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Abstract
The nonparametric formulation of density-based clustering, known as modal cluster-
ing, draws a correspondence between groups and the attraction domains of the modes
of the density function underlying the data. Its probabilistic foundation allows for
a natural, yet not trivial, generalization of the approach to the matrix-valued setting,
increasinglywidespread, for example, in longitudinal andmultivariate spatio-temporal
studies. In this work we introduce nonparametric estimators of matrix-variate distribu-
tions based on kernel methods, and analyze their asymptotic properties. Additionally,
we propose a generalization of the mean-shift procedure for the identification of the
modes of the estimated density. Given the intrinsic high dimensionality of matrix-
variate data, we discuss some locally adaptive solutions to handle the problem. We
test the procedure via extensive simulations, also with respect to some competitors,
and illustrate its performance through two high-dimensional real data applications.

Keywords Matrix-variate data · Modal clustering · Mean-shift · Kernel density ·
Nearest neighbors

Mathematics Subject Classification Primary 62G05 · Secondary 62H30

1 Introduction

The analysis of complex data in the form of matrices represents an active area of
research. Classical examples are longitudinal studies and multivariate spatio-temporal
data, where statistical observations are represented by vectors of variables, measured
on subjects over different times or locations, or modern analyses where the matrix
structure is intrinsic to the problem, as in the case of image data, adjacency matrices
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representing networks, covariance or similarity structures etc. While the focus is usu-
ally intended to the former case, collections of data of such type are often referred
to as three-way, with two ways associated to the row and column dimension of each
matrix-variate observation and the third one represented by subjects. For an extensive
review, see Kroonenberg (2008).

A vast body of literature has focused on the development of supervised methods
for matrix-valued data. Some accounts with specific focus on this topic are Viroli
(2012) and Ding and Cook (2018), yet under the same umbrella we shall include
regression models with multivariate observations gathered over time (see, e.g. Diggle
et al. 2002, for a standard account) or penalized linear regression models with matrix-
valued response (Zhou and Li 2014). Specific classes of matrix-valued data, such as
semi-definite positive matrices (see for example Dryden et al. 2009) and orthogonal
matrices (see for example Chakraborty and Vemuri 2019), have also received recent
attention. Far less attention has been devoted to the unsupervised case. Historical
contributions here are the Tucker3 and the Candecomp/Parafac models (Kroonenberg
2008, Ch 5.7 and, respectively, 4.6) and developments, as well as various attempts to
reduce data dimension via principal component analysis or akin methods (see, e.g.,
Sakata 2016, Ch. 1 and 3).

For the aim of clustering, longitudinal or functional data methods have been largely
proposed for grouping subjects. Among these, it is worth to mention the ones account-
ing for the observation ofmultiple featuresmeasured over time (see, e.g., Schmutz et al.
2020; Jacques and Preda 2014), yet only a few contributions refer to the more general
case of three-way structures, where the possible dependency along the column dimen-
sion does not necessarily derive from a specific order of the observations. Stemming
from Basford and McLachlan (1985), Viroli (2011) develops model-based clustering
building on mixtures of matrix-variate Normal distributions and its bayesian coun-
terpart (Viroli 2011). Similarly, Gallaugher and McNicholas (2018) propose skewed
matrix-variate distributions for unsupervised and semi-supervised classification.More
recent proposals are Tomarchio et al. (2020), that introduce two matrix-variate distri-
butions formodel-based clustering, and Sarkar et al. (2020), that develop parsimonious
mixture models.

With a somewhat different aim in mind, further scattered examples which are worth
to mention are Wang et al. (2019), which perform tensor decomposition to cluster
individuals and tissues in gene expression data; Vermunt (2007), where a hierarchical
mixture model is used to group longitudinal matrix-variate data in clusters which
possibly vary across times, and Vichi et al. (2007) who perform clustering of subjects
and factorial dimensionality reduction of variables and occasions of three-way data.

In this work we extend the nonparametric formulation of density-based cluster-
ing, also known as modal clustering, to the framework of matrix-variate data. Here,
clusters are identified as the “domains of attraction” of the modes of the true density
underlying the data (Stuetzle 2003). The inherent notion of cluster is hence not linked
to any predefined shape, and determining the number of clusters is an integral part of
the estimation procedure. While with a different rationale, nonparametric clustering
shares with its more widespread parametric counterpart a sound probabilistic founda-
tion, which also allows for a precisely defined population goal. In fact, the issue of
density estimation, usually addressed via nonparametric methods, assumes a key role
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in order to approximate the ideal population goal of modal clustering, along with the
operational search of the modal regions.

After providing an overview on the modal clustering approach, we introduce a
kernel estimator for matrix-variate density functions. We then study its asymptotic
properties, also with reference to the problem of optimal bandwidth selection. Due
to the intrinsic high dimensionality of matrix-variate data, which impacts on both the
accuracy of the estimate and the computational complexity, we explore some local
solutions to handle the problem. Additionally, we propose an extension of the mean-
shift procedure for the identification of the modes of the estimated density. Finally we
perform an extensive simulation study and illustrate the performance of the proposed
method on two sets of real data.

2 An overview onmodal clustering

In the following, and throughout the paper, we will denote by lower-case symbols
both scalar and vector-valued objects, whereas matrices will be denoted by uppercase
letters.With some abuse, wewill also use the same notation to indicate random objects
and associated realizations, and specify explicitly their nature when it is not clear from
the context. In a standard multivariate setting, modal clustering relies on the assump-
tion that the observed data X = (x1, . . . , xN ) are realizations of a multidimensional
random variable x ∈ R

P with (unknown) probability density function f . The modes
of f are regarded to as representatives of the clusters, which are in turn represented by
their domains of attraction. Broadly speaking, if the underlying density is gured as a
mountainous landscape, and modes are its peaks, clusters are the ‘regions that would
be ooded by a fountain emanating from a peak of the mountain range’ (Chacón 2015).
Morse theory allows a more formal framing of the problem, by defining clusters as the
stable manifolds of the gradient flow associated with the local maxima of f . These are
represented by the sets of all the points which converge to the samemode by following
the gradient ascent paths of the true density.

While the population clustering goal is defined precisely in terms of features of the
underlying density, this is in practice unknown, and needs to be estimated. The issue
is far from being trivial, as the estimated density determines the modal regions, and
hence governs the final clustering.A standard choice,within the class of nonparametric
methods, is the kernel density estimator

f̂ (x; h) = 1

NhP

N∑

n=1

K
(
h−1(x − xn)

)
, (1)

where the kernel K is a probability density on R
P , symmetric around zero, and the

bandwidth h > 0 is a scale parameter defining the degree of smoothing. While the
choice of the kernel is known not to have a strong impact on the performance of f̂ ,
a proper selection of the bandwidth turns out to be crucial. Small values of h lead to
an undersmoothed density estimate, with the possible appearance of spurious modes,
whereas too large values result in an oversmoothed density estimate, possibly hiding
relevant features.
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A further aspect to account for in modal clustering is to operationally characterize
the clusters as the domains of attraction of the densitymodes.Most of the contributions
in this direction take their steps from themean-shift algorithm (Fukunaga andHostetler
1975) which, starting from a generic point y(0), recursively shifts it uphill to a local
weighted mean of the data, along the direction of the gradient of its kernel estimate:

y(s+1) =
N∑

n=1

wn,h(y
(s))xn .

The weights wn,h(·) are specified as normalized components of the gradient of the
kernel function. Hence, themean shift is shown to be a gradient ascent algorithm based
on a normalized kernel estimator of the gradient. The convergence of the sequence
{y0, y1, . . . , ys, . . .} to a local mode of (1) has been studied under various assumptions
by Ghassabeh (2015) and Arias-Castro et al. (2016).

A partition of the data is finally obtained by grouping in the same cluster the
observations ascending to the same mode of the density. The reader may refer to
Menardi (2016) and references therein for insights on modal clustering.

3 Matrix-variate extension of modal clustering

3.1 Kernel density estimation of matrix-variate data

Let X1, . . . , XN be a sample of i.i.d. realizations of a P × T random matrix
X = {xp,t }p=1,...,P,t=1,...,T , which we shall assume to be defined on the vector space
MP×T ⊆ R

P,T . The (unknown) distribution of X is naturally described by some
probability density function f : MP×T �→ R+, with

∫
MP×T

f (X)dX = 1. Since we
are dealing with a vector space, the integral is intended as the component-wise integral
of f on its support.

Consider an integrable kernel K : RP,T �→ R+, with unit integral and spherically
symmetric, i.e.

∫
MP×T

XK (X)dX = 0. We define the kernel density estimator for
matrix-variate data as

f̂ (X; h) = 1

NhP·T
N∑

n=1

K (h−1(X − Xn)), h > 0. (2)

With the above established convention on defining matrix-variate integrals as their
component-wise counterpart, and the same for derivatives, most of standard results
on kernel density estimators extend naturally to the matrix-variate setting. The Mean
Integrated Square Error (MISE) admits forthwith the usual representation (e.g. Chacón
and Duong 2018, p. 28)

MISE( f̂ (X; h)) = E

∫

RP,T
( f̂ (X; h) − f (X))2dX

=
∫

RP,T
Var( f̂ (X; h))dX +

∫

RP,T
Bias2( f̂ (X; h))dX
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= IV( f̂ (X; h)) + ISB( f̂ (X; h)) (3)

where IV(·) is the integrated variance and ISB(·) is the integrated squared bias of the
estimator. Its dependence on the bandwidth is nonetheless not easily disclosed, as the
latter enters implicitly via the integrals involving the kernel. To highlight the effect of
the bandwidth, it is useful to derive an asymptotic approximation of the MISE. To this
aim, we further assume the following:

(i) f is square integrable and twice differentiable, with all its second order partial
derivatives bounded, continuous and square integrable;

(ii) The kernel K is, in turn, square integrable, with finite second order moments∫
X ⊗ XK (X)dX = m2(K )vecIP×T , and m2(K ) = ∫

x2p,t K (X)dX , p =
1, . . . , P, t = 1, . . . T . The symbol ⊗ here denotes the Kronecker product, while
Id denotes the d-dimensional identity matrix;

(iii) The bandwidths h = hN form a positive sequence, such that h → 0 and N−1h →
0 as N → ∞.

Then, the following holds.

Proposition 1 The asymptotic mean integrated squared error (AMISE) for f̂ (·; h) is

AMISE( f̂ (·; h)) = N−1h−(P·T )R(K ) + 1

4
h4m2(K )2R(� f ),

and it is minimized by

hAMISE =
(

(P · T )R(K )

m2(K )2R(� f )

) 1
(P·T )+4

N− 1
(P·T )+4 , (4)

where, for a square integrable function a : R
P×T �→ R we denote by �a =∑P

p=1
∑T

t=1
∂2a(X)

∂x2p,t
the Laplacian operator and R(a) = ∫

RP,T a(X)2dX its square

integral.

Proof See “Appendix”. �	
Hence, as for vector-valued data, the approximately optimal bandwidth converges to

zero as N increases at the rate N− 1
(P·T )+4 . Also, the optimal solution (4) relies on

the knowledge of the true f , and hence cannot be directly used to define the optimal
smoothing amount. Consistently with the vector case, automatic bandwidth selection
can be built by first estimating either theMISE or its asymptotic version (AMISE), and
then minimising such estimate to yield a bandwidth computed solely from the data.
Standard approaches based on cross-validation, bootstrap, or based on replacing the
target density with a given parametric model in the expressions of the MISE/AMISE
can be easily extended to the matrix-variate framework.

In fact, as for the standard multivariate settings, the use of a scalar bandwidth h may
result in a poor flexibility, and richer classes of parameterizations may be alternatively
considered. The maximal extent of flexibility would require the awkward use of a
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four-way structure whose entries would reflect all the possible covariances between
pairs of the X components. Alternatively, the vectorization operator may be easier to
this aim, by mapping RP,T to RP·T and stacking the column vectors of X underneath
each other in order from left to right. With this representation, a full, unconstrained
bandwidth H takes the form of a symmetric, semidefinite matrix P · T × P · T , yet
with some limitations from the algebraic and computational points of view.

A remarkable simplification may be induced by certain Kernels, for which a sep-
arable structure of H is available, so that an equivalent specification represents the
matrix-variate P×T Kernel as a special case of a PT−variate Kernel with bandwidth
H = U ⊗V , withU and V symmetric positive definite matrices of dimension P × P
and T × T , respectively. Elliptical models belong to this family, and are defined as

K (V−1/2(X − Xn)U
−1/2) = |V |− P

2 |U |− T
2 g

(
−1

2
tr(V−1(X − Xn)


U−1(X − Xn))

)
,

where g : R �→ R+ is such that
∫
R+ z pt−1g(z2)dz < ∞ (Caro-Lopera et al. 2016).

The matrices U and V act independently on the rows and columns and are easier to
handle than a full specification of thematrix H , thatmight result challenging evenwhen
P and T are small. By following the same steps as in Proposition 1, we may obtain the
expression of the AMISE when H = U ⊗ V . In this case, the first term depends on
the determinant |H |−1/2 instead of h−(P×T ), while the second term involves the full
Hessian instead of the simple Laplacian. The general result, however, does not lead to
an explicit formula for the optimal bandwidth matrix.

Note that the simplest case, where U = hU IP and V = hV IT , reduces to the form

K ((hUhV )−1(X − Xn)) = h−P
U h−T

V g

(
− 1

2(hUhV )2
tr((X − Xn)


(X − Xn))

)
,

hence the choice of two distinct smoothing parameters for rows and columns brings
back to the scalar case as an effect of the separability of the scale matrix H .

Within the class of elliptical kernels, wemay set g(·) = (2π)− P·T
2 exp(·) and obtain

the matrix Normal density, a natural candidate for the kernel function which plays a
pivotal role in the matrix-variate framework, as for the univariate and multivariate
settings (see, e.g, Gupta and Nagar 2018).

3.1.1 Adaptive kernel

As an overall problem shared by nonparametric tools, kernel estimators are known to
strongly suffer from the curse of dimensionality. On one side, the required sample size
to achieve an acceptable accuracy becomes disproportionately large as the dimensions
increases, leading to intractable problems, even computationally. On the other side,
in high dimensions, the sparsity of data leads much of the probability mass to flow to
the tails of the density, possibly averaging away features in the highest density regions
and giving rise to the birth of spurious modes.

These arguments could discourage from the application of modal clustering on
matrix-variate data, which are intrinsically high-dimensional, except for very small

123



Modal clustering of matrix-variate data 329

values of P and T . In fact, nonparametric estimates can still be useful to coarsely
describe the data structure, and often allowing different amounts of smoothing is
advisable to capture local structures of the data. In this direction, adaptive estimators
build on the idea that for data-sparse regions, a large bandwidth is needed to compen-
sate for the few nearby data points, and conversely, for data-dense regions, a small
bandwidth applies smoothing in a small region due to the presence of many nearby
data points. As a general principle, we may distinguish between balloon and sample
point estimators, which replace h in equation (2) by h(X) and h(Xi ) respectively. See
Chacón and Duong (2018, §4.1) for an overview in the multivariate setting. Within
these classes, we consider, for the matrix-variate setting, a k-nearest neighbor (k-NN)
extension of the two estimators, defined as

f̂ B(X; k) = 1

Nδk(X)P·T
N∑

n=1

K
(
δk(X)−1(X − Xn)

)
, (5)

f̂SP (X; k) = 1

N

N∑

n=1

1

δk(Xn)P·T K
(
δk(Xn)

−1(X − Xn)
)

, (6)

where δk(X) = ||X − X (k)||F is the Frobenius distance of X from its k-th nearest
neighbour X (k).

3.2 Mean shift for matrix-variate data

Once the density has been estimated via the matrix-variate extension discussed so far,
clusters can be associated to the domains of attraction of the modes of such density,
to be intended as high-density subsets of the sample space surrounding the (matrix-
variate) local maxima of the density.

With this regard, the following proposition states that the hill-climbing property of
the mean-shift algorithm still holds in the matrix-variate setting.

Proposition 2 Consider a differentiable kernel K : RP,T �→ R+, with unit integral,
and spherically symmetric. Let κ(·) : R+ �→ R be a function such that K (X) =
1
2κ(tr(X
X)) and its derivative κ ′(u) ≤ 0.

Then, starting at Y 0 ∈ R
P,T , the sequence defined by

Y (s+1) = Y (s) + M(Y (s)) =
n∑

n=1

wn,h(Y
(s))Xn (7)

describes a gradient ascent algorithm on (2), with

M(Y ) =
∑N

n=1 κ ′ (h−2tr((Xn − Y )
(Xn − Y ))
)
(Xn − Y )

∑n
n=1 κ ′ (h−2tr((Xn − Y )
(Xn − Y ))

) (8)
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denoting the mean-shift and

wn,h(Y ) = κ ′ (h−2tr((Xn − Y )
(Xn − Y ))
)

∑N
n=1 κ ′ (h−2tr((Xn − Y )
(Xn − Y ))

) .

Proof See “Appendix”. �	

While loosing its interpretation as an iterative weighted average of the observations,
the gradient ascent nature of the mean-shift may be derived also for more complex
structures of the bandwidths. When a kernel function with separable structure H =
U ⊗ V is used, for instance, the (8) becomes

M(Y ) =
∑

κ ′ (tr(V−1(Xn − Y )
U−1(Xn − Y ))
)
V−1/2(Xn − Y )U−1/2

∑
κ ′ (tr(V−1(Xn − Y )
U−1(Xn − Y ))

)

with some simple mathematical manipulation.
With respect to the adaptive estimator (6), the same proposition holds, with the

only caution of replacing h with δk(Xn). Conversely, the same arguments do not
generally apply to the balloon estimator (5), since the kernel depends on X also
through δk(X), and therefore does not allow to derive a general expression for its
gradient. An exception in the multivariate case occurs when the kernel is chosen
among the beta family, where the problem simplifies remarkably (Duong et al. 2016).
The same naturally extends to the matrix variate case. Specifically, when a uniform
kernel on the unit PT -ball is selected, the gradient ascent property of the mean-shift
is shown to hold with extreme computational efficiency, as stated by the following
result.

Corollary 1 Consider the adaptive estimator in (5), with K (X) = ν−1
0 1{X ∈

BPT (0, 1)} and BPT (0, 1) the unit ball centered at 0, with hypervolume ν0. Then,
the mean shift sequence (7) takes the form

Y (s+1) = 1

k

∑

Xn :Xn∈BPT (Y (s),δk (Y (s))

Xn .

The proof follows the same steps of the one of Proposition 2. See also Duong et al.
(2016) for the multivariate case.

4 Simulations

4.1 Settings

In this Section we present an extensive simulation study with the aim of evaluating
the performances of the proposed approach to cluster three-way data, with respect to
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the following aspects: (1) different group configurations, sample sizes, data dimen-
sion; (2) the use of different formulations of kernel-type matrix-variate estimators; (3)
comparison with some competitors.

In the case ofmatrix-valued data, generating random sampleswith some interesting,
nontrivial structure to be disclosed is awkward, and literature is quite scarce. Some
Gaussianmatrix-variate examples canbe found inViroli (2011) andViroli (2011).Here
we follow a different route, based on multidimensional Discrete Cosine Transform
(DCT, Strang 1999), a transformation technique for data compression, widely used
in digital media and imaging. DCT is able, in principle, to handle and control for
structures with varying degrees of complexity. For each cluster, we define a matrix
prototype M of size P × T , and express it as

M = L
�R,

where L and R are two orthogonal matrices with dimensions P × P and T × T ,
respectively, that contain the basis of the decomposition. The matrix �, of dimension
P × T is the so called DCT, and its elements ωp,t are computed stemming from the
entries mp,t of M as (see Makhoul 1980)

ωp,t = 4
P∑

i=1

T∑

j=1

mi, j cos

(
π(2i − 1)(p − 1)

2P

)
cos

(
π(2 j − 1)(t − 1)

2T

)
.

The cosine factors are the elements of the matrices L and R
, respectively.
A randommatrix X of size P×T is then built starting from M by replacing each of

the entries ωp,t of� by ωp,t +εu,with ε ∼ N (0, σ 2) and u ∼ Bin(1, ρ). In practice,
a random proportion ρ of DCT coefficients is contaminated with normal error of zero
mean and fixed variance. The role ofρ is twofold: on one side, it determines, alongwith
σ 2, the amount of sample variability and, on the other side, it governs the shape and
distribution of the clusters. While setting ρ equal to one determines the generation of
matrix-variate spherical normal clusters, any lower proportion leads to some departure
from such distribution. Figure 1 presents a graphical example of matrix prototype, and
three random realizations associated to increasing values of ρ.

Threemain clustering configurations are considered: a single-group setting, defined
by the prototype A illustrated in Fig. 2; a balanced two-groups setting, with matrix-
variate data equally sampled from prototypes B and C of Fig. 2, and an imbalanced
two-groups setting, with data again sampled from prototypes B and C in the uneven
proportion 0.1 and 0.9, respectively. For each of these settings, varying sample size,
data dimensions, cluster variability and distribution are evaluated, by letting N ∈
{1000, 3000}, (P × T ) ∈ {5} × {5, 20}, and ρ ∈ {0.1, 0.3, 1}. For each setting, 500
Monte Carlo samples have been generated.

Modal clustering is performed via the mean-shift algorithm discussed in Section
3.2, applied to three different formulations of kernel estimator. A fixed bandwidth
estimator is evaluated, with Normal matrix-variate kernel and scalar bandwidth set
as asymptotically optimal to estimate the first derivative of a Normal matrix-variate
density. While this choice is unarguably sub-optimal, especially in the presence of
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Fig. 1 Graphical representation of an example of matrix prototype M (left), where color intensities are
associated to different values of the matrix entries. The second, third and fourth panel display three random
realizations of the random matrix associated to M, for increasing values of ρ.
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Fig. 2 Graphical representation of the three matrix prototypes used to define the groups in the various
simulation settings. Cf. Fig. 2 for the left and middle panels, associated to the settings (P × T ) = (5 × 5)
and (P × T ) = (5 × 20) respectively. The right panels display, for the P = 5 variables of each cluster
prototype, a subsample of curves generated via DCT (black dashed lines) with ρ = 1 and over-imposed the
associated prototype of each row (red solid line) (color figure online)

multimodal structures, it has been proven successful in many applications of modal
clustering in the standard multivariate setting (Menardi 2016). In fact, since this rule
of thumb is known to oversmooth the true density, it seems in principle a sensible
choice in the presence of high dimensional data, where oversmoothing may relieve the
problem of spurious cluster in the low density regions. As a representative of balloon
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estimators, we consider the (5) with Uniform Kernel on the PT−ball of radius δk(·),
and k ∈ (0.5

√
N ,

√
N , 5

√
N ). Finally, we consider a sample point estimator (6), with

Normal matrix-variate kernels, bandwidth hδk(Xn), k ∈ (0.5
√
N ,

√
N , 5

√
N ) and h

set as in the fixed bandwidth case.
As a benchmark, we also perform clustering via K -means and model-based clus-

tering based on mixtures of matrix-variate Normal distributions. In the former case
the analysis is conducted via matrix vectorization, and the number of clusters is deter-
mined by using the best Silhouette score (Rousseeuw 1987) in the range of values
{2, . . . , 9}. In the latter case we implement the approach of Viroli (2011) and the
number of mixture components is selected via the BIC within the range {1, . . . , 9}.

To evaluate the quality of partitions with respect to a true labeling, the Adjusted
Rand Index (ARI) is known to represent the mainstream criterion. However, when one
of the compared partition is formed by one group only, the ARI returns its minimum
value, disregarding the label distribution in the other partition. For this reason, we
preferably consider theFowlkes-Mallows index,which is sensitive to a different quality
of partitions also when one of the two partitions is formed by one group only. Results
deriving from the ARI evaluation are reported in the Supplementary Material for
completeness. See, e.g. (Hennig et al. 2015, Ch. 27) for a review of the criteria to
evaluate cluster quality.

All the analyses have been run in the R environment (R Core Team 2020), with
the modal clustering routines built as suitable modifications of functions available
in the ks packages (Duong 2019). The code is available at https://github.com/
federicoferraccioli/kmsMatrix.

4.2 Results

Results referred to simulations of samples of size N = 1000 and the use of FM
index are displayed in Figs. 3, 4 and 5. Modal clustering performs successfully in all
the considered settings, yet with some not negligible differences. The balloon k-NN
kernel estimator is the one which mostly offers guarantees of revealing the true modal
structure, as in all the considered settings there exists at least one value of k, among
the examined ones, leading to a very accurate cluster detection. Cluster quality is not
much sensitive to the selected number of nearest neighbors, at least for low tomoderate
amount of variability. For large ρ, conversely, better results are achieved by a larger
amount of smoothing, i.e. when k takes its largest value among the three examined
ones. It is worth to note that such largest value of k produces an accurate classification
of the observations in all the considered settings.

Estimating the data density with the use of a scalar bandwidth, as well as via the
sample point estimator, results in a faithful cluster recovery in the presence of a small
amount of variability. Increasing ρ, conversely, produces a progressive worsening of
the results. A deeper insight of the results suggests that such lower accuracy is due to
the arising of spurious clusters.

It is perhaps unexpected that increasing the matrix dimension not always reduces
the quality of detected clusters. In fact, the larger sparsity of the data in higher dimen-
sions increases cluster separation, ceteris paribus, hence the performance of modal
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Fig. 3 Simulation results of the single group setting, with sample size, matrix dimension and proportion
ρ of DCT coefficients defined in the figure headings. Each panel displays the Monte Carlo distribution of
the FM index when modal clustering is run with a fixed bandwidth kernel estimator (FB), a balloon and a
sample point k-NN estimator, both with increasing values of k (BK1, BK2, BK3, SPK1, SPK2, SPK3), and
when K -means and model-based clustering with gaussian mixture models are run (KM and, respectively,
GMM)

Fig. 4 Simulation results of the balanced groups settings. Cf Fig. 3
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Fig. 5 Simulation results of the unbalanced groups settings. Cf Fig. 3

clustering tends to improve. For those situations where this is not true, usually asso-
ciated to the use of a sample point estimator, the arising of spurious clusters is the
main responsible for the worsened behavior, hence we guess that a larger amount of
smoothing would relieve such behaviour. Note, in fact, that in the considered estima-
tors based on the k-nearest neighbors, the examined rules of thumb to select k varywith
the sample size and not with the data dimensionality. While further research should
usefully shed light on specific criteria for bandwidth selection, we believe that relevant
results have emerged from the analysis, confirming the opportunity of a satisfactory
use of nonparametric density-based methods even in high dimensional spaces.

Despite its simplicity and its known limitations, K -means clustering produces over-
all notable results. In the two-groups settings the quality of the detected partitions
ranges from fair to very good, and the clustering structure is roughly caught even
when the amount of variability is high. The algorithm finds it harder in the unbalanced
settings, yet it can anyway identify the gross clustering structure. Not surprisingly, the
worst results refer to the single cluster settings. In fact, the number of clusters set in
K -means is selected by maximizing the Silhouette index, which cannot, by construc-
tion, be evaluated when K = 1. Hence, all the K -means results refer to partitions
formed by at least two clusters. The low values of the Fowlkes-Mallows index, how-
ever, suggest that whatever number of clusters is selected by the Silhouette score, in
the single-group settings observations are allocated uniformly to the clusters, instead
of favouring a single group. This result is, in fact, consistent with the usual behavior
of K -means clustering which tends to split data into balanced groups. This reason,
along with the lack of a formal criterion to determine the number of clusters, overall
discourage from the use of K -means, similarly to the standardmultivariate framework.

Model-based clustering is known to represent a generalization of K -means, where
clusters are modeled to possibly vary in variance and proportion. Additionally, unlike
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K -means, the use of the BIC allows for selecting single-cluster models. Despite these
advantages, model-based clustering looks competitive in the ρ = 1 settings only,
where clusters are designed to be Gaussian, consistently with the specified model. The
performance of model-based clustering improve and get competitive when the data
dimensionality increases, thus confirming the increase of cluster separation discussed
above.

Results from using a larger sample size (N = 3000) are available in the Supple-
mentaryMaterial as they are essentially the same as the ones obtained with N = 1000.
We believe that in high dimensional spaces as the ones here considered, to produce a
remarkable improvement of the results, the sample size should increase to an unfea-
sible extent for simulation purposes.

Computational times are overall feasible in all the considered settings, yet with
some non-negligible differences. Among the kernel based methods, the fixed-kernel
and the sample-point variants are the most computationally expensive, especially with
increasing sample sizes. This is due to the fact that at each step the kernel gradient
is evaluated using all the observations. On the contrary, the baloon k-NN estimator
shows excellent efficiency, as the evaluation is done only in a neighbourhood of each
data point. The three procedures are far less affected by increasing matrix dimension.
Although the k-means algorithm requires to be run for different values of K, its overall
behaviour is comparable to the baloon k-NN estimator in terms of computational
time. Unlike the other methods, the computational burden borne by Gaussian Mixture
models is the most affected by increase of matrix dimension, which requires a larger
number of parameters to be estimated. Similarly to k-means,Gaussianmixtures require
to be estimated for different number of components before selecting the best model,
which increases remarkably the computational times since the larger K, the larger
number of parameters need to be estimated. Considerations above find numerical
evidence in Table 1, reporting the average computational times in seconds, elapsed on
a standard machine to run each of the competitors in the two-balanced clusters setting,
for sample sizes and matrix dimensions considered in simulations.

5 Application

5.1 Activity Tracking

As first real data application, we consider a dataset describing a number of daily and
sports activitiesmeasurements, detected by 5 sensors positioned on the torso, thewrists
Table 1 Average computational times in seconds, elapsed on a standardmachine to run each of the competi-
tors in the two-balanced clusters setting for sample sizes and matrix dimensions considered in simulations.
Times to runmodal clusteringmethods include evaluations of the amount of smoothing; k-means and GMM
refer to times to produce partitions with 2 to 9 clusters

FB BK3 SPK3 KM GMM

N = 1000, P = 5, T = 5 2.47 0.24 6.90 0.40 6.18

N = 1000, P = 5, T = 20 2.76 0.67 9.87 1.93 212.17

N = 3000, P = 5, T = 5 29.66 1.90 123.47 2.34 21.13

N = 3000, P = 5, T = 20 36.73 3.43 169.27 11.92 341.99
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Sitting Cross Trainer Cycling

Fig. 6 Graphical representation of one observation from each of the three cluster in the activity tracking
dataset. Cf. Fig. 2

and the sides of the knees of 8 subjects at the frequency of 25measurements per second
for 300 seconds. For each sensor location, nine variables have been recorded: the x,y,z
axes acceleration, the x,y,z axes rate of turn, and the x,y,z axes Earth’s magnetic field.
Data are publicly available1 and have been extensively described byAltun et al. (2010),
Altun and Barshan (2010), Barshan and Yüksek (2014).

For the sake of illustration, we restrict the analysis on the 3 features detected by
the accelerometer of the 5 sensors in 3 different activities performed by one subject
only. The selected activities - sitting, exercising on a cross trainer and cycling on an
exercise bike - are characterized by a variety of different degree of muscular activation
and force produced. Each activity has been split in 150 sub-activities of 2 seconds,
hence described by 50measurements per variable. The resulting data set is then formed
by 450 observations of dimension P = 15 and T = 50, grouped in three classes of
activities.

Figure 6 illustrates an example of individual observation for each of the three
activity. The goal of the analysis is to identify the measurements pertaining to the
same activity. After standardizing the data, we run modal clustering based on the
a k-NN balloon estimator, with k = 5

√
N , consistently with the indications drawn

from the simulations. For comparison, we also consider the partitions detected by
model-based clustering built on a mixture of Normal matrix-variate distributions and
by K -means. The number of clusters has been selected to maximize the BIC and,
respectively, the Silhouette score.

Results, reported in Table 2, show a general accuracy of all the considered meth-
ods at disclosing differences among the activities. However, while modal clustering
correctly identify three groups, with just a very small amount of misclassified obser-
vations, the two competitors tend to oversegment the data, so that the actual clusters
are in fact partitioned into a number smaller subgroups.

5.2 COVID-19 outgrowth across countries

At the time of writing this paper, the whole world has been severely harmed by the
COVID-19 virus, a pandemic globally causing the largest social and economic dis-

1 https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities.
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Table 2 Tracker activity data:
comparison among partitions
detected by the three clustering
methods

Sitting cross trainer cycling

Modal clustering K -means

1 2 3 1 2 3 4 5 6 7

150 0 0 0 0 0 58 64 0 28

4 146 0 0 0 83 0 0 67 0

9 0 141 67 83 0 0 0 0 0

FM = 0.942 FM = 0.624

Sitting cross trainer cycling

Mixture of matrix variate Gaussians

1 2 3 4 5 6 7

150 0 0 0 0 0 0

0 31 44 41 34 0 0

0 0 0 0 0 24 126

FM = 0.812

ruption since the last century. To reduce the spreading of the virus, most of countries
have implemented measures of quarantine and social distancing practices, canceled or
postponed most of sport, religious, political, and cultural events, interrupted business
and educational activities.

Being the virus still in action, and the overall situation still evolving, drawinggeneral
conclusions on its impact is currently not possible, also due to different information
which the countries have gathered and relayed about it. It is anyway clear that the
spreading and the evolution of the pandemic, as well as its impact in relation to
the adopted control measures, have not been the same all over the world. With this
respect, the goal of this application is to evaluate differences and similarities among
the countries. However, to prevent inconsistencies among countries due to different
states and reactions to the pandemic, we restrict the analysis to the first wave, i.e. the
period February-June 2020.

The data we consider have been collected by the Oxford COVID-19 Government
Response Tracker (OxCGRT, Hale et al. 2020) and refer to daily observations of the
number of confirmed cases of COVID-19 in each country, the number of confirmed
deaths, alongwith several indicators reflecting the level of government action on health
policies, economic support, strictness of lockdown policies. Considered that many of
these indicators are highly correlated but not always available for all the countries,
our analysis accounts for just one of them, namely the Stringency index, which ranges
from 0 to 100 and summarizes the government response measures to the pandemic in
terms of schools andwork spaces closing, cancellation of public events and gatherings,
“shelter-in-place” orders, movement restrictions and the presence of informative and
awareness campaigns.

The resulting data set has been integrated with some further variables, intended to
provide a rough indication about the economy and the demography of the countries.
Specifically, the annual GDP based on purchasing power parity of each country is
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Fig. 7 Identified clusters for the considered variables in the COVID-19 study. The top panels shows the
groups difference in confirmed cases, confirmed deaths, and stringency index. The bottom left panel shows
the difference in GDP. The bottom middle panel shows the age distribution in the two groups. The bottom
right panel shows the geographical distribution of the two identified groups

considered2, as well as the population size and the age distribution3, grouped in the
three classes of population younger than 25, from 25 to 65, and over 65 years old.

Data have been pre-processed as follows: the logarithm of the number of confirmed
cases and deaths per 1000 inhabitants and of the GDP per 1000 inhabitants have been
evaluated, along with the percentage of population for each of the three age classes.
The first two variables and the Stringency index, observed on a daily basis, have been
averaged to get a weekly frequency, ranging from February, 1 to June, 15. The final
individual observation is a matrix with dimension P = 7 and T = 19. Since GDP
and age distribution refer to a yearly basis, their value has been kept constant over
the 19 considered weeks. All the variables have been afterwards standardized. A few
countries have been removed from the analysis, due to the presence of missing values,
thus resulting in a final sample of size N = 161 countries.

Similarly to the Activity Tracking example, modal clustering has been run based on
a k-nearest neighbors balloon estimator, with k = 5

√
N . Results, illustrated in Fig. 7,

show an interesting pattern emerging from the data, with two clusters of countries
having rather distinct characteristics. The largest group gathers all the countries over
Europe, almost the entire America and Oceania, and many Asiatic countries, while
the other group covers most of Africa and a few countries from Asia. The latter cluster
is the one which the pandemic has harmed less severely in terms of both cases and
deaths. While the answer of the governments, as measured by the stringency index,

2 https://data.worldbank.org/indicator/NY.GDP.MKTP.CD.
3 https://population.un.org/wpp/Download/Standard/Interpolated.
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has not been in general weaker than in the countries assigned to the other cluster,
the intervention in these countries has been in most of cases delayed, coherently
with a lower perceived risk due to the limited virus spreading. Compared with the
largest group, these countries have a demographic structure characterized by a larger
proportion of young people, and a lower proportion of older people. This is consistent
with the known behaviour of the COVID-19 virus, distressing especially older people.
This apparently counterintuitive result, which labels the undeveloped countries as the
less impacted by the pandemic, has in fact rather sound motivations. On one hand,
the general economic and health conditions of the undeveloped countries have likely
prevented accurate testing and tracking policies, so that we shall live with a limited
reliability of the data. On the other hand, the social and demographic characteristics
of the undeveloped countries have likely contribute to weaken the spreading of the
pandemic, due to the generally young age, a prevalent family care of older people, and
a limited mobility to and from outside the country.

It is worth noting that we ran a similar analysis also on the subset of European
countries, for which further information is available (e.g. number of hospital beds
per 1000 inhabitants and life expectation). European countries, taken on their own,
split in two clusters, essentially formed by eastern and central Europe, and whose
interpretation does not substantially depart from the one given for the whole word.

6 Discussion

Due to its unsupervised nature, clustering is a difficult task. The lack of an undisguised
ground truth to pursue motivates a large use of visual inspection tools to get a sense
of possible patterns in the data. However, high dimensionality may prevent graphi-
cal exploration to be actually fruitful, since only incomplete descriptions of the data
are possible. Most of clustering methods are severely challenged in this framework.
Distance-based methods, for instance, rely on the use of heuristic criteria for deter-
mining the number of clusters; on the other hand, model-based clustering requires
awkward to verify assumptions on the cluster shape. The scarce reliability of visual
inspection tools then turns out to be rather limiting when using such approaches.

Due to a reference cluster concept not constrained to any specific shape and to a
determination of the number of groups as an integral part of the estimation procedure,
modal clustering can be in principle applied even when an informative visual explo-
ration of the data is prevented, as it may occur with matrix-variate data. In this work
we have discussed how this approach can be extended to three way data structures,
and faced the problem both with respect to the issue of density estimation and the one
of mode detection. It is worth to note that most of the theory developed for the multi-
variate modal clustering framework is in principle generalizable to the matrix-variate
case. The space MP×T of P×T matrices is indeed a vector space, which hence main-
tains the standard properties of sum and multiplication by scalar and can be naturally
equipped with a norm. This naturally allows for extending the results from Morse
theory (see, for instance, Chacón 2015), other properties of kernels density estimators
and their derivatives than those hereby discussed (e.g. Chacón and Duong 2018), as
well as convergence results for the mean-shift (Arias-Castro et al. 2016). Leveraging
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on these generalizations, it is further possible to derive extensions of inferential proce-
dures to the matrix-variate framework. For example, the recent works by Duong et al.
(2008), Genovese et al. (2016) and Ferraccioli and Menardi (2021) discuss the tricky
task of testing mode significance, whose extension to the matrix-variate setting would
be especially useful.

In fact, even when such generalizations are theoretically possible, they might not
have a considerable significance. Most of the theory developed for multivariate modal
clustering relies on asymptotics. In high dimensional spaces, wherematrix-valued data
turn out to be intrinsically defined, the sample size should ideally reach unfeasible
magnitude in order to make such results hold. Also, required assumptions that appear
fairly reasonable in small to moderate dimensions, become quite difficult to check in
the space of matrices. For example, it is not uncommon to assume that the observations
lie in a subspace, even nonlinear. This can possibly lead to a degenerate Hessian, which
would further increase the complexity in the theoretical analysis.

On the other hand, numerical explorations performed in this work have shown that
the situation, in practice, is not that critical as it might in principle appear. Since cluster
separation tends to increase with the data dimensionality, the gross clustering structure
is usually identified. While often the problem of spurious clusters cannot be straight-
ened out completely, modal clustering has proven extraordinarily effective even when
thematrix overall dimension is in the order of several hundreds and exceeds the sample
size. Adaptive tools which account for the local characteristics of the data have proven
to be quite effective in this context. Defining the amount of (local) smoothing, here
intended as the proportion of sample neighbors to account for, is still an open prob-
lem. In our exploration we have considered simple heuristic criteria, highlighting that
a large amount of smoothing is usually advisable, especially when the matrix dimen-
sion is large. However, defining more rigorous criteria targeted to the specific problem
would be desirable. Additionally, while resorting to such local solutions has shown to
be convenient to contain the curse of dimensionality, we shall live with the challenges
arising from a non trivial extension of the inherent theory, which is left for future work.
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Appendix A: Proof of Proposition 1

To establish the expression for the AMISE in Proposition 1, we start from the standard
decomposition (3) and consider its characterization in terms of asymptotic IV and
ISB.
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Let us start by analyzing the asymptotic behaviour of the bias term. With a change
of variables, the expected value of f̂ (X; h) may be expressed as

E( f̂ (X; h)) =
∫

RP,T
h−P·T K (h−1(X − Y )) f (Y )dY

=
∫

RP,T
K (Z) f (X − hZ)dZ . (9)

The term f (X − hZ) may be approximated with a Taylor expansion around X , thus
obtaining

f (X − hZ) = f (X) − h tr(∇ f (X)
Z) + 1

2
h2tr(H f (X)
Z ⊗ Z) + o(h2),

where H denotes the Hessian matrix of dimensions PT × PT . Using the fact that∫
RP,T K (X)dX = 1 and that

∫
RP,T XK (X)dX = 0, and plugging the Taylor expan-

sion into Eq. (9), we get

E( f̂ (X; h)) = f (X) + 1

2
h2tr(H f (X)
m2(K )IP·T ) + o(h2)

= f (X) + 1

2
h2m2(K )tr(H f (X)) + o(h2)

= f (X) + 1

2
h2m2(K )� f + o(h2).

Hence the approximated squared bias is

[E( f̂ (X; h)) − f (X)]2 = 1

4
h4m2

2(K )� f 2 + o(h4).

By integrating with respect to X we obtain

ISB( f̂ (·; h)) = 1

4
h4m2(K )2R(� f ) + o(h4). (10)

The variance of f̂ is given by

Var( f̂ (X; h)) = N−1
∫

RP,T
h−2P·T K (h−1(X − Y ))2 f (Y )dY−

N−1
(∫

RP,T
h−P·T K (h−1(X − Y )) f (Y )dY

)2

. (11)

Starting from the first term in (11), and integrating it with respect to X , we obtain

N−1
∫

RP,T

∫

RP,T
h−2P·T K (h−1(X − Y ))2 f (Y )dYdX
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= N−1h−(P·T )

∫

RP,T

∫

RP,T
K (Z)2 f (X − hZ)dZdX

= N−1h−(P·T )R(K ), (12)

where the first equality follows from the change of variable Z = h(X − Y ) and
the second one from Fubini’s theorem. For the second term in Eq. (11) we can take
advantage of the previous calculations for E( f̂ (X; h)) to obtain

N−1
∫

RP,T

∫

RP,T
h−2P·T K (h−1(X − Y ))2 f (Y )dYdX

= N−1R( f ) + o(N−1).

Given the assumption (iii), and in view of Eq. (12), it follows that this second term in
the IV is of a smaller order than the first one. Therefore,

IV( f̂ (·; h)) = N−1h−(P·T )R(K ) + o(N−1h−(P·T )). (13)

Combining Eqs. (10) and (13), it follows that an asymptotic approximation to the
MISE can be written as

AMISE( f̂ (·; h)) = N−1h−(P·T )R(K ) + 1

4
h4m2(K )2R(� f ).

The optimal bandwidth (4) is derived via minimization of the AMISE, by identifying
the root of

∂

∂h
AMISE( f̂ (·; h)) = − (P · T )R(K )

Nh−(P·T )−1
+ h3m2(K )2R(� f ) = 0.

Appendix B: Proof of Proposition 2

Since the maxima of a function f satisfies ∇ f = 0, a standard formulation of a
gradient ascent algorithm on its estimate s the following:

Y (s+1) = Y (s) + α∇ f̂ (Y (s)). (14)

For the specific case (2), simple differentiation rules of matrix-variate function lead to

∇ f̂ (X; h) = 1

NhP·T
N∑

n=1

∇K
(
h−1(Xn − X)

)
. (15)

The use of a spherically symmetric kernel K allows recasting to the simpler use of a
function of real variable κ : R+ �→ R, known as profile of K , via the representation

K (X) = 1

2
κ(||X ||2F ) = 1

2
κ(tr(X
X)),
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where || · ||F is the Frobenius norm. Note that the first equality highlights the similar
structure of the matrix-variate kernel to the standard multivariate kernel, where the
Euclidean norm replaces the Frobenius norm. Hence, the (15) turns into the following:

∇ f̂ (X; h) = 1

N

1

2hP·T
N∑

n=1

∇κ
(
h−2tr((Xn − X)
(Xn − X))

)

= − 1

N

1

hP·T+2

N∑

n=1

κ ′ (h−2tr((Xn − X)
(Xn − X))
)

(Xn − X). (16)

Replacing the (16) in the ∇ f̂ term of (14), we obtain:

Y (s+1) = Y (s) − α
1

NhP·T+2

N∑

n=1

κ ′ (h−2tr((Xn − X)
(Xn − Y (s)))
)

(Xn − Y (s))

= Y (s) − α

[
1

N

1

hP·T+2

N∑

n=1

κ ′ (h−2tr((Xn − X)
(Xn − Y (s)))
)
Xn+

1

N

1

hP·T+2

N∑

n=1

κ ′ (h−2tr((Xn − X)
(Xn − Y (s)))
)
Y (s)

]
, (17)

and setting an adaptive step size

α = αs =
[
− 1

N

1

hP·T+2

N∑

n=1

κ ′ (h−2tr((Xn − Y (s))
(Xn − Y (s)))
)]−1

.

we obtain the thesis.
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