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Abstract: Halloysite nanotubes can be used for the preparation of solid catalysts. Owing to their
natural availability at low-cost as well as to their large and easy-to-functionalize surface, they
can be conveniently activated with mineral acids or derivatized with acidic groups. Nevertheless,
the use of HNTs as catalysts in complex transformations is still limited. Herein, we report two
strategies to utilize HNT-based materials as solid acidic catalysts for the Biginelli reaction. To this
aim, two methods for increasing the number of acidic sites on the HNTs were explored: (i) the
treatment with piranha solution (Pir-HNTs) and (ii) the functionalization with phenylboronic acid
(in particular with benzene-1,4-diboronic acid: the sample is denoted as HNT-BOA). Interestingly,
both strategies enhance the performance of the multicomponent reaction. Pir-HNTs and HNT-BOA
show an increased reactivity (72% and 89% yield, respectively) in comparison with pristine HNTs
(52%). Additionally, Pir-HNTs can be reused up to five times without significant performance loss.
Moreover, the method also displays good reaction scope, as demonstrated by the preparation of
12 different 3,4-dihydropyrimidinones in up to 71% yield. Therefore, the described strategies are
promising for enhancing the acidity of the HNTs as catalysts for the organic reaction.

Keywords: halloysites nanotubes; solid acids; heterogeneous catalysts; multicomponent reactions;
Biginelli reaction; 3,4-dihydropyrimidinones

1. Introduction

Acid catalysts play a crucial role in the activation of organic molecules, thus signif-
icantly promoting various important organic reactions [1]. Although mineral acids (i.e.,
H2SO4 and HCl) demonstrate high activity, they suffer from various shortcomings, such as
reactor corrosion and poor catalyst separation and reuse. To this end, solid acidic catalysts
have been designed to replace the mineral acids, with the multiple advantages of easier
product separation and good catalysts recyclability [2–4]. However, the synthesis of an effi-
cient solid acid with desirable catalytic performance, facile preparation, high environmental
compatibility, as well as high thermal or chemical stability remains challenging [5].

Halloysite is a naturally available, two-layered aluminosilicate similar to kaolin,
whereby the packing disorder generated by the neighboring alumina and silica layers
forces them to curve and roll up, thus forming stable multi-layered tubes [6]. Halloysite
nanotubes (HNTs) have been widely utilized as scaffolds for supporting metal or metal
oxide nanoparticles (NPs) due to their low-cost, reduced environmental toxicity, and sur-
face hydroxyl groups available for functionalization [7–9]. Nowadays, a limited number
of literature reports describe the use of HNTs as solid acidic catalysts [10]. The common
strategies to enable their catalytic use are (i) the conversion of the hydroxyl moieties into
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acidic groups or (ii) the treatment with an acidic solution. However, we think that ex-
tensive efforts are still needed to further enhance the performance of HNT-based acidic
catalysts and extend their applications [11,12]. To the best of our knowledge, acidic HNT
have only been applied to selective Prins cyclizations [13–15] and to the synthesis of naph-
thopyranopyrimidine derivatives through a three-component reaction between β-naphthol,
aldehydes, and N,N-dimethylbarbituric acid [16,17].

Multicomponent reactions (MCRs) are reactions integrating more than two start-
ing reagents into one single product. Due to the multiple advantages of atom economy,
simplicity, convergence, and flexibility, MCRs are elegant alternatives for substituting
multistep synthetic processes [18]. Moreover, such reactions provide a fascinating strategy
to construct various heterocycles with meticulously designed features. MCRs include the
Passerini, Ugi, Hantzsch, and Biginelli reactions, among many others [19]. Specifically, the
Biginelli reaction has attracted enormous attention due to the essential therapeutic and
pharmacological properties of its dihydropyrimidinone (DHPM) products [20]. DHPMs
are not only medical synthons with excellent biological activities (e.g., for their antitumor,
antibacterial, antiviral, and anti-inflammatory properties), but these types of compounds
are also important natural products [21,22].

In general, acidic catalysts are required to improve the efficiency of the Biginelli
reaction. Recently, some common Brønsted acids (such as H2SO4 and HCl) or Lewis acids
(i.e., LiClO4, BiCl3, FeCl3, LaCl3, Mn(OAc)3, Cu(OTf)2) [23,24] were employed as efficient
catalysts for this transformation. However, all these inorganic acids and transition metal
salts suffered from issues of being corrosive, toxic, and/or difficult to separate/reuse.
Although some heterogeneous catalysts (i.e., metal–organic frameworks (MOFs) [25–28],
covalent–organic frameworks (COFs) [29], CoFe2O4@SiO2-NH2-CoII [30]) were also applied
for this MCR, their syntheses usually require multistep processes and tedious procedures.
Therefore, it is highly desirable to develop other facile strategies for the synthesis of
heterogeneous acid catalysts for the Biginelli reaction.

Herein, we show two strategies for increasing the amount of acidic sites on the HNTs,
aiming at improving the performance of HNTs for the Biginelli reaction. On the one
hand, we treated HNTs with piranha solution to remove the impurities and activate the
surface of HNTs by exposing more acidic sites on the outer silica layer [31]. The NH3-
temperature programmed desorption (NH3-TPD) results indicated that the treatment with
piranha solution increases the amount of Lewis acid sites on the HNTs. On the other
hand, we grafted a boronic acid (BOA) on the inner lumen surface of HNTs to introduce
additional acidic sites, since boronic acids are widely used and soluble in Lewis/Brønsted
acid catalysts for organic reactions [32–34]. A diboronic acid was, thus, firmly immobilized,
preferably on the internal wall of the HNTs (Scheme 1), exploiting one -B(OH)2 functionality
for grafting the alumina while retaining the availability of the other for acidic catalysis. The
resulting nano-hybrid can be easily separated from the reaction mixture for reuse.
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The performances of obtained HNT-based acid catalysts prepared by the above-
mentioned strategies were then demonstrated for the Biginelli reaction, showing that
the HNTs with boronic acid displayed slightly higher activity than the HNTs treated with
the piranha solution.

2. Materials and Methods
2.1. Reagents

Halloysite nanotubes (HNTs), anhydrous toluene, acetonitrile, ethanol, dichloromethane,
dimethyl sulfoxide (DMSO), sulfuric acid (95–98 wt%), hydrogen peroxide (30 wt%), benzene-
1,4-diboronic acid (BOA), ethyl acetoacetate, urea, thiourea, 3-chlorobenzaldehyde (97%),
4-chlorobenzaldehyde (97%), 2-chlorobenzaldehyde (99%), p-tolualdehyde (97%), and p-
anisaldehyde (98%) were all purchased from Sigma-Aldrich.

2.2. Characterizations

NMR spectra were recorded on Bruker 400 Avance III HD equipped with a BBI-z grad
probe head 5 mm.

High-Resolution Mass Spectra (HRMS) were collected using a Waters GCT gas chromato-
graph coupled with an electron ionization time-of-flight mass spectrometer (GC/MS-TOF).

FTIR spectra were obtained with solid samples on a Nicolet 5700 FT-IR instrument in
ATR mode.

NH3-temperature programmed desorption (NH3-TPD) measurements were carried
out on a TPDRO-1100-Omnistar with a thermal conductivity detector (TCD).

The in situ FTIR spectra during desorption of pyridine were measured on a Thermo
Nicolet 380 FTIR spectrometer.

Thermogravimetric analyses (TGA) of samples were performed on a Q5000 IR instru-
ment (TA Instruments) and collected in N2 or air upon equilibration at 100 ◦C, with a
subsequent temperature ramp (10 ◦C/min) up to 1000 ◦C.

2.3. Procedures

• Grafting of boronic acid inside the lumen of HNTs

200 mg pristine HNTs and 200 mg benzene-1,4-diboronic acid (BOA) were added to
20 mL of anhydrous dimethyl sulfoxide (DMSO) under a nitrogen atmosphere, and the
resulting suspension was sonicated for 30 min. After sonication, the mixture was heated
at 90 ◦C under reflux, for 24 h, under stirring. Then, the solid phase was separated by
centrifugation and washed with ethyl acetate, methanol and dichloromethane, sequentially.
In the end, the prepared HNTs were kept for 24 h under a vacuum for drying. The
functionalized nanotubes were labeled as HNT-BOA and characterized by FTIR and TGA
analyses [35].

• Activation treatment of HNTS

The activation procedure was already explained elsewhere [31]. The activated HNTs
were denoted as Pir-HNTs and were additionally investigated by NH3-TPD.

• General procedure for the synthesis of 3,4-dihydropyrimidinones

The synthesis of the 3,4-dihyropyrimidinones followed a procedure described in
literation with minor changes [18]. The reaction was performed in a 25 mL round bottom
flask under an N2 atmosphere. The substrates were added with a 1:1:1.5 stoichiometric
ratio of ethyl acetoacetate (2 mmol), aldehyde (2 mmol), and urea (3 mmol) in 10 mL of
acetonitrile. After the addition of 150 mg of HNTs, the mixture was kept under stirring
under reflux for 38 h. After that, the catalysts were separated by filtration without waiting
for the reaction mixture to cool down and washed with 20 mL of warm ethanol to remove
the adsorbed reagents and products. The filtrated solution, together with 50 mL of washing
ethanol, was transferred into crushed ice. As the ice melted, products appeared as white
precipitates. Then, the products were purified by ethanol washing, dried under vacuum,
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and weighed to calculate the isolated yield. All obtained products were characterized by
1H and 13C NMR and HRMS. Meantime, the separated catalysts were washed with water
and ethanol, and dried in a desiccator, ready for the recycling tests.

3. Results and Discussion
3.1. Synthesis of Halloysite Nanotube-Based Acid Catalysts

Firstly, we prepared two HNT-based acid catalysts, as shown in Scheme 1. HNTs
functionalized with boronic acid on the internal wall (i.e., HNT-BOA) were synthesized by
heating the mixture of HNTs and boronic acid at 90 ◦C under reflux for 24 h in dimethyl
sulfoxide (see experimental part). The piranha-etched HNTs (i.e., Pir-HNTs) were treated
with piranha solution at 90 ◦C for 1 h.

Figure 1a displays the FTIR spectra of samples, including pristine HNTs, Pir-HNTs
(i.e., after treatment of piranha solution), and HNT-BOA (i.e., functionalized with boronic
acid). In the case of HNTs, the peaks situated at 3698 cm−1 and 3621 cm−1 are ascribed
to the stretching vibration of Al–OH at the inner surfaces and inner interfaces (interface
between the Si–O tetrahedron and Al–O octahedron) of HNTs, respectively. The bands at
940 cm−1 (very weak) and 912 cm−1 result from the deformation of Al–OH at the inner
surface and inner interface, respectively [36,37]. The peaks at 1089 cm−1 and 1031 cm−1

are assigned to the in-plane Si–O stretching, while the ones at 1114 cm−1 and 755 cm−1 are
related to perpendicular Si–O stretching. The peak situated at 790 cm−1 corresponds to
the symmetric stretching of Si–O [36]. After the treatment with piranha solution, there are
two additional broad signals located at 3450 cm−1 and 1210 cm−1, corresponding to Si–OH
vibration and Si–O–Si stretching vibration, respectively. This observation indicates that a
higher amount of hydroxyl groups is present, while amorphous silica is also produced [38].
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Figure 1. (a) FTIR absorbance spectra of commercial HNTs, activated HNT samples (i.e., Pir-HNTs),
HNTs functionalized by boronic acid (i.e., HNT-BOA); (b) TGA curves of commercial HNTs, activated
HNT samples (i.e., Pir-HNTs), HNTs functionalized by boronic acid (i.e., HNT-BOA).

The blue line in Figure 1 shows the spectrum of HNTs after grafting the benzene-1,4-
diboronic acid (BOA). The intensity of the peak at 3698 cm−1 is substantially reduced after
the functionalization, due to the loss of the –OH groups upon reaction with the diboronic
acid. Meanwhile, the band at 3621 cm−1 retains its intensity, indicating that the hydroxyl
groups located at the inner interfaces cannot react. The new peaks located at 3409 cm−1 and
3286 cm−1 correspond to the stretching vibration of the –OH groups linked to boron in the
boronic acid [35]. The peak at 1347 cm−1 can be attributed to B–O stretching, confirming
the presence of boronic acid in the functionalized sample HNT-BOA [39,40]. Moreover, the
absorption bands at 3020 cm−1 and 3072 cm−1 are due to the C–H stretching vibration of
the phenyl ring, while 1404 cm−1 and 1513 cm−1 result from the benzene skeleton vibration.
Notably, all the peaks corresponding to the Si–O–Si and Si–O stretching are well kept
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in the spectrum of HNT-BOA, implying that the BOA is selectively grafted on the inner
lumen surface of HNTs rather than the exterior surface. Besides all the bands for vibrations
of halloysites and BOA, other characteristic peaks, corresponding to the small amount
of solvent DMSO intercalation, can be observed: the weak peaks centered at 3735 cm−1

and 3662 cm−1 are related to hydrogen bonds generated between –OH at the inner lumen
surface of HNTs and S=O groups of DMSO [41,42].

TGA measurements were used to characterize the samples and to determine the
amount of BOA grafted on the HNTs (Figure 1b). The sample of HNTs after the treatment of
piranha solution displays a lower overall mass loss of 12.2% than that without the treatment
(15.1%) due to the removal of impurities and Al species during the treatment. As already
reported, the small mass loss below 300 ◦C for HNTs is ascribed to the removal of adsorbed
and interlayer water [37,43]. In the case of HNT-BOA, the weight loss in the temperature
range of 50–300 ◦C is larger than that of HNTs without BOA, which may be due to the loss
of intercalated DMSO and the adsorption of free BOA on the surfaces [44,45]. The mass
loss in the range of 300–550 ◦C can be assigned to the dehydroxylation of the Al–OH and
Si–OH sites of HNT in all three samples. Notably, the HNT-BOA sample displays a larger
weight loss than that of HNTs without BOA; indeed, the additional weight loss can be
attributed to the thermal decomposition of grafted BOA [46], calculated to be ca. 5.6 wt%.

To investigate the nature of the acidic sites on the HNTs and pir-HNTs, IR spectroscopy
of adsorbed pyridine (Py-IR) measurements was performed on these two samples (Figure 2).
Both samples demonstrated various peaks corresponding to pyridine adsorbed on the Lewis
acid (LA) sites (1601 and 1448 cm−1) and Brownsted acid (BA) sites (1548 cm−1) [47,48].
Moreover, the type of acidic sites for the peak at 1492 cm−1 cannot be distinguished by
Py-IR, and such a peak is usually assigned to both LA and BA sites [40]. The amount of
different kinds of acid sites was further quantified according to the peak area. As shown in
Table S1, despite the nearly similar amount of BA sites on them, the amount of LA sites on
the pir-HNTs is 1.84-fold higher than that of HNTs at 40 ◦C, suggesting that the treatment
of piranha solution can significantly increase the number of LA sites on the HNTs but has
little impact on that of BA sites. With the temperature increasing from 40 to 200 and 350 ◦C,
the number of LA sites on both samples gradually decrease, due to the loss of weaker LA
sites. Notably, at 350 ◦C, the number of LA sites on the pir-HNTs is still as high as 22.79
µmol/g corresponding to strong LA sites (SLA), 3.74-fold to that of HNTs, indicating that
the piranha solution can also markedly enhance the strength of LA sites for promoting
the generation of SLA sites. Interestingly, the strength of BA is also enhanced through
the treatment of piranha solution, and the amount of BA for the pir-HNTs (21.57 µmol/g)
is much higher than that of HNTs (9.00 µmol/g) at 350 ◦C. The acidic sites on the above
two samples were further examined via the method of NH3-temperature programmed
desorption (NH3-TPD, Figure 2b). There are two desorption peaks centered at around
150 ◦C and 700 ◦C in both cases, which correspond to BA and SLA sites on the surface of
HNTs, respectively [47]. After the treatment with piranha solution, the peak of weak acid
sites moves from 131 ◦C for the HNTs, and to 165 ◦C for the Pir-HNTs, suggesting that
the strength of BA sites is enhanced for Pir-HNTs. Moreover, compared with the HNTs,
the intensity of the peak centered at 673 ◦C for the Pir-HNTs is increased, indicating that
the piranha solution treatment can increase the number of strong acidic sites on the HNTs.
However, the amount of super acidic sites (700–800 ◦C) decreased after piranha solution
treatment. Nevertheless, according to the Sabatier principle, the super strong acidic sites
may cause excessive adsorption of molecules, which may hinder the reactivity. Thus, the
decreased amount of super-strong acidic sites after the treatment may be beneficial for the
multicomponent reaction [49].



Nanomaterials 2023, 13, 394 6 of 12

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

solution treatment. Nevertheless, according to the Sabatier principle, the super strong 

acidic sites may cause excessive adsorption of molecules, which may hinder the reactivity. 

Thus, the decreased amount of super-strong acidic sites after the treatment may be bene-

ficial for the multicomponent reaction [49]. 

 
 

 

(a) (b) 

Figure 2. (a) Py-IR spectra of commercial HNT and activated HNT samples (i.e., Pir-HNTs) at dif-

ferent desorption temperatures: 40, 200, and 350 °C; (b) NH3-TPD profiles of commercial HNT and 

activated HNT samples (i.e., Pir-HNTs). TCD = thermal conductivity detector. 

Therefore, the results of Py-IR match well with those of NH3-TPD and undoubtedly 

verify that the piranha solution treatment can markedly increase the amount of LA sites, 

especially SLA sites, and enhance the strength of BA sites on the HNTs. 

It is reported that HNTs possess both Brønsted and Lewis acid sites. The Brønsted 

acid sites originated from the acidic OH-groups (H3O+), while Lewis acid sites are offered 

by the coordinatively unsaturated Al3+ ions [15,50,51]. As described in the previous litera-

ture, we found that piranha treatment could remove the impurities, including Na+, K+, etc., 

from HNTs, slightly enlarge the lumen cavity and significantly increase the specific sur-

face area [38]. As a result of the three effects induced by the piranha solution, the number 

of Al acidic sites and of Si–OH groups can both be increased. 

NH3-TPD and Py-IR methods cannot be used to measure the acidic properties of 

HNT-BOA since the benzene-1,4-diboronic acid undergoes thermal decomposition, as 

shown in the above TGA results. Nevertheless, boronic acids are well-known acid cata-
lysts (both Brønsted and Lewis acid) that have been used as catalysts for various organic 

reactions [34,52–54]. In the future, the acidity may be investigated by potentiometric acid 

titration (PT). 

3.2. Catalytic Performance of HNTs in the Biginelli Reaction 

The Biginelli reaction is a well-known acid-catalyzed process, and it has drawn ex-

tensive attention from chemists due to the attractive pharmacological properties of its 

DHPM products accessible through this manifold. The catalytic performance of pristine 

and modified HNTs was evaluated using the Biginelli reaction as a model reaction for 

generating 3,4-dihydropyrimidinones using widely available feedstock materials. The re-

action was carried out under optimized conditions: a 1:1:1.5 stoichiometric ratio of ethyl 

acetoacetate 1 (2 mmol), aldehyde 2 (2 mmol), and urea 3 (3 mmol) in 10 mL of acetonitrile 

under reflux (Scheme 2). 

Figure 2. (a) Py-IR spectra of commercial HNT and activated HNT samples (i.e., Pir-HNTs) at
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Therefore, the results of Py-IR match well with those of NH3-TPD and undoubtedly
verify that the piranha solution treatment can markedly increase the amount of LA sites,
especially SLA sites, and enhance the strength of BA sites on the HNTs.

It is reported that HNTs possess both Brønsted and Lewis acid sites. The Brønsted acid
sites originated from the acidic OH-groups (H3O+), while Lewis acid sites are offered by
the coordinatively unsaturated Al3+ ions [15,50,51]. As described in the previous literature,
we found that piranha treatment could remove the impurities, including Na+, K+, etc.,
from HNTs, slightly enlarge the lumen cavity and significantly increase the specific surface
area [38]. As a result of the three effects induced by the piranha solution, the number of Al
acidic sites and of Si–OH groups can both be increased.

NH3-TPD and Py-IR methods cannot be used to measure the acidic properties of HNT-
BOA since the benzene-1,4-diboronic acid undergoes thermal decomposition, as shown in the
above TGA results. Nevertheless, boronic acids are well-known acid catalysts (both Brønsted
and Lewis acid) that have been used as catalysts for various organic reactions [34,52–54]. In
the future, the acidity may be investigated by potentiometric acid titration (PT).

3.2. Catalytic Performance of HNTs in the Biginelli Reaction

The Biginelli reaction is a well-known acid-catalyzed process, and it has drawn ex-
tensive attention from chemists due to the attractive pharmacological properties of its
DHPM products accessible through this manifold. The catalytic performance of pristine
and modified HNTs was evaluated using the Biginelli reaction as a model reaction for
generating 3,4-dihydropyrimidinones using widely available feedstock materials. The
reaction was carried out under optimized conditions: a 1:1:1.5 stoichiometric ratio of ethyl
acetoacetate 1 (2 mmol), aldehyde 2 (2 mmol), and urea 3 (3 mmol) in 10 mL of acetonitrile
under reflux (Scheme 2).
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Figure 3 shows the isolated yield reaction profiles of the Biginelli reaction over time in
the presence of different HNTs catalysts. The tested catalysts were: (i) commercial HNTs
(black squares, Figure 3), (ii) Brønsted acid-activated HNT samples (Pir-HNTs, red triangles,
Figure 3), and (iii) Lewis acid HNTs functionalized (HNT-BOA, blue circles, Figure 3).
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Figure 3. Yields of products dependent on the reaction time over different catalysts, including
commercial HNTs, Brønsted-acid-activated HNTs (Pir-HNTs), and HNTs functionalized by boronic
acid (HNT-BOA).

In order to carefully determine the reaction performance over time, the yields were
calculated after product isolation and purification for all the catalysts. We started our
investigations by testing the activity of HNTs. It is worth mentioning that pristine HNTs
exhibited moderate activity in the Biginelli reaction due to the intrinsic presence of acidic
sites on it. The yields of products catalyzed by HNTs gradually increased from 13% yield
after 12 h to 52% yield after 36 h. Under a longer reaction time (48 h), the yield of 4a
(57%) is only slightly improved. Interestingly, both silica and alumina, taken as reference
compounds, did not allow to obtain yields higher than 10%, highlighting the importance of
the two-layered aluminosilicate material as a catalyst (Table S2). Then, we decided to test
the performances of the treated HNTs. In fact, the yields of 4a, when catalyzed by piranha
solution-treated HNTs, are 38% in 12 h and 72% in 36 h (three times faster than pristine
HNTs). The enhanced catalytic performance of the Pir-HNTs is attributed to the increased
number of acidic sites resulting from the treatment with piranha solution. Analogously, the
HNTs grafted with the BOA sample exhibit the best catalytic performance among these
three catalysts. In the case of utilizing HNT-BOA as a catalyst, the yields of DHPMs are
45% in 12 h and up to 87% after 36 h (almost five times faster than pristine HNTs). This
enhancement by using HNT-BOA as catalysts suggests that the functionalization of HNTs
with the BOA can efficiently boost the performance as acidic catalysts in MCR. To sum
up, the experimental results indicated that both protocols are efficient in increasing acidity
sites, leading to a higher activity of related acid-catalyzed reactions.
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One of the most reliable tests for the versatility of a heterogeneous catalyst is by
checking its recyclability. For this reason, Pir-HNTs and HNT-BOA were evaluated, as
shown in Figure 4. After every reaction, the catalyst was recovered by simply filtrating
the reaction mixture and washing the obtained solid with ethanol and water. Clearly, the
Pir-HNTs demonstrated excellent stability for the Biginelli reaction (red bars, Figure 4) with
minor activity loss during five recycles (less than 10% yield erosion). In contrast, an activity
decay of up to 25% was observed with the HNT-BOA (blue bar, Figure 4) after five recycles.
These results suggest a poorer stability of the HNT-BOA in this system when overused.
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Figure 4. The recycling test of Pir-HNTs and HNT-BOA for Biginelli reaction to produce 3,4-
dihydropyrimidinones (4a).

The reason for the decreased activity in subsequent recycles can be ascribed to the
mechanical damages occurring during mixing and reaction workup. Moreover, HNT-BOA
is more susceptible to the leaching of organic groups.

Given that the treatment with piranha solution is easier and amenable to scaling-up
than the grafting of boronic acid and owing to their higher robustness during catalytic
turnover, Pir-HNTs were selected to explore the scope of the HNTs catalyzed via Biginelli
reaction (Table 1).

On the one side, diversely substituted aldehydes 2a–g bearing either electron-donating
or electron-withdrawing groups were tested. The functional group on the aryl moiety of the
aldehydes had no significant effect on the formation of DHPM products 4a–h. Electron-rich
and electron-poor aldehydes achieved 3,4-dihydropyrimidones in good yields (from 46 to
71% yield). At the same time, substituting the urea 3a with thiourea 3b furnished 4i in a
good 62% yield. Analogously, using methyl acetoacetate 1b, also yielded 4j in good yields
(69%), altogether showing the high versatility of HNT catalysts for MCRs.

The activity of our catalysts toward the 4a product has been compared with that of
other solid acid catalysts, collecting relevant data in Table S3 [55–58]. The performance of
HNTs derivatives is generally lower than that of other reported catalysts. Nevertheless,
the synthetic procedure of our catalysts is easier and performed under milder conditions.
Moreover, they are derived from naturally abundant HNTs with the advantages of being
cheaper and environmentally friendly.
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Table 1. Versatility of the HNTs catalyzed via Biginelli reaction.
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4f Yield 64 % 4g Yield 68 % 4h Yield 56 % 4i Yield 62 % 4j Yield 69 %
Reaction Conditions: 1 (2.0 mmol), 2 (2.0 mmol), 3 (2.0 mmol), catalysts (150 mg), 10 mL CH3CN under reflux
temperature, 36 h. Isolated yields after recrystallization are reported.

4. Conclusions

In conclusion, we have demonstrated that HNTs can be employed as robust acid
catalysts for the Biginelli reaction to produce heterocyclic compounds, enhancing the
catalytic activity of pristine HNTs via two different treatment strategies. One approach
is to expose more acidic sites of the HNTs by treatment with a piranha solution. The
other strategy is to introduce additional acid sites into HNTs via the functionalization
with phenylboronic acid. Both strategies were found to be efficient in increasing the
performance of the Biginelli reaction. By comparing the two strategies, we found that the
piranha treatment is more facile to be operated, and the catalyst displayed good recycling
ability. Additionally, the HNTs functionalized with boronic acid showed even higher yields
compared to the Pir-HNTs. Meanwhile, as a grafted catalyst, the HNT-BOA may also have
the problem of releasing BOA during the recycling of the reaction due to the cleavage of
B–O bonds. Nevertheless, since boronic acid can be considered a generally acid catalyst,
the HNT-BOA may have the potential to apply for some specific reactions which may not
occur with Pir-HNTs. In addition, the HNT-BOA catalyst can be regarded as a micro-reactor
operating inside the lumen cavity of the HNTs, which may facilitate the reaction due to
spatial confinement effects.

Overall, both strategies are efficient in enhancing the acidity of the HNTs for organic
reaction and offer further possibilities according to the different requirements. Although
other synthetic heterogeneous systems appear faster than the present solid acid (with
conversions occurring in 0.5–2 h), we believe that the activated HNTs should deserve more
attention, being cheaper and easier to prepare [17–21].
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