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Abstract

Intolerance of uncertainty (IU) can influence emotional predictions, constructed by the brain

(generation stage) to prearrange action (implementation stage), and update internal models

according to incoming stimuli (updating stage). However, neurocomputational mechanisms

by which IU affects emotional predictions are unclear. This high-density EEG study investi-

gated if IU predicted event-related potentials (ERPs) and brain sources activity developing

along the stages of emotional predictions, as a function of contextual uncertainty. Thirty-six

undergraduates underwent a S1-S2 paradigm, with emotional faces and pictures as S1s

and S2s, respectively. Contextual uncertainty was manipulated across three blocks, each

with 100%, 75%, or 50% S1-S2 emotional congruency. ERPs, brain sources and their rela-

tionship with IU scores were analyzed for each stage. IU did not affect prediction generation.

During prediction implementation, higher IU predicted larger Contingent Negative Variation

in the 75% block, and lower left anterior cingulate cortex and supplementary motor area acti-

vations. During prediction updating, as IU increased P2 to positive S2s decreased, along

with P2 and Late Positive Potential in the 75% block, and right orbito-frontal cortex activity to

emotional S2s. IU was therefore associated with altered uncertainty assessment and height-

ened attention deployment during implementation, and to uncertainty avoidance, reduced

attention to safety cues and disrupted access to emotion regulation strategies during predic-

tion updating.

Introduction

The world is an uncertain place, and the uncertainty we experience in everyday life can have a

dramatic influence on our emotional life. For example, the COVID-19 pandemic outbreak,

and the associated risk of contracting the virus, carried a huge amount of uncertainty, substan-

tially impacting over the emotional experience and mental health of people worldwide. Or

else, not knowing how the plot is going to develop while watching a new TV series usually

increases the rewarding value of the series itself. From both examples, it is clear how dealing

with uncertainty can intensify affective experience.
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The literature has long suggested that uncertainty pushes to a polarization of the impact of

both positive and negative affect, leading to an increased attention and emotional engagement

towards uncertain events [1]. Furthermore, individual differences in the subjective predisposi-

tion to tolerate uncertainty also play a non-negligible role in shaping emotional processing

within uncertain environments. Intolerance of uncertainty (IU) is the dispositional character-

istic that reflects individual differences in tolerating and adapting to uncertain situations [2]. It

has been defined as the inability to tolerate the aversive reaction triggered by a perceived lack

of sufficient or salient information, sustained by the correlated perception of uncertainty [3].

Individuals high in IU tend to appraise uncertainty as threatening irrespective of its probability

and outcomes, to experience heightened physiological arousal in uncertain situations, and to

consider the possibility of the occurrence of a negative event as unacceptable [2,4,5]. IU is

characterized by cognitive, affective, and behavioral facets that have a broad influence on emo-

tional experience, i.e., inflated estimates of threat probability, increased attention to threat and

hypervigilance, deficient safety learning, behavioral and cognitive avoidance of exposure to

uncertainty, and heightened physiological reactivity to threat uncertainty [6]. Moreover, the fear

of the unknown (which is assumed to be the key feature at the basis of IU) has been proved to be

a lower-order construct able to account for statistically significant variance in several higher-

order constructs [2,7,8]. Indeed, it is positively associated with neuroticism [3,9], and with symp-

toms of different anxiety disorders (see [3] for a review); and it can act as a trigger for the activa-

tion of the behavioral inhibition system (BIS) [2,3], and the fight-flight-freeze defensive response

[2,3]. For these reasons, IU has been proposed as a sound trans-diagnostic risk and maintaining

factor, potentially crucial for vulnerability assessment and/or as a target for clinical treatment, for

a wide range of emotional traits and disorders, such as neuroticism, trait anxiety and negative

affectivity traits, as well as anxiety disorders, depressive disorders, obsessive-compulsive disor-

ders, trauma- and stressor-related disorders, and eating disorders [1–4,10].

In the last years, the degree of uncertainty intrinsic to contextual information has been tar-

geted as an influential feature in shaping emotional processing, as defined within the predictive

coding framework [11–14]. According to this conceptualization, emotions are interoceptive

predictive models, developing across three neurocomputational stages: prediction generation,

in which the brain generates predictions according to prior experience and contextual infor-

mation available in the environment; prediction implementation, in which bodily and behav-

ioral changes are prearranged to efficiently deal with the predicted situation; prediction

updating, in which predictions are compared with actual incoming stimuli, and mismatching

ones are encoded as prediction errors and used to adjust future predictions [11–16]. Contex-

tual differences in the relative balance of the amount of information between certain and

uncertain situations are assumed to be crucial in determining whether uncertainty is appraised

as threatening [3]. Moreover, it has been proposed that biases in the anticipation of emotional

stimuli (e.g., inflated threat estimates) characterizing high-IU individuals could result from a

disrupted prediction error signaling, which in turn results in a failure to update emotional pre-

dictions [6]. For these reasons and given the significance of IU as a trans-diagnostic risk factor,

a better understanding of how individual differences in IU affect the neural correlates of emo-

tional predictions as a function of contextual uncertainty could represent a valuable contribu-

tion to advancing knowledge in the field, leading to promising clinical and preventive

implications. In fact, human organisms are embedded in constantly changing environments,

conveying information with varying degrees of (un)certainty, and in which a continuous adap-

tation of emotional predictions is required. Assessing the neural correlates of individual differ-

ences in IU across the different neurocomputational stages of emotional predictions would

allow to identify potential targets to treat, or to early intervene on, thus preventing high-IU

from developing into clinically relevant conditions.
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Nevertheless, experimental studies investigating at a neurocomputational level the effects of

IU on emotional processing as a function of contextual uncertainty [17–23] are still scarce and

provided conflicting results, with none of them embracing the predictive perspective on emo-

tions [13,14]. Amongst these studies, uncertainty was manipulated mainly through two experi-

mental paradigms. Some studies, measuring startle reflex and event-related potentials (ERPs),

employed threat-of-shock paradigms [17,18,24], in which participants were presented with cues

preceding predictable vs. unpredictable electric shocks. Other studies, recording skin conduc-

tance, electromyographic activity (EMG), ERPs, or functional magnetic resonance imaging

(fMRI) [19–23], employed emotional S1-S2 paradigms, with 100% vs. 50% instructed emotional

congruency between S1s (symbolic cues) and S2s (emotional pictures). Experimental tasks var-

ied from passive viewing of stimuli [20,22], to tasks requiring shock/S2 ratings [17,18,21,23], or

expectancy ratings about the upcoming S2 [19,21]. All these studies measured IU through the

Intolerance of Uncertainty Scale (IUS), either in its original (27-item) or short (12-item) form

[5,25], and divided the samples into two groups (high- vs. low-IU) according to the IUS scores

distribution. Uncertainty was manipulated mostly through two extreme levels (fully predictive

vs. random), and only negatively-valenced emotional stimuli were employed and compared

with a neutral condition. Importantly, both S1-S2 and threat-of-shock paradigms can be recon-

sidered within the predictive framework [13,14] as a function of the three stages of the construc-

tion of emotional predictions, with S1/cue processing potentially reflecting the generation stage,

the inter-stimulus interval (ISI) between S1/cue and S2/shock reflecting the implementation
stage, and the S2/shock processing representing prediction updating.

However, the results collected are fragmentary and sometimes in conflict with the predic-

tions formulated by the theoretical models of IU [1,2,4,6]. Regarding the generation stage,

some studies [19,22] found no differences between high- and low-IU participants in S1/cue-

locked skin conductance and corrugator EMG responses as a function of cue predictive mean-

ing. Other studies [18,20] found that high-IU participants showed a larger P2 ERP component

to S1s/cues irrespective of their predictive meaning, reflecting a heightened early automatic

attention allocation towards cues and their potential threatening meaning. Focusing on pre-

diction implementation, most of the studies found no significant effects of IU on ERPs ampli-

tude, skin conductance, EMG responses, and expectancy ratings measured during the ISI

between S1/cue and S2/shock [18,21,24]; while [19] found that high-IU participants showed

higher threat expectancy ratings following cues conveying uncertain predictive information,

consistently with the overestimation of threat predicted by the theoretical models of IU [6]. As

for the prediction updating stage, some studies measuring skin conductance [21,22] failed to

find significant effects of IU on S2-locked indices. Other studies found that in conditions of

uncertainty IU negatively predicted neural activity within posterior frontomedian cortex

(PFMC) [23], and the magnitude of the startle response [17], thus unexpectedly suggesting

that as IU increases, the aversive reactions to uncertain threat attenuate, probably due to the

perceived lack of controllability typical of uncertain contexts. Lastly, in high-IU participants

uncertain negative S2s were found to elicit smaller Late Positive Potential (LPP) amplitudes,

reflecting a dampening effect on the emotional processing of uncertain stimuli [20]. Alto-

gether, the results related to the updating stage are in contrast with the assumption that uncer-

tainty is associated with affect intensification and heightened physiological reactivity, as

predicted by the theoretical models of IU [1,2,4,6].

The present study aimed to investigate through high-density EEG whether and how IU pre-

dicted the neural activity, both at the scalp and at the source level, which develops in contexts

of different predictive value across the stages of generation, implementation and updating of

emotional predictions. To this aim, we employed an emotional S1-S2 paradigm (cfr. [26]) in

which contextual uncertainty was manipulated by means of valid (100%), moderately
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predictive (75%), and random (50%) emotional congruency between S1 and S2. Standardized

emotional faces and pictures with positive, negative, or neutral valence were employed as S1s

and S2s, respectively. Furthermore, we measured IU through the Italian adaptation of the IUS

[27], and we used it in our analyses as a continuous predictor rather than dichotomizing its

scores into two groups, thus avoiding flattening individual differences in IU and losing infor-

mation and power [28]. Besides allowing to separately investigate the three stages of emotional

predictions, the S1-S2 paradigm we employed contributed to fill at least three gaps in the

extant literature. First, an intermediate level of contextual uncertainty (75%), which could bet-

ter resemble a more realistic, moderately certain environmental context, was included. Second,

a condition of positive valence was added, thus allowing to disentangle valence- vs. arousal-

specific effects. Third, the optimal compromise between spatial and temporal resolution

offered by high-density EEG [29] allowed to provide a compelling comprehensive neurocom-

putational evidence, thus contributing to narrow the gap between ERP and fMRI findings.

For each neurocomputational stage, we targeted specific ERP components, which have

been shown to respond to the experimental manipulation (cfr. [26]). As for prediction genera-
tion, we focused on S1-N170, which is sensitive to predictive contexts, and reflects structural

encoding and coarse emotional processing of facial expressions [30–32]. As to the implementa-
tion stage, we targeted the Contingent Negative Variation (CNV) [33] arising during the ISI,

which reflects the orientation of attention towards motivationally relevant stimuli (early por-

tion), and the motor preparation for a required or possible action (late portion), besides being

sensitive to predictive contextual factors [34–37]. As regards prediction updating, we consid-

ered both early and late S2-ERPs, i.e., the P2, indexing early automatic attention allocation and

the degree of updating of internal models, and the LPP, reflecting late motivated and sustained

attention to emotional stimuli [37–41].

We hypothesized higher IU scores to predict (i) a larger N170 irrespective of the predictive

context [18,20] during prediction generation; (ii) larger early and late CNV amplitudes follow-

ing negative S1s (reflecting the anticipatory processes elicited by inflated threat estimates, see

[19]) in uncertain predictive contexts (75% and 50%) during the implementation stage; (iii)

either smaller (according to ERP findings, e.g., [20]) or larger (according to the IU theories’

predictions, e.g., [1]) P2 and LPP amplitudes to emotional S2s in uncertain predictive contexts

(75% and 50%) during prediction updating.

Methods

Participants

Thirty-six right-handed undergraduates at University of Padova took part in the study as vol-

unteers (16 males, age: M = 23.25, SD = 1.85, range = 20–29). The sample size was based on

previous ERP research measuring IUS within S1-S2 paradigms [20]. A post-hoc power analysis

(α = 0.05, η2 = 0.02) showed that the final sample size (N = 36) allowed to reach an average

power of 0.541.

A total of 294 undergraduates were initially screened for participation through an online

survey evaluating the inclusion criteria for the study: no history of neurological or psychiatric

disorders; normal or corrected-to-normal vision; no medication; right-handedness, as assessed

by the Edinburgh Handedness Inventory [42]; absence of extreme levels of blood-injection-

injury fear, as assessed by the Fear Survey Schedule [43,44]. Since some negative pictures

depicted gory scenes, highly fearful participants (N = 108), who scored 4 on items of the Fear

Survey Schedule concerning blood, injuries and/or weapons (0–4 score), were discarded from

participation for ethical reasons. Of the remaining participants, 23 were excluded because left-

handed, and 127 because they did not meet the other inclusion criteria.
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All participants signed an informed consent. All experimental procedures were approved

by the Ethical Committee for the Psychological Research of the University of Padua (protocol

no. 2859) and were conducted in accordance with the Declaration of Helsinki.

Stimulus material and procedure

Before arrival, all participants answered an online version of the IUS, administered in its Ital-

ian 12-item validated adaptation [27]. Participants were instructed to answer the survey alone,

in a silent room, taking all the time needed.

Upon arrival, participants seated in a dimly lit room, at a 90-cm viewing distance from a

24-inch computer monitor (1280 x 1024 resolution). They received detailed information about

EEG montage and the experimental task. Then, an elastic 128-ch EEG net was applied for EEG

recording.

After a 10 min adaptation period, a computerized S1-S2 paradigm was presented on the

screen. S1s were 24 colored emotional faces selected from the NimStim Set of Facial Expres-

sions [45]: 4 male and 4 female Caucasian models, each posing a fearful, happy, and neutral

facial expression. S2s were 120 colored emotional pictures selected from the International

Affective Picture System (IAPS) [46]: 40 highly-arousing negative, 40 highly-arousing positive,

and 40 neutral. Positive and negative emotional pictures did not differ for mean standardized

arousal ratings (Ms = 6.43 and 6.44, respectively; t(93) = 0.12, p = .9). NimStim and IAPS pic-

ture numbers are listed in S1 File. S1s and S2s were presented pseudo-randomly (no more

than 3 subsequent same-valence couplings) in their original size, in the center of the screen

against a black background, through E-prime software [47].

At the beginning of the S1-S2 paradigm, participants read the on-screen the task instruc-

tions at their own pace. They were told that they would see a face followed by a picture and

that they only had to look at the screen, trying to move as little as possible. Each trial started

with the presentation of S1 for 500 ms, followed by a fixed inter-stimulus interval (ISI) of 2000

ms, in which the screen remained black. Then S2 was presented for 1500 ms. A white fixation

cross against a black background was displayed during the inter-trial interval (ITI), whose

length randomly varied between 800 and 1200 ms. The total number of trials was 360.

S1 and S2 valence was manipulated within-subjects through three levels: positive (POS), neg-
ative (NEG) and neutral (NEU). Contextual uncertainty was implicitly manipulated within-

subjects through 3 continuous blocks of 120 trials each. In the 100% block, S1-S2 emotional

congruency was complied in all the trials, that is, S1 valence was fully predictive of S2 valence.

In the 75% block, S1-S2 pairs were congruent in 75% of the trials, so S1 valence was moderately

predictive of S2 valence. In the 50% block, S1 valence was unpredictive of S2 valence, since

each S1 could be randomly followed by a positive, negative, or neutral S2. The blocks seam-

lessly followed one another, with brief breaks randomly distributed during the whole proce-

dure, and a between-subjects counterbalanced order.

Participants did not receive any explicit information about the different between-blocks

contextual uncertainty levels. At the end of the S1-S2 paradigm, the experimenter ensured that

the exact S1-S2 probabilistic ratio had remained implicit for each participant by asking if they

had caught any relationship between S1 and S2. Participants only reported to have caught a

general within-trials emotional congruency or incongruency, but none of them reported nei-

ther the precise probabilistic ratio nor to have caught the block manipulation.

Finally, participants completed a self-paced computerized Emotional Recognition Task.

For each S1, participants were asked to select which emotion best represented the facial expres-

sion displayed, choosing between the following options: anger, disgust, fear, happiness, sad-

ness, surprise, and no emotion. To avoid automaticity in responding, the order of choice
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options was randomized. The percentage of correct responses was computed for each partici-

pant. The Emotional Recognition Task was used to check whether all participants correctly

recognized S1 valence. No participant scored lower than 60% accuracy in the task, therefore

we could reliably exclude that their predictions could have been affected by a misled S1 valence

recognition.

At the end of the experimental session each participant was thanked for the participation

and was given detailed information about the research question and objectives of the study.

Electrophysiological recordings, brain source modelling and data analysis

During the S1-S2 paradigm, the EEG was continuously recorded at a 500 Hz sampling rate

through a pre-cabled 128-channel HydroCel Geodesic Sensor Net (HCGSN-128), using a Geo-

desic high-density EEG System (EGI1 GES-300). All electrodes were referenced online to the

vertex, and scalp voltages were amplified through a 24-bit DC amplifier (Net Amps™ 300). The

impedance was kept below 60 kO for each sensor. Signal preprocessing was accomplished off-

line through the MATLAB toolbox EEGLAB 14.1.2b [48]. The EEG signal was downsampled

at 250 Hz and filtered with a digital band-pass filter (0.01–40 Hz, -6dB) using a Hamming win-

dowed sinc finite impulse response filter (filter order = 82500). To compute the ERPs, the con-

tinuous EEG was segmented into 4500 ms epochs, from 500 ms before to 4000 ms after S1

onset. The signal was then baseline-corrected to two different baselines: from 500 ms before to

the onset of S1 for the purpose of S1-locked ERP analysis; from 200 ms before to the onset of

S2 for the purpose of S2-locked ERP analysis. Bad channels were reconstructed with the spher-

ical spline interpolation method [49,50]. Epochs were then digitally inspected through the

TBT EEGLAB plug-in, which was applied to electrodes from E40 to E100 (frontal electrode

sites were excluded because no eye blinks/movements correction was yet applied). The TBT

algorithm performed an automatic rejection of epochs and interpolation of channels on an

epoch-by-epoch basis: channels that exceeded a differential average amplitude of ±150 μV

were identified and marked for rejection. Channels marked as bad on more than 30% of all

epochs were excluded and subsequently interpolated. Epochs having more than 10 bad chan-

nels were also excluded. The Infomax algorithm [51] implemented in EEGLAB was used to

perform Independent Component Analysis [52]. Artifact-reduced data were decomposed into

independent components, which were visually inspected to discard those related to eye blinks,

eye movements, heartbeat, and muscular signals, according to their morphology and scalp dis-

tribution. The remaining components were then projected back to the electrode space to

obtain cleaner EEG epochs. Epochs were further visually inspected and residual artifact-con-

taminated trials were rejected. Experimental conditions did not differ for final number of

epochs accepted (see S1 Table). Data were finally re-referenced to the average of all electrodes.

Individual average and grand average ERPs were computed for all experimental conditions,

applying a weighted average in order to control for any potential unbalanced number of

epochs per condition [53,54].

The ERPs statistical analysis was performed via Brainstorm software, using the Fieldtrip

functions [55,56]. A whole-brain paired two-tailed t-test (α = .05) permutation approach

[57,58] was used, performing 1000 Monte-Carlo cluster-based corrected permutations over all

128 channel locations. This approach allows to effectively control the familywise error rate,

and it can be used also for complex factorial designs, since providing greater statistical power

than traditional spatiotemporal averaging approaches when applied to a priori defined time

windows [57–59]. The permutations were computed over 6 a priori time windows, corre-

sponding to 4 distinguishable ERP components: S1-locked N170 (140–180 ms) for prediction

generation; S1-locked early CNV (eCNV, 1500–2000 ms) and late CNV (lCNV, 2000–2500 ms)
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for prediction implementation; S2-locked P2 (200–300 ms), early LPP (eLPP, 400–600 ms) and

late LPP (lLPP, 600–800 ms) for prediction updating. Interaction effects were tested through a

difference-based strategy widely used in the literature, which allowed to further reduce the

familywise error rate [59]. All the planned paired-wise comparisons performed are summa-

rized in S1 File. Based on the results of the permutation analysis, ERPs were extracted as the

mean voltage amplitude in the abovementioned time windows from the following electrode

clusters: an occipital cluster (E70, E74, E75, E81, E82, E83) for the N170, a left-central cluster

(E40, E41, E42, E46, E47) for eCNV and lCNV, a parietal cluster (E67, E71, E72, E75, E76,

E77) for the P2, and a slightly different parietal cluster (E60, E61, E62, E67, E72, E77, E78, E85)

for eLPP and lLPP.

The cortical sources of ERP activity were modeled via Brainstorm software [55]. ICBM152

anatomical template [60] was used to approximate the individual anatomies of each participant

and warped to the EEG sensor positions, by employing rigid rotations and translations of digi-

tized landmarks. The conductive head volume was modeled according to the realistic forward

model OpenMEEG BEM [61]. The source space was constrained to the cortex and modeled as a

grid of 15002 orthogonal current dipole triplets normally oriented to the cortical surface. The

inverse modeling was based on sLORETA algorithm and implemented with default parameter

settings. This algorithm has proved to be a good source estimator, leading to small localization

errors even with low signal-to-noise ratio [62]. The noise covariance matrix was computed

from the average of EEG baselines. For each participant, sources were projected to a standard

anatomical template (MNI) and their activity was transformed in absolute Z scores relative to

the baselines. Finally, a spatial smooth with a FWHM of 3 mm was applied to each source. Cor-

tical activations were located according to the anatomical Destrieux atlas [63] adapted for corti-

cal space solution. Based on each ERP source reconstruction, source map vertices were

clustered in the following regions of interest (ROI): right superior temporal sulcus (r-STS) for

the N170; left anterior cingulate cortex (l-ACC), left supplementary motor area (l-SMA), and

left dorsal-posterior cingulate cortex (l-dPCC) for the eCNV and lCNV; bilateral temporo-pari-

etal junction (TPJ) for the P2; right orbitofrontal cortex (r-OFC), and right temporal pole for

the eLPP and lLPP. Absolute values of each ROI were time-averaged from the pertaining ERP

time windows, extracted for each participant, and transformed using a natural logarithm.

To assess whether IUS score predicted the neural activity during the task both at the scalp

and at the source level, separate linear mixed-effects models (R package: lme4 [64]) with indi-

vidual random intercept were estimated, with each averaged ERP and ROI activity as depen-

dent variables, IUS as a fixed continuous predictor, S1/S2 valence, block, and the interaction

IUS × S1/S2 valence × block as fixed factors. The slopes of the IUS trend for each level of the

factors (block, S1/S2 valence) were estimated, and their pairwise differences were tested by

means of post-hoc Tukey test (R package: emmeans [65]).

Results

ERPs and cortical sources reconstruction

Prediction generation stage–N170 (140–180 ms) to S1 onset. A significant negative

occipital cluster, reflecting a larger N170, was found in 100% block when comparing emotional

with neutral faces (POS vs. NEU p = .024, cluster statistic (c) = -476, cluster size (s) = 153; NEG
vs. NEU p = .004, c = -871, s = 246), in 75% block when comparing fearful with positive and

neutral faces (NEG vs. NEU p = .002, c = -1080, s = 306; NEG vs. POS p = .018, c = -455,

s = 178), and in 50% block when comparing positive with neutral faces (POS vs. NEU p = .03,

c = -413, s = 164) (Fig 1, panel A). No significant effects were found when comparing differ-

ence waves between blocks.

PLOS ONE Intolerance of uncertainty and emotional predictions

PLOS ONE | https://doi.org/10.1371/journal.pone.0254045 July 1, 2021 7 / 23

https://doi.org/10.1371/journal.pone.0254045


N170 source reconstruction highlighted an emotional modulation on the right superior

temporal sulcus (r-STS), showing a maximum pattern of activation after fearful faces (Fig 1,

panel B). This pattern replicated consistently across blocks.

Prediction implementation stage–eCNV (1500–2000 ms) and lCNV (2000–2500 ms) to

S1 onset. Permutation analyses showed no significant effects of block, nor interaction effects

with S1 valence on both early and late CNV. Nevertheless, visual inspection of grand average

ERP waveforms from a central-left cluster of electrodes showed some amplitude differences,

suggesting that a slightly larger CNV could have been elicited in the 50% block as compared to

the others (see S1 Fig). However, since this result is not supported by statistics, it will not be

further discussed.

CNV source analysis showed the involvement of a left network, extending over the l-ACC,

the supplementary motor area (l-SMA), and the posterior-dorsal part of the cingulate gyrus (l-

dPCC).

Prediction updating stage–P2 (200–300 ms), eLPP (400–600 ms), and lLPP (600–800

ms) to S2 onset. A significant negative parietal cluster was found, signaling a reduced posi-

tivity to positive and negative, and so a larger P2 to neutral pictures in all the blocks.

Fig 1. Modulation of ERPs and brain sources during prediction generation stage. PANEL A: Grand average ERP waveforms following negative (red lines), positive

(green lines) and neutral (blue lines) faces (S1) in the (a) 100%, (b) 75% and (c) 50% blocks. Waveforms are plotted from an occipital cluster of electrodes (E70, E74, E75,

E81, E82, E83). Shaded areas denote standard error. The N170 was computed between 140 and 180 msec from S1 onset (time 0). PANEL B: On the top, cortical maps

reconstruction of the (a) POS-NEU and (b) NEG-NEU differences in brain activations in the N170 temporal window (140–180 ms), regardless of blocks. On the bottom,

time course of (c) r-STS activations to positive (green lines), negative (red lines), and neutral (blue lines) faces, regardless of blocks. r-STS = right superior temporal sulcus.

https://doi.org/10.1371/journal.pone.0254045.g001

PLOS ONE Intolerance of uncertainty and emotional predictions

PLOS ONE | https://doi.org/10.1371/journal.pone.0254045 July 1, 2021 8 / 23

https://doi.org/10.1371/journal.pone.0254045.g001
https://doi.org/10.1371/journal.pone.0254045


Furthermore, a larger P2 was found in 100% block comparing negative to positive pictures

(Table 1; Fig 2, panel A). No significant effects were found when comparing difference waves

between blocks.

P2 source reconstruction highlighted a larger activation of bilateral temporo-parietal junc-

tion (TPJ) to neutral than emotional pictures in all the blocks (Fig 2, panel B).

A significant positive parietal cluster was found, confirming the effect of S2 valence on LPP:

positive and negative pictures elicited a larger early and late LPP than neutral pictures in all the

blocks. Furthermore, a larger lLPP was found in 100% block comparing negative with positive

pictures (Table 1; Fig 2, panel A). No significant effects were found when comparing difference

waves between blocks.

LPP source analysis showed that, as compared with neutral, emotional stimuli elicited a

larger activation of the right orbitofrontal cortex (r-OFC) and the right temporal pole in all the

blocks (Fig 2, panel C).

Mixed-effects models

Prediction generation stage–N170 and r-STS activity (140–180 ms to S1 onset). No sig-

nificant main nor interaction effects of the predictors (IUS, S1/S2 valence, block, and their

interaction) were found for N170 and r-STS activity (fitted models are summarized in

S2 Table).

Prediction implementation stage–early (1500–2000 ms to S1 onset) and late (2000–2500

ms to S1 onset) CNV, l-ACC, l-SMA, and l-dPCC activity. In the early time window

(1500–2000 ms), a significant main effect of IUS was found for eCNV amplitude (F(1, 34) = 4.4,

p = .044, η2 = .014, Fig 3A) and early l-ACC activity (F(1, 34) = 6.29, p = .017, η2 = .021, Fig 3B):

higher IUS score predicted larger eCNV negativity and smaller early l-ACC activity regardless

of block and S1 valence. No other significant main effects or interactions were found for

eCNV, and early l-ACC, l-SMA and l-dPCC activity (fitted models are summarized in Tables 2

and S3).

Table 1. Results of planned comparisons in the prediction updating stage.

P2 eLPP lLPP

POS NEU c s p POS NEU c s p POS NEU c s p
M SD M SD M SD M SD M SD M SD

100% 7.636 4.024 8.579 3.812 -3075 754 .002 8.459 3.890 6.238 3.443 14375 2712 .002 6.335 3.232 4.140 2.714 13257 2567 .002

75% 7.453 4.327 8.732 4.181 -3989 958 .002 8.410 4.228 5.979 3.461 15735 2673 .002 6.390 3.733 4.308 3.240 12491 2385 .002

50% 7.635 3.909 8.346 3.814 -2931 842 .002 8.154 3.374 6.154 3.458 13251 2711 .002 6.022 3.120 4.552 3.122 12987 2525 .002

NEG NEU c s p NEG NEU c s p NEG NEU c s p
M SD M SD M SD M SD M SD M SD

100% 7.457 3.910 8.579 3.812 -4745 1088 .002 8.568 3.994 6.238 3.443 15813 2782 .002 6.867 3.434 4.140 2.714 16155 2770 .002

75% 7.663 3.929 8.732 4.181 -4642 1036 .002 8.336 3.910 5.979 3.461 16376 2928 .002 6.722 3.475 4.308 3.240 16235 2930 .002

50% 7.401 3.669 8.346 3.814 -3285 915 .002 8.269 3.685 6.154 3.458 15592 2980 .002 6.641 3.279 4.552 3.122 16310 2951 .002

NEG POS c s p NEG POS c s p NEG POS c s p
M SD M SD M SD M SD M SD M SD

100% 7.457 3.910 7.636 4.024 -1926 571 .002 8.568 3.994 8.459 3.890 670 287 .228 6.867 3.434 6.335 3.232 1701 657 .04

75% 7.663 3.929 7.453 4.327 -215 85 .382 8.336 3.910 8.410 4.228 391 161 .414 6.722 3.475 6.390 3.733 268 105 .545

50% 7.401 3.669 7.635 3.909 -441 176 .158 8.269 3.685 8.154 3.374 774 297 .194 6.641 3.279 6.022 3.120 1132 434 .08

p-values (p), cluster statistic (c), and cluster size (s) for each planned comparison (POS vs. NEU, NEG vs. NEU, NEG vs. POS) within each block (100%, 75%, 50%) in the

P2 (200–300 ms), eLPP (400–600 ms) and lLPP (600–800 ms) time windows.

https://doi.org/10.1371/journal.pone.0254045.t001
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As for the late time window (2000–2500 ms), analysis of lCNV showed significant main

effects of IUS (F(1, 34) = 6.92, p = .013, η2 = .022) and block (F(2, 272) = 4.07, p = .018, η2 = .025),

better explained by a significant IUS × block interaction (F(2, 272) = 3.48, p = .032, η2 = .022, Fig

3C): a statistically significant difference in the relationship between IUS and lCNV was found

between blocks, regardless of S1 valence. The slope analysis revealed that the slope of the rela-

tionship between IUS score and lCNV amplitude was statistically different from 0 only in the

75% block (b = -0.061, bSE = 0.017, 95% CI = -0.0940, -0.0286), suggesting that higher IUS

score predicted larger lCNV amplitude only in the 75% block, regardless of S1 valence. Post-

hoc contrasts showed a significant difference between the slopes in the 75% vs 100% block

(t(272) = -2.42, p = .043), with more negative values in the first. A significant main effect of

IUS was found for late l-ACC (F(1, 34) = 4.69, p = .037, η2 = .016, Fig 3D) and l-SMA activity

(F(1, 34) = 4.17, p = .049, η2 = .014, Fig 3E): higher IUS score predicted smaller late l-ACC and

Fig 2. Modulation of ERPs and brain sources during prediction updating stage. PANEL A: Grand average ERP waveforms following negative (red lines), positive

(green lines), and neutral (blue lines) pictures (S2) in the (a) 100%, (b) 75%, and (c) 50% blocks. Waveforms are plotted from a parietal cluster of electrodes (E60, E61, E62,

E67, E71, E72, E75, E76, E77, E78, E85). Shaded areas denote standard error. P2 was computed between 200 and 300 msec, and LPP between 400 and 800 msec from S2

onset (time 0). PANEL B: On the top, cortical maps reconstruction of the (a) NEU-POS and (b) NEU-NEG differences in brain activations in the P2 temporal window

(200–300 ms). On the bottom, time course of (c) l-TPJ, and (d) r-TPJ activations to positive (green lines), negative (red lines), and neutral (blue lines) pictures, regardless

of blocks. l-TPJ = left temporoparietal junction, r-TPJ = right temporoparietal junction. PANEL C: On the top, cortical maps reconstruction of the (a) POS-NEU and (b)

NEG-NEU differences in brain activations in the total LPP temporal window (400–800 ms). On the bottom, time course of (c) r- OFC and (d) r-temporal pole activations

to positive (green lines), negative (red lines), and neutral (blue lines) pictures, regardless of blocks. r-OFC = right orbitofrontal cortex.

https://doi.org/10.1371/journal.pone.0254045.g002
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l-SMA activity regardless of block and S1 valence. No other significant main effects or interac-

tions were found for lCNV, and late l-ACC, l-SMA and l-dPCC activity (fitted models are sum-

marized in Tables 2 and S4).

Prediction updating stage–P2 and bilateral TPJ (200–300 ms to S2 onset), early (400–

600 ms to S2 onset) and late (600–800 ms to S2 onset) LPP, r-OFC and r-temporal pole

activity. In the first time window (200–300 ms), analysis of P2 showed a significant main

effect of block (F(2, 272) = 4.12, p = .017, η2 = .027), better explained by the significant IUS ×
block interaction (F(2, 272) = 3.98, p = .02, η2 = .026, Fig 4A), and a significant IUS × S2 valence
interaction (F(2, 272) = 4.45, p = .013, η2 = .029, Fig 4B): a statistically significant difference in

the relationship between IUS and P2 amplitude was found between blocks regardless of S2

valence, and between S2 valence levels regardless of block. Nevertheless, the slope analysis

revealed that the slopes of the relationship between IUS score and P2 amplitude were not sta-

tistically different from 0 in any of the block and S2 valence levels. Post-hoc contrasts showed

significant differences between the slopes in the 75% vs 100% block (t(272) = -2.72, p = .019),

and between POS vs. NEU S2 valence levels (t(272) = -2.9, p = .011), with more negative slope

values for the former. Furthermore, a significant main effect of block (F(2, 272) = 3.44, p = .034,

η2 = .022) was found for l-TPJ activity. Nevertheless, since overall predictive effects have

already been tested by means of permutation analyses, and no effects of block were found on

P2 amplitude and its corresponding neural sources, this result will not be further commented.

No other significant main effects or interactions were found for P2, and bilateral TPJ activity

(fitted models are summarized in Tables 3 and S5).

In the second time window (400–600 ms), analysis of the eLPP showed a significant main

effect of block (F(2, 272) = 3.82, p = .023, η2 = .023), better explained by the significant IUS ×
block interaction (F(2, 272) = 4.69, p = .01, η2 = .028, Fig 4C), and a main effect of S2 valence
(F(2, 272) = 17.15, p< .001, η2 = .103): a statistically significant difference in the relationship

between IUS and eLPP amplitude was found between blocks regardless of S2 valence, while

the main effect of S2 valence replicates the results of the permutation analysis suggesting a

larger eLPP for emotional as compared to neutral S2s. Nevertheless, the slope analysis revealed

that the slopes of the relationship between IUS score and eLPP amplitude were not statistically

different from 0 in any of the blocks. Post-hoc contrasts showed significant differences

between the slopes in the 75% vs 100% block (t(272) = -2.92, p = .011), with more negative slope

values for the former. Furthermore, a significant main effect of S2 valence (F(2, 272) = 23.15, p<
.001, η2 = .133), better explained by the significant IUS × S2 valence interaction (F(2, 272) = 8.77,

p< .001, η2 = .05, Fig 4D) was found for the early r-OFC activity: a statistically significant dif-

ference in the relationship between IUS and early r-OFC activity was found between S2

valence levels regardless of blocks. Nevertheless, the slope analysis revealed that the slopes of

the relationship between IUS score and early r-OFC activity were not statistically different

from 0 in any of the S2 valence levels. Post-hoc contrasts showed significant differences

between the slopes in the POS vs. NEU and NEG vs. NEU S2 valence levels (t(272) = -3.89 and

-3.29, p< .011 and = .003, respectively), with more negative slope values for the emotional as

compared to the neutral S2 valence levels. Lastly, a significant main effect of S2 valence (F(2,

272) = 4.74, p = .01, η2 = .031) was found for r-temporal pole activity, replicating the larger acti-

vation to emotional stimuli already shown by LPP source reconstruction. No other significant

main effects or interactions were found for eLPP, and early r-OFC and r-temporal pole activity

(fitted models are summarized in Tables 3 and S6).

Fig 3. Regression plots in the two time windows of the prediction implementation stage. Relationships between IUS scores and (A)

early CNV amplitude, (B) early l-ACC activity, (C) late CNV amplitude in 100% (in red), 75% (in green), and 50% (in blue) blocks, (D)

late l-ACC and (E) late l-SMA activity. Shaded areas denote the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0254045.g003
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In the third time window (600–800 ms), analysis of the late r-OFC activity showed a signifi-

cant main effect of S2 valence (F(2, 272) = 19.12, p< .001, η2 = .113), better explained by a signif-

icant IUS × S2 valence interaction (F(2, 272) = 6.45, p = .002, η2 = .038, Fig 4E): a statistically

significant difference in the relationship between IUS and late r-OFC activity was found

between S2 valence levels regardless of blocks. Nevertheless, the slope analysis revealed that the

slopes of the relationship between IUS score and late r-OFC activity were not statistically dif-

ferent from 0 in any of the S2 valence levels. Post-hoc contrasts showed significant differences

between the slopes in the POS vs. NEU and NEG vs. NEU S2 valence levels (t(272) = -3.14 and

-3.08, p = .005 and .006, respectively), with more negative slope values for the emotional as

compared to the neutral S2 valence levels. A significant main effect of S2 valence was found for

lLPP (F(2, 272) = 13.11, p< .001, η2 = .084) and r-temporal pole activity (F(2, 272) = 9.47, p<
.001, η2 = .059), replicating results already shown by permutation analyses and corresponding

source reconstruction. No other significant main effects or interactions were found for lLPP,

and late r-OFC and r-temporal pole activity (fitted models are summarized in Tables 3

and S7).

Fig 4. Regression plots in the three time windows of the prediction updating stage. Relationships between IUS scores and (A) P2 amplitude in 100% (in red), 75% (in

green), and 50% (in blue) blocks, (B) P2 amplitude to neutral (in blue), positive (in green), and negative (in red) S2s, (C) early LPP amplitude in 100% (in red), 75% (in

green), and 50% (in blue) blocks, (D) early and (E) late r-OFC activity to neutral (in blue), positive (in green), and negative (in red) S2s. Shaded areas denote the 95%

confidence interval.

https://doi.org/10.1371/journal.pone.0254045.g004
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Discussion

To our knowledge, this study represents the first attempt to investigate the modulating role of

IU on the neural activity elicited during the generation, implementation, and updating stages of

emotional predictions, as a function of contexts with fully valid (100%), moderately valid

(75%), or random (50%) predictive values.

Independent of IU, both contextual uncertainty and emotional valence exerted a detectable

influence on the neural correlates of emotional predictions, especially during the generation
and updating stages. Though a detailed discussion of these effects goes beyond the aims of this

study, a brief summary of the main findings is still needed. During prediction generation, S1

valence modulated the N170 towards a processing advantage for emotional faces, with slight

valence-specific differences among predictive contexts. This effect was subtended by a higher

cortical activity in the r-STS, an area involved in the perceptual coding of changeable facial

properties, among which emotional facial expression [66]. The N170/r-STS modulation is

coherent with the extraction of emotional and contextual information from the environment,

involving domain-specific brain circuits, and assumed to be crucial to continuously generate

predictions [15,16]. During prediction updating, a strong emotional modulation emerged on

the P2 and LPP components across all blocks: larger LPPs were found for emotional than neu-

tral pictures, whereas the opposite was observed for P2s. The latter effect could index the infre-

quency of neutral S2s, and the consequent updating of the overall predictive model, subtended

by a coherent modulation in the TPJ, an area involved in contextual updating [37,67]. The LPP

modulation replicated a well-established effect in the literature, signaling a greater motivated

attention towards emotional stimuli, subtended by domain-specific neural circuits (i.e., r-

OFC, r-temporal pole) [38,39].

Concerning the main aim of this study, that is investigating the modulating role of IU on

the neural activity elicited during the generation, implementation, and updating stages, the fol-

lowing results emerged. Contrary to what hypothesized, but in line with some previous evi-

dence [19,22], individual differences in IU did not affect the prediction generation stage, either

at the ERP or at the source level, suggesting that the extraction of emotional and contextual

information conveyed by the faces develops in a similar manner along the different IU levels.

During the implementation stage, IU exerted a modulating role both on ERPs and sources

activity, in partial consistency with our hypotheses, and with interesting differences as a func-

tion of time. In the early implementation stage, a higher IU was associated with a context- and

valence-independent decrease of neural activity within l-ACC, an area assumed to subtend the

behavioral and cognitive avoidance of exposure to uncertainty [6], and the continuous assess-

ment of environmental uncertainty levels [68]. Net of the needed caution in interpreting brain

sources activity as reconstructed from EEG, a reduced l-ACC activation to increasing IU levels

could signal a disrupted environmental assessment of uncertainty. This could in turn translate

into a heightened deployment of anticipatory resources, as reflected in larger eCNV ampli-

tudes, in order to try to solve uncertainty [69]. In the late implementation stage, instead, higher

IU levels were found to predict a context- and valence-independent decrease of neural activity

within both l-ACC and l-SMA. So, as the implementation stage proceeds, the disrupted envi-

ronmental uncertainty assessment, subtended by l-ACC decreased activity, seems to match an

inhibition in action plans programming, as suggested by the reduced l-SMA activity, thus

potentially contributing to the behavioral inhibition typical of high-IU individuals [4] (cfr.

[2,3] for potential relationships with BIS activation). Furthermore, the heightened deployment

of anticipatory resources, subtended by a larger CNV and reflecting an attempt to solve uncer-

tainty, specialized into a context-specific effect: IU scores were found to negatively predict

larger lCNVs only within the moderately predictive (75%) as compared to the fully predictive
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(100%) context. It can be suggested that, as IU increases more anticipatory resources are pre-

allocated only in those contexts in which the amount of uncertainty is perceived as “solvable”

(i.e., moderately predictive 75%), while in more certain contexts (i.e., fully predictive 100%) it

could be metabolically effective to save resources, since there is no uncertainty to solve. This

interpretation is consistent with IU models suggesting that neural, cognitive and behavioral

peculiarities of high-IU individuals are aimed to increase perceived certainty and to reduce

uncertainty exposure [4,10].

Within prediction updating, results were partially consistent with our hypotheses: higher

IU levels were found to be associated both with valence-specific effects, such as smaller P2s to

positive S2s and smaller r-OFC activity to emotional S2s, and with context-specific effects,

such as smaller P2s and eLPPs to S2s in the moderately predictive (75%) context. Although

slope analyses failed to find significant differences, and so these results should be considered

with caution, some explanations could still be suggested. The valence-specific decrease of P2

amplitude to positive as compared to neutral S2s, reflecting a reduced automatic attention allo-

cation, could represent an early neural correlate of the deficient safety learning which charac-

terizes high-IU individuals [6]. This, in turn, could prevent emotional predictive models from

being efficiently updated, by integrating environmental safety cues, because of the reduced

attention allocation towards them. Furthermore, higher IU was found to be associated with a

context-specific decrease in P2s and eLPPs when comparing the moderately predictive (75%)

with the fully predictive (100%) contexts. This result, suggesting a dampening in S2 processing

both at early and later stages, could reflect the uncertainty avoidance and a disrupted predic-

tion error signaling typical of high-IU individuals [6]. Moreover, this result specifically arises

in a context in which the updating of emotional predictive models is required (i.e., moderately

predictive 75%), as compared to a context in which there is no need to update internal models

since no expectancy violation occurs (i.e., fully predictive 100%). Lastly, both in the early and

late stages of prediction updating, IU was found to be associated with a smaller r-OFC activity

to emotional as compared to neutral S2s. Since OFC is involved in emotion regulation [70,71],

its reduced activity could subtend a limited access to emotion regulation strategies, which is

assumed to be a peculiar facet of high-IU traits [72], and which seems to spread across positive

and negative valence and also across all predictive contexts.

Overall, our results suggest that IU differently modulated the neural activity developing

across the three stages of emotional predictions construction. Prediction generation was not

affected by individual differences in IU. During the implementation stage, instead, higher IU

was associated with a disrupted environmental uncertainty assessment, and a consequent inhi-

bition in anticipatory action plans programming, associated with a facilitation in the deploy-

ment of computational resources. These processes serve to solve uncertainty, specifically

arising in moderately predictive contexts in which uncertainty is perceived as solvable. Finally,

IU modulated the updating stage by predicting context-dependent uncertainty avoidance, and

context-independent reduced attention to safety cues and disrupted access to emotion regula-

tion strategies.

Implications of these results are promising. They demonstrate that individual differences in

IU can actually affect how emotional predictions are constructed at a neural level. Given the

conceptual relationships between IU, emotional traits and disorders (e.g., neuroticism, anxi-

ety), and the activation of the associated behavioral patterns (e.g., BIS, fight-flight-freeze

response), and being IU considered as the lower-order construct accounting for them [2,3], it

can be hypothesized that such emotional traits might share similar neural correlates of the con-

struction of emotional predictions. Thus, our results encourage broader considerations, useful

for preventive and clinical applications within the domain of affective psychopathology. The

CNV component and its neural sources, as well as the P2, the LPP and the r-OFC activity
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could in fact be considered as potential neural indicators to assess, or to intervene on (e.g.,

through biofeedback), when developing preventive and treatment measures for clinical and

subclinical populations. Furthermore, our results suggest that, when assessing the relationships

between IU and emotion, contextual uncertainty should be taken into more careful account,

since its amount has proved to impact neural correlates of emotional predictions [26].

In conclusion, some limitations of our study must be addressed. First, the choice to screen

out participants showing extreme levels of blood-injection-injury fear might have created a

restricted range recruitment bias, and the sample was slightly sex-unbalanced (16 M vs. 20 F).

Moreover, the final sample size was relatively small (N = 36), and it allowed to reach a power

of about 0.5, lower than the desirable 0.8 level. Nevertheless, this issue was partially counterbal-

anced by the large number of trials we employed in our experimental paradigm, which enabled

to heighten power by increasing the signal-to-noise ratio [73]. Second, a passive viewing task

might have contributed to an overall decrease of ERP amplitudes, thus preventing some

weaker modulations to reach statistical significance [74]. Furthermore, the lack of behavioral

data makes it difficult to draw inferences on how the effects of IU on neural correlates of emo-

tional predictions could translate into behavior and/or subjective affective experience. Lastly,

the limited EEG spatial resolution implies caution when interpreting brain sources activations.

We encourage future studies to overcome limitations by employing an active task and collect-

ing subjective valence and expectancy ratings.

Net of these limitations, our paradigm still brought several elements of novelty to the litera-

ture. First, we used a totally uninstructed experimental task, in which participants were left

free to implicitly construct their own predictive models as it occurs in everyday life. Second,

IU was modeled as a continuous predictor, thus better approximating the construct, and pre-

venting some slight individual differences to be lost in a dichotomization of the variable.

Third, an intermediate level of contextual uncertainty (75%) was introduced to better resemble

a more realistic, moderately certain environmental context. Fourth, highly arousing emotional

stimuli were employed as S1s and S2s, including pleasant stimuli, thus allowing to isolate

valence-specific effects. Fifth and last, high-density EEG allowed to investigate the neural cor-

relates of emotional predictions both at the scalp and, with due caution, at the source level,

thus conveying a comprehensive neurocomputational evidence.
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S1 Fig. Modulation of ERPs and brain sources during prediction implementation stage.

Grand average ERP waveforms during prediction implementation in the 100% (continuous

black line), 75% (continuous grey line), and 50% (dashed black line) blocks. Waveforms are

plotted from a central cluster of electrodes (E40, E41, E42, E46, E47). Shaded areas denote

standard error. CNV was computed between 1500 and 2500 msec from S1 onset (time 0). For

visualization purposes, waveforms were low-pass re-filtered at 10 Hz.

(TIF)

S1 Table. Descriptive statistics and ANOVA results on the final number of epochs

accepted for each experimental condition. Mean (M), standard deviation (SD) and F-test (F)

of final epochs number for each level of the independent variables (block, S1/S2 valence).
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S2 Table. Summary of the model fitted on the prediction generation stage. Dependent vari-

ables: N170 and r-STS.

(DOCX)

PLOS ONE Intolerance of uncertainty and emotional predictions

PLOS ONE | https://doi.org/10.1371/journal.pone.0254045 July 1, 2021 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254045.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254045.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254045.s003
https://doi.org/10.1371/journal.pone.0254045


S3 Table. Summary of the model fitted on the early time window of the prediction imple-
mentation stage. Dependent variables: eCNV and early l-ACC, l-SMA and l-dPCC.

(DOCX)

S4 Table. Summary of the model fitted on the late time window of the prediction imple-
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64. Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat

Softw. 2015; 67(1).

65. Lenth R V. Estimated Marginal Means, aka Least-Squares Means. 2020.

66. Haxby J V., Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends

Cogn Sci. 2000; 4(6):223–33. https://doi.org/10.1016/s1364-6613(00)01482-0 PMID: 10827445

67. Geng JJ, Vossel S. Re-evaluating the role of TPJ in attentional control: Contextual updating? Neurosci

Biobehav Rev. 2013; 37(10):2608–20. https://doi.org/10.1016/j.neubiorev.2013.08.010 PMID:

23999082

68. Peters A, McEwen BS, Friston K. Uncertainty and stress: Why it causes diseases and how it is mas-

tered by the brain. Vol. 156, Progress in Neurobiology. Elsevier Ltd; 2017. pag. 164–88. https://doi.org/

10.1016/j.pneurobio.2017.05.004 PMID: 28576664

PLOS ONE Intolerance of uncertainty and emotional predictions

PLOS ONE | https://doi.org/10.1371/journal.pone.0254045 July 1, 2021 22 / 23

https://doi.org/10.1016/j.psychres.2008.05.006
http://www.ncbi.nlm.nih.gov/pubmed/19564050
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1007/s10548-006-0011-0
http://www.ncbi.nlm.nih.gov/pubmed/17019635
https://doi.org/10.1016/0013-4694%2889%2990180-6
https://doi.org/10.1016/0013-4694%2889%2990180-6
http://www.ncbi.nlm.nih.gov/pubmed/2464490
https://doi.org/10.1162/neco.1995.7.6.1129
http://www.ncbi.nlm.nih.gov/pubmed/7584893
https://doi.org/10.1016/s1364-6613%2800%2901813-1
http://www.ncbi.nlm.nih.gov/pubmed/15866182
https://doi.org/10.1109/TBME.2002.800757
https://doi.org/10.1109/TBME.2002.800757
http://www.ncbi.nlm.nih.gov/pubmed/12148818
https://doi.org/10.1155/2011/879716
http://www.ncbi.nlm.nih.gov/pubmed/21584256
https://doi.org/10.1111/j.1469-8986.2011.01273.x
https://doi.org/10.1111/j.1469-8986.2011.01273.x
http://www.ncbi.nlm.nih.gov/pubmed/21895683
https://doi.org/10.1111/psyp.13468
http://www.ncbi.nlm.nih.gov/pubmed/31456213
https://doi.org/10.1111/psyp.12639
http://www.ncbi.nlm.nih.gov/pubmed/28000253
https://doi.org/10.1016/j.neuroimage.2012.01.024
http://www.ncbi.nlm.nih.gov/pubmed/22248580
https://doi.org/10.1186/1475-925X-9-45
http://www.ncbi.nlm.nih.gov/pubmed/20819204
https://doi.org/10.1016/j.neuroimage.2020.117430
https://doi.org/10.1016/j.neuroimage.2020.117430
http://www.ncbi.nlm.nih.gov/pubmed/33038537
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/j.neuroimage.2010.06.010
http://www.ncbi.nlm.nih.gov/pubmed/20547229
https://doi.org/10.1016/s1364-6613%2800%2901482-0
http://www.ncbi.nlm.nih.gov/pubmed/10827445
https://doi.org/10.1016/j.neubiorev.2013.08.010
http://www.ncbi.nlm.nih.gov/pubmed/23999082
https://doi.org/10.1016/j.pneurobio.2017.05.004
https://doi.org/10.1016/j.pneurobio.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28576664
https://doi.org/10.1371/journal.pone.0254045


69. Paulus MP, Stein MB. An Insular View of Anxiety. Biol Psychiatry. 2006; 60(4):383–7. https://doi.org/10.

1016/j.biopsych.2006.03.042 PMID: 16780813

70. Golkar A, Lonsdorf TB, Olsson A, Lindstrom KM, Berrebi J, Fransson P, et al. Distinct Contributions of

the Dorsolateral Prefrontal and Orbitofrontal Cortex during Emotion Regulation. PLoS ONE. 2012; 7

(11):e48107. https://doi.org/10.1371/journal.pone.0048107 PMID: 23144849

71. Goldin PR, McRae K, Ramel W, Gross JJ. The Neural Bases of Emotion Regulation: Reappraisal and

Suppression of Negative Emotion. Biol Psychiatry. 2008; 63(6):577–86. https://doi.org/10.1016/j.

biopsych.2007.05.031 PMID: 17888411

72. Ouellet C, Langlois F, Provencher MD, Gosselin P. Intolerance of uncertainty and difficulties in emotion

regulation: Proposal for an integrative model of generalized anxiety disorder. Eur Rev Appl Psychol.

2019; 69(1):9–18.

73. Baker DH, Vilidaite G, Lygo FA, Smith AK, Flack TR, Gouws AD, et al. Power contours: Optimising sam-

ple size and precision in experimental psychology and human neuroscience. Psychol Methods [Inter-

net]. 2020 [citato 11 maggio 2021]; Disponibile su: https://psycnet.apa.org/fulltext/2020-52357-001.pdf.

https://doi.org/10.1037/met0000337 PMID: 32673043

74. Gaillard AWK, Perdok J. Slow brain potentials in the CNV-paradigm. Acta Psychol (Amst). 1980; 44

(2):147–63. https://doi.org/10.1016/0001-6918(80)90064-5 PMID: 7368953

PLOS ONE Intolerance of uncertainty and emotional predictions

PLOS ONE | https://doi.org/10.1371/journal.pone.0254045 July 1, 2021 23 / 23

https://doi.org/10.1016/j.biopsych.2006.03.042
https://doi.org/10.1016/j.biopsych.2006.03.042
http://www.ncbi.nlm.nih.gov/pubmed/16780813
https://doi.org/10.1371/journal.pone.0048107
http://www.ncbi.nlm.nih.gov/pubmed/23144849
https://doi.org/10.1016/j.biopsych.2007.05.031
https://doi.org/10.1016/j.biopsych.2007.05.031
http://www.ncbi.nlm.nih.gov/pubmed/17888411
https://psycnet.apa.org/fulltext/2020-52357-001.pdf
https://doi.org/10.1037/met0000337
http://www.ncbi.nlm.nih.gov/pubmed/32673043
https://doi.org/10.1016/0001-6918%2880%2990064-5
http://www.ncbi.nlm.nih.gov/pubmed/7368953
https://doi.org/10.1371/journal.pone.0254045

