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ABSTRACT 

 

The research work presented in this thesis concerns the development of silicon nitride based 

ceramics with a cellular structure and containing designed interconnected porosity (> 70 vol%) and 

cell size distribution (10 up to 800 μm) by direct foaming processing routes. Concentrated 

emulsions (O/W oil-in-water) stabilized by surfactants and gelcasting using environmentally 

friendly biopolymers as gelling agents, were developed as intermediates in the production of highly 

porous inorganic materials. Differently from conventional direct foaming methods the evaporation 

(and expansion) of the alkane droplets affords the foaming during drying of emulsions.    

Sintering is a critical step in the case of silicon nitride, since high temperatures and 

increased dwelling time are necessary for sufficient densification to occur, due to a low diffusion in 

the solid state. In order to overcome this difficulty, we report in this thesis two different strategies 

by liquid phase sintering with sintering additives: 

1) Conventional sintering at 1600 °C and 1700 °C, using N2 flow in order to suppress the 

dissociation reactions and permit sintering with little weight loss. 

2) Sintering by intense thermal radiation, inside a modified SPS set-up, shows to be 

effective in promote densification of the foam struts and develop of SiC nanowires (increase 

the fracture toughness of Si3N4 foams) on the cell walls and struts at short times and lower 

sintering temperatures. 

Further, the influence of the sintering additives, Y2O3 and MgO, and the effect of the 

sintering temperature on the formation of rod-like β–Si3N4 grains were also investigated. 

Highly porous Si3N4 ceramics are promising candidate for various engineering applications 

such as: gas filtering application (high temperature and harsh environment), heat insulators, catalyst 

carriers, bioreactors, medical implants, since recent results confirmed the non-cytotoxicity and 

biocompatibility, owing to remarkable properties as high strength, high stiffness, good toughness, 

high temperature resistance, high corrosion resistance, good wear resistance and high permeability.  

During the present research work, the characterization of highly interconnected Si3N4 foams 

in terms of microstructure (cell size distribution and porosity), mechanical properties and 

permeability was performed.  

High compressive strengths (up to 33 MPa) were reported with the increasing of sintering 

temperature up to 1700 °C (conventional sintering), owing to the development of elongated β–

grains, as well a strong packing of particles on cell walls and struts. 



6 

 

Permeability evaluation shows that Si3N4 foams are in the range of gelcasting foams (on 

permeability map) and are suitable for filtering application.  

The successful combination of colloidal processing, foaming and fast consolidation of 

foams, and also pressureless sintering at relatively low temperatures applied to produce cellular 

ceramics based on Si3N4 was also extended to other advanced materials e.g. max-phases belonging 

to Ti-Al-C system. 
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RIASSUNTO 

 

Materiali ceramici a base di Si3N4 altamente porosi sono potenziali candidati per varie 

applicazioni di ingegneria: filtraggio di gas ad alta temperature ed in condizioni critiche, isoltaori 

termici, trasporto di catalizzatori, bioreattori e impianti biomedici (recenti risultati di letteratura 

hanno confermato la non citotossicità e la biocompatibilità del Si3N4). 

L’attività di ricerca della presente  tesi riguarda lo sviluppo di materiali ceramici a base di 

nitruro di silicio caratterizzati da una struttura cellulare, contenenti porosità interconnessa (> 80 

vol%) e celle con una distribuzione  dimensionale che varia dai 10 μm fino agli 800 μm. La tecnica 

utilizzata per la produzione dei materiali ceramici cellulari consiste nella schiumatura diretta; sono 

state sviluppate emulsioni concentrate (O/W olio-in-acqua) stabilizzate da tensioattivi e gelcasting 

di biopolimeri ecocompatibili, come step intermedi nella produzione di materiali inorganici 

altamente porosi. Diversamente dai tradizionali metodi di schiumatura diretta, la schiumatura è 

fornita dall’ evaporazione (ed espansione) delle gocce di alcani durante l'essiccazione delle 

emulsioni. Mentre nel caso di gelcasting, la capacità dei tensioattivi schiumogeni combinata con la 

gelificazione termica fornisce la schiumattura. 

Nel caso della produzione di componenti a base di  nitruro di silicio la sinterizzazione 

rappresenta un punto critico, poiché sono necessarie temperature elevate e prolungato tempo di 

mantenimento alla T di sinterizzazione al fine di garantire sufficiente densificazione a causa delle 

basse velocità di diffusione allo stato solido. Al fine di superare queste difficoltà, nella presente tesi 

sono state sviluppate due strategie: 

1) Sinterizzazione convenzionale a 1600 °C e 1700 °C in flusso di N2, al fine di inibire le 

reazioni di dissociazione e sinterizzare con basse perdite di peso. 

2) Sinterizzazione con intensa radiazione termica, attraverso la tecnica dello Spark Plasma 

Sintering (SPS), la quale si è dimostrata efficace al fine di densificare gli struts della 

schiuma e sviluppare nanofili di SiC sulle pareti di cella e sugli struts, a temperature più 

basse e per tempi più brevi rispetto alla sinterizzazione convenzionale. Nanofili di SiC 

contribuiscono ad aumentare la resistenza alla frattura delle schiume.  

Inoltre, l’influenza di addittivi di sinterizzazione, Y2O3 e MgO, sulla temperatura di 

sinterizzazione e sulla formazione di β–Si3N4 grains, sono stati investigati. 

Le strutture cellulari a base di Si3N4 prodotte con le tecniche sopra descritte sono state 

caratterizzate in termini di microstruttura (distribuzione della dimensione di celle e porosità), 

proprietà meccaniche (test di compressione) e permeabilità ai gas. 
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Porosità totale che varia dai ~74 fino agli 89 vol%, e le dimensioni delle celle variano in un 

ampio range ~20 fino agli 850 μm, in funzione della velocità di emulsione, tipici di biopolimeri. 

E’ stato trovato che le schiume sinterizzate a 1700 °C (sinterizzazione convenzionale) sono 

caratterizzate da elevati valori di resistenza a compressione up to 33MPa per effetto dello sviluppo 

di grani allungati di fase β–Si3N4 e per effetto della notevole densificazione delle particelle in 

corrispondenza delle pareti di cella e degli struts.  

Le misure di permeabilità hanno dato valori di costanti di permeabilità nel range delle 

schiume ottenute con la tecnica del gelcasting e sono pertanto utili per applicazioni di filtraggio.  

La combinazione di processi colloidali, schiumatura, rapida consolidazione delle schiume e 

sinterizzazione in assenza di pressione a temperature moderate applicate ai ceramici porosi a base di 

Si3N4, sono state applicate anche ad altri sistemi come ad esempio al sistema Ti-Al-C (Max-

Phases).  
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I INTRODUCTION 

 

Ceramics with a cellular structure and containing designed interconnected porosity above 60 

vol% find applications particularly where the transport of fluids is required, e.g. molten metal and 

exhaust particulate filters at high temperature, gas-burner systems, catalyst support, and in energy-

related industries [1–6]. Cellular ceramics are materials tailored to possess exceptional combination 

of properties such as lightweight, high temperature stability and permeability to fluids among other 

special functionalities that cannot normally be reached by conventional dense counterparts [7,8]. 

High technological applications take advantage of specific features exhibit by ceramics but 

with improved performance by the replacement of solid material by voids in the component, for 

instance, low thermal conductivity, high surface area, high specific strength, and low dielectric 

constant [2]. 

Silicon nitride (Si3N4) is one of the most widely used ceramics in many engineering 

applications due to its outstanding thermo-mechanical properties, such as flexural strength and 

Young’s modulus around 900 MPa and 310 GPa, respectively, fracture toughness between 3 to 12 

MPam1/2 [9], and strain-to-failure around 3×10-3 [10,11]. Its excellent thermal properties, such as, 

high strength at temperatures above 1000 °C [12], thermal shock resistance can be attributed to the 

combination of a low thermal expansion coefficient, medium elastic constants, and moderate 

thermal conductivity [9,13,14], combined with the low density of Si3N4 (3.2 gcm-3) and consists an 

important advantage.  

Highly porous Si3N4-based ceramics are promising candidate for engineering applications, 

such as hot gas filter, heat insulators, catalyst carriers, bioreactors, medical implants, since recent 

results confirmed the non-cytotoxicity and biocompatibility [15]. Owing to remarkable properties as 

high strength, high stiffness, good toughness, high temperature resistance, high corrosion resistance, 

and good wear resistance, special thermal properties, and high permeability [16]. 

However, the high cost of production (sintering is generally assisted by pressure), due to the 

highly covalent bonding between silicon and nitrogen atoms and very slow solid-state diffusion 

[17], limits significantly the use of silicon nitride-based ceramics. The additions of sintering 

additives, which are usually metal oxides that form a low-melting-point eutectic liquid with the 

oxide surface layers of the silicon nitride powder, improve sintering activity considerably and 

promote high densities without the use of pressure during sintering [18,19].  

Various processing methods for the production of highly porous Si3N4, such as partial 

sintering [20,21], reaction sintering [12,22], the use of sacrificial templates using starch 
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consolidation [23], direct foaming [24], gelcasting [25] and preceramic polymers [26], have been 

proposed. But they fail on the development of interconnected structures with high level of open 

porosity (75%). 

In order to develop more economical processes for the production of porous silicon nitride 

with proper process control increasing reliability and uniformity in the properties of final 

component, the objective of the current work is concerned with the fabrication of silicon nitride 

foams with tailored microstructure in terms of porosity (> 80vol%) and cell size distribution 

ranging from (10 to 500 μm) using direct foaming processing routes, such as emulsification and 

gelcasting using environmentally friendly biopolymers as gelling agents by cost-effective 

pressureless sintering envisaging gas filtering application (High temperature and harsh 

environment). Additionally, the characterization of Si3N4 foams in terms of microstructure (cell size 

distribution and porosity), mechanical properties and permeability was performed. Further, the 

influence of the sintering additives, Y2O3 and MgO, and the effect of the temperature on the 

formation of rod-like β–grains were also investigated.  

In the light of these achievements, the foaming strategies were extended to other advanced 

ceramic materials, as ternary Ti-Al-C max phases. 

 

1.1 Cellular Ceramics 

 

Cellular ceramics are materials tailored to possess exceptional combination of properties as 

high porosity and lightweight, as well special functional properties, such as low thermal 

conductivity, high-temperature stability, excellent thermal shock resistance, and low dielectric 

constant, good resistance against crack propagation, high permeability and high surface area. These 

materials are used for a wide range of technological applications, such as filters, membranes, 

catalytic substrate, thermal insulation, gas burner media, and refractory materials [1,2,8]. 

The structure of cellular ceramics consists of polyhedral cells that are arranged three-

dimensionally to efficiently fill the space and depending on the overall morphology a structure 

typical of a honeycomb (possessing parallel prismatic cells) or of a foam (for which cell walls are 

randomly oriented in space) can be identified. The porosity in these materials usually exceeds 70% 

of the total volume. These materials may have a potential in structural applications owing to their 

design allows for the efficient optimization of important engineering characteristics, such as high-

modulus-to-weight ratio. In addition, they offer durability in severe environments coupled with 
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surface or bulk characteristics that permit them to satisfy specific functional purposes, for instance 

filtration at high temperature [6,8]. 

Cellular ceramics are divided in two classes: open cell or interconnected and closed cells. As 

highlighted by Colombo and Bernardo, the current terminology developed by IUPAC to classify the 

porosity of materials, which classified the pores sizes into three different dimensional ranges: 

micropores (< 2nm), mesopores (2-50 nm), and macropores (> 50 nm), is not useful to describe or 

characterize the porosity of cellular materials [27].  

The terms macrocellular and microcellular (cell with a size smaller than 30 to 50 m) are 

more accurate to differentiate the structure of the foams, as for example cells and windows. 

Furthermore, is important also consider the composition and the processing conditions that will 

define the overall properties of the component. For example, microporosity (often present in the 

ceramic struts and cell walls), composition of the grain boundaries and the amount, size and 

morphology of the defects need also to be taken into account, once they can influence mechanical 

reliability, for example [27]. 

Cellular ceramics can be produced with a variety of microstructures with controlled 

properties through several versatile and simple methods (see Fig. 1.1), such as replica, sacrificial 

template, and direct foaming techniques, and recent reviews are available on this subject [2,6,28]. 

The replica technique, Fig. 1.1a), is the most widespread processing approach for open-cell 

ceramic foams, so-called reticulated ceramics, and consists on the impregnation of porous or a 

cellular structure (generally PU sponge) with a ceramic suspension or precursor solution in order to 

produce a macroporous ceramic exhibiting the same morphology as the original porous material, 

but with a particularity, the cell struts are hollow after pyrolysis, affecting their mechanical strength. 

Alternatively, recoating the reticulated ceramic with slurry can reduce the number of defects inside 

the struts increasing their reliability [2,6,8]. 
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Fig. 1.1. Scheme of the fundamental processing routes for the production of cellular 

ceramics [2]. 

 

The sacrificial template technique (Fig. 1.1b) consists in the incorporation of a sacrificial 

phase that is homogeneously distributed throughout the ceramic matrix. Afterwards, a heating 

treatment is performed and hollow cells are produced when the solid material that occupies the 

space within the volume of the component disappears [2,6].  

 Direct foaming (Fig. 1.1c) consists in the incorporation of gas (bubbles) inside a liquid 

slurry containing ceramic powders (or ceramic precursor solution) to create a foam by mechanical 

stirring, by bubbling a gas through the liquid, or by the in situ generation of gas within the liquid. 

Subsequently, the liquid foam is stabilised in order to preserve its porous morphology [2,6,8]. 

The aim of this work is the development of advanced cellular ceramics based on Si3N4 using 

direct foaming processing route for the fabrication of tailored microstructure in terms of cell size 
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distribution and porosity, mechanical properties and permeability. In the follow section the direct 

foaming method is described in more detail. 

 

1.2 Direct foaming process 

 

In direct foaming techniques, ceramic foams are produced by incorporating air into a 

suspension by mechanical frothing (mixing or agitation to introduce air bubbles), by the evolution 

of a dissolved gas, by bubbling a gas through the liquid, or by the in situ generation of gas within 

the liquid. In the final case, the gas-evolution process is usually initiated by heat or by a chemical 

reaction [6,8]. 

The total porosity of liquid foams is proportional to the amount of gas incorporated into the 

ceramics suspension during foaming process; while pore size is determined by the stability of the 

liquid foam before setting takes place [2]. Gas bubbles initially nucleate as spheres and then grow 

as polyhedral cells, Fig. 1.2 [29]. The foam morphology (bubble size and shape) depends on 

concurrent processes controlling the development and stability of liquid foams, such as, drainage 

(the liquid will drain through the cell edges until an equilibrium state is reached); coarsening (gas 

diffuses between bubbles, allowing some to grow while others shrink and disappear, leading to an 

increased dispersion of cell sizes), and film rupture when a film (cell wall) becomes too thin and 

weak leading finally to collapse of liquid foam [6,8]. These destabilization processes takes place in 

order to reduce the total Gibbs free energy, resulting in large pores in the final cellular 

microstructure [2,28]. 
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Fig. 1.2. Three stages of foaming process of emulsified ceramic powder suspension [29]. 

 

 

In order to prevent the foam collapse, special additives as long-chain amphiphilic molecules 

and biomolecules as lipids and proteins can be used as surface-active agents to stabilize liquid 

foams by adsorbing at the air bubble surface reducing the interfacial energy of the gas-liquid 

boundaries [2,28]. Since it is stabilized, another strategy to keep the liquid foam morphology is 

setting it by means of gelling or cross-linking of organic compounds.  

Direct foaming methods offer some advantages with respect to other processing routes 

because they permit obtain foams with open or closed cells within a broad range of cell sizes and 

bulk densities, possessing dense struts containing fewer defects, and with tailored permeability and 

flow path tortuosity. The choice of suitable surfactants or proteins, that control surface tension 

provides a further degree of control of the foam structure. The ceramic foams obtained by direct 

foaming are sintered by conventional means with an initial slow pyrolysis step for carefully 

eliminating the organic setting agents [6]. 

In this thesis, a novel processing route developed by Barg et al. [29], which consists in 

emulsifying a homogeneously dispersed high-alkane phase in a stabilized ceramic suspension was 

used. In contrast to the conventional direct foaming methods, foaming is driven by the autonomous 

evaporation of the alkane phase, and the emulsified suspensions are consolidated by the expansion 

of the alkane droplets and drying of the aqueous medium, leading to a time dependent expansion of 

the emerging foam in a mould [28,29,30]. 
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 Suspensions, emulsions and foams are intermediates in the production of porous inorganic 

materials of high technological interest. While the inorganic particles in the suspensions act as 

fillers and define the crystallographic structure, droplets and bubbles are intermediates for the 

porosity formation in the resulting inorganic foams. 

Thus, it is of great importance for this study to give a background on the main factors 

influencing stability and formation of surfactant stabilized emulsions and gelcasting foams as well 

as colloidal suspensions. 

 

1.2.1 Emulsions 

 

Emulsions are metastable colloidal dispersions in which two immiscible fluids such as oil 

(hydrocarbon) and water, with one being dispersed into the other by shearing in presence of surface-

active agents, which leads to the fragmentation of one phase into the other [31,32]. The dispersed 

phase is sometimes referred to as the internal phase and the continuous phase as the external phase. 

Three important aspects are essential for the classification of emulsions: the type of dispersed 

phase, droplets size and the volume fraction of dispersed phase, ϕ dp. Two types of emulsion are 

readily distinguished in principle, depending upon which kind of liquid forms the continuous phase 

as: oil-in-water – O/W, for oil droplets dispersed in water; and water-in-oil – W/O, for water 

droplets dispersed in oil [33]. 

Emulsions are widely used materials for many industrial applications such as cosmetics, 

foods, pharmaceutics, paintings, coatings, etc [32,33].  But recently, emulsions have been used as 

efficient intermediates in the production of porous materials via direct foaming process [34]. 

Emulsification involves the sudden creation of a large amount of new liquid interface. 

Thermodynamically, in order to increase the oil–water surface area by an amount A, the required 

work (free energy change) is G = A, where  is the interfacial tension. In order to disrupt a 

droplet of radius a into a smaller one requires an external pressure gradient of magnitude p/a = 

2/a2, where p is the Laplace pressure.  

During homogenization, the fluctuating stress differences needed to produce such a high 

local pressure gradient are generated from the intense laminar flow (shear and extensional 

deformations) and/or inertial effects (turbulence and cavitation) [35]. The mean droplet diameter, 

which determines most of the emulsion properties (stability, rheology, optical properties, etc), is 

strongly dependent upon the fragmentation procedure. According to the pioneering work of Taylor, 

in quasi-static conditions, an isolated and spherical droplet of radius R0 (relatively low viscosity, d) 
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is dispersed in a fluid of viscosity c, the droplets will deform into an ellipsoid or elongated 

cylinder [30,36]. The rupture of these elongated cylinders in smaller droplets is achieved by the so-

called Rayleigh instability reducing the high interfacial energy due to the elongated droplets. 

Deformation of the dispersed phase occurs when the shear stress c 
.
 surpasses the interfacial 

stress /R0, where
.
 is the shear rate and  is the interfacial tension. The ratio between these two 

stresses is defined as the capillary number (Ca). When the capillary number exceeds a critical value, 

Cacrit, the elongated droplet will rupture into smaller droplets of average radius R according to Eq. 

(1.1). Cacrit depends on the viscosity ratio between dispersed and continuous phase (d /c) and the 

type of flow: 








c

critCaR
                                                                            (1.1) 

The fragmentation process involves two distinct regimes: the first one at short time (shorter 

than one second), the droplet diameter decreases abruptly and the obtained diameter is determined 

by the applied stress (weakly depends on the viscosity ratio d /c). While the second mechanism is 

slower of the order of hundred seconds is less efficient for fragmentation [32]. 

Surfactants molecules adsorb spontaneously at the oil/water interface of the freshly formed 

fine droplets, reducing the interfacial tension and preventing them from coalescence. The final 

droplet-size distribution is determined by the time taken for the interface to be covered with 

emulsifier, as compared with the average time interval between droplet collisions (considering a 

fixed rate of energy dissipation during emulsification) [31,35]. One should consider the 

deformability of the droplets in concentrated emulsions (volume fraction > ϕ *=0.64, for randomly 

packed monodisperse spheres), corresponding to a close packing of hard spheres, where the 

emulsion become remarkably rigid and resemble an elastic solid. Indeed, two droplets forced 

together will begin to deform before their interfaces actually touch, because of the intrinsic 

repulsive interactions between them [37]. 

In this work, we mainly will focus on concentrated emulsions (HAPES) stabilized by 

surfactants, envisaging the development of advanced cellular ceramics based on Si3N4 by direct 

foaming processing route.  

 

1.2.2 Gelcasting 

 

Gelcasting is a well-established colloidal processing method for making high-quality, 

complex-shaped dense or porous ceramic parts by means of in situ formation of a percolating 
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network of ceramic particles. Is a near-net-shape (NNS) technology, based on the fast consolidation 

of a homogeneous suspension into a stiff solid-like sample (gel), allows to produce green parts with 

the final shape (or most similar as possible) [38,39]. The versatility of this processing route enables 

the production of porous ceramics with high shape complexity and good mechanical properties.  

According to Sepulveda, this technique originally developed to produce dense bodies, and 

has been adapted by Smith for the manufacture of porous ceramics using foamed suspensions [40]. 

The process combines the gelcasting of ceramics with foaming, and consists is preparing 

suspensions of high solid loading with reasonably low viscosity. Afterwards, the bubble 

incorporation proceeds usually by mechanical frothing and then solidifying the foamed slurries. 

Control of pore size and connectivity is possible through density variation and expansion of the 

foams before setting. Pores are typically spherical and can be either closed or opened exhibiting 

interconnecting windows (bubble disproportionation) [2]. Cell interconnectivity is most likely 

formed by a local differential shrinkage of the particle layer around the air bubbles during the 

gelation process, which, favors the rupture of the particle coating around the bubbles, leading to 

interconnecting cells after drying and sintering [41]. 

Disadvantages are the amount of liquid and the levels of shrinkage involved during drying 

of the bodies, and also the toxicity of the monomers originally used and the necessity to atmosphere 

control avoiding contact with oxygen environments to accomplish the polymerization reaction are 

the main disadvantages of this method [2,40]. As pointed out by Studart et al., several alternative 

methods that apply environmental-friendly setting agents from the food industry have been 

developed to overcome the disadvantages of the original gelcasting technique. The temperature or 

pH-induced gel formation of various biopolymers as gelatin, ovalbumin, and bovine serum albumin 

(BSA), for instance, have been successfully used for setting the foam wet structure. A similar 

approach relying on the temperature-induced gelling of polysaccharides such as sucrose, agar, 

carrageenan, starch and wheat particles has been recently applied as non-toxic processing route for 

the fabrication of porous ceramics. The speed of the setting reaction is another important criterion 

when selecting direct foaming methods for fabrication of porous ceramics, since many of these 

alternative-setting methods are considerably slower than the original polymerization reaction [2]. 

The main difficulty of using biopolymer solutions in processing of cellular ceramics by foaming 

method is concerned to their high viscosity, which prevents the foaming capacity of the ceramic 

suspension. Another important feature concern to the gel that must be sufficiently strong to 

withstand the body weight, even at the typically low solids loading used in these suspensions [42]. 
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Protein chemistry – Thermal gelling 

The fundamental property of globular proteins: their gelling (coagulation) ability in water 

when heated to a certain temperature is the key for the manufacture porous silicon nitride foams by 

gelcasting. 

Globular proteins such as albumen (egg white) are characterized by regular structural 

elements of aminoacid sequences mixed with randomly extended chain segments. In the initial state 

the protein molecules are folded into spherical configurations (few nanometers), similarly to small 

particles with specific surface chemistry. Under certain conditions (thermal, chemical, etc.), 

globular protein molecules can gel in water depending on the pH. Prior to the gel formation a 

denaturation process occurs and consists of loss of native structure and biological activity of a 

protein through a breakdown of the structure i.e., hydrogen bonds, are broken and random coil or 

metastable forms are formed, which makes the globular protein more disordered exposing more 

hydrophobic residues [43]. Irreversible denaturation of albumen occurs when the unfolded peptide 

chain is stabilised by interactions with other chains. The polypeptide chains become tangled to form 

a three-dimensional and thermo-irreversible gel network (coagulation) through the formation of 

new hydrogen bonds between the chains, which transforms the suspension into a rigid body (Fig. 

1.3) [44]. 

 

 

Fig. 1.3. Schematic illustration of the gel formation with a globular protein in a ceramic 

powder suspension. 

 

 

Globular proteins also show surface-active properties, for example by attraction to air/water 

interfaces, which gives a tendency to foam formation in water; a disadvantage if the purpose is to 

produce fully densified ceramic materials using this method. When adding a globular protein to a 

ceramic slip through a mixing operation, air bubbles are introduced, and the protein molecules are 

adsorbed at the interface between air and water via hydrophobic areas, and a partial unfolding 
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(surface denaturation) occurs. The decrease in the surface tension caused by protein adsorption 

facilitates the formation of new interfaces and more bubbles are created. The ability of protein 

molecules to form and stabilise foam depends on the diffusion rate and denaturation i.e., to form a 

strong, viscoelastic surface layer, so as to reduce gas permeability and inhibit coalescence [43,44].  

 

Polysaccharides chemistry – Thermal gelling 

Polysaccharides refers to long carbohydrates molecules with a general formula Cn(CH2O)n-1, 

where n 3. The applications of the polysaccharides depend on their multiple properties, e.g. 

solubility, viscosity referred to the concentration and their capacity to form gels as a consequence of 

a temperature change. The most important drawback of thermoreversible gelcasting with 

polysaccharides is that the as-cast body has a relatively low gel consistency, which is not enough to 

allow a proper handling and can lead to deformation and some cracking before it becomes stiff. In 

this case a complementary consolidation stage, as a fast drying process, is necessary in order to 

make the process competitive in industry. However, the use of these polysaccharides in ceramic 

forming has also important advantages e.g., use of aqueous concentrated suspensions, low 

biopolymer amount is required (<1wt% referred to powder content), is a simple process, which 

provide high homogeneity, microstructural uniformity, and suitable mechanical strength [39]. 

Agaroids (agar and agarose) and carrageenan are polysaccharides extensively used to 

promote the formation of a physical gel on cooling by cross-linking of the double helical through 

hydrogen bonding. The gelling mechanism of agars and carrageenans, referred to as syneresis (Fig. 

1.4), which consists in aggregation of molecules of different chains, the water access is blocked and 

the polysaccharide becomes insoluble, so that there is a water exclusion phenomenon at the junction 

zones [39]. 

 

 

Fig. 1.4. Schematic representation of the gelling mechanism of agars and carrageenans. 
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Methylcellulose (MC) and hydroxypropyl-methylcellulose (HPMC) are a group of 

polysaccharides that gel on heating, as a result of hydrophobic interaction between molecules 

containing methoxyl substitution. At low temperature, the molecules are hydrated and there is a 

little polymer–polymer interaction; but when the temperature increases, the molecules lose their 

water of hydration, and a polymer–polymer association takes place, allowing a network structure 

with a sharp rise in viscosity. The gelling temperature is a function of the concentration of the 

methylcellulose solution, and can be modified by some additives as glycerol or ethanol, which 

decreases and increases the gelling temperature, respectively. Additionally, the gel strength depends 

on the concentration of methyl groups and the methyl/hydroxypropyl ratio [39]. 

In addition, the hydrophobically modified cellulose derivates (MC and HPMC) are 

amphiphilic biopolymers that can be used as emulsifiers, since they are surface-active 

hydrocolloids. However, the droplets produced are coarser than those stabilized by low-molecular-

mass surfactants or proteins under similar conditions, as a consequence of the high molecular 

weight of these cellulose polymers [45]. 

 

1.3 Si3N4 based ceramics 

 

1.3.1 Colloidal processing: Si3N4 suspensions 

 

The colloidal processing is an attractive route to process Si3N4, which provides high 

reliability and good homogeneity of final properties by cost-effective pressureless sintering. 

However the preparation of a well dispersed, uniform and concentrated slip of a submicrometric 

Si3N4 powder with the corresponding sintering additives is considered a critical step, which depends 

of the powder fabrication and characteristics, such as, oxygen content, and the amount of impurities 

in the powder [46]. The oxygen distribution in the nitride powders strongly influences the stability 

and rheology of suspensions for colloidal powder processing and casting techniques [47]. The 

formation of undesired hard agglomerates is detrimental to slip and sintered properties and must be 

prevented during the wet-processing stage, since they lead to non-uniform sintering rates that result 

in structural flaws and incomplete densification [48]. 

Stabilizing forces that result from electrical double-layer repulsion or steric interactions, if 

sufficiently large in magnitude, can provide an energy barrier against aggregation. In the absence of 
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such forces, particles are subject to attractive van der Waals forces at short interaction distances 

during collisions. Polyelectrolytes dispersants provide enhanced stability via electrosteric forces 

[48]. 

Hackley investigate the Si3N4-water-poly(acrylic acid) system in alkaline conditions, pH  

9, and show that the carboxylic acid groups present on PAA completely dissociate (producing a 

negatively ionized polymer) above pH 10. As a consequence of a ionization PAA polymer change 

configuration from a compact random-coil at low pH to a fully extended and rigid molecule at high 

pH, owing to depletion stabilization [48,49]. 

The surface composition of Si3N4 particles often is an intermediate state between silica 

(SiO2) and silicon oxynitride, and additionally, two kind of different groups are present: silanol 

groups and silylamine (secondary and/or primary) groups. The ionization of silanol and amine 

groups depends mainly on the pH value of the aqueous slips. The silanol groups show acidic 

behavior and consequently low pHIEP, while the amine groups show basic behavior and high pHIEP 

[50]. 

The principles involved in stabilization of suspensions, emulsions and foams have many 

similarities, and destabilization mechanisms like sedimentation, aggregation and coalescence 

normally take place [33]. 

 

1.3.2 Si3N4 crystal structures 

 

Silicon nitride crystal structure exists in two major crystalline forms: α and βphase. 

αSi3N4 is a low temperature modification and βSi3N4 is the high temperature modification. Both 

phases have a hexagonal crystal structure and P63/m is the space group of βphase and P31c for 

αphase. The lattice parameters of βSi3N4 are a = 7.6044 Å and c = 2.9075 Å, possessing an 

atomic layer sequence of ABAB and forming long continuous channels in c direction, while the 

corresponding parameters for αSi3N4 are a = 7.7541 Å and c = 5.6217 Å, with an atomic layer 

sequence of ABCD [51,52]. Both structures are built up from a SiN4 tetrahedron and can be 

transformed into each other by a 180° rotation around an axis normal to the c direction (Fig. 1.5) 

[51,53].  

 



25 

 

 

 

Fig. 1.5. Projection of the crystal structures αSi3N4 (on the top), and βSi3N4 (on the 

bottom) [54]. 

 

 

The αβ transformation requires a lattice reconstruction [52], which involves breaking and 

reforming six Si–N bonds in each unit cell. This reconstruction of the crystal structure requires 

short-range diffusion rather than simple translation, and diffusion occurs as a result of the 

concentration gradient of αSi3N4 rich powders [9]. The diffusion of silicon and nitrogen takes 

place through the liquid phase at temperatures in excess of 1400 ºC [52], through a dissolution of 

the fine α particles in the liquid phase formed between sintering aids and subsequent precipitation of 

the β nuclei by solution re-precipitation mechanism [51]. 

According to Krstic et al., if the amount of liquid phase during sintering is sufficient, the 

final structure consists of only elongated βSi3N4 phase. The growth of elongated βgrains can be 

controlled either by the diffusion of the atoms through the liquid or by reaction at the grain/liquid 

interface. Due to the prismatic configuration of βSi3N4 grains, the growth of length in the c 

direction [0001] is controlled mainly by the solute diffusion through multigrain junctions, while the 

growth of width in the [2100] direction is controlled by the diffusion along grain boundaries [51]. 
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1.3.3 Liquid phase sintering  

 

The basic problem in sintering silicon nitride is due to the high degree of covalent bonding 

(Si-N) and a low diffusion in the solid state the compound dissociates at temperatures high enough 

to achieve the necessary atomic mobility for sintering to occur. Under conventional pressureless 

sintering conditions the rates of dissociation versus sintering (densification) are such that high 

weight losses caused by thermal decomposition of both Si3N4 and the SiO2-rich liquid phase 

responsible for the densification process and low theoretical densities result [55,56]. Greskovich et 

al., discovered that a N2 overpressure would help to suppress the dissociation reactions and permit 

sintering to near full density, with little weight loss. In order to suppress the dissociation of Si3N4 

some conditions are necessary: (1) Use ultrafine powders (increases the thermodynamic driving 

force for sintering and reduces diffusion distances). (2) Use sufficiently high nitrogen pressure, to 

keep the system to the right of the solid-liquid coexistence boundary [56]. (3) Prevent silicon vapor 

loss from the system. (4) Have some oxygen present in the system by adding sintering aids (metal 

oxides or non-oxides additives) [55].  

The role of nitrogen pressure in thermal decomposition of Si3N4 is illustrated in Fig. 1.6, 

which shows the stability diagram for Si3N4 in equilibrium with Si and N2. From a practical point of 

view, safe sintering processes require a nitrogen pressure that is higher than the equilibrium 

pressure of N2 according to Eq. (1.2), since silicon nitride decomposes at high temperatures, above 

1500C, into silicon and nitrogen [18,56]. 

 

 Si3N4 (s)  3Si (l) + 2N2 (g)                                                                                                        (1.2) 

 

The set of lines from lower right to upper left are isotherms and the solid curve from lower 

left to upper right is the condensed silicon/silicon nitride/gas coexistence boundary that depicts 

nitrogen pressures above which silicon nitride exists as a solid if silicon vapor is not removed from 

the system. 
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Fig. 1.6. Stability diagram for Si3N4 in equilibrium with Si and N2. The cross-hatched area 

exhibit the region of sinterability determined experimentally [56].  

 

 

According to Ziegler et al., the addition of sintering aids that forming a suitable liquid, is the 

most important step in the densification of Si3N4. Moreover, if the liquid phase promotes good 

wettability and solubility of Si3N4, densification can be described according to the mechanisms of 

liquid phase sintering formulated by Kingery: rearrangement, solution-diffusion-precipitation, and 

coalescence [12,57]. 

As point out for Kingery, the driving force leading to densification during sintering in the 

presence of a liquid phase is the over-all surface energy, which markedly accelerates the sintering 

rate and the material transport phenomena [57]. 

The sintering additive reacts with the phases containing oxygen, SiO2 or oxynitride, which 

are always present on the particle surfaces of commercially available Si3N4 powders, to form the 

liquid phase. Impurities in the starting powder are often also incorporated in this silicate melt. 

Depending on the amount and viscosity of liquid phase at sintering temperature, rearrangement 

processes will occur induced by capillary forces. The degree of densification in this first stage is 

mainly dependent on the particle size, shape and distribution, as well as solid contacts formed by 

neck formation during heating, and the amount and viscosity of the secondary phase [58]. 
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With increasing temperature, the rearrangement efficiency decreases and the solution-

diffusion-precipitation process becomes dominant. The driving force in this second stage is the 

higher solubility at the contact points of the particles caused by capillary forces as well as the 

differences in the chemical potentials between small and large particles, which lead to an enhanced 

solution of small particles. As a result of the accelerated diffusion of the dissolved species in the 

silicate liquid compared to that of self-diffusion in Si3N4 (the diffusion rate is increased by about ten 

orders of magnitude), the densification rate is essentially increased. In addition, these processes can 

be accelerated by the simultaneous application of external pressure, as in the case of hot-pressing 

and hot isostatic pressing [12]. 

High α–amount ( 95%) is usually employed because it becomes thermodynamically 

unstable at temperatures  1400 °C causes an enhancement of the solution and exhibits the tendency 

to transform into the stable β–phase.  

Moreover, precipitation of the dissolved material from the liquid phase is affected by the 

phase composition of the starting material, for example, if the starting powder contains a large 

number of β–particles, the fine particles start to dissolve due to their higher chemical potential. The 

dissolved species continuously precipitate on the coarser original β–particles under nearly 

equilibrium conditions in such a way that their surface energy is minimized leading to large 

spherical or equiaxed grains. If, however, the starting powder contains only a low concentration of 

β–grains, high supersaturation in the liquid phase (with respect to β–Si3N4) is created locally due to 

the lack of sufficient β–nuclei, resulting in a spontaneous nucleation and crystallization of 

idiomorphic rod-like β–grains, far from the thermodynamic equilibrium. This type of elongated β–

morphology prepared from α–Si3N4–rich starting powders, and is very important for the mechanical 

properties [12]. 

The third stage of the liquid-phase sintering process is coalescence, which gives nearly no 

contribution to further densification. In this stage, however, grain coarsening takes place which - 

due to the effort to minimize the surface energy - is in many cases accompanied by an unfavorable 

change in morphology from the idiomorphic rod-like to a more equiaxed grain structure.  

The liquid silicates solidify during cooling mostly to amorphous or partially crystalline 

phases, which are arranged at the grain boundaries in thin layers or at the grain-boundary triple 

junctions, and this strongly affects the high-temperature properties of ceramic components. The 

resulting microstructure is schematically shown in Fig. 1.7 [12]. 
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Fig. 1.7. Microstructure of Si3N4 components resulting of the increasing in the temperature: 

schematic representation (on the top); original SEM images resulting of this study. 

 

 

Si3N4–Y2O3–MgO System 

Although the transformation of α  β–Si3N4 is a widely known phenomenon the formation 

of a specific grain size and aspect ratio is not an easy controlled process.  

The chemistry and quantity of the liquid phase, along with the characteristics of the starting 

powders and processing conditions, are the key factors in determining the microstructure and 

properties of silicon nitride parts [59]. 

According to Pyzik and Beaman, self-reinforced silicon nitrides has been developed based 

on the Si3N4–Y2O3–MgO–CaO system where the yttria acts as a conversion aid, magnesia as a 

densification aid, and calcium oxide as a whisker growth-enhancing agent [18]. The mixture of 

these components can alter the glass chemistry enable the formation of microstructures with grains 

having varying size, aspect ratio, and quantity. The microstructure evolution as a function of glass 

chemistry is schematically illustrated in Fig. 1.8 [59]. 
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Fig. 1.8. Schematic illustration of microstructure evolution as a function of glass chemistry.  

 

 

The microstructure of Si3N4 ceramics produced from low viscosity glass (MgO) are 

characterized by large grains, owing to the low viscosity glass provides rapid mass transport and 

supersaturation. Additionally, the number of grains is low, since the small grains dissolve in the 

glass by Ostwald-rippening mechanism. In high-viscosity systems (Y2O3), slow mass transport in 

the glass causes a reduction in the rate of grain growth, leading to higher number of grains, smaller 

size and broader distribution, due to reduced solution-reprecipitation process. 

The presence of elongated grains in Si3N4 is a necessary, but not sufficient condition for 

improved properties [59]. 

 

1.4 Max phases materials 

 

Ternary compounds, commonly referred to as MAX phases, with the general formula 

Mn+1AXn; where n = 1, 2, or 3, M is an early transition metal, A is an A-group element (mostly 

IIIA and IVA), and X is carbon and/or nitrogen, see the hexagonal structure with space group 

P63/mmc illustrated in Fig. 1.9, which present a combination of metallic, covalent, and ionic 

bonding [60,61,62]. 

They are sometimes termed metallic ceramics [63], since they combine several important 

properties of metals and ceramics, such as high mechanical strength, good plasticity and high 
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thermal expansion and electrical conductivity, which can be connected with the metallic nature of 

the bonding, as well, their layered structure [64]. 

 

 

Fig. 1.9. Crystal structures of Ti2AlC (on the left) and Ti3AlC2 (on the right) [65]. 

 

 

The Al–Ti–C ternary system, Fig. 1.10, comprises three complex carbides: Ti2AlC, Ti3AlC 

and Ti3AlC2. Ti2AlC is the most stable ternary phase (homogeneous composition Ti2AIC0.69 at 

~1300oC, but melts incongruently at ~1625 + 10 oC) [66]. It is readily machinable, thermal-shock 

resistant, thermally and electrically conductive, anomalously soft (Vickers hardness of 4.5 GPa) and 

damage tolerant as metals. On the other hand, like ceramics, Ti2AlC has a relatively low coefficient 

of thermal expansion (8.2 x10-6 ºC-1), and it is refractory, elastically stiff (Young’s modulus of 277 

GPa) and exceptionally oxidation-resistant, combined with the highest melting point ~1625 ºC, 

lightweight and oxidation resistant, one can expect its use as high-temperature structural material 

[64,65,67].  
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Fig. 1.10. Isothermal section for the entire composition range of Ti-Al-C ternary system 

[66]. 

 

 

According to Radovic and Barsoum, Ti2AlC is the most oxidation-resistant MAX phase 

because it forms a stable and protective Al2O3 layer in oxidizing environments that can withstand 

thermal cycling up to 1350 °C for 10.000 cycles without cracking (Fig. 1.11) [60]. This very well 

adhered oxide layer exhibits a high density and that will slow down diffusion of more oxygen and 

therefore prevent further oxidation [68].  

 

 

 

Fig. 1.11. Application of max-phases: (a) Ti2AlC-based heating element resistively heated to 

1450 °C in air. (b) Micrograph of the Al2O3 oxide layer after 10.000 thermal cycles up to 1350 °C 
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showing no spallation or cracking of the oxide layer [60]. 

 

 

An intriguing aspect of the MAX phases is that when a cyclic loading in compression or 

tension is applied results in spontaneously reversible hysteretic loops whose shape and size are 

strong functions of grain size [69]. This nonlinear elastic behavior can be related to the basal plane 

dislocations (BPD), which are mobile, abundant, and able to multiply in the MAX phases at 

ambient temperatures. However, they are constrained to the basal planes, which results in an 

important micromechanism based on the formation, growth, and annihilation of incipient kink 

bands (IKBs), i.e., plastic instability, or buckling during cyclic loading. 

A simplified version of the actual model is presented herein in; a more detailed exposition 

can be found elsewhere [70].   

When the MAX phases are loaded, initially the “soft” grains deform - those with basal 

planes favorably oriented for easy slip - causing the “hard” grains (red grains in Fig. 1.12d-f) to 

develop incipient kink bands (IKB, Fig. 1.12d). The latter are coaxial dislocation loops that, as long 

as their ends are not sundered, are spontaneously and fully reversible. With further increase in 

applied load, if the polycrystal does not fail by shear band formation or fracture, the IKBs result in 

mobile dislocation walls (MDW, Fig. 1.12e) and ultimately permanent kink bands that lead to 

delamination (Fig. 1.12f-g) at the individual grain level and considerable plasticity [60]. 

 

 

 

Fig. 1.12. Application Schematic representation of kink band formation: (a) elliptic subcritical 

kink band (KB); (b) Formation of incipient kink band (IKB) in hard grains; (c) Schematic of the 

stress-strain hysteresis loop due to formation and growth of IKBs during loading and their 
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annihilation during unloading; (d) IKBs in hard grains (fully reversible at this stage); (e) Multiple 

mobile dislocation walls in a large grain; (f) Permanente kink bands (KBs); and (g) Field-emission 

scanning electron microscope image of a bridged crack in a coarse-grained Ti3SiC2 microstructure 

showing a significant amount of delamination [69].  

 

 

Given the remarkable set of properties that the MAX phases exhibit, especially their high-

temperature stability, thermal shock resistance, damage tolerance, good machinability, and the 

exceptional oxidation resistance makes Ti2AlC promising for high temperature applications, as gas 

burner nozzles in corrosive environments, high temperature bearings, cladding materials in lead-

cooled fast-breeder nuclear reactors, high temperature electrodes, among others [60,64].  

In this work, we development of Ti2AlC foams by gelcasting method using an 

environmentally friendly biopolymer (agarose) as gelling agent, in order to explore the potentiality 

of cellular Ti2AlC in several industrial applications such as hot gas filters, solid/liquid separation 

devices, catalyst supports and thermal insulators.  
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II EXPERIMENTAL 

2. Silicon nitride foams from emulsions 

 

E. G. de Moraes and P. Colombo, “Silicon nitride foams from emulsions”, manuscript 

partially published in: Mater.  Lett., 128 (2014) 128–131. 

 

2.1 Introduction 

 

High performance ceramics, with cellular structure and containing more than 60 vol% of 

interconnected porosity, find application particularly where the transport of fluids is required, e.g. 

molten metal and gas filtration at high temperature, gas-burner media, catalyst support, pollutant 

removal from gaseous or liquid streams [16]. Among non-oxide ceramics, Si3N4 is one of the most 

widely used structural ceramic materials because of its outstanding properties, such as high strength 

and Young’s modulus, fracture toughness, hardness, wear resistance, refractoriness, corrosion and 

oxidation resistance [79], and low density and expansion coefficient, reasonably high thermal 

conductivity and good resistance to thermal shock [7,10,11]. However, the high cost of production 

(generally requiring pressure sintering) is a significant problem limiting the use of Si3N4–based 

ceramics to specialized, high value applications. Concerning porous Si3N4, various methods of 

processing, such as partial sintering [12,13] and reaction sintering [14,15], sacrificial templating 

using starch consolidation [16], direct foaming [17], gelcasting [18] and preceramic polymers [19] 

have been used to obtain components to be used in various applications. In particular, porous Si3N4 

is good a candidate for Diesel Particulate Filters [20,21], membrane/catalysts supports, and reactor 

beds [22].  

Recently, emulsions have been used as efficient intermediates in the production of porous 

materials via direct foaming processes [2,23,24]. They consist of two immiscible fluids, one being 

dispersed in the other, in the presence of surface active agents [25], and are thermodynamically 

unstable because of their large oil-water interfacial area and thus high overall free energy. Therefore 

surface active agents (e.g. surfactants or proteins) are used to reduce the free energy of the system 

[2628]. The objective of the present work was the development of porous Si3N4 ceramics 

employing an emulsion approach that would lead to foams with highly interconnected pores by 

conventional pressureless sintering.  
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2.2 Experimental procedure 

 

Si3N4 powder from Yantai Tomley (China), purity > 90%, oxygen content 7.4 ± 0.08 wt%, 

average particle size 0.6 m, BET 9.6 m2/g, containing above 91.5% of α– Si3N4 phase, was used. 

The equilibrium pHiep 8.2 ± 0.01 of the powder was measured after 24 h aging in water, following 

the procedure reported in Ref. [29]. High purity Y2O3 (d50 = 50 nm, Inframat (USA)), and MgO (d50 

= 4.6 m, Bitossi (Italy)), were used as sintering additives (5 wt% for both additives) [30]. The 

powder mixture was wet-milled in ethanol for 4h at 300 rpm using a planetary mill and silicon 

nitride cylinders, dried, sieved through a 300 m screen and then treated in air at 600 °C for 2h to 

improve the aqueous dispersibility [31,32]. Polyacrylic acid (PAA 1 wt% based on the powder 

content, Sigma-Aldrich, Italy) was used as dispersing agent. Polysorbate (0.22 vol% with respect to 

the suspension volume, Tween 80, VWR BHD Prolabo, UK), was used as nonionic surfactant. 

Water-based Si3N4 slurries with 35 vol% of solids concentration and containing PAA were prepared 

by ball milling for 2 hours at 200 rpm.  Afterwards, the emulsification process took place at room 

temperature by addition of the alkane phase (70 vol% of octane or decane, Sigma-Aldrich, Italy), 

and the mixture was stirred at 700 rpm for 3 minutes. The emulsions were poured in a Teflon mould 

and dried at ambient conditions for 24 h. Sintering was conducted in two steps: first the samples 

were pre-calcinated in vacuum at 800 °C (2h; 0.85 °C/min heating rate), to decompose the organic 

phase; secondly, the samples were heated to 1600 °C (3h, 2 °C/min heating rate) under 99.99 % N2 

[30]. In order to investigate the influence of the temperature in the α β transformation, as well 

mechanical strength a set of samples were sintered in three steps and heated to 1700 °C (3h, 2 

°C/min heating rate) under static N2, in a graphite furnace. 

The crystalline phases were determined on powdered samples by X-ray diffractometry 

(Philips PW 1710; CuKα, 40 kV, 40 mA, 0.05°, 2s). The data were analyzed utilizing the ICSD 

database, and the weight fractions of the α– and β–Si3N4 crystalline phases were evaluated by the 

method described in Ref. [33]. The microstructure of the Si3N4 based foams was investigated by 

scanning electron microscopy (FEI Quanta 200, FEI Italia, Milan, Italy). Additionally, in order to 

investigate the influence of the sintering additives and temperature on the microstructure of the 

Si3N4 foams and rod-like β–grains, a set of samples were characterized by a Schottky-type field 

emission transmission electron microscope (TEM, JEM-2100F, JEOL, Tokyo, Japan) operated at 

200 kV, equipped with an energy-dispersive X-ray spectroscopy (EDX) detector. Electron 

diffraction (ED) data were collected using a LaB6 based transmission electron microscope (TEM, 

JEM-2100, JEOL Ltd, Tokyo, Japan) at 200 kV. For TEM study, the sample was crushed into 
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powder and dispersed in ethanol. Cell size and cell windows sizes were measured by the linear 

intercept method (ASTM E112-12), using an image analysis program (Axio Vision LE). The 

average values were obtained considering stereological relations (ASTM D3576-98). The total 

porosity were calculated from the weight-to-volume ratio of the samples, while the open porosity 

and bulk density were measured using a mercury porosimeter (Pascal 140/440 Porosimeter 2000, 

Germany). The mechanical behavior of the Si3N4 based foams was determined by uniaxial 

compression using a universal testing machine (Instron 1121, Instron Danvers, MA; ASTM C133-

94; 1.0 mm/min cross-head speed). Five to ten specimens of 101010 mm3 size, cut from larger 

50x12 mm3 disks, were tested for each sample. The permeability of the Si3N4 based foams was 

evaluated using Forchheimer’s equation for compressible fluids: 
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in which Pi and Po are, respectively, the absolute gas pressures at the entrance and exit of the 

sample, vs is the superficial gas velocity, determined by dividing the exiting volumetric flow rate Q, 

by the sample face area A exposed to flow, L (0.5 - 0.8 cm) is the sample’s thickness,  is the gas 

viscosity (1.77x10-5 Pas); and  is the gas density (1.15 kgm-3), evaluated for the pressure Po = 760 

mmHg and T = 24 °C. The parameters k1 (expressed in square meters) and k2 (expressed in meters), 

are respectively known as Darcian and non-Darcian permeability coefficients, in reference to 

Darcy’s law, which establishes a linear dependence between P and vs. These coefficients weigh 

the contributions of viscous and inertial losses on the total pressure drop, i.e., the influence of 

viscous and inertial interactions between fluid and the porous medium [34].The contribution of the 

porous structure in Eq. (2.1) is quantified by the thickness L and permeability parameters k1 and k2, 

which are complex functions of the morphology, size distribution, connectivity and volume of the 

void fraction [35]. The terms k1 and k2 are usually referred as constants, since they are supposed to 

be independent of the body dimensions and of both fluid and flow conditions, even though they 

may vary with temperature. 

The first term of Forchheimer’s equation, (/k1)vs represents viscous energy losses due to 

friction between fluid layers and prevails at low fluid velocities. On the other hand, the quadratic 

term, (/k2)vs
2, which is not considered by Darcy’s equation, although it becomes increasingly 

significant at high-speed flow rates, and represents the kinetic energy losses due to changes in the 

direction of motion and to acceleration or deceleration of the fluid caused by changes in the flow 

path (contraction or enlargement of the pore section or pore tortuosity along the flow 
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direction)[34,35]. The knowledge of the predominant relationship (linear or quadratic) for the 

pressure drop curve is critical for designing the best driving equipment for fluid flow in a given 

application [36]. 

The experimental evaluation of permeability parameters was carried out with air/argon flow 

in temperatures ranging from ~ 25 to ~ 650 °C in a laboratory-made hot gas permeameter described 

elsewhere (see Appendix B.6, Fig. B.1). Two to three disks of ~25 mm of diameter and ~6 mm of 

height were tested for each sample.  The air/gas was forced to flow in stationary regime through the 

cylindrical samples had their lateral surface previously sealed (with Teflon tape or thermal paste 

depending on the temperature of permeability test), to allow the air flow to occur only in the top-

bottom direction. The air/gas velocity was varied between 0 to 6.5 m/sec, using a valve associated 

with a rotameter. A digital manometer was used to measure the pressure before and after the 

sample. Following this procedure, a curve (Pi
2- Po

2)/2PL versus air/gas velocity was obtained. This 

allowed k1 and k2 values to be adjusted according to the Forchheimer’s equation (2.1) [34,36,37].  

 

2.3 Results and discussion 

 

The X-ray diffraction patterns of the as prepared and sintered Si3N4 foams are reported in 

Fig. 2.1. The main phase was α–Si3N4 in both as prepared and sintered at 1600 °C, and a slight 

increase in the β–phase was observed after sintering in this temperature, from 12.9% for the as 

received powders to 28.6% in the sintered foams. When the temperature is increased up to 1700 °C 

we observe almost totally β–phase transformation around ~98% as estimated based on the ratio of 

the intensities of the [210] peak for both phases (located at 35.3 2 for the alpha phase and at 36.1 

2 for the beta phase), using a normalizing factor, L, to correct the peak intensities from errors due 

to extinction and preferred orientations [33]. The latter can be explained by the α to β phase 

transformation that starts occurring at temperatures exceeding 1500 °C, in the presence of a liquid 

Y2O3-MgO-containing phase through a solution-reprecipitation mechanism that involves the 

solution of α– and formation of β–phase, but occurs with little transport of material and hence with 

little densification due to highly viscous liquid formed [3840]. The peaks relative to the sintering 

aids disappeared almost completely after heating, because of their incorporation into an amorphous 

intergranular phase enhancing the homogeneous distribution of liquid phase at the grain boundary 

[41].  
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Fig. 2.1. XRD patterns for un-sintered and sintered Si3N4 foams containing 5 wt% Y2O3 and 5 

wt% MgO. (ICSD α–Si3N4 # 041-0360, β–Si3N4 # 033-1160, Y2O3 # 043-0661, MgO # 045-0946). 

 

 

The morphology of the Si3N4 foams emulsified with the different alkanes featuring spherical 

and homogeneously distributed cells and presenting brittle struts is reported in Fig. 2.2. The 

microstructure of these surfactant stabilized foams shows the presence of highly interconnected 

pores (open cells), that can be related to the aggregation of two or more bubbles that clump 

together, possibly touching at some points due to Brownian motion. Additionally, stirring cause 

rupture of thin liquid films between the bubbles enhancing to coalescence and formation of larger 

bubbles during drying [42] in contrast to particle stabilized Si3N4 based foams which possess closed 

pores [43], because the displacement of powder from the interface is thermodynamically 

unfavorable, as explained in reference [2]. A weak degree of packing can be observed between the 

particles in the un-sintered foams, see Fig. 2.2c for octane and Fig. 2.2f for decane foams, due to 
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absence of a binding agent and the fact that no pressure was applied to consolidate the green body. 

Octane and decane un-sintered foams had different average cell sizes (36  1.4 m and 58.3  2.3 

m, respectively, see Table 2.1). Occasional larger cells, deriving from trapped air, were also 

observed in some samples. A distribution in the average cell size values (from 23 to 94 m) was 

observed depending on the sample, and in some instances on the region from where the sample was 

cut, with an associate variation in relative density.  

The average cell size and cell window size, the total porosity and the mechanical strength 

values (see later) of Si3N4 un-sintered and sintered foams are summarized in Table 2.1. 

 

 

 

Fig. 2.2. SEM images of the fracture surface of Si3N4 un-sintered foams: Octane foam a) and 

b) general view; c) higher magnification. Decane foam d) and e) general view; f) higher 

magnification (detail of weak packing of particles on cell walls and struts for both alkanes). 

 

 

The explanation for the observed differences can be twofold. First of all, as according to 

Barg [44] the droplet size is independent of the alkane chain length but since decane has a ~10 

times lower vapor pressure than octane, we can posit that the slower evaporation can allow for 

coalescence of the liquid bubbles after foaming, increasing the cell size. The interplay between the 

setting of the foam by evaporation of the oil phase and the time allowed for the destabilization 

phenomena of the liquid foam (Ostwald ripening and drainage) controls the cell size and cell size 
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distribution. Another possible explanation for the variation in cell size is the emulsification process 

itself, which includes two steps: 1) deformation and disruption of droplets, 2) stabilization of the 

fresh interface by the emulsifier to prevent re-coalescence. The mean droplet diameter of the 

emulsions after their production is the result of an equilibrium between droplet break-up and re-

coalescence. Emulsion droplets move as a result of Brownian motion and turbulence in the 

emulsification system, and this leads to collision between droplets and re-coalescence (so called 

“over-processing”) [45,46]. 

Sintering did not affect the foam morphology, and the spherical and interconnected open 

cells microstructure was maintained, as showed in Fig. 2.3 for Si3N4 octane foams sintered at 1600 

°C. The average cell size was 31.0  1.1 m and the cell window size was 6.0  0.8 m, 

respectively (see Table 2.1). A linear shrinkage of 13% was measured for the sintered samples, and 

the amount of total porosity was on the average ~80 vol% the un-sintered and ~75 vol% for the 

sintered samples, indicating the retention of a large amount of intergranular porosity after sintering, 

as visible in Fig. 2.3b. Mercury porosimetry analysis conducted on a selected sample confirmed the 

presence of cell wall porosity (with a ~0.7 µm size for an octane foam with an open porosity of 70.9 

vol% and showed that the amount of closed porosity in that foam was of the order of only ~4 vol%. 

The size distribution for the microporosity in cell walls and in the struts, as well as for the cell 

windows obtained by the mercury intrusion method is reported in Table 2.2. According to the 

literature [14,38], the combination of Y2O3 and MgO should enable good sintering at moderate 

temperatures, such as the ones used in these experiments, but the low compaction of the Si3N4 

powders in the cell walls of the un-sintered foams most probably contributed to the retention of cell 

wall porosity after sintering, affecting the mechanical strength.  Note the neck formation between 

particles in Fig. 2.3c. According to Hampshire et al. [38], solution of α into the oxynitride liquid 

occurs preferentially at the contact areas between particles for both additives. With MgO, rapid 

transport of material (low-viscosity glass) allows precipitation of β on the free surfaces, 

consequently, the distance between particle centres is reduced and densification occurs. While the 

diffusion through the highly viscous liquid is relatively slow and appreciable precipitation of β–

occurs in the contact areas without significant material transport i.e., the transformation takes place 

without much densification (see Fig.2.3d, typical rod-like β–Si3N4 grains presenting aspect ratio 

~4.0 ± 0.6). 
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Fig. 2.3.  SEM images of the fracture surface of Si3N4 sintered octane foams: a) general view; 

b) higher magnification (detail of cell wall porosity and struts); c) TEM images of the neck 

formation; and d) detail of typical rod-like β–Si3N4 grains. 

 

 

Figure 2.4 shows the highly interconnected network of spherical cell morphology 

homogeneously distributed (general view, Fig. 2.4a), and strut structure presenting residual 

microporosity (~0.9 m, see Table 2.2) on the cell walls (see Fig. 2.4b) of sintered decane foams, 

since the transformation αβ occurs with little densification [38]. The average cell size was 55.0  

2.0 m and the cell window size was 8.6  1.2 m (see Table 2.1), respectively. Note that these 

values are slightly higher than those for octane foams owing to coalescence mechanism. The alkane 

concentration mainly influenced the amount of total porosity, around 74.0  2.0 vol% (analogous to 
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octane foams). Figure 2.4 c shows TEM images of the neck formation between particles during 

sintering at 1600 °C. HRTEM images (Fig. 2.4d) report high degree of crystallinity into individual 

α–Si3N4 grains. Note the presence of amorphous thin layer on their surface ~1.3 nm thick, as a 

result of the liquid phase formation during sintering.  

 

 

 

Fig. 2.4. SEM/TEM images of the fracture surface of Si3N4 sintered decane foams: a) 

general view; b) higher magnification (detail of cell wall porosity and struts); c) TEM images of the 

neck formation; and d) detail of the degree of crystallinity and amorphous thin layer on the α–Si3N4 

grain surface. 
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Figure 2.5 presents TEM images of the typical rod-like β–Si3N4 grains exhibiting aspect 

ratio of ~ 5.0 ± 0.7 (on the left) and high degree of crystallinity reported in the HRTEM images (see 

insets on the right). Note the EDX reporting the presence of yttrium (~0.72%) that comes from the 

initial composition and aluminum (~0.66%) as a contamination. 

 

 

 

Fig. 2.5. TEM images of the typical rod-like β–Si3N4 grains precipitated in the cell walls 

and struts of decane foams during sintering at 1600 °C: general feature (on the left); HRTEM 

images showing the degree of crystallinity (inset in detail, on the right); also the EDX result of β–

grains illustrated the chemical composition. 

 

 

Figure 2.6 presents TEM images of the typical rod-like β–Si3N4 grains exhibiting tip-body 

morphology with aspect ratio of ~ 5.7 ± 1.2 (on the left). Moderate degree of crystallinity reported 

in the HRTEM images (see insets on the right), as evident discontinuance of the stack of planes and 

presenting diffuse halo diffraction pattern that indicates poor crystal region characterized by low 

order [47]. Note the presence of amorphous thin layer on the β–grain surface (~1.28 nm thick for 

tip, and ~1.07 thick for body). The EDX resulting of β–Si3N4 grains shows contamination of 

aluminum (~0.50%) on the tip and zirconium (~0.86%) on the body. 
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Fig. 2.6. TEM images of the typical rod-like β–Si3N4 grains precipitated in the cell walls 

and struts of decane foams during sintering at 1600 °C: general feature presenting tip-body 

morphology (on the left); HRTEM images presenting diffuse halo diffraction pattern that indicates 

scattering from poor crystal region (inset in detail, on the right); also the EDX result of β–grains 

illustrated the chemical composition. 

 

 

The influence of the temperature on the morphology of the Si3N4 foams emulsified with 

different alkanes featuring highly interconnected spherical cell morphology is reported in Fig. 2.7. 

Typical rod-like β–Si3N4 grains exhibiting aspect ratio between ~9.0 ± 2.0 to ~11.0 ± 5.0 (see Fig 

2.7. c and f), and also the presence of residual porosity on cell wall and strut structure (probably due 

to the interlocking of β–grains), see Table 2.2. Note that when the temperature is increased up to 

1700 °C the amount of porosity is maintained almost the same about ~ 74 vol% for octane and 76 

vol% for decane foams, respectively. Note that the sintering temperature slightly influences the 

average cell and window size, around 28.0  5.0 m and 7.8  1.3 m, respectively, for octane 

foams, and around 45.6  4.0 m and 9.8  1.4 m, respectively, for decane foams (see Table 2.1). 

As reported by Park et al. [48], at higher heat temperature, fine precipitates of β–Si3N4 

grains and large pores are observed together. The latter formed by the spread of liquid phase 
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between the surrounding α–Si3N4 grains that enable extent of the interfacial area between α–Si3N4 

particles and the molten and, consequently, in an increased nucleation site of β–Si3N4 precipitates. 

 

 

 

Fig. 2.7. SEM images of the typical rod-like β–Si3N4 grains precipitated at cell walls and 

struts of the foams emulsified with the different alkanes during sintering at 1700 °C: octane foam a) 

and b) general feature, c) higher magnification; decane foam d) and e) general feature, f) higher 

magnification (detail of interlocking of the β–grains on cell walls and struts for both alkanes).  

 

Figure 2.8 presents TEM images of the neck formation between α–grains of Si3N4 octane 

foams sintered at 1700 °C. HRTEM images (see inset on the right) reporting high degree of 

crystallinity into α–Si3N4 grains and also presence of amorphous thin layer ~1.0 nm on the α–grain 

surface. Note the EDX exhibiting aluminium (~1.03%) and zirconium (~0.88%) as contaminants.  
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Fig. 2.8. TEM images of the neck formation between α–Si3N4 grains of octane foams 

sintered at 1700C: general feature (on the left); HRTEM images reporting detail of degree of 

crystallinity (on the right), also amorphous thin layer on the grain surface; also the EDX result of α–

grains illustrated the chemical composition. 

 

 

Figure 2.9 presents TEM images of the typical rod-like β–Si3N4 grains of Si3N4 octane 

foams sintered at 1700 °C. Note that in this system with the increase in the temperature we 

observed the development of ~98% of β–Si3N4 without significant densification. β–grains 

exhibiting aspect ratio of ~ 11.0 ± 5.0 (on the left) and high degree of crystallinity are reported in 

the HRTEM images, even if their surface present a thin amorphous coating of less than 1 nm thick 

(see inset on the right). Note the EDX presenting carbon from the C film and copper from the Cu 

grid. 
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Fig. 2.9. TEM images of the typical rod-like β–Si3N4 grains of octane foams sintered at 

1700 °C: general feature (on the left); HRTEM images (on the right) reporting detail of degree of 

crystallinity and presence of amorphous coating on the surface; also the EDX result of β–grains 

illustrated the chemical composition. 

 

 

Figure 2.10 presents TEM images of the neck formation between α–grains of Si3N4 decane 

foams during sintering at 1700 °C. HRTEM images reporting high degree of crystallinity (see inset 

on the right). Note the presence of amorphous thin layer (~2.3 nm thick) coating the surface of the 

α–Si3N4 grains, as a result of the liquid phase formation during sintering. The EDX shows presence 

of magnesium (~0.83%)  that comes from the initial composition and aluminium (~1.34%)  as a 

contamination.  
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Fig. 2.10. TEM images of the neck formation between α–Si3N4 grains of decane foams 

sintered at 1700 °C: general feature (on the left); HRTEM images reporting detail of degree of 

crystallinity and presence of amorphous coating on the surface of grains (on the right); also the 

EDX result of α–grains illustrated the chemical composition. 

 

 

Figure 2.11 presents TEM images of the typical rod-like β–Si3N4 grains of Si3N4 decane 

foams during sintering at 1700 °C. β–grains exhibiting aspect ratio of ~ 9.0 ± 2.0 (on the left) and 

high degree of crystallinity and presenting an amorphous thin layer (less than ~1.0 nm) on their 

surface are reported in the HRTEM images (see inset on the right). Note the EDX presenting carbon 

from the C film and copper from the Cu grid. 

According to Park et al., the samples heat treated at temperatures around 1600 °C are more 

slowly transformed than above 1700 °C. This seems to be resulted from the differences of the 

dissolution rate of α–Si3N4 grains; also the material transport required for the αβ transformation is 

occurred more easily at elevated temperature. Therefore, the rate of transformation is increased with 

heat treating temperature which results in elongated β–Si3N4 grains [48]. 
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Fig. 2.11. TEM images of the typical rod-like β–Si3N4 grains of decane foams sintered at 

1700 °C: general feature (on the left); HRTEM images (on the right) reporting detail of degree of 

crystallinity and presence of amorphous thin layer; also the EDX result of β–grains illustrated the 

chemical composition. 

 

 

 Compressive strength as a function of total porosity is reported in Fig. 2.12 for Si3N4 foams 

emulsified with different alkanes and sintered at 1600 °C. The values increased from ~5 to ~21 

MPa for foams produced using octane, when porosity decreased from ~75 to ~71 vol%, and ranged 

from ~7 to ~20 MPa for foams produced using decane, when porosity decreased from 77 to 71 

vol%. The variation in density and strength among samples processed in similar conditions reflects 

the inhomogeneity deriving from the emulsification process and the effect of an important 

processing variable such as the evaporation rate of the oil phase, which requires a strict control of 

the ambient temperature. Nevertheless, the strength values for these samples were higher than those 

of foams with similar total porosity produced by most other methods, and comparable to those of 

foams obtained by particle stabilization [43]. 



57 

 

 

 

Fig. 2.12. Compressive strength of sintered Si3N4 foams as function of total porosity. 

 

 

In order to investigate the influence of temperature on the strength, Fig. 2.13 shows a 

comparison between the compressive strength as a function of total porosity of Si3N4 decane foams 

sintered at different temperatures. It is noteworthy to observe that the Gibson-Asbhy model seems 

to provide a better fit for most of the data for the produced foams, although the assessment of the 

specific reason for this behavior would require the analysis of a much larger database, which is 

outside the scope of this work.  
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Fig. 2.13. Compressive strength of sintered Si3N4 decane foams as function of relative 

density. Comparison between MSA and GA models and experimental data. 

 

 

As already pointed out, when the temperature increase to 1700 °C, we observe the 

stimulated development of ~98% βSi3N4 elongated rod-like grains, which are beneficial for 

strengthening by grain bridging and pullout. High strength values about ~ 28 MPa was obtained for 

decane foams  sintered at high temperature 1700 °C,  which indicates that fine-sized, fibrous Si3N4 

grains favor high strength in porous Si3N4 ceramics, differently of  large grains, obtained at 1600 

°C, when little transformation occurred, and a wide range of strength was observed.  Similar 

behavior was observed by Yang et al., an increasing in the flexural strength as a result of fibrous β–

Si3N4 [11]. Besides the formation of elongated grains, the increase in strength with increasing 

temperature could also come from an increased degree of bonding between grains, since with 

increasing sintering temperature diffusion is enhanced. 

However, the occurrence of the large elongated grains does not guarantee the toughening 

mechanism [40]. For the crack-bridging toughening effect to occur, the reinforcing elongated grains 

must debond from the small matrix so that the crack tip is deflected along the grain face instead of 

splitting the elongated grains, while leaving intact elongated grains to bridge the crack [49]. The 
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interfacial debonding process depends on the chemistry of the grain boundary phase, which is 

directly determined by the additive composition [50]. 

Table 2.1. Summary of the physical properties of the Si3N4 foams from the emulsification 

process.  

a Cumulative cell size distribution, d50, measured from SEM images using linear intercept method. 

b Calculated by assuming that the theoretical density of Si3N4 ceramic is 3.2 g cm−3. 

 

 

 

According to Díaz et al. [51], although attempts have been made to correlate the semi-

empirical equations fitting constants to the experimental data of materials microstructure, criticisms 

have been made in relation to weaknesses in background theory and as regards the reliability of the 

experimental data. In fact is difficult to relate equation parameters to the character of the porosity in 

terms of MSA and GA models and semi-empirical constants. 

 

 

Si3N4 foams 

(700rpm) 

d50 

Cell size, D a 

(m) 

Cell window 

size, d  

(m) 

Total 

Porosityb 

(vol%) 

Aspect 

ratio 

 

  

Compressive 

strength 

(MPa) 

Un-sintered foams 

70 vol% OCT 36.0  1.4 8.0  1.2 76.8  2.0 - - 

70 vol% DEC 58.3  2.3 13 2.2 83.1 1.0 - - 

Conventional Pressureless Sintering 1600 °C, N2 flow 

70 vol% OCT 31.0  1.1  6.0  0.8  73.6  0.4  4.0 ± 0.6 14.1  0.7 

70 vol% DEC 55.0  2.0 8.6  1.2   73.5  0.1 5.0 ± 0.7 13.1  0.5 

Conventional Pressureless Sintering 1700 °C, static N2 

70 vol% OCT  28.0  5.0 7.8  1.3 76.0  0.3 11.0 ± 5.0 24.0  0.1 

70 vol% DEC 45.6  4.0 9.8  1.4 74.0  0.1 9.0 ± 2.0 28.5  1.4 
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Table 2.2. Summary of results for the size of microporosity (in the cell walls and the struts) 

and cell windows, and for the porosity of Si3N4 foams from the emulsification process. Data were 

obtained from mercury intrusion measurements.  

a Value selected from the individual peaks of the multimodal pore diameter distribution. 

 

Figure 2.14 shows some typical permeability curves (pressure-drop versus air velocity), 

tested in air at different temperatures (from ~25 to ~650 oC), for Si3N4 foams emulsified using 

octane (on the left), and decane (on the high) sintered at 1600 °C. The resistances to flow of the 

samples slightly differ for different alkanes and exhibit the parabolic trend proposed by 

Forchheimer’s Eq. (2.1), which was confirmed by the exceptional correlation coefficient (R2>0.99), 

rather than the linear relationship between pressure drop and fluid velocity stated by Darcy’s law. 

The intensity of the quadratic term clearly increases at higher velocities (>1.0 m/s), showing that the 

inertial term is not irrelevant in permeability analysis. Furthermore, with the increasing in air 

temperature shifted the pressure drop to higher values and this behavior is related to changes in both 

fluid and medium properties [35,52,53]. The permeability constants k1 and k2 were obtained by 

fitting the pressure drop curves with Forchheimer’s equation (2.1), and are reported in Table 2.3.  

 

Si3N4 Octane 

foams (700rpm)  

Struts/cell wall 

average pore size 

a(m) 

Cell windows 

average size a 

(m) 

Bulk density 

(g/cm3) 

Total 

porosity 

(vol%) 

Open 

porosity 

(vol%) 

Conventional Pressureless Sintering 1600 °C, N2 flow  

70 vol% OCT 0.7 4.6 0.6320 ± 0.03 80.3 70.9 

70 vol% DEC 0.9 6.7 0.5884 ± 0.03 81.6 71.8 

Conventional Pressureless Sintering 1700 °C, static N2  

70 vol% OCT 2.7 6.5 0.7789 ± 0.03 75.7 67.1 

70 vol% DEC 2.6 8.9 0.8296 ± 0.04 74.2 70.1 
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Fig. 2.14. Pressure drop curves obtained at different testing temperatures for Si3N4 foams 

emulsified using octane (on the left), and decane (on the high) sintered at 1600 °C. 

 

 

With the increasing of the sintering temperature to 1700 °C, the morphology of the Si3N4 

foams emulsified with the different alkanes present typical rod-like β–Si3N4 grains, as already 

discussed. We also investigate the influence of this morphology on the permeability behavior. 

Figure 2.15 presents the pressure drop curves for Si3N4 foams emulsified using octane (on the left), 

and decane (on the high) tested in argon at different temperatures (from ~25 to ~650 °C). 

Permeability constants k1 and k2 were obtained by fitting the experimental data showed in Fig. 2.15, 

calculated from Eq. (2.1), using the least-squares method, see Table 2.3. Is interesting to note that 

these values slightly increased with the increasing of the sintering temperature, it can be related to 

the interlocking of β–grains (residual porosity on cell wall and strut structure, see Table 2.2). 

 

 

 

Fig. 2.15. Pressure drop curves obtained at different testing temperatures for Si3N4 foams 

emulsified using octane (on the left), and decane (on the high) sintered at 1700 °C. 
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In addition, experimental values of permeability constants k1 and k2 were then roughly used 

to compute the average pore size, using Ergun-like equations, originally developed for granular 

beds (spheres, cylinders, tablets, nodules, round sand, and crushed materials), as a function of the 

volumetric void fraction, i.e., porosity , and the equivalent particle size dp. However, for porous 

media in which the solid matrix is continuous and the constitutive particles/grains/fibres are not 

individually recognizable, similar relationships can be derived by replacing dp by the average pore 

or cell size dc. [54]. Therefore, Ergun’s equations for predicting average cell sizes could be 

expressed as [36]:  

 

dk c

2

1

150

25.2


                                                            (2.2) 

 

dk c

22

2

75.1

5.1


                                                                        (2.3) 

 

 Thus, the average cell size dc was estimated using the known the experimental value of k1 

(at R.T.) and ε, for Si3N4 foams emulsified using octane and decane sintered at different 

temperatures, as shown in Table 2.3. Note that these values are in accordance with those evaluated 

by mercury porosimetry for cell windows size. According to Biasetto et al., the best approximation 

for permeability constants k1 and k2 of microcellular ceramic foams was achieved for dc based on 

cell size rather than on window cell size [36]. 
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 Table 2.3. Summary of the constants k1 and k2 obtained by fitting the pressure drop curves 

with Forchheimer’s equation for the Si3N4 foams from the emulsification process. 

 

 

A comprehensive map that correlates the values of viscous and inertial constants and 

classifies a variety of porous media according to their permeability level and type of application 

was elaborated by Innocentini et al. [55]. Figure 2.16 shows such a map version that includes all 

values of k1 and k2 obtained in this work. It can be observed that the tested samples are in the range 

of magnitude typical for bodies produced by gelcasting of foams. An important aspect highlighted 

is that despite all the different processing techniques, fluids, and flow conditions used to assess 

permeability data, it is remarkable that a clear correlation between both permeability parameters 

Si3N4 foams from emulsion 

Octane foam 

1600 °C 
T oC k1(m

2) k2(m) dc (m) 

 

R.T 1.88E-12 3.85E-07 12.2 ± 0.7 

 

600 °C 2.15E-12 6.80E-08 - 

Octane foam 

1700 °C 
R.T 1.44E-12 3.54E-06 12.7 ± 0.8 

 

600 °C 2.05E-12 3.89E-07 - 

Decane foam 

1600 °C 
T oC k1(m

2) k2(m) dc (m) 

 

R.T 5.72E-12 1.00E-06 16.4 ± 2.8 

 

600 °C 3.24E-12 2.57E-07 - 

Decane foam 

1700 °C 

R.T 7.80E-13 1.82E-06 10.6 ± 1.4 

 

600 °C 1.63E-12 1.30E-07 - 
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could link porous media of totally different structural features.  

 

 

 

Fig. 2.16. Location of permeability data for Si3N4 foams emulsified using octane and decane 

sintered at different temperatures in a comprehensive data map available in the literature [55]. 

 

 

2.4 Conclusions 

 

Highly interconnected Si3N4 foams emulsified using alkanes were successfully produced. 

Total porosity higher than 70 vol% was achieved by incorporation of high amount of alkanes. 

Different alkanes (octane and decane) were used, but we observed slightly differences in cell size, 

and strength at moderate sintering temperature (1600 °C). The degree of the strut densification as 

well neck formation was limited, due to the low sintering temperature, resulting in strength values 

around ~5 to ~20 MPa. An increase in the final sintering temperature (up to 1700 °C) enable the 
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development of elongated β–grains precipitated at cell walls and struts of foams, which strongly 

influence the strength that increased up to ~28 MPa, at 74 vol% of porosity). 

Permeability evaluation shows that Si3N4 foams from emulsions are in the range of 

gelcasting foams and are suitable for filtering application. 
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3. Silicon nitride foams from emulsions sintered by rapid intense thermal radiation 

 

E. G. de Moraes, D. Li, P. Colombo and Z. Shen, “Silicon nitride foams from emulsions 

sintered by rapid intense thermal radiation”, manuscript submitted. 

 

3.1. Introduction 

 

Ceramics with a cellular structure and containing designed interconnected porosity above 60 

vol% find applications particularly where the transport of fluids is required, e.g. molten metal and 

exhaust particulate filters at high temperature, gas-burner systems, catalyst support and in energy-

related industries [16. These porous components exhibit a special combination of properties such 

as light weight, high temperature stability and permeability to fluids that cannot normally be 

reached by conventional dense materials or materials with a non-designed porosity [7.  

Silicon nitride (Si3N4) is one of the most widely used ceramics in many engineering 

applications due to its outstanding thermo-mechanical properties, such as flexural strength and 

Young’s modulus around 900 MPa and 310 GPa, respectively, fracture toughness between 3 to 12 

MPam1/2 [8,  and strain-to-failure around 3×10-3 [9,10. Its excellent thermal shock resistance can 

be attributed to the combination of a low thermal expansion coefficient, medium elastic constant, 

and moderate thermal conductivity [8,11,12. However, the high cost of production (sintering is 

generally assisted by pressure), due to the highly covalent bonding between silicon and nitrogen 

atoms and very slow solid-state diffusion [13, limits significantly the use of silicon nitride-based 

ceramics to specialized, high value applications. The additions of sintering additives, which are 

usually metal oxides that form a low-melting-point eutectic liquid with the oxide surface layers of 

the silicon nitride powder, improve sintering activity considerably and promote high densities 

without the use of pressure during sintering [14,15. The development of more economical 

processes for the production of silicon nitride component in structural applications, with proper 

process control and uniformity in the properties of the final product, is a challenge from a 

technological point of view [16.  

Various processing methods for the production of highly porous Si3N4, such as partial 

sintering [17,18, reaction sintering [19,20, the use of sacrificial templates using starch 

consolidation [21, direct foaming [22, gelcasting [23 and preceramic polymers [24, have been 

proposed. Recently, emulsions have been used as efficient intermediates in the production of porous 



71 

 

materials via direct foaming processes [2,25,26. They consist of two immiscible fluids, one being 

dispersed in the other, and are thermodynamically unstable due to their large oil-water interfacial 

area and thus high overall free energy. Therefore, surface active agents (e.g. surfactants or proteins) 

are used to reduce the free energy of the system [27,28. The objective of the present work is to 

develop cellular silicon nitride ceramics with tailored porosity by using an emulsification process 

that enables the fabrication of components possessing a well interconnected (open) cell morphology 

and small, uniform cell sizes [29 and improved mechanical properties by a novel processing 

approach (rapid pressureless sintering by intense thermal radiation). 

 

3.2. Experimental procedure 

 

Silicon nitride powder (grain size d50 = 0.6 m, purity ~96 wt%, main impurity Fe, oxygen 

content 7.4 ± 0.08 wt%, α phase ~91.5%, Yantai Tomley Hi-tech Ind.&Tra. Co., Ltd, Yantai, 

Shandong, China) was used as raw material in this study. The equilibrium pHiep 8.27 ± 0.01 of the 

powder was measured after 24h aging in water, following the procedure reported in Ref. [30. High 

purity Y2O3 (d50 = 50 nm, Inframat Advanced Materials L.L.C., Manchester, New Hampshire, 

USA), and MgO (d50 = 4.6 m, Bitossi Ceramiche S.R.L., Montelupo Fiorentino, Firenze, Italy), 

were used as sintering additives; the label 5YM was used to denote specimens containing 5 wt% 

Y2O3 and 5 wt% MgO, and the amount of sintering aids was inferred from the literature [13. The 

powder mixture was wet-milled in ethanol for 4 h, using silicon nitride cylinders and planetary 

velocity of 300 rpm. The slurry was dried and sieved through a 300 m screen. The powder mixture 

was treated in air at 600 C for 2h, in order to form a silica layer on the particle surfaces to improve 

their aqueous dispersibility and, consequently decrease the viscosity of the suspension [31. 1 wt% 

polyacrylic acid (PAA, Sigma-Aldrich Sweden AB, Stockholm, Sweden) was used as dispersing 

agent to stabilize the suspensions. 0.22 vol% polysorbate (Tween 80, VWR International, 

Bedfordshire, UK) was used as nonionic surfactant and consequently foam stabilizer. Water-based 

Si3N4 slurries with 35 vol% of solids and containing PAA were prepared by ball milling for 2 hours 

at 200 rpm. Afterwards, the emulsification process took place by addition of 50~70 vol% alkane 

phase (octane, C8H18, Sigma-Aldrich Sweden AB, Stockholm, Sweden) and subsequently the 

suspension was stirred at 700 or 1000 rpm for 3 minutes. Then, the emulsions were poured in a 

Teflon mold and dried at ambient air for approximately 24h.   

Rapid pressureless sintering was conducted in a modified SPS set-up (Dr. Sinter 2050, 

Sumitomo Coal Mining Co., Tokyo, Japan) under vacuum. The green foams were loaded in a 
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covered cylindrical graphite crucible with an inner diameter of 50 mm and outer diameter of 70 

mm. The samples were protected by a Si3N4 powder bed and isolated by graphite felts. Two 

sintering regimes, namely PLSPS-1 and PLSPS-2, were set as follows: the temperature was 

automatically raised to 600 °C over a period of 5 min, and from there onwards it was monitored and 

regulated by an optical pyrometer focused on the wall centrally inside the crucible through a hole of 

~5 mm in diameter. For PLSPS-1, in the first step the samples were heated to 1500 °C with a 

heating rate of 50 °Cmin-1 and maintained for 10 min, then heated to 1600 °C at 50 °Cmin-1 and 

held for 3 min. Same steps and temperatures were used for PLSPS-2, differing only for the heating 

rate and dwell time, which were instead 100 °Cmin-1 and 5 min for the first step, respectively. 

More details about this rapid sintering procedure can be found elsewhere (see Ref. [32). 

The bulk density and the total porosity were calculated from the weight-to-volume ratio of 

the samples, while the open porosity was determined using a mercury intrusion porosimetry 

(Micromeritics AutoPore III 9410, Norcross, Georgia, USA). The surface tension and the contact 

angle of mercury were set to 0.485 Nm-1 and 130°, respectively. The crystalline phases were 

determined on powdered samples by X-ray diffraction (XRD, X’pert PRO MPD diffractometer, 

PANalytical, Almelo, Netherlands), using CuKα radiation = 1.542 Å, at 40 kV and 40 mA. The 2 

range was varied from 10° to 90° with a step size of 0.05° and a step time of 2 s. The data were 

analyzed utilizing the ICSD database, and the weight fractions of the α and βSi3N4 crystalline 

phases were evaluated by the method described in Ref. [33. The microstructure of the Si3N4 based 

foams was characterized by a field emission scanning electron microscope (FE-SEM, JSM-7000F, 

JEOL, Tokyo, Japan) and a Schottky-type field emission transmission electron microscope (TEM, 

JEM-2100F, JEOL, Tokyo, Japan) operated at 200 kV, equipped with an energy-dispersive X-ray 

spectroscopy (EDX) detector. Electron diffraction (ED) data were collected using a LaB6 based 

transmission electron microscope (TEM, JEM-2100, JEOL Ltd, Tokyo, Japan) at 200 kV. For TEM 

study, the sample was crushed into powder and dispersed in ethanol. The average cell and cell 

window sizes were obtained from SEM images using the linear intercept method according to 

ASTM E112-12 (diagonal opposite directions), using an image analysis program (Axio Vision LE). 

When the cells are spherical and uniformly distributed, according to ASTM D3576-98, the 

relationship between the average measured chord length t and the average sphere diameter D is: D = 

t·1.623.  

The mechanical behavior of the Si3N4 based foams was determined by uniaxial compressive 

strength tests performed using a hydraulic mechanical testing machine (1121 UTM, Instron, 

Norwood, MA, USA), according to ASTM C133-97 standard. The cross-head speed was 1.0 
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mm/min and the compressive load cell was 5 kN. Specimens with a nominal size of 10 mm  10 

mm  10 mm, cut from larger bodies, were tested for each sample. Each data point represents the 

average value of five individual tests. 

 

3.3. Results and discussion 

 

 Influence of sintering additives   

The X-ray diffraction patterns of the as prepared powder mixture and rapid sintered Si3N4 

foams (PLSPS-1 sintering regime) are reported in Fig. 3.1. The main phase was αSi3N4 for both 

samples, while the -phase content increased by ~27% after rapid sintering, the relative amounts 

were estimated on the basis of the ratio of the intensities of the (210) peak for both phases (located 

at 2  35.42° for the αphase and at 2  36.12° for the βphase), using a normalizing factor, L, to 

correct the peak intensities from errors due to extinction and preferred orientations [33]. The 

increase of the βphase after sintering can be explained by the phase transformation α to β that 

occurs above 1600 C, with the use of Y2O3 and MgO as sintering aids in the presence of a liquid 

phase through a solution-reprecipitation mechanism [34]. The peaks relative to the sintering aids 

disappeared almost completely after heating because of their incorporation into an amorphous 

intergranular phase, which distributed homogeneously as a liquid throughout the entire grain 

boundaries during sintering, due to the modification of the anisotropic solid-liquid interfacial 

energies at the grain boundaries [35]. The MgO-containing low viscosity melt migrates to the 

boundaries, suppressing abnormal grain growth and also creates a pathway for crack damping at 

nanoscale [36]. The diffusion through the highly viscous liquid is relatively slow, enhancing rapid 

solution-precipitation and the αβ transformation that starts to occurs in the contact areas without 

significant material transport and hence with little densification [37]. 
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Fig. 3.1. XRD patterns for the as-prepared and as-sintered Si3N4 foams (PLSPS-1 sintering 

regime) containing 5 wt% Y2O3 and 5 wt% MgO. (ICSD α–Si3N4 # 041-0360, β–Si3N4 # 033-1160, 

α–SiC # 049-1428).  

 

 

Note the evidence in the diffraction patterns of the presence of α–SiC coexisting with the α– 

and β–Si3N4 phases, probably due to the formation of nanowires (NWs) that formed during 

processing (see details later). 

 

 Influence of octane concentration and stirring velocity 

The morphology of the Si3N4 sintered foams emulsified with 50 or 70 vol% of octane (700 

rpm, PLSPS-1 sintering regime) is shown in Fig. 3.2. Typical fracture surfaces are shown in Figs. 

3.2a-c, for moderate octane concentration (ϕ = 50 vol%) and in Figs. 3.2d-f, for high octane 

concentration (ϕ = 70 vol%). The foams featured homogeneously dispersed spherical and 
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interconnected open cells and possessed struts decorated with SiC nanowires (see details later). The 

sintering additives are well distributed in the Si3N4-based matrix, as confirmed by the back-

scattered images showing bright spots related to Y2O3. Grey regions related to the mixture of α–, β–

Si3N4 phase and MgO, as well as black regions related to pores, in accordance with the amount of 

β–Si3N4 phase developed, are also observable (Fig. 3.2a, for 50 vol% of octane concentration and 

Fig. 3.2d, for 70 vol% of octane concentration, respectively). In addition, we can observe the 

formation of strong necks among the silicon nitride particles in the struts as well as the presence of 

microporosity on the cell walls (due to incomplete sintering) for the foams produced with moderate 

octane concentration (Fig. 3.2b). The formation of well-defined necks is related to the rapid heating 

between particles and enhanced diffusion facilitated by intense thermal radiation [32,38].  

 

 

 

Fig. 3.2. SEM images of the fracture surfaces of Si3N4 , PLSPS-1 sintered foams obtained 

from: (a) to (c) 50 vol%, and (d) to (f) 70 vol% of octane (700 rpm). Note the back-scattered 

images: (a) for 50 vol% of octane concentration and (d) for 70 vol% of octane concentration, 

respectively), and the presence of NWs decorating the cell walls. 

 

 

The alkane concentration mainly influenced the amount of total porosity, which increased 

from 79 to 86 vol% when the octane concentration increased from 50 to 70 vol%, while the average 
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cell size value was quite similar for both alkane concentrations, as a result of an equilibrium 

between droplet break-up and re-coalescence (so called “over-processing”) [39].   

The average cell size and cell window size, the total porosity and the mechanical strength 

values (see later) of Si3N4 sintered foams are summarized in Table 3.1, for both sintering regimes, 

and also for conventional pressureless sintering. Increasing the octane concentration increased the 

amount of total porosity, because of the presence of a larger amount of volatile species, while it had 

little effect on the average cell size. Obviously, compressive strength decreased with increased 

amount of porosity in the foams. Because of the increase in the shear rate, increasing the stirring 

velocity reduced the average cell size. 

The size distribution for the microporosity in cell walls and in the struts as well as for the 

cell windows was obtained by the mercury intrusion method, and the data (see later) are reported in 

Table 3.2. The average values reported in the table were deduced from the two main peaks of the 

multimodal pore diameter distribution curves obtained by mercury porosimetry (see Fig. 3.3). 

Changing the sintering regime reduces the microporosity: the PLSPS-1 cycle leads to a higher α– to 

β–Si3N4 phase transformation, with a certain level of interparticle porosity, while the PLSPS-2 cycle 

enhances the densification of the struts and cell walls. With increasing the stirring velocity from 700 

to 1000 rpm, the average cell window size decreased in accordance with the reduction in the 

average cell size (see later). 

 

 

Fig. 3.3. Pore volume and diameter for foam samples produced using the two SPS sintering 
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regimes (PLSPS-1 and PLSPS-2 ) and conventional sintering, produced with 50 and 70 vol% of 

octane at different stirring speeds (700 and 1000 rpm). 

 

 

The microstructure of surfactant stabilized foams shows the presence of interconnected 

porosity (open cells) because the thin liquid films between the bubbles can rupture when adjacent 

oil bubbles come into contact during drying. The number of droplets in the system increases with 

the amount of added oil during emulsification, making droplet-to-droplet contact during processing 

more probable (Fig. 3.2e) [40]. Contrarily to the emulsification method, the alternative fabrication 

approach of particle stabilization leads to Si3N4 foams possessing spherical but closed pores, as 

reported by Yu et al. [41], because the displacement of powder from the gas-liquid interface is 

thermodynamically unfavorable. In the case of emulsions, foaming is driven by the autonomous 

evaporation of the alkane phase [28], and the emulsified suspensions are consolidated by the 

expansion of the alkane droplets and drying of the aqueous medium.  

Two main destabilization processes occurring in wet foams, Ostwald ripening and 

coalescence (film rupture) [2], decrease the overall system free energy leading to foam 

destabilization and consequently a variation in the cell size [27]. Figure 3.4 shows the cell size (D10 

and D90) and cell window size distributions (d10 and d90) for samples processed using the PLSPS-1 

sintering regime, obtained from image analysis. They ranged from 18 to 31 m (D50 = 25.0  0.6 

m, Table 3.1) and 3 to 8 m (d50 = 5.6  0.6 m, Table 3.1), respectively, for octane foams with 

moderate concentration  of the alkane phase (ϕ = 50 vol%, 700 rpm), see Figs. 3.4a-c; from 16 to 39 

m (D50 = 26.0  1.2 m, Table 3.1) and 4 to 10 m (d50 = 6.3  1.0 m, Table 3.1), respectively, 

for octane foams with high concentration  of the alkane phase (ϕ = 70 vol%, 700 rpm), see Fig. 

3.4b-d. The size distribution was narrower for the sample produced using a lower amount of octane, 

indicating that this system produces more stable wet foam. 
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Fig. 3.4. Cumulative cell size and cell window size distribution of Si3N4, PLSPS-1 sintered 

foams produced using: (a) and (c) 50 vol%, and (b) and (d) 70 vol% of octane (700 rpm). 

 

 

Figure 3.5 shows the microstructure of Si3N4 foams sintered using the PLSPS-2 sintering 

regime, produced using 70 vol% of octane and stirred for 3 min at different speeds: 700 rpm, Figs. 

3.5a-b, and 1000 rpm, Figs. 3.5c-d. The main morphological features of the foams (spherical and 

interconnected cells) were similar to those of samples processed using the PLSPS-1 sintering 

regime.  

 



79 

 

 

 

Fig. 3.5. SEM images of the fracture surface of Si3N4, PLSPS-2 sintered foams containing 

70 vol% of octane stirred for 3 min at: (a) and (b) 700 rpm, and (c) and (d) 1000 rpm. Note the 

presence of NWs decorating the cell walls.  

 

 

Figure 3.6 reports the cumulative cell size and cell window size distribution of Si3N4, 

PLSPS-2 sintered foams containing 70 vol% of octane stirred for 3 min at: 700 rpm, Figs. 3.6a-c, 

and 1000 rpm, Figs. 3.6b-d. With increasing the stirring velocity from 700 to 1000 rpm, the D50 

value for the cell size decreased from 24  0.9 m to 14  1.9 m (see Table 3.1), and the d50 value 

for the cell window size from 6.0  1.0 m to 4.8  0.8 m (see Table 3.1), mainly as a result of the 

increase of the shear rate (from 381 to 544 s-1) which leads to the breaking up of the oil drops into 

smaller droplets [26,27]. 
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Fig. 3.6. Cumulative cell size and cell window size distribution of Si3N4 (PLSPS-2) sintered 

foams containing 70 vol% of octane stirred for 3 min at: (a) and (c) 700 rpm, and (b) and (d) 1000 

rpm. 

 

 

The stirring velocity also had a strong influence on the size of the micropores (pores in the 

struts and cell walls that decreased from 0.9 m to 0.4 m, see Table 3.2) because of the higher 

solid packing in the aqueous slurry, leading also to a larger amount of closed porosity (see Table 

3.2). The total porosity value was quite similar for both stirring velocities (see Table 3.1), because 

the amount of oil used to form the porosity was the same, indicating that the amount of 

microporosity in the struts of the samples is limited with respect to the total porosity. 

The mercury porosimetry analysis (see Table 3.2), conducted on octane foams stirred at 700 

rpm and sintered using the PLSPS-1 regime, gave data in agreement with the values reported in 

Table 3.1, with an average cell window size of about 3 m and 79.5 vol% of porosity for moderate 

octane concentration (50 vol%), and an average cell window size of about 5 m and 87 vol% of 

porosity for high octane concentration (70 vol%). Note that mercury porosimetry measurements 
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give the amount of open porosity, and therefore the results indicate that the produced foams had a 

completely interconnected cellular structure. 

Peng et al. [22] suggested that the ratio of the cell window (d) to cell diameter (D) is directly 

related to the pore volume fraction in the case of a face centered cubic array of cells of uniform 

diameter, and this allows to quantitatively compare different cellular microstructures. It is important 

to note that the permeability, hence the flow rate, is very dependent on the pore size and pore 

volume [42]. The ratio d/D is plotted in Fig. 3.7 for foams produced using the PLSPS-2 sintering 

regime and different stirring rates as a function of pore volume fraction, Vp, calculated according to 

equation (3.1), suggested by Peng et al. [22]:  
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where k = d/D. Note that for cellular ceramics, 0.7 < Vp<1.0 [43]. 

 

The calculated total porosity values (Vp) show good agreement with those calculated from 

the measured weight-to-volume ratio of the foams (see Table 3.1), therefore confirming the good 

uniformity in the cell size distribution for the produced foams and the significant effect of the 

stirring rate on the cellular architecture. 
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Fig. 3.7. The ratio d/D as a function of the pore volume fraction, Vp, for Si3N4 foams 

sintered using the PLSPS-2 sintering regime (70 vol% of octane, stirred at 700 and 1000 rpm) and a 

foam processed by conventional sintering (70 vol% of octane, stirred at 700 rpm [29]). 

 

 

Some of the SEM images of the sintered samples show the presence of nanowires (NWs) 

with a length of a few micrometers protruding from the cell walls of the foams, independently on 

the processing conditions  (stirring rate, amount of octane and sintering regime) adopted. TEM 

analysis (see Fig. 3.8) showed that the nanowires, with average diameter ~150 nm, had a tip-body 

structure. 



83 

 

 

 

Fig. 3.8. TEM/SAED/EDX analysis of the NWs present on the cell walls of Si3N4 sintered 

foams (PLSPS-1 sintering regime, 70 vol% octane, 700 rpm). 

 

 

The  EDX analysis of the body of the NW showed the presence of Si, C, O (from the 

oxidized surface) and Cu (from the grid), while the indexed selected-area electron diffraction 

(SAED) patterns collected were compatible with the [110] planes of αSiC, confirming the XRD 

data and proving that the NW was constituted of silicon carbide. The EDX data for the tip indicated 

the presence of Si, Ca (from the raw powder) and Cu (from the grid). A detailed investigation of the 

catalyst-assisted vapor-liquid-solid mechanism for the growth of the NWs can be found in Ref. [32]. 

 

Mechanical strength of sintered foams 

The compressive strength of Si3N4 rapid sintered (PLSPS-1) foams emulsified with 50 or 70 

vol% of octane is reported in Table 3.1. The strength values decreased from 9.9  0.9 MPa (for 

moderate octane concentration, 50 vol%) to 1.7  0.3 MPa (for high octane concentration, 70 vol%) 

when the porosity increased from ~79 to 86 vol%, see Table 3.1. A similar trend has been observed 



84 

 

for many other porous silicon nitride ceramics fabricated by different techniques such as reaction 

sintering [19,20,44], sacrificial templates [21,45] or partial sintering [46], and is related to the 

decrease in the amount of load bearing material with increasing porosity [43]. The strength of 

PLSPS-1 foam is ~30% higher than the PLSPS-2 one, due to the higher amount of βSi3N4 [32]. A 

direct comparison with the strength of foams produced using conventional sintering (1600 °C in N2 

flux) is more difficult, as they possessed a lower average porosity (73 vol%) and a compressive 

strength of 14 MPa (see Table 3.1) [29], but we can note that the rapid sintering by intense thermal 

radiation of foams produced in the same experimental conditions (70 vol% octane, 700 rpm) led to 

cellular structures of lower density, due to the presence of a higher amount of intergranular porosity 

in the cell walls and struts. This, in turn, could be attributed to a higher decomposition of silicon 

nitride caused by the localized intense radiation, the use of vacuum and a more enhanced α– to β–

phase transformation. It is interesting to note that the grain growth was inhibited when Si3N4 foams 

(70 vol% octane, 700 rpm) were sintered by the PLSP-1 sintering regime, in comparison to 

conventionally sintered foams. In the first case (SPS processing), the average grain size for the α–

Si3N4 phase was 1.7  0.1 m, while in the case of conventional sintering it was 3.7  0.1 m. This 

effect was also noticed by Zhang et al. [38], and led to improved mechanical properties because of 

the enhanced neck formation.  

The data in Table 3.1 correlate the mechanical behavior of the foams with the total porosity 

and average cell size values. As shown by Sepulveda [47], in foams produced by direct foaming the 

cell size varies with the bulk density, typically increasing with increasing porosity. Although it is 

impossible to separate the simultaneous contribution of density and cell size on the mechanical 

strength of cellular structures, we can observe that the pore shape influences the strength and 

fracture energy [48, e.g., there is no stress concentration for spherical or cylindrical pores under 

uniaxial compression [49]. However, one should also consider the differences in the microstructure 

of the samples, especially the fact that foams processed using 70 vol% of octane had thinner struts 

because the thickness of the liquid films around the gas bubbles was reduced for highly 

concentrated octane foams, and the number of cell windows was higher (see Fig. 3.2) [50]. More 

investigations are needed to better elucidate the specific and independent contribution of each factor 

(amount of porosity, cell and cell windows size, strut thickness) to the overall mechanical strength 

of ceramic foams. 
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Table 3.1. Summary of the physical properties of the Si3N4 foams from the emulsification 

process. 

 

a Cumulative cell size distribution, d50, measured from SEM images using linear intercept method. 

b Calculated by assuming that the theoretical density of Si3N4 ceramic is 3.2 g cm−3. 

c Pore volume fraction, VP, determined.  

d Sample’s density = 0.845 g/cm3 [29]. 

 

 

 

 

Si3N4 foams 

Cell size,  

Da  

(m) 

Cell window 

size, d  

(m) 

Total 

Porosityb 

(vol%) 

d/D VP
 c 

  

Compressive 

strength 

(MPa) 

Conventional Pressureless Sintering 1600ºC, N2 flow [29] 

70 vol% OCT 

700 rpm 

~ 18 to 47 ~ 4 to 10 ~71 to ~75 0.19d 0.779d ~5 to ~20 

Rapid Sintering  -  PLSPS-1   under vacuum 

50 vol% OCT 

700 rpm 

25.0  2.2 6.0  0.4  79.0  0.5 0.24 0.802  9.9  0.9 

70 vol% OCT 

700 rpm 

26.0  1.2 6.0  0.9 86.0  0.3 0.23 0.797 1.7  0.3 

Rapid Sintering  -  PLSPS-2  under vacuum 

50 vol% OCT  

700 rpm 

27.0  1.7 7.0  0.4 79.0  0.4 0.25 0.808 8.0  1.0 

70 vol% OCT  

700 rpm 

24.0  0.9 6.0  1.0 86.0  0.1 0.25 0.808 - 

70 vol% OCT  

1000 rpm 

14.0  1.9 5.0  0.8 85.0  0.3 0.35 0.868 1.0  0.1 
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Table 3.2. Summary of results for the size of microporosity (in the cell walls and the struts) 

and cell windows, and for the porosity of Si3N4 foams from the emulsification process. Data were 

obtained from mercury intrusion measurements. 

aValue selected from the individual peaks of the multimodal pore diameter distribution (see Fig. 3.3).  

 

 

 

 

Si3N4 Octane foams 

Struts/cell 

wall 

average 

pore size a 

(m) 

Cell windows 

average size a 

(m) 

Bulk density 

(g/cm3) 

Total 

porosity 

(vol%) 

Open 

porosity 

(vol%) 

Conventional Pressureless Sintering 1600ºC, N2 flow [29] 

70 vol% OCT 

700 rpm 

0.7 4.6 0.6320 ± 0.03 80.3 70.9 

Rapid Sintering  -  PLSPS-1   under vacuum 

50 vol% OCT 

700 rpm 

0.7 3.3 0.7006 ± 0.04 78.1 72.1 

70 vol% OCT 

700 rpm 

1.6 7.4 0.4390 ± 0.02 86.3 73.3 

Rapid Sintering  -  PLSPS-2  under vacuum 

50 vol% OCT 

700 rpm 

- 3.5 0.7044 ± 0.04 77.9 66.2 

70 vol% OCT 

700 rpm 

0.9 7.4 0.4503 ± 0.02 86.0 72.9 

70 vol% OCT 

1000 rpm 

0.4 3.7 0.5966 ± 0.03 81.3 61.6 
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3.4 Conclusions 

  

Cellular silicon nitride components possessing homogeneous microstructure with fully 

interconnected cells and high level of porosity (> 79%) were prepared using emulsions. Using 

different octane concentrations, it was possible to control the amount of porosity from ~79 to ~86 

vol%. Variations in the stirring velocity affected the average cell size, as a result of the increase in 

the shear rate, enabling the fabrication of foams with small cell size (ranging from ~14 to ~27 µm) 

and narrow size distribution. Cell window size ranged from ~5 to ~8 µm. The applied consolidation 

process, sintering by intense thermal radiation (SITR), generated ceramic foams with compressive 

strength ranging from ~2.0 to ~10 MPa at lower temperature and shorter time in comparison with 

conventional pressureless sintering. 



88 

 

References  

 

[1]  Scheffler M, Colombo P. Cellular ceramics: structure, manufacturing, properties and application. Weinheim: 

Wiley-VCH; 2005. 

[2]  Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. Processing routes to macroporous ceramics - A 

review. J Am Ceram Soc 2006;89(6):1771–89. 

[3]  Gauckler LJ, Waeber MM, Conti C, Jacobduliere M. Ceramic foam for molten-metal filtration. J Met 

1985;37(9):47–50. 

[4]  Chen QZ, Rezwan K, Armitage D, Nazhat SN, Boccaccini AR. The surface functionalization of 45S5 

Bioglass-based glass-ceramic scaffolds and its impact on bioactivity. J Mater Sci Mater Med 

2006;17(11):979–87. 

[5]  Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglasss - derived glass–ceramic scaffolds for bone tissue 

engineering. Biomater 2006;27(11):2414–25. 

[6]  Colombo P. Conventional and novel processing methods for cellular ceramics. Phil Trans R Soc A 

2006;364(1838):109–24. 

[7]  Greil P. Advanced Engineering Ceramics. Adv Mater 2002;14(10): 709–16. 

[8]  Riley FL. Silicon nitride and related materials. J Am Ceram Soc 2000;83(2):245–65. 

[9]  Moreno R, Salomoni A, Stamenkovic I, Castanho SM. Colloidal filtration of silicon nitride aqueous slips, 

part II: slip casting and pressure casting performance. J Eur Ceram Soc 1999;19(1):49–59.   

[10] Yang JF, Beppu Y, Zhang GJ, Ohji T, Kanzaki S. Synthesis and Properties of Porous Single-Phase  β’-

SiAlON Ceramics. J Am Ceram Soc 2002;85(7):1879–81.   

[11] Petzow G, Hermann M. Silicon nitride ceramics. In: Jansen M, editor. High performance non-oxide ceramics 

II. Berlin: Springer Berlin Heidelberg; 2002. p. 47–167.   

[12] Yang JF, Deng ZY, Ohji T. Fabrication and characterisation of porous silicon nitride ceramics using Yb2O3 

as sintering additive. J Eur Ceram Soc 2003;23(2):371–78.  

[13] Ling G, Yang H. Pressureless sintering of silicon nitride with magnesia and yttria. Mater Chem Phys 

2005;90(1):31–34.   

[14] Alper AM. Phase diagrams in advanced ceramics. London: Acad Press Ltd; 1995.  



89 

 

[15] Lange H, Wötting G, Winter G. Silicon nitride-from powder synthesis to ceramic materials. Angew Chem Int 

Engl 1991;30(12):1579–97. 

[16] Moreno R, Salomoni A, Castanho SM. Colloidal filtration of silicon nitride aqueous slips, part I: 

optimization of the slip parameters. J Eur Ceram Soc 1998;18(4):405–16.   

[17] Kondo N, Inagaki Y, Suzuki Y, Ohji T. Fabrication of porous anisotropic silicon nitride by using partial 

sinter-forging technique. Mater Sci Eng A 2002;335(1-2):26–31.   

[18] Inagaki Y, Kondo N, Ohji T. High performance porous silicon nitrides. J Eur Ceram Soc 2002;22(14-

15):2489–94.   

[19] Ziegler G, Heinrich J, Wötting G. Relationships between processing, microstructure and properties of dense 

and reaction-bonded silicon nitride. J Mater Sci 1987;22(9):3041–86.   

[20] Moulson AJ. Reaction-bonded silicon nitride: its formation and properties. J Mater Sci 1979;14(5):1017–51.   

[21] Díaz A, Hampshire S. Characterisation of porous silicon nitride materials produced with starch. J Eur Ceram 

Soc 2004;24(2):413–19.   

[22] Peng HX, Fan Z, Evans JRG, Busfield JJC. Microstructure of ceramic foams. J Eur Ceram Soc 

2000;20(7):807–13.   

[23] Huang Y, Ma L, Tang Q, Yang J, Xie Z, Xu X. Surface oxidation to improve water-based gelcasting of 

silicon nitride. J  Mater  Sci 2000;35(14):3519–24.   

[24] Nangrejo MR, Bao X, Edirisinghe MJ. Preparation of silicon carbide-silicon nitride composite foams from 

pre-ceramic polymers. J Eur Ceram Soc 2000;20(11):1777–85. 

[25] Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ. Stabilization of foams with inorganic colloidal 

particles. Langmuir 2006;22(26):10983–88.   

[26] Barg S, Moraes EG, Koch D, Grathwohl G. New cellular ceramics from high alkane phase emulsified 

suspensions (HAPES). J Eur Ceram Soc 2009;29(12):2439–46.   

[27] Schmitt V, Leal-Calderon F, Bibette J. Preparation of monodisperse particles and emulsions by controlled 

shear. In: Antonietti M, editor. Colloid chemistry II. Berlin: Springer Berlin Heidelberg; 2003. p. 195–215. 

[28] Barg S, Soltmann C, Andrade M, Koch D, Grathwohl G. Cellular ceramics by direct foaming of emulsified 

ceramic powder suspensions.  J Am Ceram Soc 2008;91(9):2823–29. 

[29] Moraes EG, Colombo P. Silicon nitride foams from emulsions. Mat Lett 2014;128:128–31. 

http://link.springer.com/search?facet-author=%22Prof.+Dr.+Markus+Antonietti%22


90 

 

[30] Reymond JP, Kolenda F. Estimation of the point of zero charge of simple and mixed oxides by mass 

titration. Powder Technol 1999;103(1):30–6. 

[31] Nagel A, Petzow G, Greil P. Rheology of aqueous silicon nitride suspensions. J Eur Ceram Soc 

1989;5(6):371–78. 

[32] Li D, Moraes EG , Guo P, Zou J, Zhang J, Colombo P, Shen Z. Rapid sintering of silicon nitride foams 

decorated with one-dimensional nanostructures by intense thermal radiation.  Sci Technol Adv Mater 

2014;15(4):045003. 

[33] Blanchard CR, Schwab ST.  X-ray diffraction analysis of the pyrolytic conversion of perhydropolysilazane 

into silicon nitride.  J Am Ceram Soc 1994;77(7):1729–39. 

[34] Wang CM, Pan X, Rühle M, Riley FL, Mitomo M. Silicon nitride crystal structure and observations of lattice 

defects.  J Mater Sci 1996;31(20):5281–98. 

[35] Bae S, Baik S. Critical concentration of MgO for the prevention of abnormal grain growth in alumina.  J Am 

Ceram Soc 1994;77(10):2499–504. 

[36] Tan CY, Yaghoubi A, Ramesh S, Adzila S, Purbolaksono J, Hassan MA, Kutty MG. Sintering and 

mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceram Int 2013;39(8):8979–83.  

[37] Hampshire S, Jack KH. Densification and transformation mechanisms in nitrogen ceramics. In: Riley FL, 

editor. Progress in Nitrogen Ceramics. Lancaster: Martinus Nijhoff publ;1983. 225-230. 

[38] Zhang F, Lin K, Chang J, Lu J, Ning C. Spark plasma sintering of macroporous calcium phosphate scaffolds 

from nanocrystalline powders. J Eur Ceram Soc 2008;28(3):539–45. 

[39] Karbstein H, Schubert H. Developments in the continuous mechanical production of oil-in-water macro-

emulsions.  Chem Eng Process: Process Intensif  1995;34(3):205–11. 

[40] Schramm, Laurier L. Emulsions, foams, and suspensions: fundamentals and applications. Weinheim: Wiley-

VCH; 2005. 

[41] Yu J, Yang J, Li H, Xi X, Huang Y. Study of particle-stabilized Si3N4 ceramic foams. Mater Lett 

2011;65(12):1801–04. 

[42] Nettleship I. Applications of porous ceramics. Key Eng Mater 1996;122:305–24. 

[43] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd edition. Cambridge: Cambridge 

University Press; 1999. 



91 

 

[44] Hampshire S. Silicon nitride ceramics – review of structure, processing and properties.  J Achiev Mater 

Manuf  Eng 2007;24(1):43–50. 

[45] Díaz A, Hampshire S, Yang JF, Ohji T, Kanzaki S. Comparison of mechanical properties of silicon nitrides 

with controlled porosities produced by different fabrication routes. J Am Ceram Soc 2005;88(3):698–706. 

[46] Yang JF, Ohji T, Kanzaki S, Díaz A, Hampshire S. Microstructure and mechanical properties of silicon 

nitride ceramics with controlled porosity. J Am Ceram Soc 2002;85(6):1512–16. 

[47] Sepulveda P. Gelcasting foams for porous ceramics. Ceram Bull 1997;76(10):61–65. 

[48] Gündüz G. Effect of porosity on interfacial failure in steel-fibre-reinforced polymer-impregnated concrete. 

Comp Sci Tech 1988;32(2):121–36. 

[49] Rice RW. Porosity of ceramics. New York: Marcel Dekker Inc.; 1998. 

[50] Brezny R, Green DJ, Dam CQ. Evaluation of strut strength in open-cell ceramics.  J Am Ceram Soc 

1989;72(6):885–89. 

 

  

 

 

 

 

 

 

 



92 

 

4. Silicon nitride foams from gelcasting of biopolymers 

 

E. G. de Moraes and P. Colombo, “Silicon nitride foams from gelcasting of biopolymers, 

manuscript in preparation. 

 

4.1 Introduction 

 

Cellular ceramics are materials tailored to possess exceptional combination of properties as 

high porosity and lightweight, as well special functional properties, such as low thermal 

conductivity, high-temperature stability, and excellent thermal shock resistance, good resistance 

against crack propagation, high permeability and high surface area. These materials are used for a 

wide range of technological applications, such as filters, membranes, catalyst substrate, thermal 

insulation, gas burner media, refractory materials, as well as porous implants in the area of 

biomaterials [14]. 

Silicon nitride (Si3N4) is one of the most promising materials in various engineering 

applications, owing to the good combination of high mechanical performance (even with certain 

levels of porosity) [5] and thermal properties, such as, high strength at temperatures above 1000 °C, 

good thermal stress resistance, combined with the low density of Si3N4 (3.2 gcm-3) consists an 

important advantage [6]. Also the outstanding properties as fracture toughness, hardness, friction 

and wear resistance has pointed Si3N4 composites as interesting candidates for many high-load 

medical applications [5]. 

However, the high cost of production (sintering is generally assisted by pressure), due to the 

highly covalent bonding between silicon and nitrogen atoms and very slow solid-state diffusion [7], 

limits significantly the use of silicon nitride-based ceramics to specialized, high value applications. 

The additions of sintering additives, which are usually metal oxides that form a eutectic liquid phase 

with the oxide surface layers of the silicon nitride powder, improve sintering activity considerably 

and promote the solution-precipitation process, in which α–grains dissolve into the liquid phase and 

precipitate as β–grains, known as the αβ phase transformation [810]. 

The development of more economical processes for the production of silicon nitride 

component in structural applications, with proper process control and uniformity in the properties of 

the final product, is a challenge from a technological point of view [11]. 
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Foams based on silicon nitride can be processed by direct foaming methods, such as 

preceramic polymers [12], particle stabilized foams [13], emulsification based on surfactant 

stabilization [14] and gelcasting [15], among others. 

The current work is concerned with the fabrication of silicon nitride foams with tailored 

microstructure in terms of porosity (> 75vol%) and cell size distribution (> 150 m) using a 

gelcasting processing method associated with the aeration of an aqueous suspension using 

environmentally friendly biopolymers as gelling agents. Alternative biopolymers such as globular 

proteins (egg white albumen) [16], agar-agar [17,18], and methylcellulose [18,19] are used to 

produce silicon nitride foams by means of in situ formation of a percolating network of ceramic 

particles maintaining both macrostructures and microstructures.  

The microstructure, mechanical properties and permeability of the gelcasting Si3N4 foams 

pressureless sintered were evaluated. Additionally, the influence of the sintering additives, Y2O3 

and MgO, and the effect of the temperature on the formation of rod-like β–grains were investigated. 

 

4.2 Experimental procedure 

 

Solution preparation 

Agar-agar (Erbamea S.r.l, Italy) was used as gelling additive. 3 wt% of agar solutions  (1 

wt% of agar powder based on the Si3N4 powder suspension content) were prepared in a flask by 

mixing the gel-former with deionized water heated up to 90 C during 120 min [17,18]. 

Water-soluble methylcellulose (MC), MethocelTM A4M (Dow Chemical Company, Italy) 

was used as gelling additive. 0.5 wt% of methylcellulose solutions were prepared in a flask 

containing deionized water (Millipore, electrical resistivity > 18 MΩ·cm-1) heated up to 90 C 

followed by addition of the gel-former and subsequent magnetic stirring during 120 min. Afterward, 

the solution was cooled to room temperature in continuous mixing [19].  

 

Suspension preparation and foaming 

A detailed procedure for suspension preparation can be found in section 2.2. The preparation 

of aqueous colloidal suspensions varied according to the gelling agent and thermal gelling 

procedure used. 

In the case of egg white albumen, the water-based Si3N4 slurries with 30 vol% of solids 

(labeled as SN-5YM30), and containing 1 wt% PAA (based on the ceramic powder content) were 

prepared by step-wise adding the dry powder to deionized water upon continuous stirring with a 
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laboratory mixer. The ceramic suspension was homogenized by ball milling for 2 hours at 200 rpm 

using Si3N4 cylinders. In case of Si3N4 suspensions the pH was set to values above ~11.4 by adding 

small aliquots of 0.1 N, NaOH. Afterwards, the slurry was aerated with a double shear mixer during 

2 minutes followed by addition of 5 wt% of albumen (egg white, based on the ceramic powder 

content) and subsequently the suspension was vigorous stirred during 10 minutes to foaming. Then, 

the foams were poured in a Teflon mold and thermal gelling occurs in a dryer at 80 C for 2 hours 

to cross-linking of aminoacids (cistein), and at ambient air for approximately 24h. Sintering was 

conducted in two steps: pre-calcination at 650 °C (2 h; 1 °C/min heating rate), to decompose the 

organic phase; proceed heat-treating to 1600 °C (3 h, 2 °C/min heating rate) under 99.99 % N2 flow 

[14]. 

For agar, the incorporation of the solution (maintained at 60 C) required the previous 

heating of the Si3N4 suspension with 35 vol% of solids (labeled as SN-5YM35), at a temperature 

above the 60 °C, conditions where no water evaporation occurs. After adding the agar solution, the 

final Si3N4 suspension concentration reaches 30 vol% (59 wt%). Since the gelcasting suspensions 

containing agar solution and Si3N4 suspension are mix together, 1.0 wt% of Tergitol TMN–10 

(based on the ceramic powder content), a non-ionic surfactant was incorporated into the hot 

suspension. Thereafter, the gelcasting suspensions were mechanical stirred (maximum velocity) 

with a double shear mixer for shearing times of 10 min in order to promote bubble formation [17]. 

The foams was poured into a plastic mould and cooled down at 15 C using cold water to promote 

gel-network formation. The foams were dried at ambient air for approximately 24 h. The sintering 

of the consolidated foams was performed in two steps as earlier reported for egg white albumen 

foams. 

Particularly for methylcellulose (MC), gelcasting suspensions were prepared by addition of 

30 or 35 vol% of solids concentration in a methylcellulose solution (previously prepared) instead of 

water containing 1 wt% PAA (based on the ceramic powder content), followed by homogenization 

with ball milling for 2 hours as earlier described for egg white albumen suspension preparation. 

Thus, a non-ionic surfactant, Tergitol TMN–10, was incorporated in a gelcasting suspension by 

stirring (maximum velocity) with a double shear mixer during 10 min to foaming. The foams was 

poured into a silicon mould and kept at ~47 C overnight to form a gel-network and dried at 

ambient air for 24 h. The sintering conditions were the same as described above for egg white 

albumen foams. 
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Characterization 

The crystalline phases were determined on powdered samples by X-ray diffractometry using 

Bruker AXS D8 Advance diffractometer (CuKα, 40 kV, 40 mA, 0.05°, 2s). The data were analyzed 

utilizing the ICSD database, and the weight fractions of the α– and β–Si3N4 crystalline phases were 

evaluated by the method described in Ref. [20]. The microstructure of the Si3N4 based foams was 

investigated by scanning electron microscopy (FEI Quanta 200, FEI Italia, Milan, Italy). Cell size 

and cell windows sizes were measured by the linear intercept method (ASTM E112-12), (diagonal 

opposite directions), using an image analysis program (Axio Vision LE). The average values were 

obtained considering stereological relations (ASTM D3576-98), the relationship between the 

average measured chord length t and the average sphere diameter D is: D = t·1.623. The total 

porosity was calculated from the weight-to-volume ratio of the samples, while the open porosity 

and bulk density were measured using a mercury porosimeter (Pascal 140/440 Porosimeter 2000, 

Germany). The mechanical behavior of the Si3N4 based foams was determined by uniaxial 

compressive strength tests performed using a hydraulic mechanical testing machine (1121 UTM, 

Instron, Norwood, MA, USA), according to ASTM C133-97 standard. The cross-head speed was 

1.0 mm/min and the compressive load cell was 5 kN using a universal testing machine (Instron 

1121, Instron Danvers, MA; ASTM C133-94). Specimens with a nominal size of 10 mm  10 mm  

10 mm, cut from larger bodies, were tested for each sample. Each data point represents the average 

value of five individual tests. The permeability of the Si3N4 based foams was evaluated using 

Forchheimer’s equation for compressible fluids: 
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in which Pi and Po are, respectively, the absolute gas pressures at the entrance and exit of the 

sample, vs is the superficial gas velocity, determined by dividing the exiting volumetric flow rate Q, 

by the sample face area A exposed to flow, L (0.5 - 0.8 cm) is the sample’s thickness,  is the gas 

viscosity (1.77x10-5 Pas); and  is the gas density (1.15 kgm-3), evaluated for the pressure Po = 760 

mmHg and T = 24 °C. The parameters k1 (expressed in square meters) and k2 (expressed in meters), 

are respectively known as Darcian and non-Darcian permeability coefficients, in reference to 

Darcy’s law, which establishes a linear dependence between P and vs. These coefficients weigh 

the contributions of viscous and inertial losses on the total pressure drop, i.e., the influence of 

viscous and inertial interactions between fluid and the porous medium [21]. The contribution of the 
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porous structure in Eq. (4.1) is quantified by the thickness L and permeability parameters k1 and k2, 

which are complex functions of the morphology, size distribution, connectivity and volume of the 

void fraction. [22]. The terms k1 and k2 are usually referred as constants, since they are supposed to 

be independent of the body dimensions and of both fluid and flow conditions, even though they 

may vary with temperature. 

The first term of Forchheimer’s equation, (/ k1)vs represents viscous energy losses due to 

friction between fluid layers and prevails at low fluid velocities. On the other hand, the quadratic 

term, (/k2)vs
2, which is not considered by Darcy’s equation, although it becomes increasingly 

significant at high-speed flow rates, and represents the kinetic energy losses due to changes in the 

direction of motion and to acceleration or deceleration of the fluid caused by changes in the flow 

path (contraction or enlargement of the pore section or pore tortuosity along the flow 

direction)[21,22]. The knowledge of the predominant relationship (linear or quadratic) for the 

pressure drop curve is critical for designing the best driving equipment for fluid flow in a given 

application [23]. 

The experimental evaluation of permeability parameters was carried out with argon flow at 

room temperature in a laboratory-made hot gas permeameter described elsewhere (see Appendix 

B.6, Fig. B.1). Two to three disks of ~36 mm of diameter and ~7 mm of height were tested for each 

sample.  The gas was forced to flow in stationary regime through the cylindrical samples had their 

lateral surface previously sealed (using Teflon tape), to allow the gas flow to occur only in the top-

bottom direction. The gas velocity was varied between 0 to 6.5 m/sec, using a valve associated with 

a rotameter. A digital manometer was used to measure the pressure before and after the sample. 

Following this procedure, a curve (Pi
2- Po

2)/2PL versus gas velocity was obtained. This allowed k1 

and k2 values to be adjusted according to the Forchheimer’s equation (4.1) [21,23,24].  

 

4.3 Results and discussion 

 

The X-ray diffraction patterns of the as prepared and sintered Si3N4 gelcasting foams are 

reported in Fig. 4.1. The main phase was α–Si3N4 in both samples, and an increase in the β–phase 

was observed after sintering, from 12.9% for the as prepared powders to about ~30% for sintered 

foams, as estimated based on the ratio of the intensities of the [210] peak for both phases (located at 

35.4 2 for the alpha phase and at 35.9 2 for the beta phase), using a normalizing factor, L (see 

Appendix B.1, Table B.1), to correct the peak intensities from errors due to extinction and preferred 

orientations [20]. The increase in β–Si3N4 during sintering in the presence of a liquid Y2O3-MgO-
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containing phase is owing to a solution-reprecipitation mechanism that starts occurring around 1600 

C and occurs preferentially at the contact areas between particles [8,25,26]. The peaks relative to 

the sintering aids disappeared almost completely after heating due to their incorporation into an 

amorphous intergranular phase and no substitution for silicon or nitrogen in the Si3N4 structure by 

metal ions was detected [2528]. 

 

 

 

 

Fig. 4.1. XRD patterns for as prepared and sintered Si3N4 gelcasting foams (egg white 

albumen, agar-agar and methylcellulose (labeled as cellulose)) containing 5 wt% Y2O3 and 5 wt% 

MgO. (ICSD α–Si3N4 # 04-0360, β–Si3N4 # 033-1160, Y2O3 # 043-0661, MgO # 045-0946). 

 

 

The morphology of the SN-5YM30 albumen (egg white) sintered foams presenting an 

interconnected network of spherical cells (open cells), homogeneously distributed with dense struts 

is reported in Fig. 4.2. The high stability of the wet foams was achieved by thermal gelling of the 

liquid phase (~80 °C) allowing a narrower distribution in the average cell and window size from 
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121(D10), 199 (D50) to 278 m (D90), and from 22 (d10), 51 (d50) to 75 m (d90), respectively. The 

average cell size and cell window size, the total porosity and the mechanical strength values (see 

later) of Si3N4 sintered foams are summarized in Table 4.1. The amount of total porosity was on the 

average ~79 vol%. Note that these values can be related to the adsorption of proteins at air-water 

interface, which is diffusion controlled. Hereafter, once at interface, a surface denaturation takes 

place i.e., a slow structural rearrangements and conformational change, which makes the globular 

protein (egg white) more disordered, and at the same time exposes more hydrophobic residues and 

lowering the interfacial tension [29]. Which in turns permit coalescence of the bubbles until a 

complete adsorption of proteins at air-water interface, when a flexible and cohesive film is formed 

by a high packing density and intermolecular cross-linking reducing gas permeability and inhibiting 

the variation in the bubbles cell size [30].  

 

 

 

Fig. 4.2. SEM images of the fracture surface of Si3N4 sintered gelcasting foams: egg white 

albumen a) and b) general feature; c) higher magnification (detail of strong packing of particles on 

cell walls and struts). 

 

 

Figure 4.3 shows the highly interconnected open cell morphology of SN-5YM30 sintered 

gelcasting foams: agar Figs. 4.3a-b; and methylcellulose Figs. 4.3c-d. A general view is reported in 

Fig. 4.3a, and the strut structure presenting residual porosity is showed in Fig. 4.3b, for agar foams. 

The thermal gelling of the liquid foam containing 1wt% of agar as a solution, occurs during cooling 

at ~15 °C, using cold water. The use of agar solution inhibits the formation of agglomerates [18] 

and allows to the homogeneous distribution of the gel-former i.e., high microstructural uniformity; 

cells do not exhibit particular direction of expansion. A statistical analysis of the data obtained from 

SEM images showed monomodal distribution of cell size around 302 (D10), 456 (D50) to 798 m 

(D90), and cell window size around 45 (d10), 79 (d50) to 160 m (d90), respectively, see Table 4.1, 
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note that these values are strongly higher than that for egg white albumen foams owing to foaming 

ability of surfactants and very dynamic adsorption and desorption of these amphiphiles leading to 

coalescence mechanism [17]. 

Methylcellulose foams featuring spherical and interconnected cells were similar to those 

samples processed using agar as gel-former, however the thermal gelation occurs on heating at ~47 

°C, as a result of lose the water of hydration [18] and, consequently polymer–polymer association. 

Very wide distribution of cell sizes around 428 (D10), 852 (D50) to 1360 m (D90), and window size 

around 65 (d10), 152 (d50) to 355 m (d90), were reported in Table 4.1. Methylcellulose is 

recognized as a surface-active biopolymer and can be used as emulsifier, but it produces coarser 

droplets owing to high molecular weight; long time to adsorb at the interface i.e., is not able to 

prevent coalescence of the newly formed droplets [31]. Additionally, some deformation and 

development of cracks on the cell walls due to insufficient gel consistency were reported in Fig. 

4.3c [18]. Since the gel-strength depends of the concentration of methylcellulose, which in turns can 

sharply affect the viscosity, therefore small amounts of this gel-former are used. Note the struts 

containing some closed porosity in detail on Fig. 4.3d, owing to combined effect of coalescence 

(liquid film rupture) and Ostwald ripening i.e., diffusion of gas molecules from smaller to larger 

bubbles over time [3]. According to Bibette et al., this mechanism does not involve any film 

rupture: instead, there is a continuous exchange of matter that increases the average droplet 

diameter while reducing their number [32]. 
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Fig. 4.3. SEM images of the fracture surface of SN-5YM30 sintered gelcasting foams: agar a) 

general feature and b) higher magnification (detail of porous struts); and methylcellulose c) general 

view and presence of some cracks, and d) higher magnification (detail of struts containing some 

closed porosity). 

 

 

With the increasing of the solids content to 35 vol% of Si3N4-based powder concentration, 

the methylcellulose foams featuring similar interconnected network of cells morphology, however 

we observed a strong packing of particles on cell walls and struts, as showed in Fig. 4.4. Moreover, 

a similar wide distribution of cell sizes around 333 (D10), 643 (D50) to 1165 m (D90), and window 

size around 57 (d10), 119 (d50) to 297 m (d90) was observed (Table 4.1), these values are slightly 

lower than for those for 30 vol% of solids concentration. Additionally, the amount of porosity 

decreases from 89.3  0.5 (SN-5YM30) to 83.0  1.1 vol% (SN-5YM35) (Table 4.1), respectively. 
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Fig. 4.4. SEM images of the fracture surface of SN-5YM35 sintered methylcellulose foams: 

general view (on the left) and higher magnification (on the right, detail of a strong packing of 

particles on cell walls and struts).  

 

 

The effect of increase sintering temperature up to 1700 °C on the microstructure and α β 

transformation was investigated. The X-ray diffraction patterns of the methylcellulose foams 

prepared with 35 vol% of solids concentration are reported in Fig. 4.5. The β–phase significantly 

increased up to ~98% (estimated value [20]), since the rate of transformation is increased with 

sintering temperature enabling the formation of elongated β–Si3N4 grains [33]. Additionally, the 

peaks related to the sintering aids almost disappeared suggesting their incorporation into 

intergranular phase, since no substitution for silicon or nitrogen in the Si3N4 structure by metal ions 

was detected [2528]. 
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Fig. 4.5. XRD patterns for SN-5YM35 methylcellulose foams containing 5 wt% Y2O3 and 5 

wt% MgO. (ICSD α–Si3N4 # 041-0360, β–Si3N4 # 033-1160, Y2O3 # 043-0661, MgO # 045-0946).  

 

 

Figure 4.6 presents SEM images of the Si3N4 methylcellulose foams prepared with 30 and 

35 vol% of solids concentration and sintered at high temperature. Gelcasting foams featuring 

similar interconnected network of spherical cell morphology and presenting typical rod-like β–

Si3N4 grains were shown. Note that when the temperature is increased up to 1700 °C the amount of 

porosity of the SN-5YM30 methylcellulose foams decreased from ~89 to ~81vol% (see Table 4.1), 

since the α β transformation takes place without much densification [25]. In addition, the average 

cell size slightly decreased with the sintering temperature around 450 (D10), 773 (D50) to 1354 m 

(D90), and also window size around 57 (d10), 152 (d50) to 274 m (d90), see Table 4.1. Similar 

influence of the temperature on the amount of porosity of the SN-5YM35 methylcellulose foams 

that decreased from ~83 to ~72 vol% (see Table 4.1). Note also a presence of a wide distribution of 

cell sizes around 387 (D10), 544 (D50) to 718 m (D90), and window size around 66 (d10), 108 (d50) 

to 147 m (d90), see Table 4.1. A general view of the interlocking of β–Si3N4 grains present on cell 
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walls and struts of the SN-5YM30 methylcellulose foams, is reported in Fig. 4.6a, and higher 

magnification in Fig. 4.6b of β–grains which exhibit aspect ratio around ~7.0 ± 0.9. While a 

slightly decrease on aspect ratio (~6.0 ± 2.0), is observed for SN-5YM35 methylcellulose foams, 

see Fig. 4.6c general feature, and higher magnification Fig. 4.6d of the elongated β–Si3N4 grains. 

Note that the aspect ratio slightly decreases with the solid concentration, as the anisotropic growth 

of β–grains became restrained when the porosity decreased [34]. Therefore, the rate of αβ 

transformation is increased with heat temperature which enable the solution of α–Si3N4 into the 

amorphous liquid Y2O3-MgO-containing phase and subsequent precipitation of β–Si3N4 (less 

soluble and more stable) resulting in the formation of elongated interlocking β–grains [33].  

 

 

 

Fig. 4.6. SEM images of the fracture surface of Si3N4 sintered methylcellulose foams: 30 vol% 

of solid concentration a) general feature and b) higher magnification (detail of interlocking β–

grains); 35 vol% of solid concentration c) general view and d) higher magnification (detail of 

interlocking β–grains). 
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Peng et al. [35] suggested that the ratio of the cell window (d) to cell diameter (D) is directly 

related to the pore volume fraction in the case of a face centered cubic array of cells of uniform 

diameter, and this allows to quantitatively compare different cellular microstructures. It is important 

to note that the permeability, hence the flow rate, is very dependent on the pore size and pore 

volume [36]. 

The ratio d/D was plotted in Fig. 4.7 for gelcasting foams produced using different gel 

formers as a function of pore volume fraction, Vp, calculated according to equation (4.2), suggested 

by Peng et al. [35]: 
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where k = d/D. Note that for cellular ceramics, 0.7 < Vp < 1.0 [37]. 

 

The calculated total porosity values (Vp) show differences related to those measured from 

the weight-to-volume ratio for all gelcasting foams, with exception of the egg white albumen, which 

is more efficient to stabilize the foam due to a formation of a cohesive film at air-water interface 

(see Table 4.1). While agar and methylcellulose (labeled as cellulose) foams are more susceptible to 

the destabilization mechanisms: coalescence and Ostwald ripening, allowing a wide distribution of 

cells and windows sizes.  
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Fig. 4.7. The ratio d/D as a function of the pore volume fraction, Vp, for Si3N4 sintered 

gelcasting foams.  

 

 

Compressive strength as a function of total porosity is reported in Fig. 4.8 for gelcasting 

foams produced with different gelling agents and containing 30 or 35 vol% of solids concentration. 

The values increased from ~2 to ~9 MPa, when porosity decreased from ~89 to ~79 vol% (see 

Table 4.1). Higher values of strength are associated with egg white albumen, which is more 

efficient to stabilize the foam. According to Clark et al., [30] during surface denaturation the 

interaction between neighboring molecules enables formation of a cohesive viscoelastic surface 

layer of uniform thickness that makes desorption of proteins molecules highly improbable. 

Afterward, agar foam which is able to fast consolidation of foam and suitable gel strength by the 

formation of hydrogen bonds with water molecules, and methylcellulose (labeled as cellulose) 

macromolecules that form viscous adsorbed layers at liquid–interfaces, though they form poor-gel 

strength leading to coalescence of the foam, both foams were prepared with 30 vol% of solids 

concentration. In addition, varying the solids concentration to 35 vol% for methylcellulose foams 

(labeled as cellulose*), we observed an increasing in the compressive strength ~7.5 MPa (see Table 

4.1), due to decrease in porosity and strong packing of Si3N4 particles on the cell walls and struts. 
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The variation in density and strength among samples processed using different gel formers reflects 

the differences between thermal gelling, and indeed leads to the design of a wide range of 

microstructures concerning to cell and windows sizes and porosity.  

 

 

 

Fig. 4.8. Compressive strength of sintered SN-5YM30 gelcasting foams (egg white albumen, 

agar-agar and methylcellulose (labeled as cellulose)), as a function of total porosity. The symbol (*) 

represents SN-5YM35 methylcellulose foam. 

 

 

The development of ~98% βSi3N4 elongated rod-like grains with the increasing of the heat 

temperature up to 1700 °C, as already outlined, clearly influences the strength by means of 

increased degree of bonding between grains, since with increasing sintering temperature diffusion is 

enhanced, as well toughness mechanisms grain bridging and pullout. A significant increase in the 

compressive strength values was obtained for SN-5YM30 methylcellulose foams from ~2 to about 

~ 8 MPa (see Table 4.1), with the increase of sintering temperature. Moreover, we observed higher 

values for foams prepared with 35 vol% of solids concentration, as ~7.5 up to ~33.5 MPa (see Table 

4.1), with the increasing of sintering temperature up to 1700 °C, which indicates that fine-sized, 

fibrous Si3N4 grains favor high strength in porous Si3N4 ceramics [38]. 
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Table 4.1 Summary of the physical properties of the Si3N4 foams from gelcasting process.  

a Cumulative cell size distribution, d50, measured from SEM images using linear intercept method. 

b Calculated by assuming that the theoretical density of Si3N4 ceramic is 3.2 gcm−3. 

c Pore volume fraction, VP, determined.  

 

 

Si3N4 foams 

d50 

Cell size, 

D a (m) 

Cell 

window 

size, d  

(m) 

Total 

Porosityb 

(vol%) 

d/D VP
 c 

  

Compressive 

strength 

(MPa) 

Conventional Pressureless Sintering 1600oC, N2 flow  

5 wt% Albumen  

  

199  14 51  6 79.1  1.2 0.256 0.811 9.4  2.0 

1 wt% AGAR  

 

456  47 79  18 86.1  0.9 0.173 0.773 5.0  1.1 

30 vol% 

Methylcellulose  

 

852  89 152  36 89.3  0.5 0.222 0.794 1.6  0.5 

35 vol% 

Methylcellulose  

 

643  69 109  32 83.0  1.1 0.169 0.772 7.5  2.1 

Conventional Pressureless Sintering 1700oC, Static N2 

30 vol% 

Methylcellulose  

  

773  88 152  30 81.4  0.5 0.183 0.777 8.1  1.0 

35 vol% 

Methylcellulose  

  

544  35 108 8 72.0  1.0 0.159 0.768 33.5  3.9 
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Figure 4.9 shows typical permeability curves (pressure drop versus gas velocity), tested in 

argon at room temperature for Si3N4 gelcasting foams using egg white albumen or agar. The 

resistances to flow of the samples slightly differ for different gel formers and exhibit the parabolic 

trend proposed by Forchheimer’s Eq. (4.1), the constants k1 and k2 (see Table 4.2) adjust reasonable 

with experimental pressure drop curves and present correlation coefficient (R2) greater than 0.988 

for albumen curve and 0.999 for agar curve. However, a certain dispersion of ΔP/L as a function of 

vs was observed for gelcasting foams using egg white albumen as gel former. Indeed, agar foams 

present larger channels than those present in albumen foams. Also, tortuosity that arises from cell-

size variation can affect the permeability constants k1 and k2 e.g., if the cell sizes of the foam are 

constant, permeability is well correlated to porosity [39]. Typical fluid velocity in aerosol filtration 

is lower than 10 cms–1, here the tested air velocity range from 0 to 0.80 ms–1.  

 

 

 

Fig. 4.9. Pressure drop curves obtained at room temperature for Si3N4 sintered gelcasting 

foams. 
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Table 4.2 Summary of the constants k1 and k2 obtained by fitting the pressure drop curves 

with Forchheimer’s equation for the Si3N4 foams from gelcasting process. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Conclusions 

 

Gelcasting of biopolymers enable manufacture highly interconnected Si3N4 ceramic foams 

with total porosities in the between of ~79 to 89vol%, as well a wide range of cells and windows 

sizes. Different biopolymers were used that promote significantly differences in strength values 

ranged from ~2 to ~9 MPa when sintered at 1600 °C. With the increasing in the sintering 

temperature up to 1700 °C, we observed the development of elongated β–grains that strongly 

influence the strength that increased to ~33 MPa, for SN-5YM35 methylcellulose foams. 

Permeability evaluation shows that Si3N4 gelcasting foams using egg white albumen or agar as gel 

formers are suitable for filtering application. 

 

 

 

 

 

 

 

Si3N4 gelcasting foams  

Egg white albumen 

1600 oC 
ToC k1(m2) k2(m) 

 
R.T 4.41E-12 4.01E-07 

Agar-agar foam 

1700 oC 
R.T 3.30E-12 1.02E-06 
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5. Ti2AlC foams produced by gelcasting 

 

M. Potoczek, E. G. de Moraes and P. Colombo, “Ti2AlC foams produced by gel-casting”, 

manuscript submitted. 

 

5.1 Introduction 

 

MAX phases are nano-layered ceramics with the general formula Mn+1AXn (n = 1-3), where 

M is an early transition metal, A is an A group element, and X is either carbon and/or nitrogen 

[1,2].These materials exhibit a unique combination of characteristics typical of both ceramics and 

metals [35]. Like ceramics, they have low density, low thermal expansion coefficient, high 

modulus and high strength, and good high-temperature oxidation resistance. Like metals, they are 

good electrical and thermal conductors, readily machinable, tolerant to damage, and resistant to 

thermal shock. The combination of both metallic and ceramic properties of Ti2AlC and other MAX 

phases originates partially from the metallic nature of the bonding, and partially from their layered 

structure. This feature makes them promising for many applications such as electrical heating 

elements [6] gas burner nozzles in corrosive environments, high temperature bearings [7], cladding 

materials in lead-cooled fast-breeder nuclear reactors [8], high temperature electrodes [9], etc.  

MAX phases can be produced both in dense and in porous form. In spite of abundant 

literature on processing, structure and properties of Ti2AlC and the rest of the MAX phases in dense 

form, there is few experimental data published on the Ti2AlC in the porous form [1017]. Porous 

MAX phases need systematic studies, because control of the porosity and pore size can be used to 

tailor their functional properties. For example, Sun at al. [17] fabricated porous Ti3AlC2 as a support 

for CeO2 nanostructured catalyst for gas exhaust. Moreover porous MAX phases were used as 

preforms for metal (Mg) melt infiltration in order to produce high-strength MAX phases/Mg 

composites [18-20]. Ti2AlC/nanocrystalline Mg–matrix composite exhibited higher strength levels 

in both tension (350 ± 40 MPa) and compression (700 ± 10 MPa) than other Mg composites, as well 

as exceptional damping capabilities [18]. 

The aim of our work was the fabrication of highly porous (~90%) Ti2AlC foams possessing 

a high degree of interconnected porosity. We selected Ti2AlC because it is one of the most studied 

compounds, possessing the beneficial combination of all properties typical of MAX phases. Cellular 

structures with optimized morphology based on Ti2AlC would possess high permeability, high 

specific/geometric surface area, high refractoriness, chemical resistance and good mechanical 
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properties. These characteristics would enable these foams to be widely used in several industrial 

applications such as hot gas filters, solid/liquid separation devices, catalyst supports and thermal 

insulators [21]. Moreover, Ti2AlC foams would be able to further expand the range of potential 

applications in devices where high thermal shock resistance, high permeability and electrical 

conductivity are required. For instance, the possibility of Joule heating of the MAX phase-based 

porous components would make them very attractive as catalyst support.  

Porous MAX phases reported in the literature so far were manufactured using one of three 

techniques: (1) incomplete densification during sintering of MAX phase powders or reaction 

sintering of elemental powders [10,14], (2) pore former method using NaCl as the pore former, 

which was dissolved after cold pressing but before pressureless sintering at 1400 °C [15,16], and (3) 

the replica template method from the highly dispersed aqueous suspension using polyurethane 

sponges as a template [17].The porosity range obtained by the first two methods was below 75 

vol% [10,16], while higher porosity (80 vol%) was obtained by the replica template method [17]. 

However, one of the problems of the replica template method is that the ceramic struts are hollow, 

due to volatilization of the organic filament used as substrate [22,23]. This internal void and the 

flaws present on outer surface due to the difficulty in homogeneously coating the polyurethane 

foam template leads to the very low mechanical strength levels that characterize this type of 

structure. On the other hand, direct foaming followed by consolidation of the wet foam by gel-

casting leads to higher strength than replica foams at the same porosity level, although typically the 

components possess a somewhat lower permeability [22]. Gel-casting of porous materials was 

developed as a result of the combination of the gel-casting process and the aeration of ceramic 

suspensions [24]. Wet foams stabilized by surfactants require a gelling agent to consolidate the 

foam microstructure before extensive coalescence and disproportionation take place. The in situ 

polymerization of organic monomers or biopolymers, as gelling agents, leads to fast solidification, 

resulting in highly porous bodies with homogeneous morphology [24,25]. In this work an 

environmentally friendly biopolymer (agarose) was used as a gelling agent, as already proposed in 

the literature for other ceramic compositions using polysaccharides [2528] or proteins [2931] as 

gelling agents.  
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5.2 Experimental procedure 

  

Preparation of Ti2AlC foams 

Ceramic suspensions of Ti2AlC powder (Maxthal211 powder, d50 = 5.4 µm, Sandvik Italia 

S.p.A., Milan, Italy) were prepared with a solid loading of 35 vol% by dispersing them with 1.0 

wt% of polyacrylic acid (Aldrich, Cat. No. 323667). Their homogenization was carried out by 

planetary milling using alumina balls and jar. Agarose solutions (3.0 and 4.0 wt%) were prepared 

by mixing agarose powder (MEEO Ultra-Qualitat, Roth, Germany) with distilled water followed by 

heating for 1 hour at 95oC. The 3.0 and 4.0 wt% agarose solutions were added in equal quantities to 

the 35 vol% Ti2AlC slurries maintaining the temperature of all constituents at 60-65 °C. The final 

Ti2AlC content in the suspensions was always 25.7 vol% (58.7 wt%). The total concentrations of 

active gelling matter in the final slurries were 0.75 and 1.00 wt% with respect to the dry ceramic 

powder, corresponding to 1.07 and 1.42 wt% of agarose with respect to water. Foaming was carried 

out at 60 °C through agitation using a double-blade mixer at velocity of 600 rpm for 5 min. A non-

ionic surfactant (Tergitol TMN-10, Aldrich) was added to stabilize the foams at a concentration of 

0.34 g/100 ml of slurry in all cases. The foamed suspension containing agarose was then poured 

into a mould and the mould was cooled down using flowing cold water (15 °C) to gel the wet foam. 

The green bodies were then de-moulded and left in room conditions to dry. Sintering was performed 

in flowing argon atmosphere (99.99% Ar) at temperatures ranging from 1300 to 1400 °C with 4 h 

soaking time using heating rate of 1°C/min to 650 °C and then 2 °C/min up to sintering 

temperature. In order to limit the decomposition of the Ti2AlC phase occurring during the high 

temperature heat treatment (see later), foam samples were placed in an alumina boat on a bed of an 

Al-containing compound powder (we chose Ti3AlC2), as suggested by Lu at al. [32]. Samples were 

also heated in a wider temperature range (from 1000 to 1600 °C) without the Ti3AlC2 powder bed, 

for comparison. 

 

Characterization of sintered foams 

The phase assemblage of the raw powders and sintered ceramics was assessed by X-ray 

diffraction analysis (Bruker-AXS D8, Karlsruhe, Germany). XRD measurements were performed 

on finely ground foams using monochromatic Cu Kα radiation within 2θ range of 8 - 85o with a step 

size of 0.05o and step time of 2s. Phase identification was performed using Match software package 

(Crystal Impact GbR, Bonn, Germany) supported by ICDD PDF-2 Powder Diffraction File. Phase 

quantification was carried out by the method developed by Wang et al. [33] for quantitative phase 
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analysis in the Ti-Al-C ternary system. According to the method, non overlapping diffraction peaks 

were used: the (004) peak at 2θ = 19.25o for Ti3AlC2, the (002) peak at 13.0o for Ti2AlC and the 

(111) peak at 2θ = 35.9o for TiC. 

The mass fractions of Ti3AlC2, Ti2AlC and TiC denoted as Wa, Wb and Wc were determined 

using the following equations [33]. 
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619.2905.11
                                       (5.3)  

where Ia, Ib and Ic is the intensity of following peaks: (004) for Ti3AlC2, (002) for Ti2AlC, and (111) 

for TiC. 

The relative density and open porosity were determined by water immersion method using 

Archimedes’ principle, as specified in ASTM C20-00. The theoretical density of fully densified 

Ti2AlC (4.11 g·cm-3) was used as a reference to calculate the total volume fraction of porosity.  

The microstructure of the produced foams was observed by scanning electron microscopy 

(SEM), (FEI Quanta 200, Milan, Italy), and the average cell and cell window size was measured by 

the linear intercept method (ASTM E112-12) using an image analysis program (Axio Vision LE). 

When the cells are spherical and uniformly distributed, according to ASTM D3576-98, the 

relationship between the average measured chord length l and the average sphere diameter D is: D 

= 1.623 l.  

The compressive strength was measured by uniaxial compression (1121 UTM, Instron, 

Norwood, MA, USA) according to the ASTM C133-97 standard. The crosshead speed was 1.0 

mmmin-1 and the compressive load was 5 kN. Specimens with a nominal size of 10 mm  10 mm  

10 mm were cut from larger bodies (disks of 4 cm diameter and 1.5 cm height). In all mechanical 

determinations results were based on average of five samples for each density.  

The permeability of Ti2AlC foams was performed at ambient temperature in a laboratory 

device [34] using argon as flowing medium. Permeability constants were fitted from Forchheimer’s 

equation, expressed for the flow of compressible fluids as [34,35]: 
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in which Pi and Po are, respectively, the absolute gas pressures at the entrance and exit of the 

sample; vs is the superficial fluid velocity, determined by vs = Q/A, where Q is the volumetric flow 

rate and A is the exposed surface area of the porous medium perpendicular to the flow direction; L 

is the sample’s thickness (0.7 - 1.2 cm); µ is the gas viscosity (2.24·10-5 Pa s); ρ is the gas density 

(1.652 kg·m-3), evaluated for Po = 760 mmHg and T = 24 °C. The parameters k1 and k2 are usually 

known as Darcian and non-Darcian constants, in reference to Darcy’s law [35,36]. 

 

5.3 Results and discussion 

 

After the heat treatment at high temperature, the change in the phase composition of Ti2AlC 

powders is predominately caused by the decomposition of Ti2AlC to Ti3AlC2 according to the 

following reaction (5.5) [37]: 

 

2Ti2AlC (s) → Ti3AlC2 (s) + TiAl1-x + xAl (g or l)                                                (5.5) 

 

where x ≤ 1. The composition of TiAl1-x in Reaction (5.5) depends on how much Al is lost to the 

surroundings [37], with the extreme situation being when Al is totally lost as a gaseous or liquid 

phase and only pure Ti remains. In highly porous foam, decomposition according to Reaction (5.5) 

must be even more severe when compared to fully dense samples, because the high surface area 

allows for faster loss of Al. Apart from the heat treatment, another factor that influences the phase 

composition of Ti2AlC foam is the presence or not of a Ti3AlC2 powder bed during sintering. As an 

example, the X-ray patterns for the as received Ti2AlC powder as well as for a Ti2AlC foam after 

sintering at 1400 °C with and without a Ti3AlC2 powder bed are presented in Fig. 5.1. The patterns 

of both initial powder and the sintered foams showed Ti2AlC, Ti3AlC2 and TiC phases. 

Additionally, Al2O3 was detected in the initial powder as impurity, but it was not considered when 

carrying out the XRD quantitative analysis. The decrease in the Ti2AlC phase when the heat 

treatment was carried out without a Ti3AlC2 powder bed is clearly observable. 

 



118 

 

 

 

Fig. 5.1. XRD diffraction patterns for the as-received Ti2AlC powder and of a Ti2AlC foam, 

sintered at 1400 ºC with or without a Ti3AlC2 powder bed. (ICSD collection code: Ti2AlC # 

165460, Ti3AlC2 # 153266, TiC # 44494, respectively). 

 

 

Figure 5.2 shows the effect of heat treatment on the decomposition of the Ti2AlC phase, 

according to Reaction (5.5), for foam samples heated without (temperature range 1000-1600 °C) or 

with Ti3AlC2 powder bed (temperature range 1300-1400 °C). We can observe that the initial Ti2AlC 

powder already contained some impurities and that the decomposition started at around 1300 °C 

and proceeded very significantly with increasing temperature when no Ti3AlC2 powder bed was 

present.  
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Fig. 5.2. Effect of heat treatment on the amount of residual Ti2AlC phase for foams sintered 

at different temperatures, with or without a Ti3AlC2 powder bed. 

 

 

Table 5.1 reports the mass fractions of Ti2AlC, Ti3AlC2 and TiC, as computed from Eqs. 

5.1-5.3, in the initial powder as well as in the foams after sintering at 1300 and 1400 oC with or 

without a Ti3AlC2 powder bed. The results clearly show the beneficial effect of the presence of a 

Ti3AlC2 powder bed for the retention of the Ti2AlC phase even when processing highly porous 

components with a large surface area. Although a high content of Ti2AlC was found after sintering 

at 1300 oC using a Ti3AlC2 powder bed, the ceramic foam had a poor compression strength (0.76 ± 

0.18 MPa for a total porosity of 90 vol% and bulk density of 0.41 g·cm-3) due to incomplete 

densification of the struts. On the other hand, the Ti2AlC content after sintering at 1400 oC using a 
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Ti3AlC2 powder bed was found to be 80 wt%. Therefore, sintering of foams presented in next 

sections of this work was performed only at 1400 oC using a Ti3AlC2 powder bed. 

 

Table 5.1 XRD quantitative analysis results of the initial powder as well as of Ti2AlC foams 

after sintering at 1300 and 1400 °C, using a Ti3AlC2 powder bed and without powder bed. 

 

When discussing the phase assemblage of the heat treated foams, we should also point out 

that we used an agarose concentration that was not higher than 1 wt%, with respect to the ceramic 

powder, in order to minimize the reaction of the organic additive with the MAX phase, forming 

binary carbides during the high temperature heat treatment. Thermogravimetric analysis data for the 

agarose binder (not shown here for the sake of brevity) indicate that after a high heat temperature 

treatment in argon there is a 20 wt% residue, e.g. the final content in the ceramic foams after 

agarose decomposition was not higher than 0.2 wt% with respect to the ceramic powder.  

The linear sintering shrinkage of the porous samples was in the 10–12% range. Total 

porosity, open porosity, water absorption and density of Ti2AlC foams after sintering at 1400 °C are 

reported in Table 5.2. The data indicate that the adopted processing conditions led to highly porous 

foams (87-93 vol%) with an almost complete interconnected porosity (the difference between total 

and open porosity was only ~1%). The porosity of the bodies decreased with increasing agarose 

concentration in the starting slurry due to lower foaming capacity of Ti2AlC suspensions containing 

more agarose. Agarose, having a high molecular weight (~200.000), increases the viscosity of 

ceramic suspensions thereby reducing the foaming yield [25]. 

 

 

Sample 

Phase amount (wt%) 

Ti2AlC Ti3AlC2 TiC 

As-received Ti2AlC powder 

Foam after sintering at 1300  °C, without powder bed 

Foam after sintering at 1300 °C, using powder bed 

Foam after sintering at 1400 °C, without powder bed 

Foam after sintering at 1400 °C, using powder bed 

82.5 

71.5 

81.0 

69.8 

80.0 

17.0 

16.8 

16.2 

17.7 

15.5 

0.5 

11.7 

2.8 

12.5 

4.5 
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Table 5.2 Total porosity, open porosity, water absorption and density of Ti2AlC foams. 

  

The morphology of the sintered foams is shown in Fig. 5.3. The obtained foams were 

typically composed of approximately spherical cells interconnected by circular windows. Spherical 

pores were associated with polycrystalline struts still containing some pores. The cell and the cell 

window size decreased with increasing agarose concentration in the starting slurry. This is 

illustrated in Fig. 5.4 and Fig. 5.5 by histograms obtained from the results of image analysis. The 

foams having porosity of 93% prepared with suspensions containing 1.07 wt% of agarose were 

characterized by a mean cell size of 615 m and mean window size of 162 m. On the other hand, 

the foams having porosity of 87% prepared with slurry containing 1.42 wt% of agarose had a mean 

cell and cell window size of 335 and 72 m, respectively.  

 

Agarose content in Ti2AlC 

slurry (wt% with respect 

to the water in the slurry) 

Total 

porosity (vol 

%) 

Open porosity 

(vol %) 

Water 

absorption 

(wt%) 

Bulk Density 

(g·cm-3) 

     

1.07 93.0  0.3 92.1  0.4 296  15 0.289  0.013 

1.42 87.3  0.7 86.9  0.5 175  12 0.522  0.032 
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Fig. 5.3. Morphology of Ti2AlC foams: (a) and (b) overall view, (c) and (d) cell and window 

details, (e) and (f) strut details, ((a), (c), (e): total porosity = 87 vol%, (b), (d) and (f) total porosity = 

93 vol%). 
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Fig. 5.4.  Cell size distribution for foams having total porosity: (a) 87 vol% and (b) 93 vol%. 

 

 

Fig. 5.5. Cell window size distribution for foams having total porosity: (a) 87 vol% and (b) 

93 vol%. 
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From Fig. 5.4 and Fig. 5.5 it can be seen that increasing the agarose concentration in the 

starting slurry decreased the mean cell size and led to a narrower cell size distribution of the 

resulted Ti2AlC foams. This is caused by the higher viscosity of the slurry, and hence higher shear 

stress generated during mechanical frothing of the suspension containing higher agarose level. 

According to the Tailor model [38,39], the mechanism of bubble break up into smaller bubbles is 

connected to the shear stress and the surface tension. If the shear stress overcomes the interfacial 

stress (surface tension/bubble radius) the bubble will elongate and eventually brake up into smaller 

bubbles. Hence, the cell size in Ti2AlC foam made of the suspension containing higher agarose 

level is smaller. 

The main criterion for the applicability of highly porous components possessing open 

porosity is their permeability and mechanical strength. Figure 5.6 shows a typical pressure drop 

curve for a Ti2AlC foam sample with 93 vol% total porosity, from which the permeability constants 

k1 and k2 can be obtained. The parabolic trend of the curve is confirmed by the very good 

correlation coefficient R2 = 0.998, which validates Forchheimer’s equation (5.4), instead of the 

linear model expressed by Darcy’s law. This is typical for gel-cast foams [35,36], and such 

behaviour was observed for all tested samples. The Darcian and non-Darcian permeability constants 

of Ti2AlC foams are given in Table 5.3. 
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Fig. 5.6. Experimental permeability curve for a Ti2AlC sample having a total porosity of 

93%. The solid line represents Forchheimer’s equation (5.4). 

 

 

Table 5.3 Darcian and non-Darcian constants for Ti2AlC foams. 

 

The permeability of foams is a result of complex effects of the porosity as well as cell and 

cell window size. The increase in porosity as well as in cell and cell window size caused an increase 

in the permeability constants (Table 5.3). The data indicate that these Ti2AlC cellular structures 

have a very high permeability, similar to reticulated foams [22], which makes them particularly 

suitable for instance for solid-fluid separation processes, in which the filtering layer must present 

Total porosity, % 

Average cell size 

(µm) 

Average cell window 

size (µm) 

Permeability 

Darcian constant 

k1 (·10-9 m2) 

Non-Darcian constant 

k2 (·10-4m) 

87 335  19 72  14 2.05  0.16 1.38  0.15 

93 615  72 162  18 17.9  1.4 17.5  1.9 
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low pressure drop and high particle collection efficiency [35,36]. Moreover, they could also be used 

to fabricate interpenetrating metal-ceramic composites by infiltration of molten metal [18,40]. 

Figure 5.7 shows a representative stress-strain plots for the Ti2AlC foams. These curves 

indicate that the samples displayed the typical brittle failure of ceramic foams. The maximum stress 

achieved in the linear elastic region depended on the foam density, and when the stress reached a 

critical value, the sample started to crack and the stress fell onto the plateau region. A wavy 

oscillations pattern can be observed in the plateau region for both samples, which can be attributed 

to the layer by layer fracture of the cell walls. The average compression strength of Ti2AlC foams 

having a total porosity of 87 and 93 vol% were 2.79 ± 0.87 and 1.60 ± 0.37 MPa, respectively. 

Despite the fact that it is not possible to compare these strength data with literature values, as the 

papers present in the literature discuss MAX phase foams with a much lower amount of total 

porosity, we can note that the values appear to be at the very high end of those reported for foams of 

similar relative density fabricated using also different approaches [41]. It is conceivable that by 

increasing the sintering temperature, in the presence of a Ti3AlC2 powder bed, it would be possible 

to increasing the density of the struts and therefore the strength of the foams, reaching values 

similar to those reported for Al2O3 foams of similar porosity [25]. 
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Fig. 5.7. Compression stress-strain plots for Ti2AlC foams having a total porosity of 87 and 

93 vol%. 

 

 

Figure 5.8 shows a SEM image of a fracture surface in a Ti2AlC foam (total porosity = 87 

vol%) after compression test; in the inset is reported a photograph of the sample after testing. The 

fracture plane is oriented at about 45° with respect to the axis of loading, indicating that the Ti2AlC 

foam failed by a shear mechanism along the plane of maximum stress. A close analysis of the 

fracture path did not allow to observe any signs of delamination in the MAX phase grains, as 

reported by other researchers [15]. We attribute this discrepancy to the higher amount of 

microporosity in the struts of our samples, in turn due to the fabrication procedure which did not 

allow to efficiently compact the ceramic grains in the green body, resulting in a lower degree of 

bonding between the particles. 
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Fig. 5.8. SEM image of the fracture surface of a Ti2AlC foam after compression test: in the 

inset is shown a photograph of the sample after testing. Arrows indicate the loading direction. 

 

 

5.4 Conclusions 

 

Highly porous Ti2AlC open cell foams with a total porosity ranging from 87 to 93 vol% 

were produced by gel-casting using agarose as a gelling agent. The agarose concentration in the 

starting slurry affected the amount of porosity as well as the cell and cell window size. Increasing 

the agarose concentration in the Ti2AlC slurry, reduced the total porosity and the cell and cell 

window size, due to an increase in viscosity of the slurry. Foams with a higher amount of total 

porosity and a larger average cell and cell window size possessed a higher permeability. Depending 

on the amount porosity and in relation to the mean cell and cell window size, the compressive 

strength of Ti2AlC foams ranged from 1.60 to 2.79 MPa. Laying the samples on a Ti3AlC2 powder 

bed during the heat treatment at 1400 °C reduced the thermal decomposition of the Ti2AlC phase. 
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III CONCLUDING REMARKS 

 

The research work presented in this thesis regarded the development of highly 

interconnected Si3N4 ceramic foams (open cells) with tailored total porosities in the between of ~74 

to 89 vol% and a wide range of cells and windows sizes, which were prepared using different 

processing routes: emulsion and gelcasting of biopolymers.  

Sintering of the Si3N4 foams was conducted by different routes: conventional pressureless 

sintering using N2 flow at 1600 C up to 1700C, generally with prolonged heating time enable the 

growth of  βSi3N4 grains which are in equilibrium with the reactive liquid at sintering 

temperatures. Additionally, an innovative sintering approach by intense thermal radiation, inside a 

modified SPS set-up, shows to be effective in promote densification of foams struts decorated with 

SiC nanowires. Highly porous Si3N4 foams with an average cell size of 8~41 μm with total porosity 

of 80~86 vol% were obtained. The compression strength ranged from 2.0 MPa up to 9.9 MPa.  

The combination of Y2O3 and MgO as sintering additives, which reacts with the SiO2 

present as oxide layer at Si3N4 powder surface enables the formation of  βSi3N4 in situ from 

oxynitride glass. When the sintering temperature reaches 1700C, almost complete αβ 

transformation occurred i.e., up to 98% of βSi3N4. For the conditions investigated here, average 

aspect ratios of rod-like  βgrains ranging from 4 ± 0.6 up to 11.0 ± 0.5 were obtained with the 

increased of sintering temperature, which in turns influence the compressive strength that increased 

from 13 ± 0.5 up to 28.5 ± 1.4 MPa at total porosities about 74 vol%.   

Additionally, gelcasting foams using biopolymers as gelling agents allows microstructures 

with a strong packing of particles on cell walls and struts, and strength values up to 33MPa at 72% 

of porosity for methylcellulose gelcasting foams.  

Permeability evaluation shows that Si3N4 foams are in the range of gelcasting foams (on 

permeability map) and are suitable for filtering application.  

Ti2AlC foams were successful produced using agar as gel-former. Additionally, the use of 

powder bed during sintering avoids decomposition of Ti2AlC phase, which has exceptionally 

oxidation-resistance. 
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A Materials 

 

A.1 Ceramic powders 

A.1.1 Si3N4 

Silicon nitride powder – Si3N4 from Yantai Tomley Hi-tech New Materials, Yantai, 

Shandong, China –purity > 96 wt%, main impurity was trace Fe, oxygen content 7.47 ± 0.08 wt%, 

average particle size 1.95 μm, BET 9.6 m2/g, containing above 91.5% α–Si3N4 phase, see Fig. 

A.1.1.  

The special nitridation process of silicon powder to synthesized crystalline Si3N4 high 

quality powders, according to Eq. (A.1) [1, and narrow particle size distribution and characteristics 

(see Table A.1). 

NSiNSi
C

43
14001100

223  
                                                           (A.1) 

 

a Chemical analysis from the supplier 

 

 

Fig. A.1.1.  SEM images of the as received Si3N4 powder. 

 

A.1.2 Y2O3 

Yttrium oxide  powder – Y2O3 from Inframat Advanced Materials L.L.C., Manchester, New 

Hampshire, USA – purity ⩾ 99.95 wt%, average particle size d50 = 50 nm, see Fig. A.1.2. 

Table A.1 Si3N4 powder particle size and chemical analysis a 

α– phase Fe O2 N Al Ca 

Free 

silicon 

d50 

> 90% <100ppm <1.8% >38.5% <100ppm <40ppm <0.1% 0.6m 
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Fig. A.1.2.  SEM images of the as received Y2O3 powder. 

 

A.1.3 MgO 

Magnesium oxide powder – MgO from Bitossi Ceramiche S.R.L., Montelupo Fiorentino, 

Firenze, Italy – purity ⩾ 99.99 wt%,  average particle size d50 = 4.6 μm. The MgO was obtained by 

the calcination of MgCO3 at 650 ºC for 1 hour, see Fig. A.1.3. 

 

Fig. A.1.3.  SEM images of the calcinated MgO powder. 

 
A.1.4 Ti2AlC 

Titanium aluminium carbide powder – Ti2AlC from Sandvik Heating Technology, 

Hallstahammar,  Sweden – purity ⩾ , average particle size d50 = 5.4 m. Maxthal 211 (Ti2AlC) 

ceramic engineering material (Fig. A.1.4) is an alumina–forming MAX–phase, which makes it 

highly suitable for use in air and oxidizing atmospheres up to 1450 oC. 
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Fig. A.1.4.  SEM images of the as received Ti2AlC powder. 

 

A.2 Surfactants and biopolymers 

 

A.2.1 Poly(acrylic acid) – PAA   

(CAS n. 9003-01-4) average molecular weight Mw = ~1,800, density = 1.2 g·cm-3 at 25 oC  

(Sigma-Aldrich, Italy). See chemical structure from supplier, see Fig. A.2.1. 

 

Fig. A.2.1.  General simplified formula of poly(acrylic acid). 

 

A.2.2 Poly(ethyleneimine) – PEI  

(CAS n. 9002-98-6) average molecular weight Mw = ~750,000, solution 50 wt % in H2O, 

density = 1.03 g·mL-1 at 25 oC  (Sigma-Aldrich, Italy). See chemical structure from supplier, see 

Fig. A.2.2. 

 

Fig. A.2.2.  General simplified formula of poly(ethyleneimine). 
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A.2.3 Tween® 80 

  

Polyoxyethylenesorbitan monooleate –  Polysorbate 80 (CAS n. 9005-65-6) average 

molecular weight Mw = ~1,320 , HLB value 15, density = 1.076 g· mL -1 at 25 oC  (VWR 

International Ltd – BHD Prolabo, UK). See chemical structure from supplier, see Fig. A.2.3. 

 

 
 

Fig. A.2.3.  General simplified formula of polysorbate 80. 

 

A.2.4 Tergitol® TMN 10  

Polyethylene glycol trimethylnonyl ether – Tergitol® TMN 10 (CAS n. 60828-78-6) 

average molecular weight Mw = ~683, HLB value ~14.1, density = 1.04 g·mL-1 at 20 oC  (Sigma-

Aldrich, Italy). See chemical structure from supplier, see Fig. A.2.4. 

 

Fig. A.2.4.  General simplified formula of Tergitol® TMN 10. 

 

 

A.2.5 Albumen 

Egg white albumen – Ovalbumin (90.5%) (CAS n. 9006-59-1) average molecular weight 

Mw = ~45,000, density = 1.035 g·cm-3 at 20 oC  (AppliChem Gmbh, Darmstadt, Germany) 
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A.2.6 Agar-agar 

Agar (gelidium sp.) – Food grade; (ERBAMEA  Srl, Perugia, Italy)  

 

A.2.7 Methylcellulose 

Methylcellulose ether – METHOCELTM A4M (CAS n. 9004-67-5) Food grade; average 

molecular weight Mn = ~88,000, density = 0.7 g·cm-3 at 20 oC  (Dow Europe GmbH, Horgen, 

Switzerland). 
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B Materials characterization 

 

B.1 X– Ray diffraction 

All XRD analysis were made using Bruker AXS D8 Advance diffractometer (Bruker, 

Karlsruhe, Germany),  using a CuKα radiation (1.5418 Å),  - 2 configuration 40 kV, 40 mA, 2 s 

with a 0.05° step size. Phase identification was performed using Match! Software package (Crystal 

Impact GbR, Bonn, Germany) supported by ICDD PDF-2 Powder Diffraction File (International 

Center for Diffraction Data, Newtown Square, PA, USA) as the reference database. 

To understand the evolution of the crystalline phases during sintering, the relative amounts 

(weight fraction) of the major phases present, α– and β–Si3N4, were calculated using techniques 

based on the Ref. [2. In order to minimizing error due to preferred orientation and particle 

statistics, computed-integrated intensities were used to calculate normalizing factors, L , see Table 

B.1. Additionally, L was used to correct the experimental peak intensities, Y required for the 

subsequent calculations. For example, the corrected intensity for the β–Si3N4 (210) peak was found 

to be: I β – (210)
c
 = 11.21 Y 

The correct values for peak intensity were used to determine the weight percent of α– and β–

Si3N4 from the ratio: 














 II

I

cc

c

)210()210(

)210(




                                                                  (B.1) 

 

 

 

 

 

 

 

B.2 Density and porosity measurements 

Density measurements on bulk samples were performed according to the standard (ASTM–

C 373). After the determination of the dry mass D, the saturated mass M and the mass while 

Table B.1 Selected peaks and L values used for quantitative analysis 

Phase 2 Reflection L 

α–Si3N4 35.3 (210) 6.79 

β–Si3N4 36.1 (210) 11.21 
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suspended in water S, all density and porosity values were calculated using the formulas reported in 

Table B.2. 

 

 

 

 

 

 

 

 

 

 

a In the calculations, water is considered as the buoyant medium (1 cm3 of water weights 1g). 

 

The density of ceramic powders was measured by gas pycnometer (AccuPyc 1330, 

Micromeritics, Norcross, GA) (ASTM B923).  

Mercury porosimetry consists of the gradual intrusion of mercury into an evacuated porous 

medium by capillary rise phenomenon whereby an excess pressure is required to cause a non-

wetting liquid to enter a narrow capillary, average diameters of open cells and the apparent porosity 

of the porous ceramics were measured by this technique (Pascal 140/440 Porosimeter 2000, 

Germany). Cell size information in terms of an equivalent cylindrical capillar size may be extracted 

from capillary pressure data using the Young–Laplace equation: 

 

Pc
r

AirHg

AirHgAirHg






 cos2
                                                      (B.2) 

where r is the pore radius, σ is the surface tension of the mercury–air interface, and  is the 

contact angle of mercury on the solid surface of the pore wall. In general, difficulties from pore 

accessibility limitations can conduct to wrong results because in some cases just smaller pores are 

intruded by mercury [3].  

 

B.3 SEM - Scanning Electron Microscopy 

The microstructure of the foams was characterized using FEI Quanta 200 FEG, Quanta 200 

(FEI Company, The Netherlands) microscope. A field emission scanning electron microscope (FE-

Table B.2  Calculations description for determination of physical properties of 

sintered components (ASTM–C 373)a 

Bulk density B = D/ M - S 

Open pores volume V
OP

 = M - D 

Apparent porosity P = [(M – D)/(M – S)  100 

Apparent specific gravity T =  D/(D – S) 
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SEM, JSM-7000F, JEOL, Tokyo, Japan) was also used. The average cell size and cell windows 

sizes were measured by the linear intercept method according to ASTM E112-12 (diagonal opposite 

directions), using an image analysis program (Axio Vision LE). For spherical cells uniformly 

distributed, according to ASTM D3576-98, the relationship between the average measured chord 

length t and the average sphere diameter D is: D = t·1.623. 

 

B.4 TEM - Transmission Electron Microscopy  

A Schottky-type field emission transmission electron microscope (TEM, JEM-2100F, 

JEOL, Tokyo, Japan) operated at 200 kV, equipped with an energy-dispersive X-ray spectroscopy 

(EDX mapping in HAADF-STEM mode, for ~30 min) detector. A transmission electron 

microscope (TEM, JEM-2100, JEOL Ltd, Tokyo, Japan) operated at 200 kV, was used to collect 

electron diffraction (ED) data were collected with a LaB6 filament. For TEM study, the sample was 

crushed into powder during ~20 min and ultrasonic dispersed in ethanol for ~10 min.  Then it was 

transferred on a Cu grid coated with carbon film. The average cells and windows sizes; and the 

aspect ratio of the rod-like β–Si3N4 grains were measured by the linear intercept method according 

to ASTM E112-12, using an image analysis program (Axio Vision LE).  

 

B.5 Mechanical characterization 

Compressive strength measurements were performed using a universal testing machine 

Instron 1121 UTM (Instron, Danvers, MA) with a cross-head speed of 1 mm/min, and the 

compressive load cell was 5 kN, according to the standard (ASTM C133-94). Before testing, 

samples were cut down to an approximate cubic shape with length of the edges of ~10mm. 

Compressive strength  could be calculated with the relation  = PA-1 , where P is the load applied 

and A the surface area where the load is applied. 

 

B.6 Permeability 

The experimental evaluation of permeability parameters was carried out with air/argon flow 

in temperatures ranging from ~ 25 to ~ 650°C in a laboratory-made hot gas permeameter (see Fig. 

B.1, room temperature device labeled as (R.T), on the left and, high temperature device labeled as 

(H.T), on the right). The air/gas was forced to flow in stationary regime through the flat disk sample 

laterally sealed (with Teflon tape or thermal paste depending on the temperature of permeability 

test), to allow the air/gas flow to occur only in the top-bottom direction. Subsequently, the disk is 

placed in a sample holder with the flatter surface facing down (to the flow inlet). The sample holder 
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can be placed inside an electric furnace (7500 W) in order to perform high temperature permeability 

test. Pressures Pi and Po were measured by a digital micromanometer and recorded as a function of 

the resulting air/gas volumetric flow rate (Q), measured with a rotameter and converted to the 

superficial velocity (vs). K-type thermocouples were used to monitor the temperatures of the air 

entering (Ti) and exiting (To) the sample. They were also used to monitor the gas temperature near 

the pressure transducers and prior to entering in the flowmeter devices. 

The collected data sets (Pi, Po and vs) for each temperature level were treated using 

Microsoft Excel 2010® according to the least-square method using a parabolic model of the type: y 

= ax + bx2, in which y was P/L and x was the air/gas velocity vs. The permeability parameters of 

Forchheimer’s equation (2.1) were then calculated from the fitted constants a and b respectively by 

k1 = /a and k2 = /b. 

 

 

 

Fig. B.1.  Illustration of the laboratory-made gas permeameter used for the tests: room 

temperature (R.T.), on the left; and of the high temperature (H.T.), on the right. 
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