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Chapter 3   
Counterfactuals with Experimental 
and Quasi-Experimental Variation             

Erich Battistin and Marco Bertoni 

Abstract Inference about the causal effects of a policy intervention requires 
knowledge of what would have happened to the outcome of the units affected had 
the policy not taken place. Since this counterfactual quantity is never observed, the 
empirical investigation of causal effects must deal with a missing data problem. 
Random variation in the assignment to the policy offers a solution, under some 
assumptions. We discuss identification of policy effects when participation to the 
policy is determined by a lottery (randomized designs), when participation is only 
partially influenced by a lottery (instrumental variation), and when participation 
depends on eligibility criteria making a subset of participant and non-participant 
units as good as randomly assigned to the policy (regression discontinuity designs). 
We offer guidelines for empirical analysis in each of these settings and provide 
some applications of the methods proposed to the evaluation of education policies.    

Learning Objectives 
By studying this chapter, you will:

• Learn to speak the language of potential outcomes and counterfactual impact 
evaluation.

• Grasp different concepts of validity of a research design.
• Understand why randomization helps to detect causal effects.
• Discover how to exploit natural experiments and discontinuities to learn about 

causality when proper experiments are not feasible.
• Discuss the credibility of the assumption underlying different empirical 

strategies.  
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3.1   Introduction 

Do smaller classes yield better school outcomes? To answer this and many similar 
questions, one needs to compare the outcome in the status quo (a large class) to 
the outcome that would have been observed if the input of interest was set to a 
different level (a small class). The comparison of students enrolled in small and 
large classes is always a tempting avenue to answer this causal question. As this 
comparison involves different students, its validity rests on the assumption that 
students currently enrolled in small and large classes would have presented the 
same outcome, on average, had they been exposed to the same number of class-
mates. This remains an untestable assumption that must be discussed on a case-
by-case basis. 

The chapter discusses ways to combine policy designs and data to corroborate 
the validity of this assumption. Sections 3.2 and 3.3 introduce the counterfactual 
causal analysis talk. They describe the concepts of treatments, potential outcomes 
and causal effects, and the attributes characterizing the validity of a research design. 
Section 3.4 is about the beauty and limitations of randomized assignment to “treat-
ment” (e.g., a small class) and paves the way for the discussion in the following 
sections. Specifically, these sections deal with methods for causal reasoning when 
randomization is not feasible. Section 3.5 provides an example of instrumental vari-
ation in treatment assignment arising from a natural experiment. Section 3.6 is 
devoted to the closest cousin to randomization, the regression discontinuity design. 
Section 3.7 offers some concluding remarks. 

Our discussion of empirical methods for causal reasoning is far from exhaustive. 
For example, we do not discuss research designs that exploit longitudinal data and 
rely on assumptions on pre-treatment outcome trends (e.g., difference-in- differences 
and synthetic control methods). Similarly, we do not cover matching methods (see 
Chap. 4 of this volume). In addition, our presentation will mostly focus on the rea-
soning underlying design-based identification and will only barely touch issues 
related with estimation. The interested reader can refer to the book by Angrist and 
Pischke (2008) for a discussion of these topics.  

3.2   Causation and Counterfactual Impact Evaluation: 
The Jargon 

It is useful to start by clarifying what we mean by “causes” and “treatment effects.” 
We consider a population of units indexed by i, with i = 1, …, N. Although our nar-
rative will often consider individuals as the units of analysis, the same setting 
extends to other statistical units such as households, villages, schools, or 
municipalities. 
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3.2.1   Causes as Manipulable Treatments 

In the population we study, some units are exposed to a cause, which is a treatment 
or intervention that manipulates factors that may affect a certain outcome. For 
instance, we might be interested in studying whether class size at primary school 
affects student performance. Class size here is the treatment and performance is the 
outcome, which is typically measured using standardized tests. In many countries, 
class size formation depends on grade enrollment so that, across cohorts, the num-
ber of students in the class may change because enrollment changes or because a 
specific policy affects the regulation. We will use the words “cause”, “treatment”, or 
“intervention” interchangeably. 

The avenue we take here has some limitations, as not all causes worth consider-
ing are manipulable in practice (consider, for example, gender, ethnicity, or genetic 
traits). Moreover, the design-based approach we describe below may be coarse at 
times and aimed at shedding light on one particular aspect of a more articulated 
model. For example, empirical evidence on the causal effects of class size on 
achievement bundles up the possible contribution of multiple channels that may 
lead to a better learning environment in small classes. The investigation of channels 
and mechanisms behind the uncovered effects calls for theories and structural mod-
els. The most relevant question to consider turns on the quality of the design-based 
strategy and on our faith to prop up a more elaborate theoretical framework. 

We focus only on binary treatments, that is, we assume that treatment status is 
described by a binary random variable Di taking value one if unit i is exposed to 
treatment (“treated” or “participant”) and zero otherwise (“untreated”, “non-partic-
ipant”, or “control”). In the class size example, this amounts to considering a setting 
in which students can be enrolled in small or large classes. The extension to the case 
of multi- valued or continuous treatment (for example, the number of classmates) is 
logically identical but requires a more cumbersome notation. More in general, the 
binary case is always worth of consideration even in a more general context as it 
helps understand the main challenges in the quest for detecting causal effects. A 
related issue concerns public policies that are designed as “bundles” of multiple 
components. In those cases, policy-makers are often interested in disentangling the 
effect of every component of the policy. We abstract from this problem in our dis-
cussion, but emphasize here that the ability to address this question will depend, in 
general, on the exposure of subjects to different components. 

We must take a stand on the reasons why different units end up having a value of 
Di equal to one or zero. This is the so-called “assignment rule” and is at the core of 
any evaluation study. Assignment to treatment can be totally random. In our class 
size example, this happens when students are randomized to a small or a large class 
with equal probability and independently of socio-economic background or past 
performance. When randomization is not at work, participation to treatment is most 
likely the result of choices made by the units themselves, administrators of the pro-
gram, or policy makers. For example, parents can choose to enroll their children in 
schools with smaller classes in the hope of a better learning environment. Finally, 
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participation to treatment may depend on admission rules that units must comply 
with. The case of class size formation based on total enrollment is a good example, 
as the chance of being enrolled in a small class depends on a school’s yearly total 
recruitment. As we shall see, our ability to assess causal effects grows with knowl-
edge of the assignment rule.  

3.2.2   Effects as Differences Between Factual 
and Counterfactual Outcomes 

It is essential to set the stage for a transparent definition of the treatment effect. To 
do so, we define Yi(1) and Yi(0) as the potential outcomes experienced if unit i is 
treated (Di = 1) or untreated (Di = 0), respectively. The unit-level treatment effect of 
Di on Yi is the difference between Yi(1) and Yi(0): Δi = Yi(1) − Yi(0). Decades of 
empirical studies using micro-data analyses have taught us that treatment effects 
most likely vary across units or groups of units with very similar demographics. The 
notation employed here accommodates for this possibility (the manuals by Angrist 
& Pischke, 2008, and Imbens & Rubin, 2015, use the same approach). 

The definition of Δi unveils the fundamental problem that we face when we want 
to estimate this quantity from the data. While the two potential outcomes can be 
logically defined for each unit, they can never be observed simultaneously for the 
same unit. This is true regardless of the assignment rule and the richness or sample 
size of data we will ever work with. Specifically, the data can reveal only Yi(1) for 
units with Di = 1 and Yi(0) for units with Di = 0. We can, therefore, express the 
observed outcome Yi as follows: Yi = Yi(1)Di + Yi(0)(1 − Di) = Yi(0) + Di(Yi(1) − Yi(
0)). As simple as this can be, lack of observability of both potential outcomes 
implies lack of observability of the unit-level effect Δi. We can think of the unit- 
level causal effect as the difference between an observed (factual) and an unob-
served (counterfactual) potential outcome. Factual quantities are those that can be 
computed from the data. Counterfactual quantities can be logically defined but can 
never be computed from data. For treated units, we observe Yi = Yi(1) and Yi(0) is the 
counterfactual. The opposite is true for control units, for whom we observe Yi = Yi(0) 
and Yi(1) is the counterfactual. 

One way to get around this limitation is to settle for less than unit-level effects. 
We might be interested in considering average treatment effects for the population 
or only for some sub-groups. For instance, we define the average treatment effect 
(ATE) as the average of the individual-level treatment effect in the whole popula-
tion: ATE = E(Yi(1) − Yi(0)). This parameter reflects our expectation of what would 
happen if we were to expose to treatment a randomly chosen unit from the popula-
tion. Alternatively, we can consider the average treatment effect for the treated 
(ATT), which describes our expectation for units who have been exposed to treat-
ment: ATT = E(Yi(1) − Yi(0)| Di = 1). Analogously, the average treatment effect for 
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the non-treated (ATNT) is informative about what would have happened to the 
untreated if they had been exposed to the intervention:

 
ATNT E Y Y Di i i� � � � � �� �1 0 0– | .

  

Whether any of the above causal parameters can be retrieved from the data will 
have to be discussed on a case-by-case basis our understanding of the assignment 
rule plays a key role in this discussion.  

3.2.3   What the Data Tell (And When) 

Our journey to learn about treatment effects begins by comparing features of the 
observed outcome Yi for treated and control units. For instance, the data reveal the 
average outcomes for treated units, E(Yi|Di  =  1), and control units, 
E(Yi|Di = 0). Recalling the definition of potential outcomes, the naïve comparison of 
average outcomes by treatment group, E(Yi|Di = 1) − E(Yi| Di = 0) = E(Yi(1)|Di = 1) 
− E(Yi(0)| Di = 0), conveys the correlation between the treatment, Di, and the out-
come, Yi. 

The causal interpretation of such naïve comparison is controversial in most 
cases. To see why, we can add and subtract from the right-hand side of the previous 
equation the quantity E(Yi(0)|Di = 1). This is a counterfactual quantity, as the out-
come Yi(0) cannot be observed for treated units, and represents what would have 
happened to treated units had they not participated to treatment. We can arrange the 
terms and write:

 

E Y D E Y D E Y Y D E Y D

E Y

i i i i i i i i i| | | |�� � �� � � � � � � �� � � � � �� �1 0 1 0 1 0 1– –

– ii iD0 0� � �� �| .
 
(3.1)

 

It follows that the naïve comparison on the left-hand side of Eq. 3.1 is equal to 
the sum of the ATT and the term E(Yi(0)| Di = 1) − E(Yi(0)| Di = 0), which is often 
called “selection bias”. It is worth noting that this representation does not hinge on 
any assumptions. It is the result of a simple algebraic trick and, as such, is always true. 

Selection bias is an error in the causal reasoning. It is different from zero when, 
in the absence of treatment, the group with Di = 1 would have performed differently 
from the group with Di = 0. The same concept is conveyed by the “correlation is not 
causation” motto: correlation (the naïve treatment–control comparison) has no 
causal interpretation (that is, it does not coincide with the ATT) unless the selection 
bias is zero. This reframes the quest for causal effects as a discussion on the exis-
tence of selection bias. A non-zero bias follows from having groups defined by 
Di = 1 and Di = 0 that are not representative of the same population, in the sense that 
participation to treatment depends on non-random selection. At the end of the day, 
selection bias reflects compositional differences between treatment and control 
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units. Taking up our class size example, parents with a strong preference for smaller 
classes are most likely selected in terms of socio-economic background and demo-
graphics. If this selection translates into a better learning potential of their children, 
forming classes as a reflection of parental preference must create dis-homogenous 
groups of students. In this case, detecting a correlation between class size and 
achievement might just reveal dis-homogeneity across classes rather than a true 
causal effect of class size. 

Importantly, for the time being, we are agnostic about whether this dis- 
homogeneity concerns characteristics of units that are observed in the data at hand 
or not. In fact, any strategy that can adjust for compositional differences between 
treated and control units also corrects for this bias. One leading example to consider 
here is randomization. When classes are formed by a coin toss, composition is the 
same. Even when it is because of sampling variability, differences in composition 
must be as good as random. We will formalize this idea in Sect. 3.4, below. Instead, 
Chapters 4 and 5 in this volume present methods to alleviate imbalances along 
observable dimensions and discuss the identifying assumptions that permit to reach 
causal conclusions once these differences are eliminated.   

3.3   Shades of Validity 

The assessment of a causal channel from treatment to the outcome depends on the 
properties of the research design. In short, this is the toolbox of empirical methods 
that allows one to distinguish between correlation and causality. Any strategy falling 
short on this minimum requirement is not a valid option to consider for a good 
researcher. On the other hand, a good research design must be able to detect pre-
cisely the causal relationship of interest. That is, you do not want your design to be 
underpowered for the size of the treatment effect. Finally, the ideal research design 
should be able to provide causal statements that apply to the largest share of units in 
the population and extend to other contexts and times. The concern here is one of 
generalizability, which is of fundamental importance for offering evidence-based 
policy recommendations. Causal talk makes use of these three ideas of validity in 
the development of a research design. This is what we will discuss briefly next. The 
seminal textbook by Cook and Campbell (1979) provides a deeper treatment of 
these topics. 

3.3.1   Internal Validity: The Ability to Make a Causal Claim 
from a Pattern Documented in the Data 

Internal validity concerns the ability of assessing whether the correlation between 
treatment and outcome depicts a causal relationship or if it could have been observed 
even in the absence of the treatment. Therefore, internal validity is solely concerned 
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with the presence of selection bias. It is achieved under a ceteris paribus compari-
son of units, when all else but the treatment is kept constant between treated and 
control units. As we discussed above, this calls for the same composition of treat-
ment (small class) and control (large class) units. An internally valid conclusion is 
the one without selection bias. One of the main advantages of using randomization 
is that such ceteris paribus condition is met by design. Because of this, a properly 
conducted randomization yields internally valid causal estimates.  

3.3.2   Statistical Validity: Measuring Precisely the Relationship 
Between Causes and Outcomes in the Data 

Statistical validity refers to the appropriate use of statistical tools to assess the extent 
of correlation between treatment and outcomes. It is fundamentally concerned with 
standard errors and accuracy in assessing a statistical relationship. The main ques-
tion addressed by statistical validity is whether the chosen data and techniques of 
statistical inference can produce precise estimates of very small treatment effects (a 
statistically precise zero) or if, instead, the research design will likely produce sta-
tistical zeros (a statistically insignificant effect). An insignificant effect that is statis-
tically different from zero is a powerful oxymoron to summarize the idea underlying 
statistical validity.  

3.3.3   External Validity: The Ability to Extend Conclusions 
to a Larger Population, over Time and Across Contexts 

External validity is about the predictive value of a particular causal estimate for 
times, places, and units beyond those represented in the study that produced it. The 
concern posed by external validity is one of generalizability and out-of-sample pre-
diction. For example, an internally valid estimate for a given sub-group of the popu-
lation might not be informative about the treatment effect for other (potentially 
different and policy-relevant) sub-groups. Similarly, ATT is, in general, different 
from ATE. Replicability of the same results in other contexts and times is of funda-
mental interest for providing policy recommendations.   

3.4  Random Assignment Strengthens Internal Validity 

As Andrew Leigh puts it in his book “Randomistas: How Radical Researchers Are 
Changing the World,” (Leigh, 2018) randomized controlled trials (RCTs) use “the 
power of chance” to assign the groups. Randomization can be achieved by flipping 
a coin, drawing the shorter straw, or using a computer to randomly assign statistical 
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units to groups. In any of these cases, the result would be the same: the treatment 
and the control group are random samples from the same population. 

Random assignment ensures that treatment and control units are the same in 
every respect, including their expected Yi(0). It follows that, in RCTs, selection bias 
must be zero since E(Yi(0)| Di  =  1) = E(Yi(0)| Di  =  0). In other words, what we 
observe for control units approximates what would have happened to treated units 
in the absence of treatment. It is worth noting that random assignment does not 
work by eliminating individual differences, but it rather ensures that the composi-
tion of units being compared is the same. 

RCTs ensure a ceteris paribus (i.e., without confounds) comparison of treatment 
and control groups. Because of this, an RCT provides an internally valid research 
design for assessing causality. Evidence in support of this validity can be obtained 
using pre-intervention measurements. In fact, it is a good practice to collect this 
information and test the validity of the design by carrying out a battery of “balanc-
ing” tests. In a properly implemented randomization, there are no selective differ-
ences in the distribution of pre-intervention measurements between treated and 
control units. This statement does not rule out the possibility of between-group 
differences arising from sampling variability, which is a problem concerning the 
statistical validity (that is, the precision of point estimates) of RCTs. 

Finally, under random assignment, the naïve comparison will provide internally 
valid conclusions about the average treatment effect on the treated (ATT), as we 
have that E(Yi|Di = 1) − E(Yi| Di = 0) = E(Yi(1) − Yi(0)|Di = 1). In addition, under 
randomization, the groups with Di = 1 and Di = 0 are representative of the same 
population so that E(Yi(1) − Yi(0)|Di = 1) = E(Yi(1) − Yi(0)). This means that the 
causal conclusions hold for any unit randomly selected from the population. 

Random assignment to treatment is not uncommon in numerous fields of the 
social sciences. One such example is the lottery-based allocation of pupils to schools 
that are oversubscribed. This alternative to the traditional priority criterion based on 
proximity should dampen school stratification caused by wealthy parents buying 
houses in the close vicinity of high-quality schools. As a result, among the pool of 
applicants to a school where oversubscription is resolved by a lottery, getting a seat 
or not is completely random. Some researchers (see Cullen et  al., 2006, for an 
example) have exploited this to evaluate the educational effects of attending one’s 
preferred school. 

Another example is the Oregon Health Insurance Experiment (see Finkelstein 
et al., 2012). Medicaid is one of the landmark US public health insurance programs 
and provides care for millions of low-income families. In 2008, the state of Oregon 
extended coverage of Medicaid by selecting eligible individuals with a lottery. This 
gave researchers the unique opportunity to provide credible causal estimates of the 
effect of health insurance eligibility on health care utilization, medical expenditure, 
medical debt, health status, earnings, and employment. 

Although RCTs are considered as the “gold standard” for providing internally 
valid estimates of causal effects, they are not without shortcomings (see the excel-
lent surveys by Duflo et al., 2008 and Peters et al., 2018). External validity is often 
perceived as the main limitation and more so for small-scale experiments on very 
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specific subpopulations. Bates and Glennerster (2017) propose a framework to dis-
cuss generalizability based on four steps: identify the theory behind the program; 
check if local conditions hold for that theory to apply; evaluate the strength of the 
evidence for the required general behavioral change; evaluate whether the imple-
mentation process can be carried out well. External validity is granted if these four 
conditions apply in a context different from the one where the experiment was con-
ducted. Statistical validity as well may challenge the significance of many small- 
scale experiments (see Young, 2019). 

RCTs have other limitations. Many RCTs are carried out as small-scale pilots 
that shall be eventually scaled up to the entire population. Causal reasoning in this 
context must consider the general equilibrium effects arising from this change in 
scope. These effects are concerned with the possible externalities for non- participants 
when the policy is implemented on a larger scale and the implications for market 
equilibria. An additional concern about RCTs is that the sole fact of being “under 
evaluation” may generate some behavioral response that has nothing to do with a 
treatment effect.1 Replicability of experiments also has been called into question in 
many fields of the social sciences (see Open Science Collaboration, 2015, for psy-
chology and Camerer et al., 2016, for economics). 

What happens when randomization is not a feasible option? This is the question 
to which we turn next.  

3.5  Internally Valid Reasoning Without RCTs: 
Instrumental Variation

3.5.1    A Tale of Pervasive Manipulation 

Randomizations obtained by design are not the only way to ensure ceteris paribus 
comparisons. Randomness in the assignment to treatment may arise indirectly from 
natural factors or events independently of the causal channel of interest. Under 
assumptions that we shall discuss, these factors can be used instrumentally to pin 
down a meaningful casual parameter. The most important takeaway message here is 
that we must use assumptions to make up for the lack of randomization. Because of 
this, much of the simplicity of the research design is lost, and internal validity must 
be addressed on a case-by-case basis. We will present an example of the toolbox for 
good empirical investigations using administrative data on student achievement 
and, further below, class size. 

Our working example makes use of standardized tests from INVALSI (a govern-
ment agency charged with educational assessment) for second and fifth graders in 
Italian schools for the years 2009–2011. Italy is an interesting case study as it is 

1 Such quirky responses are called “Hawthorne” effects for treated subjects and “John Henry” 
effects for controls.
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characterized by a sharp North–South divide along many dimensions, among which 
school quality. This divide motivates public interventions to improve school inputs 
in the South. As testing regimes have proliferated in the country, so has the tempta-
tion to cut corners or cheat at the national exam.2 As shown in Fig. 3.1, the South is 
distinguished by widespread manipulation on standardized tests. INVALSI tests are 
usually proctored and graded by teachers from the same school, and past work by 
Angrist et al. (2017) has shown that manipulation takes place during the grading 
process. Classes with manipulated scores are those where teachers did not grade 
exams honestly. 

Consider the causal effect of manipulation on test scores. As scores are inflated, 
the sign of this effect is obvious. However, the size of the causal effect (that is, by 

2 Cheating or manipulation is not unique to Italy, as discussed in Battistin (2016).
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how much scores are inflated) is difficult to measure because manipulation is not the 
result of random factors. The incentive to manipulate likely decreases as true scores 
increase so that the distribution of students’ true scores is not the same across classes 
with teachers grading honestly or dishonestly. Again, this is a problem about the 
composition of the two groups, as treatment classes (with manipulated scores) and 
control classes (with honest scores) need not be representative of the same 
population. 

When empirical work is carried out using observational data, as it is the case 
here, it is always illuminating to start from the thought experiment. This is the hypo-
thetical experiment that would be used to measure the causal effect of interest if we 
had the possibility to randomize units. With observational data, the identification 
strategy consists of the assumptions that we must make to replicate the experimental 
ideal. The thought experiment in the case of INVALSI data corresponds to distribut-
ing manipulation (the treatment) across classes at random. The identification strat-
egy here amounts to the set of assumptions needed to mimic the very same 
experimental ideal even if manipulation is not random. How can this be possible? 

Econometrics combined with the institutional context come to the rescue. It turns 
out that about 20% of primary schools in Italy are randomly assigned to external 
monitors, who supervise test administration and the grading of exams from local 
teachers in selected classes within the school (see Bertoni et al., 2013, and Angrist 
et al., 2017, for details on the institutional context). Table 3.1 shows that monitors 
are indeed assigned to schools using a lottery. Schools with monitors are statisti-
cally indistinguishable from the others along several dimensions, including average 
class size and grade enrollment. For example, the table shows that the average class 
size in unmonitored classes of the country is 19.812 students. The difference 
between treated and control classes is as small as 0.035 students and statistically 
indistinguishable from zero. Additional evidence on the lack of imbalance between 
schools with and without monitors is in Angrist et al. (2017). In the next section, we 
discuss how to use the monitoring randomization to learn about the effects of 
manipulation on scores.  

3.5.2   General Formulation of the Problem 

In our example, the class is the statistical unit of analysis and the treatment is 
manipulation (Di = 1 if class scores are manipulated and Di = 0 if they are honestly 
reported). INVALSI has developed a procedure to reveal Di, so treatment status is 
observed in the data. Scores (standardized by grade, year, and subject) are the class- 
level outcome,Yi. The presence of external monitors is described by a binary random 
variable Zi, with Zi = 1 for classes in schools with monitors and Zi = 0 otherwise. In 
the applied econometrics parlance, variables like Zi—which is randomly assigned 
and can influence treatment status—are called “instruments.” 

The ordinary least squares (OLS) regression of Yi on Di summarizes the correla-
tion between manipulation and reported scores. Estimation results obtained from 
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Table 3.1 Covariate balance in the monitoring experiment (Angrist et al., 2017)

Italy North/Center South
Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

(1) (2) (3) (4) (5) (6)

Class size 19.812 0.0348 20.031 0.0179 19.456 0.0623
[3.574] (0.0303) [3.511] (0.0374) [3.646] (0.0515)

Grade 
enrollment at 
school

53.119 −0.4011 49.804 −0.5477 58.483 −0.1410
[30.663] (0.3289) [27.562] (0.3913) [34.437] (0.5909)

% in class 
sitting the test

0.939 0.0001 0.934 0.0006 0.947 −0.0007
[0.065] (0.0005) [0.066] (0.0006) [0.062] (0.0008)

% in school 
sitting the test

0.938 −0.0001 0.933 0.0005 0.946 −0.0010
[0.054] (0.0005) [0.055] (0.0006) [0.051] (0.0008)

% in institution 
sitting the test

0.937 −0.0001 0.932 0.0005 0.945 −0.0010
[0.045] (0.0004) [0.043] (0.0005) [0.045] (0.0007)

N 140,010 87,498 52,512

Columns 1, 3, and 5 show means and standard deviations for variables listed at the left. Other 
columns report coefficients from regressions of each variable on a treatment dummy (indicating 
classroom monitoring), grade and year dummies, and sampling strata controls (grade enrollment at 
institution, region dummies, and their interactions). Standard deviations for the control group are 
in square brackets; robust standard errors are in parentheses
ap<0.01, bp<0.05, cp<0.1

OLS are reported in Table 3.2, and a positive correlation between cheating and test 
score is revealed in all columns. For instance, the value of the coefficient reported 
in Column (1) of Panel A implies that when we consider data for the whole of Italy, 
the average math score in classes with manipulated scores is 1.414 standard devia-
tions higher than in classes where teachers did not manipulate scores.3 However, as 
discussed above, this result cannot be given any causal interpretation, as the samples 
with Di = 0 and Di = 1 are non-randomly selected. 

Unlike Di, the status Zi is randomly assigned. So, it is can be instructive to consider 
the regression of Yi on Zi, summarizing the correlation between manipulation and mon-
itoring. As Zi is randomly assigned, the latter regression yields the causal effect of 
monitoring on scores (orthodox empiricists often call this regression the “reduced form 
equation”). Results in Columns (1)–(3) of Table 3.3 show a negative effect of monitor-
ing on test scores in all columns (see Bertoni et al., 2013). For example, from Column 
(1) of Panel A, we learn that the average math score in schools with external monitors 
is 0.112 standard deviations lower than in schools without monitors. Arguably, the 
negative effect of monitoring on scores passes through a reduction of manipulation. 

We need to enrich our causal inference vocabulary to consider potential out-
comes based on the 2x2 scenarios that result from the cross-tabulation of Di and 
Zi: Yi(Di, Zi). Similarly, we need to adjust the notation to express the idea that Zi 

3 Here and in what follows, INVALSI scores are standardized to have zero mean and unit variance 
by subject and year.
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Table 3.2 Correlation between score manipulation and test scored

Test scores
Italy North/Center South

(1) (2) (3)
A. Math

Score manipulation 1.414a 1.404a 1.413a

(0.006) (0.009) (0.007)
Means 0.007 −0.074 0.141
(sd) (0.637) (0.502) (0.796)
N 139,996 87,491 52,505

B. Language
Score manipulation 1.179a 1.085a 1.213a

(0.005) (0.007) (0.006)
Means 0.01 −0.005 0.035
(sd) (0.523) (0.428) (0.649)
N 140,003 87,493 52,510

All models control for a quadratic polynomial in grade enrollment, segment dummies, and their 
interactions. The unit of observation is the class. Robust standard errors, clustered on school and 
grade, are shown in parentheses. Control variables include % female students, % immigrants, % 
fathers at least high school graduate, % employed mothers, % unemployed mothers, % mother 
NILF, grade and year dummies, and the proportions of  missing values in these variables. All 
regressions additionally include sampling strata controls (grade enrollment at institution, region 
dummies, and their interactions). ap<0.01, bp<0.05, cp<0.1

Table 3.3 Monitoring effects on test scores and score manipulation (Angrist et al., 2017)

Test scores Score manipulation
Italy North/Center South Italy North/Center South

(1) (2) (3) (4) (5) (6)
A. Math

Monitor at institution (Migkt) −0.112a −0.075a −0.180a −0.029a −0.010a −0.062a

(0.006) (0.005) (0.012) (0.002) (0.001) (0.004)
Means 0.007 −0.074 0.141 0.064 0.02 0.139
(sd) (0.637) (0.502) (0.796) (0.246) (0.139) (0.346)
N 140,010 87,498 52,512 139,996 87,491 52,505

B. Language
Monitor at institution (Migkt) −0.081a −0.054a −0.131a −0.025a −0.012a −0.047a

(0.004) (0.004) (0.009) (0.002) (0.001) (0.004)
Means 0.01 −0.005 0.035 0.055 0.023 0.11
(sd) (0.523) (0.428) (0.649) (0.229) (0.149) (0.313)
N 140,010 87,498 52,512 140,003 87,493 52,510

Columns 1–3 report the reduced form effects of having a monitor at the institution on test scores. 
Columns 4–6 show the first-stage estimates of the effect of having a monitor at the institution on 
score manipulation. All models control for a quadratic polynomial in grade enrollment, segment 
dummies, and their interactions. The unit of observation is the class. Robust standard errors, clus-
tered on school and grade, are shown in parentheses. Control variables include % female students, 
% immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and proportions of missing values in these variables. 
All regressions  additionally include sampling strata controls (grade enrollment at institution, 
region dummies, and their interactions). ap<0.01, bp<0.05, cp<0.1
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affects Di. We define potential treatments Di(0) and Di(1) as the treatment status that 
individual i has when exposed to Zi = 0 and Zi = 1, respectively. In our running 
example, the realized score Yi corresponds to the potential score realized for the 
observed combination {Di = d, Zi = z}, while the realized manipulation Di coincides 
with the potential manipulation realized for the observed value of Zi = z. For exam-
ple, Yi(1, 1) represents the score that would be recorded for class i if teacher grading 
was dishonest (Di = 1) and the school had an INVALSI monitor (Zi = 1). Recall that, 
since only selected classes within the school are monitored, dishonest behavior 
from teachers in unmonitored classes within the school is always possible (see 
Bertoni et al., 2013). 

Depending on the values taken by Di(0) and Di(1), we can divide classes into four 
groups depending on the behavior of teachers grading the exams (see Battistin et al., 
2017, for a similar approach):

• Complying dishonest teachers (C), who grade dishonestly without monitors and 
grade honestly with monitors: Di(0)=1 and Di(1) = 0.

• Always dishonest teachers (A), who always grade dishonestly regardless of the 
presence of monitors: Di(0)=1 and Di(1) = 1.

• Never dishonest teachers (N), who always grade honestly regardless of the pres-
ence of monitors: Di(0)=0 and Di(1) = 0.

• Non-complying dishonest teachers (D), who grade honestly without monitors 
and grade dishonestly with monitors: Di(0)=0 and Di(1) = 1.

This classification does not hinge on any assumptions and represents the taxonomy 
of all possible behavioral responses from teachers arising from the monitoring sta-
tus of the school. The fact that both Di and Zi are binary limits to four the number of 
such responses.  

3.5.3   Assumptions 

The identification strategy for the analysis of natural experiment builds on four 
assumptions. We now discuss each of them with reference to our specific running 
example on the effect of manipulation on test scores. We refer the reader to Angrist 
and Pischke (2008) for a more general discussion. 

3.5.3.1  The “Monotonicity” Assumption 

We begin our investigation by assuming lack of non-complying dishonest teachers 
(D-teachers) in the data. This is a rather innocuous assumption in our context. A 
violation would represent a quirky behavioral response to the presence of monitors. 
This assumption is also known as monotonicity condition. It is a restriction on the 
behavior of units stating that when we move the instrument Zi from z′ to z′′, all agents 
respond by changing their Di in the same direction or by leaving it unaltered. In our 

E. Battistin and M. Bertoni



51

case, this assumption implies that (a) honest teachers without monitors at school 
would be honest teachers even with a monitor and (b) dishonest teachers without 
monitors at school might grade honestly under the threat of a monitor at school. In 
the former case, the value of Di is unchanged by monitoring and remains zero; in the 
latter case, the value of Di may remain one or turn to zero with monitoring. The 
events (a) and (b) imply that the distribution of the variable Di must move toward 
zero in the presence of school monitoring. Ruling out the presence of D-teachers 
implies that monitors cannot change the variable Di in the opposite direction, from 
zero to one. This exemplifies why the variable Zi must induce a monotone (towards 
zero) behavior for all teachers. 

Monotonicity plays a crucial role in natural experiments: under this assump-
tion, we are left with three compliance types—C, A, and N—whose shares in the 
populations can be represented by πC, πA, πN, respectively. Manipulators are a 
mixture of always dishonest teachers (A-teachers) and complying dishonest teach-
ers (C-teachers) without monitors. Honest teachers are composed of never dishon-
est teachers (N-teachers) and complying dishonest teachers (C-teachers) with 
monitors.  

3.5.3.2  The “As Good as Random” Assumption 

A second key relationship among the variables involved arises because schools are 
randomly assigned to either Zi = 1 or Zi = 0. Because of the monitoring experiment, 
the two groups of schools must have the same composition with respect to any vari-
able, including potential outcomes and potential treatment statuses. It, therefore, 
follows that {Yi(1, 1), Yi(0, 1), Yi(1, 0), Yi(0, 0), Di(0), Di(1)} ⊥ Zi. In our case, this 
“as good as random” assumption holds by design, because monitors have been 
explicitly assigned at random to schools.  

3.5.3.3  The “Exclusion Restriction” 

The causal reasoning builds upon an exclusion restriction. This formalizes the 
causal construct that the effect of Zi on Yi shall be solely because of the effect of Zi 
on Di. In the example considered here, this restriction can be put across considering 
the following equations:
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Therefore, the exclusion restriction implies that there are only two potential out-
comes, indexed against Di: Yi(Di). For example, the first equation implies that scores 
under honest grading (Di = 0) would be the same irrespective of the presence of 
monitors. Similarly, the second equation implies that dishonest grading (Di  = 1) 
would yield the same score independently of school monitoring. The latter 
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condition would be violated if, for example, always dishonest teachers cheated dif-
ferently in the presence of external monitors at school. This possibility is discussed 
in Battistin et al. (2017) and is ruled out in the case of INVALSI data by results in 
Angrist et al. (2017).  

3.5.3.4   The “First-Stage” Requirement 

The assumed causal link from Di to Zi can be verified in the data by running an OLS 
regression of Di on Zi. In fact, it is a good practice to verify the size and statistical 
strength of this “first-stage” regression in any study based on quasi-experimental 
variation, as the causal chain we have in mind originates from the effect of Zi on Di. 
Should we observe any effect of Zi on Yi but no effect of Zi on Di, it would be hard 
to justify that the random variation in Zi affected Yi via the ability of Zi to move Di. 
Estimates of the “first-stage” relationship between exposure to monitors and manip-
ulation are reported in Columns (4)–(6) of Table 3.3. As expected, score manipula-
tion is less likely in schools where monitors are present. For example, Column (4) 
of Panel A indicates that the probability of score manipulation is 2.9 percentage 
points lower in schools of the country with monitors. This is equivalent to a 36% 
decrease in the probability of manipulation with respect to the mean in non- 
monitored schools (equal to 6.4%). As demonstrated by the estimates in Columns 
(5) and (6) of Table 3.3, this decrease is stronger in Southern Italy than in the North 
and Center of the country and strongly statistically significant.   

3.5.4   Better LATE than Never 

To nail down the causal effect of manipulation on scores, we proceed by comparing 
the expected value of the product YiDi for schools with and without monitors. This 
product is equal to Yi for units with Di = 1 and to 0 for units with Di = 0. Given all 
the assumptions made so far, we have that:

 
E Y D Z E Y Ai i i A i| |�� � � � � �� �1 1� ,

 

 
E Y D Z E Y C E Y Ai i i c i A i| | |�� � � � � �� � � � � �� �0 1 1� � .

 

In the first equation, neither C-teachers or N-teachers show up, because for them 
Di = 0 when Zi = 1 so that YiDi = 0.4 Because of the monotonicity assumptions, there 

4 A consequence of random assignment of Zi and of the exclusion restriction is that conditional on 
the compliance types defined above, potential outcomes are independent of Zi, that is, {Yi(1), 
Yi(0)} ⊥ Zi ∣ {Di(0), Di(1)}. In fact, conditional on a given compliance type, there is a one-to-one 
mapping between Zi and Di,, and therefore, knowledge of Zi implies knowledge of Di.
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are no D-type teachers either. Therefore, the only group left is that of A-teachers, 
whose fraction in the population is πA and for whom we always observe Yi(1). In a 
similar fashion, we do not see N-teachers in the second line, as for them, Di = 0 
when Zi = 0. Consequently, after ruling out the presence of D-teachers by monoto-
nicity, only C- and A-teachers show up in this equation. C-teachers account for a 
fraction πC of the population, and for them, we observe Yi(1) as in this case Zi = 0, 
and therefore, Di = 1. 

For these very same reasons, if we compare the share of manipulators in schools 
with and without external monitors, we obtain:

 
E D Zi i A| �� � �1 � ,

 

 
E D Zi i c A| �� � � �0 � � .

 

The former expression suggests that only A-teachers have Di = 1 when Zi = 1; the 
latter that are both C- and A-teachers have Di = 1 when Zi = 0. Analogous expres-
sions can be derived for E(Yi(0)| C), E(Yi(0)| N) and for πN if one substitutes Di with 
(1 − Di) in the above. We have that:
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In the first and third equation, A-teachers do not show up because they always 
have Di = 1 so that Yi(1 − Di) = 0 and (1 − Di) = 0.5 Because of the monotonicity 
assumptions, there are no D-type teachers either. Therefore, only C- and 
N-teachers are left. C-teachers account for a fraction πC of the population. Since 
in this case Zi = 1, for them, we observe Di = 0 and, therefore, Yi(0). N-teachers 
are a share πN of the population, as for them, Di is always equal to 0, and we 
observe Yi(0). 

Similarly, in the second and fourth line, we do not see A- and C-teachers, as for 
them Di = 1 when Zi = 0. Consequently, after ruling out the presence of D-teachers 
by monotonicity, only N-teachers are left. 

5 A consequence of random assignment of Zi and of the exclusion restriction is that conditional on 
the compliance types defined above, potential outcomes are independent of Zi, that is, {Yi(1), 
Yi(0)} ⊥ Zi ∣ {Di(0), Di(1)}. In fact, conditional on a given compliance type, there is a one-to-one 
mapping between Zi and Di,, and therefore, knowledge of Zi implies knowledge of Di.
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By rearranging the equations above, it is easy to obtain:
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and
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The difference between the last two expressions yields:
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which represents the average causal effect of manipulation for classes with teachers 
who graded honestly because of school monitoring (that is, classes with C-teachers). 
Intuitively, this happens because—in the absence of D-teachers—this is the only 
group of teachers for whom the presence/absence of monitors generates variation in 
manipulation. Borrowing the definition by Angrist and Imbens (1994), the parame-
ter on the left-hand side of (3.4) is the local average treatment effect (LATE). The 
word “local” here is motivated by causal conclusions only licensed for a subset of 
classes in the population. 

Importantly, the expression on the right-hand side of Eq. 3.4 involves only the 
variables observed so that the causal parameter can be identified from the data. 
Standard econometric results imply that LATE is estimated by the coefficient on Di 
in a two-stage least squares (TSLS) regression of Yi on Di, using Zi to instrument for 
Di.6 Table 3.4 reports the estimates of the LATE parameter in our running example 
and reveals that manipulation causally increased scores of students assigned to com-
plying dishonest teachers. For example, Column (1) of Panel (A) tells us that score 
manipulation increases math results in classes with C-teachers by 3.827 standard 
deviations. This causal effect is much larger than the naïve comparison of scores by 
treatment status reported in Column (1) of Panel A in Table 3.2. Why is it the case? 
As illustrated in Sect. 3.2.3, the naïve comparison is equal to a causal effect plus 
selection bias. In this case, selection bias corresponds with the difference in average 
score of manipulators and non-manipulators if manipulation was not possible at all. 
As we have argued, manipulation is less likely to occur in classes with higher aver-
age true scores. So, selection bias is likely to be negative, that is, E(Yi(0)| 
Di = 1) < E(Yi(0)| Di = 0).  

6 A similar result applies to the expressions in (3.2) and (3.3) when TSLS regressions of YiDi on Di 
and of Yi(1 − Di) on (1 − Di), respectively, are considered.
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Table 3.4 Local average treatment effect of score manipulation on test scores

Test scores
Italy North/Center South

(1) (2) (3)
A. Math

Score manipulation (Digkt) 3.827a 7.393a 2.886a

(0.188) (0.804) (0.158)
Means 0.007 −0.074 0.141
(sd) (0.637) (0.502) (0.796)
N 139,996 87,491 52,505

B. Language
Score manipulation (Digkt) 3.279a 4.523a 2.786a

(0.180) (0.456) (0.178)
Means 0.01 −0.005 0.035
(sd) (0.523) (0.428) (0.649)
N 140,003 87,493 52,510

All models control for a quadratic in grade enrollment, segment dummies, and their interactions. 
The unit of observation is the class. Robust standard errors, clustered on school and grade, are 
shown in parentheses. Control variables include % female students, % immigrants, % fathers at 
least high school graduate, % employed mothers, % unemployed mothers, % mother NILF, grade 
and year dummies, and proportions of missing values in these variables. All regressions include 
sampling strata controls (grade enrollment at institution, region dummies, and their interactions). 
ap<0.01, bp<0.05, cp<0.1

3.5.5   External Validity of Causal Conclusions 

Causal conclusions can be drawn for classes with exams graded by C-teachers, and 
TSLS yield internally valid estimates of E(Yi(1) − Yi(0)| C). However, we have that 
E(Yi(1) − Yi(0)| C) ≠ E(Yi(1) − Yi(0)) in general. It follows that that the ability to 
extend causal conclusions to all classes—that is, the external validity of 
E(Yi(1) − Yi(0)| C)—is precluded in general. Using the expressions derived in the 
previous section, we can write:

 
�C i i i iE D Z E D Z� �� � �� �| |0 1– ,

 (3.5)

so that the data is informative about the size of the population for whom this design 
can provide evidence about a causal effect. This is already a starting point to under-
stand the extent of the external validity problem of causal estimates obtained by 
LATE. In the case of INVALSI data, the value of πC is equal to 2.9% for math and 
2.5% for language. This can be seen from Column (4) of Table 3.3, which reports 
the coefficient of Zi in the first-stage regression of Dion Zi using data for all classes 
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in the country. This is equal to the opposite of πC.7 In the South, the share of 
C-teachers grows to 6.2% for math and 4.7% for language, as can be seen from 
Column (6) of the same table. 

In our example, the size of the compliant subpopulation is relatively small. 
How could one extend the conclusions drawn for a possibly small share of com-
plying dishonest teachers to the remaining classes in the population? We follow 
Angrist (2004) and note that the data provide information about E(Yi(1)| A) and 
E(Yi(0)| N) as well. These quantities can be obtained using expressions like 
those we derived above (see Battistin et al., 2017, for details). For example, we 
have that:
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The first equality holds because—in the absence of D-teachers—only A-teachers 
manipulate scores in the presence of monitors. Similarly, only N-teachers report 
honestly without monitors. 

If potential outcomes were homogeneous across types in the population, then we 
would have that E(Yi(1)| A) = E(Yi(1)| C) and E(Yi(0)| N) = E(Yi(0)| C). If these two 
equalities cannot be rejected from the data, we would feel more confident about 
extending the results obtained for classes with complying dishonest teachers to 
other classes in the population.8 

In Table 3.5, we report the comparison of E(Yi(1)| C) vis-à-vis E(Yi(1)| A) and 
E(Yi(0)| C) vis-à-vis E(Yi(0)| N) for Southern Italy, where the problem of manipu-
lation is more pervasive. While the data does not reject that E(Yi(1)| C) is equal to 
E(Yi(1)| A), the empirical evidence suggests that E(Yi(0)| C) is much smaller than 
E(Yi(0)| N). For instance, as reported in Panel A of Table 3.5, for math, we have 
that E(Yi(1)| C) and E(Yi(1)| A) are very similar and, respectively, equal to 1.426 
and 1.236 standard deviations. On the other hand, while E(Yi(0)| C) is equal to 
−1.662 standard deviations, E(Yi(0)| N) is much higher and equal to −0.655 stan-
dard deviations. Therefore, in this case, the data advise against the generalization 
of the LATE of manipulation on scores outside of the population of complying 
dishonest teachers.   

7 The number reported in the table is the estimate of πC with its sign flipped. This is because the 
expression for share of C − teachers πC is in (5).The coefficient on Zi in the regression of Di on Zi 
identifies instead E(Di| Zi = 1) − E(Di| Zi = 0), that is, the opposite of πC.
8 Needless to say, full homogeneity of potential outcomes across types requires also that E(Yi(1)| 
N) = E(Yi(1)| C) and E(Yi(0)| A) = E(Yi(0)| C). However, the data will never reveal E(Yi(1)| N) and 
E(Yi(0)| A), as we never get to observe Di = 1 for N-teachers and Di = 0 for A-teachers. Hence, the 
latter two conditions cannot be tested empirically.
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Table 3.5 Average potential outcomes by type: South of Italy

Test scores
Complying dishonest (C) Always dishonest (A) Never dishonest (N)

(1) (2) (3)
A. Math

E(Yi(1)) 1.426a 1.236a

(0.020) (0.119)
E(Yi(0)) −1.453a −0.527a

(0.157) (0.104)
N 52,505 52,505 52,505

B. Language
E(Yi(1)) 1.147b 1.029a

(0.018) (0.103)
E(Yi(0)) -1.662a −0.655a

(0.176) (0.084)
N 52,510 52,510 52,510

E(Yi(1)| C) and E(Yi(0)| C) are obtained from 2SLS regressions as detailed in the text. E(Yi(1)| A) 
and E(Yi(0)| N) are computed from OLS regressions that estimate E(Yi| Di = 1, Zi = 1 ) and E(Yi| 
Di = 0, Zi = 0), respectively. All models control for a quadratic in grade enrollment, segment dum-
mies, and their interactions. The unit of observation is the class. Robust standard errors, clustered 
on school and grade, are shown in parentheses. Control variables include % female students, % 
immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and proportions of missing values in these variables. 
All regressions include sampling strata controls (grade enrollment at institution, region dummies, 
and their interactions). ap<0.01, bp<0.05, cp<0.1

3.6  Causal Reasoning with Administrative Rules: The Case 
of Regression Discontinuity Designs

3.6.1    Larger Classes, Worse Outcomes? 

The benefits of reducing student–teacher ratios on learning, educational achieve-
ment, and eventually long-term labor market outcomes have been of long-standing 
concern to parents, teachers, and policy-makers. Observational studies often show a 
negative relationship between class size and student achievement. Yet the conclu-
sions of such studies might be subject to the problem of self-sorting of students into 
smaller classes. 

In many countries, class size formation depends on grade enrollment using a 
deterministic rule, and Italy is no exception. As discussed in Angrist et al. (2017), 
until 2008, class size in primary schools in Italy must be between 10 and 25. A 
reform in 2009 modified these limits to 15 and 27, respectively. Class formation is 
regulated by law, and grade enrollment above multiples of the cap to maximum size 
leads to the formation of a new class. To see this, consider the cap at 25 students in 
place until 2008. Schools enrolling up to 25 students must form one class. One 
additional student enrolled after 25 would force principals to form one additional 
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class, with an average class size of 13 students. The same idea extends to any mul-
tiple of 25 students. For example, crossing the 50-student limit is enough to form 
three classes instead of two and so forth. Because of the regulation in place, class 
size decreases sharply when enrollment moves from just below to just above mul-
tiples of 25. Angrist and Lavy (1999) called this relationship “Maimonides’ rule” 
after the medieval scholar and sage Moses Maimonides who commented on a simi-
lar rule in the Talmud.9 Exceptions to the rule in Italy are allowed in some cases. For 
example, a 10% deviation from the maximum (3 students) in either direction is 
possible at the discretion of school principals and upon the approval from the 
Ministry of Education. The presence of students with disabilities or special educa-
tion needs is often advocated to justify non-compliance with the law. Moreover, 
principals can form classes smaller than 10 students in the most remote areas of the 
country. 

By allowing actual class size to deviate from the class size mandated by law, 
these exceptions generate fuzziness in the relationship between actual and predicted 
class size. This can be seen in Fig. 3.2, where we report the average class size in the 
country by grade enrollment at school for second graders before 2008.10 The 
sawtooth- shaped solid line reports predicted class size as a function of enrollment, 
the Maimonides’ rule, while the dots report average actual class size by enrollment. 
The law predicts class size to be a non-linear and discontinuous function of enroll-
ment. Actual class size follows predicted class size closely and more so for schools 
enrolling less than 75 students (which is the majority of schools in the country). In 
addition, discontinuities in the actual class size/enrollment relationship show up at 
multiples of 25 enrolled students. Given the soft nature of the rule, however, they are 
weaker than the sharp ones observed for predicted class size.  

3.6.2   Visual Interpretation 

Figure 3.3 offers a visual representation of the size of these discontinuities and is 
constructed using classes at schools with enrollment that falls in a [−12,12] window 
around the first four cutoffs shown in Fig. 3.2. Enrollment values in each window 
are centered to be zero at the relevant cutoff. The y-axis shows average class size 
conditional on the centered enrollment value shown on the x-axis. The figure also 
plots fitted values generated by locally linear regression (LLR) fits to class-level 

9 More precisely, let figkt be the predicted class size of class i in grade g at school k in year t. We have 

that f
r

int r c
igkt

gkt

gkt gt

�
� �� � ��

�
�
�–1 1/

, where rgkt is beginning-of-the-year grade enrollment at school 

k, cgtis the relevant cap (25 or 27) for grade g, and int(x) is the largest integer smaller than or 
equal to x.
10 Similar patterns hold also for the period after the 2008 reform and for fifth graders, as shown by 
Angrist et al. (2017).
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Fig. 3.2 Class size by enrollment among second-grade students in pre-reform years (Angrist 
et al., 2017). (It shows actual class size and class size as predicted by the Maimonides’ rule in pre- 
reform years for second-grade students)

data, as described in Angrist et al. (2017). This representation is convenient in that 
one can think that small classes are those in schools with grade enrollment to the 
right of zero. The figure shows a clear drop at this value. Class size is minimized at 
about 3–4 students to the right of this value, as we would expect were Maimonides’ 
rule to be tightly enforced. 

How can we use these discontinuities in class size to assess a causal effects of 
class size? School enrollment may be positively correlated with test scores, for 
example, because larger schools are typically in urban areas, and this relationship 
need not be linear. However, we would be tempted to infer a causal effect of class 
size on test score if we observed a discontinuous change in test scores at the exact 
values of enrollment that are multiples of the maximum class size caps, where class 
size also discontinuously changes. This is the idea underlying the evaluation design 
that goes by the name of regression discontinuity (RD). 

Figure 3.4 exemplifies this idea. It reports the change in average test scores as 
normalized enrollment moves from below to above the recentered enrollment cut-
offs, separately for North and Central Italy and for the South. There is evidence of a 
positive discontinuity in scores as we move from below to above the cutoff in 
Southern Italy. Evidence of jumps for the rest of the country is instead much more 
limited, suggesting the possibility of causal effects of class size on learning mostly 
for schools in the South. 
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Fig. 3.3 Class size by enrollment among second-grade students, centered at the RD cutoffs 
(Angrist et al., 2017). (Graphs plot residuals from a regression of class size on the following con-
trols: % female students, % immigrants, % fathers at least high school graduate, % employed 
mothers, % unemployed mothers, % mother NILF, grade and year dummies, and dummies for 
missing values in these variables. All regressions include sampling strata controls (grade enroll-
ment at institution, region dummies, and their interactions). The solid line shows a one-sided 
LLR fit.)

The idea underlying the RD design is that the comparison of scores of classes 
just above and just below the enrollment cutoffs identified by the Maimonides’ 
rule is informative of effects of class size. Still, not all classes above the cutoffs 
are small and not all classes below are large, because of discretion in the applica-
tion of the rule. Intuitively, if compliance with the rule was perfect, then the 
graphical analysis would already reveal the causal effect. If compliance is not 
perfect, we may want to use the rule as an instrument for class size formation. 
Intuitively, the crucial assumption here is that the Maimonides’ rule must affect 
performance at school only because it affects class size formation. A juxtaposition 
with the identification results discussed in Sect. 3.5 reveals that, in this case, the 
causal effect of class size on learning is identified only for schools that would 
form smaller classes because of compliance with the rule. We will come back to 
this point later in this section.  
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Fig. 3.4 Test scores by enrollment among second-grade students, centered at the RD cutoffs 
(Angrist et  al., 2017), (Graphs plot residuals from a regression of test scores on the following 
controls: % female students, % immigrants, % fathers at least high school graduate, % employed 
mothers, % unemployed mothers, % mother NILF, grade and year dummies, and proportions of 
missing values in these variables. All regressions  additionally include sampling strata controls 
(grade enrollment at institution, region dummies, and their interactions). The solid line shows a 
one-sided LLR fit.)

3.6.3   General Formulation of the Problem 

Following our running example, the class is the statistical unit of analysis and the 
treatment is class size.11 To ease the narrative, we distinguish between small and 
large classes and move to the background the possibility of a “continuous” treat-
ment (number of students in class). Small classes will have Di = 1 and large classes 
Di = 0. In our narrative, the Maimonides’ rule predicts small classes to the right of 
the recentered cutoffs in Fig.  3.2. Similarly, a large class is predicted for grade 
enrollment at or below the cutoffs in the same figure. Potential outcomes Yi(1) and 
Yi(0) are the average test score that class i would get if it was small or large. Grade 
enrollment at school of class i is ri. Without loss of generality and consistent with 
Fig. 3.3, we recentered grade enrollment at zero using a [−12,12] window around 
cutoffs. 

3.6.3.1  The Sharp RD Design 

We start our discussion by assuming full compliance of school principals with the 
Maimonides’ rule. In other words, we pretend that all classes with ri at or above zero 
are small and that all classes with ri below zero are large. This is equivalent to 

11 We will drop all indexes other than i in what follows. The data contains additional dimensions, 
but we ignore them for expositional simplicity. One dimension is grade and year. However, scores 
are standardized by grade and year, so we can ignore them. As a result of this normalization, we 
end up having repeated measurements over time for classes at the same school. Another dimension 
is the reform regime. We recenter enrollment to the right cutoff depending on the regulation in 
place, and we, therefor, abstract from this dimension.
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assuming a deterministic relationship between ri and class size, which we express 
using the following notation: Di = 1(ri ≥ 0). We use this sharp setting to write the 
comparison of outcomes for classes in schools with grade enrollment in a neighbor-
hood of the Maimonides’ cutoff. The notion of cutoff proximity will be exemplified 
by using limits from below and above zero. Accordingly, the notation ri

� � 0  in 

what follows should read “just above the Maimonides’ cutoff”; the notation ri
– = 0  

is instead “just below the Maimonides’ cutoff.” 
We have that:
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because in classes to the left of the Maimonides’ cutoff Di is zero so that the second 
term vanishes. For classes with ri above zero, we have:
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because Di is one deterministically. It follows that the outcome difference between 
small and large classes at the cutoff can be written as:
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The parallel with the naïve comparison discussed in Eq. 3.1 is striking: the com-
parison of outcomes for small ( ri

� � 0 ) and large ( ri
– = 0 ) classes is equal to a 

causal effect for units just to the right of ri = 0:
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plus a selection bias term:
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measuring differences in a local neighborhood of ri = 0 that would have occurred 
even without treatment (i.e., if class size could be only large). What conditions are 
needed to ensure that the latter term is zero? A closer look at the two terms in the 
last expression reveals an idea of continuity. The condition:
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is sufficient to eliminate selection bias and is equivalent to assuming that the relation-
ship between the outcome Yi(0) and grade enrollment is continuous at ri = 0. This is a 
mild regularity condition, which most likely holds in most applications, and has a very 
simple interpretation: our hopes to give any causal interpretation to discontinuities in 
school performance observed around Maimonides’ cutoffs must rest on the assump-
tion that there would have been no discontinuity in performance crossing from ri

– = 0  
over to ri

� � 0  had the Maimonides’ rule been irrelevant for forming a small class. 
Assumption (3.6) combined with its counterpart for the Yi(1) outcome:
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ensures:
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Assumption (3.7) brings to the problem the same regularity condition in (3.6), 
with a similar interpretation. 

The notion of continuity of potential outcomes around Maimonides’ cutoffs is 
evocative of the properties of a full randomization of students to small and large 
classes in schools with grade enrollment near ri = 0. For example, assumption (3.6) 
can be interpreted as an independence condition between Yi(0) and Di locally with 
respect to the Maimonides’ cutoff. This is the same sort of condition that we dis-
cussed in Sect. 3.4 above. It follows that the internal validity of RD estimates 
obtained from (3.8) hinges upon the assumption that students in schools with values 
of ri near zero are as good as randomly assigned to small and large classes, as in a 
local randomized experiment. In Sect. 3.6.4 below, we discuss how potential viola-
tions of such condition may arise in practice and propose some tests to assess the 
plausibility of this assumption. 

Compared to a standard randomized experiment, we pay a price in terms of 
external validity, as RD estimates are internally valid only around Maimonides’ 
cutoffs. The extrapolation of this effect away from the cutoff requires further 
assumptions about the global shape of the potential outcome functions, that must be 
discussed on a case-by-case basis. We refer the interested reader to the work by 
Battistin and Rettore (2008), Angrist and Rokkanen (2015), Dong and Lewbel 
(2015), and Bertanha and Imbens (2020). 

RD estimates of causal effects are obtained from the sample analogue of the 
expression in (3.8).12 The simplest way to proceed is by comparing the mean sample 
outcomes for small and large classes within a fixed distance from the Maimonides’ 
cutoff ri  =  0. The simplicity of this estimator is very appealing, but we may 

12 Lee and Lemieux (2010) provide a thorough discussion of estimation issues in RD designs. We 
refer the interested reader to their survey for additional details.
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encounter statistical validity issues if the data are “sparse” around the Maimonides’ 
cutoff. In fact, we face a trade-off. On the one hand, to enhance statistical validity, 
we would be tempted to enlarge the width of the neighborhood around the 
Maimonides’ cutoff considered for estimation. On the other hand, by so doing, we 
would end up using also data points far away from the cutoff. If the relationship 
between Yi and ri was not flat, this could endanger the internal validity of the design. 

To minimize this trade-off, researchers often rely on semi-parametric estimators. 
Kernel-weighted local regressions of the outcome on a low-order (linear or qua-
dratic) polynomial in ri estimated separately for classes to the left and to the right of 
ri are the most common option (as in Fig. 3.4). By giving a larger weight to data 
point that are closer to the cutoff and allowing for a non-flat relationship between 
test scores and enrollment, this estimator permits to enlarge sample size while main-
taining internal validity. A flexible parametric regression of Yi and ri that uses all the 
available data could also be an option when sample size is small, but this may raise 
additional issues if high-order polynomials are adopted (see Gelman & Imbens, 
2019).  

3.6.3.2  The Fuzzy RD Design 

When compliance with the Maimonides’ rule is far from perfect, as in Italian pri-
mary schools, the sharp setting described in the previous section no longer applies. 
The fuzziness introduced by non-compliance can be dealt with using the class size 
predicted from the Maimonides’ rule as an instrumental variable for the actual class 
size. The key assumption underlying this approach is that the regulation on class 
size formation must influence standardized tests only because the regulation affects 
how classes are eventually formed. This is, once again, an exclusion restriction of 
the form discussed in Sect. 3.5.3.3, above. 

A few refinements of this idea are needed in this setting because the Maimonides’ 
rule yields experimental-like variation only near ri = 0, implying that the “as good 
as random” condition in Sect. 3.5.3.2 must hold only locally with respect to this 
point. Complying classes here are those turning small because of compliance with 
the class size regulation when grade enrollment crosses from ri

– = 0  over to ri
� � 0  

(see Sect. 3.5.3.1). Moreover, the first-stage condition, which ensures that the 
Maimonides’ rule shapes—at least in part—the way classes in Italy are eventually 
formed stems from the following contrast:
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Eq. 3.9 compares the share of small classes just above and just below the 
Maimonides’ cutoff ri = 0. Contrary to the case of a sharp RD, where this contrast 
is one because of full compliance, fuzziness arising from it makes this quantity 
lower than one depending on the number of complying classes. The more severe is 
the extent of non-compliance, the lower will be the external validity of the causal 
conclusions, as we discussed in Sect. 3.5.5. 
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The same argument used in Sect. 3.5 extends to the case considered here and can 
be used to write:
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 The expression in Eq. 3.10 reveals that a causal effect is retrieved by the ratio of 
the discontinuities in the outcome and in the treatment probability at the Maimonides’ 
cutoff. This expression bears strong similarities with Eq. 3.4 above, once we assign 
the role played by the instrumental variable to a dummy for being above the 
Maimonides’ cutoff, Zi = 1(ri ≥ 0). In fact, Hahn et al. (2001) showed that non- 
compliance leads the fuzzy RD design to be informative about a local average treat-
ment effect, strengthening this similarity. However, the parameter uncovered by the 
fuzzy RD is local in two senses. First, it refers only to complying classes. Second, 
it yields causal conclusions only about classes with a value of ri close to 0, limiting 
external validity even further. 

Following the analogy to the instrumental variable case, discussed in Sect. 3.5, 
estimation of fuzzy RD effects is usually carried out using two-stage least square 
(TSLS) methods. The general idea is to instrument the treatment dummy Di with the 
dummy Zi = 1(ri ≥ 0). As in the sharp RD case, researchers can choose to model the 
relationship between test scores and enrollment using either parsimonious local 
regressions or flexible global polynomial regressions. In general, and unlike in the 
sharp RD case, a single TSLS regression is estimated using data on both sides of the 
cutoff but permitting the polynomial in ri to have a different shape on each side of 
the cutoff. This is done by including interaction terms between the polynomial in ri 
and Di that are instrumented by interaction terms between the polynomial in ri 
and Zi.13 

The estimated fuzzy RD effects of class size on test scores for our running exam-
ple are reported in Table 3.6 and show a negative and significant effect of class size 
reduction for compliers at the relevant discontinuity cutoffs. For simplicity, these 
are obtained using continuous class size. For instance, according to the estimates 
reported in Column (1) of Panel A, when we consider data for the whole of Italy, we 
estimate that math scores would increase by an average of 0.06 standard deviations 
if we decreased class size by 1 unit. As revealed by Columns (2) and (3) and in 
accordance with Fig. 3.4, the magnitude of such effect is much larger in Southern 
Italy than in the rest of the country.   

13 Further details about estimation in the fuzzy RD design are discussed in Lee and Lemieux 
(2010a, b).
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Table 3.6 Local average treatment effect of class size on test scores (Angrist et al., 2017)

Test scores
Italy North/Center South

(1) (2) (3)
A. Math

Class size −0.0609a −0.0417a −0.1294a

(0.0196) (0.0171) (0.0507)
N 140,010 87,498 52,512

B. Language
Class size −0.0409a −0.0215 −0.0937b

(0.0155) (0.0136) (0.0403)
N 140,010 87,498 52,512

The table reports 2SLS estimates using class size cutoffs as an instrument. All models control for 
a quadratic in grade enrollment, segment dummies, and their interactions. The unit of observation 
is the class. Class size coefficients show the effect of 10 students. Robust standard errors, clustered 
on school and grade, are shown in parentheses. Control variables include % female students, % 
immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and dummies for missing values. All regressions 
include sampling strata controls (grade enrollment at institution, region dummies, and their inter-
actions). ap<0.01, bp<0.05, cp<0.1

3.6.4   Validating the Internal Validity of the Design

An underlying assumption behind the approach discussed so far is that units cannot 
precisely manipulate their value of the running variable. For instance, suppose that par-
ents of pupils with above-average ability could perfectly predict enrollment by school 
and choose to apply only for schools where enrollment is locally above the relevant 
cutoffs so that their pupils would systematically end up in smaller classes.14 If this was 
the case, then the RD design would be invalid, as the ability composition of pupils in 
schools where enrollment is just above and just below the cutoff would be different. 

In general, if units cannot precisely manipulate their value of the score, there 
should be no systematic differences between units with similar values of the score. 
Therefore, a test for the internal validity of an RD design is to verify whether there 
are discontinuities in these covariates at the cutoff. If predetermined variables that 
correlate with the outcome are discontinuous at the cutoff, then continuity of poten-
tial outcomes is unlikely to hold. These tests are akin to the “balancing” tests pre-
sented for the pure randomization case but are carried out locally, at the cutoff. 

Table 3.7 reports results for these tests and shows precisely estimated zero effects 
of passing the RD cutoffs on some predetermined controls, such as the share of 
students present in class on the day of the test, supporting the validity of this RD 
design.   

14 For instance, Urquiola and Verhoogen (2009) show evidence of discontinuities between enroll-
ment and household characteristics in Chilean private schools.
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Table 3.7 Covariate balance for class size discontinuities (Angrist et al., 2017)

Italy North/Center South
Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

(1) (2) (3) (4) (5) (6)
% in class 
sitting the test

0.9392 0.0000 0.9345 0.0001 0.9471 0.0000
[0.0643] (0.0001) [0.0657] (0.0001) [0.061] (0.0001)

% in school 
sitting the test

0.9386 0.0001 0.9339 0.0001 0.9464 0.0001
[0.0534] (0.0001) [0.0548] (0.0001) [0.05] (0.0001)

% in institution 
sitting the test

0.9374 −0.0001 0.9327 −0.0001 0.9451 −0.0000
[0.0436] (0.0001) [0.0426] (0.0001) [0.0441] (0.0001)

N 140,010 87,498 52,512

Columns 1, 3, and 5 show means and standard deviations for variables listed at the left. Other 
columns report coefficients from regressions of each variable on predicted class size, a quadratic 
in grade enrollment, segment dummies and their interactions, grade and year dummies, and sam-
pling strata controls (grade enrollment at institution, region dummies, and their interactions). 
Standard deviations for the control group are in square brackets; robust standard errors are in 
parentheses. ap<0.01, bp<0.05, cp<0.1

3.7  Conclusion

This chapter has discussed a selected number of approaches among the most popu-
lar in the toolbox of good empiricists interested in causal relationships. 
Randomization, instrumental variation, and discontinuity designs are very closely 
related members of the same family and, when properly implemented, are thought 
to yield the most credible estimates of the causal effects of public interventions. 

The beauty of randomized assignment is that the composition of “treatment” and 
“control” groups is by design not driven by any form of selection. In this case, dif-
ferences in the composition of groups due to sampling variation tend to vanish as 
sample size increases so that the main concern should be the one of statistical valid-
ity. External validity and general equilibrium effects may also be a concern, espe-
cially if the intervention has to be implemented in different contexts or scaled up to 
cover a whole country. 

Instrumental variation is a good way to go when randomized assignment is not 
viable. It seeks sources of random variation that have affected indirectly the chance 
of receiving “treatment.” Clearly, a good source of variability must affect only the 
treatment assignment and, through this, the outcome of interest. Sources of external 
random variation affecting at the same time both treatment allocation and the out-
come will not allow to distinguish the effect of the instrument on the outcome from 
the effect of the treatment on the same outcome. As we have made clear, the price to 
pay for the lack of randomized assignment to treatment is external validity: esti-
mates of causal effects obtained from instrumental variation are limited to the frac-
tion of the population changing the treatment status because of the instrument. How 
large and comparable this fraction is with respect to the entire population is an 
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Fig. 3.5 Score manipulation by enrollment among second-grade students, centered at the RD 
cutoffs (Angrist et al., 2017). (Graphs plot residuals from a regression of test scores on the follow-
ing controls: % female students, % immigrants, % fathers at least high school graduate, % 
employed mothers, % unemployed mothers, % mother NILF, grade and year dummies, and pro-
portions of missing values in these variables. All regressions additionally include sampling strata 
controls (grade enrollment at institution, region dummies, and their interactions). The solid line 
shows a one-sided LLR fit)

empirical matter, which should be discussed on a case-by-case basis. We have dis-
cussed some test for homogeneity of potential outcomes that allow to extend valid-
ity to the whole population of interest. 

Finally, the idea of regression discontinuity is most easily put across by thinking 
of a properly conducted randomization only locally with respect to the discontinuity 
cutoff. The pros are clear-cut, and the cons concern the external validity of the esti-
mates away from the relevant discontinuity. 

What else could possibly go wrong? Books and chapters like this are always 
written to show a path forward for the implementation of methods. The day-to-day 
experience as a researcher is way more intricate. For example, Figure 3.5 taken from 
Angrist et al. (2017) casts doubt on the validity of the assumptions used in our dis-
cussion on the effects of class size. It shows that score manipulation also changes 
discontinuously at ri = 0 in Southern Italy, suggesting that teachers in small classes 
are more likely to manipulate scores. As a result, the alleged causal effect of class 
size on test scores in Southern Italy discussed above does not reflect more learning 
in smaller classes, but increased manipulation of scores in smaller classes. As dis-
cussed by Angrist et al. (2017), these findings show how class size effects can be 
misleading even where internal validity is probably not an issue. 

This example should prompt the reader to weigh methods with a grain of salt and 
a proactive attitude: the most credible approach to causal inference is often a com-
bination of different identification strategies, and its credibility must stem from the 
institutional context under investigation rather than clueless statistical assumptions. 

Review Questions 

 1. Why is the naïve comparison of mean outcomes for treated and control subjects 
not always informative of a causal effect?  
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 2.  What are the differences between internal, external, and statistical validity of a 
research design?  

 3. How does random assignment of the treatment help to achieve internal validity?  
 4. Under which assumptions do natural experiments and discontinuities provide a 

feasible avenue to estimate causal relationships?  
  5. What is the price to pay in terms of validity when pursuing these empirical strat-

egies with respect to a proper randomization?       

Replication Material 
Access to data and codes is available from the American Economic Association 
website at: https://www.aeaweb.org/articles?id=10.1257/app.20160267        
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