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Abstract
Beetles are commonly moved among continents with international trade. Baited traps set up in and 
around entry points are commonly used to increase chances of early-detection of incoming species and 
complement visual inspections. A still underestimated benefit of this surveillance approach is the high 
number and diversity of collected bycatch species. In this study, we exploited a multiyear surveillance pro-
gram carried out with baited traps at five Spanish ports and their surrounding natural areas to investigate 
i) the importance of identifying bycatch to more promptly detect nonnative species belonging to non-
target groups; ii) patterns of native and nonnative species richness and abundance inside the port areas vs. 
surrounding natural areas; iii) the occurrence of spillover events between natural areas surrounding ports 
and the port areas, and iv) whether the native species most commonly introduced into other countries are 
more abundant in port areas than in surrounding natural areas. A total of 23,538 individuals from 206 
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species representing 33 families were collected. The number and taxonomic diversity of the 26 bycatch 
nonnative beetle species testified that the identification of these unintentionally trapped species can pro-
vide additional information on ongoing invasions. Patterns of spillover and native species richness and 
abundance in port areas vs. surrounding natural areas highlighted a differential ability of different beetle 
families to colonize port areas. Finally, native species most commonly introduced into other countries 
were more abundant in port areas than in their surroundings, while the opposite trend occurred for native 
species that have not been introduced elsewhere. Our study highlighted that the use of traps baited with 
generic attractants can aid in early-detection of nonnative beetle species, and that the identification of na-
tive species can provide useful information on the risk of introduction in other countries.
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Introduction

The constant increase in the volume of goods moved among continents is the primary 
cause of the impressive number of nonnative insect introductions recorded around the 
world (Brockerhoff and Liebhold 2017). Beetles (Coleoptera) are the most species-rich 
group among interceptions at ports of entry worldwide (Nahrung and Carnegie 2021; 
Turner et al. 2021) as they can be transported via a number of pathways, including wood-
packaging materials, logs, processed wood, plants for planting but also as hitchhikers 
in containers (Wu et al. 2017; Meurisse et al. 2019; Pace et al. 2022; Fenn-Moltu et al. 
2023). In addition, beetles include some of the most economically detrimental nonnative 
insects (Nahrung and Carnegie 2020; Fantle-Lepczyk et al. 2022; Renault et al. 2022). 
Thus, substantial investments have been undertaken over the last decades to improve pre-
border, border and post-border measures aimed at mitigating their arrival and establish-
ment rate (Carnegie et al. 2022; Cuthbert et al. 2022; Haack et al. 2022; Nahrung et al. 
2023). This effort has led to the development of a number of innovative tools and strate-
gies that are increasingly exploited to integrate visual inspections at sites where the intro-
duction of nonnative species is more likely (Poland and Rassati 2019; Larson et al. 2020).

The use of traps baited with lures set up in and around entry points is one of 
the most commonly adopted approaches to early-detect nonnative beetles, especially 
wood-borers such as bark and ambrosia beetles (Curculionidae: Scolytinae) and long-
horn beetles (Cerambycidae) (Poland and Rassati 2019). Examples of surveillance pro-
grams based on baited traps are known for a number of developed countries such as 
Australia (Carnegie et al. 2018, 2022), Austria (Hoch et al. 2020), Canada (Allison et 
al. 2021), Finland (Melin et al. 2022), France (Fan et al. 2019), Great Britain (Inward 
et al. 2020), Italy (Rassati et al. 2015a, 2015b), and the USA (Rabaglia et al. 2019), but 
the same approach can be expected to become increasingly common also in develop-
ing economies (Gupta and Sankaran 2021). A still underestimated benefit of trapping 
protocols developed for the above-mentioned beetle groups is the high number and 
diversity of bycatch species (Skvarla and Holland 2011; Barringer 2015; DiGirolomo 
et al. 2021; Thurston et al. 2022; Webster et al. 2022). These unintentionally trapped 
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insects can provide extremely valuable information (Spears and Ramirez 2015) but 
they are often discarded in surveillance programs because the federal databases only 
seek presence/absence of target nonnative species.

Bycatch species can be classified into two main categories. The first category includes 
nonnative or native species belonging to non-target beetle families that are not known to 
be present in the monitored area. Using trapping protocols developed for longhorn bee-
tles and bark beetles in forested areas of Maine, USA, DiGirolomo et al. (2021) recorded 
54 new state records from bycatch species, among which two were new country records. 
Similarly, using trapping protocols developed for longhorn beetles in a forested area of 
Canada, Webster et al. (2022) found 300 species new to Prince Edward Island, among 
which one was a new country record. The second group of bycatch species is represented 
by native species belonging to the same or different families than the target ones that are 
already known to occur in the monitored area. These species often represent the major-
ity of trap collections (e.g., Rassati et al. 2015a, 2015b; Fan et al. 2019; Rabaglia et al. 
2019; Marchioro et al. 2020, but see Brockerhoff et al. 2006 and Stone et al. 2010) and 
their records can provide important insights into patterns of beetle abundance, distribu-
tion, and diversity in the monitored natural or anthropized areas (Buchholz et al. 2011; 
Spears and Ramirez 2015; Rassati et al. 2018; Pawson et al. 2020).

In this study, we exploited a multi-year surveillance program carried out at five 
Spanish ports and their surrounding natural areas aimed at early-detection of nonnative 
bark and ambrosia beetles and longhorn beetles to investigate a number of mechanisms 
that can improve surveillance strategies at national and international scale. First of all, 
we assessed the importance of identifying bycatch species that can be trapped in the con-
text of such surveillance activities to improve the chances of detecting nonnative species 
belonging to non-target groups. Second, we compared patterns of native and nonnative 
species richness and abundance inside the port areas vs. surrounding natural areas to un-
derstand whether the latter changes depending on the beetle family. Third, we used na-
tive species records of both target and non-target families to investigate the occurrence 
of spillover (i.e., the movement of organisms from one distinct habitat type to another) 
events between natural areas surrounding ports and the port areas. Fourth, we tested the 
hypothesis that the native species most commonly introduced into other countries are 
more abundant in port areas than in surrounding natural areas, while the opposite trend 
occurs for native species that have not been introduced into other countries.

Methods

Study sites

The trapping survey was carried out from 2017 to 2021 in five coastal towns located 
along the Spanish coast, namely Alicante, Castellon de la Plana, Gandia, Sagunto, and 
Valencia (Suppl. material 1 and Suppl. material 3: fig. S1A, B). These cities were selected 
as they host the only state ports of the Valencia region that import/export commodities 
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from/to foreign countries. In each city, traps were set up both within the port area 
and in a natural area surrounding the port area (mean distance: 2.8 ± 1.3 km). With 
the term “natural areas” we refer to remnant vegetation areas within or surrounded by 
urban areas. In Alicante, Castellon de la Plana and Gandia, a pair of traps was used (1 
inside and 1 outside the port) (Suppl. material 3: fig. S1C); in Sagunto and Valencia, 
instead, the trap located outside the port was coupled with 2 and 3 traps inside the port 
area, respectively, as these ports are larger and trade more commodities than the others. 
Traps were active at all sites in 2019, 2020, and 2021; traps were set up also in Alicante 
in 2017, and Alicante and Castellon de la Plana in 2017 and 2018. In Alicante and 
Valencia, the ports were mostly surrounded by urban areas, while the landscape around 
the port of Castellon de la Plana, Gandia and Sagunto was more heterogeneous with a 
mosaic of urban areas, crop fields and forested areas. In all cases, conifers were dominant 
over broadleaf trees. The latter were mostly restricted to some parks and private gardens.

Trapping design, lures and species identification

The trapping network was meant to target nonnative bark and ambrosia beetles and 
longhorn beetles. For this reason, black crossvane traps (Crosstrap, Econex, Spain) were 
used. This trap type is composed by four 19 × 100 cm flexible and sliding coated panels 
above a funnel measuring 48 cm square with an opening of about 40 cm deep attached 
to a screw cap collecting jar (9.5 cm diameter × 21 cm deep) (Suppl. material 3: fig. 
S1D). This trap was found to efficiently collect both longhorn beetles and bark and am-
brosia beetles (Alvarez et al. 2015; Faccoli et al. 2020). Traps were baited with (-)-alpha-
pinene (release rate of 300 mg/day at 25 °C), ethanol (2000 mg/day at 25 °C), and a 
blend of ipsenol (95.24%), ipsdienol (4.75%), and (s)-(+)-cis-verbenol (0.02%) (release 
rate of 3.71 mg/day at 25 °C). These volatiles were selected as they are known to attract 
a wide range of conifer-associated (alpha-pinene, ipsenol, ipsdienol, and verbenol) and 
broadleaf-associated (ethanol) bark and ambrosia beetles and longhorn beetles (Miller et 
al. 2005, 2011; Miller 2006; Miller and Rabaglia 2009; Ranger et al. 2021) and because 
they were previously used together or separately in surveillance programs (Brockerhoff 
et al. 2006; Rassati et al. 2014, 2015a, 2015b; Rabaglia et al. 2019). All lures were pur-
chased from Econex, Spain. The tops of the traps were hung about 2 m off the ground, 
using suitable supports such as building structures, wire fences, and metal girders in port 
areas and tree branches in surrounding natural areas. All traps were in relatively open 
areas where insects could approach from several directions. Trap collecting cups were 
half-filled with 50% solution of ethylene glycol to kill and preserve captured beetles, and 
the solution was replaced at each trap check. Traps were emptied once per month from 
March to September of each year (total of 6 trap checks). Lures were replaced monthly.

Bark and ambrosia beetles, longhorn beetles and all the other bycatch beetle spe-
cies were identified to species or at least genus level. All beetles that were identified at 
species level were classified as native or nonnative using available literature (Löbl and 
Smetana 2007, 2008, 2010; Beenen and Roques 2010; Denux and Zagatti 2010; Roy 
and Migeon 2010; Löbl and Löbl 2015, 2016, 2018; Alonso-Zarazaga et al. 2017). 
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We used the term nonnative to define species not known to be native to Spain or not 
of Western Palearctic origin. Subsequently, Spanish native species were further divided 
into two groups, i.e., species that were not and species that were introduced outside 
Spain (again considering both other continents and other areas outside their native 
distributional range). Information regarding introduction outside Spain was recov-
ered primarily from the scientific literature cited above (e.g., Catalogue of Palaearctic 
Coleoptera book series) and on-line resources.

Data analysis

Generalized linear mixed models with a Gaussian distribution were used for all analy-
ses. The occurrence of differences in species richness and abundance of target and 
non-target beetle families in port areas vs. surrounding natural areas was investigated 
separately for native and nonnative species within each family but only when they were 
represented by at least 50 individuals and 3 species. The model included the mean 
number of species (i.e., species richness) or the mean number of individuals (i.e., abun-
dance) caught per year and site as continuous response variable, the habitat type (port 
area vs. surrounding natural area) as categorical explanatory variable, and the year and 
site as crossed random factors. For ports where more than one trap was present both 
species richness and abundance were averaged by the number of traps. Abundance was 
ln-transformed to improve linearity.

The occurrence of spillover events of native species between natural areas surround-
ing ports and port areas was investigated only for families represented by at least 50 in-
dividuals and 3 species, running separate analyses for each family. The model included 
the abundance of native species collected in the port area as a continuous response 
variable and the abundance of native species collected in the surrounding natural area 
as continuous explanatory variable. Abundance of each native species was obtained by 
pooling the number of individuals caught in the port area or surrounding natural area 
during a given year at a given site. The insect species, year and site were included in 
the models as crossed random factors. For ports where more than one trap was present 
pooled abundance values were averaged by the number of traps. Abundance was ln-
transformed to improve linearity.

The relationship between occurrence at port areas vs. surrounding natural areas 
and likelihood of introduction into other countries was tested using native species 
abundance as a continuous response variable, and their status (introduced vs. not-
introduced in other countries), habitat type (port area vs. surrounding natural area), 
and the interaction between the latter two variables as categorical explanatory vari-
ables. For each native species and habitat type, the abundance was obtained averaging 
the number of individuals by year and site. For ports where more than one trap was 
present abundance values were also averaged by the number of traps. The insect species 
was included in the model as random factor. Pairwise comparisons between port areas 
and surrounding areas for introduced vs. not-introduced species were run using Tukey 
correction of p-values.
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All the analyses were performed in R software version 4.1.1 (R Core Team 2021). 
Models were fitted using the ‘glmmTMB’ package (Brooks et al. 2022) and validated 
using the ‘DHARMa’ package (Hartig 2022). In the Results section the omnibus chi-
square test is reported.

Results

General results

A total of 23,538 individuals from 206 species representing 33 families were collected 
(Suppl. material 2). The family Curculionidae was the most species rich (42 species), 
followed by Coccinellidae (17 species) and Nitidulidae (16 species). Sixteen families 
were represented only by one or two species each. Curculionidae was also the most 
abundant family (18,154 individuals), followed by Tenebrionidae (3,475 individuals). 
Among the other beetle families, five were represented by 100 to 500 individuals (i.e., 
Bostrichidae, Laemophloeidae, Zopheridae, Cerambycidae and Dermestidae, in de-
creasing order) and eighteen families were represented by 10 or less individuals (Suppl. 
material 2).

Among the trapped species, eight were nonnative beetles representing the main 
target of the surveillance program, seven Scolytinae beetles (i.e., Coccotrypes dactyliper-
da (Fabricius), Dactylotripes longicollis (Wollaston), Gnathotrichus materiarius (Fitch), 
Hypothenemus eruditus Westwood, Ips calligraphus (Germar), Xyleborus bispinatus Eich-
hoff, Xylosandrus germanus (Blandford)) and one longhorn beetle (i.e., Xylotrechus steb-
bingi Gahan) (Suppl. material 2). Most of these eight nonnative target species are 
already widely established in Europe, whereas the bark beetle I. calligraphus and the 
ambrosia beetle X. bispinatus represent first records for Europe and Spain, respectively. 
Among bycatches, 38 were native bark and ambrosia beetles or native longhorn bee-
tles (24 and 14 species, respectively), whereas the remaining bycatch 167 species were 
native (141) or nonnative species (26) belonging to other beetle families. The most 
abundant species were the native bark beetles Hylurgus micklitzii (Wachtl) and Ortho-
tomicus erosus (Wollaston) (10,096 and 6,219 individuals, respectively), followed by 
the nonnative darkling beetle Tribolium castaneum (Herbst) (1,821 individuals). By 
contrast, 159 species were represented by 10 or less individuals.

Patterns of species richness and abundance in port areas vs. surrounding 
natural areas

Significant differences in native species richness and abundance between port areas and 
surrounding natural areas were found for three out of the five analyzed beetle families 
(Fig. 1). In particular, both species richness and abundance were significantly higher in 
natural areas surrounding ports than in the port areas for Curculionidae (species richness: 
χ1

2 = 7.18, p = 0.007, Fig. 1E; abundance: χ1
2 = 80.16, p < 0.001, Fig. 1F), Tenebrionidae 

(species richness: χ1
2 = 5.17, p = 0.023, Fig. 1I; abundance: χ1

2 = 17.25, p < 0.001, Fig. 1J), 
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and Cerambycidae (species richness: χ1
2 = 37.72, p < 0.001, Fig. 1M; abundance: χ1

2 = 33.58, 
p < 0.001, Fig. 1N), but did not differ between the two habitats for Bostrichidae (spe-
cies richness: χ1

2 = 0.78, p = 0.377, Fig. 1A; abundance: χ1
2 = 1.05, p = 0.306, Fig. 1B) 

Figure 1. Mean number of species (i.e., species richness) and individuals (i.e., abundance) of native 
and nonnative beetle species collected in port areas (“Port”) vs. surrounding natural areas (“Outside”). 
Trends are shown separately for the different beetle families. Abundance is log-transformed according to 
data transformation used in statistical analysis. P-values: * = 0.01 - 0.05; ** = 0.01 - 0.001; *** = < 0.001.
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and Coccinellidae (species richness: χ1
2 = 1.05, p = 0.307, Fig. 1O; abundance: χ1

2 = 0.91, 
p = 0.340, Fig. 1P). Considering beetle species composition, four families were com-
posed by species found only in the port areas, seven by species found only in surrounding 
natural areas, and four by species shared between the two habitats (Table 1).

For nonnative species, analyses were carried out only for three families, among 
which significant differences between the two habitats were observed for Tene-
brionidae (species richness: χ1

2 = 15.98, p < 0.001, Fig. 1K; abundance: χ1
2 = 9.35, 

p = 0.002, Fig. 1L) but not for Bostrichidae (species richness: χ1
2 = 1.34, p = 0.248, 

Table 1. Number of native and nonnative species for each beetle family collected exclusively in the port 
areas, exclusively in the surrounding natural areas, or shared between the two habitats.

Native Nonnative
Exclusive to 
port areas

Exclusive to 
surrounding areas

Shared Exclusive to 
port areas

Exclusive to 
surrounding areas

Shared

No. % No. % No. % No. % No. % No. %
Anamorphidae – – 1 100 – – – – – – – –
Anthicidae 5 100 – – – – – – – – – –
Anthribidae – – 1 100 – – 1 100 – – – –
Bostrichidae 2 40 1 20 2 40 – – – – 3 100
Buprestidae – – 3 100 – – – – – – – –
Cantharidae – – 1 100 – – – – – – – –
Carabidae 6 60 4 40 – – – – – – – –
Cerambycidae 1 7.1 8 57.2 5 35.7 – – – – 1 100
Chrysomelidae 5 62.5 1 12.5 2 25 1 100 – – – –
Cryptophagidae – – 1 33.3 2 66.7 – – – – – –
Cleridae – – 2 66.7 1 33.3 1 100 – – – –
Coccinellidae 5 33.3 6 40 4 26.7 1 50 – – 1 50
Curculionidae 12 37.5 9 28.1 11 34.4 4 40 4 40 2 20
Dasytidae – – 1 100 – – – – – – – –
Dermestidae 7 70 1 10 2 20 1 100 – – – –
Elateridae 3 42.9 3 42.9 1 14.2 – – – – – –
Hydrophilidae 1 100 – – – – – – – – – –
Hybosoridae 1 100 – – – – – – – – – –
Histeridae – – 2 50 2 50 – – – – – –
Laemophloeidae 1 50 – – 1 50 – – – – – –
Lampyridae – – – – 1 100 – – – – – –
Latridiidae – – 1 50 1 50 – – – – – –
Malachiidae – – 2 100 – – – – – – – –
Monotomidae – – – – 1 100 – – – – – –
Mycetophagidae 1 50 – – 1 50 – – – – 1 100
Nitidulidae 2 28.7 4 57 1 14.3 7 78 – – 2 22
Oedemeridae – – 1 100 – – – – – – – –
Ptinidae 1 20 3 60 1 20 – – – – 1 100
Scarabaeidae 2 33.3 2 33.3 2 33.3 – – – – – –
Silvanidae 1 100 – – – – 1 100 – – – –
Tenebrionidae 1 12.5 2 25 5 62.5 4 80 – – 1 20
Trogossitidae – – – – 1 100 – – – – – –
Zopheridae – – – – 1 100 – – – – – –
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Fig. 1C; abundance: χ1
2 = 0.12, p = 0.724, Fig. 1D) and Curculionidae (species rich-

ness: χ1
2 = 0.03, p = 0.853, Fig. 1G; abundance: χ1

2 = 0.86, p = 0.358, Fig. 1H). For 
Tenebrionidae, contrary to what was found for native species, species richness and 
abundance were significantly higher in port areas than in the surrounding natural areas 
(Fig. 1K, L). Considering beetle species composition, five families were composed by 
nonnative species found only in the port areas, and four by nonnative species shared 
between the two habitats (Table 1). No beetle family was characterized by nonnative 
species recorded exclusively in the surrounding natural areas.

Spillover of native beetle species from natural areas surrounding ports to the 
port areas

The number of native beetle individuals collected inside port areas was significantly af-
fected by the number of individuals of the same native species collected in the sur-
rounding natural areas for Bostrichidae (χ1

2 = 4.30, p = 0.038, Fig. 2A), Curculionidae 
(χ1

2 = 17.70, p < 0.001, Fig. 2B), Cerambycidae (χ1
2 = 5.15, p = 0.023, Fig. 2D) and 

Coccinellidae (χ1
2 = 17.77, p < 0.001, Fig. 2E) but not for Tenebrionidae (χ1

2 = 0.01, 
p = 0.941, Fig. 2C) (Fig. 2). Nonetheless, the trend was different depending on the beetle 
family. For Curculionidae, the abundance of native species in the port areas increased 
with increasing abundance of the same species in the surrounding natural areas (Fig. 2B), 
whereas for Bostrichidae, Cerambycidae and Coccinellidae abundance in port areas de-
creased with increasing abundance in the surrounding natural areas (Fig. 2A, D, E).

Likelihood of native species being introduced into other countries

The number of collected native beetle individuals was significantly affected by the 
interaction between habitat and status (χ3

2 = 29.86, p < 0.001). In particular, the abun-
dance of native species that have never been introduced into other countries was sig-
nificantly higher in natural areas surrounding ports than in the port areas (p < 0.001, 
Fig. 3A), whereas the opposite trend was found for species that have been introduced 
at least once into another country (p = 0.026, Fig. 3B).

Discussion

New nonnative beetle species are moved outside their native range on a yearly basis 
(Brockeroff and Liebhold 2017) and their introduction and establishment rates are 
expected to increase in the next years due to climate change (Pureswaran et al. 2022). 
Traps set up in and around entry points are commonly used to increase chances of 
early-detection of incoming species and complement visual inspections (Poland and 
Rassati 2019). Exploiting trapping data from a multiyear surveillance programs car-
ried out in Spain, we showed that the most commonly adopted trapping protocols for 
bark and ambrosia beetles and longhorn beetles allowed the collection of a substantial 
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number of non-target species, both native and nonnative. In addition, we highlighted 
that the study of beetle communities living in and around entry points could provide 
important insights into the likelihood of certain beetle species or families to colonize 
port areas and subsequently be potentially introduced into other countries with trade.

The first findings of I. calligraphus and X. bispinatus in Europe (Mas and Johnson 
2023) and Spain (Gallego et al. 2022), respectively, confirmed that baited traps used at 
entry points are a valuable complementary tool to visual inspections routinely carried 
out by phytosanitary inspectors (Rassati et al. 2015a; Fan et al. 2019; Rabaglia et al. 
2019). The number and taxonomic diversity of the 26 bycatch nonnative beetles also 
testified that the identification of these unintentionally trapped species can provide 
important additional information on the ongoing invasions. This is valid not only for 
other wood-boring or forest-related beetles (e.g., Bostrichidae, Nitidulidae, Tenebrio-
nidae) and their associates (e.g., Cleridae, Zopheridae), whose attraction to tree vola-
tiles (Miller 2006, 2020; Jurc et al. 2012; Miller et al. 2015; Miller 2023) and/or bark 
beetle pheromones is well known (Miller and Asaro 2005; Allison et al. 2013; Miller et 
al. 2015), but also for other beetles, such as Coccinellidae, Dermestidae or Elateridae, 
which can be caught more or less accidentally (Olivier-Espejel et al. 2016). Invasions 
by the latter beetles are often overlooked (Ruzzier et al. 2020, 2021a, Nahrung and 

Figure 2. Relation between the number of individuals of native beetle species collected in port areas 
and the number of individuals of the same native beetle species collected in the surrounding natural 
areas shown separately for the different beetle families. P-values: * = 0.01 - 0.05; ** = 0.01 - 0.001; 
*** = < 0.001; ns = not significant (> 0.05).
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Carnegie 2022), just like their potential economic or ecologic impacts in the invaded 
areas, and baited traps, even if not specifically designed for this aim, can help to in-
crease chances of their early detection (Ruzzier et al. 2021b).

We also found that patterns of native species richness and abundance inside port 
areas vs. surrounding natural areas changed depending on the beetle family and between 
native vs. nonnative species. The number of species and individuals of native Curculio-
nidae, Cerambycidae and Tenebrionidae, for example, was found to be higher in natural 
areas surrounding ports than in the port areas as already reported in previous studies 
(Rassati et al. 2014, 2015a; Hoch et al. 2020); this trend is likely linked to a higher avail-
ability of host trees or preys in natural areas than in the highly anthropized ports. Instead, 
the opposite or different trends observed for native Coccinellidae, native and nonnative 
Bostrichidae, and nonnative Curculionidae and Tenebrionidae, along with records of 
both native and nonnative beetles collected exclusively in port areas, highlighted that the 
latter habitat hosts a number of beetle species that successfully exploit woody materials 
or traded goods as feeding and reproductive substrates and that tend to not spread in the 
nearby natural areas (Cogburn 1973; Fenn-Moltu et al. 2023). These native and non-
native species can have emerged in the port areas from woody materials or goods either 
imported from other ports via maritime trade (Rassati et al. 2018; Meurisse et al. 2019) 
or originated from factories, sawmills or production sites (Meurisse et al. 2021); nonethe-
less, the low number of traps that we deployed does not allow us to exclude that we under 
sampled the beetle community in natural areas surrounding ports and that some species 
that we found exclusively in the port areas were instead also present in natural areas sur-
rounding them. Irrespective of the origin, their records are important not only because 
they can be used to identify when and where export phytosanitary risks are greatest 

Figure 3. Abundance of beetle species collected at port areas (“Port”) and their surrounding natural areas 
(“Outside”) for native species that have not been introduced into other countries (A) and native species 
that have been introduced at least into one country outside the native range (B). P-values: * = 0.01 - 0.05; 
** = 0.01 - 0.001; *** = < 0.001.
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(Pawson et al. 2020), but also because they could represent adventive populations origi-
nating from geographically distant areas of the native range which can potentially behave 
differently or have a higher fitness than the resident population (Nelufule et al. 2022).

For the potential spillover of native species between the two habitats, we found that 
abundance inside port areas was positively affected by the abundance in the surrounding 
natural areas only for Curculionidae; on the contrary, a negative relation between the two 
variables was found for most of the other families tested. The constant movement of na-
tive species from areas surrounding ports to the port areas was already observed in Curcu-
lionidae, especially for bark and ambrosia beetles, for which abundance of native species 
in ports was found to increase with increasing amount of forest cover in the surrounding 
areas (Rassati et al. 2018). The opposite pattern observed for Bostrichidae, Cerambycidae 
and Coccinellidae, i.e., decreasing abundance inside the port with increasing abundance 
in the surrounding areas, was somewhat unexpected. A possible explanation is that most 
of these taxa present species with a modest dispersal capability at the adult stage, and 
that in general tend to remain in closer proximity to their food source or reproductive 
substrate. In addition, ports, being artificial ecosystems, do not promote colonization by 
those species that are sensitive to disturbance and that require specific ecological condi-
tions (i.e., specialists). Finally, we cannot exclude that the low number of traps deployed 
might have led us to underestimate the species abundance in one of the two habitats or 
both, and might have affected the spillover trends that we observed. In general, a frequent 
occurrence of spillover events from areas surrounding ports to port areas may increase 
the likelihood of certain beetle species being introduced into other countries with export, 
mechanisms that would contribute to explain why Curculionidae are one of the most 
commonly intercepted beetle family at points of entry worldwide (Nahrung and Carn-
egie 2021; Turner et al. 2021). However, the relatively low number of Bostrichidae spe-
cies and individuals collected in this study compared to the high number of Bostrichidae 
interceptions at entry points in other countries (Nahrung and Carnegie 2021; Turner et 
al. 2021) highlights that also other mechanisms can determine the risk of introduction 
outside the native range. The ecological and biological characteristics of beetle species, 
such as polyphagy (Nahrung and Carnegie 2020), and the ability of colonizing timber-
in-service, wood-packaging materials or round wood present in the port area (Meurisse 
et al. 2019; Horwood et al. 2022) are two important examples.

Finally, we found that native species introduced into other countries were more 
abundant in the port areas than in the surrounding natural areas, while the opposite 
trend occurred for native species that have not been introduced elsewhere. Higher catch-
es in port areas than in surrounding areas of native species which invaded other countries 
can be due to two not mutually exclusive mechanisms. The first one is that these species 
mostly live in port areas and thus have higher chances to colonize woody materials or 
goods ready for exportation or randomly enter containers as hitchhikers, and then to be 
introduced in recipient countries (Meurisse et al. 2019); the second one is that they are 
species commonly moved via international and domestic trade which arrived into the 
monitored ports inside imported commodities or containers and were then intercepted 
mostly by baited traps set up in port areas. Irrespective of the mechanism, some of the 
most abundant beetle species we collected in port areas, such as T. castaneum and Rhyzo-



Investigating beetle communities at ports and surrounding areas 157

pertha dominica Fabricius, are also the most intercepted Tenebrionidae and Bostrichidae 
at ports of entry worldwide (Turner et al. 2021). A similar pattern was found in a previ-
ous study, i.e., the most commonly intercepted longhorn beetle and bark and ambrosia 
beetle in the United States during 1985–2000 on exports from Italy (Haack 2006) cor-
responded to the second most commonly collected Cerambycidae and the most com-
monly collected Scolytinae in Italian ports (Rassati et al. 2018). This suggests that the 
abundance of beetle species in port areas or other shipping points can be potentially 
considered as a proxy for their likelihood of being introduced into other countries.

Conclusions

When strategies aimed at preventing arrival of nonnative species fail, the first opportunity 
to prevent permanent establishment of an invading species stems from effective surveil-
lance (Liebhold and Tobin 2008; Nahrung et al. 2023). Our study highlighted that the 
use of traps baited with generic attractants can be considered not only an efficient strategy 
to monitor and potentially intercept incoming beetle species of both target and non-target 
beetle families, but also suggested that the identification of native species trapped in the 
port areas along with nonnative ones might prove useful to estimate the risk of introduc-
tion into other countries. The establishment of a permanent national trapping network in 
and around entry points and the subsequent exchange of trapping records among coun-
tries would represent a key feature of a collaborative global biosecurity program, allowing 
biosecurity agencies to better identify risks, and invasion scientists to better understand 
drivers of new invasions (Hulme 2021). Such a trapping network should consider the use 
of more than a single trap in and around entry points. A higher number of traps would al-
low to more accurately describe the community of beetles living in port areas and natural 
areas surrounding them, and thus to better investigate differences and spillover events oc-
curring between these two habitats. However, deploying more traps would lead to increas-
ing costs and efforts needed for inspecting and managing them, as well for identification 
of trapped specimens. The recent developments in terms of optimization techniques for 
survey planning (Koch et al. 2020) and technological advances on automatic insect iden-
tification (Wührl et al. 2022) might help to overcome these issues.
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