of the model reported in equations (6.8) to (6.13). 

Parameter Definition Value Units 

𝜇𝜇max Maximum biomass specific growth rate 0.03836 h−1 

𝐾𝐾s,S1 Half-saturation constant of S1 for biomass growth 3.172 mmol L−1 

𝐾𝐾s,S2 Half-saturation constant of S2 for biomass growth 0.01 mmol L−1 

𝐾𝐾i,I1  Inhibition constant of I1 for biomass growth 100 mmol L−1 

𝜇𝜇d,max Maximum biomass specific death rate 0.02511 h−1 

𝐾𝐾s,I1  Half-saturation constant of I1 for biomass death 62.31 mmol L−1 

𝑘𝑘S1 First-order constant for consumption of S1 1.682 ⋅ 10−5  mmol Mcell−1 h−1 

𝜌𝜌S2,max 
c  Maximum S2 specific consumption-rate 6.177 ⋅ 10−4  mmol Mcell−1 h−1 

𝐾𝐾s,S2
c  Half-saturation constant of S2 for S2 consumption 1.15 mmol L−1 

𝑌𝑌I1,S1
p  Yield coefficient of S1 for I1 production 1.531 (−) 

𝑚𝑚P
p Zero-order product specific secretion-rate 3.698 ⋅ 10−4  mg Mcell−1 h−1 
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collinear (the sample correlation coefficient is 0.90), and the conditions of this case study are 
therefore those of Figure 6.1(b). Therefore, although the numerical rank of 𝐘𝐘 is 2 (𝑉𝑉𝑌𝑌 = 2), the 
true rank of the matrix is 𝑅𝑅𝑌𝑌 = 1. One of the observations in the historical dataset, namely the 
one corresponding to the end-point quality 𝐲𝐲des = [362.4 Mcell L−1 41.5 mg L−1]T, is 
selected as the product quality to be achieved in the process; this observation is therefore 
removed from the predictor and response matrices, leaving 50 observations to use as the 
calibration dataset. 

Three different PLS models are built using the calibration dataset. While the predictor matrix 
is the same in all models, that is 𝐗𝐗 ∈ ℝ50 × ℝ4, the response matrix is different for each model, 
depending on how the output correlation issue is tackled in model inversion. 

Model 1 Only one of the output variables is included in the response matrix, selected 
according to the procedure suggested by Jaeckle et al. (1998), and the resulting response 
matrix is denoted as 𝐘𝐘I ∈ ℝ50 × ℝ1. The selected variable is the product concentration. 

 
(a) 

 
(b) 

Figure 6.2. Case study 1. Available data for (a) initial conditions and (b) end-point quality 
of the batches in the historical dataset. 

Table 6.3. Case study 1. Lower and upper bounds of the intervals used for sampling the 
initial conditions of the batches in order to build the historical dataset. 

Variable Lower 
bound 

Upper 
bound 

Unit 

𝑋𝑋v 70 150 Mcell L−1 

𝑋𝑋d 0 10 Mcell L−1 

𝑐𝑐S1 32 60 mmol L−1 

𝑐𝑐S2 5 22 mmol L−1 

𝑐𝑐I1 0 6 mmol L−1 

𝜔𝜔P 0  0.002 mg  L−1 
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Model 2 The matrix including both output variables is decomposed by PCA, and the scores 
on the first principal component only (explaining 95% of the variability of the data) are 
used to build the response matrix (Jaeckle et al., 1998). This matrix is denoted as 𝐘𝐘II ∈
ℝ50 × ℝ1.  

Model 3 Both quality variables are retained in the response matrix (according to the 
proposed RDI approach). This matrix is denoted as 𝐘𝐘III ∈ ℝ50 × ℝ2. 

Note that, in all models, the true rank of the response matrix is 𝑅𝑅𝑌𝑌 = 1. To allow for a fair 
comparison, the number of LVs is selected a priori to be the same in all models; namely, 𝐴𝐴 =
2 is selected. Therefore, a one-dimensional null space exists in all models. Table 6.4 
summarizes the explained variances (EVs) of the three PLS models. 

The unscaled nominal target quality 𝐲𝐲des is transformed according to the rationale used in each 
of the three PLS models described above, thus obtaining three different target vectors: 

• the target quality to be used in the inversion of Model 1, 𝐲𝐲desI ∈ ℝ, is obtained by using 
only the product concentration, therefore 𝐲𝐲desI = 41.5 mg L−1; 

• the target quality to be used in the inversion of Model 2, 𝐲𝐲desII ∈ ℝ, is obtained by 
applying to 𝐲𝐲des the PCA model developed on 𝐘𝐘II, which yields 𝐲𝐲desII = 2.17 (recall this 
is the value of a PCA score); 

• the target quality to be used in the inversion of Model 3, 𝐲𝐲desIII ∈ ℝ2, is the same as 𝐲𝐲des, 
therefore 𝐲𝐲desIII = [362.4 Mcell L−1 41.5 mg L−1]T. 

Four different approaches to the solution of the model inversion problems are considered: 
a. DI of Model 1 by means of (2.77); 
b. DI of Model 2 by means of (2.77); 
c. DI of Model 3 by means of (2.76) (note that ill-conditioning issues are expected in this 

case, due to correlation between output variables); 
d. RDI of Model 3 by means of (6.1) retaining only 𝑅𝑅𝑌𝑌 = 1 singular values to regularize 

the inversion by SVD as in (6.4). 
Figure 6.3(a) shows a detailed view of the designed initial conditions obtained by PLS model 
inversion according to each of the four approaches described above, together with the 

Table 6.4. Case study 1. Diagnostics of the three PLS models built to compare different 
model inversion approaches. EVX and EVY are the explained variances of predictors and 
responses, respectively. 

  Model 1  Model 2  Model 3 

LV  EV𝑋𝑋 EV𝑌𝑌  EV𝑋𝑋 EV𝑌𝑌  EV𝑋𝑋 EV𝑌𝑌 

1  0.2717 0.9317  0.2970 0.9282  0.2979 0.8801 

2  0.2802 0.0579  0.2555 0.0631  0.2515 0.0953 

Total  0.5519 0.9895  0.5525 0.9913  0.5494 0.9754 
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calibration data closer to them. Figure 6.3(b) reports a detailed view of the target end-point 
quality (and the calibration data closer to it), together with the end-point quality actually 
achieved by running the process with the corresponding designed initial conditions. 

It appears from Figure 6.3(b) that the end-point product concentration achieved with all four 
model-inversion strategies is roughly the same. However, the quality yielded by approach a is 
off-target in terms of end-point viable cells concentration. This is because approach a applies 
DI to Model 1, which does not consider the end-point viable cells concentration as an output 
variable to be included in 𝐘𝐘. Therefore, omitting quality variables from 𝐘𝐘 may not be the best 
option in product design, even if the quality variables that are omitted are strongly correlated 
to those that are included in 𝐘𝐘. 
The information loss implied by neglecting one of the two quality variables can be quantified 
as suggested by Yacoub et al. (2004). Given the strong correlation between quality variables, it 
appears reasonable to establish a linear regression model 𝐘𝐘�III = 𝐘𝐘I ⋅ 𝛃𝛃T to predict 𝐘𝐘III from 𝐘𝐘I, 
the columns of which are a subset of the columns of 𝐘𝐘III. After autoscaling of the two matrices, 
the regression coefficients are estimated as: 

𝛃𝛃T = ((𝐘𝐘I)T ⋅ 𝐘𝐘I )−1 ⋅ (𝐘𝐘I)T ⋅ 𝐘𝐘III     . (6.14) 
The coefficient of determination, 𝑅𝑅2, is then used as a measure of the information on the end-
point viable cells concentration that can be represented (meaning, predicted) using data of the 
final product concentration. In the case of end-point viable cells concentration predicted by 
linear regression from end-point product concentration, one gets 𝑅𝑅2 = 0.81, with an overall 𝑅𝑅2 
for both variables equal to 0.905 (obviously, the 𝑅𝑅2 of final product concentration predicted 
from end-point product concentration is 1). This means that retaining only the selected quality 
variable for PLS model inversion implies a loss of 9.5% of the information on the quality space, 
which can impact the achieved end-point quality as seen in Figure 6.3(b). 

 
(a) 

 
(b) 

Figure 6.3. Case study 1. Results of PLS model inversion for A = 2 latent variables using the 
four approaches described in Section 6.4.2. (a) designed initial conditions, and (b) end-point 
quality achieved by running the process at the designed initial conditions, compared to the 
target quality. 
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The information loss implied by approach a justifies why the quality actually obtained is the 
farthest from the target. All other approaches are basically equivalent in terms of achieved end-
point quality. Considering approach b, the information retained can be quantified as the 
variance explained by the first (and only) PC of the PCA model of 𝐘𝐘, which is 95.0%. This 
implies that only 5.0% of the information on the quality space is lost using approach b. On the 
other hand, the information loss in approach d can be quantified as the trace of 𝚺𝚺2 (singular 
values of 𝐐𝐐�T ⋅ 𝐐𝐐� of Model 3 neglected in regularization) divided by the trace of 𝚺𝚺. In the case 
being considered, 𝚺𝚺 = diag([1.599 0.0716]), and only the first singular value is retained to 
compute 𝐌𝐌reg−1 ; therefore, only 4.3% of the information about the quality space is lost in 
regularization. Since this value is very similar to the information lost in approach b, it is 
reasonable that approaches b and d yield comparable results. However, the advantage of 
approach d is that it deals with true quality variables, not with artificial ones (PCs). 
Despite being very similar to the quality obtained with approaches b and d, the outcome of 
approach c deserves discussion under a different perspective. In principle, no information about 
the quality space is lost using this approach, because it retains both quality variables in 𝐘𝐘. 
However, approach c does not regularize the inversion. Figure 6.3(a) shows quite a difference 
in the initial conditions designed by approach c with respect to the initial conditions designed 
by approaches b and d, especially for the concentration of viable cells, of S1 and of I1. The 
model scores of Model 3, as plotted in Figure 6.4, help understanding why. 

Approaches c and d both lead to a 𝐭𝐭des,p falling on the null space, as expected. However, the 
RDI used in approach d explicitly considers the presence of such null space by regularizing the 
inversion of matrix 𝐐𝐐�T ⋅ 𝐐𝐐� , while the DI used in approach c does not. This exposes DI to ill-
conditioning issues, therefore to the propagation of numerical errors in matrix inversion. As a 
consequence, in approach c, 𝐭𝐭des,p could in principle fall anywhere along the null space. Though 

 
Figure 6.4. Case study 1. Score plot of Model 3 (A = 2 latent variables). Scores obtained by 
direct inversion (approach c in Section 6.4.2) and by regularized direct inversion (approach 
d in Section 6.4.2) are shown against the target scores and the calibration scores, together 
with the one-dimensional null space. 
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this might not be seen as an issue, given the fact that (according to the model) any set of initial 
conditions projecting onto the null space yields the same quality, one should bear in mind that 
the location of the null space gets more and more uncertain as the null space moves away from 
the region wherein the calibration data are available (Palací-López et al., 2019; Tomba et al., 
2014); see Figure 2.7(b) for an example. Therefore, the probability for the DI solution to not 
fall exactly onto the true null space (hence, to obtain off-target quality) increases while moving 
away from the average conditions of the available data (for example, the null space uncertainty 
intervals at the coordinates of the solutions c and d in Figure 6.4, estimated as in Tomba et al. 
(2012a), have widths 5.9 and 6.3, respectively). Furthermore, designed process conditions can 
deviate significantly from the historical ones.  

6.5 Case study 2: fed-batch penicillin manufacturing 
The second case study is based on a fed-batch penicillin manufacturing process simulated 
through the PenSim simulator (Birol et al., 2002). The product design task is more complex 
than the one of the previous case study: finding the time profiles of a set of process variables 
that can lead to an assigned end-point quality target, under significant process variability and 
measurement noise. The purpose of this case study is to investigate the impact of the PLS model 
inversion approach (DI or RDI) on the uncertainty of the inversion results when the end-point 
quality variables are correlated. The uncertainty in the estimation of the null space is considered 
as well. MATLAB R2021a (The Mathworks, 2021) was used to carry out the computations by 
means of in-house-developed code. 

6.5.1 Data generation 

The PenSim simulator (Birol et al., 2002) implements a nonlinear state-space model with 9 
states and 7 inputs (Table 6.5); 4 inputs are manipulated by the control system, while the 
remaining 3 are set to nominal values and kept constant during a batch. The control system is 
centered on two proportional-integral-derivative (PID) controllers that control the fermenter pH 
and temperature by manipulating the acid/base feed flow rates and cooling/heating water flow 
rates, respectively. The model simulates realistic process variability and measurement noise. 
The reader is referred to Birol et al. (2002) for a detailed description of the simulator. 
The simulator is used to simulate 170 batches by changing the initial conditions and the 
nominal inputs as indicated in Table 6.5. Namely, the initial conditions for penicillin 
concentration and generated heat are always set to 0. The initial conditions for the remaining 
state variables are sampled from independent normal distributions. The nominal values of the 
3 simulator inputs not manipulated by a controller are sampled by independent normal 
distributions. The remaining inputs are manipulated by the controllers with default tuning. All 
model parameters are set to default values, as assigned by Birol et al. (2002). 
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Each batch is simulated for a fixed duration of 300 h. We assume that 12 variables can be 
measured in real time (Table 6.6), with a sampling interval of 1 h and default noise level. Their 
time profiles are arranged in a tensor to characterize the process operation, with the batches in 
different rows, measurements in different columns, and time along the third dimension. BWU 
of this matrix (Nomikos et al., 1995b) is used to build the regressor matrix 𝐗𝐗, the columns of 
which therefore include a total of 𝑉𝑉𝑋𝑋 = 12 ⋅ 300 = 3600 pseudo-variables. End-point values 
of the biomass and penicillin concentrations are recorded to characterize the end-of-batch 
quality. Their values are arranged in the response matrix 𝐘𝐘 (𝑉𝑉𝑌𝑌 = 2). 

6.5.2 Model calibration and inversion 

The product design task is finding the time profiles of the PLS model predictors that enable 
achieving the target end-point product quality 𝐲𝐲des = [13.4 g L−1 1.40 g L−1]T, where the 

Table 6.5. Case study 2. State and input variables of the PenSim simulator (Birol et al., 2002) 
with initial conditions for the states and nominal values of the inputs to the simulator, as used 
to generate the historical dataset. The notation 𝒩𝒩(𝜇𝜇,𝜎𝜎2) means the value is sampled from a 
normal distribution with mean 𝜇𝜇 and variance 𝜎𝜎2. PID means that the input is manipulated 
by a proportional-integral-derivative controller. 

Variable Initial conditions 
or nominal values 

Unit 

Simulator states 

Substrate concentration 𝒩𝒩(15, 1.52) g L−1 

Dissolved oxygen 𝒩𝒩(1.16, 0.0082) mmol L−1 

Biomass concentration 𝒩𝒩(0.1, 0.22) g L−1 

Penicillin concentration 0 g L−1 

Culture volume 𝒩𝒩(100, 42) L 

Dissolved carbon dioxide 𝒩𝒩(0.5, 0.0082) mmol L−1 

H+ concentration 𝒩𝒩(10−5, (0.1−5)2) mmol L−1 

Fermenter temperature 𝒩𝒩(298, 0.32) mol L−1 

Generated heat of reaction 0 cal 

Simulator inputs 

Air feed flow rate 𝒩𝒩(8.6, 0.32) L  h−1 

Stirring power 𝒩𝒩(30, 32) W 

Substrate feed flow rate 𝒩𝒩(0.042, 0.00152) L  h−1 

Acid feed flow rate PID L  h−1 

Base feed flow rate PID L  h−1 

Cooling water flow rate PID L  h−1 

Heating water flow rate PID L  h−1 
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first element refers to the biomass concentration and the second one to the penicillin 
concentration. The target product is obtained from one of the simulated batches, and the 
corresponding observation is therefore removed from the calibration dataset. Note that, in a real 
setting, not all the time profiles obtained through model inversion can be assigned for operating 
the fermenter, because the number of variables that can be manipulated directly (or assigned as 
controller set-points) are only a subset of those included in 𝐗𝐗. Therefore, one may assign the 
trajectories of this subset of variables only, and then assess in real time whether the batch is 
evolving according to the expectations or not by comparing the actual time evolution of the 
remaining subset of variables against their designed trajectories. Alternatively, advanced model 
based-control approaches in the latent-variable space can be used (Golshan et al., 2011). Yet, 
in this case study we do not address this issue explicitly, but we explore a different aspect of 
LVMI, namely the uncertainty of the time profiles designed by model inversion. 
When using LVMI to design the time profiles of the regressors (namely, of the fermenter 
operating conditions), one issue to consider is understanding how much variability can be 
afforded in the designed process conditions in order to keep the end-point quality reasonably 
close to the target, regardless of the process control system that might be in place. As the aim 
is understanding how the designed process conditions change in response to a variation of the 
assigned quality around the target one, one way for assessing this is to sample batches around 
𝐲𝐲des and perform PLS model inversion for each batch. This study adopts this approach because 

Table 6.6. Case study 2. Variables included in the PLS model predictor matrix X (time 
profiles along the batch) and in the response matrix Y (end-point values only). 

Designation Variable 

Predictors (time profiles) 

Substrate concentration 

Dissolved oxygen 

Culture volume 

Dissolved carbon dioxide 

Fermenter pH 

Fermenter temperature 

Air feed flow rate 

Stirring power 

Substrate feed flow rate 

Acid feed flow rate 

Base feed flow rate 

Cooling water flow rate 

Responses (end-of-batch values) 
Biomass concentration 

Penicillin concentration 
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of its simplicity and minimal computational burden, but other approaches to evaluate the 
uncertainty of the solution of the inversion problem exist (Bano et al., 2018b; Wang et al., 
2020). 100 sample batches are drawn around 𝐲𝐲des; the two quality variables are sampled from 
independent normal distributions, namely 𝒩𝒩(13.4, 0.12) for the biomass concentration, and 
𝒩𝒩(1.40, 0.012) for the penicillin concentration. The variances for sampling are selected in 
order to yield a reasonable variability around the target value, while not breaking the correlation 
structure of observations in the historical data (Jaeckle et al., 2000). The quality data for 
calibration, target end-product, and sample batches around it are shown in Figure 6.5. 

Figure 6.5(a) indicates that the biomass concentration and penicillin concentration are strongly 
correlated (sample correlation coefficient: 0.93). Therefore, also for this case study the 
conditions illustrated in Figure 6.1(b) hold true. The numerical rank of 𝐘𝐘 is 2 (𝑉𝑉𝑌𝑌 = 2), but its 
actual rank is 𝑅𝑅𝑌𝑌 = 1. We analyze the effect of two different choices of the number of LVs, 𝐴𝐴, 
in such a way as to study the impact on the uncertainty of the model inversion results of different 
relationships between 𝐴𝐴, 𝑉𝑉𝑌𝑌, and 𝑅𝑅𝑌𝑌. Table 6.7 summarizes the diagnostics of the PLS models 
for 𝐴𝐴 = 1 and 𝐴𝐴 = 2. 

First, a PLS model with 𝐴𝐴 = 1 is considered; hence, 𝐴𝐴 = 𝑅𝑅𝑌𝑌 in this case. In Figure 6.6(a), the 
model scores are shown against one of the quality variables (due to strong correlation, the plot 

 
(a) 

 
(b) 

Figure 6.5. Case study 2. Calibration quality data, quality target, and sample batches around 
the target: (a) full-scale and (b) detail of sample batches for variability estimation. 

Table 6.7. Case study 2. Diagnostics of the PLS model. EVX and EVY are the explained 
variances of predictors and responses, respectively. 

LV  𝐄𝐄𝐕𝐕𝑿𝑿 𝐄𝐄𝐕𝐕𝒀𝒀 

1 0.2330 0.8952 

2 0.1007 0.0423 

Total 0.3337 0.9375 
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for the other one is qualitatively the same). Namely, the scores of the historical products are 
shown together with the true (and unknown) score of the target product (𝐭𝐭ref), and with 𝐭𝐭des as 
obtained by RDI of the model. Figure 6.6(b) shows the time profile for one process operating 
condition (acid feed flow rate) as obtained by RDI, along with an estimation of its variability 
across the sample batches; the profiles of the same variable in the calibration dataset are also 
plotted for comparison. Results for DI are not shown because they are identical to those for 
RDI, as expected since 𝐴𝐴 = 𝑅𝑅𝑌𝑌, and (2.75) can therefore be used for model inversion. 

Figure 6.6(a) clearly shows that all sample batches drawn around 𝐲𝐲des are projected onto the 
single LV of the model properly, close to the designed 𝐭𝐭des. Similarly, Figure 6.6(b) tells us 
that the variability of the designed time profile of the acid flow rate (which is barely visible) is 
much smaller than the variability of the calibration data, as one would indeed desire in a product 
design exercise. Therefore, in this case, DI and RDI lead to equivalent results in terms of both 
designed process conditions and estimation of their variability. 
Next, we consider a PLS model with 𝐴𝐴 = 2 LVs to highlight the advantages of the proposed 
RDI approach with respect to DI. In this case, 𝐴𝐴 = 𝑉𝑉𝑌𝑌, hence 𝐴𝐴 > 𝑅𝑅𝑌𝑌. Let us consider DI first. 
Given that the quality variables are correlated, one may consider removing one variable from 
𝐘𝐘, but (as seen for the previous case study) this may preclude achievement of the target for the 
quality variable that is not included in the response matrix. On the other hand, if both quality 
variables are included in 𝐘𝐘, (2.76) requires inverting a matrix in ℝ2 × ℝ2 with rank 𝑅𝑅𝑌𝑌 = 1, 
which gives rise to numerical issues. In fact, Figure 6.7(a) shows that sample batches projected 
onto the score space get scattered along the null space, which has dimension 𝐴𝐴 − 𝑅𝑅𝑌𝑌 = 1. This 
causes the variability of the designed process conditions to be largely overestimated, as shown 

 
(a) 

 
(b) 

Figure 6.6. Case study 2. Results of PLS model inversion for A = 1 latent-variable. (a) Scores 
obtained by RDI for one of the quality variables are shown against the target score, the 
scores of historical observations, and the scores of the sample batches drawn around the 
target; the dash-dotted lines bound the 95% confidence region for the historical scores. (b) 
Designed time profile for one process operating condition with estimated 95% confidence 
interval (CI), compared to the time profiles of the observations in the calibration dataset. 
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in Figure 6.7(b): the estimated variability of the designed acid flow rate profile is comparable 
to the variability of the entire set of calibration data, thus making the inversion results 
unreliable. Note that, since all sampled batches used for variability estimation feature a different 
quality, it makes no sense that samples scatter along the null space, as that direction should 
cause no quality variation.  

Results are significantly different for the proposed RDI approach, which allows to include both 
quality variables in 𝐘𝐘 without any numerical issues, provided that only one singular value is 
retained in the matrix inversion operations involved in (6.1) and (6.4). The sample batches 
around 𝐲𝐲des are in fact projected onto the scores space very close to 𝐭𝐭des,p in Figure 6.7(c), and 
the designed process conditions are subject to a very small variability in Figure 6.7(d). 
Therefore, the model inversion results can be deemed reliable. Also note from Figure 6.7(c) 
that the sample batches correctly scatter across, and not along, the null space, thus indicating 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 6.7. Case study 2. Results of PLS model inversion for A = 2 latent variables; a one-
dimensional null space exists (thick black line in the left plots). (a) Direct inversion: scores 
of the process conditions for the target, designed, calibration, and sample batches. (b) Direct 
inversion: designed time profile for one process condition with estimated 95% confidence 
interval (CI), compared to observations in the calibration dataset. (c) Regularized direct 
inversion: scores of the process conditions for the target, designed, calibration, and sample 
batches. (d) Regularized direct inversion: designed time profile for one process condition 
with estimated 95% confidence interval (CI), compared to observations in the calibration 
dataset. 
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that they are representing the variation of the quality in a direction that is orthogonal to the null 
space, that is the direction in the latent space truly describing quality. 
Results for a PLS model built on 𝐴𝐴 = 3 LVs are qualitatively similar to those for 𝐴𝐴 = 2, and 
are therefore omitted for brevity. 

6.5.3 Estimation of null space uncertainty 

The estimation of the uncertainty of the null space is discussed to conclude the second case 
study. We consider the PLS model with 𝐴𝐴 = 2 introduced in the previous Section, and we use 
the analytical approach proposed by Palací-López et al. (2019) for null space uncertainty 
estimation, although the discussion holds for other methods as well. 
If one uses DI in this case, Figure 6.7(a) clearly shows the propagation of the numerical errors 
due to the inversion of an ill-conditioned matrix, which causes the sample batches to scatter 
along the null space and inflates the uncertainty estimated on the designed process conditions, 
as in Figure 6.7(b). As the same ill-conditioned matrix is to be inverted to estimate the 
uncertainty of the null space, a similar inflation is to be expected. This hypothesis is confirmed 
by Figure 6.8, which compares the scores from DI and RDI, 𝐭𝐭desDI  and 𝐭𝐭desRDI, respectively, with 
the estimated null space confidence interval estimated with the DI-based approach proposed by 
Palací-López et al. (2019), CI�𝐭𝐭desDI �, and the one computed by the RDI-based method proposed 
in this Chapter, CI�𝐭𝐭desRDI�. 

Figure 6.8 shows that the proposed method correctly estimates the null space uncertainty, while 
the DI-based approach yields an inflated estimate. Furthermore, the improved accuracy of the 
RDI solution (𝐭𝐭desRDI is closer to the reference value than 𝐭𝐭desDI ) allows to correctly position the 
point of minimal uncertainty of the “hourglass”, which should in principle fall onto 𝐭𝐭ref. This 
feature of the proposed approach was conjectured in Section 6.3.3 and is proved by Figure 6.8. 

 
Figure 6.8. Case study 2. Comparison of the approaches for estimation of the null space 
uncertainty in the score space of the PLS model with A = 2. Calibration and target scores 
are shown together with the ones designed with DI and RDI. A one-dimensional null space 
exists (thick black line), shown with the confidence intervals (CIs) based on DI (dashed lines) 
and RDI (solid orange lines). 
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6.6 Conclusions 
LVMI can be exploited to perform product design, namely to find the raw materials and 
operating conditions (model inputs) that are required to obtain a new product with assigned 
quality specifications (model outputs). The only requirements are the availability of appropriate 
process and quality data to develop a latent-variable model, and that the target quality is 
consistent with the correlation structure of the historical quality data. In this Chapter, we 
addressed the product design problem using PLS model inversion. We proposed a novel 
algebraic formulation of the model inversion problem, RDI, which enables one to perform 
model inversion in a straightforward way also in the presence of correlated (or even collinear) 
outputs. The formulation is based on the SVD of the matrix to be inverted, where the 
decomposition factors are truncated in such a way as to retain only the systematic variability of 
the historical data. Furthermore, we extended available methods to estimate the uncertainty of 
the null space, a subspace of the space of LVs that may arise in LVMI, using RDI. The proposed 
formulations were successfully tested on two simulated case studies related to digital product 
design biochemical processes. 
The most popular approach currently used to cope with output correlation in the model 
inversion task relies on removing some quality variables from the output matrix, and on relating 
only the remaining output subspace to the input space through PLS regression. However, in this 
case the solution obtained by model inversion may not be able to ensure that the quality 
variables which have not been included in the output matrix will be close enough to their targets. 
Conversely, the proposed RDI formulation enables one to retain in the model response matrix 
all quality variables (hence, to model the entire quality space), and addresses output correlation 
by removing a posteriori only the non-systematic information that would cause singularity of 
the matrix to be inverted. This approach yields a more reliable solution to the inversion problem 
as compared to removing a priori some quality variables, because no structural information 
about the relationship between inputs and outputs is left out of the model by design. 
Furthermore, the use of SVD provides a metric to calculate the amount of information lost in 
matrix regularization, which is helpful to assess the effectiveness of the inversion task. 
Additionally, the proposed formulation simplifies the model inversion workflow, because it 
develops independently of the relation between the number of selected latent variables and the 
rank of the output matrix. Finally, the RDI approach provides similar results to one where the 
dataset including all historical quality variables is first modeled through PCA, and then a subset 
of the PCA model scores is used to build the output matrix of the PLS model. However, RDI 
uses the true quality variables, and not the scores, to build the output matrix, which is much 
more convenient from a practical point of view. 
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Smart process analytics 
for process monitoring10 

A novel framework for data-driven fault detection in manufacturing processes is proposed in 
this Chapter. The framework automatically selects and calibrates the best fault detection model 
for a given dataset based on preliminary assessment of data characteristics and a rigorous model 
selection routine. We demonstrate the effectiveness of the framework on four case studies. 

7.1 Introduction 
Maintaining high product quality is a key requirement in manufacturing processes. The 
operation of the process and its effect on product quality can be supervised by process 
monitoring schemes (Chiang et al., 2001; Kourti, 2003; Reis et al., 2017). Fault detection is the 
first step in a chain of operations in process monitoring that are performed in order to recover 
a process to normal operating conditions, in case any fault occurs (Figure 7.1). After a fault is 
detected, the process/product quality variables most related to the malfunction are identified. 
The nature and, possibly, the root cause of the fault are then diagnosed leveraging expert 
process knowledge; alternatively, a classification approach can be used to diagnose the fault 
searching through a library of known faults. Finally, measures to recover the process operation 
are taken (Chiang et al., 2001). Implementing this workflow in industrial environments is of 
paramount importance to guarantee a consistent and on-specification product quality, thus the 
economic effectiveness of the production. Process monitoring is fundamental for safety as well, 
as testified by some recent catastrophic events where the process drifted out of control due to 
inappropriate monitoring (Pallardy, 2023; Saleh et al., 2014). 
There is no uniform terminology in the process monitoring literature. In this Chapter, we adopt 
the terminology and definitions described by Raich et al. (1996). A fault is defined as «an 
unpermitted deviation of at least one characteristic property of a variable from an acceptable 
behavior» (Isermann, 2005). Therefore, a fault can be defined as an abnormal process operation 
regardless of whether it is caused by faulty equipment or a significant disturbance acting on the 
process. An example of faulty equipment is fouling in a heat exchanger that causes a notable 
                                                 
10 Part of the research discussed in this Chapter is included in a manuscript in preparation (Mohr et al., 2023), to be submitted 
for publication as a journal paper. An open-source software package implementing the methods described herein will be made 
available upon publications of the paper. 
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temperature difference of the outlet stream due to poor heat transfer. Alternatively, biased 
sensors or a sticking valve can also be considered faulty equipment. An example of a significant 
disturbance is a raw material that is supplied from a different provider and contains more 
impurities than expected, leading to an altered composition of the product (Chiang et al., 2001). 
Process monitoring methods generally belong to one of the following categories: data-driven, 
analytical, and knowledge-based (Isermann, 1994). Data-driven methods, which are the 
preferred ones in the (bio-)chemical industry, are considered in this Chapter. For fault detection, 
the first step is to calibrate a model that describes data from the NOC of the process. Afterwards, 
statistical measures are used to understand whether new collected data deviate significantly 
from the data used in the NOC model (Qin, 2003). A significant deviation is interpreted as an 
indicator of a fault occurring in the process. 
The data-driven approach requires the selection and calibration of a modeling method. 
However, several methods are available, and no method performs best on all possible problems. 
Very few individuals possess significant expertise on a large number of fault detection methods 
that can provide strong performance, and practitioners usually select the model to be used based 
on familiarity, even when the method is suboptimal for the particular application (Camacho et 
al., 2009, 2012). 
An alternative, more structured approach is to consider a set of candidate models and to select 
the best one on the basis of the performance on data not used in calibration (that is, in 
validation). An independent validation dataset can be leveraged for model selection and 
discrimination in the so-called hold-out validation (Bishop, 1995). If an independent validation 
dataset is not available or cannot be produced, model selection and discrimination can be 
achieved by using the calibration dataset alone and resampling techniques, cross-validation 
(Allen, 1974; Stone, 1974) being the most popular choice. Comparing a large number of models 
based on their performance in cross-validation is, in fact, the general principle underlying 
numerous frameworks for automated machine learning (AutoML; Hutter et al., 2019). Some 
notable software packages include Auto-sklearn (Feurer et al., 2015), AutoWEKA (Kotthoff et 
al., 2017), Auto-Keras (Jin et al., 2019), TPOT (Le et al., 2020), H2OAutoML (H2O AI, 2023), 
TransmogrifAI (Salesforce, 2021), and MLJAR (MLJAR, 2023). 
However, all the available AutoML packages are designed to handle supervised learning 
problems (mostly regression), while no automated system is available to develop fault detection 

 
Figure 7.1. The four steps of the process monitoring and recovery chain (Chiang et al., 
2001). 
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systems. Furthermore, comparing a large number of candidate models by cross-validation has 
been proven to increase the chances of selecting a suboptimal model, especially when a limited 
amount of data is available (Arlot et al., 2010). A further issue is that the cross-validation 
procedure is generally the same for all the models being compared, and their characteristics are 
disregarded, which is particularly relevant if models able to cope with different characteristics 
of the data are compared. An example is the comparison of models for static or dynamic data: 
while standard cross-validation assumes that observations are independent (Arlot et al., 2010), 
special procedures are required for data featuring dynamics, in which observations are 
autocorrelated (Bergmeir et al., 2012). A final drawback of comparing multiple, possibly very 
different models based on cross-validation alone lays in the fact that such a “winner takes all” 
approach disregards the appropriateness of the chosen model to the characteristics of the data 
at hand, which are not considered at all. Therefore, an inappropriate and non-robust model could 
show the best performance by chance and still be selected. 
The aforementioned limitations have been discussed and illustrated by (Sun et al., 2021). They 
proposed a bottom-up approach for automated model selection and calibration meant to tackle 
data-driven regression problems: smart process analytics (SPA). The procedure is based on a 
preliminary assessment of the relevant properties of the data at hand (correlation, nonlinearity, 
and dynamics), which allows to pre-select only appropriate models (meaning the ones that can 
cope with the detected characteristics) among the models included in the SPA library. A 
rigorous cross-validation approach tailored to the characteristics of the selected model category 
is then used to identify the best candidate. The most relevant difference between AutoML 
packages and SPA lays in the additional pre-selection step, based on the characteristics of the 
data at hand: it ensures that only appropriate models are compared by cross-validation, therefore 
effectively limiting the chances of overfitting. 
In this Chapter, we propose a SPA-like approach for automatizing the selection and application 
of the best fault detection method for a given dataset: smart process analytics for process 
monitoring (SPAfPM). Section 7.2 provides an overview of fault detection methods included 
in the SPAfPM model library, their mathematical assumptions, and their characteristics. Section 
7.3 describes the relevant characteristics sought after in the preliminary data interrogation step 
of SPAfPM. The design and assessment of the criteria employed for preliminary data 
interrogation is illustrated in Section 7.4. The model selection mechanism used in SPAfPM is 
introduced in Section 7.5. Finally, Section 7.6 demonstrates the effectiveness of SPAfPM on a 
variety of case studies, and conclusions are drawn in Section 7.7. 

7.2 Data-driven methods for fault detection 
The data-driven models included in SPAfPM are described in this Section. Each one of the 
models we introduce can cope with specific characteristics of the data, which are discussed in 
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Section 7.3. Fundamental, linear methods belonging to the family of latent-variable models are 
introduced first, with the statistics they provide to detect process faults and approaches to 
estimate their control limits. Nonlinear and dynamic models are considered as well. 

7.2.1 Linear fault detection methods 

Among the numerous methods available for fault detection, latent-variable models, such as 
PCA (Wold et al., 1987a) and PLS (Wold et al., 1987a, 2001), achieved a remarkable number 
of successful applications reported in a flourishing literature (Reis et al., 2017). CVA 
(Larimore, 1990) was used to tackle several fault detection problems as well (Chiang et al., 
2001; Russell et al., 2000; Severson et al., 2016) by virtue of its ability to model process 
dynamics. These models, the rationales of which have been introduced in Sections 2.1, 2.2, and 
2.3, represent the fundamental methods included in the SPAfPM model library. Their 
calibration requires to determine some hyperparameters: the hyperparameters of PCA and PLS 
are the numbers of PCs and LVs, respectively, while the hyperparameters of CVA are the 
memory order, the extent of the past horizon, and the extent of the future horizon. Once these 
hyperparameters are tuned, PCA, PLS, and CVA can be used to develop models of NOC data 
for fault detection, as outlined below. 
PCA can be used for general process monitoring, meaning to detect faults affecting the process 
variables included in the modeled data matrix (Kourti et al., 1995, 1996; Nomikos et al., 1994, 
1995a; Qin, 2003; Wise et al., 1996). The fault detection statistics of PCA, defined in Section 
2.1.3, are: 

• the 𝑇𝑇𝑋𝑋2 statistic describes the variation of data within the space of PCs, hence it gives a 
measure of the distance of the state of the process from the NOC; 

• the 𝑄𝑄𝑋𝑋 statistic describes the variation of data in the noise space, giving a measure of 
how much the state of the process strays form the correlation structure of the NOC. 

PLS shares the same fault detection statistics of PCA, introduced in Section 2.2.4. However, as 
PLS models only the variance of input variables related to the variance of output variables, it 
finds applications in quality-relevant monitoring (Kourti et al., 1995, 1996; Nomikos et al., 
1994, 1995a; Qin, 2003; Wise et al., 1996). In fact, the interpretation of statistics differs slightly 
with respect to PCA: 

• the 𝑇𝑇𝑋𝑋2 statistic describes the variation of data within the space of LVs, hence it gives a 
measure of the distance of the state of the process from the NOC in terms of input-
output relationship; 

• the 𝑄𝑄𝑋𝑋 statistic describes the variation of data in the noise space, giving a measure of 
how much the state of the process strays form the inputoutput cross-correlation structure 
of the NOC. 

CVA provides similar statistics to PLS for quality-relevant monitoring, as outlined in Section 
2.3.4. However, due to the ability of CVA to encode information on process dynamics and its 
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relationship to state-space modeling (Chiang et al., 2001; Larimore, 1990), the interpretation of 
its fault detection statistics is different from the ones of other models: 

• the 𝑇𝑇𝑋𝑋2 statistic describes variations inside the state-space, giving a measure of the 
distance of the process state from the NOC within the space of CVs in the main model; 

• the 𝑄𝑄𝑋𝑋 statistic describes variations in the residual space, measuring the differences of 
the correlation and autocorrelation structures of the process from the ones of NOC data; 

• the 𝑇𝑇𝑋𝑋,r
2  statistic describes variations outside of the state-space, measuring the distance 

of the process state from the NOC within the space of residual CVs. 

7.2.2 Control limits estimation approaches 

Methods to estimate the confidence limits of the statistics discussed in the Section 7.2.1 have 
been mentioned as well in Sections 2.1.3, 2.2.4, and 2.3.4, referencing relevant literature 
resources. The methods of interest for SPAfPM are described in detail in this Section. Note that 
the wordings “confidence limit” and “control limit” share the same meaning in fault detection, 
the latter being a contextual interpretation of the former statistical concept. 
The most common methods to estimate the control limits of the 𝑇𝑇𝑋𝑋2 statistic are the ones based 
on the 𝐹𝐹 distribution (Jackson, 1959) and on the 𝜒𝜒2 distribution with matching moments 
(Nomikos et al., 1995a). The control limit of 𝑇𝑇𝑋𝑋2 at significance level 𝛼𝛼 based on the 𝐹𝐹 
distribution is defined as: 

𝑇𝑇𝑋𝑋,lim
2 |𝛼𝛼  = DOF(𝑁𝑁−1)(𝑁𝑁+1)

𝑁𝑁(𝑁𝑁−DOF) 𝐹𝐹1−𝛼𝛼(DOF,𝑁𝑁 − DOF)     , (7.1) 

where DOF represents the degrees of freedom of the relevant model and 𝐹𝐹1−𝛼𝛼(DOF,𝑁𝑁 − DOF) 
denotes the value of a 𝐹𝐹 variable with DOF and 𝑁𝑁 − DOF degrees of freedom at the numerator 
and denominator, respectively, evaluated at probability 1 − 𝛼𝛼. The degrees of freedom to be 
used in (7.1) varies according with the model. However, the dominant approach in the literature 
is to use the number of PCs, LVs, and CVs for PCA, PLS, and CVA, respectively, thus DOF =
𝐴𝐴. Note that this value is generally adopted also in the estimation of control limits of dynamic 
and nonlinear extensions of the basic models, which are described in the following. More 
sophisticated approaches for DOF estimation exist nonetheless for PCA (Hassani et al., 2012), 
PLS (Krämer et al., 2011; Van Der Voet, 1999), and CVA (Candy et al., 1979; Chiang et al., 
2001; Ljung, 1999).The control limit of 𝑇𝑇𝑋𝑋2 at significance level 𝛼𝛼 based on the 𝜒𝜒2 distribution 
with matching moments is defined as: 

𝑇𝑇𝑋𝑋,lim
2 |𝛼𝛼  =

𝑠𝑠
𝑇𝑇𝑋𝑋
2
2

2𝑇𝑇𝑋𝑋
2���� 𝜒𝜒1−𝛼𝛼2 �2 �𝑇𝑇𝑋𝑋2���� 𝑠𝑠𝑇𝑇𝑋𝑋2� �

2
�     , (7.2) 

where 𝑇𝑇𝑋𝑋2���� and 𝑠𝑠𝑇𝑇𝑋𝑋2 are the sample mean and standard deviation of 𝑇𝑇𝑋𝑋2, computed using the values 
of the statistic derived from the calibration dataset, while 𝜒𝜒1−𝛼𝛼2 �2 �𝑇𝑇𝑋𝑋2���� 𝑠𝑠𝑇𝑇𝑋𝑋2� �

2
� is the value of a 

𝜒𝜒2 variable with 2 �𝑇𝑇𝑋𝑋2���� 𝑠𝑠𝑇𝑇𝑋𝑋2� �
2
 degrees of freedom evaluated at probability 1 − 𝛼𝛼. This equation 

can be applied to all the models described in this Section. Both the 𝐹𝐹-based and 𝜒𝜒2-based limits 
rely on the normality assumption of the values of 𝑇𝑇𝑋𝑋2 obtained from the calibration dataset; 
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however, the 𝜒𝜒2 control limit is recommended in general by virtue of its mild robustness to 
violations of the normality assumption (Qin, 2003). 
Common approaches for the determination of the control limits of the 𝑄𝑄𝑋𝑋 are the Jackson-
Mudholkar method (Jackson et al., 1979) and the approach based on the 𝜒𝜒2 distribution with 
matching moments (Nomikos et al., 1995a). The Jackson-Mudholkar approach can be applied 
to PCA and PLS only (including their dynamic and nonlinear extensions), while it cannot be 
applied to CVA. It estimates the control limit of 𝑄𝑄𝑋𝑋 at significance level 𝛼𝛼 as: 

𝑄𝑄𝑋𝑋,lim|𝛼𝛼  = 𝜃𝜃1 �1 + 𝑧𝑧(1−𝛼𝛼)ℎ0�2𝜃𝜃2
𝜃𝜃1

+ ℎ0(ℎ0−1)𝜃𝜃2
𝜃𝜃12

�
1
ℎ0      , 

(7.3) 

where: 
𝜃𝜃𝑖𝑖 = ∑ �𝜆𝜆𝑗𝑗�

𝑖𝑖
 𝑉𝑉𝑋𝑋

𝑗𝑗=𝐴𝐴+1      , (7.4) 

ℎ0 = 1 − 2𝜃𝜃1𝜃𝜃3
3𝜃𝜃22

     . (7.5) 

In (7.3), 𝑧𝑧(1 − 𝛼𝛼) is the value of a standard normal variable evaluated at probability 1 − 𝛼𝛼, 
while the 𝜆𝜆𝑗𝑗 in (7.4) are the variances of 𝑉𝑉𝑋𝑋 − 𝐴𝐴 PCs/LVs not considered in the PCA/PLS 
model, which can be computed as in (2.10)/(2.24). Note that 𝑉𝑉𝑋𝑋 in (7.4) must be replaced by 
the number of columns of the relevant input matrix when applying the Jackson-Mudholkar 
approach to extensions of PCA and PLS discusses in the following Sections. On the other hand, 
the control limit of 𝑄𝑄𝑋𝑋 at significance level 𝛼𝛼 based on the 𝜒𝜒2 distribution with matching 
moments can be computed also for CVA and is defined as: 

𝑄𝑄𝑋𝑋,lim|𝛼𝛼  =
𝑠𝑠𝑄𝑄𝑋𝑋
2

2𝑄𝑄𝑋𝑋����
𝜒𝜒1−𝛼𝛼2 �2�𝑄𝑄𝑋𝑋���� 𝑠𝑠𝑄𝑄𝑋𝑋� �

2
�     , (7.6) 

where 𝑄𝑄𝑋𝑋���� and 𝑠𝑠𝑄𝑄𝑋𝑋 are the sample mean and standard deviation of the 𝑄𝑄𝑋𝑋, computed using the 
values of the statistic derived from the calibration dataset, while 𝜒𝜒1−𝛼𝛼2 �2�𝑄𝑄𝑋𝑋���� 𝑠𝑠𝑄𝑄𝑋𝑋� �

2
� is the 

value of a 𝜒𝜒2 variable with 2�𝑄𝑄𝑋𝑋���� 𝑠𝑠𝑄𝑄𝑋𝑋� �
2
 degrees of freedom evaluated at probability 1 − 𝛼𝛼. 

This equation can be applied to all the models described in this Section. Similarly to the limits 
for 𝑇𝑇𝑋𝑋2, both the Jackson-Mudholkar approach and the 𝜒𝜒2-based limits rely on the normality 
assumption of the values of 𝑄𝑄𝑋𝑋 obtained from the calibration dataset; the 𝜒𝜒2 control limit is 
recommended due to its robustness (Qin, 2003). 
The CVA model provides an additional fault detection statistic: the 𝑇𝑇𝑋𝑋,r

2  statistic. Control limits 
for this statistic can be computed with the same approaches outlined for the 𝑇𝑇𝑋𝑋2 statistic. The 𝜒𝜒2 
distribution approach can be applied directly through (7.2), while the application of the 𝐹𝐹 
distribution approach in (7.1) requires to set DOF = (𝑉𝑉𝑋𝑋 + 𝑉𝑉𝑌𝑌)𝐿𝐿 − 𝐴𝐴. Further details on the 
control limits can be found in the literature (Qin, 2003; Reis et al., 2021a; Thissen et al., 2001; 
Tracy et al., 1992). 
All the approaches introduced so far rely on some assumptions on the control statistics, 
requiring compliance to a specific, static distribution. However, such assumptions could be 
violated in cases of high relevance for fault detection, for example when dynamic models are 
used (Ku et al., 1995). An alternative approach, free from any distributional assumption, relies 
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on non-parametric density estimation (Martin et al., 1996), for example kernel density 
estimation (KDE; Parzen, 1962; Rosenblatt, 1956). 
KDE models the distributions of a given random variable 𝑋𝑋 in terms of its probability density 
function (PDF). Given a sample 𝐱𝐱 ∈ ℝ𝑁𝑁 gathering observations 𝑥𝑥𝑛𝑛, with 𝑛𝑛 ∈ {1, … ,𝑁𝑁}, of a 
random variable 𝑋𝑋, the PDF of 𝑋𝑋 is estimated as: 

𝑝𝑝𝑠𝑠(𝑠𝑠) = 1
𝑁𝑁𝑁𝑁
∑ 𝑘𝑘 �𝑥𝑥−𝑥𝑥𝑛𝑛

𝑁𝑁
�𝑁𝑁

𝑛𝑛=1      , (7.7) 

where 𝑥𝑥 is a generic realization of 𝑋𝑋 and 𝑘𝑘 is a given kernel function, typically a radial basis 
function (RBF) kernel, also known as Gaussian kernel. The RBF kernel in defined as: 

𝑘𝑘 �𝑥𝑥−𝑥𝑥𝑛𝑛
𝑁𝑁
� = 1

√2𝜋𝜋
exp �− 1

2
(𝑥𝑥−𝑥𝑥𝑛𝑛)2

𝑁𝑁2
  �     , (7.8) 

𝛿𝛿 being the kernel width, a hyperparameter of the KDE estimator. Small values of 𝛿𝛿 yield a 
more irregular PDF, while the PDF converges to a wide Gaussian distribution as 𝛿𝛿 increases. 
Empirical rules have been proposed to determine the optimal width of the RBF kernel in KDE 
(Scott, 1992; Silverman, 1986). Two examples are the Scott rule: 

𝛿𝛿opt = 1.059𝑠𝑠𝐱𝐱𝑁𝑁
−15     , (7.9) 

and the Silverman rule: 

𝛿𝛿opt = 0.9𝑠𝑠𝐱𝐱𝑁𝑁
−15     . (7.10) 

In both cases, 𝑠𝑠𝐱𝐱 is the sample standard deviation of 𝑋𝑋 computed on the sample 𝐱𝐱. Variants of 
both the rules have been proposed as well: in (7.9) and (7.10), 𝑠𝑠𝐱𝐱 can be replaced by 
min{𝑠𝑠𝐱𝐱, IQR 1.349⁄ }, where IQR represents the inter-quartile range of the sample 𝐱𝐱. 
The one-tail KDE-based confidence limit of the random variable 𝑋𝑋 at a given significance level 
𝛼𝛼 can finally be defined as: 

𝑥𝑥lim|𝛼𝛼 = 𝑥𝑥∗ such that ∫ 𝑝𝑝𝑠𝑠(𝑠𝑠) d𝑠𝑠𝑥𝑥∗

−∞ = 1 − 𝛼𝛼     . (7.11) 
KDE is a general method that can applied to any random variable, thus it can used to estimate 
the control limit of any fault detection statistic. In this Chapter, 𝑋𝑋 can be 𝑇𝑇𝑋𝑋2, 𝑄𝑄𝑋𝑋, or 𝑇𝑇𝑋𝑋,r

2 . 

7.2.3 Dynamic transformations 

Among the models mentioned in Section 7.2.1, only CVA is suitable to deal with dynamics in 
the dataset. The reason, briefly stated in Section 2.3.4, is that PCA and PLS respectively model 
covariance and cross-covariance matrices accounting only for static correlation among variable, 
thus leaving unmodeled the correlation among observations featured by data from dynamic 
processes (Bergmeir et al., 2012). This means that faults affecting process dynamics could be 
undetected by static methods (Ku et al., 1995). To account for dynamics, autocorrelation 
coefficients (Box et al., 2016) and cross-correlation coefficients (Brockwell et al., 2016) can be 
considered in modeling by augmenting the data matrices by means of lagged measurements 
prior to model calibration (Ku et al., 1995). In fact, a number of dynamic extensions of the basic 
methods have been proposed, among which dynamic principal component analysis (DPCA; Ku 
et al., 1995) and dynamic partial least-squares (DPLS; Ricker, 1988) regression. 
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DPCA aims at modeling autocorrelation and cross-correlation in the dataset, implicitly 
extracting a dynamic autoregressive model of the process (Ku et al., 1995). In this case, the 
rows of the data matrix 𝐗𝐗 ∈ ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋  are assumed to be observations of the realization of a 
multivariable random process at a sequence of times, hence a given row depends on previous 
ones. To include the correlation between the different time instants (observations), an 
augmented matrix is formed by lagged measurement augmentation as: 

𝓧𝓧𝐿𝐿 =  

⎣
⎢
⎢
⎡ 𝐱𝐱1

T 𝐱𝐱2T ⋯ 𝐱𝐱𝐿𝐿+1T

𝐱𝐱2T 𝐱𝐱3T ⋯ 𝐱𝐱𝐿𝐿+2T

⋮ ⋮ ⋱ ⋮
𝐱𝐱𝑁𝑁−𝐿𝐿T 𝐱𝐱𝑁𝑁−𝐿𝐿+1T ⋯ 𝐱𝐱𝑁𝑁T ⎦

⎥
⎥
⎤
     , (7.12) 

where 𝐱𝐱𝑛𝑛 ∈ ℝ𝑉𝑉𝑋𝑋 is the 𝑛𝑛-th row (observation) of 𝐗𝐗. The matrix 𝓧𝓧𝐿𝐿 obtained in such a way 
includes the 𝐿𝐿 lagged measurements as additional variables, besides the measurement at the 
current time instant (last block of 𝑉𝑉𝑋𝑋 columns), which results in 𝑉𝑉𝑋𝑋(𝐿𝐿 + 1) columns. For rows 
of 𝓧𝓧𝐿𝐿 to be complete, the first observation refers to time 𝐿𝐿 + 1, resulting in 𝑁𝑁 − 𝐿𝐿 rows. 
Therefore, 𝓧𝓧𝐿𝐿 ∈ ℝ𝑁𝑁−𝐿𝐿 × ℝ𝑉𝑉𝑋𝑋(𝐿𝐿+1); note that 𝓧𝓧0 = 𝐗𝐗. Usually one or two lags are regarded to 
be sufficient to represent most of the relevant dynamics (Kini et al., 2019; Lee et al., 2004b). 
DPCA is performed by applying the conventional PCA described in Section 2.1 to matrix 𝓧𝓧𝐿𝐿. 
The general PCA equations for 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 still hold true. However, dealing with dynamic data 
requires additional considerations. In the context of regression, using a static regression model 
leaves dynamic structures in the regression residuals (Sun et al., 2021). A similar phenomenon 
can be observed for PCA: using a static version of PCA results in dynamic effects in the 𝑄𝑄𝑋𝑋 
statistic; similarly, using a dynamic version of PCA, such as DPCA incorporates dynamic 
effects into the model, resulting in dynamic scores and correlated 𝑇𝑇𝑋𝑋2 statistic (Ku et al., 1995). 
However, the control limit based on the 𝐹𝐹 distribution assumes an uncorrelated 𝑇𝑇𝑋𝑋2 statistic. 
Consequently, the 𝜒𝜒2-based control limit is recommended when applying dynamic extensions 
of latent-variable models, such as DPCA (Lu et al., 2005; Yao et al., 2007). 
Dynamic extensions of PLS can be constructed in a similar way as for DPCA. PLS uses an 
input data matrix 𝐗𝐗 and an output data matrix 𝐘𝐘, and both of them could be augmented by 
lagged measurements. However, in the most common approach to DPLS, only 𝐗𝐗 is augmented, 
while 𝐘𝐘 is left unchanged. Therefore, DPLS is obtained by modeling the lag-augmented input 
matrix 𝓧𝓧𝐿𝐿 defined in (7.12) and the output matrix 𝐘𝐘 by the standard PLS introduced in Section 
2.2. This version of DPLS yields a finite input response representation of the dynamics (Jia et 
al., 2016; Jiao et al., 2015; Ricker, 1988). It is recommended to use the 𝜒𝜒2-based control limit 
for 𝑇𝑇𝑋𝑋2 for the same reason as for DPCA. 
Besides to CVA, DPCA and DPLS are included in SPAfPM as fault detection models to deal 
with dynamics in the data. Compared to standard PCA and PLS, only the number of lags is to 
be determined as an additional hyperparameter. However, it is worth mentioning that other 
dynamic latent-variable models exist, including DPCA with decorrelated residuals (Rato et al., 
2013), dynamic-inner PCA (Dong et al., 2020, 2018a, 2021), dynamic-inner PLS (Dong et al., 
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2015, 2018b), and auto-regressive PLS (Zhu, 2021). These models differ in how dynamics is 
represented. See Fernandes et al. (2022) for details. 

7.2.4 Nonlinear transformations 

PCA and PLS are linear modeling methods. However, real-world data often feature some 
degree of nonlinearity. Several nonlinear extensions of the aforementioned methods have been 
proposed in the literature. Nonlinear versions of PCA can be obtained in various ways, for 
examples: by applying nonlinear transformations to the data matrix, as in kernel principal 
component analysis (KPCA; Schölkopf et al., 1998); by means of generalized algorithms aimed 
at identifying nonlinear principal components, an example being principal curves (Hastie et al., 
1989); representing PCA as a neural network structure, which yields neural network principal 
component analysis (NNPCA) in different forms, such as auto-associative neural networks 
(Kramer, 1991), input-training networks (Tan et al., 1995), and double-network strategies 
(Dong et al., 1996). Differently from PCA, PLS can be made nonlinear by two main strategies 
(Rosipal, 2010): 

• replacing the inner linear regression model with a nonlinear one; 
• applying nonlinear transformations to the 𝐗𝐗 matrix (possibly also to the 𝐘𝐘 matrix) and 

using the transformed matrix as input to linear PLS model. 
Concerning the first category, the linear regression model of PLS can be replaced by a quadratic 
regression model (Wold et al., 1989), a spline regression model (Wold, 1992), or by neural 
network models in various configurations (Malthouse et al., 1997; Qin et al., 1992; Wilson et 
al., 1997). Regarding the second category, kernel partial least squares regression (KPLS; 
Rosipal et al., 2001) relies on the same rationale of KPCA: a standard PLS model is calibrated 
using a kernel-transformed input matrix. 
Models based on kernel transformations (KPCA and KPLS) are selected for inclusions into the 
SPAfPM model library due to their computational efficiency and proven effectiveness. 
Approaches based on neural networks were discarded due to their several drawbacks. For 
example, considering NNPCA, tuning the structures of the relevant networks is regarded to be 
a very challenging task (Tan et al., 1995), and no guarantee is given on the actual orthogonality 
of the nonlinear PCs obtained in such a way (Jia et al., 2000). This in turn causes issues in the 
definition of the 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 statistics for fault detection (Thissen et al., 2001). Furthermore, 
neural network-based PCA variants are known to be plagued by the issue of local minima and 
to entail a high computational workload for calibration (Sun, 2020a). Similar drawbacks affect 
extension of PLS based on neural networks. However, PLS extensions based on nonlinear inner 
regression models represent a promising future research path (Rosipal, 2010), also for nonlinear 
quality-relevant fault detection. 
KPCA represents and effective way to include nonlinearity into the basic PCA model 
(Schölkopf et al., 1998). Given an observation 𝐱𝐱 ∈ ℝ𝑉𝑉𝑋𝑋  of the 𝑉𝑉𝑋𝑋 input variables, assumed to 
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be nonlinearly correlated, a mapping function 𝜙𝜙 ∶ ℝ𝑉𝑉𝑋𝑋 → ℝ𝐸𝐸  | 𝐱𝐱 ↦ 𝜙𝜙(𝐱𝐱) projects the input 
variables onto a high-dimensional space, commonly referred to as the feature space; 𝐸𝐸 is the 
dimension of the feature space and can be arbitrarily large. Such mapping function is defined 
as to capture nonlinear relationships in the original data, effectively linearizing the correlation 
among variables in the feature space. The covariance matrix of a data matrix 𝐗𝐗 ∈ ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋  
(the columns of which are assumed to be at least mean-centered) can be computed as: 

𝐌𝐌𝑋𝑋 = 1
N−1

𝐗𝐗T ⋅ 𝐗𝐗     . (7.13) 
While the PCA calibration procedure introduced in Section 2.1.1 relies on the direct SVD of 
the data matrix 𝐗𝐗, an equivalent formulation can be given based on the SVD of the covariance 
matrix 𝐌𝐌𝑋𝑋. An alternative formulation of the covariance matrix in (7.13) based on the 
observations in 𝐗𝐗, denoted as 𝐱𝐱𝑛𝑛 ∈ ℝ𝑉𝑉𝑋𝑋 , is: 

𝐌𝐌𝑋𝑋 = 1
N−1

∑ 𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱𝑛𝑛𝑁𝑁
𝑛𝑛=1      . (7.14) 

The latter formulation allows to define the covariance matrix of the input variables transformed 
by the mapping function 𝜙𝜙: 

𝐌𝐌𝜙𝜙(𝑋𝑋) = 1
N−1

∑ 𝜙𝜙(𝐱𝐱𝑛𝑛T) ⋅ 𝜙𝜙(𝐱𝐱𝑛𝑛)𝑁𝑁
𝑛𝑛=1      . (7.15) 

SVD can then be used to model the transformed covariance matrix, as in regular PCA. 
A drawback of this strategy is that an explicit mapping of the observations could cause the 
procedure to be computationally unfeasible due to the arbitrarily large dimension of the feature 
space; however, an explicit mapping by the function 𝜙𝜙 is not needed in practice, as the kernel 
trick (Schölkopf et al., 1998) allows to implicitly compute dot (scalar) products between vectors 
in the feature space, which is all that is required to solve the singular value decomposition (note 
that the covariance matrix in (7.15) is defined uniquely in terms of dot products). First, a 
pairwise kernel function complying with the conditions of Mercer’s theorem (Müller et al., 
2001; Schölkopf et al., 1999) is be defined as: 

𝑘𝑘p ∶ ℝ𝑉𝑉𝑋𝑋 × ℝ𝑉𝑉𝑋𝑋 → ℝ | [𝐱𝐱𝑛𝑛 𝐱𝐱𝑚𝑚] ↦ 𝜙𝜙(𝐱𝐱𝑛𝑛T) ⋅ 𝜙𝜙(𝐱𝐱𝑚𝑚)     . (7.16) 
Note that this function is different from the kernel used in KDE (see Section 7.2.2), as 𝑘𝑘p is 
applied to pairs of observations and returns a scalar. Several pairwise kernel functions exist. 
Among the most common kernels are the RBF kernel, also known as Gaussian kernel: 

𝑘𝑘rbf(𝐱𝐱𝑛𝑛, 𝐱𝐱𝑚𝑚) = exp �− ‖𝐱𝐱𝑛𝑛−𝐱𝐱𝑚𝑚‖2

𝜎𝜎2
  �     , (7.17) 

where ‖⋅‖ is the Euclidean norm and 𝜎𝜎 is the kernel bandwidth, and the polynomial kernel: 
𝑘𝑘poly(𝐱𝐱𝑛𝑛, 𝐱𝐱𝑚𝑚) = (𝛾𝛾(𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱𝑚𝑚) + 𝑐𝑐0)𝑑𝑑     , (7.18) 

where 𝛾𝛾 is again know as kernel bandwidth, while 𝑐𝑐0 and 𝑑𝑑 are the polynomial offset and 
degree, respectively. With reference to fault detection problems, as the bandwidth becomes 
larger for the RBF kernel and smaller for the polynomial kernel, model robustness increases 
whereas model sensitivity decreases (Choi et al., 2004). 
This pairwise kernel function is applied to all the possible couples of observations in the input 
data matrix 𝐗𝐗 to obtain the components of a kernel matrix 𝐊𝐊 ∈ ℝ𝑁𝑁 × ℝ𝑁𝑁, the entries of which 
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represent the dot products of couples of transformed observations implicitly computed in the 
feature space. The component 𝐾𝐾𝑛𝑛,𝑚𝑚 of the kernel matrix is defined as: 

𝐾𝐾𝑛𝑛,𝑚𝑚 = 𝑘𝑘p(𝐱𝐱𝑛𝑛,𝐱𝐱𝑚𝑚) = 𝜙𝜙(𝐱𝐱𝑛𝑛T) ⋅ 𝜙𝜙(𝐱𝐱𝑚𝑚)     . (7.19) 
The kernel matrix must be pre-processed by mean-centering prior to modeling. However, as 
observations are implicitly mapped to the feature space, mean-centering must be performed 
therein as (Schölkopf et al., 1998): 

𝐊𝐊� = 𝐊𝐊 − 𝟏𝟏𝑁𝑁 ⋅ 𝐊𝐊 − 𝐊𝐊 ⋅ 𝟏𝟏𝑁𝑁 + 𝟏𝟏𝑁𝑁 ⋅ 𝐊𝐊 ⋅ 𝟏𝟏𝑁𝑁     , (7.20) 
where 𝟏𝟏𝑁𝑁 ∈ ℝ𝑁𝑁 × ℝ𝑁𝑁 is a matrix containing components all equal to 𝑁𝑁−1. The number of PCs 
to be extracted in the feature space is set to 𝐴𝐴 and, said 𝑅𝑅 = rank�𝐊𝐊��, the centered kernel matrix 
𝐊𝐊� is decomposed by SVD: 

𝐊𝐊� = 𝐍𝐍 ⋅ 𝚺𝚺 ⋅ 𝐎𝐎T = [𝐍𝐍1 𝐍𝐍2] ⋅ �𝚺𝚺1 𝟎𝟎
𝟎𝟎 𝚺𝚺2

� ⋅ [𝐎𝐎1 𝐎𝐎2]T     , (7.21) 

where the dimensions of the matrices involved in the SVD are similar to the ones mentioned in 
Section 2.1.1. Finally, the loadings of the KPCA model, 𝐏𝐏 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴, are: 

𝐏𝐏 = 𝚺𝚺1−1 ⋅ 𝐎𝐎1     , (7.22) 
where the normalization of the singular vectors by the singular values is required to ensure that 
the loadings are normalized to unit norm in the feature space. The scores of the input 
observation in the feature space, 𝐓𝐓 ∈ ℝ𝑁𝑁 × ℝ𝐴𝐴, can then be computed as: 

𝐓𝐓 = 𝐊𝐊� ⋅ 𝐏𝐏     . (7.23) 
The pairwise kernel function used to compute entries of 𝐊𝐊, including the hyperparameters of 
the said function, must be set prior to KPCA modeling, therefore they are hyperparameters for 
KPCA (together with the number of PCs) considered in SPAfPM. Despite the large number of 
possible combinations, the direct calibration algorithm makes KPCA still computationally more 
efficient than NNPCA, even when using an extensive cross-validation procedure. 
Given a new observation 𝐱𝐱new ∈  ℝ𝑉𝑉𝑋𝑋 , the KPCA model can be used to compute its scores in 
the feature space. First, a new kernel vector 𝐤𝐤new ∈ ℝ𝑁𝑁 is computed component by component 
as: 

𝑘𝑘new𝑛𝑛 = 𝑘𝑘p(𝐱𝐱𝑛𝑛, 𝐱𝐱new) = 𝜙𝜙(𝐱𝐱𝑛𝑛T) ⋅ 𝜙𝜙(𝐱𝐱new)     , (7.24) 
where 𝐱𝐱𝑛𝑛 is the 𝑛𝑛-th observation in the calibration matrix 𝐗𝐗. The kernel vector is then pre-
processed as to center it in the feature space using the pre-processing parameters of the 
calibration data: 

�̃�𝐤newT = 𝐤𝐤newT − 𝟏𝟏𝑁𝑁′ ⋅ 𝐊𝐊 − 𝐤𝐤new𝐓𝐓 ⋅ 𝟏𝟏𝑁𝑁 + 𝟏𝟏𝑁𝑁′ ⋅ 𝐊𝐊 ⋅ 𝟏𝟏𝑁𝑁     , (7.25) 
where 𝟏𝟏𝑁𝑁′ ∈ ℝ × ℝ𝑁𝑁 is a matrix containing components all equal to 𝑁𝑁−1. Finally, the scores of 
the new observation in the feature space are computed as: 

𝐭𝐭newT = �̃�𝐤newT ⋅ 𝐏𝐏     . (7.26) 
KPLS is based on the same idea as KPCA. In the most common version of KPLS (Rosipal et 
al., 2001), the 𝐗𝐗 matrix is transformed by means of a pairwise kernel function, while the 𝐘𝐘 
matrix is left unchanged (similarly to the DPLS introduced in Section 7.2.3). The conventional 
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PLS calibration algorithm described in Section 2.2.1 is then applied to the mean-centered kernel 
matrix 𝐊𝐊� and to the autoscaled 𝐘𝐘 matrix. An iterative procedure is required to extract 
sequentially the 𝐴𝐴 LVs. The reader is referred to literature resources for details on the KPLS 
calibration procedure (Jia et al., 2016; Rosipal et al., 2001; Wang et al., 2014). Note that KPLS 
requires the identification of the same hyperparameters as KPCA. 
The 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋 statistics can be computed for both KPCA and KPLS using the same equations 
valid for PCA and PLS, respectively (see Sections 2.1.3 and 2.2.4). Note that, as the 𝑇𝑇𝑋𝑋2 statistic 
is computed in the feature space, therefore considering the kernel-transformed NOC data, its 
distribution is expected to be normal (Choi et al., 2004), which enables the estimate the control 
limits by approaches based on the 𝐹𝐹 and 𝜒𝜒2 distributions. In fact, the goal of kernel methods is 
to map data from a general distribution in the input space to a normal distribution in the feature 
space. The validity of this assumption is shown in Section 7.3.2. Similarly, the 𝑄𝑄𝑋𝑋 statistic can 
be computed as the difference between the mean-centered kernel matrix and the reconstruction 
of the same matrix yielded by the relevant model, as in PCA and PLS. The Jackson-Mudholkar 
approach or the 𝜒𝜒2 method can be used to estimate the control limits of 𝑄𝑄𝑋𝑋 (Cho et al., 2005; 
Choi et al., 2005; Zhang et al., 2008). 

7.2.5 Combination of dynamics and nonlinearity 

Due to its relationship to SVD, CVA can model linear dynamics in the data. The same holds 
true for DPCA and DPLS, as they rely on autocorrelation coefficients (Ljung, 1999). While a 
tight control system may effectively linearize the dynamics and correlation in continuous 
processes (Sun, 2020a), nonlinear dynamics is a common occurrence in data from real 
manufacturing processes. Extensions of the dynamic and nonlinear methods outlined in the 
previous Sections have been proposed to handle combinations of nonlinearity and dynamics, 
for example by dynamic kernel principal component analysis (DKPCA; Choi et al., 2004) and 
dynamic kernel partial least-squares (DKPLS; Jia et al., 2016) regression. In both these 
methods, the input matrix 𝐗𝐗 is first augmented by 𝐿𝐿 lagged measurements to obtain matrix 𝓧𝓧𝐿𝐿, 
as in (7.12), then this matrix is processed by kernel transformation as in (7.19). Therefore, 
DKPCA combines DPCA and KPCA, while DKPLS combines DPLS and KPLS (the 𝐘𝐘 matrix 
is left unchanged in this case). 
While such a simple combination may seem naïve, it can effectively handle both nonlinearity 
and dynamics in the data (Choi et al., 2004; Jia et al., 2016). Several literature studies support 
this point. For example, Baffi et al. (2000) argue that nonlinear dynamics can be modeled using 
nonlinear PLS applied to lag-augmented matrices, and Choi et al. (2004) argue the same in the 
context of nonlinear PCA. An intuitive understanding is provided by the following reasoning. 
Augmenting data matrices by lagged measurements allows to consider correlation between 
observations (in the form of autocorrelation and cross-correlation) when computing the 
covariance matrices modeled by DPCA and DPLS. However, being these models based on 
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conventional PCA and PLS, they can extract linear correlation only, hence only linear dynamic 
is modeled, and any nonlinear dynamic in the data is left unmodeled as not fully represented by 
autocorrelation and cross-correlation coefficients (this point is further discussed in Section 
7.3.2 for the case of static correlation). On the other hand, applying nonlinear (kernel) 
transformations to the lag-augmented matrices prior to modeling linearizes the nonlinear 
correlation among observations in the feature space, which is therefore available to modeling 
therein. The combination of augmentation by lagged measurement (to include dynamic 
information) and of kernel transformation (to linearize such dynamic information) can therefore 
effectively model nonlinear dynamics in the data. In fact, this concept shares remarkable 
similarities with the Hammerstein model philosophy (Ljung, 1999), which was successfully 
combined with latent-variable modeling to describe systems featuring nonlinear dynamics 
(Lakshminarayanan et al., 1995, 1997). 
Given the strong justification just outlined and their computational simplicity, DKPCA and 
DKPLS are included in the SPAfPM model library for fault detection on processes featuring 
nonlinear dynamics. Fault-detection statistics and control limits can be formulated in the same 
way as for KPCA and KPLS (Choi et al., 2004; Jia et al., 2016). See Section 7.2.4 for details. 
The hyperparameters to be determined for both models are the number of PCs/LVs, the number 
of lags, and the kernel function with its hyperparameters. 
Several extensions of CVA to nonlinear systems have been proposed as well. Examples are: 
methods based on basis expansion by nonlinear transformations of input and output variables 
prior to lag-augmentation (Lakshminarayanan et al., 1995); methods based on general nonlinear 
transformations of the past and future matrices (Larimore et al., 1990); methods based on 
transformations of the original input matrix 𝐗𝐗 prior to standard CVA modeling, for example by 
KPCA (Samuel et al., 2015a, 2015b); combination of standard CVA with KDE (Odiowei et al., 
2009, 2010). The latter approach, referred to as KDE-CVA in this Chapter, is particularly 
appealing due to its architectural simplicity and its proven effectiveness in capturing nonlinear 
effects in the monitoring statistics when applied to data featuring nonlinear dynamics. This is 
achieved by a two-step procedure: a CVA model is first developed on the data at hand; then, 
KDE (see Section 7.2.2) is applied to the samples of the three monitoring statistics of CVA (𝑇𝑇𝑋𝑋2, 
𝑄𝑄𝑋𝑋, and 𝑇𝑇𝑋𝑋,r

2 ) obtained in calibration to compute their PDFs and, therefore, their control limits. 
KDE-CVA with Gaussian kernel is included in the SPAfPM model library. With respect to 
standard CVA, only the kernel widths for the three fault detection statistics are to be identified 
as additional hyperparameters. However, KDE is implemented in SPAfPM as: 

𝑝𝑝𝑠𝑠(𝑠𝑠) = 1
𝑁𝑁𝜉𝜉𝑠𝑠𝑁𝑁opt𝑠𝑠

∑ 𝑘𝑘 �𝑥𝑥−𝑥𝑥𝑛𝑛
𝑁𝑁opt

�𝑁𝑁
𝑛𝑛=1        𝑠𝑠 ∈ �𝑇𝑇𝑋𝑋2,𝑄𝑄𝑋𝑋 ,𝑇𝑇𝑋𝑋,r

2 �     , (7.27) 

where the optimal kernel width for statistic 𝑠𝑠, 𝛿𝛿opt𝑠𝑠, is determined by the Scott rule in (7.9), and 
𝜉𝜉𝑠𝑠 is a scaling factor for the optimal kernel width. Therefore 𝜉𝜉𝑇𝑇𝑋𝑋2, 𝜉𝜉𝑄𝑄𝑋𝑋, and 𝜉𝜉𝑇𝑇𝑋𝑋,r

2  are the 
additional hyperparameters identified by SPAfPM for KDE-CVA (compared to linear CVA).  
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7.2.6 Support vector data description 

An alternative way to tackle the fault detection problem is to develop a one-class classification 
(OCC; Brereton, 2011) model of the NOC data. OCC methods aim to construct a description 
of data coming from a single class and to determine whether a new observation conforms to the 
characteristic of the modeled class or not (Rodionova et al., 2016). Therefore, OCC methods 
can be used to detect observations that significantly differ from the modeled class (Tax et al., 
1999), distributional outliers (Tax et al., 2004), new data conditions (Rodionova et al., 2016), 
or to solve classification problems where one class is severely undersampled or missing overall. 
OCC is particularly useful in real-world fault detection problems, where it could be very 
expensive or not possible at all to generate faulty samples and to conjecture every possible fault 
(Tax et al., 2004). The OCC procedure is in fact more appropriate when no a priori assumption 
can be done about the distribution of the out-of-class (faulty) data (Tax et al., 1999). 
An OCC model can be calibrated by estimating the PDF of the data in the modeled class, which 
gives a probabilistic view of the fault detection problem. However, density estimation is known 
to be a hard task (Müller et al., 2001), especially with high-dimensional data, due to the inherent 
sparsity of samples of multivariate distributions (Mecklin et al., 2005). Furthermore, the dataset 
could be biased if more NOC regions exist and some are more frequent than others, which could 
lead the model to focus on high density areas and to reject low density regions, though still 
belonging to NOC data (Tax et al., 2004). Estimating the support of the distribution of the 
modeled class is often enough (Müller et al., 2001), which implies modeling only the 
boundaries of the class. 
Kernel transformations can be combined with OCC to solve fault detection problems 
concerning non-normal/nonlinear data due to the relationship between nonlinear mapping 
functions and implicit scalar product computation in the feature space performed by means of 
kernel functions (Müller et al., 2001). One method taking advantage of this synergy is support 
vector data description (SVDD; Tax et al., 1999, 2004). 
For ease of understanding, the linear version of SVDD is described first. Given a data matrix 
𝐗𝐗 ∈ ℝ𝑁𝑁 × ℝ𝑉𝑉𝑋𝑋  containing 𝑁𝑁 observations of  𝑉𝑉𝑋𝑋 variables, SVDD finds the hypersphere with 
the smallest radius that encloses all observations in the calibration matrix 𝐗𝐗. The radius can be 
strongly influenced by outliers in the data; therefore, some observations are allowed to lay 
outside the hypersphere, trading domain coverage and rate of “misclassification”. This 
allowance is achieved by means of 𝑁𝑁 slack variables, 𝜁𝜁𝑛𝑛 ∈ [0, +∞), 𝑛𝑛 ∈ {1, … ,𝑁𝑁}, and a 
radius-to-coverage parameter, 𝐶𝐶 ∈ [𝑁𝑁−1, 1]. The radius of the hypersphere, ℛ, is identified by 
solving the optimization problem: 

(ℛ,𝐚𝐚) = argmin
ℛ,𝐚𝐚

[ℛ2 + 𝐶𝐶 ∑ 𝜁𝜁𝑛𝑛𝑁𝑁
𝑛𝑛=1 ]              

s. t.  ‖𝐱𝐱𝑛𝑛 − 𝐚𝐚‖ ≤ ℛ2 + 𝜁𝜁𝑛𝑛,     𝑛𝑛 ∈ {1, … ,𝑁𝑁}
     , 

(7.28) 

where 𝐱𝐱𝑛𝑛 ∈ ℝ𝑉𝑉𝑋𝑋 is the 𝑛𝑛-th observation in 𝐗𝐗 and 𝐚𝐚 ∈ ℝ𝑉𝑉𝑋𝑋 is the center of the hypersphere. 
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The center of the hypersphere is defined as a linear combination of observations: 
𝐚𝐚 = ∑ 𝛼𝛼𝑛𝑛𝐱𝐱𝑛𝑛𝑁𝑁

𝑛𝑛=1      , (7.29) 
which can be demonstrated by incorporating the constraint to the optimization problem in (7.28) 
into the objective function by means of the Lagrange multipliers 𝛼𝛼𝑛𝑛, 𝑛𝑛 ∈ {1, … ,𝑁𝑁} (Tax et al., 
2004). The multipliers can be determined solving of the aforementioned optimization problem 
and are themselves subject to two constraints: 

0 ≤ 𝛼𝛼𝑛𝑛 ≤ 𝐶𝐶,     𝑛𝑛 ∈ {1, … ,𝑁𝑁}     , (7.30) 
∑ 𝛼𝛼𝑛𝑛𝑁𝑁
𝑛𝑛=1 = 1     . (7.31) 

Only observations 𝐱𝐱𝑛𝑛 with non-zero multipliers are needed to describe the center of the 
hypersphere and are known as support vectors. Observations such that 𝛼𝛼𝑛𝑛 ∈ (0,𝐶𝐶) and 𝜁𝜁𝑛𝑛 = 0 
lie on the edge of the hypersphere and can be used to compute its radius, while observations 
such that 𝛼𝛼𝑛𝑛 = 𝐶𝐶 and 𝜁𝜁𝑛𝑛 > 0 lie outside of the hypersphere. Given any support vector 𝐱𝐱𝑘𝑘 ∈
ℝ𝑉𝑉𝑋𝑋 , the radius of the hypersphere is given by: 

ℛ2 = 𝐱𝐱𝑘𝑘T ⋅ 𝐱𝐱𝑘𝑘 − 2∑ 𝛼𝛼𝑛𝑛𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱𝑘𝑘𝑁𝑁
𝑛𝑛=1 + ∑ ∑ 𝛼𝛼𝑛𝑛𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱𝑚𝑚𝛼𝛼𝑚𝑚𝑁𝑁

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1      . (7.32) 

Furthermore, (7.32) can be used to compute the distance of a new observation 𝐱𝐱new ∈ ℝ𝑉𝑉𝑋𝑋  
from the center of the hypersphere: 

𝐷𝐷new = �𝐱𝐱newT ⋅ 𝐱𝐱new − 2∑ 𝛼𝛼𝑛𝑛𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱new𝑁𝑁
𝑛𝑛=1 + ∑ ∑ 𝛼𝛼𝑛𝑛𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱𝑚𝑚𝛼𝛼𝑚𝑚𝑁𝑁

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1  , (7.33) 

which allows to classify 𝐱𝐱new as within the modeled class or not (meaning conforming to the 
NOC or faulty, in fault detection applications). The condition to be satisfied for 𝐱𝐱new to be 
within the hypersphere is: 

𝐱𝐱newT ⋅ 𝐱𝐱new − 2∑ 𝛼𝛼𝑛𝑛𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱new𝑁𝑁
𝑛𝑛=1 + ∑ ∑ 𝛼𝛼𝑛𝑛𝐱𝐱𝑛𝑛T ⋅ 𝐱𝐱𝑚𝑚𝛼𝛼𝑚𝑚𝑁𝑁

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1 ≤ ℛ2     . (7.34) 

As for the linear form of SVDD, a hypersphere can model boundaries of random vectors 
following an isotropic normal distribution. However, the objective function of SVDD can be 
written solely in terms of scalar products between observations in the input space (Tax et al., 
1999, 2004). Furthermore, the equations to compute the radius of the hypersphere, to compute 
the distance of a new observation, and to test a new observation, that are (7.32), (7.33), and 
(7.34), respectively, are naturally written in terms of scalar products only. Therefore, SVDD 
can be made flexible (nonlinear) by replacing all the scalar products with the results of pairwise 
kernel functions as to implicitly compute those scalar products in a high-dimensional feature 
space, onto which observations of the input space are implicitly projected by nonlinear mapping 
functions. For example, the equation of the radius of the hypersphere in the feature space is: 

ℛ2 = 𝑘𝑘p(𝐱𝐱𝑘𝑘, 𝐱𝐱𝑘𝑘) − 2∑ 𝛼𝛼𝑛𝑛𝑘𝑘p(𝐱𝐱𝑛𝑛,𝐱𝐱𝑘𝑘)𝑁𝑁
𝑛𝑛=1 +                                                  

                                                                        +∑ ∑ 𝛼𝛼𝑛𝑛𝛼𝛼𝑚𝑚𝑘𝑘p(𝐱𝐱𝑛𝑛, 𝐱𝐱𝑚𝑚)𝑁𝑁
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1

     , (7.35) 

and the condition for a new observation to fall within the hypersphere is: 
𝑘𝑘p(𝐱𝐱new,𝐱𝐱new) − 2∑ 𝛼𝛼𝑛𝑛𝑘𝑘p(𝐱𝐱𝑛𝑛, 𝐱𝐱new)𝑁𝑁

𝑛𝑛=1 +                                                
                                                            +∑ ∑ 𝛼𝛼𝑛𝑛𝛼𝛼𝑚𝑚𝑘𝑘p(𝐱𝐱𝑛𝑛, 𝐱𝐱𝑚𝑚)𝑁𝑁

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1 ≤ ℛ2      . (7.36) 

In principle, any pairwise kernel function as defined in (7.16), such as the polynomial kernel 
and Gaussian kernel introduced in Section 7.2.4, can be used in nonlinear SVDD. However, it 
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is known that the polynomial kernel can yield unsatisfactory results in some cases due to 
“extreme” observations dominating the inner product in (7.18) when the polynomial degree 
increases; for an example pf such behavior, see Tax et al. (1999). On the other hand, the 
Gaussian kernel does not suffer from such a drawback as it does not depend on the absolute 
position of observations, but just on their relative positions (Tax et al., 2004). Nonlinear SVDD 
with Gaussian kernel is also closely related to KDE (Tax et al., 2004), which further backs up 
its ability to solve OCC problems on general non-normal/nonlinear data. Furthermore, the 
properties of the Gaussian kernel allow to control the false alarm rate in fault detection 
problems, namely by tuning the kernel width (Tax et al., 2004). 
Nonlinear SVDD is included in the SPAfPM model library as the only method not belonging 
to the family of latent-variable models. The hyperparameters to be determined for SVDD are 
the pairwise kernel function (including its relevant hyperparameters) and the radius-to-coverage 
parameter. Furthermore, SVDD offers important advantages when the data at hand include 
discrete variables. This point is further discussed in Section 7.3.3. 

7.3 Data characteristics relevant to fault detection 
The first step in the SPAfPM framework is a preliminary interrogation of data to infer 
characteristics relevant to fault detection problems. Such characteristics are used to perform a 
preliminary screening of the models provided with SPAfPM and are describe in this Section. 

7.3.1 Data analytics triangle of SPAfPM 

The performance of each model reviewed in Section 7.2 can vary significantly when applied to 
different datasets due to the underlying assumptions of the methods, which could or could not 
match to the characteristics of the data. Similarly to other smart data analytics approaches 
(Mohr et al., 2019; Sun et al., 2021), a base method can be identified and its assumptions used 
to determine the characteristics to be searched for in the available data. The characteristics 
found in a given dataset guide SPAfPM to the choice of the best model for the data at hand. 
The base method chosen for the proposed framework is PCA by virtue its wide usage in the 
process monitoring literature and proven performance in fault detection. PCA can cope by 
design with datasets including a large numbers of possibly correlated variables, a feature that 
is reasonable to expect in data from manufacturing processes (Wise et al., 1996), often including 
measurements of all available process variables. PCA relies on three assumptions: 

• correlation among variables is linear (Camacho et al., 2008a; Wold et al., 1987a); 
• data follow a multivariate normal distribution (Qin, 2003); 
• no dynamics is found in the data and/or residuals (Ku et al., 1995). 

The assumptions of linear correlation and absence of dynamics are required due to the PCA 
working principle that defines latent variables as static, linear combinations of input variables 
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(see Section 2.1.1). On the other hand, the normality assumption is required to guarantee the 
reliability of the monitoring statistics and of their control limits. In fact, the matrix 
decomposition of PCA is based on the covariance matrix of data, encoding second-order 
information that can describe exactly only centered multivariate normal distributions. 
Furthermore, the control limits of the monitoring statistics discussed in Section 7.2.2, namely 
the ones for 𝑇𝑇𝑋𝑋2 and 𝑄𝑄𝑋𝑋, are fully descriptive only under the assumption that scores and residuals 
are normally distributed (Thissen et al., 2001). The scores are normally distributed only if the 
input data are normally distributed, as a linear combination of normal variables is still normal 
(Nomikos et al., 1994). On the other hand, residuals are normally distributed only if all the 
systematic variability (including the potential dynamics) is captured by the model and 
transferred to the latent space (Wold et al., 1987a). 
As argued in Section 7.3.2, non-normality and nonlinearity are tightly intertwined 
characteristics of a dataset. Furthermore, methods able to cope with nonlinear correlation based 
on kernel transformations, such as KPCA and SVDD, can deal by default with general 
distributions (recall the discussion at the end of Section 7.2.6). Therefore, non-normality and 
nonlinearity are checked independently in SPAfPM, but are considered as a single characteristic 
of data. On the other hand, the presence of dynamics in the data is another characteristic to be 
assessed, therefore it is checked separately. 
The objective of fault detection is a relevant information in SPAfPM: whether the monitoring 
system should detect all process faults regardless of their effects on the product quality, or only 
faults affecting the product quality. In other words, whether to adopt a “general” monitoring 
scheme or a quality-relevant monitoring approach (Li et al., 2011; Nomikos et al., 1995b). 
While PCA can be used to monitor the overall process, quality-relevant monitoring requires to 
model the process-product quality correlation. Provided that online measurements of the 
product quality variables are available, this can be achieved, for example, by PLS, which relies 
on assumptions similar to the ones of PCA. Therefore, a third relevant characteristic of the data 
is the availability of online variables describing the product quality (also referred to as 
dependent variables in this Chapter). However, the designation of quality variables requires 
expert knowledge on the process and product. Consequently, whether such variables are 
available or not is a choice left to the user and it is not automatically performed by SPAfPM. 
To summarize, the core data characteristics considered in SPAfPM are: 

• nonlinear correlation among variables/non-normal distribution of data; 
• dynamics in the data (autocorrelation among observations); 
• availability of dependent variables to describe the product quality. 

These data characteristics and the data analytics methods included in the proposed framework 
and able to cope with such characteristics, which have been widely discussed in Section 7.2, 
can be visualized in the form of a smart data analytics triangle for fault detection: this is reported 
in Figure 7.2. 
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The data analytics triangle in Figure 7.2 represents the model pre-selection operated by 
SPAfPM after the preliminary data interrogation. The corners represent models able to cope 
with one of the characteristics. The edges show the fault detection models suitable for the 
characteristics at the linked corners. The center of the triangle shows models best suited if all 
three characteristics are present in the dataset. If none of the relevant data characteristics is 
detected, the base method (PCA, outside of the triangle) is chosen. The criteria used to assess 
the presence of the characteristics in the triangle are discussed in Section 7.4. 
As a matter of example, if the data feature nonlinearity and the presence of dependent variables 
is notified by the user, the data triangle suggests KPLS. Only one method is suggested in this 
case. However, if the data feature dynamics and dependent variables are present, two different 
models are recommended: DPLS and CVA. In this case, a model selection procedure is 
employed to determine which of the two methods is best for the given case (and to determine 
the optimal hyperparameters of the chosen model). An overview of the different 
hyperparameters for each one of the models in the data analytics triangle is shown in Table 7.1. 
The structure of the model selection procedure is explained in detail in Section 7.5.  

7.3.2 Relationship between non-normality and nonlinearity 

If the data are normally distributed, they feature linear correlation only. This point is intuitively 
supported by the following reasoning. First, the PDF of the multivariate normal distribution can 
be completely determined given the first two moments, namely the mean vector and the 
covariance matrix (Izenman, 2008). Then, the covariance matrix conveys the same information 
of the correlation matrix, the latter being a scaled version of the former. Finally, the correlation 
matrix measures exclusively the linear relationships between couples of variables, while it 
might not be sensitive to any nonlinear relationship among variables (Montgomery et al., 2018). 
The last point supports an intuitive understanding that, if variables feature nonlinear correlation, 
then their distribution cannot be normal. This fact is further backed up by two necessary 
conditions for a distribution to be multivariate normal: the marginal distributions of all variables  

 
Figure 7.2. The smart data analytics triangle for fault detection. 
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Table 7.1. Overview of the hyperparameters of each model considered in SPAfPM. 

Model Hyperparameter Definition Constraint 

PCA 𝐴𝐴 Number of PCs  

PLS 𝐴𝐴 Number of LVs  

CVA 𝐿𝐿 Extent of past horizon  

 𝐻𝐻 Extent of future horizon 𝐻𝐻 = 𝐿𝐿 

 𝐴𝐴 Memory order  

DPCA 𝐿𝐿 Number of lags  

 𝐴𝐴 Number of PCs  

DPLS 𝐿𝐿 Number of lags  

 𝐴𝐴 Number of LVs  

KPCA 𝑘𝑘p Pairwise kernel function  

 𝜎𝜎 or {𝑐𝑐0,𝑑𝑑, 𝛾𝛾} Kernel parameters 𝑐𝑐0 = 1 

 𝐴𝐴 Number of PCs  

KPLS 𝑘𝑘p Pairwise kernel function  

 𝜎𝜎 or {𝑐𝑐0,𝑑𝑑, 𝛾𝛾} Kernel parameters 𝑐𝑐0 = 1 

 𝐴𝐴 Number of LVs  

DKPCA 𝐿𝐿 Number of lags  

 𝑘𝑘p Pairwise kernel function  

 𝜎𝜎 or {𝑐𝑐0,𝑑𝑑, 𝛾𝛾} Kernel parameters 𝑐𝑐0 = 1 

 𝐴𝐴 Number of PCs  

DKPLS 𝐿𝐿 Number of lags  

 𝑘𝑘p Pairwise kernel function  

 𝜎𝜎 or {𝑐𝑐0,𝑑𝑑, 𝛾𝛾} Kernel parameters 𝑐𝑐0 = 1 

 𝐴𝐴 Number of LVs  

KDE-CVA 𝐿𝐿 Extent of past horizon  

 𝐻𝐻 Extent of future horizon 𝐻𝐻 = 𝐿𝐿 

 𝐴𝐴 Memory order  

 𝜉𝜉𝑇𝑇𝑋𝑋2 Scale factor for kernel width of 𝑇𝑇𝑋𝑋2  

 𝜉𝜉𝑄𝑄𝑋𝑋  Scale factor for kernel width of 𝑄𝑄𝑋𝑋  

 𝜉𝜉𝑇𝑇𝑋𝑋,r
2  Scale factor for kernel width of 𝑇𝑇𝑋𝑋,r

2  𝜉𝜉𝑇𝑇𝑋𝑋,r
2 = 𝜉𝜉𝑇𝑇𝑋𝑋2 

SVDD 𝑘𝑘p Pairwise kernel function  

 𝜎𝜎 or {𝑐𝑐0,𝑑𝑑, 𝛾𝛾} Kernel parameters 𝑐𝑐0 = 1 

 𝐶𝐶 Radius-to-coverage parameter  
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must be normal; the joint distributions of all couples of variables must be bivariate normal 
(Korkmaz et al., 2014; Oppong et al., 2016). For example, considering the case of an arbitrarily 
distributed variable nonlinearly correlated with a normal variable, its marginal distribution will 
be non-normal; furthermore, its joint distribution with any other variable will be non-normal. 
Considering these facts, the criteria for nonlinearity and non-normality are expected to be in 
accordance most times. There are two special scenarios nonetheless: 

• variables feature linear correlation only, but marginal distributions of some variables 
are non-normal, as when a variable is a linear combination of non-normal variables; 

• variables are independent, but marginal distributions of some variables are non-normal, 
as in the case of the multivariate uniform distribution. 

In both cases the dataset is non-normal and linear (in terms of correlation) and, according to 
Figure 7.2, a linear model is selected by SPAfPM (note that, in the second one of the cases 
mentioned above, linear and nonlinear models are expected to perform similarly due to 
independence of variables, the only consequence being that a large number of PCs/LVs/CVs is 
required). However, the performance in fault detection could still be disappointing due to scores 
being non-normally distributed. Therefore, KDE is suggested to estimate the control limits in 
order to adapt them to the actual distributions of the fault detection statistics. 

7.3.3 A note on discrete variables 

Discrete variables, such as categorical or binary variables, are common in industrial data as 
they can be used to mark process phases, process settings, or onsets of given process conditions 
(for example whether on on-off controller is acting or not). Furthermore, the limited 
measurement accuracy of some process sensors could imply that only few digits are recorded 
by the data acquisition system of the plant, causing continuous process variables to appear as 
varying on discrete levels. The presence of discrete variables requires special attention in the 
context of process monitoring. 
As argued above, standard methods for fault detection are appropriate only if the available data 
feature linear correlation/are normally distributed, while kernel extensions can deal with 
nonlinear correlation/non-normal distributions. Discrete variables are clearly non-normally 
distributed (the normal distribution is defined for continuous variables), implying that nonlinear 
methods should be used if such variables are found in the dataset. However, even kernel-based 
methods are, in general, applicable to continuous variables only. Even fundamental concepts, 
such as the covariance, need special treatments in the presence of discrete or categorical 
variables (Niitsuma et al., 2005; Okada, 2000). 
Some work has been done in the literature on the development of latent-variable models for 
categorical variables (Jollife et al., 2016). Considering PCA, the strategy is essentially to use 
nonlinear PCA (generally KPCA) combined with an optimization procedure to determine 
suitable numerical values to represent the levels of the discrete variables (Blasius et al., 2005; 
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Gower et al., 2005; Linting et al., 2007). In fact, kernel methods, especially the ones based on 
support vectors, proved to perform well in the presence of discrete variables (Pilario et al., 
2020). However, the most common approach to deal with discrete variables is to simply encode 
them as binary values according to the dummy variable (or one-hot) encoding (Hastie et al., 
2009), then directly include the resulting binary variables in the PCA (or KPCA) model (Tomba 
et al., 2013a, 2014). This approach could not be entirely appropriate. 
A further concern with discrete variables regards the concept of dynamics, which is unclear, 
especially for qualitative variables (for example a variable assuming the values “red”, “blue”, 
and “green”). The appropriateness of autocorrelation to detect dynamics (see Section 7.4.3) is 
unclear as well in this case, due to its relationship with the concept of covariance. 
Given the aforementioned points, the use of discrete variables in SPAfPM is highly 
discouraged. However, the inclusion of such variables is allowed anyway by the SPAfPM code, 
but only in the form of binary or integer variables. Qualitative variables need to be numerically 
encoded beforehand by the user. If discrete variables are included in the dataset, SPAfPM does 
not perform any dynamic assessment and the model pre-selection defaults to SVDD. Kernel-
based SVDD is in fact known to perform well on data including discrete variables due to the 
ability of Gaussian kernels to deal with highly non-normal distributions, implicitly mapping 
them to normal distributions in the feature space (Choi et al., 2005; Cremers et al., 2003). 

7.4 Preliminary data interrogation procedure 
The criteria used to assess the relevant data characteristic introduced in the previous Section, 
that is, non-normality, nonlinearity, and dynamics, are introduced in this Section. The 
effectiveness of the criteria is demonstrated using rigorous Monte Carlo simulations. All the 
simulations are carried out in Python 3.9.12 (Python Software Foundation, 2022) and R 4.2.0 
(R Foundation, 2022). The two environments are interfaced by means of rpy2 (rpy2, 2022). 

7.4.1 Non-normality detection 

Mecklin et al. (2005) carried out a Monte Carlo study to investigate the effectiveness of various 
multivariate normality tests and concluded that the Henze-Zirkler test (Henze et al., 1990) is to 
be preferred due to its better empirical performance and theoretical properties. They also found 
the Royston test (Royston, 1983) to perform very well, matching the performance of the Henze-
Zirkler test. They finally pointed out that the Mardia skewness and kurtosis tests (Mardia, 1970)  
show good performance and are among the most widely used tests for multivariate normality. 
The four testes mentioned above are considered to assess non-normality in SPAfPM. 
Preliminary analyses on the tests highlighted advantages and drawbacks of each one. 
Considerations regarding the theoretical foundations of the tests further backed up the empirical 
results. The most important outcomes of the preliminary assessments are as follows. 
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• The statistic used in the Henze-Zirkler test is based on the lognormal distribution and 
its variance shrinks to zero as the number of variables increases (unless balanced by a 
very large number of observations), which causes numerical errors to become larger and 
larger with the increasing number of variables, compromising the reliability of the test. 

• The Royston test can be applied to datasets with up to 2000 observations due to its 
formulation relying on empirically determined factors. 

• The Royston test and the two Mardia tests require the inversion of the sample covariance 
matrix of the data, therefore they cannot be applied if such a matrix is singular (for 
example, if there are more variables than observations). 

Besides these preliminary considerations, a Monte Carlo study is carried out to properly 
evaluate the performance of the four tests. The factors considered in the Monte Carlo study are: 

• the distribution used to generate the dataset, which can be: multivariate normal, 
multivariate 𝑡𝑡, multivariate lognormal, or multivariate uniform; 

• the number of variables in the dataset: 𝑉𝑉𝑋𝑋 ∈ {10, 30, 50, 100, 200}; 
• the number of observations in the dataset: 𝑁𝑁 ∈ {50, 200, 500, 1000, 3000}. 

All possible combinations of the factors are explored. For each combination, 100 repetitions 
are performed. For each repetition, a dataset is generated from the selected distribution using 
randomly selected parameters of the sampling distribution (different at each repetition). 
Four normality tests (the Henze-Zirkler test, the Royston test, the Mardia skewness test, and 
the Mardia kurtosis test) are performed on the generated dataset (note that, as the Royston test 
and the Mardia tests cannot be applied to datasets containing less observations than variables, 
the Henze-Zirkler test is also not applied in the relevant cases for consistency). The outcomes 
of the four tests are saved for each repetition of a given combination of factors and used to 
compute the non-normality detection rates of each one of the four tests. The non-normality 
detection rate of a given test is defined as the number of repetitions over which the dataset is 
deemed non-normal by the relevant tests divided by the total number of repetitions. The four 
non-normality detection rates are the responses of the Monte Carlo study. These detection rates 
should be as close as possible to the chosen significance level (𝛼𝛼 = 0.01) for the multivariate 
normal distribution, and to its complementary to one (𝛽𝛽 = 0.99) for all the other distributions. 
The results of the four selected tests are further combined to yield two more responses for the 
Monte Carlo study, which are also reported in the discussion below and are defined as: 

• results of the Mardia skewness and kurtosis tests are used to obtain the detection rate of 
the Mardia combined test (a dataset is deemed non-normal if either one of the two tests 
detects non-normality); 

• results of the four tests are combined in the “overall” test described at the end of this 
Section. 

A second Monte Carlo study is set up, modifying the dataset generation mechanism. The 
“sampling distribution” factor is replaced by the “fraction of nonlinear variables” factor. The 
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domain of such a factor is: 𝑓𝑓nl ∈ {0, 0.05, 0.1, 0.2, 0.4, 0.8}. The dataset degeneration 
mechanism is illustrated by means of an example. Assume that 𝑉𝑉𝑋𝑋 = 25, and that 30% of the 
variables are nonlinearly correlated (𝑓𝑓nl  =  0.3) with the remaining 70% of variables, which 
can feature a varying degree of linear correlation among each other. The first step is to sample 
𝑉𝑉𝑋𝑋lin = ⌊0.7𝑉𝑉𝑋𝑋⌋ = 17 variables from a multivariate normal distribution with randomly 
generated parameters. Then, 𝑉𝑉𝑋𝑋nl = 𝑉𝑉𝑋𝑋 − 𝑉𝑉𝑋𝑋lin = 8 additional variables are generated by 
randomly picking 𝑉𝑉𝑋𝑋nl out of the 𝑉𝑉𝑋𝑋lin linear variables (with replacement, if 𝑉𝑉𝑋𝑋nl > 𝑉𝑉𝑋𝑋lin) and 
applying nonlinear transformations randomly selected from a library of 60 nonlinear 
transformations. White noise is added to each one of the 𝑉𝑉𝑋𝑋nl nonlinear variables by sampling 
independent normal distributions with zero means and variances selected so that the signal-to-
noise ratio of each of the transformed variables is 1: 0.1. Finally, the 𝑉𝑉𝑋𝑋lin linear variables and 
the 𝑉𝑉𝑋𝑋nl nonlinear variables are jointed to produce the dataset. Responses of the second Monte 
Carlo study are the same of the first Monte Carlo study. 
Results of the first Monte Carlo study on detection of normality are shown in Figure 7.3. The 
Royston test performs the best overall, always yielding non-normality detection rates very close 
to the nominal significance level. The Henze-Zirkler test is nearly equivalent in terms of 
performance for most cases; however, its performance visibly deteriorates when the dataset 
includes more than 50 variables (non-normality is detected by default as the test statistic is 
stuck to its maximum value, which causes the 𝑝𝑝-value to be always 0). Such behavior is due to 
the aforementioned variance shrinkage of the lognormal distribution used to compute the test 
statistic. The Mardia skewness test also performs well, but the Mardia kurtosis test does not 
perform as well due to the inherent difficulty in properly characterizing the kurtosis of high-
dimensional multivariate distributions, which requires a very large number of observations. 
Considering results on other distributions (see Appendix A for details), we can draw the 
following conclusions. 

• All tests yield nearly the same performance when applied to the multivariate lognormal 
distribution, which is highly non-normal. 

• All tests yield nearly the same performance when applied to the multivariate 𝑡𝑡 
distribution, which is slightly non-normal and converges to a multivariate normal 
distribution for increasing degrees of freedom. The Henze-Zirkler test performs 
marginally better than others for small sample sizes, although it also exhibits more 
erratic results. 

• The Royston test outperforms other tests on the multivariate uniform distribution. In 
particular, the Henze-Zirkler test yields very erratic results in this case, even for less 
than 50 variables. 

All these observations are confirmed by the second Monte Carlo study, in which the number of 
nonlinear variables is manipulated rather than the whole distribution. The Royston test performs 
slightly better than the Henze-Zirkler test for mild deviations from normality (𝑓𝑓nl = 0.05 and 
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𝑓𝑓nl = 0.1), especially when the dataset does not include many observations. In this case, both 
the Mardia skewness and kurtosis tests yield erratic results, as in the case of 𝑓𝑓nl = 0.2 shown 
in Figure 7.4, which is also the case where the Royston test outperforms the Henze-Zirkler test 
most apparently, the latter exhibiting very erratic results. The performances of all tests converge 
for high fractions of nonlinear variables, where deviations from normality become apparent. 
Mild deviations from normality are hard to detect, as expected, especially on datasets with a 
small number of observations (see Appendix A for details). 
Given these findings and bearing in mind the remarks made by Mecklin et al. (2005), the default 
criterion to test non-normality of the dataset in SPAfPM is selected as the Royston test, being 
the one that offers the best balance between performance and robustness over a wide range of 
cases. If the dataset includes more than 2000 observations, the Henze-Zirkler test is used when 
there are less than 51 variables in the dataset, and the combined Mardia test is used otherwise. 

7.4.2 Nonlinearity detection 

Unsatisfactory monitoring performance have been reported when PCA is applied to non-normal 
data (Zhu et al., 2016) due the mismatch between the data characteristics and the assumptions 
of the method. Non-normality of data can be induced by the presence of nonlinear correlation 
among variables, as argued in Section 7.3.2. Nonlinearity is therefore a relevant data 
characteristic assessed by SPAfPM. 

 
(a) 

 

 
(b) 

 
(c) 

  
(d) 

 
(e) 

 
(f) 

Figure 7.3. Non-normality detection rates of multivariate normality tests on datasets 
generated from multivariate normal distributions: (a) Royston test, (b) Henze-Zirkler test, 
(c) Mardia combined test, (d) Mardia skewness test, (e) Mardia kurtosis test, and (f) 
combination of all the tests. Missing values mean that the relevant test is not applicable for 
a given combination of factors. 
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The proposed nonlinearity detection method is based on three tests performed simultaneously: 
linear correlation analysis (Montgomery et al., 2018), maximal correlation analysis (Rényi, 
1959), and quadratic (correlation) test (Montgomery et al., 2018). 
Given two vectors 𝐱𝐱 ∈ ℝ𝑁𝑁 and 𝐲𝐲 ∈ ℝ𝑁𝑁  gathering 𝑁𝑁 observations of the random variables 𝑋𝑋 
and 𝑌𝑌, respectively, the sample linear correlation coefficient (Montgomery et al., 2018) can be 
computed as: 

𝑟𝑟𝐱𝐱,𝐲𝐲 = 𝑠𝑠𝐱𝐱,𝐲𝐲

𝑠𝑠𝐱𝐱𝑠𝑠𝐲𝐲
=

1
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� 1
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2
     , (7.37) 

where �̅�𝑥 and 𝑦𝑦� are the sample means of 𝑋𝑋 and 𝑌𝑌, respectively, 𝑠𝑠𝐱𝐱 and 𝑠𝑠𝐲𝐲 are their sample standard 
deviations, and 𝑠𝑠𝐱𝐱,𝐲𝐲 is the sample covariance between 𝑋𝑋 and 𝑌𝑌. The linear correlation coefficient 
quantifies the degree of linear correlation between the two variables and varies between −1 and 
1. Variables are uncorrelated if 𝑟𝑟𝐱𝐱,𝐲𝐲 ≃ 0, while they are perfectly (anti-)correlated if 𝑟𝑟𝐱𝐱,𝐲𝐲 ≃ 1 
(𝑟𝑟𝐱𝐱,𝐲𝐲 ≃ −1). 
The sample maximal correlation coefficient (Rényi, 1959) is defined as: 

𝑟𝑟𝐱𝐱,𝐲𝐲
∗ = sup

𝜌𝜌,𝜓𝜓
�𝑟𝑟𝜌𝜌(𝐱𝐱),𝜓𝜓(𝐲𝐲)�     , (7.38) 

where 𝜌𝜌 and 𝜓𝜓 are functions from the set of all the measurable Borel functions with zero mean 
and are applied to 𝐱𝐱 and 𝐲𝐲 element-wise. Essentially, functions 𝜌𝜌 and 𝜓𝜓 are the nonlinear 
transformation that allow to maximize the linear correlation coefficient between the 
transformed variables 𝜌𝜌(𝑋𝑋) and 𝜓𝜓(𝑌𝑌) (based on the available samples of the two random 
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Figure 7.4. Non-normality detection rates of multivariate normality tests on datasets in 
which 20% of the variables are nonlinear: (a) Royston test, (b) Henze-Zirkler test, (c) Mardia 
combined test, (d) Mardia skewness test, (e) Mardia kurtosis test, and (f) combination of all 
the tests. Missing values mean that the relevant test is not applicable for a given combination 
of factors. 
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variables), therefore operating an optimal linearization of the relationship between the original 
variables by explicit mapping. The sample maximal correlation coefficient can be computed by 
means of the alternating conditional expectation (ACE) algorithm (Breiman et al., 1985),which 
is also suitable to deal with discrete variables (for instance, categorical or binary) by default. 
The maximal correlation coefficient domain is 𝑟𝑟𝐱𝐱,𝐲𝐲

∗ ∈ [0, 1], where the transformed variables 
𝜌𝜌(𝑋𝑋) and 𝜓𝜓(𝑌𝑌) are uncorrelated if 𝑟𝑟𝐱𝐱,𝐲𝐲

∗ ≃ 0 and perfectly correlated if 𝑟𝑟𝐱𝐱,𝐲𝐲
∗ ≃ 1. 

Comparing the absolute value of the linear correlation coefficient and the value of the maximal 
correlation coefficient provides an understanding of the nature of the relationship between 𝑋𝑋 
and 𝑌𝑌: 

• if 𝑟𝑟𝐱𝐱,𝐲𝐲 ≃ 0 and 𝑟𝑟𝐱𝐱,𝐲𝐲
∗ ≃ 0, the variables are uncorrelated; 

• if 𝑟𝑟𝐱𝐱,𝐲𝐲 ≃ 1 and 𝑟𝑟𝐱𝐱,𝐲𝐲
∗ ≃ 1, the variables are linearly correlated (the functions 𝜌𝜌 and  𝜓𝜓 are 

both the identity function); 
• if 𝑟𝑟𝐱𝐱,𝐲𝐲 ≃ 0 and 𝑟𝑟𝐱𝐱,𝐲𝐲

∗ ≃ 1, the variables are nonlinearly correlated. 
The quadratic test (Montgomery et al., 2018) searches for quadratic relationships between the 
random variables 𝑋𝑋 and 𝑌𝑌 by first fitting two regression models, one linear and one quadratic, 
to the given samples, then comparing the performances of the two models by analysis of 
variances (ANOVA). The null hypothesis of the test is that the relationship between 𝑋𝑋 and 𝑌𝑌 is 
linear (no significant difference between the linear and quadratic models), while the alternative 
hypothesis is that the relationship is quadratic. The null and alternative hypotheses are 
respectively formulated as: 

𝐻𝐻0 ∶  𝐲𝐲 = 𝑏𝑏10𝐱𝐱 + 𝑏𝑏00 + 𝛆𝛆0     , (7.39) 
𝐻𝐻a ∶  𝐲𝐲 = 𝑏𝑏2a𝐱𝐱

2 + 𝑏𝑏1a𝐱𝐱 + 𝑏𝑏0a + 𝛆𝛆a     , (7.40) 
where 𝛆𝛆0 ∈ ℝ𝑁𝑁and 𝛆𝛆a ∈ ℝ𝑁𝑁 are samples of normal random variables. The 𝐹𝐹-test of the 
ANOVA can be applied for hypothesis testing, with the 𝐹𝐹-value computed from: 

𝐹𝐹val = MSE0−MSEa
DOF0−DOFa

�MSEa
DOFa

�
−1

     , (7.41) 

where MSE0 and MSEa are the mean squared errors of the linear and quadratic models, 
respectively, and DOF0 and DOFa are the degrees of freedom of the two models. The test 
statistic is distributed as an 𝐹𝐹 variable with DOF0 − DOFa numerator degrees of freedom and 
DOFa denominator degrees of freedom, hence the 𝑝𝑝-value associated to the 𝐹𝐹-test can be 
computed as: 

𝑝𝑝val = 1 − 𝐹𝐹(DOF0 − DOFa, DOFa)|𝐹𝐹val     , (7.42) 
where 𝐹𝐹(DOF0 − DOFa, DOFa)|𝐹𝐹val is the value of the inverse cumulative distribution function 
of the 𝐹𝐹 variable evaluated at 𝐹𝐹val. The 𝑝𝑝-value can then be compared to the significance level 
of the test adjusted by the Bonferroni correction (Hochberg, 1988), 𝛼𝛼QTadj , to determine its 
significance. The quadratic correlation is deemed significant if 𝑝𝑝val < 𝛼𝛼QTadj . The correction 
of the significance level is employed to control the false-positive rate when a large number of 
tests is performed simultaneously (Goeman et al., 2014; Nadon et al., 2002). 



Smart process analytics for process monitoring 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

167 

The nonlinearity assessment method used in our framework is based on the one originally 
proposed for SPA (Sun et al., 2021). The nonlinear correlation between a pair of variables is 
deemed significant if at least one of the following two test has a positive outcome. 

1. The absolute value of the linear correlation coefficient is close to 0, while the maximal 
correlation coefficient is close to 1 (in other words, the coefficients differ significantly). 

2. The 𝑝𝑝-value of the quadratic test is below the adjusted significance level. 
Test 1 regards the significance of the difference between the maximal correlation coefficient 
and the absolute linear correlation coefficient. The test is based on two conditions: 

• if 𝑟𝑟𝐱𝐱,𝐲𝐲
∗ ≤ 𝜀𝜀MC, the nonlinear correlation is deemed significant if �𝑟𝑟𝐱𝐱,𝐲𝐲

∗ − 𝐷𝐷� − �𝑟𝑟𝐱𝐱,𝐲𝐲� > 𝜀𝜀1, 
and insignificant otherwise (𝐷𝐷 is a correction factor discussed below); 

• if 𝑟𝑟𝐱𝐱,𝐲𝐲
∗ > 𝜀𝜀MC, the nonlinear correlation is deemed significant if 𝑟𝑟𝐱𝐱,𝐲𝐲

∗ − �𝑟𝑟𝐱𝐱,𝐲𝐲� > 𝜀𝜀2, and 
insignificant otherwise. 

Note that the two conditions are complementary (only one of them can be true at a time). Default 
values of thresholds are set as in SPA (Sun, 2020b): 𝜀𝜀MC = 0.92, 𝜀𝜀1 = 0.4, and 𝜀𝜀2 = 0.1. 
Test 2 regards the quadratic test. The nonlinear correlation is deemed significant if 𝑝𝑝val <
𝛼𝛼QTadj , and insignificant otherwise. The threshold for the test is: 

𝛼𝛼QTadj = 𝛼𝛼QT
𝐶𝐶BQT

     , (7.43) 

where 𝛼𝛼QT is the nominal significance level of the test and 𝐶𝐶BQT is the Bonferroni correction 
factor. Such a correction is achieved by dividing the nominal significance level by the number 
of tests being performed simultaneously. If 𝑉𝑉𝑋𝑋 variables are available in the dataset, then 
𝑉𝑉𝑋𝑋(𝑉𝑉𝑋𝑋 − 1) couples are to be tested (note that the quadratic test is not symmetric, unlike the 
correlation coefficient), therefore: 

𝐶𝐶BQT = 𝑉𝑉𝑋𝑋(𝑉𝑉𝑋𝑋 − 1)     . (7.44) 
The default nominal significance level is set as in SPA (Sun, 2020b): 𝛼𝛼QT = 0.01. 
The first condition of test 1 involves a correction factor as well, 𝐷𝐷, that is subtracted to the value 
of the maximal correlation coefficient. The correction factor is introduced because the ACE 
algorithm used to estimate the maximal correlation coefficient is known to yield poor results 
when variables are nearly uncorrelated (Tibshirani, 1988). Preliminary tests carried out on 
uncorrelated variables highlighted that the maximal correlation coefficient tends to be 
“inflated” in this case, and that the magnitude of such an inflation depends on the number of 
observations in the dataset. The factor 𝐷𝐷 is used to counteract this phenomenon11. 
The inflation of the maximal correlation coefficient is investigated by simulation. Specifically, 
𝑟𝑟𝐱𝐱,𝐲𝐲
∗  and �𝑟𝑟𝐱𝐱,𝐲𝐲� are computed for couples of uncorrelated normal variables with numbers of 

observations varying between 10 and 3000. For each number of observations, 100 couples are 
generated in order to compute medians and variabilities (as 99% percentile-based confidence 
limits) of the coefficients. Results are reported in Figure 7.5. 

                                                 
11 Note that no correction is applied in the second condition of test 1, as the estimate is assumed to be reliable when 𝑟𝑟𝐱𝐱,𝐲𝐲

∗  is high. 
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The maximal correlation coefficient is observed to become inflated when the variables are 
independent, especially when the dataset features a small number of observations. The linear 
correlation coefficient suffers from a similar inflation, although to a much lesser extent. 
Furthermore, while the lower confidence limit of the linear correlation nearly touches 0 for all 
sample sizes, the limit of the maximal correlation coefficient is almost always higher than 0. 
In absence of the correction factor 𝐷𝐷, the inflation of the maximal correlation coefficient would 
be propagated to the difference 𝑟𝑟𝐱𝐱,𝐲𝐲

∗ − �𝑟𝑟𝐱𝐱,𝐲𝐲�, which could thus become greater that 𝜀𝜀1 by random 
chance. The correction factor is introduced to prevent this issue. Four options to set the value 
of the correction factor are enabled: 

a. the correction factor is set to the median of the maximal correlation coefficient of two 
uncorrelated normal variables; 

b. the correction factor is set to the 99% upper confidence limit of the maximal correlation 
coefficient of two independent variables; 

c. the correction factor is set to the lower confidence interval at 𝛼𝛼 significance level of the 
maximal correlation coefficient of the couple of variables being assessed, which is 
equivalent by replacing the value of the maximal correlation coefficient with its lower 
confidence limit; 

d. no correction at all. 
For approaches a and b, analytical functions for the deflation factor are fitted to the relevant 
data from the study shown in Figure 7.5. The functional form for fitting is 𝐷𝐷 = 𝑎𝑎𝑁𝑁𝑏𝑏, where 𝑎𝑎 
and 𝑏𝑏 are parameters of the functional form. Results of the fittings reported in Figure 7.6. 
On the other hand, approach c estimates the uncertainty on the maximal correlation coefficient 
of the actual variables considered by the test, which is done by bootstrap resampling (Efron, 
1979; Efron et al., 1993). The bias-corrected and accelerated method (Efron, 1987) is used to 
counteract the overestimation of the correlation coefficient due to the resampling with 
replacement performed by the bootstrap. Note that approach c is statistically founded, as it relies 

 
Figure 7.5. Absolute linear correlation coefficient and maximal correlation coefficient for 
couples of uncorrelated normal variables. Solid lines are medians over 100 datasets; shaded 
areas delimit the percentile-based confidence intervals (CI) at 99% confidence level. 
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on a theoretically sound uncertainty estimation procedure. Furthermore, this approach is 
general and not aimed at solving exclusively the issue with nearly uncorrelated variables. 
However, the computational cost of approach c is a very high due to the bootstrap resampling, 
especially when the number of variables in the dataset is large (the number of couples of 
variables to be assessed scales as 𝑉𝑉𝑋𝑋2), hence approach a is the default in SPAfPM. 
The nonlinearity assessment method described above (tests 1 and 2) and used in our framework 
is to be applied to all couples of variables in the dataset at hand. However, an aggregation rule 
is to be chosen, as the nonlinearity property must be assigned to the whole dataset rather than 
to specific couples of variables. Therefore, we consider the following three criteria for 
nonlinearity detection as candidates for the aggregation rule. 

1. The “any” criterion: the dataset is deemed nonlinear if any couple of variables feature a 
significant nonlinear correlation, consistently with the SPA approach (Sun et al., 2021). 

2. The “variables” criterion: the dataset is deemed nonlinear if the fraction of variables 
involved in a significant nonlinear relationship with another variable is greater than 𝜀𝜀nl. 

3. The “couples” criterion: the dataset is deemed nonlinear if the fraction of couples of 
variables featuring significant nonlinear correlation is greater than 𝜀𝜀nl. 

Note that the second and third criteria have a remarkable advantage over the first one. Since 
𝑉𝑉𝑋𝑋(𝑉𝑉𝑋𝑋 − 1) couples of variables are tested, the “any” criterion entails a non-negligible 
probability of incorrectly detecting nonlinearity in the dataset due to a single false positive, thus 
leading to the selection of an unnecessarily complex nonlinear model. The probability of this 
occurrence increases quadratically with 𝑉𝑉𝑋𝑋. Furthermore, linear models can manage mildly 
nonlinear datasets by including additional PCs/LVs/CVs; see discussions by Paluš et al. (1992), 
and Dong et al. (1996) for details. The default value of the fraction of nonlinear 
variables/couples to be used in both the second and third criteria is set as 𝜀𝜀nl = 0.1, as this 
fraction starts to exceed mildly nonlinear behavior that can still be handled by linear models. 

 
(a) 

 
(b) 

Figure 7.6. Fittings used to determine the deflation factor in the assessment of significance 
of the nonlinear correlation: (a) median value of the maximal correlation coefficient over 
100 samples (a = 3.1076 and b = −0.5269), and (b) 99% upper confidence limit of the 
maximal correlation coefficient over 100 samples (a = 4.5682 and b = −0.5011). 
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The three criteria are compared by means of two Monte Carlo simulations, identical in settings 
to the ones discussed in Section 7.4.1, with the same factors but responses being now the 
nonlinearity detection rates of the “any”, “variables”, and “couples” criteria. Note that the first 
study still considers the sampling distribution as one of the factors. Although it is not known a 
priori whether the considered distributions feature nonlinear correlation of variables or not, this 
study is done to test the hypothesis advanced in Section 7.3.2, namely that non-normality and 
nonlinearity are tightly interconnected properties of a dataset. For the same reason, the non-
normality detection rate is also included among responses of the Monte Carlo studies on 
nonlinearity detection. The combination of non-normality detection tests according to the 
rationale outlined at the end of Section 7.4.1 is used to test non-normality. Settings of all criteria 
are kept to default values. 
A general comment emerging from both Monte Carlo studies is that the number of observations 
is extremely important for the reliability of nonlinearity assessments. In fact, all criteria 
correctly deem datasets generated from normal distribution as normal in nearly all repetitions 
only for 𝑁𝑁 ≥ 500. Figure 7.7 shows that, as expected, the “any” criterion is the least robust 
one, while the “couples” criterion is the most robust one, being perfect in recognizing linear 
datasets even for 𝑁𝑁 ≥ 200. The “variables” criterion yields acceptable results for 𝑁𝑁 𝑉𝑉𝑋𝑋⁄ ≥ 4. 

Considering datasets generated from other distributions (see Appendix A for details), all criteria 
are nearly perfect in detecting nonlinearity of the lognormal distribution, with the “couples” 
criterion sporadically exhibiting erratic behavior. Detection of the multivariate 𝑡𝑡 distribution is 

 
(a) 

 

 
(b) 

  
(c) 

 
(d) 

Figure 7.7. Nonlinearity detection rates of the proposed criteria on datasets generated from 
multivariate normal distributions: (a) combination of non-normality tests, (b) “any” 
criterion, (c) “variables” criterion, and (d) “couples” criterion. 
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harder, due to the mild deviation from normality. In this case, the “couples” criterion is the 
worst performing one, while the “any” criterion performs best. However, the performance of 
the “any” criterion on the multivariate 𝑡𝑡 distribution could just be due to its lack of robustness. 
Results on the uniform distribution, shown in Figure 7.8, are particularly interesting. As 
expected, samples are correctly deemed non-normal and linear. This occurs due to the 
multivariate uniform distribution featuring no correlation at all. Such results show that the 
default thresholds for nonlinearity assessment regarding the maximal correlation coefficient, 
together with the default deflation approach, are appropriate to not misclassify independent 
variables as nonlinearly correlated. The results also confirm that at least 500 observations are 
needed for the reliability of the “any” criterion, whereas the “variables” and “couples” criteria 
allow to lower that threshold to 𝑁𝑁 ≥ 200, though a larger number of observations is still 
recommended to obtain high reliability of nonlinearity detection. 

Overall, the results of the first Monte Carlo study prove the validity of the discussion outlined 
in Section 7.3.2: the non-normal distribution of data and the presence of nonlinear correlation 
among variables are equivalent, saved special cases as the multivariate uniform distribution. 
Moving to the Monte Carlo study generating datasets given the fraction of nonlinear variables, 
consider the case 𝑓𝑓nl = 0.05 first. In this case, no nonlinear variable is included if 𝑉𝑉𝑋𝑋  =  10, 
while only one variable is included if 𝑉𝑉𝑋𝑋  =  30. This last occurrence yields the minimum value 
of the fraction of nonlinear variables, in this case 2 𝑉𝑉𝑋𝑋⁄  =  0.06667, achieved if one single 
couple features nonlinear correlation. Figure 7.9 highlights the importance of the ratio of the 

 
(a) 

 

 
(b) 

  
(c) 

 
(d) 

Figure 7.8. Nonlinearity detection rates of the proposed criteria on datasets generated from 
multivariate uniform distributions: (a) combination of non-normality tests, (b) “any” 
criterion, (c) “variables” criterion, and (d) “couples” criterion. 



   Chapter 7 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

172 

number of observations to the number of variables, that is especially apparent from the results 
of the “variables” criterion. Finally, the “couples” criterion is the only one consistently 
recognizing the dataset as linear according to the set threshold 𝜀𝜀nl. 

Cases with higher values of 𝑓𝑓nl allow us to draw conclusions similar to the those already known 
concerning the robustness of methods. Besides the case 𝑓𝑓nl  =  0.1, where the “any” criterion 
appears to be a little too strict with respect to the “variables” criterion (the former has detection 
rates always very close to 1 even for low 𝑓𝑓nl), these two criteria show similar results (see 
Appendix A for details). On the other hand, the “couples” criterion consistently misses the 
nonlinearity of the dataset, achieving acceptable performance only if 𝑁𝑁 𝑉𝑉𝑋𝑋⁄  ≥  100, which is 
unreasonable. This lack of performance could be due to the fact that the number of couples 
required to overtake the threshold for this criterion varies as 𝑉𝑉𝑋𝑋2, thus increasing sharply with 
the number of variables. This makes the criterion robust to the rejection of the nonlinearity 
hypothesis, but overly conservative to its acceptance, therefore being prone to high false-
negative rates. The case with 𝑓𝑓nl  =  0.4 is shown in Figure 7.10 as an example of this behavior. 
Considering all the outcomes of the Monte Carlo studies, the “variables” criterion is chosen as 
the default criterion to assess nonlinearity of a dataset. The motivation is that this method shows 
the best tradeoff between detection rate on nonlinear datasets and rejection rate on linear 
datasets, being sufficiently robust and sensitive for 𝑁𝑁 ≥  200 and 𝑁𝑁 𝑉𝑉𝑋𝑋⁄  ≥  4. Furthermore, 
this method offers a nice insight on the “intensity” of the nonlinearity of the dataset, which can 
be quantified by the fraction of variables involved in nonlinear relationships. The most 
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Figure 7.9. Nonlinearity detection rates of the proposed criteria on datasets in which 5% of 
the variables are nonlinear: (a) combination of non-normality tests, (b) “any” criterion, (c) 
“variables” criterion, and (d) “couples” criterion. 
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prominent drawback of the selected methods is that its resolution (minimum value that the 
fraction of nonlinear variables can assume) degrades as the number of variables decreases. 

7.4.3 Dynamics detection 

Dynamics is a relevant data characteristic in SPAfPM as basic methods, such as PCA and PLS, 
could not be able to detect faults affecting process dynamics, as they assume that data do not 
feature any autocorrelation (Ku et al., 1995). Dealing with multivariable random processes 
(time-dependent random vectors), three functions are helpful to characterize dynamics (Box et 
al., 2016): the ACF characterizes the general dynamic behavior of a time series; the partial 
autocorrelation function (PACF) characterizes the dynamics of a time series in terms of optimal 
autoregressive models, thereby “removing” the effect of the ACF; the cross-correlation function 
(CCF) characterizes the interdependence between the dynamics of two time series. In their 
sample versions, these functions exploit the concept of lagged measurements introduced in 
Section 7.2.3 and yield one coefficient for each lag. The significance of coefficients can be 
tested with the normal deviate approach, where insignificant coefficients are assumed to follow 
a normal distribution with zero mean and variance estimated by either the large sample 
approximation (Box et al., 2016; Quenouille, 1949) or the lag-corrected estimator (Chatfiled et 
al., 2019). For the significance of ACF coefficients, Bartlett’s formula (Bartlett, 1946) offers 
an additional variance estimator, and the Ljung-Box statistic (Ljung et al., 1978) is an 
alternative approach to significance assessment, which furthermore allows to adjust the nominal 
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Figure 7.10. Nonlinearity detection rates of the proposed criteria on datasets in which 40% 
of the variables are nonlinear: (a) combination of non-normality tests, (b) “any” criterion, 
(c) “variables” criterion, and (d) “couples” criterion. 



   Chapter 7 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

174 

significance level using the Bonferroni correction (Hochberg, 1988), if multiple coefficients are 
tested simultaneously. In general, a variable features no significant dynamics if no coefficient 
is deemed as significant in either the ACF or PACF, while two time series are uncorrelated if 
no significant coefficient is found in the CCF. 
Preliminary tests (not shown here for brevity) were performed to investigate the behavior of the 
ACF and PACF for dynamics detection in single static and dynamic variables. All possible 
combinations of significance assessment approach, variance estimator, and significance level 
adjustment were considered for different numbers of lags tested simultaneously. The best 
results are obtained using the ACF alone, testing coefficients corresponding to 𝐿𝐿 =
min{20, ⌊𝑁𝑁 2⁄ ⌋ − 1} lags with the Ljung-Box approach (which is independent on the variance 
estimator) and Bonferroni correction. The PACF should not be used, as it did not achieve a 
satisfying balance between robustness and sensitivity in the tests carried out. The CCF should 
not be used either, as its robustness was very low: for a dataset with 𝑉𝑉𝑋𝑋 variables, 𝑉𝑉𝑋𝑋(𝑉𝑉𝑋𝑋 − 1) 
couples of variables are assessed by CCF, and the risk of mistakenly deeming a non-negligible 
number of insignificant CCF coefficients as significant increases sharply. 
Given a time series 𝐱𝐱 ∈ ℝ𝑁𝑁 of a random process 𝑋𝑋, the (sample) ACF coefficient at lag 𝑙𝑙 is 
defined as (Box et al., 2016): 

𝑟𝑟𝐱𝐱(𝑙𝑙) = 𝑐𝑐𝐱𝐱(𝑙𝑙)
𝑐𝑐𝐱𝐱(0)     , (7.45) 

where 𝑐𝑐𝐱𝐱(𝑙𝑙) is the sample autocovariance function of the time series at lag 𝑙𝑙, defined as: 
𝑐𝑐𝐱𝐱(𝑙𝑙) = 1

𝑁𝑁
∑ (𝑥𝑥𝑛𝑛 − �̅�𝑥)(𝑥𝑥𝑛𝑛+𝑙𝑙 − �̅�𝑥)𝑁𝑁−𝑙𝑙
𝑛𝑛=1      , (7.46) 

where �̅�𝑥 is the sample mean of the process12. The significance of autocorrelation coefficients 
can be determined using the Ljung-Box statistic (Ljung et al., 1978): 

𝑄𝑄�(𝑙𝑙) = 𝑁𝑁(𝑁𝑁 + 2)∑ �𝑟𝑟𝐱𝐱(𝑗𝑗)�2

𝑁𝑁−𝑗𝑗
𝑙𝑙
𝑗𝑗=1      . (7.47) 

The 𝑄𝑄�(𝑙𝑙) statistic is approximately distributed as a 𝜒𝜒2 variable with 𝑙𝑙 degrees of freedom. The 
𝑝𝑝-value of the statistic can be compared to the adjusted significance level of the test: 

𝛼𝛼ACFadj = 𝛼𝛼ACF
𝐶𝐶BACF

          , (7.48) 

where the Bonferroni correction factor is 𝐶𝐶BACF = 𝑙𝑙, the number of coefficients being tested 
simultaneously. By default, we set 𝛼𝛼ACF = 0.01 as in SPA (Sun, 2020b). The sample 𝐱𝐱 is 
deemed to feature significant dynamics if at least one coefficient 𝑟𝑟𝐱𝐱(𝑙𝑙), 𝑙𝑙 ∈ {1, … , 𝐿𝐿}, is found 
significant. The dynamics test is not performed on discrete variables (see Section 7.3.3). 
Similarly to the nonlinearity detection, dynamics is tested on all variables, but is to be attributed 
to the whole dataset. The following two criteria are proposed to detect dynamics in a dataset of 
𝑁𝑁 observations and 𝑉𝑉𝑋𝑋 variables. 

1. The “any” criterion: the dataset is deemed dynamic if any of the variables feature a 
significant dynamic behavior. 

                                                 
12 Aside: 𝑐𝑐𝐱𝐱(0) is a biased version of the sample variance (𝑠𝑠𝐱𝐱2) of the process. 
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2. The “variables” criterion: the dataset is deemed dynamic if the fraction of variables 
featuring significant dynamics is greater than 𝜀𝜀dyn. 

We expect the “variables” criterion to offer advantages over the “any” criterion in terms of 
robustness (see Section 7.4.2). However, the risk to mistakenly detecting dynamics in the 
dataset due to a single false positive now scales linearly with 𝑉𝑉𝑋𝑋, although such an occurrence 
would nonetheless lead to the selection of a dynamic model when a static model would be more 
appropriate. Static models are also able to capture mild dynamics by including additional 
PCs/LVs, as argued by Vanhatalo et al. (2016) and proved by the study in Chapter 4. The default 
value of the fraction of dynamic variables for the relevant criterion is set as 𝜀𝜀dyn = 0.1. 
In contrast to constructing regression models, where dynamics is tested on residuals of a static 
regression model (Sun et al., 2021), in the proposed framework dynamics is assessed directly 
on the variables in the dataset. As argued by Ku et al. (1995), applying a static model to dynamic 
data can extract only static components, with the dynamics being left in the residual space. In 
such a case, the 𝑄𝑄𝑋𝑋 statistic is expected to carry the dynamics of the residuals, hence featuring 
significant autocorrelation. This point can be leveraged to propose two additional criteria for 
dynamics detection. First, a static model of choice is selected according to the outcomes of the 
nonlinearity detection criterion and the presence of dependent variables. Two versions of the 
model are built: model A using the parameters corresponding to the minimum error in cross-
validation; model B using the one-standard-error-rule (see Section 7.5.3 for details). Based on 
this, two additional criteria for dynamics detection can be defined as follows. 

3. The “model_min” criterion: the dataset is deemed dynamic if the 𝑄𝑄𝑋𝑋 statistic from 
model A features significant dynamics; 

4. The “model_oster” criterion: the same rationale of the previous criterion is adopted, but 
𝑄𝑄𝑋𝑋 coming from model B. 

The four proposed criteria are evaluated in a Monte Carlo study. The factors of the study are: 
• the fraction of dynamic variables in the dataset: 𝑓𝑓dyn ∈ {0, 0.05, 0.1, 0.2, 0.4, 0.8}; 
• the number of variables in the dataset: 𝑉𝑉𝑋𝑋 ∈ {10, 30, 50, 100, 200}; 
• the number of observations in the dataset: 𝑁𝑁 ∈ {50, 200, 500, 1000, 3000}. 

All combinations of factors are tested, and 100 repetitions are performed for each combination, 
generating a random dataset at each repetition. The dataset is generated in a similar way as 
described in Section 7.4.1. Assume, for example, that 𝑉𝑉𝑋𝑋 = 25 and that 30% of the variables 
are dynamic (𝑓𝑓dyn  =  0.3), while the remaining 70% are static variables. The first step is to 
sample 𝑉𝑉𝑋𝑋sta = ⌊0.7𝑉𝑉𝑋𝑋⌋ = 17  variables from a multivariate normal distribution with randomly 
generated parameters. Then 𝑉𝑉𝑋𝑋

dyn = 𝑉𝑉𝑋𝑋 − 𝑉𝑉𝑋𝑋sta = 8 dynamic variables are to be generated. 
Matrices of a random state-space model are generated using an algorithm inspired by the drss 
method provided by the Systems Identification Toolbox (The Mathworks, 2022b) of MATLAB 
R2022a (The Mathworks, 2022a). The generation of the matrices of the state-space model is 
tuned in a way that guarantees stability of the system and that the feed-through matrix is null 
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(no direct effect of current inputs on current outputs). The state-space model has 𝑉𝑉𝑋𝑋sta inputs 
and 𝑉𝑉𝑋𝑋

dyn outputs, with the number of states randomly selected as an integer between 1 and 10 
(inclusive). The observations of the 𝑉𝑉𝑋𝑋sta variables are used as inputs to run the state-space 
model, while the corresponding outputs are collected as the 𝑉𝑉𝑋𝑋

dyn dynamic variables. In order 
to simulate stationary processes (assumption of all the aforementioned significance assessment 
approaches), the state is randomly initialized and 200 more observations are sampled from the 
same distribution used to generate the 𝑉𝑉𝑋𝑋sta static variables. Such observations are used to “burn-
in” the state-space model with the randomly initialized state to obtain a stationary initial state, 
which is then used to generate the actual 𝑁𝑁 observations of dynamic variables. Outputs of the 
200 burn-in observations are discarded. White noise is added to each of the 𝑉𝑉𝑋𝑋

dyn dynamic 
variables by sampling independent normal distributions with zero means and variances selected 
so that the signal-to-noise ratio of each of the generated variables is 1: 0.1. Finally, the 𝑉𝑉𝑋𝑋sta 
static variables and the 𝑉𝑉𝑋𝑋

dyn dynamic variables are jointed to produce the dataset. 
Concerning the “any” and “variables” criteria, the false-positive rate of the former is higher in 
the cases 𝑓𝑓dyn  =  0 (see Figure 7.11) and 𝑓𝑓dyn  =  0.05, while the latter consistently deems the 
dataset as static with false-positive rate very close to the nominal significance level set for the 
ACF. Both the model-based criteria show good performance as well.  

The case 𝑓𝑓dyn  =  0.1 shows a divergence in performances of the “any” and “variables” criteria, 
as can be seen in Figure 7.12: while the “any” criterion mostly deems datasets as dynamic, the 
“variables” criterion prefers static models, showing erratic dynamics detection rates. This 

 
(a) 

 

 
(b) 

  
(c) 

 
(d) 

Figure 7.11. Dynamics detection rates of the proposed criteria on samples in which 0% of 
the variables are dynamic: (a) “any” criterion, (b) “variables” criterion, (c) “model_min” 
criterion, and (d) “model_oster” criterion. 



Smart process analytics for process monitoring 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

177 

behavior is expected as 𝑓𝑓dyn  =  0.1 is the threshold set for 𝜀𝜀dyn. The two model-based criteria 
show again similar performance to the “variables” criterion yet yielding slightly more erratic 
results (no clear effect of the numbers of observations and of variables). 

The “any” and “variables” criteria show similar performance in the remaining cases (see 
Appendix A for details), with the latter being slightly more prone to deem the dataset as static 
than the former criterion for mild dynamics. On the other hand, both the model-based criteria 
show very high false-negative rates and quite erratic results. For example, Figure 7.13 reports 
the case 𝑓𝑓dyn  =  0.4. These cases also show that long time series are required to properly 
characterize the dynamics in the data. A general indication is 𝑁𝑁 ≥  500. 
Based on these outcomes, the “variables” criterion is selected as the default dynamics 
assessment method of SPAfPM. As for the analogous criterion for nonlinearity, this criterion 
achieves the best tradeoff between robustness and sensitivity, while also offering a nice 
interpretation. The criterion is subject to the same drawback nonetheless, namely, poorer 
resolution as the number of variables decreases. A number of observations 𝑁𝑁 ≥  500 is 
recommended for reliability of the dynamics detection test. 

7.5 Model selection and discrimination procedure 
The data analytics triangle in Figure 7.2 elucidates the selection process performed by SPAfPM 
to determine the most suitable model, or subset of models, based on the characteristics of the 

 
(a) 

 

 
(b) 

  
(c) 

 
(d) 

Figure 7.12. Dynamics detection rates of the proposed criteria on samples in which 10% of 
the variables are dynamic: (a) “any” criterion, (b) “variables” criterion, (c) “model_min” 
criterion, and (d) “model_oster” criterion. 



   Chapter 7 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

178 

data at hand. In case a subset of models is recommended, there needs to be a procedure to 
determine which one is the best (model discrimination). Additionally, the optimal 
hyperparameters for each one of the candidate models need to be tuned (model selection) to 
provide a fair comparison between them. A commonly used method to tackle both these 
problems is cross-validation (Allen, 1974; Stone, 1974). 

7.5.1 Model selection in fault detection  

Cross-validation is well established for model selection and discrimination. Considering, for 
instance, the case of regression, prediction performance of various models on a validation 
dataset (meaning data not used for model calibration) can be evaluated using the MSE as 
performance index (Sun et al., 2021). Similarly, the accuracy of a model can be evaluated on 
validation datasets as a measure of performance in a supervised classification problem (Mohr 
et al., 2019). However, in the case of fault detection, it is not trivial to define a good figure of 
merit to quantify the performance of a model (Camacho et al., 2014). 
This problem can be tackled bearing in mind that the aim of model selection is to optimize the 
generalization performance of the model, therefore the performance index that is used should 
be consistent with the modeling objective (Camacho et al., 2014). Typically, the performance 
of a fault detection model is evaluated on how often is incorrectly qualifies NOC observations 
as faults (Type I error rate) and how often it misses faulty observations (Type II error rate). If 
the Type II error rate is to be used as a figure of merit, data from faulty operating conditions 
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Figure 7.13. Dynamics detection rates of the proposed criteria on samples in which 40% of 
the variables are dynamic: (a) “any” criterion, (b) “variables” criterion, (c) “model_min” 
criterion, and (d) “model_oster” criterion. 
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must be available at the time of model calibration. While it is not difficult to produce such data 
using simulators, it is uncommon that comprehensive datasets including all possible faults are 
available in real, industrial applications (even though this might be the case for some specific 
processes). Therefore, SPAfPM relies on the restrictive assumption that only NOC data are 
available for model calibration and selection. 
The Type I error rate can be used as a model evaluation metric as well. In fact, this is a “good 
practice” frequently mentioned in the fault detection literature: the validation Type I error rate 
(defined as that fraction of normal observations detected as faulty on a validation NOC dataset) 
should be as close as possible to the nominal significance level used to estimate control limits, 
𝛼𝛼. This point is explicitly suggested by several studies (Camacho et al., 2016, 2006b; Ramaker 
et al., 2006; Yoon et al., 2004). To mention some examples, Ramaker et al. (2006) state that «it 
is useful to check whether the fraction of out-of-control signals for a given data set is close to 
𝛼𝛼 in case the control charts are set at this significance level. […] The performance of a chart in 
terms of Type I error is good if 𝛼𝛼 observed is close to 𝛼𝛼», while Yoon et al. (2004) suggest that 
«By calculating the false alarm rate during normal operating conditions for the testing set and 
comparing it against the level of significance upon which the threshold is based, one can 
measure the robustness of a fault detection method». This condition is also regarded as essential 
when the performances of multiple fault detection models are to be compared (Camacho et al., 
2009; Rato et al., 2013; Reis et al., 2021a). However, note that while all of the aforementioned 
studies suggest to match the Type I error to the nominal significance level by manual adjustment 
of control limits, none of the studies offers any guideline on how to select the hyperparameters 
of the relevant model, such as the number of PCs, consistently with the modeling objective in 
the sense of Camacho et al. (2014). 
These points suggest that Type I error rate can be used as an evaluation metric for model 
selection consistently with the objective of fault detection. Ideally, the Type I error rate should 
be as close to 𝛼𝛼 as possible. This strategy is actually known in the literature on model-aided 
adulteration detection (in which the objective is basically the same as of fault detection in 
industrial systems), where it is referred to as rigorous model selection approach (Rodionova et 
al., 2016). We ultimately want to choose the model and hyperparameters that yields a Type I 
error rate as close to 𝛼𝛼 as possible. Performing model selection on the basis of the absolute 
deviation of the validation Type I error rate from 𝛼𝛼 is consistent with the monitoring objective, 
as suggested by Camacho et al. (2014), and automates the fulfilment of the “criterion for good 
monitoring performance” suggested by Camacho et al. (2016), Ramaker et al. (2006), and Yoon 
et al. (2004). In this way, an empirical, possibly inconsistent model selection followed by an 
empirical adjustment of control limits is automated in a single, consistent operation. 
The mathematical formulation of the model performance measure for fault detection is 
illustrated taking PCA as an example. In PCA, a Type I error occurs if either one of the 𝑇𝑇𝑋𝑋2 or 
the 𝑄𝑄𝑋𝑋 statistics crosses the relevant control limit. Therefore, minimizing the deviation of the 
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validation Type I error rate from 𝛼𝛼 is equivalent to minimizing the function: 

𝐽𝐽𝛼𝛼PCA = �
∑ 𝑔𝑔𝛼𝛼PCA(𝐱𝐱𝑛𝑛)𝑁𝑁val
𝑛𝑛=1

𝑁𝑁val
− 𝛼𝛼�     , (7.49) 

where 𝑁𝑁val is the number of observations in a validation dataset, 𝐱𝐱𝑛𝑛 is the 𝑛𝑛-th observation in 
the same dataset, and 𝑔𝑔𝛼𝛼PCA is the fault indicator function for PCA, defined as: 

𝑔𝑔𝛼𝛼PCA(𝐱𝐱𝑛𝑛) = �
0    if 𝑇𝑇𝑋𝑋2(𝐱𝐱𝑛𝑛) ≤ 𝑇𝑇𝑋𝑋,lim

2 |𝛼𝛼 𝐚𝐚𝐚𝐚𝐝𝐝 𝑄𝑄𝑋𝑋(𝐱𝐱𝑛𝑛) ≤ 𝑄𝑄𝑋𝑋,lim|𝛼𝛼
1    if 𝑇𝑇𝑋𝑋2(𝐱𝐱𝑛𝑛) > 𝑇𝑇𝑋𝑋,lim

2 |𝛼𝛼 𝐨𝐨𝐫𝐫 𝑄𝑄𝑋𝑋(𝐱𝐱𝑛𝑛) > 𝑄𝑄𝑋𝑋,lim|𝛼𝛼   
     . (7.50) 

Most of the models included in SPAfPM share this indicator function, being based on the same 
fault detection statistics. The fault indicator functions of SVDD and CVA-based approaches 
differ slightly due to the detection statistics of such models being different. The rationale of the 
fault indicator function is the same nonetheless: a fault is detected when any of the fault 
detection statistics crosses the relevant control limit. 
However, it is worth highlighting a drawback of the performance index formulated as in (7.49). 
The first term within the absolute value sign defines the validation Type I error rate as the ratio 
of two integers. The resolution of the Type I error rate (minimum non-zero value it can achieve) 
is controlled by the number of observations in the validation dataset, being equal to 1/𝑁𝑁val. As 
the significance level is usually a small number, typically 𝛼𝛼 = 0.05 or 𝛼𝛼 = 0.01, the number 
of observations in the validation dataset must be large enough to guarantee a good resolution 
of the Type I error rat, thus being comparable to 𝛼𝛼. As a rule of thumb, 𝑁𝑁val  ≥ 100 should be 
guaranteed, which yields a resolution of the Type I error rate equal to at least 0.01. Larger 
values of 𝑁𝑁val are preferable nonetheless. 

7.5.2 Tailoring model selection to the characteristics of the data 

Being cross-validation a model selection approach based on resampling of the observations in 
the dataset, one must be careful to not break the potential correlation structure among 
observations. For static models, a repeated 𝑘𝑘-fold cross-validation (Burman, 1989) procedure 
can be used. In this case, the data are randomly split into 𝑘𝑘 sets (called “folds”) containing 
roughly 𝑁𝑁 𝑘𝑘⁄  observations each. Subsequently, 𝑘𝑘 − 1 sets are used to calibrate the model, while 
the remaining set is used as validation dataset. Each one of the 𝑘𝑘 sets is used as validation 
dataset once as to use each one of the observations in the original dataset in guise of validation 
observations, hence 𝑘𝑘 models are calibrated and applied to the 𝑘𝑘 sets to obtain 𝑘𝑘 “independent” 
values of the performance index defined in (7.49). Furthermore, repeated 𝑘𝑘-fold implies that 
the splitting procedure is repeated several times for different 𝑘𝑘-fold splits of the original dataset. 
If 𝑟𝑟 repeats are performed, 𝑟𝑟𝑘𝑘 values of the performance index are available upon completion 
of the procedure, which can be used to estimate both its average value and variability for 
decision making. In general, 𝑘𝑘 = 5 folds and 𝑟𝑟 = 10 repeats are regarded to be appropriate to 
ensure the statistical reliability of the procedure (Breiman et al., 1992; Kim, 2009; Kohavi, 
1995), hence these are the default values used in SPAfPM. 
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Repeated 𝑘𝑘-fold cross-validation cannot be applied to dynamic data because the random 
splitting results in the loss of the correlation structure among observations (Bergmeir et al., 
2012). Therefore, the so-called growing window cross-validation (Makridakis, 1990) is 
employed when dynamic models are selected by SPAfPM. Data are first split into 𝑘𝑘 blocks of 
contiguous observations, with no alteration in their order. At the first iterations, the first block 
is used to build a model, and the second block is used as the validation dataset. For the second 
iteration, the first two blocks are used to calibrate a model, and the third block is used for 
validation. The procedure is repeated until the 𝑘𝑘 − 1 blocks after the first one have been used 
in validation once, thus 𝑘𝑘 − 1 values of the performance index defined in (7.49) are obtained 
and used for model selection. By default, SPAfPM splits the data in 𝑘𝑘 = 5 blocks, coherently 
with the number of folds for static cross-validation. Note that cross-validation for dynamic data 
inherently results in a small number of values of the performance index (𝑘𝑘 − 1, as opposed to 
the 𝑟𝑟𝑘𝑘 available for static data), which are furthermore obtained from models calibrated on a 
different number of observations at each iteration (due to the growing window scheme). This 
usually implies a higher variability of the values of the performance index. 
It is crucial to note that the number of observations in the validation dataset, 𝑁𝑁val in (7.49), is 
determined by 𝑘𝑘 in both the cross-validation schemes described in this section, being roughly 
𝑁𝑁val ≃ 𝑁𝑁 𝑘𝑘⁄ . Therefore, increasing 𝑘𝑘 may severely degrade the resolution of the Type I error 
rate, compromising the reliability of the performance index. In order to respect the rule of thumb 
outlined at the end of the previous Section, 𝑁𝑁val  ≥ 100, the calibration dataset should include 
a number of observations 𝑁𝑁 ≥ 500 if the default 𝑘𝑘 = 5 is used. 

7.5.3 Hyperparameter tuning and model discrimination 

In SPAfPM, cross-validation is used both for hyperparameter tuning (model selection) and to 
select the best model among the candidates proposed by the preliminary data interrogation 
procedure (model discrimination), if more than one model suits the data characteristics (see 
Figure 7.2). This marks an important difference between the selection mechanism of SPAfPM 
and the rationale of AutoML packages (Hutter et al., 2019): the additional screening step, based 
on the characteristics of the data at hand, ensures that only appropriate models are compared 
by cross-validation, therefore effectively limiting the chances of overfitting. 
Hyperparameters of the candidate models are first optimized using the most appropriate cross-
validation scheme, as discusses in the previous Section. The one-standard-error rule (Filzmoser 
et al., 2009; Hastie et al., 2009) is applied in order to increase model robustness: instead of just 
choosing the set of hyperparameters that yields the minimum value for the function in (7.49), 
the set of hyperparameters yielding the most parsimonious model with performance metric still 
within one standard error from the minimum value is chosen. Usually, this approach selects 
robust models that are less prone to overfitting (Sun et al., 2021). Finally, the model with the 
best cross-validation performance is designated as the best candidate for the given dataset. 
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7.5.4 Rigorous and compliant model selection 

The procedure outlined in Section 7.5.1 sets up the model selection mechanism of SPAfPM 
according to a rigorous approach, as defined by Rodionova et al. (2016). Only NOC data are 
used in rigorous model selection, and the objective is to select the model with the Type I error 
rate closest to 𝛼𝛼. On the other hand, a compliant approach to model selection relies on a 
validation dataset including faulty conditions. In this case, the model is calibrated on NOC data 
and applied to the faulty dataset: the model with the Type II error rate closest to 𝛽𝛽 = 1 − 𝛼𝛼 is 
selected as the best one. 
While adopting a compliant approach may guarantee good fault detection performance, it also 
entails substantial drawbacks. A comprehensive database of several (possibly all) faults must 
be available. While this may be the case for specific units in some processes, it is not a common 
occurrence in general. Even in cases where such a database exists, only one fault must be used 
as validation dataset, and different models could be selected when different faults are used13, a 
point already reported in the literature. For example, in the words of Paredes et al. (2023): 
«Prior consideration of fault information […] brings substantial problems when characterizing 
the method’s detection properties, as they become dependent upon the faults that were used 
during training». Furthermore, the Type I error rate of the model is disregarded and could thus 
be arbitrarily far from 𝛼𝛼, compromising model robustness; on the other hand, adjusting the 
model also considering the deviation of the Type I error rate from 𝛼𝛼 could conflict with the 
objective of compliant model selection. Subtler drawbacks exist: even though the model would 
be optimized on a set of known faults, no guarantee is given about performance on unknown 
faults; the compliant model selection objective is discrimination between NOC and faulty 
conditions, which is inconsistent with the fault detection principle of describing NOC data. 
These drawbacks support the idea that relying on NOC data alone is more appropriate when no 
a priori assumption can be done about the distribution of the out-of-class data (Tax et al., 1999). 
However, a compliant approach could be still beneficial, specifically when the highest 
complexity considered in SPAfPM is found in the data, meaning when all three the 
characteristics in Figure 7.2 are detected. In such a case, SPAfPM is called to discriminate 
between DKPLS and KDE-CVA. DKPLS combines dynamic and nonlinear transformations of 
the data prior to modeling. On the other hand, KDE-CVA employs only the dynamic 
transformation prior to modeling, while the nonlinear components enters at the monitoring 
statistics level. This is basically equivalent to applying a linear filter to data (the CVA model) 
and only then adopting a nonlinear approach to fault detection (KDE-based control limits). 
Even if the Type I error rates of the two approaches could be very similar, no clear guideline 
exists to determine which method will yield the best performance in terms of Type II error rate. 

                                                 
13 A possible solution is to combine validation performances on all the available faulty datasets by some aggregation rule, even 
though this is known to be a hard task and represents a problem, for example, in selection of multi-class classification models. 
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Furthermore, preliminary tests of the two approaches highlighted that the parameters of the 
kernel functions (for example the width of the Gaussian kernel) have a dramatic effect on the 
Type II error rate (much more relevant than the effect they have on the Type I error), especially 
when the kernel transformation is applied to the data prior to modeling. This behavior is 
justified by the fact that kernel methods of the DKPLS kind are extremely flexible (Tax et al., 
1999) and can fit the training data almost perfectly (Jia et al., 2016; Schölkopf et al., 1998). 
In light of the discussion developed here, SPAfPM recommends both DKPLS and KDE-CVA 
as a conservative approach if all three characteristics in Figure 7.2 are detected. In this case, we 
also recommend assessing the distribution of the values of the performance index obtained in 
the rigorous cross-validation procedure, which can offer precious insights on the behavior of 
the models. A compliant model selection mechanism for SPAfPM is matter of future research. 

7.5.5 Computational cost of model selection 

Cross-validation is a computationally intensive model selection method due to its principle, 
based on data resampling. Specifically, the repeated 𝑘𝑘-fold scheme requires the calibration and 
application of 𝑟𝑟𝑘𝑘 models, while the growing windows method entails the calibration and 
evaluation of 𝑘𝑘 − 1 models. With the default values of 𝑟𝑟 and 𝑘𝑘 used in SPAfPM, 50 and 4 
models must be calibrated and evaluated for static and dynamic data, respectively, for each 
combination of hyperparameters considered in each candidate model. This could imply a 
significant computational time for model selection, especially for high complexity models with 
several parameters and calibration procedures based on numerical optimization. 
As mentioned in Section 7.2, the model library of SPAfPM includes methods with high 
computational efficiency in both calibration and evaluation, therefore cross-validation requires 
a reasonable time. The models entailing the largest computational burden in calibration are 
KPCA and SVDD, the complexity of which scales with 𝑁𝑁2 due to the construction of the kernel 
matrix. However, even with repeated 𝑘𝑘-fold cross validation and an exhaustive grid-search 
scheme, the computational time for model selection does not exceed some hours for such 
models on a standard workstation (Dell Precision 7550 with 8-core Intel i7-10875 @ 2.3 GHz 
and 64GB of RAM DDR4 @ 2.933MHz, model selection run in serial mode). In the case studies 
described in the next Section, the most demanding model selection is the one for KPCA in the 
continuous carousel simulator (see Section 7.6.3), where the calibration dataset includes 𝑁𝑁 =
1260 observations, which took around 12 hours. In all the other case studies, KPCA model 
selection is way less demanding, requiring seconds or minutes (and never exceeding 2 hours). 
As model selection is to be performed only at the time of model comparison and, possibly, 
when updating the fault detection system, we believe this computational load to be fair. We 
also remark that the current implementation of SPAfPM is based on functions available in either 
standard software packages or in the previously published SPA code (Sun, 2020b) run in serial 
mode. Such functions are meant to be generally applicable and can undergo a substantial 
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optimization to reduce the computational time: future versions of SPAfPM will implement such 
operation. Furthermore, alternative, more computationally efficient model selection methods 
are matter of future research. A prominent example is represented by information criteria 
(Burnham et al., 2002; McQuarrie et al., 1998). 

7.6 Results and discussion 
This Section illustrates the effectiveness of the proposed approach on several case studies. We 
design a simple linear, static dataset to test SPAfPM on a trivial case. The Tennessee Eastman 
Process (TEP), a widely used benchmark simulator in the fault detection and diagnosis 
literature, is considered next. We then use a realistic simulation of a complex process, the 
continuous filtration and dying of paracetamol. Finally, industrial data from a metal etching 
process are used. For all the case studies, we consider both cases with and without quality 
variables. All the computations are performed in Python 3.9.12 (Python Software Foundation, 
2022) and R 4.2.0 (R Foundation, 2022). The two environments are interfaced by means of 
rpy2 (rpy2, 2022). 

7.6.1 Simulated linear dataset 

A simple numerical example is designed to test the proposed framework in a controlled 
environment. NOC data are generated by sampling a multivariate normal distribution 𝒩𝒩(𝛍𝛍,𝚺𝚺) 
with 𝑉𝑉𝑋𝑋  =  15 variables. The mean vector, 𝛍𝛍 ∈ ℝ𝑉𝑉𝑋𝑋 , is sampled from a multivariate uniform 
distribution 𝒰𝒰�−100 ⋅ 𝟏𝟏𝑉𝑉𝑋𝑋 , 100 ⋅ 𝟏𝟏𝑉𝑉𝑋𝑋�, where 𝟏𝟏𝑉𝑉𝑋𝑋 ∈ ℝ

𝑉𝑉𝑋𝑋  is a vector and all its components 
are equal to 1, hence 𝜇𝜇𝜇𝜇 ∼ 𝒰𝒰(−100, 100) ∀ 𝑣𝑣 ∈ {1, … , 15}. The covariance matrix, 𝚺𝚺 ∈
ℝ𝑉𝑉𝑋𝑋 × ℝ𝑉𝑉𝑋𝑋 , is generated according to the algorithm proposed by Davies et al. (2000): the  3 
major eigenvalues are set to {7, 4, 3}, while the remaining 12 are drawn from uniform 
distributions 𝒰𝒰(0, 1 (𝑉𝑉𝑋𝑋 − 3)⁄ ) and constrained to sum up to 1. 𝑁𝑁 =  600 observations are 
sampled from 𝒩𝒩(𝛍𝛍,𝚺𝚺) and used as NOC data. 
An additional variable is included in the dataset, to be used as quality variable to also test a case 
in which quality-relevant monitoring is required. The quality variable is computed as a linear 
combination of the 𝑉𝑉𝑋𝑋 variables in the “process” dataset generated as described above. 
Combination coefficients are drawn as random real numbers from a uniform distribution 
𝒰𝒰(−11, 11). The quality variable is summed to Gaussian noise with zero mean and variance 
selected so that the signal-to-noise ratio is 1: 0.05. 
Three faulty datasets to be used for testing are designed as follows. 

1. All the components of the mean vector are multiplied by 1.05, while the covariance 
matrix is left unchanged. Therefore, 𝛍𝛍F1 = 1.05𝛍𝛍 and 𝚺𝚺F1 = 𝚺𝚺. 200 observations are 
drawn from 𝒩𝒩(𝛍𝛍,𝚺𝚺), then 𝑁𝑁F = 1000 more observations are drawn from 𝒩𝒩(𝛍𝛍F1,𝚺𝚺F1), 
thus the fault kicks in after 200 NOC observations. 
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2. A new covariance matrix 𝚺𝚺new is generated according the approach proposed by Davies 
et al. (2000) setting the 7 major eigenvalues to {3, 2.5, 2.2, 2, 1.5, 1, 0.8}, while the 
remaining 8 are drawn from uniform distributions 𝒰𝒰(0, 1 (𝑉𝑉𝑋𝑋 − 7)⁄ ) and constrained to 
sum up to 1; the mean vector is left unchanged. Therefore, 𝛍𝛍F2 = 𝛍𝛍 and 𝚺𝚺F2 = 𝚺𝚺new. 
200 observations are drawn from 𝒩𝒩(𝛍𝛍,𝚺𝚺), then 𝑁𝑁F = 1000 more observations are 
drawn from 𝒩𝒩(𝛍𝛍F2,𝚺𝚺F2), thus the fault kicks in after 200 NOC observations. 

3. The variables are replaced by dynamic variables generated as outputs of a random state- 
space model. The “original” variables are treated as inputs to the state-space model. The 
state order is an integer between 1 and 11 (inclusive) selected randomly with uniform 
probability. 200 burn-in observations are fed to the state-space model to guarantee that 
the dynamic variables are stationary processes (see Section 7.4.3 for details on the 
transformation mechanism). Dynamic variables are summed to independent Gaussian 
noise variables with zero mean and variances selected so that the signal-to-noise ratio 
of each dynamic variable is 1: 0.1. The dynamic variables are then scaled for their 
variances to match the ones of variables in the NOC dataset. 200 observations are drawn 
from 𝒩𝒩(𝛍𝛍,𝚺𝚺), then 𝑁𝑁F = 1000 more observations are drawn from the same distribution 
and transformed as explained, thus the fault kicks in after 200 NOC observations. 

The calibration dataset for the proposed smart data analytics framework consists only of the 
NOC data and do not include any faulty data. The NOC data is first analyzed to determine the 
relevant data characteristics, which are used to pre-select suitable fault detection methods. 
Then, the candidate models are evaluated by cross-validation to tune their hyperparameters and 
to select the best performing one. The dataset containing the faults are treated as testing data to 
evaluate the rates of both Type I error (NOC observation incorrectly deemed faulty) and Type 
II error (faulty observations incorrectly deemed NOC). A fault is detected whenever any of the 
statistics of the relevant model crosses the associated control limit, coherently with the cross-
validation procedure elucidated in Section 7.5.1. 
The criteria introduced in Section 7.4 are used to characterize the NOC dataset available for 
model calibration (note that the NOC dataset is the same regardless of the presence of dependent 
variables in this case study). The results are the following. 

• The Royston test is selected to assess non-normality. The dataset is deemed normal with 
a 𝑝𝑝-value of 0.7537. The dataset is deemed normal also by all the non-selected tests. 

• According to the “variables” criterion, the dataset is deemed linear with a fraction of 
variables involved in nonlinear relationships equal to 0. All approaches to deflate the 
maximal correlation coefficient yield the same result. 

• According to the “variables” criterion, the dataset is deemed static with a fraction of 
dynamic variables equal to 0. 

A linear and static method is appropriate to model the NOC data. We consider cases without 
and with dependent variables. When no dependent variable is used, the proposed framework 
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selects PCA according to Figure 7.2. Hyperparameters are determined by repeated 𝑘𝑘-fold cross-
validation, which yields 𝐴𝐴 = 3 PCs. If dependent variables are considered, PLS is 
recommended as the most suitable model. The cross-validation procedure concludes that 𝐴𝐴 =
3 LVs should be used. The monitoring statistics of both models applied to the testing dataset 
for fault 1 are shown in Figure 7.14. 

The fault detection statistics of PCA on fault 1 are shown in Figure 7.14(a). PCA achieves a 
Type I error rate of 0.040 and a Type II error rate of 0.000 for fault 1 in the case where 
dependent variables are not used. An overview of the performance of all models not considering 
dependent variables in detection of all three faults considered is shown in Table 7.2. The 
performance of the recommended model is overall very good. The method has strong 
performance in terms of Type I error rate on unseen data and is the best model for Type II error 
rate on all faults. 
The fault detection statistics of PLS on fault 1 are shown in Figure 7.14(b). In the case where 
dependent variables are used, PLS results in a Type I error rate of 0.035 and a Type II error 

Table 7.2. Linear case study. Overview of the Type I and Type II error rates for all methods 
not considering dependent variables applied to faults 1, 2, and 3. 

Fault no.  PCA DPCA KPCA DKPCA SVDD 

1 Type I error rate 0.040 0.020 0.000 0.000 0.005 

 Type II error rate 0.000 0.913 1.000 1.000 0.983 

2 Type I error rate 0.020 0.000 0.000 0.015 0.010 

 Type II error rate 0.042 0.999 1.000 1.000 0.999 

3 Type I error rate 0.020 0.025 0.000 0.010 0.005 

 Type II error rate 0.130 0.950 1.000 1.000 0.996 

 

 
(a) 

 
(b) 

Figure 7.14. Linear case study. Fault detection statistics of (a) PCA and (b) PLS applied to 
fault 1. The dashed lines represent the control limits based on the 𝜒𝜒2 approach. The fault 
occurs at observation 200 (vertical lines). 
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rate of 0.000 for fault 1. An overview of the performance of all models considering dependent 
variables in detection of the three faults considered is shown in Table 7.3. The performance of 
the recommended model is overall very good, with strong performance for both the Type I and 
II error rates. CVA and KDE-CVA achieve similar performance to PLS. 

7.6.2 Tennessee Eastman Process 

The TEP is a well-known benchmark for process monitoring applications. Many different 
methods have been tested on the TEP to evaluate their performance in fault detection scenarios 
(Dong et al., 2018a; Jia et al., 2016; Ku et al., 1995; Odiowei et al., 2010; Raich et al., 1996; 
Rato et al., 2013; Russell et al., 2000; Samuel et al., 2016; Tien et al., 2004; Wang et al., 2014; 
Yin et al., 2011; Zhang et al., 2020; Zhu, 2021). The simulator has been developed by the 
Eastman Chemical Company to represent a real industrial chemical process consisting of a 
reactor, a condenser, a compressor, a separator, and a stripper (Downs et al., 1993). 
The dataset generated by Chiang et al. (2001) has been selected for use in this study. NOC data, 
including 𝑁𝑁 = 500 observations of the 52 process variables, were obtained by Chiang et al. 
(2001) running the simulator in normal operating conditions (no faults acting on the process). 
They performed 21 additional simulations, one for each of the 21 faults pre-implemented in 
the simulator, to obtain 21 faulty datasets for testing. All the faulty datasets consist of 160 
observations of NOC and 𝑁𝑁F = 800 additional observations of faulty conditions, which can be 
the result of different changes in the process. The detection difficulty of the faults varies 
significantly, and it is known that certain models work well on some faults, but not on others 
(Russell et al., 2000). Additionally, faults 3, 9, and 15 are known to be undetectable by data-
driven methods (Chiang et al., 2001) and are therefore not considered in the analysis carried 
out herein. As for the previous case study, the data from faulty operation are used for testing to 
compute both the Type I and Type II error rates.  
Again, we will consider both possible cases in terms of dependent variables. Out of the 52 
variables featured by the TEP, 11 are manipulated variables and 41 are process measurements 
(Downs et al., 1993). When models not considering dependent variables (such as PCA) are 

Table 7.3. Linear case study. Overview of the Type I and Type II error rates for all methods 
considering dependent variables applied to faults 1, 2, and 3. 

Fault no.  PLS DPLS KPLS DKPLS CVA KDE-CVA 

1 Type I error rate 0.035 0.025 0.010 0.005 0.035 0.030 

 Type II error rate 0.000 0.930 0.999 1.000 0.000 0.000 

2 Type I error rate 0.030 0.015 0.005 0.000 0.010 0.010 

 Type II error rate 0.047 0.995 1.000 1.000 0.000 0.000 

3 Type I error rate 0.030 0.020 0.000 0.005 0.010 0.010 

 Type II error rate 0.121 0.956 1.000 1.000 0.003 0.003 
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applied to the TEP, all the variables are typically included in the dataset (Chiang et al., 2001). 
When dependent variables are accounted for, different variables can be designated as input or 
dependent variables. However, most literature studies agree to consider the 11 manipulated 
variables and the first 21 process measurements as inputs (Jia et al., 2016; Jiao et al., 2015; 
Oliveri et al., 2014). There are different options for the dependent variables: for this case study 
we defined the mole percentage of component G in stream 9 as the dependent variable (Jiao et 
al., 2015; Oliveri et al., 2014). Refer to Downs et al. (1993) for details on the process/variables. 
The criteria introduced in Section 7.4 are used to characterize the NOC dataset available for 
model calibration (note that the NOC dataset differs in the cases with and without dependent 
variables in this case study). The results are the following. 

• The Royston test is selected to assess non-normality. The dataset is deemed non-normal 
with a 𝑝𝑝-value basically equal to 0. This result is due to the marginal distributions of 
some variables. For example, variables 37 to 41 show “staircase” profiles due to their 
lower sampling frequency. 

• According to the “variables” criterion, the dataset is deemed linear with a fraction of 
variables involved in nonlinear relationships equal to 0 for both cases without and with 
dependent variables. Such a result is in accordance with the literature (Sun, 2020a). This 
result, combined with the non-normality detection criterion, also allows us to conjecture 
that variables are either uncorrelated or only linearly correlated. An inspection of the 
maximal correlation and linear correlation matrices reveals that variables are mostly 
uncorrelated, with few cases of linear correlation (due to linear constraints among 
variables imposed by material balances of the process). All approaches to deflate the 
maximal correlation coefficient yield the same results in this case. 

• According to the “variables” criterion, the dataset is deemed dynamic with a fraction of 
dynamic variables equal to 0.788 (41 dynamic variables out of 52) in the case without 
dependent variables, and equal to 0.667 (22 dynamic variables out of 33) when 
dependent variables are considered. Also this agrees with the literature (Sun, 2020a). 

The preliminary data interrogation indicates that the NOC dataset is linear and dynamic. 
Considering the case without dependent variables, the data analytics triangle of SPAfPM 
(Figure 7.2) suggests DPCA as the best model. Growing window cross-validation is used to 
determine the hyperparameters of DPCA, yielding one lagged measurement (𝐿𝐿 = 1) and one 
PC (𝐴𝐴 = 1). In the case with dependent variables, DPLS and CVA are recommended. SPAfPM 
uses the growing window cross-validation to tune the hyperparameter of both models and to 
designate the best one between the resulting models, as described in Section 7.5.3. Figure 7.15 
shows the distributions of the Type I error rate in cross-validation for the optimal DPLS and 
CVA models. As the average Type I errors rate in cross-validation of CVA is closer to 𝛼𝛼 =
0.01 than the one of DPLS, SPAfPM selects CVA as final model, with 𝐿𝐿 = 𝐻𝐻 = 1 and 𝐴𝐴 = 1 
as hyperparameters. 
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In the following, we discuss in detail two of the available faulty datasets (faults 1 and 5). We 
then give an overview of the performance of SPAfPM on all available faults. 
Fault 1 is one of the most frequently analyzed ones. In this case, the ratio of components A and 
C in stream 4 undergoes a step change, with component C increasing and component A 
decreasing (Downs et al., 1993). Figure 7.16 reports the fault detection statistics of DPCA and 
CVA for fault 1. 

Table 7.4 reports an overview of the performance of all models not considering dependent 
variables in detection of fault 1. In terms of the Type I error rate, the suggested method, DPCA, 
is the second-best performing model, with a Type I error rate of 0.006, and is the best 

 
Figure 7.15. TEP case study. Distributions of the Type I errors in cross-validation for DPLS 
and CVA. Each dot represents the error for one of the cross-validation blocks. 

 
(a) 

 
(b) 

Figure 7.16. TEP case study. Fault detection statistics of (a) DPCA and (b) CVA applied to 
fault 1. The dashed lines represent the control limits based on the 𝜒𝜒2 approach. The fault 
occurs at observation 160 (vertical lines). 
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performing model in terms of Type II error, with a rate of 0.001. Figure 7.16(a) shows that the 
𝑇𝑇𝑋𝑋2  statistic of DPCA crosses the control limit after the fault occurs but does not consistently 
detect it. On the other hand, the 𝑄𝑄𝑋𝑋 statistic continuously detects the fault, showing good 
performance for the normal operating conditions (first 160 observation) as well. 

Moving to the case where dependent variables are considered separately, an overview of the 
performance of the models in terms of Type I error rate and Type II error rate is shown in Table 
7.5. CVA has relatively high Type I error rate, but consistently detects the fault, resulting in a 
Type II error rate of 0.000. Figure 7.16(b) highlights that both the 𝑇𝑇𝑋𝑋2 and 𝑇𝑇𝑋𝑋,r

2  statistics detect 
the fault perfectly. However, the latter is quite sensitive, leading to a high Type I error rate. 
Note that DPLS (the alternative method suggested by SPAfPM) performs well too in terms of 
both Type I and Type II error rate, even though not as well as CVA (see Table 7.5). 

Fault 5 is also commonly used to evaluate fault detection methods. In this case, the inlet 
temperature of the condenser cooling water experiences a step change, affecting the reactor 
cooling water flow rate (Downs et al., 1993). Figure 7.17 reports the fault detection statistics of 
DPCA and CVA applied to fault 5. 
The performance in detection of fault 5 by methods not considering dependent variables are 
shown in Table 7.6. DPCA shows a higher Type I error rate compared to other methods; 
however, it is the second-best option for the Type II error rate (after SVDD). The Type II error 
rate of DPCA is still high. The reason for this result is that methods that do not consider 
dependent variables are not suitable to consistently detect fault 5 (Chiang et al., 2001). This is 
made clear by Figure 7.17(a), which shows that the fault detection statistics of DPCA can detect 
the fault after its onset but return below their control limits shortly thereafter. 
If dependent variables are considered separately, our algorithm recommends CVA. CVA yields 
a Type I error rate of 0.044, comparing well to other methods, as shown in Table 7.7. In terms 

Table 7.4. TEP case study. Overview of the Type I and Type II error rates for all methods 
not considering dependent variables applied to fault 1. 

 PCA DPCA KPCA DKPCA SVDD 

Type I error rate 0.019 0.006 0.006 0.000 0.025 

Type II error rate 0.004 0.001 1.000 0.098 0.003 

 

Table 7.5. TEP case study. Overview of the Type I and Type II error rates for all methods 
considering dependent variables applied to fault 1. 

 PLS DPLS KPLS DKPLS CVA KDE-CVA 

Type I error rate 0.013 0.031 0.000 0.019 0.050 0.000 

Type II error rate 0.001 0.000 0.008 0.006 0.000 0.003 
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of Type II error rate, CVA clearly outperforms the other methods and achieves a flawless Type 
II error rate of 0.000 (KDE-CVA achieves similar performance). Figure 7.17(b) illustrates how 
only the 𝑇𝑇𝑋𝑋,r

2  statistic is capable of consistently detecting the fault after its occurrence. Being 
such a statistic unique to CVA (and KDE-CVA), this motivates why this method achieves such 
a good performance on fault 5. This case further proves that the recommendation of CVA made 
by SPAfPM is appropriate. 

The proposed framework suggests DPCA and CVA in the cases without and with dependent 
variables, respectively, solely relying on NOC data. However, 21 different faults can occur in 

Table 7.7. TEP case study. Overview of the Type I and Type II error rates for all methods 
considering dependent variables applied to fault 5. 

 PLS DPLS KPLS DKPLS CVA KDE-CVA 

Type I error rate 0.038 0.069 0.000 0.025 0.044 0.000 

Type II error rate 0.616 0.565 0.702 0.639 0.000 0.000 

 

 
(a) 

 
(b) 

Figure 7.17. TEP case study. Fault detection statistics of (a) DPCA and (b) CVA applied to 
fault 5. The dashed lines represent the control limits based on the 𝜒𝜒2 approach. The fault 
occurs at observation 160 (vertical lines). 

 
Table 7.6. TEP case study. Overview of the Type I and Type II error rates for all methods 
not considering dependent variables applied to fault 5. 

 PCA DPCA KPCA DKPCA SVDD 

Type I error rate 0.038 0.056 0.019 0.031 0.038 

Type II error rate 0.606 0.578 0.927 0.630 0.551 
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the TEP process (18 of which are undetectable by data-driven methods), and it is known that 
there is no single model that achieves flawless detection performance on all faults (Russell et 
al., 2000). We are nonetheless interested in evaluating how the selected models compare to the 
other models on all the 18 detectable faults in terms of both Type I and Type II error rates. 
All models show similar performance regarding the Type I error rate, as expected, with kernel-
based methods tending to perform slightly better on average (not shown for brevity). 
Concerning the Type II error rate, Table 7.8 shows an overview of the performance of all 
models not considering dependent variables: DPCA is observed to be the best performing model 
in 12 out of 18 cases, with performance almost identical to the best ones (achieved by SVDD) 
in the remaining 6 cases. Similarly, Table 7.9 shows an overview of the Type II error rates for 
all models considering dependent variables: CVA is the best performing model in 16 out of 18 
cases; DPLS, the alternative model suggested by SPAfPM, is the best model in the remaining 
2 cases. These results demonstrate the effectiveness and strong performance of the proposed 
smart data analytics approach for selecting the best method for fault detection. 

Table 7.8. TEP case study. Overview of the Type II error rates for all methods not 
considering dependent variables applied to all detectable faults. Error rates of the best 
performing method for each fault are highlighted in bold font. 

Fault no. PCA DPCA KPCA DKPCA SVDD 

1 0.004 𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏 1.000 0.098 0.003 

2 0.014 𝟎𝟎.𝟎𝟎𝟏𝟏𝟑𝟑 0.986 0.936 0.014 

4 0.063 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.935 0.838 0.029 

5 0.606 0.578 0.927 0.630 𝟎𝟎.𝟓𝟓𝟓𝟓𝟏𝟏 

6 0.000 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 1.000 0.966 0.000 

7 0.000 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.399 0.338 0.000 

8 0.013 0.011 0.899 0.117 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 

10 0.345 0.320 0.770 0.404 𝟎𝟎.𝟑𝟑𝟏𝟏𝟎𝟎 

11 0.273 𝟎𝟎.𝟐𝟐𝟎𝟎𝟐𝟐 0.849 0.721 0.228 

12 0.006 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑 0.896 0.142 0.004 

13 0.040 𝟎𝟎.𝟎𝟎𝟑𝟑𝟎𝟎 0.990 0.467 0.041 

14 0.000 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.957 0.058 0.000 

16 0.419 𝟎𝟎.𝟑𝟑𝟓𝟓𝟎𝟎 0.862 0.484 0.352 

17 0.068 𝟎𝟎.𝟎𝟎𝟓𝟓𝟎𝟎 0.966 0.576 0.064 

18 0.086 0.084 0.995 0.934 𝟎𝟎.𝟎𝟎𝟐𝟐𝟓𝟓 

19 0.799 𝟎𝟎.𝟐𝟐𝟑𝟑𝟐𝟐 0.972 0.906 0.738 

20 0.333 0.292 0.931 0.475 𝟎𝟎.𝟐𝟐𝟐𝟐𝟑𝟑 

21 0.539 0.503 0.947 0.619 𝟎𝟎.𝟓𝟓𝟎𝟎𝟎𝟎 
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7.6.3 Continuous filtration and drying of paracetamol 

Destro et al. (2021) developed a detailed, highly nonlinear, and mechanistic model of a process 
for continuous filtration and drying of an active pharmaceutical ingredient (paracetamol): the 
continuous carousel simulator (ContCarSim; Destro et al., 2022a). An open-source simulator 
implementing such model is freely available on GitHub (Destro et al., 2022b). The process is 
carried out in a revolving carousel unit with five slots, the so-called “ports.” A slurry containing 
the crystals, the mother liquor, and the solvent is loaded to the first port; vacuum-driven de-
liquoring takes place in the second and third ports; the fourth port is used for drying the crystals 
under a flow of hot air; the cake of dry crystal is discharged from the fifth port. Fouling of the 
filter meshes is also simulated, and an automatic cleaning routine is implemented by the 
simulator. Measurements from 𝑉𝑉𝑋𝑋 = 8 sensors installed on the actual machine used for model 
development are returned by the simulator. The reader is referred to the original literature 
resources for details on the model (Destro et al., 2021) and on the simulator (Destro et al., 
2022a). 

Table 7.9. TEP case study. Overview of the Type II error rates for all methods considering 
dependent variables applied to all detectable faults. Error rates of the best performing 
method for each fault are highlighted in bold font. 

Fault no. PLS DPLS KPLS DKPLS CVA KDE-CVA 

1 0.001 0.000 0.008 0.006 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.003 

2 0.015 0.013 0.021 0.018 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.014 

4 0.019 0.000 0.835 0.809 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.000 

5 0.616 0.565 0.702 0.639 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.000 

6 0.000 0.000 0.004 0.004 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.000 

7 0.000 0.000 0.029 0.000 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.000 

8 0.010 0.010 0.035 0.025 𝟎𝟎.𝟎𝟎𝟏𝟏𝟎𝟎 0.021 

10 0.380 0.294 0.514 0.424 𝟎𝟎.𝟎𝟎𝟐𝟐𝟑𝟑 0.111 

11 0.261 0.140 0.615 0.576 𝟎𝟎.𝟏𝟏𝟐𝟐𝟐𝟐 0.235 

12 0.006 0.000 0.024 0.006 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.000 

13 0.045 𝟎𝟎.𝟎𝟎𝟑𝟑𝟎𝟎 0.056 0.054 0.043 0.048 

14 0.000 0.000 0.005 0.000 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.000 

16 0.439 0.296 0.674 0.487 𝟎𝟎.𝟎𝟎𝟒𝟒𝟏𝟏 0.082 

17 0.061 0.040 0.211 0.157 𝟎𝟎.𝟎𝟎𝟐𝟐𝟓𝟓 0.039 

18 0.080 𝟎𝟎.𝟎𝟎𝟐𝟐𝟑𝟑 0.098 0.088 0.082 0.098 

19 0.806 0.622 0.986 0.950 𝟎𝟎.𝟎𝟎𝟒𝟒𝟒𝟒 0.097 

20 0.365 0.276 0.583 0.474 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑 0.092 

21 0.514 0.427 0.620 0.496 𝟎𝟎.𝟑𝟑𝟎𝟎𝟐𝟐 0.391 

 



   Chapter 7 

© 2023 Elia Arnese Feffin, University of Padova (Italy) 

194 

ContCarSim is used as a case study to test the proposed smart process analytics framework. 
MATLAB R2022a (The Mathworks, 2022a) is used to run the simulator. All the simulations 
are performed setting ContCarSim to “open-loop mode” with sampling time of 1 second. As 
some of the simulated sensor measurements returned by ContCarSim are noise-free, the code 
of the simulator is slightly modified before data generation: 

• the variance of the measurement error affecting the inlet slurry concentration sensor, 
AI101, is set to 4; 

• Gaussian noise with zero mean and standard deviation equal to 4 ⋅ 10−5 is added to the 
slurry level sensor, LI101; 

• Gaussian noise with zero mean and standard deviation equal to 2.4 ⋅ 10−8 is added to 
the slurry volume sensor, VI101; 

• Gaussian noise with zero mean and standard deviation equal to 416.7 is added to the 
inlet and outlet pressure sensors on the second and third ports, PI101 and PI102, 
respectively; 

• Gaussian noise with zero mean and standard deviation equal to 0.3334 is added to the 
inlet and outlet drying air temperature sensors on the fourth port, TI101 and TI102, 
respectively, before the rounding performed by the simulator; 

• Gaussian noise with zero mean and standard deviation equal to 0.03334 is added to the 
drying air flow rate, FI101, before the rounding performed by the simulator. 

With the above settings, NOC data are generated running the simulator with integration time 
set to 1950 seconds, which yields 1950 observations. Time profiles returned are processed to 
be used for calibration of fault detection models. ContCarSim performed a realistic simulation 
of the process, therefore recording measurements on ports “in real time”. This means that the 
measurements from the drying port feature a delay of three cycle-times, which is the time 
between when the slurry is fed to the first port and when the cake reaches the fourth port. Such 
a delay is corrected as suggested by Kourti et al. (1995): by shifting measurements of sensors 
on the fourth port (TI101, TI102, and FI101) by the appropriate time. After data shift, three 
more processing operations are performed: 

• the simulator saves initial conditions of all variables after each port shift: these are 
removed in order to avoid having different measurements at the same time instant; 

• the parts of the time profiles concerning cleaning phases are discarded, as only the actual 
filtering-drying process is of interest for the case study; 

• only observations of cakes that have undergone a complete cycle (passed through all 
five ports) are retained, therefore data of incomplete cycles are discarded. 

The data processing operations yield the final NOC dataset, including 𝑁𝑁 = 1260 observations. 
Sensor data collected in the dataset concern the process only. For the purpose of testing also 
the performance of quality-relevant monitoring, one of the simulation states is selected as 
quality variable to characterize the product: the solvent concentration in the cake being 
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processed. Gaussian noise with zero mean and standard deviation equal to 0.0008 is added to 
such a state to simulate noise of a real measurement. Finally, data of the output variables 
undergo the same processing applied to the process data, as to guarantee time alignment. 
ContCarSim provides two pre-implemented faults, called “disturbance scenarios” in the 
simulator. Scenario number 1, a ramp change in the feed slurry concentration, is selected to 
generate the faulty dataset. To generate the testing dataset, scenario 1 is enabled, and the 
simulation is run with integration time set to 2490 seconds. Faulty data are processed in the 
same way as the NOC ones, which yields a dataset containing 1620 observations. The simulator 
is implemented in such a way that the fault onsets at simulation time 𝑡𝑡 = 301 seconds 
(considering also cleaning operations). Therefore, the first 210 observations (after data 
processing) of the faulty dataset are NOC, while the actual faulty observations are 𝑁𝑁𝐹𝐹 = 1410. 
The criteria introduced in Section 7.4 are used to characterize the NOC dataset available for 
model calibration (note that the NOC dataset is the same regardless of the presence of dependent 
variables in this case study). The results are the following. 

• The Royston test is selected to assess non-normality. The dataset is deemed non-normal 
with a 𝑝𝑝-value basically equal to 0. The dataset is deemed non-normal also by all the 
non-selected tests. 

• According to the “variables” criterion, the dataset is deemed nonlinear with a fraction 
of variables involved in nonlinear relationships equal to 0.625 (5 variables out of 8). 
This result is expected due to the high nonlinearity of the process model and to the 
absence of a control system (the simulator is run in “open-loop mode”). All approaches 
to deflate the maximal correlation coefficient yield the same result. 

• According to the “variables” criterion, the dataset is deemed dynamic with a fraction of 
dynamic variables equal to 0.625 (5 dynamic variables out of 8). 

The above results imply that nonlinearity and dynamics need to be accounted for when building 
the model of the NOC data. Similarly to the previous case study, we consider cases without and 
with dependent variables. In the former scenario, SPAfPM selects DKPCA according to Figure 
7.2. Growing window cross-validation is used to determine the hyperparameters, which turn 
out to be 𝐿𝐿 = 1 lags, Gaussian kernel with 𝜎𝜎 = 50, and 𝐴𝐴 = 1 PC. In the case where dependent 
variables are considered, DKPLS and KDE-CVA are selected by SPAfPM as candidate models, 
optimized by cross-validation, and compared to identify the best model. Based on the error 
distributions reported in Figure 7.18, KDE-CVA achieves an average deviation of the Type I 
error rate from 𝛼𝛼 = 0.01 in cross-validation lower than the one of DKPLS (also the variance of 
the error is lower), therefore it is designated as the most suitable model. The hyperparameter 
tuning for KDE-CVA yields 𝐿𝐿 = 𝐻𝐻 = 3, 𝐴𝐴 = 3, 𝜉𝜉𝑇𝑇𝑋𝑋2 = 𝜉𝜉𝑇𝑇𝑋𝑋,r

2  = 2, and 𝜉𝜉𝑄𝑄𝑋𝑋 = 5. However, 
DKPLS is considered as a possible alternative model (recall the discussion in Section 7.5.4); 
hyperparameters for DKPLS result in 𝐿𝐿 = 1, 𝑘𝑘p = 𝑘𝑘rbf with 𝜎𝜎 = 50, and 𝐴𝐴 = 1. The fault 
detection statistics of the two selected methods applied to fault 1 are reported in Figure 7.19. 
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When applied to fault 1, DKPCA for the case without dependent variables results in a Type I 
error rate of 0.100 and a Type II error rate of 0.124. An overview of the performance of all 
models not considering dependent variables in detection of fault 1 is reported in Table 7.10. 
DKPCA is the second-best performing model for the Type II error (being fundamentally 
equivalent to the best model, DPCA) and performs well for the Type I error rate too. Only 
SVDD seems to perform significantly better for the Type I error rate. 
If dependent variables are considered, the overall performance of the model selected by 
SPAfPM, KDE-CVA, in detection of fault 1 is compared to the ones of the other models 
considering dependent variables in Table 7.11. KDE-CVA yields reasonable Type II error and 

 
Figure 7.18. ContCarSim case study. Distributions of the Type I errors in cross-validation 
for DKPLS and KDE-CVA. Each dot represents the error for one of the cross-validation 
blocks. 

 

 
(a) 

 
(b) 

Figure 7.19. ContCarSim case study. Fault detection statistics of (a) DKPCA and (b) KDE-
CVA applied to fault 1. The dashed lines represent the control limits based on the 𝜒𝜒2 
approach. The fault occurs at observation 210 (vertical lines). 
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shows good performance for the Type I error. The alternative model, DKPLS, performs 
marginally better. This example further illustrates the point discussed in Section 7.5.4. We shall 
also remark that the nature of the fault (a ramp increase) induces a certain detection delay in all 
models included in SPAfPM. Therefore, the Type II error rates obtained for all models and 
reported in Table 7.10 and in Table 7.11 are reasonable. 

7.6.4 Industrial metal etching process  

The last case study considered in this Chapter is based on data collected in an industrial plasma 
etch process for semiconductor manufacturing (Wise et al., 1999). The dataset can be freely 
downloaded (Eigenvector Research, Inc., 1999). Wafers are etched in a recipe-driven batch 
process carried out in a commercial Lam 9600 plasma etch machine. Integrated sensors perform 
the online measurements collected to build the dataset, which includes 19 variables (plus the 
timestamp of measurements and a numerical identifier of the processing phase, which are 
disregard in this study). Among the variables, the “RFB reflected power” and the “TCP 
reflected power”, as named by Wise et al. (1999), are binary variables (discrete with two levels). 
Also, many variables appear to vary on discrete levels due to accuracy of the sensors. The 
complete dataset collects 108 batches under normal operating conditions. Furthermore, 21 
wafers are manufactured under faulty operating conditions. For a detailed description of the 
process and data, refer to Wise et al. (1999). 
Given the richness of features, the dataset described above quickly became a benchmark for 
batch process monitoring systems, with many studies considering it to test novel fault detection 
methods (Azamfar et al., 2020; Camacho et al., 2006a; Chen et al., 2010; Goodlin et al., 2003; 
He et al., 2011; Lv et al., 2018; Wang et al., 2015). In particular, it is known that this dataset 
features a high degree of correlation among variables (Cherry et al., 2007) and a well-defined 
multi-phase dynamics (Camacho et al., 2006a). Furthermore, the distribution of the data is 
highly non-normal (Chen et al., 2010). Given the presence of correlated variables and the non-

Table 7.11. ContCarSim case study. Overview of the Type I and Type II error rates for all 
methods considering dependent variables applied to fault 1. 

 PLS DPLS KPLS DKPLS CVA KDE-CVA 

Type I error rate 0.033 0.029 0.029 0.038 0.043 0.033 

Type II error rate 0.134 0.122 0.162 0.125 0.147 0.158 

 

Table 7.10. ContCarSim case study. Overview of the Type I and Type II error rates for all 
methods not considering dependent variables applied to fault 1. 

 PCA DPCA KPCA DKPCA SVDD 

Type I error rate 0.095 0.114 0.090 0.100 0.033 

Type II error rate 0.133 0.123 0.143 0.124 0.129 
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normality of the data, a significant fraction of variables is expected to be involved in nonlinear 
relationships. 
For the application of SPAfPM, one single calibration batch is used: the first one, named 
l2901.txm in the MACHINE Data.mat dataset, which contains 𝑁𝑁 = 112 observations. 
On the other hand, faults 1, 10, and 16, named “TCP +50”, “TCP +30”, and “TCP -15”, 
respectively (Wise et al., 1999), are selected for testing. Three faulty datasets are obtained 
stacking another NOC batch (file l2902.txm in the Data.mat dataset), counting 107 
observations, and the three aforementioned faults (files l2915.txm, l3120.txm, and 
l3318.txm, respectively). The faulty datasets contain 210, 207, and 207 observations, 
respectively, and faults onset at observation 107 in all of them. 
As for the other case studies, both scenarios without and with dependent variables are assessed. 
In the former case, all the 𝑉𝑉𝑋𝑋 = 19 variables are considered. In the latter, variable 10, the “phase 
error” in Wise et al. (1999), is selected as quality variable, while the remaining 18 variables are 
kept as process variables. The two discrete variables mentioned above are actually considered 
as such for the assessment of the characteristics of the calibration dataset. On the other hand, 
variables varying on discrete levels are considered numerical, as this pattern is due to sensor 
accuracy. 
The criteria introduced in Section 7.4 are used to characterize the NOC dataset available for 
model calibration (note that the NOC dataset differs in the cases with and without dependent 
variables in this case study). The results are the following. 

• The Royston test is selected to assess non-normality. The dataset is deemed non-normal 
with a 𝑝𝑝-value basically equal to 0. This result was expected due the presence of binary 
variables and to the fact that many variables vary on discrete levels due to measurement 
accuracy. 

• According to the “variables” criterion, the dataset is deemed nonlinear with a fraction 
of variables involved in nonlinear relationships equal to 0.4737 (9 nonlinear variables 
out of 19) in the case without dependent variables, and equal to 0.4444 (8 nonlinear 
variables out of 18) in the case with dependent variables. All approaches to deflate the 
maximal correlation coefficient yield essentially the same results, yet with some minor 
variations in the fraction of nonlinear variables. 

• According to the “variables” criterion, the dataset is deemed dynamic with a fraction of 
dynamic variables equal to 0.647 (11 dynamic variables out of 17 non-discrete 
variables) in the case without dependent variables, and equal to 0.625 (10 dynamic 
variables out of 16 non-discrete variables) when output variables are considered. 

The data interrogation criteria of SPAfPM indicate that dynamics and nonlinearity are present 
in the NOC data. We consider cases without and with dependent variables. If all the 𝑉𝑉𝑋𝑋 = 19 
variables in the dataset are considered process variables, DKPCA would usually be selected 
according to the Figure 7.2. However, due to the presence of discrete variables, SPAfPM 
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recommends SVDD as the most suitable model (see discussion in Section 7.3.3). The 
hyperparameters of SVDD are tuned with repeated 𝑘𝑘-fold cross-validation, which results in a 
Gaussian kernel with 𝜎𝜎 = 50 and a radius-to-coverage parameter 𝐶𝐶 = 0.2. If dependent 
variables are considered, DKPLS and KDE-CVA are recommended by SPAfPM based on the 
found data characteristics. Growing window cross-validation is used to first determine the 
hyperparameters of both models, then to select the best one. The error distributions reported in 
Figure 7.20 suggest that DKPLS is to be preferred, having a consistently lower deviation of the 
Type I error rate from 𝛼𝛼 = 0.01 in cross-validation, while the KDE-CVA yields large 
deviations for some of the blocks. 

However, note that only 𝑁𝑁 = 102 observations are included in the calibration dataset. While 
this small number of observations can still be handled by the criteria for the preliminary data 
interrogation, it compromises the reliability of the cross-validation procedure. In particular, 
each data block counts only 𝑁𝑁val ≃ 20 observation, which leads the resolution of the Type I 
error rate to degrade to approximately 1 20⁄ = 0.05. This in turn amplifies the variability of 
the distribution of the Type I error rate in cross-validation, as large errors are obtained even 
with just one or two observations beyond the control limits. These facts explain the extreme 
errors shown by KDE-CVA in Figure 7.20. Considering these points and based on the 
discussion in Section 7.5.4, SPAfPM recommends both DKPLS and KDE-CVA as potentially 
suitable methods. The hyperparameter tuning for DKPLS results in 𝐿𝐿 = 1 lags, polynomial 
kernel with 𝑐𝑐0 = 1, 𝑑𝑑 = 3, and 𝛾𝛾 = 0.0004, and 𝐴𝐴 = 1 LV. The hyperparameters for KDE-
CVA are 𝐿𝐿 = 𝐻𝐻 = 1, 𝐴𝐴 = 1, 𝜉𝜉𝑇𝑇𝑋𝑋2 = 𝜉𝜉𝑇𝑇𝑋𝑋,r

2  = 1, and 𝜉𝜉𝑄𝑄𝑋𝑋 = 1. 
Fault 10 is selected and discussed as example in this case study. The fault detection statistics of 
SVDD, DKPLS, and KDE-CVA are show in Figure 7.21. 
An overview of the performance of all models not considering dependent variables in detection 
of all three faults considered is shown in Table 7.12. If no dependent variables are used, SVDD 
achieves a Type I error rate of 0.028 and a Type II error rate of 0.071 for fault 10. The 

 
Figure 7.20. Metal etching process case study. Distributions of the Type I errors in cross-
validation for DKPLS and KDE-CVA. Each dot represents the error for one of the cross-
validation blocks. 
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performance of the recommended model in detection of fault 10 is overall very good. SVDD 
shows good performance for the Type I error rate and performs significantly better than all 
other models for the Type II error rate. Similar results are observed for faults 1 and 16 (note 
that the Type I error rate is consistent over all faults as the NOC data in testing are the same). 
These findings further back up the decision to default the model selection to SVDD if discrete 
variables are found in the dataset, as discussed in Paragprah 7.3.3. 
In the case where dependent variables are used, KDE-CVA outperforms DKPLS in fault 10, as 
can be seen in Table 7.13, which provides an overview of the performance of all models 
considering dependent variables in detection of all three faults considered. KDE-CVA results 
in a Type I error rate of 0.028 and a Type II error rate of 0.000 for fault 10. This is the best 
result, as equivalent to CVA. Figure 7.21(b) highlights that DKPLS detects the fault after its 

 
(a) 

 
(b) 

 
(c) 

Figure 7.21. Metal etching process case study. Fault detection statistics of (a) SVDD, (b) 
DKPLS, and (c) KDE-CVA applied to fault 10. The dashed lines represent the radius of the 
hypersphere in (a), and control limits based on the 𝜒𝜒2 approach in (b) and (c). The fault 
occurs at observation 107 (vertical lines). 
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onset by the 𝑇𝑇𝑋𝑋2 statistic; however, such statistic falls below the control limit around observation 
no. 150, when the intensity of the fault seems to decrease. On the other hand, the 𝑇𝑇𝑋𝑋2 and 𝑇𝑇𝑋𝑋,r

2  
statistics of KDE-CVA show a higher sensitivity to the fault and stay beyond their control limits 
for a longer time, as seen in Figure 7.21(c), providing a consistent detection of the fault 10. The 
performance of KDE-CVA on other faults is overall very good. The model shows great 
performance on both the Type I and Type II error rates, performing second-best on fault 1 and 
best on faults 10 and 16. 

7.7 Conclusions 
We proposed a smart data analytics approach to fault detection in this Chapter. The approach 
is implemented by the SPAfPM software and is geared towards data from real manufacturing 
processes. A preliminary data interrogation allows to determine data characteristics to select a 
set of appropriate candidate models for fault detection on the data at hand; a rigorous model 
selection and discrimination procedure, implemented by means of cross-validation, then 
designates the best model among the candidates. These operations constitute the backbone of 
the automation mechanism of the proposed framework. 

Table 7.13. Metal etching process case study. Overview of the Type I and Type II error rates 
for all methods considering dependent variables applied to faults 1, 10, and 16. 

Fault no.  PLS DPLS KPLS DKPLS CVA KDE-CVA 

1 Type I error rate 0.019 0.009 0.000 0.009 0.037 0.028 

 Type II error rate 0.990 0.971 1.000 0.990 0.530 0.828 

10 Type I error rate 0.019 0.019 0.000 0.009 0.037 0.028 

 Type II error rate 0.670 0.374 1.000 0.673 0.000 0.000 

16 Type I error rate 0.019 0.019 0.000 0.019 0.037 0.028 

 Type II error rate 0.830 0.616 1.000 0.867 0.000 0.000 

 

Table 7.12. Metal etching process case study. Overview of the Type I and Type II error rates 
for all methods not considering dependent variables applied to faults 1, 10, and 16. 

Fault no.  PCA DPCA KPCA DKPCA SVDD 

1 Type I error rate 0.019 0.000 0.000 0.000 0.028 

 Type II error rate 0.981 0.980 1.000 1.000 0.139 

10 Type I error rate 0.019 0.009 0.000 0.000 0.028 

 Type II error rate 0.600 0.354 1.000 1.000 0.071 

16 Type I error rate 0.019 0.009 0.000 0.000 0.028 

 Type II error rate 0.860 0.616 1.000 1.000 0.041 
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SPAfPM conducts a preliminary interrogation of the data at hand to search for three relevant 
characteristics: nonlinear correlation among variables (equivalent to non-normality of the data 
distribution); dynamics in the data in the form of correlation among observations; availability 
of variables describing the product quality. We developed criteria to automatically detect the 
former two characteristics and validated them in a multitude of different Monte Carlo 
simulations. On the other hand, the attribution of the third characteristic requires knowledge on 
the process that generated the data, therefore it is left as a decision to be made by the user of 
the software. 
Candidate models able to cope with the found data characteristics are calibrated. A rigorous 
cross-validation procedure is used to tune their hyperparameters and, subsequently, to designate 
the best model for the problem at hand. To this end, we designed an index to measure the fault 
detection performance of different models under the very stringent assumption that only NOC 
data are available at the model calibration stage, as it is unlikely that a comprehensive database 
comprising all possible faulty operating conditions is available in the common industrial 
practice. The inclusion of faulty data in the model selection procedure has some benefits 
nonetheless, therefore it represents a path for future research. 
We demonstrated the effectiveness of the proposed smart data analytics approach for fault 
detection on four case studies: a simulated, linear dataset; the Tennessee Eastman Process; a 
simulation of a continuous filtration and drying of paracetamol; an industrial metal etching 
process for semiconductor manufacturing. In particular, the TEP is an established benchmark 
for process monitoring systems. Based on the preliminary analysis of the NOC data available 
for such a case study, the framework selected DPCA when dependent variables were not 
considered separately, while CVA was recommended if dependent variables were considered 
as such. DPCA proved to be the best performing model among the ones not considering 
dependent variables on 12 out of the 18 faults used for testing (in terms of the Type II error 
rate); CVA was the best performing model among the ones considering dependent variables for 
16 out of 18 faults. Similar results were obtained in the other case studies. 
The outcomes of the case studies prove the strong performance of the proposed framework: 
SPAfPM successfully determined model performing best for most faults. Overall, the proposed 
approach successfully suggests the most appropriate model and determines the optimal set of 
hyperparameters based on a rigorous, fully automated procedure, all requiring minimal expert 
knowledge on fault detection by the user. 
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Conclusions and future prospects 

The studies presented in this Thesis represent a step forward in the digitalization of industrial 
biorefineries and provide strong evidence of the value of the Industry 4.0 approach. Advanced 
data analytics methods are the foundation of Industry 4.0 and were leveraged to pursue the 
following major objectives of this Thesis. 

1. Provide evidence that Industry 4.0 is a precious tool for industrial biorefineries. 
2. Contribute to the methodological advancement of data-driven modeling. 

The first objective was accomplished developing process understanding and digital support 
systems to enhance the operations of the one-of-a-kind industrial biorefinery manufacturing 
1,4-butanediol by bioconversion of renewable biomass. Specifically, the data-driven process 
understanding of the bioconversion step in the upstream was presented in Chapter 3, while 
Chapter 4 and Chapter 5 discussed a comprehensive investigation on membrane fouling in the 
downstream section, carried out by hybrid modeling and feature-oriented modeling, 
respectively. The unique industrial environment considered in this Thesis and its specific 
modeling challenges suggested ways to improve the existing methods, thus accomplishing the 
second objective. A novel approach to latent-variable model inversion was proposed in Chapter 
6, while Chapter 7 discussed the development of an automated framework for selection and 
calibration of data-driven fault detection systems. An overview of the main achievements of 
this Thesis is reported in Table C.1. Additional details on each Chapter are provided below. 
A comprehensive analysis of the bioconversion step in the upstream process was presented 
in Chapter 3. An array of seven fed-batch bioreactors operated in cycled mode, used to 
manufacture the main biorefinery product, suffered from a decrease in the end-of-batch product 
quality. Data-driven methods were used to gain process understanding and to model the end-
of-batch quality. Model interpretation uncovered a strong interaction among the process 
variables and offered a physically meaningful explanation of the potential causes of the quality 
loss. These conclusions were verified by latent-variable model inversion to formulate 
guidelines for recovering the product quality. Unfortunately, the results could not be validated 
experimentally due to significant changes taking place in the plant set-up (unrelated to the 
investigated problem) simultaneously to the completion of this study. 
Chapter 4 developed a soft sensor to estimate membrane resistances based on a hybrid 
modeling strategy. The ultrafiltration unit in the downstream process is a critical operation, as 
it separates the biomass from the solution containing the product formed in the upstream. Seven 
tightly interconnected membrane modules realize such a separation, but the process is affected 
by severe membrane fouling. However, the current fouling monitoring strategy entails multiple 
drawbacks, as it relies on profiles of process variables manually acquired by operators through 
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instrumentation installed on the process equipment. This causes measurements to be available 
at low frequency, therefore fast, reversible fouling cannot be properly characterized. 
Furthermore, the process variables used for monitoring are affected by strong variability due to 
process operation, which hinders the interpretation of fouling state of membranes. The proposed 
soft sensor delivers high-frequency estimates of the resistances of individual membranes in the 
multi-module systems based on process variables acquired online. The several advantages of 
this improved monitoring strategy were discussed, including clear and interpretable dynamics 
of resistances, decoupling of membrane states (removal of interactions among modules, which 
affect process variables), and identification of fouling events affecting single modules. A 
strategy to resolve the effects of reversible and irreversible fouling was proposed as well. 
A further step was taken in Chapter 5, which discussed a systematic analysis of membrane 
fouling by feature-oriented modeling. Due to fouling, the membrane process runs in semi-
continuous regime, which hinders the application of standard data analytics methods for process 
understanding. Feature-oriented modeling elegantly solved this issue, while simultaneously 
incorporating process knowledge in the analysis and simplifying the interpretation of the 
resulting models. Due to the complexity of the operation, a large number of process settings 
potentially related to fouling had to be investigated. Therefore, a systematic procedure for 
feature screening aimed at identified the process settings most related to membrane fouling 
was proposed. The effectiveness of the policies implemented in the plant to counteract 
reversible fouling and to compensate for the effect of the biomass concentration in the feed was 
proven. The analysis uncovered a strong interaction between reversible and irreversible fouling, 
which offered guidelines to improve the maintenance schedule of membranes. 
Regarding the advancement of data-driven modeling, an improved formulation of the 
algebraic inversion of latent-variable models was proposed in Chapter 6. Latent-variable 
model inversion can aid product design by identifying the process conditions to manufacture 
a product with an assigned target quality. However, the most common method currently 
available requires the variables describing the product quality to be independent, prescribing 
the removal of correlated variables before model development. No target can be set for the 
variables not considered in the product design exercise, which could therefore not comply with 
the acceptable quality specifications. The proposed framework deals with correlation among 
quality variables by design, addressing the numerical errors arising in the inversion phase by 
an optimal regularization (in terms of information loss). The advantages of the method were 
demonstrated on two simulated case studies of fermentation processes. Particular attention was 
devoted to the estimation of the uncertainties of the inversion solution and of the null space, 
proving the superiority of the proposed method. 
Chapter 7 proposed an automatic framework for selection and calibration of data-driven 
methods for fault detection. Selecting the best model for a given application is a hard task due 
to the several alternatives available, which feature varying degrees of complexity and rely on 
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different assumptions. As a result, practitioners typically choose the models they are most 
accustomed with. The proposed framework automates the selection process to ease the burden 
on practitioners. Only data from normal operating conditions are required. A preliminary 
assessment of the characteristics of the data is conducted to search for nonlinearity of the 
correlation among variables (equivalent to non-normality of the distribution of data), dynamics 
in the data, and availability of variables describing the product quality. Appropriate models (to 
cope with the found data characteristics) are pre-selected, their hyperparameters tuned, and the 
best one is identified, all in a rigorous model selection and discrimination procedure. 
Criteria for checking the aforementioned data characteristics were developed and validated with 
rigorous Monte Carlo studies. The model selection procedure was fine-tuned by design of a 
specific figure of merit to measure the performance of fault detection methods on normal 
operating conditions data. The effectiveness of the framework was verified on four case studies: 
a simulated linear, static dataset; the Tennessee Eastman Process simulator; a simulation of a 
process for continuous filtering and drying of paracetamol; data from an industrial metal etching 
process for semiconductor manufacturing. In all case studies, the model identified by the 
proposed framework was the most appropriate one (among those included in the library), 
showing the best fault detection performance on testing data from faulty conditions (not used 
for model calibration). 
While the results discussed in this Thesis and summarized above represent significant 
achievements for the digitalization of biorefineries, several areas for future investigation can be 
identified and are briefly discussed hereby. 

• The guidelines for product quality recovery developed in Chapter 3 offer precious 
indications to steer the bioconversion process as to increase the quality of the product. 
Experimental validation of such results could not be performed in the study, but it is 
worth exploring. 

• The work on the upstream process presented in Chapter 3 uncovered strong interactions 
among process variables, which have dramatic effects of the final product quality. The 
development of digital support systems, such as process monitoring systems or soft 
sensors for end-of-batch quality prediction, will be beneficial for prompt fault detection 
and to offer guidelines to operators to take action immediately after a fault occurred. 

• The studies carried out in Chapter 4 and Chapter 5 offered valuable insights on the 
nature and causes of fouling in the ultrafiltration process. The operation of such process 
can be significantly enhanced by implementing a predictive maintenance system. To 
this end, a dynamic model of membrane resistances should be developed to predict the 
future fouling state of the membranes. 

• Chapter 4 and Chapter 5 focused on the ultrafiltration operation in the downstream 
chain, suffering from membrane fouling. The ion-exchange chromatography (Figure 
1.3) suffers from similar issues in the form of resin exhaustion. A data-driven analysis 
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for process understanding and improvement could significantly aid the conduction of 
this exceptionally complex process, featuring over sixty ion-exchange columns operated 
in cycled mode. 

• All the operations considered in this Thesis, regarding both the upstream and 
downstream processes, have been found to show clear dynamic evolutions due to many 
factors, for example sensor drifts, seasonal effects of temperature, membrane fouling, 
or resin exhaustion. Adaptive data-driven methods, such as automatic model update or 
re-calibration, to deal with the everchanging nature of the process can provide 
remarkable benefits in similar scenarios and will be explored in future studies. 

• The framework proposed in Chapter 7 relies only on data from normal operating 
conditions, implementing the so-called rigorous approach to model selection. However, 
the use of data from faulty conditions for model selection (the so-called compliant 
approach) could be beneficial in some cases, especially when high-complexity models 
are chosen. The study of such an approach, including the development of data fusion 
rules if more than one faulty dataset is available, is matter of future research. 
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Appendix A 
 

Complete results of Monte Carlo studies 
for assessment of the dataset properties 

The complete results of the Monte Carlo studies discussed in Section 7.4 are reported in this 
Appendix. Title of each figure is coded as “⟨criterion⟩ on ⟨case⟩”. Criteria are identified as 
follows. 

• Combined test: combined test for multivariate normality (see Section 7.4.1). 
• Royston: the Royston test for multivariate normality. 
• Henze-Zirkler: the Henze-Zirkler test for multivariate normality. 
• Mardia combined: the Mardia combined test for multivariate normality. 
• Mardia skewness: the Mardia skewness test for multivariate normality. 
• Mardia kurtosis: the Mardia Kurtosis test for multivariate normality. 
• Non-normality: combined non-normality test applied for nonlinearity detection. 
• Any: “any” criterion for nonlinearity detection (see Section 7.4.2) or for dynamics 

detection (see Section 7.4.3). 
• Variables: “variables” criterion for nonlinearity detection (see Section 7.4.2) or for 

dynamics detection (see Section 7.4.3). 
• Couples: “couples” criterion for nonlinearity detection (see Section 7.4.2). 
• Model_min: “model_min” criterion for dynamics detection (see Section 7.4.3). 
• Model_oster: “model_oster” criterion for dynamics detection (see Section 7.4.3). 

Cases are identified as follows. 
• normal: the dataset is generated from a multivariate normal distribution. 
• lognormal: the dataset is generated from a multivariate lognormal distribution. 
• t: the dataset is generated from a multivariate t distribution. 
• uniform: the dataset is generated from a multivariate uniform distribution. 
• fnl = x: 100𝑥𝑥% of the variables in the dataset are nonlinearly correlated with the 

remaining 100(1 − 𝑥𝑥)% linear variables; the dataset is generated as described in 
Section 7.4.2. 

• fdyn = x: 100𝑥𝑥% of the variables in the dataset are dynamic, while the remaining 
100(1 − 𝑥𝑥)% are static; the dataset is generated as described in Section 7.4.3. 

Finally, note that values reported in the heatmaps are the detection rates of non-normality, 
nonlinearity, and dynamics as defined in Sections 7.4.1, 7.4.2, and 7.4.3, respectively.  
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A.1 Results of the Monte Carlo study on dynamics detection 
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A.2 Results of the Monte Carlo study on non-normality detection 
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A.3 Results of the Monte Carlo study on nonlinearity detection 
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