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We consider a finite numberN of interacting bosonic atoms at zero temperature
confined in a one-dimensional double-well trap and study this system by using the two-
site Bose-Hubbard (BH) Hamiltonian. For systems withN = 2 andN = 3, andN = 4

bosons we analytically solve the eigenproblem associated to this Hamiltonian and find
its lowest energetic state. We investigate the structure ofthe ground state by varying the
strength of the boson-boson interaction from the strongly attractive regime to the deep
repulsive one. We characterize the ground state of the two-site BH Hamiltonian by
calculating the Fisher informationF , the coherence visibilityα, and the entanglement
entropyS. For these quantities we provide analytical formulas that we use to studyF ,
α, andS as functions of the interaction between the particles. We discuss the difference
existing, in the deep repulsive regime, between the case with an even number of bosons
and that with an odd number of particles, both in the structure of the lowest energetic
state and in the behavior of the three above ground-state characterizing parameters.

Key words: Ultracold bosonic gases, trapped bosonic gases, quantum tunneling,
quantum correlations.

PACS: 03.75.Lm, 67.85.-d

1. INTRODUCTION

Ultracold and interacting dilute alkali-metal vapors trapped by one-dimensional
double-well potentials [1] provides the possibility of studying the formation of macro-
scopic coherent states [2–6] and macroscopic Schrödinger-cat states [7–12]. The
two-site Bose-Hubbard (BH) Hamiltonian [13] efficiently describes the microscopic
dynamics of such systems. When the boson-boson interactionis repulsive and the
number of bosons is even, the crossover from a delocalized atomic coherent state to
a (fully incoherent) localized Fock state (the so called twin Fock state with the parti-
cles equally shared between the two wells) takes place by increasing the interatomic
coupling strength [3–6,12]. For attractively interactingbosons, the two-spatial mode
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BH model predicts the formation of a macroscopic Schrödinger-cat state [7–11] when
the interatomic attraction becomes sufficiently large. Finally, when the attraction be-
tween the bosons is sufficiently strong the collapse should take place [14,15].

Motivated by the concrete possibility to isolate single atomic ions [16–19] and
manipulate quantum gases at single-atom level [19–23] (note that D. J. Wineland was
awarded in 2012 with the physics Nobel prize for his activityin this sector), we focus
on the behavior of few trapped bosonic atoms at zero temperature.

The aim of the present work, then, is to study the ground stateof a system con-
sisting of a low numberN of bosons confined in a symmetric double-well trap and
characterize it from the quantum correlations point of view. To do this we use the
two-site Bose-Hubbard model. We diagonalize the underlying Hamiltonian by ana-
lytically finding the eigenvector and the eigenvalue of its lowest energetic state for
N = 2 - this case has already been discussed in [12] - andN = 3,4 bosons. Hence,
we provide analytical formulas for the parameters that describe the correlation prop-
erties of the ground state of the system. These parameters are: the Fisher information
F [24,25] which is related to the fluctuation of the number of bosons in a given well
and achieves its maximum in correspondence to the Schrödinger-cat state; the coher-
ence visibilityα [3,4,6] which measures the coherence related to the single-particle
tunneling across the central barrier and attains its maximum value in correspondence
to the atomic coherent state; the entanglement entropyS [26] which quantifies the
amount of the genuine quantum correlations of the ground state from the bi-partition
perspective. In particular, we calculateF andα following two paths: on one hand by
taking the average, with respect to the ground state, of the left-right population imbal-
ance variance and the left-well hopping operator, respectively, and on the other hand
by applying the Hellmann-Feynman theorem [27]. For both thecalculations (that,
as we shall comment, provide the same results) we use the analytically determined
ground-state eigenvectors and eigenvalues.

We study the ground state and the parametersF , α, S by widely exploring
the atom-atom interaction range, from strong attractions to strong repulsions. In this
latter regime, we comment about the ofN even-N odd difference: whenN is even
(the ratio of the number of bosons to the number of wells is a positive integer) the
ground state is a separable Fock state withN/2 particles in the left well andN/2
particles in the right well (this is, as commented at the beginning, the twin Fock
state), while whenN is odd (the total number of bosons is not commensurate with
the number of wells) the ground state is given by a symmetric combination of two
separable Fock states. When the boson-boson repulsion becomes sufficiently large,
the quantitiesF , α, S, tend to zero for an even number of particles; they remain,
instead, finite whenN is odd.
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2. THE SYSTEM

We analyze a finite numberN of identical interacting bosonic atoms at zero
temperature confined by a trapping potentialVtrap(r). We suppose that this potential
is given by the superposition of an isotropic harmonic confinement in the radial plane
(x− y) and a double-well potentialVDW (z) in the axial (z) direction, i.e.

Vtrap(r) =
mω2

⊥

2
(x2+ y2)+VDW (z) , (1)

wherem is the mass of the bosons andω⊥ the trapping frequency in the radial plane.
We assume that the double-well is symmetric in thez direction and that the system
is quasi one-dimensional due to a strong transverse radial harmonic confinement.

In the second quantization language, the Hamiltonian that controls the micro-
scopic dynamics of the system is

Ĥ =

∫

d3rΨ̂†(r)(− ~
2

2m
∇2+Vtrap(r))Ψ̂(r)

+
1

2

∫

d3rd3r′Ψ̂†(r)Ψ̂†(r′)V (r− r
′)Ψ̂(r′)Ψ̂(r) . (2)

The field operator̂Ψ(r) (Ψ̂†(r)) destroys (creates) a boson in the positionr. Ψ̂(r)
andΨ̂†(r) satisfy the usual bosonic commutation rules:[Ψ̂(r),Ψ̂†(r′)] = δ(3)(r−r

′),
and[Ψ̂(r),Ψ̂(r′)] = 0= [Ψ̂(r)†,Ψ̂†(r′)]. We assume that the bosons interact between
each other via short-range interactions, so that the atom-atom interaction potential
V (r−r

′) can be described (in the dilute regime and for ultra-low temperatures) by a
contact potential given by

V (r− r
′) = gδ(3)(r− r

′) , (3)

where the coupling constantg is equal to
4π~as
m

with as the s-wave scattering length.

Therefore the Hamiltonian (2) becomes

Ĥ =

∫

d3rΨ̂†(r)(− ~
2

2m
∇2+Vtrap(r))Ψ̂(r)

+
g

2

∫

d3rd3r′Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r) . (4)

Under the hypothesis that only the lowest energetic doubletof the potentialVDW (z)
is populated, we expand the field operatorΨ̂(r) according the two-spatial mode de-
composition:

Ψ̂(r) = ΦL(r)âL+ΦR(r)âR , (5)

whereâk (â†k) - k=L,R, withL(R) denoting the left (right) well - destroys (creates)

a boson in thekth well. The single-particle operatorŝak andâ†k satisfy the bosonic
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4 Mario Galante, Giovanni Mazzarella, Luca Salasnich (c) 2018 RRP

commutation rules:

[âk, â
†
j ] = δk,j

[âk, âj ] = 0 = [â†k, â
†
j] . (6)

Due to the form of the trapping potential given by Eq. (1), thesingle-particle wave
functionΦk(r) (k = L,R) can be written according to the factorization

Φk(r) = w(x)w(y)φk(z) , (7)

wherew(x) andw(y) are the ground-state wave functions of the harmonic oscillator
potentialsmω2

⊥x
2/2 andmω2

⊥y
2/2, respectively. The single-particle wave functions

φL(z) andφR(z) are tightly localized in the left and right well, respectively, and
satisfy the orthonormalization conditions(k, l = L,R)

∫ +∞

−∞

dz|φk(z)|2 = 1

∫ +∞

−∞

dzφ∗
k(z)φl(z) = δk,l , (8)

(with φ∗
k(z) the complex conjugate ofφk(z)) so that

∫

d3r|Φk(r)|2 = 1
∫

d3rΦ∗
k(r)Φl(r) = δk,l . (9)

We use the expansion (5) and its Hermitian conjugate at the right-hand side of Eq.
(4); by exploiting the orthonormalization conditions (9) and the fact thatVDW (z) is
symmetric, the well known two-site Bose-Hubbard Hamiltonian [12,13] is achieved

Ĥ =−J(â†LâR+ â†RâL)+
U

2

(

n̂L(n̂L−1)+ n̂R(n̂R−1)
)

. (10)

Heren̂k = â†kâk is the operator counting the number of bosons in thekth well. Note
that the Hamiltonian (10) commutes with the total number operator N̂ = n̂L+ n̂R.
The amplitudeU measures the strength of the boson-boson interaction in thesame
well (on-site or intra-well interaction)

U =
g

2πa2⊥

∫ +∞

−∞

dz|φk(z)|4 (11)

with a⊥ =

√

~

mω⊥

. The sign ofU is controlled by that ofas which can be exper-

imentally tuned via the Feshbach resonance technique, so that whenas is positive
(negative) the bosons are repulsively (attractively) interacting.J is the tunnel matrix
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element between the two wells:

J =−
∫ +∞

−∞

dzφ∗
L(z)

(

− ~
2

2m

d2

dz2
+VDW (z)

)

φR(z) . (12)

To capture the main properties of the system, we focus on the eigenproblem

Ĥ|Ej〉= Ej |Ej〉 (13)

for a fixed numberN of bosons. In this case the Hamiltonian̂H can be represented
by a(N +1)× (N +1) matrix in the Fock basis|i,N − i〉 = |i〉L⊗|N − i〉R (with
⊗ denoting the tensor product) withi = 0, ...,N . For each eigenvalueEj, with j =
0,1, ...,N , the corresponding eigenstate|Ej〉 will be of the form

|Ej〉=
N
∑

i=0

c
(j)
i |i,N − i〉 , (14)

where|c(j)i |2 is the probability to havei (N − i) bosons in the left (right) well when
the system is in thejth eigenstate of the two-site BH Hamiltonian. Note that since
the left-right symmetry of the Hamiltonian (10), for any eigenstate one has that

〈n̂L〉= 〈n̂R〉 , (15)

where the average〈...〉 is taken with respect to the given eigenstate. We are analyz-
ing the system at zero temperature. Then, the only two-site BH Hamiltonian eigen-
state to be occupied is the lowest one, so that in the following we shall denote the
corresponding eigenvector and eigenvalue simply by|E〉 andE, respectively. The
expansion coefficients with respect to the basis|i,N − i〉 shall be, then, denoted by
ci. As discussed in [12], the ground state of the Hamiltonian (10) features different
behaviors depending on the interplay between the on-site interactionU and the hop-
ping amplitudeJ . Following the same path followed in [12], we study the ground
state in terms of the dimensionless parameterξ = U/J . Let us start with some limit
cases.

• ξ = 0. The ground state is the atomic coherent state [28]

|ACS〉= 1√
N !

(
1√
2

(

â†L+ â†R)
)N |0,0〉 , (16)

(the energy associated to this state is−NJ) where|0,0〉 = |0〉L ⊗ |0〉R is the
tensor product between the vacuum of the operatorâL and the vacuum of̂aR,
i.e. we have no particles in the left well and no particles in the right well.

• U > 0 : ξ →+∞. In the case of a strong repulsive interaction and with an even
numberN of bosons, as well known, the ground state tends to the twin Fock

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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state

|FOCK〉= |N
2
,
N

2
〉 . (17)

If N , instead, is odd, whenξ →+∞ the ground state tends to

|pseudoFOCK〉= 1√
2

(∣

∣

∣

N −1

2
,
N +1

2

〉

+
∣

∣

∣

N +1

2
,
N −1

2

〉)

. (18)

To understand this, let us consider the extreme case of complete absence of
hopping, that isJ = 0. In this case the eigenvalues of the Hamiltonian (10)

are given by those of the intra-well term:E =
U

2
(2i2−2Ni+N2−N). We

are here considering the state withi (N − i) bosons in the left (right) well.
Requiring that∂E/∂i = 0 providesi =N/2. SinceN is odd andi must be an
integer, the values ofi which minimizeE are those integer closest toN/2, i.e.
i = (N − 1)/2 and i = (N +1)/2 that correspond to the two separable Fock
states

|ϕ〉1 = |N −1

2
,
N +1

2
〉

|ϕ〉2 = |N +1

2
,
N −1

2
〉 . (19)

These states, although having the (same) minimum energy, donot satisfy the
condition (15). Nevertheless, it is easy to prove that the state

|ϕ〉3 =
1√
2
(|ϕ〉1+ |ϕ〉2) (20)

has the same energy of|ϕ〉l (l = 1,2) and satisfies the condition (15).

• U < 0 : ξ →−∞. In the case of a strong attractive interaction, the ground state
tends to the macroscopic superposition state

|CAT 〉= 1√
2
(|N,0〉+ |0,N〉) . (21)

This state, frequently called NOON state, is the boson-version of the Schrödinger cat
state [7–11].

At this point it is worth to observe that apart the issue of thepossible collapse
(related to attractive interactions), the realization of the cat state is not trivial due to
the very tiny separation (in the presence of finite couplings) between the two lowest
levels that makes the cat state very fragile, see, for example, [9].

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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3. ANALYSIS PARAMETERS

In this section we introduce the parameters that we use to characterize the cor-
relations of the ground state of the two-site BH Hamiltonian(10). These parameters
are the Fisher information, the coherence visibility, and the entanglement entropy.

In the meanwhile, it is useful to remind the well-known properties:

〈j,N − j|i,N − i〉= δi,j , (22)

and

â†L|i,N − i〉=
√
i+1|i+1,N − i〉

âL|i,N − i〉=
√
i|i−1,N − i〉

â†R|i,N − i〉=
√
N − i+1|i,N − i+1〉

âR|i,N − i〉=
√
N − i|i,N − i−1〉

n̂L|i,N − i〉= i|i,N − i〉.
n̂R|i,N − i〉= (N − i)|i,N − i〉 . (23)

• Fisher Information.
The quantum Fisher informationFQFI is the quantity [24,25]

FQFI = (∆n̂L,R)
2 = 〈(n̂L− n̂R)

2〉− (〈n̂L− n̂R〉)2 , (24)

where the expectation values are taken with respect to the ground state|E〉.
By using the orthonormality condition (22) and rules (23) inEq. (24), we can
expressFQFI in terms of the expansion coefficientsci as follows:

FQFI =

N
∑

i=0

(2i−N)2|ci|2 . (25)

It is convenient to normalizeFQFI at its maximum valueN2 by defining the
Fisher informationF as

F =
FQFI

N2
, (26)

so that we have a quantity varying in the range[0,1]. In terms of the coefficients
ci, F is

F =
1

N2

N
∑

i=0

(2i−N)2|ci|2 . (27)

ThisF will be equal to1 for the NOON state (21).

• Coherence visibility.
In ultracold atom physics, it is customary to investigate the coherence properties

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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in terms of the momentum distributionn(p) which is the Fourier transform of
the one-body density matrixρ1(x,x′) [3,4,6]:

n(p) =

∫

dxdx′ exp
(

− ip(x−x′)
)

ρ1(x,x
′) , (28)

where

ρ1(x,x
′) = 〈Ψ̂(x)†Ψ̂(x′)〉 (29)

with the operatorŝΨ(x) andΨ̂†(x) - satisfying the standard bosonic commuta-
tion rules - annihilating and creating, respectively, a boson at the pointx, and
the average〈...〉 being the ground-state average. Following Refs. [3, 4, 6], it is
possible to show that the momentum distributionn(p) can be written as

n(p) = n0(p)

(

1+αcos
(

pd
)

)

. (30)

Heren0(p) is the momentum distribution in the fully incoherent regime(n0(p)
depends on the shape of the double-well potentialVDW (z)), andd is the dis-
tance between the two minima ofVDW (z). α is a real quantity which measures
the visibility of the interference fringes. This visibility is given by

α=
2 |〈â†LâR〉|

N
, (31)

where the expectation value is taken with respect to the ground state. The quan-
tity α characterizes the degree of coherence, between the two wells, related to
the left-right (and back) tunneling.

We can express the coherence visibility (31) in terms of the coefficientsci by
using in Eq. (31) the rules (23) and the orthonormalization condition (22), so
that one has

α=
2

N
|

N
∑

i=0

cic
∗
i+1

√

(i+1)(N − i)| , (32)

wherec∗i+i is the complex conjugate ofci+1. α is maximum, that is1, for the
atomic coherent state (16).

• Entanglement entropy.
Finally, it is interesting to analyze the genuine quantum correlations pertaining
to the ground state|E〉. In particular, we study the quantum entanglement of|E〉
from the perspective of the bi-partition. In this framework, the two partitions
are given by the left well and right one. When the system is in|E〉, the density
matrix ρ̂ is

ρ̂= |E〉〈E| . (33)

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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An excellent measure of the entanglement between the two wells is provided by
the entanglement entropyS [26]. This quantity is the von Neumann entropy of
the reduced density matrix̂ρL(R) defined by

ρ̂L(R) = TrR(L)ρ̂ , (34)

that is the matrix obtained by partial tracing the total density matrix (33) over
the degrees of freedom of the right (left) well (note thatρ̂L = ρ̂R). By using the
definition of trace of a matrix and the orthonormalization condition (22), it is
possible to show that the entanglement entropy

S =−Trρ̂L(R) log2 ρ̂L(R) (35)

is given by

S =−
N
∑

i=0

|ci|2 log2 |ci|2 . (36)

For a given number of bosonsN , the theoretical maximum value ofS is log2(N+
1) that would correspond to the situation in which the quantities |ci|2 are all
equal:|ci|2 = 1/(N +1) whateveri.

State(N = 2) F α S

|ACS〉 1/2 1 3/2
|FOCK〉 0 0 0
|CAT 〉 1 0 1

Table 1.The Fisher informationF , the coherence visibilityα, and the entanglement entropy
S, for the atomic coherent state (16), the twin Fock state (17), and the NOON state (21) with
N = 2 bosons.

State(N = 3) F α S

|ACS〉 1/3 1 1.81128
|pseudoFOCK〉 1/9 2/3 1

|CAT 〉 1 0 1

Table 2.The Fisher informationF , the coherence visibilityα, and the entanglement entropy
S, for the atomic coherent state (16), the state (18), and the NOON state (21) withN = 3

bosons.

State(N = 4) F α S

|ACS〉 1/4 1 2.03064
|FOCK〉 0 0 0
|CAT 〉 1 0 1

Table 3.The Fisher informationF , the coherence visibilityα, and the entanglement entropy
S, for the atomic coherent state (16), the twin Fock state (17), and the NOON state (21) with

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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N = 4 bosons.

4. ANALYSIS

In this section, we determine the ground state of the two-site Bose-Hubbard
Hamiltonian whenN = 1, N = 2, N = 3, andN = 4. We calculate the Fisher
information (26), the coherence visibility (31), and the entanglement entropy (36) for
a system withN = 1, N = 2, N = 3, andN = 4 bosons. We analyze the structure of
the ground state andF , α, S in terms of the scaled on-site interactionξ = U/J .

As first, we represent the Hamiltonian̂H with respect to the Fock basis|i,N −
i〉. We start from the right-hand side of Eq. (10) and use the rules (23) and the or-
thonormalization condition (22). Note that, here, we measure the energies in units of

J . We shall denote by the symbols̃̂H andẼ the dimensionless energetic quantities,

i.e. ˆ̃H = Ĥ/J andẼ = E/J .
WhenN = 1, the Hamiltonian (10) consists of the only hopping term. In this

case, the two-site Bose-Hubbard Hamiltonian, given by Eq. (10), in the Fock basis
|i,N − i〉 is

ˆ̃H =

(

0 −1
−1 0

)

.

The eigenvector|E〉 associated to the ground state is

|E〉= 1√
2

(

|0,1〉+ |1,0〉
)

, (37)

and the related eigenvalue is

Ẽ =−1 . (38)

Then, it is easy to see that the state|E〉 is the atomic coherent state (16) withN = 1
that coincides with the state NOON, Eq. (21), and with the state (18) withN = 1. In
this case, by using Eqs. (27), (32), and (36), we immediatelysee thatF =α= S =1.

At this point, let us focus on a number of bosons larger than one. We therefore
consider the casesN =2, N =3, andN =4. The matrices corresponding to the two-
site Bose-Hubbard Hamiltonian (10) withN =2, N =3, andN =4 are, respectively

ˆ̃H =





ξ −
√
2 0

−
√
2 0 −

√
2

0 −
√
2 ξ



 ,

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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ˆ̃H =









3ξ −
√
3 0 0

−
√
3 ξ −2 0

0 −2 ξ −
√
3

0 0 −
√
3 3ξ









,

ˆ̃H =













6ξ −2 0 0 0

−2 3ξ −
√
6 0 0

0 −
√
6 2ξ −

√
6 0

0 0 −
√
6 3ξ −2

0 0 0 −2 6ξ













,

whereξ = U/J .
The ground-state energỹE pertaining to the caseN = 2 and the corresponding

eigenvector|E〉 are, respectively

Ẽ =
1

2
(ξ−

√

16+ ξ2) , (39)

|E〉=A2

(

|0,2〉+ ξ+
√

16+ ξ2

2
√
2

|1,1〉+ |2,0〉
)

, (40)

so that

c0 = c2 =A2

c1 =
A2(ξ+

√

16+ ξ2)

2
√
2

. (41)

ForN = 3, we get

Ẽ =−1+2ξ−
√

4+2ξ+ ξ2 , (42)

|E〉=A3

(

|0,3〉+ 1+ ξ+
√

4+2ξ+ ξ2√
3

|1,2〉

+
1+ ξ+

√

4+2ξ+ ξ2√
3

|2,1〉+ |3,0〉
)

, (43)

so that

c0 = c3 =A3

c1 = c2 =
A3(1+ ξ+

√

4+2ξ+ ξ2)√
3

. (44)

WhenN = 4, for the energy of the ground state we obtain the following result:

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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Ẽ =
1

3

(

11ξ−2
√

k4 cos
θ

3

)

θ = θ1 = arctan
b4
a4

θ = θ2 = arctan
b4
a4

+π , (45)

wherek4 = 13ξ2 +48. θ = θ1 (the second row of Eq. (45)) whenξ ≤ −ξ̄ and
0 < ξ ≤ ξ̄, andθ = θ2 (the third row of Eq. (45)) when−ξ̄ < ξ < 0 andξ > ξ̄ with
ξ̄=12

√

2/35. Moreovera4 =288ξ−35ξ3, b4 =6
√
3
√

9ξ6+412ξ4+64ξ2+1024.
Note that whenξ → 0+(−), the energy in Eq. (45) gives back−4 (in units ofJ) for
θ = θ1 (θ2), i.e. the energy of to the atomic coherent state (16). The eigenvector
pertaining to the energy in Eq. (45) is

|E〉=A4

(

|0,4〉+(3ξ− Ẽ

2
)|1,3〉

+
(18ξ2−9Ẽξ+ Ẽ2−4

2
√
6

)

|2,2〉

+ (3ξ− Ẽ

2
)|3,1〉+ |0,4〉

)

, (46)

so that

c0 = c4 =A4

c1 = c3 =A4(3ξ−
Ẽ

2
)

c2 =
A4(18ξ

2−9Ẽξ+ Ẽ2−4)

2
√
6

.

(47)

The factorsA2, A3, andA4 are normalization factors given by the following
formulas:

A2 =
2

√

16+ ξ2+ ξ
√

ξ2+16
, (48)

A3 =
1

√

2+ 2
3

(

1+ ξ+
√

4+ ξ(2+ ξ)
)2

, (49)
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A4 = 2

√

6

d4

d4 = 48+12(Ẽ−6ξ)2+

(18ξ2−9Ẽξ+ Ẽ2−4)2 (50)

with Ẽ given by Eq. (45). Note that Eqs. (39) and (40) are the same that we found
in [12]. We observe that in the limitξ→−∞, the states (40), (43) and (46) becomes,
as expected,

|E〉= 1√
2
(|0,2〉+ |2,0〉) , (51)

i.e. the boson-version of the Schrödinger cat state (21) withN = 2,

|E〉= 1√
2
(|0,3〉+ |3,0〉) , (52)

which is the Schrödinger cat state (21) withN = 3, and similarly

|E〉= 1√
2
(|0,4〉+ |4,0〉) , (53)

Whenξ → 0, from the state (40) (N = 2) we retrieve

|E〉= 1

2
(|0,2〉+

√
2|1,1〉+ |2,0〉) (54)

and from the state (43) (N = 3) one gets

|E〉 =
1

2

( 1√
2
|0,3〉+

√

3

2
|1,2〉

+

√

3

2
|2,1〉+ 1√

2
|3,0〉

)

. (55)

WhenN = 4 andξ → 0, the state (46) gives

|E〉 =
1

4

(

|0,4〉+2|1,3〉+
√
6|2,2〉

+ 2|3,1〉+ |4,0〉
)

. (56)

These last three states represent the forms assumed by the atomic coherent state
|ACS〉 (16) whenN = 2, N = 3, andN = 4, respectively.

In the limit ξ → +∞, the state (40) (N = 2) becomes|1,1〉 which is the twin
Fock state (17) withN = 2. Instead forN = 3, in the deep repulsive regime,ξ →
+∞, the state (43) becomes

|pseudoFOCK〉= 1√
2
(|1,2〉+ |2,1〉) , (57)
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that is the state (18) withN = 3. Finally, whenN = 4 andξ →+∞ , we retrieve the
twin Fock state|2,2〉.

To understand the role of the intra-well interaction-hopping interplay in deter-
mining the structure of the ground state of the two-site BH Hamiltonian, we have
studied the changes experienced by the probabilities|ci|2 by varying the scaled on-
site interactionξ = U/J in the presence ofN = 2, N = 3, andN = 4 bosons, see
Fig. 1. From this figure, we can see that a crossover occurs when ξ ranges from
ξ = −30 (the two top panels of Fig. 1: the largest probabilities|ci|2 are located
in correspondence to|0,N〉 and |N,0〉, this being representative of cat-like states
(21) withN = 2,4 andN = 3 bosons) toξ = 30 (the two bottom panels of Fig. 1:
|ci|2 reaches its largest value in correspondence to|1,1〉 whenN = 2 and|2,2〉 when
N =4 - separable twin Fock state (17) - and in correspondence to the states|1,2〉 and
|2,1〉 whenN =3, state (18)) passing forξ =0 (the three panels at the fifth row from
the top) describing an almost Gaussian distribution of the probabilities|ci|2, that is
the atomic coherent state (16). Note that at fifth row of Fig. 1, the plot of|ci|2 with
N = 4 has been, nominally, labeled byξ = 0; actually, this plot has been obtained by
performing the limitξ → 0 in the equations for|ci|2 obtained by Eq. (47).

In conclusions, we can say that a very strong boson-boson attraction tends to
establish in the system a ground state given by a symmetric superposition of two
fully populated Fock states both withN = 2,4 andN = 3 bosons. On the other
hand, a very large interatomic repulsion induces differentground states depending if
N = 2 (separable twin-Fock state) orN = 3 (symmetric superposition of quasi-fully
populated Fock states).

On the repulsive side, the above described crossover, for evenN , is remines-
cent of the quantum phase transition with optical-lattice-confined bosons theoreti-
cally predicted in [29] and experimentally observed by Greiner and co-workers [30].
This transition - induced by varying the depth of the opticalpotential - is a transition
from the superfluid phase (the hopping dominates the Hamiltonian,J ≫ U . In this
case each atom is spread out over the entire lattice) to the Mott insulator one (on-site
interactions dominates the Hamiltonian,U ≫ J . In this case, exact numbers of atoms
are localized at individual lattice sites). Note that the even-odd difference (separable
twin Fock state versus symmetric superposition of non-fully populated Fock states)
which tends to become less relevant for larger particle numbers, indeed, is a well
known Mott insulators feature, as commented, for example, in Ref. [31]. As com-
mented before, we characterize the correlations of the ground state by calculating
the Fisher information, the coherence visibility, and the entanglement entropy. It is
possible to achieve, in the case of2, 3, and4 bosons, analytical formulas for these
three parameters.

Let us start by evaluating the Fisher information. To this end we employ at
the right-hand side of Eq. (27) the expressions for the coefficientsci given by Eq.
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Fig. 1 – Vertical axis: probabilities|ci|
2 for different values ofξ = U/J . Horizontal axis: kets

|i,N − i〉 (i= 0, ...,N ). Left: N = 2. Middle: N = 3. Right:N = 4. At the third row (from the top):
plots forξ signing the maximum of the entanglement entropies (64) (N = 2), (66) (N = 3), (68)

(N = 4). All the quantities are dimensionless.
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(41) whenN = 2, by Eq. (44) whenN = 3, and by Eq. (47) whenN = 4 (with
the normalization factorsA2 (N = 2), A3 (N = 3), andA4 (N = 4) given by Eq.
(48), Eq. (49), and Eq. (50) respectively; note that theci’s are real for anyN , so that
c∗i = ci). Then, forN = 2 we obtain

F =
8

16+ ξ2+ ξ
√

16+ ξ2
, (58)

while for N = 3 one gets

F =
27+(1+ ξ+

√

4+ ξ(2+ ξ))2

9(3+ [1+ ξ+
√

4+ ξ(2+ ξ)]2)
. (59)

ForN = 4, the Fisher information is given by

F =
3
(

16+(Ẽ−6ξ)2
)

e4

e4 = 64− (Ẽ−6ξ)(54ξ3−45Ẽξ2+

(Ẽ2+4)(12ξ− Ẽ)) (60)

with Ẽ being given by Eq. (45).
We have studied the Fisher informationsF given by Eqs. (58), (59) and (60) as

functions of the dimensionless parameterξ = U/J , see the top panel of Fig. 2. As it
can be seen from this figure, when the boson-boson interaction is strongly attractive
(ξ ≪−1, this being correspondent to states close to the cat state (21)) F tends to1.
In the deep repulsive regime, it can be observed that whenξ ≫ 1 andN = 2,4 (solid
line, dot-dashed), when the ground state tends to a separable Fock state (17),F tends
to zero. WithN = 3 (dashed line), when the ground state tends to a superposition of
two separable Fock states given by Eq. (18), the Fisher information tends to a finite
value (see also the Tabs. 1-3).

To obtain the coherence visibilityα, we use at the right-hand side of Eq. (32)
the form of theci’s provided by Eq. (41) whenN = 2, by Eq. (44) whenN = 3, and
by Eq. (47) whenN = 4 (with the normalization factorsA2 (N = 2), A3 (N = 3),
A4 (N = 4) given by Eq. (48), Eq. (49), Eq. (50), respectively). ForN = 2, we get

α=
4
(

ξ+
√

16+ ξ2
)

16+ ξ2+ ξ
√

16+ ξ2
, (61)

for N = 3

α=
2(1+ ξ+

√

4+ ξ(2+ ξ))(4+ ξ+
√

4+ ξ(2+ ξ))

3(3+ [1+ ξ+
√

4+ ξ(2+ ξ)]2)
, (62)
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Fig. 2 – (Color online). Fisher informationF (top panel), coherence visibilityα (middle panel),
entanglement entropyS (bottom panel) vs scaled on-site interactionξ = U/J . Solid line:N = 2.

Dashed line:N = 3. Dot-dashed line:N = 4. F , α, S, andξ are dimensionless.

and forN = 4

α=
6
√

(Ẽ−6ξ)2(
√

(18ξ2−9Ẽξ+ Ẽ2−4)2+4)

e4
(63)

with Ẽ given by Eq. (45) ande4 by the second row of Eq. (60).
We show the behavior ofα (Eq. (61), Eq. (62)), Eq. (63)), when the scaled on-

site interaction is varied, in the middle panel of Fig. 2.α reaches its maximum value
(α = 1), both whenN = 2,4 (solid line, dot-dashed) andN = 3 (dashed line), in
the absence of boson-boson interaction that corresponds tothe atomic coherent state
(16). For strongly attractive bosons,ξ ≪−1, the ground state is a cat-like state, and
the coherence visibility approches to zero (see the solid (dot-dashed) line,N = 2(4),
and the dashed one,N = 3). When the repulsion between the bosons is sufficiently
strong,ξ ≫ 1, we can see that forN = 2,4 (solid line, dot-dashed line) - when the
ground state tends to a fully incoherent state -α approaches to zero, while forN = 3
(dashed line) - when the ground state is close to state (18) -α is finite.

Finally, by employing the expressions of the coefficientsci provided by Eq.
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(41) in Eq. (36), we calculate the entanglement entropyS for N = 2, and get

S =−A2
2

(

2log2[2A
2
2]+

s2
4
log2[

s2A
2
2

4
]

)

, (64)

whereA2 is the normalization factor given by Eq. (48) and

s2 =
(ξ+

√

16+ ξ2)2

2
. (65)

By employing the expressions of the coefficientsci provided by Eq. (44) in Eq.
(36), we calculate the entanglement entropyS for N = 3, which has the following
expression

S =−2A2
3

3

(

s23 log2[
s3

4
√

4+ ξ(ξ+2)
]+3log2[A

2
3]

)

, (66)

whereA3 is the normalization factor given by Eq. (49) and

s3 = (1+ ξ+
√

4+ ξ(ξ+2)) . (67)

By following the same path forN = 4 (i.e. by using formulas given by Eq.
(47) in Eq. (36)), one obtains the following entanglement entropy

S = log2 d4−d−1
4

(

48log2 24+24(6ξ− Ẽ)2 log2[6(6ξ− Ẽ)]

+2(18ξ2−9Ẽξ+ Ẽ2−4)2 log2[(18ξ
2−9Ẽξ+ Ẽ2−4)]

)

,

(68)

whereẼ is given by Eq. (45) andd4 by the second row of Eq. (50).
Note that the results stated forN = 2 by Eqs. (58) (Fisher information), (61)

(coherence visibility), and (64) (entanglement entropy) coincide with those that we
obtained in [12].

The bottom panel of Fig. 2 shows the entanglement entropies (64), (66), and
(68) as functions of the scaled on-site interactionξ = U/J . In the limit ξ → −∞,
corresponding to the emergence of the cat-like state (21),S tends to one both when
N = 2,4 (solid line, dot-dashed line) andN = 3 (dashed line). By analyzing the
plot of S versusξ it is possible to observe that - as discussed in [12] - the greater is
the number of bosons the closest to zero is the negativeξ (which, in fact, is equal
to −

√
2 ≃ −1.41421 whenN = 2, −1 whenN = 3, and is≃ −0.761472 when

N = 4) for which S attains its maximum value. ForN = 2 andN = 3, the latter
value coincide with that predicted theoretically, i.e.log2(N +1) (see the comment
at the end of the previous section): in the ground state of thetwo-site Bose-Hubbard
Hamiltonian all the Fock states|i,N−i〉 have the same probability|ci|2 =1/(N+1)
for any i, as one can see from the left and the middle panels of the thirdrow (from
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the top) of Fig. 1. WhenN = 4, instead, the maximum ofS does not coincide with
log2(N +1), as it can be observed from the right plot of the third row (from the top)
of Fig.1, where the|ci|2, corresponding to the interaction signing the maximum ofS
(68), are different from each other.

As conclusive remarks, we note that whenN = 3, S approaches to1 both in
the limit ξ → −∞ and in the limitξ → +∞, as one can observe from the dashed
line in the bottom panel of Fig. 2. Moreover, we observe that the plot reported in the
bottom panel of Fig. 2 shows that the cat-like state (21) (ξ ≪−1, deeply attractive
bosons) is not the maximally entangled ground state achievable in our system.

A remarkable point emerges from our analysis. The three ground-state char-
acterizing parameters (F , α, S) in the deep repulsive regime exhibit very different
behavior depending on ifN = 2,4 or N = 3, as it can be seen from Fig. 2 and from
Tabs. 1-3. In fact, whenξ = U/J →+∞, the Fisher information, the coherence vis-
ibility, and entanglement entropy are all equal to zero if the ground state is the state
(17) (N = 2,4); they are finite, instead, if the ground state is the state (18) (N = 3).
Note that this circumstance is quite general. In fact, the states (17) and (18) are the
ground states of the two-site Bose-Hubbard Hamiltonian in the limit ξ → +∞ for
any evenN and any oddN , respectively. In particular, we want to stress that when
the boson-boson interaction is strongly repulsive, the ground state of the two-site
BH Hamiltonian is not quantum entangled whenN is even, while it is a quantum
entangled state whenN is odd.

4.1. FISHER INFORMATION AND COHERENCE VISIBILITY VIA THE
HELLMANN-FEYNMANN THEOREM

At this point, it is interesting to observe that it is possible to achieve the above
formulas forF - Eqs. (58),(59),(60) - andα - Eqs. (61),(62), (63) - also by exploiting
the Hellmann-Feynman theorem (HFT) [27].

By using this theorem a relation can be established between the Fisher infor-
mationF and the first partial derivative of the ground-state energyE with respect to

U ,
∂E

∂U
. According to the HFT, we have that [27]

∂E

∂U
= 〈E|∂Ĥ

∂U
|E〉 . (69)

If the properties〈E|n̂L|E〉= 〈E|n̂R|E〉=N/2 (Eq. (15)) and〈E|n̂L|E〉+〈E|n̂R|E〉=
N are used in Eq. (69), we get

∂E

∂U
= 〈E|n̂2

L|E〉− N

2
. (70)

On the other hand, again thanks to〈E|n̂L|E〉 = 〈E|n̂R|E〉 =N/2 and〈E|n̂L|E〉+
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〈E|n̂R|E〉=N , Eqs. (24) and (26) give rise to

F =
4

N2
〈E|n̂2

L|E〉−1 , (71)

so that (as also commented in [12])

F =
4

N2

∂E

∂U
+

2

N
−1 . (72)

We have therefore to know the energy of the ground state. WhenN = 2 this energy
is given by Eq. (39), whenN = 3 by Eq. (42), and whenN = 4 by Eq. (45). By
keeping in mind that in these three latter equationsξ = U/J and the energies are
measured in units ofJ , one can resort from̃E to E and obtain Eq. (58) forN = 2,
Eq. (59) forN = 3, and Eq. (60) forN = 4.

The Hellmann-Feynman theorem provides a relation between the coherence
visibility α and the first partial derivative of the ground-state energyE with respect
to J as well. Let us start from the fact that, according to the HFT,one has that [27]

∂E

∂J
= 〈E|∂Ĥ

∂J
|E〉 . (73)

By using the fact that the coefficientsci involved in the expansion of|E〉 (N =2,3,4)
are real (see Eqs. (41), (44), (47) jointly to Eqs. (48),(49),(50)), we can write that
〈E|â†LâR|E〉= 〈E|â†RâL|E〉, and then

∂E

∂J
=−2〈E|â†LâR|E〉 . (74)

On the other hand, again in force to〈E|â†LâR|E〉 = 〈E|â†RâL|E〉, we have that the
coherence visibility (31) is

α=
2〈E|â†LâR|E〉

N
(75)

so that (see also [12])

α=− 1

N

∂E

∂J
. (76)

Also in this case, we use in Eq. (76) the results given by Eq. (39), N = 2, by Eq.
(42),N = 3, and by Eq. (45) (by keeping in mind thatξ = U/J and the energies are
measured in units ofJ) and get Eq. (61) forN = 2, Eq. (62) forN = 3, and Eq. (63)
for N = 4.

5. CONCLUSIONS

We have investigated a finite numberN of (both attractively and repulsively)
interacting bosonic atoms confined by a one-dimensional double-well shaped poten-
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tial. Within the two-site Bose-Hubbard model framework, wehave carried out the
zero-temperature analysis forN = 2, N = 3, andN = 4 bosons by finding analytical
formulas for the eigenvectors and eigenvalues of the corresponding ground states.
These have been characterized by analytically calculatingthe Fisher information, the
coherence visibility, and the entanglement entropy. We have studied these parame-
ters by varying the boson-boson interaction strength (ranging from strong attractions
to strong repulsions) which is the key quantity in determining the kind of ground
state sustained by the two-site Bose-Hubbard Hamiltonian.In particular, we have
commented on the difference, existing in the deep repulsiveregime, between the
structure of the ground state in the presence of an even number of bosons and that
with an odd number of particles. We have pointed out, in particular, that the ground
state of the two-site Bose-Hubbard Hamiltonian is not quantum entangled whenN
is even, while it is a quantum entangled state whenN is odd.
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