
1

The HOP Protocol: Reliable Latency-Bounded
End-to-End Multipath Communication

Federico Chiariotti, Andrea Zanella, Stepan Kucera, Kariem Fahmi, and Holger Claussen

Abstract—Next-generation wireless networks are expected to
enable new applications with strict latency constraints. However,
existing transport layer protocols are unable to meet the stringent
Quality of Service (QoS) requirements on throughput and maxi-
mum latency: excessive queuing due to capacity-oriented conges-
tion control inflates end-to-end latency well beyond interactivity
deadlines. In this work, we propose a novel framework that
evolves best-effort communications into reliability- and latency-
aware communications for QoS-sensitive applications. The new
protocol, named High-reliability latency-bounded Overlay Proto-
col (HOP), provides a novel combination of packet-level Forward
Error Correction (FEC) and multipath scheduling to compensate
for capacity drops and meet pre-defined QoS requirements.
More specifically, the sender splits the data and the associated
redundancy between the paths by using a stochastic forecast
of their future capacity and decides the amount of redundancy
necessary to meet the application’s requirements without clogging
the connections. We compare HOP’s performance with state-
of-the-art multipath protocols in ns-3 simulations using both
synthetic and live network traces, and confirm that our scheme
can reliably deliver high-throughput data, reducing the number
of late blocks by 2 to 5 times with respect to optimized Multipath
TCP (MPTCP).

I. INTRODUCTION

Over the next few years, several new applications are going
to be enabled by the novel capabilities of the fifth generation
of cellular networks (5G) [1] and gigabit WiFi (WiGig) [2].
High-definition video conferencing over mobile networks,
remote robotic operations on the factory floor, and Augmented
Reality (AR) are just a few well-known examples: all these
applications have a high throughput and strict reliability and
latency constraints, which are expected to be met by the new
generations of network services, which shall provide smooth,
high-quality operation and not just a best-effort service.

However, current transport layer protocols were not de-
signed to meet these demanding requirements, and indeed do
not provide any built-in latency guarantees. In fact, the current
versions of the Transmission Control Protocol (TCP) cause
high delay in order to efficiently probe the path capacity, and
the Multipath TCP (MPTCP) standard is not able to effectively
support near real-time services [3] because, as for most of the
available TCP variants, congestion control has been designed
to provide high throughput rather than controlled delay. The
unavoidable trade-off is then between reliability, latency and
throughput: an increase of the minimum delivery rate is usually

F. Chiariotti (corresponding author, email: fchi@es.aau.dk) is with the
Electronic Systems Department, Aalborg University, Denmark. A. Zanella
(email: andrea.zanella@unipd.it) and F. Chiariotti are with the
Department of Information Engineering, University of Padova, Italy. S. Kucera
(email: stepan.kucera@nokia.com) is with Nokia Bell Labs, Munich,
Germany. K. Fahmi (email: kariem.fahmi@nokia.com) is with Nokia,
Ireland. H. Claussen (email: holger.claussen@tyndall.ie) is with
Tyndall Institute, Dublin, Ireland.

achieved at the cost of a lower reliability or higher latency
bound. It is then necessary to design a multipath protocol
that can explicitly consider Quality of Service (QoS), limiting
latency and achieving the required reliability.

The ongoing virtualization of cellular networks makes the
deployment of new protocols technically possible, as network
operators can place server-side and user-side proxies that
will implement new functionalities in a backward-compatible
manner. For example, in [4], the authors show how a user-
side proxy can be deployed in a user handset without any
changes to the operating system kernel. A flexible, application-
specific control of the trade-off between reliability, throughput
and latency can then become an achievable goal.

In this context, we propose a novel transport protocol that
can exploit path redundancy to guarantee the reliable trans-
mission of application data with bounded latency, i.e., meet
an application-specified latency target. In order to avoid the
pitfalls inherent to MPTCP, we design a protocol called High-
reliability latency-bounded Overlay Protocol (HOP) that runs
in user space over multiple User Datagram Protocol (UDP)
sockets, like the recently standardized QUIC protocol [5]. The
first component of HOP is the multipath scheduler, which
exploits Forward Error Correction (FEC) to guarantee the
timely reception of the data. Redundancy is added to the
application data in order to protect them from fluctuations in
the capacity of the available paths: lost or late packets on
any of the paths can be recovered using the redundant packets
sent on the other paths. The scheduler’s decisions are based on
the capacity estimation mechanism, which tracks the capacity
probability distribution of each path and allows the scheduler
to make foresighted decisions.

HOP provides applications with the flexibility to choose the
operating point in the trade-off between maximum latency,
reliability and throughput. While the use of multipath FEC is
not in itself a new idea, its optimization is crucial: too much
redundancy will clog the buffers and cause additional delays,
while too little will be ineffective at protecting the transmis-
sion. To the best of our knowledge, HOP is the first scheme to
dynamically optimize the amount of redundancy to meet strict
latency requirements. Furthermore, no existing protocol can
optimize transmission over multiple paths: MPTCP is the only
term of comparison, and HOP was able to reduce the frequency
of late blocks by 2 to 5 times even working at a 50-70%
higher goodput than MPTCP in all the scenarios considered
in this work. On the other hand, real-time oriented protocols
such as the Real-time Transport Protocol (RTP), have limited
multipath extensions that cannot deal with and optimize FEC.

The paper is organized as follows: the relevant literature
on the topic is presented in Sec. II, focusing on multipath
congestion control and scheduling issues. The HOP protocol

2

is described in detail in Sec. III, while by its two main
components, i.e., the scheduler and the capacity estimator,
are presented in Sec. IV and Sec. V, respectively. The results
of our simulations are described in Sec. VI, and Sec. VIII
concludes the paper.

II. RELATED WORK

MPTCP is a fully backward-compatible extension of TCP,
published as an experimental standard in 2011 [6]. It is
transparent to applications, which can use the standard socket
interface. An MPTCP flow is composed of multiple TCP
subflows on different paths [7], each of which is a full TCP
socket following the protocol: this is necessary to avoid packet
dropping in middleboxes, which often discard or block traffic
with non-standard behavior [8].

In order to work, MPTCP needs a scheduler to decide which
path to send the data on and a congestion control mechanism
to adjust the overall traffic flow across the different paths.
Most existing congestion control schemes consider all paths
when adapting the congestion window. Packets also have an
additional sequence number to allow the receiver to reassemble
the split streams of the various subflows [9] and deliver the
data in the correct order. Retransmissions need to be performed
on the same subflow, since each subflow needs to be fully
TCP-compliant, but data can be duplicated and retransmitted
on other subflows to speed up loss recovery, since there is a
connection-level sequence number, which allows the receiver
to identify and discard duplicate packets.

MPTCP has multiple theoretical advantages over single-
path TCP: using multiple flows can reduce delay, increase
throughput and reliability, provide robustness to link failures,
and relieve congested paths [10]. However, the design of the
scheduling and congestion control mechanisms is critical, and
the protocol often performs worse than the single-path version
in wireless networks [11], [12].

Since data on each subflow are released in order, MPTCP
suffers from the head-of-line blocking phenomenon [3]: when
a packet on one path is missing, packets on other paths
with higher connection-level sequence numbers are kept in
the receiver buffer to avoid out-of-order delivery. Since the
retransmission process might take long, particularly if the
loss is on a path with a high Round Trip Time (RTT), the
receiver buffer might get completely full, blocking any further
transmission on the other paths until the missing packet is
finally delivered [13]. In this way, any outage or retransmission
on any of the paths can negatively affect all the other paths, and
in some cases, MPTCP is clearly outperformed by a single-
path TCP flow on the best path [14].

In order to avoid these issues and fully exploit the potential
of multipath transmission, we have to jointly design both
components of the protocol, optimizing the congestion control
and scheduler for latency-bounded delivery of data.

A. Congestion control

The TCP Cubic [15] congestion avoidance mechanism uses
packet losses to infer congestion and back off from its probing
of the channel, exploiting most of the available capacity.

However, this causes the protocol to respond sluggishly to
changes in the network and suffer from high self-inflicted
queuing delays and instability [16], as the only signal of
congestion is a buffer overflow. This problem has only been
exacerbated by the progressive increase in the size of buffers in
cellular networks, which has led to the bufferbloat issue [17],
i.e., the experiencing of very long delays, which can often
be longer than a second, in some TCP flows because of long
queues in some intermediate nodes. Modern congestion control
mechanisms such as Bottleneck Bandwidth and Round-trip
propagation time (BBR) [18] can achieve a similar throughput
with much lower self-inflicted queuing delays, providing a
more interesting solution for QoS-aware applications.

MPTCP adds a dimension of complexity to the problem,
since the multiple congestion windows for the subflows can
be updated jointly. The first design of MPTCP used fully
uncoupled congestion control: each path had an independent
congestion control mechanism, and no information was shared
between the subflows. However, this solution is unfair to
single-path TCP flows sharing one of the bottlenecks [19],
and can often lead to higher inefficiency in the capacity uti-
lization [20]. Linked Increases Algorithm (LIA) [21] improves
fairness towards legacy TCP by adopting a semi-coupled
approach to manage the growth of the subflows congestion
windows in the congestion avoidance phase. Fully coupled
schemes [22] were considered too conservative, as they often
completely give up on low-bandwidth paths and never dis-
cover subsequent changes in their capacity. Opportunistic LIA
(OLIA) [20] is a variant on the LIA scheme that can improve
the resource pooling fairness. As of today, the most commonly
used scheme is Balanced Linked Adaptation (BALIA) [23],
which combines the strengths of LIA and OLIA.

However, these algorithms are often inefficient in wireless
networks, as the head-of-line blocking problem is aggravated
by the volatility of wireless links. Losses caused by the
physical layer can further decrease their performance and
stability [24]. There are some proposals for latency-aware con-
gestion control [25], which would mitigate some of the issues
of loss-based algorithms, but these proposals are still untested.
The use of BBR, which is rapidly gaining traction in single-
path TCP [26], is beginning to get traction in the multipath
literature [27], as it promises to solve its predecessors’ issues.
However, our simulations show that even BBR has significant
problems, which we will discuss in Sec. VI.

B. Scheduling

In order for MPTCP to work efficiently, designing an
appropriate congestion control is not enough: the protocol
needs a scheduler to decide which path to send the data on,
a decision which is often critical to avoid latency and head-
of-line blocking issues. The most basic scheduler, which is
currently implemented in the Linux kernel, is the Lowest RTT
First (LowRTT) policy: the first packet in the send buffer will
be sent on the path with the lowest measured RTT among
those with enough congestion window space. However, this
heuristic is often inefficient [28], as waiting for a faster path to
be free can be better than sending immediately on a slow one

3

if the difference in their RTTs is large enough. This can lead
to significant performance losses [29] even when comparing
it to other simple heuristics [30].

Round robin-based [31] and loss-based [32] scheduling
schemes have also been proposed, but fail when there is
a strong imbalance between the subflows. The most ef-
fective schedulers, such as the Slide Together Multipath
Scheduler (STMS) [33] and Delay Aware Packet Scheduling
(DAPS) [34], try to explicitly model the connection to send
packets out-of-order on unbalanced paths so that they will
arrive in-order at the receiver. In order to design the packet
interleaving mechanisms, the schedulers need to have a model
of each subflow and the expected delivery time. The FEC-
based scheme in [35] also uses a similar scheduling strategy
with good results. The Blocking Estimation (BLEST) [36]
scheduler adds the awareness of the possibility of head-of-
line blocking to this mechanism, explicitly trying to prevent
it. The Shortest Transmission Time First (STTF), scheduler,
presented in the same paper, is another scheduler that tries to
estimate delivery time and schedule segments on the path that
would deliver them earliest. It is important to note that the
application features might affect the scheduler, which needs
to be tuned to the specific application.

C. Using redundancy in multipath connections
In general, MPTCP only offers best-effort services, as the

unpredictability of the end-to-end paths makes it difficult to
explicitly support QoS. Wireless channels only exacerbate the
issue [24], but there are some FEC-based techniques that can
mitigate the head-of-line blocking problem and increase QoS.

FEC is a natural candidate to solve the head-of-line blocking
problem: instead of waiting for a potentially lengthy retrans-
mission, receivers can use redundant packets to reconstruct
the missing packets. Several solutions [13], [35], [37] with
different coding schemes have been proposed, using standard
congestion control and different scheduling schemes. However,
congestion control is a major part of the problem: self-inflicted
buffer overflows and queuing delay still increase latency, and
there is no way to measure and guarantee QoS.

The Decoupled Multipath Scheduler (DEMS) [38] is a first
attempt to exploit the block-based nature of most applications:
DEMS transmits data on one path starting from the beginning
of the block, and on the other starting from the end. The
delivery is complete when the two flows meet in the middle,
and the scheduler foresees an adaptive redundancy mechanism
to improve delivery times in variable network conditions.

The Latency-controlled End-to-End Aggregation Protocol
(LEAP) [39], which is not compatible with MPTCP but
provides the same interface to applications, was the first to
consider explicit QoS guarantees, but it has some significant
limits: namely, it requires applications to be fully flexible,
adapting the size of the data blocks to the possibilities of the
multipath connection. This assumption is limiting in modern
networks, and our protocol overcomes it, achieving similar
results even when applications are uncooperative. An older
scheme that runs on Stream Control Transmission Protocol
(SCTP) also used cross-path FEC for low-latency applica-
tions [40], but it did not provide any adaptation of the coding

rate and just used it to recover from packet losses. Redundancy
and multipath transport can also be used to improve reliability
in other contexts, such as the Internet of Things (IoT) [41].

For a more thorough survey of the research on multipath
transport protocols, we refer the reader to [42]. The use of
coding at the transport layer is also being investigated by the
IETF, which is drafting a standard that enumerates the different
possibilities and required signaling in TCP and QUIC [43].
The interaction between coding and congestion control is
interesting, as coding can hide losses, improving throughput,
if recovered packets are considered as not lost. Existing FEC-
based schemes promise to improve QoS as well, but to the best
of our knowledge, HOP is the only scheme that dynamically
optimizes the amount of redundancy to send and schedules it
over the available paths.

III. THE HOP PROTOCOL

The HOP protocol is designed to meet demanding QoS
targets by sending redundant information on multiple volatile
paths. If the application writes a batch of 𝐵 bytes to the
send buffer, the objective is to guarantee that the probability
that such data are delivered to the destination within the
maximum allowed time 𝑇 is at least 𝑃thr. The use of delivery
deadlines, both hard (as in our case) and soft, has been
studied in the literature as a way to express end-to-end latency
requirements [40]. In order to reliably deliver the data with
bounded latency, the transport layer protocol must be able to
exploit path diversity and compensate for the failures on any
of the paths by relying on the others. This calls for cross-path
FEC, since retransmission is a slow mechanism that may not
ensure a timely delivery in difficult conditions: if redundant
packets are added to the transmission, the receiver may be
able to retrieve any late or missing packets before the deadline
expires. In other words, HOP can deliver the whole data block
within the planned deadline even if some packets are lost or
late, provided that enough packets are received on time on any
combination of the paths and in any order.

As we discussed in the Sec. II-C, FEC is also used by
other protocols to reduce packets latency. However, HOP
can achieve much better performance by exploiting paths
capacity estimates and block deadline information to tune
the amount of redundancy to be sent over the available
paths, so as to maximize the in-time delivery probability of
the blocks without clogging the connections. The dynamic
adaptation of FEC is critical, as adding too little redundancy
can limit its usefulness, while adding too much will congest
the network. As HOP is aimed at guaranteeing QoS for high-
priority applications, fairness to flows with a lower priority is
a secondary consideration, and the protocol will operate best
over connections with no direct cross-traffic: this fits with the
5G network slicing paradigm [44], which separates different
types of traffic so that they do not need to compete with flows
with different characteristics and requirements [45]. In this
context, the optimization performed by HOP can outperform
other schemes significantly.

We define the following aims of our QoS-oriented protocol:
1) Exploit multiple paths in such a way that a path failure

can be compensated by other paths without retransmis-

4

sions. This can be accomplished by using systematic
packet-level codes, which are equivalent to other linear
codes, but simplify the receiver-side decoding process.

2) Dynamically allocate the amount of redundancy and
schedule packets on the various paths to maintain the
latency below the application-specified maximum 𝑇 .

3) Estimate the future capacity of the paths in order to make
intelligent scheduling decisions.

These requirements are critical to support applications such
as AR and teleoperation over mobile networks, with strict
latency requirements and high throughput. The advanced net-
work access services provided by 5G and beyond networks
alone may not be sufficient to meet the stringent constraints, as
a delay-agnostic transport layer may disrupt the performance
objectives. HOP can avoid this issue by running in user
space over standard UDP sockets. Like the recent QUIC
protocol, it creates a reliable, connection-oriented flow over
the connectionless UDP sockets by implementing its own
acknowledgment and sequencing mechanisms. HOP has three
components. The first is a systematic packet-level encoder
and decoder with tunable coding rate. In the experiments,
we used the implementation of shortened-and-punctured Reed-
Solomon codes described in [46]. It also has a scheduler that
optimizes the level of FEC and sends packets over the different
paths, as well as a capacity estimation mechanism named
Sender-side Kalman Inference Procedure (SKIP), which can
predict the distribution of the future capacity of each path,
giving the scheduler the full picture of the state of the
connection.

If the estimate of the future capacity distributions provided
by SKIP is correct, the scheduler can calculate the probability
that a packet sent on any path will be late and set the amount
of FEC to guarantee that the data block will be received within
the planned deadline with a given probability. We define three
schedulers with different objectives:

• The Just Use Multipath Protection (JUMP) scheduler
deals with inelastic applications: it considers a fixed block
size 𝐵, a fixed reliability 𝑃thr and a fixed latency bound 𝑇 .
If adding FEC is enough to meet the reliability constraint,
JUMP minimizes the redundancy. Otherwise, it signals a
failure to the application.

• The Latency-controlled End-to-End Aggregation Protocol
(LEAP) scheduler, named after the multipath protocol
from [39], considers a fixed reliability 𝑃thr and a fixed
latency bound 𝑇 . Like its namesake, it requires an adap-
tive application, which can change the amount of data in
a block by compressing it, and it creates a schedule that
maximizes the deliverable block size 𝐵 while respecting
the other constraints.

• The Flexible Latency Improvement Procedure (FLIP)
scheduler considers a fixed block size 𝐵 and a minimum
reliability 𝑃thr. It schedules the packets in the way that
minimizes the latency bound 𝑇 . It can be used for
applications that can tolerate some latency fluctuations,
but need reliability and are not throughput-adaptive.

These schedulers aim at maintaining the latency below the
application-specified maximum 𝑇 , and they will never sched-

Application

HOP

JUMP/FLIP/LEAP scheduler

SKIP estimatorSKIP estimator

UDP socket UDP socket

Data unit

PacketsPackets

Capacity CDF Capacity CDF

ACK times ACK times

Fig. 1: Sender-side data flow. The HOP protocol components are highlighted
in blue.

ule packets that are expected to cause unacceptable queuing.
In this way, congestion control is implicit in the scheduling: as
long as the bottleneck buffer on a path is larger than 𝐶𝑇 , where
𝐶 is the capacity of the path, JUMP, FLIP, and LEAP will
never cause a congestion loss. Since HOP’s target applications
have low latency targets and, as previously discussed, buffers
in the network are growing, we expect this to be the case in
most practical deployments. However, if the bottleneck buffer
is shallow and packets are dropped, the capacity estimate given
by SKIP will be decreased accordingly and the scheduler will
adjust by reducing the number of packets on the affected path.

Scheduled packets are sent in a burst, since additional
delay is not an effective strategy to guarantee in-time delivery.
This burst-based mechanism affects other users sharing the
bottleneck buffer, but most modern routers have per-user
buffers, so the burstiness should not affect other flows. The
Sprout congestion control mechanism [47] makes the same
assumption and verifies it in cellular networks, and we will
show that it holds for modern 802.11 routers in Sec. VI. We
plan to investigate friendlier versions of the protocol that do
not send packets in a burst and maintain fairness in legacy
shared-buffer links, but this is outside the scope of this work.

In the following sections, we will describe and model the
three schedulers, starting from JUMP, since its procedure is a
basic building block for the other two. Then, we will present
the SKIP capacity estimator.

IV. SCHEDULER DESIGN AND ANALYSIS

The objective of JUMP is to efficiently schedule a block of
𝑘 packets on the 𝑚 available paths, minimizing redundancy
while meeting the reliability and latency constraints. We
assume that the size 𝐿 of all packets sent on a certain path
is always equal to the path Maximum Transfer Unit (MTU).
Furthermore, we indicate by 𝐹 (𝑖, 𝜔𝑖 , 𝑇) the so-called lateness
probability for path 𝑖, i.e., the estimated probability that a
packet of length 𝐿 sent on path 𝑖 is delivered with a latency
larger than the maximum allowed delay 𝑇 . This probability de-
pends on the path status 𝜔𝑖 , which consists of the path capacity
distribution and the number of queued and in-flight packets.
The computation of the function 𝐹 (𝑖, 𝜔𝑖 , 𝑇) is explained in
Sec. V, being strictly coupled with the SKIP capacity estima-
tion mechanism. If we call the function 𝐹 (𝑖, 𝜔𝑖 , 𝑇) repeatedly,
we can get the lateness probability for each subsequent packet

5

sent on the same path. We hence denote by _𝑖 (𝑗 , 𝑇) the
lateness probability of the 𝑗-th packet in a block sent on path
𝑖. We assume that _𝑖 (0, 𝑇) = 0.

We now define a schedule as a vector s ∈ N𝑚, whose 𝑖-
th element 𝑠𝑖 represents the number of packets sent on path
𝑖 for the current block. The size of the schedule is defined
as the total number of packets scheduled on all the paths and
denoted by |s| = ∑𝑚

𝑖=1 𝑠𝑖 . The scheduled multipath transmission
is successful if at least 𝑘 packets are received on time, so
that the receiver is able to decode the block. The failure
probability 𝑃𝑒 (s, 𝑘, 𝑇) is then the probability of delivering
fewer than 𝑘 packets in total on all paths. We can now define
the optimal schedule s∗ as the minimum-size schedule that
meets the reliability constraint:

s∗ = arg min
s∈N𝑚

|s| s.t. 𝑃𝑒 (s, 𝑘, 𝑇) ≤ 1 − 𝑃thr. (1)

We observe that, neglecting packet losses due to link errors
and reordering, there is no advantage in sending more than
𝑘 packets on the same path, since the reception of the
first 𝑘 packets will permit to recover the whole data block,
making any later packet useless. Therefore, information and
redundancy packets should be distributed across the different
paths, but without exceeding a total of 𝑘 packets per path.

We exploit an iterative strategy to generate the optimal
schedule s∗ by starting from an empty schedule and grad-
ually adding packets until the condition in (1) is respected.
Assuming First In First Out (FIFO) queuing, _𝑖 (𝑠𝑖 , 𝑇) is
monotonically non-increasing in 𝑠𝑖 . The last packet injected
in the path will always have a higher or equal probability of
being late than previous packets, whose lateness probability is
not affected by later packets. We can then expand the schedule
at each step by adding a packet on the path 𝑖∗ with the lowest
lateness probability:

𝑖∗ = arg min
𝑖∈{1,...,𝑚}

_𝑖 (𝑠𝑖 + 1, 𝑇). (2)

It is easy to prove that the schedule obtained with this iterative
procedure is optimal, since the lateness probability of any
packet not yet scheduled is higher than that of the already
scheduled packets.

In order to compute 𝑃𝑒 (s, 𝑘, 𝑇), we define the delivery
vector d = (𝑑1, . . . , 𝑑𝑚), whose 𝑖-th element 𝑑𝑖 represents
the number of packets that were delivered on time on path
𝑖. Naturally, 𝑑𝑖 ≤ 𝑠𝑖 , since it is impossible to deliver more
packets than those that were sent. We now define the set of
delivery vectors such that the cumulative number of delivered
packets on all paths is at least 𝑘:

𝐷𝑘 (s) =
{

d :
𝑚∑︁
𝑖=1

𝑑𝑖 ≥ 𝑘, 𝑑𝑖 ≤ 𝑠𝑖 , ∀𝑖 ∈ {1, . . . , 𝑚}
}
. (3)

The scheduler needs to iterate over the set in order to compute
the lateness probability of the schedule, so the size of 𝐷𝑘

is directly related to the computational complexity of the
scheduler. Considering that each of the 𝑚 elements {𝑑𝑖} of
d can take values in the set {0, . . . , 𝑠𝑖}, and that 𝑠𝑖 ≤ 𝑘 , the
size of 𝐷𝑘 cannot be larger than

∏𝑚
𝑖=1 (𝑠𝑖 + 1) = (𝑘 + 1)𝑚.

Conservatively, we assume it to be 𝑂 (𝑘𝑚). The lateness
probability of the schedule is then given by

𝑃𝑒 (s, 𝑘, 𝑇) = 1 −
∑︁

d∈𝐷𝑘 (s)

𝑚∏
𝑖=1

𝜓𝑖 (𝑑𝑖 , 𝑇), (4)

where 𝜓𝑖 (𝑑𝑖 , 𝑇) is the probability that the first 𝑑𝑖 packets sent
on path 𝑖 are delivered on time, while the following packets
are late. Since we assume per-path in-order delivery, we get

𝜓𝑖 (𝑑𝑖 , 𝑇) =
{
(1 − _𝑖 (𝑑𝑖 , 𝑇))_𝑖 (𝑑𝑖 + 1, 𝑇), if 𝑑𝑖 < 𝑠𝑖;
1 − _𝑖 (𝑑𝑖 , 𝑇), if 𝑑𝑖 = 𝑠𝑖 .

.

(5)

The overall complexity of the lateness probability calculation
is then 𝑂 (𝑚𝑘𝑚), since evaluating a vector d ∈ 𝐷𝑘 takes 𝑂 (𝑚)
steps and there are 𝑂 (𝑘𝑚) elements in 𝐷𝑘 . If 𝑃𝑒 (s, 𝑘, 𝑇)
is known, we can add a packet to the schedule without
recomputing everything. We use the iterative procedure from
the previous section to decide which path to schedule the new
packet on, then define the vector s′, with 𝑠′

𝑖
= 𝑠𝑖 + 1 and

𝑠′
𝑗
= 𝑠 𝑗 , ∀ 𝑗 ≠ 𝑖. The set 𝐷𝑘 (s′) is then given by

𝐷𝑘 (s′) = 𝐷𝑘 (s)
⋃
{𝑠𝑖 + 1, 𝐷𝑘−1 (s−𝑖)} . (6)

Since all the vectors in 𝐷𝑘 (s) satisfy the condition in (3),
the vectors with 𝑑𝑖 = 𝑠𝑖 + 1 are the only new combinations, so
𝐷𝑘 (s′) has 𝑂 (𝑘𝑚−1) elements that are not in 𝐷𝑘 (s). Using the
old schedule information could be extremely significant, since
the computational complexity of the schedule lateness proba-
bility is reduced from 𝑂 (𝑚𝑘𝑚) to 𝑂 (𝑚𝑘𝑚−1). These results
are similar to the work in stochastic job scheduling [48], [49],
although in a different setting and with different assumptions.
Additionally, the iterative building procedure allows us to
reduce the computational complexity of the scheduler thanks
to the stopping condition: if the optimal schedule has 𝑁

packets, only 𝑁 − 𝑘 + 1 schedules need to be evaluated,
making the whole procedure 𝑂 ((𝑁 − 𝑘)𝑚𝑘𝑚−1). Non-iterative
schedulers have an exponential complexity in 𝑁 , since the set
of possible schedules is combinatorial and they cannot exploit
the monotonicity of _𝑖 (𝑠𝑖 , 𝑇).

The impact of estimation errors on this method is limited, as
the scheduler is self-correcting: if capacity is overestimated on
any of the paths, the increased queue will make the scheduler
shift part of its load to other paths, mitigating the effect of the
estimation error. Naturally, less accurate estimates will result
in more errors, but we include a control mechanism to avoid
instability in any case. In order to maintain the latency on the
path below 𝑇 , the scheduler will never schedule more packets
than those that can be delivered in time. Denoting by 𝜏min,𝑖
the propagation and processing time on path 𝑖, and by `𝑖 the
mean path capacity, then the maximum number of packets that
can be scheduled on the path is 𝑆𝑖,JUMP = `𝑖 (𝑇 − 𝜏min,𝑖).

In practice, the capacity estimation mechanism described in
Sec. V requires to send at least a few packets per block; in
order to avoid underutilizing slower or more volatile paths,
we set a minimum of 10 packets for each path in the practical
scheduler. An additional correction can be added for small
probability differences, privileging the least-used path if the

6

difference between _𝑖 (𝑠𝑖+1) and _ 𝑗 (𝑠 𝑗+1) is lower than a min-
imum value Y. This allows the scheduler to avoid imbalances
due to small variations in the capacity distribution estimates.
In both cases, the slight sub-optimality of the schedule will
be compensated for with additional FEC on the other paths,
accepting a small loss of efficiency to maintain the output more
stable and to avoid missing changes in the capacity distribution
of less reliable paths.

A. The LEAP and FLIP schedulers
Searching for the optimal solution with flexible latency or

block size is more complex: since the schedule construction
can only evaluate one at a time, a search procedure becomes
necessary. The LEAP and FLIP schedulers essentially reuse
the JUMP iterative procedure, running it multiple times to
find the optimum by combining it with this search algorithm
over the relevant space, i.e., the possible block sizes or latency
limits. In both cases, properties of the lateness probability can
be exploited to reduce the complexity of the search, limiting
the number of examined schedules.

LEAP’s objective is to find the maximum number of packets
𝑘∗ that can be delivered through any schedule:

𝑘∗ = sup
{
𝑘 ∈ N : max

s∈N𝑚
𝑃𝑒 (s, 𝑘, 𝑇) ≤ 1 − 𝑃thr

}
. (7)

In order to find this value, the scheduler also identifies the
optimal schedule. The maximum deliverable block size is then
passed to the adaptive application, and the resulting packets are
sent according to the schedule. Naturally, the values of 𝑘 are
always between 0 (i.e., no payload data can be sent reliably)
and 𝑆 =

∑𝑚
𝑖=1 𝑆𝑖,LEAP, the bound on the number of schedulable

packets, which is stricter than for JUMP, as LEAP will tend
to stay closer to the bound to maximize the block size:

𝑆𝑖,LEAP = (`𝑖 − 𝛼𝜎𝑖) (𝑇 − 𝜏min,𝑖), (8)

where `𝑖 is the estimated path capacity, 𝜎𝑖 is the standard
deviation of the estimate, and 𝛼 > 0 is a tunable parameter.
The bound is more conservative, since LEAP will always
operate close to the limit to maximize the size of the delivered
information block. It is possible to determine the optimal
schedule for a given value of 𝑘 by running JUMP, with
𝑂 ((𝑁 − 𝑘)𝑚𝑘𝑚−1) complexity. We can then exploit one fact:
if 𝑘1 < 𝑘2, the set of delivery vectors that result in a
success for 𝑘2 also results in a success for 𝑘1. This can be
expressed as 𝐷𝑘2 (s) ⊆ 𝐷𝑘1 (s)∀s: since the on-time delivery
probability depends on the sum of the probabilities of the
delivery vectors in the set, it is monotonically decreasing in 𝑘 .
This monotonicity then allows us to use a binary search on 𝑘 ,
significantly reducing the number of steps in the search from
𝑂 (𝑆) to 𝑂 (log(𝑆)).

The LEAP scheduler is then a simple binary search over 𝑘 ,
with values between 0 and 𝑆. The value of 𝑘 is increased when
JUMP returns a valid schedule, and decreased when it does
not, until the minimum and maximum values of 𝑘 converge.
The overall complexity of the scheduler is 𝑂 (𝑆 log(𝑆)𝑚𝑘𝑚−1).

FLIP works the same way, minimizing the delay bound 𝑇 :

𝑇∗ = inf
{
𝑇 ∈ [0, 𝑇max] : max

s∈N𝑚
𝑃𝑒 (s, 𝑘, 𝑇) ≤ 1 − 𝑃thr

}
. (9)

In this case, it is necessary to define a maximum acceptable
latency 𝑇max, as well as a time quantum Y to discretize the
search space. It is possible to use a binary search in this case
as well, since 𝜓𝑖 (𝑑𝑖 , 𝑇) is monotonically increasing in 𝑇 . The
procedure is then the same as LEAP, but the value of 𝑇 is
decreased when JUMP returns a valid schedule. Since the
number of steps in the search is 𝑂

(
log

(
𝑇max
Y

))
, the overall

complexity of FLIP is 𝑂
(
log

(
𝑇max
Y

)
𝑚𝑘𝑚−1

)
.

V. ESTIMATING CAPACITY: THE SKIP METHOD

The JUMP scheduler is the optimal scheduler if the ca-
pacity Cumulative Distribution Function (CDF) for each path
is known, which is not the case in practical settings. We
then design the SKIP mechanism to estimate the capacity
CDF of the connection from the recently received ACKs.
In the following, we will omit the path index from the
notation for readability, but the SKIP estimation process is
run independently for each path. Let us first introduce some
notation. Let t = (𝑡1, . . . , 𝑡𝑛) be the vector that collects the
transmission instants of 𝑛 packets sent on the path. The size
of all packets is 𝐿, corresponding to the MTU. Furthermore,
let a = (𝑎1, . . . , 𝑎𝑛) be the vector of the corresponding ACK
reception instants, and 𝑇𝑘 be the period during which we
collected the ACKs. It follows that 𝑎𝑖 ≥ 𝑎 𝑗 ∀𝑖 > 𝑗 . This
in-order delivery hypothesis is supported by observations in
modern networks, and it is the basic assumption behind loss-
based versions of TCP. The corresponding RTT vector is
τ = a − t, and its 𝑗-th element is given by

𝜏𝑖 = 𝜏min +
𝐿

𝐶
+ 𝑞𝑖 . (10)

where 𝜏min is the propagation and processing time, 𝐶 is the
path capacity, defined as the available bottleneck bitrate, and
𝑞𝑖 is the time required to get rid of the backlog when the
packet is generated, which can be computed as

𝑞𝑖 =

(
𝑋 (𝑡𝑖)
𝐶
− (𝑡𝑖 − 𝑡1)

)
𝑢(𝐺 (𝑡𝑖) − 𝐶), (11)

where 𝑋 (𝑡𝑖) = 𝑖𝐿 is the number of bytes in flight at time 𝑡𝑖 ,
𝐺 (𝑡𝑖) is the average sending rate between 𝑡1 and 𝑡𝑖 , and 𝑢(𝑥)
is the step function. In practice, (11) states that, if the sending
rate exceeds the bottleneck capacity, the queuing delay grows
linearly in time. Naturally, this only holds if 𝐶 is constant,
which is not true in a general communication channel: how-
ever, this simplification is close enough to reality if the interval
of time over which we measure is very short. Moreover, for
more dynamic scenarios, the overall performance degradation
due to this simplification is expected to be graceful. The
relation between 𝑋 (𝑡𝑖) and 𝐺 (𝑡𝑖) is given by

𝐺 (𝑡𝑖) =
𝑋 (𝑡𝑖)
𝑡𝑖 − 𝑡1

. (12)

From (10) and (11), we know that

𝜏𝑖 = 𝜏min +
𝐿

𝐶
+max

(
0,
𝑋 (𝑡𝑖)
𝐶
− (𝑡𝑖 − 𝑡1)

)
. (13)

7

If we assume that 𝐺 (𝑡𝑖) ' 𝐺 (𝑡 𝑗) and apply (12), we get

𝜏𝑛 − 𝜏1 = max
(
𝐺 (𝑡) (𝑡𝑛 − 𝑡1)

𝐶
− (𝑡𝑛 − 𝑡1), 0

)
. (14)

If we take the derivative over time of the RTT on the path,
we get

𝜕𝜏

𝜕𝑡
=
𝐺 (𝑡𝑛)
𝐶
− 1. (15)

We can now estimate 𝜕𝜏
𝜕𝑡

by using linear least squares fitting:

𝜕𝜏

𝜕𝑡
=

𝐿
∑𝑛

𝑖=1

(
𝑡𝑖 −

∑𝑛
𝑗=1 𝑡 𝑗

𝑛

)2 (
𝜏𝑖
𝐿
−

∑𝑛
𝑗=1 𝜏 𝑗

𝑛𝐿

)
∑𝑛

𝑖=1

(
𝑡𝑖 −

∑𝑛
𝑗=1 𝑡 𝑗

𝑛

)2 . (16)

By combining (15) and (16), we can get an estimate of the
average capacity, which we can store to get an empirical CDF
of the path capacity. The norm of the residual error of the
linear fit is useful to gauge the jitter of the path, i.e., capacity
fluctuations that are faster than the estimation timestep 𝑇𝑘 .

The derivation above only works if there is some queuing,
i.e., if the send rate 𝐺 (𝑡𝑛) is larger than the path capacity. Most
capacity estimation methods share this limit, as Jaffe proved
in 1981 [50]. However, HOP sends packets of the same block
in a burst, and the issue is avoided. The value of 𝜏min can be
estimated online, as in BBR [18]. This estimation can only be
performed when the data rate is large enough, so we perform
a traditional Cubic slow start procedure when setting up a new
link. This does not affect the performance once the path exits
the slow start phase, when the SKIP method kicks in.

A. Kalman capacity tracking

The capacity estimation process we defined above is inher-
ently affected by noise; in order to compensate for the resulting
fluctuations in the measured capacity, we use a Kalman Filter
(KF) to track and predict the evolution of the capacity. The KF,
invented in 1960 [51], is the optimal way to track known linear
systems with Gaussian noise. The basic system model we use
is very simple, and operates on discrete timesteps with interval
𝑇𝑘 , which is equivalent to the capacity estimation timestep:

𝑥𝑡+1 = 𝑥𝑡 + 𝑤𝑡 ; (17)
𝐶𝑡 = 𝑥𝑡 + 𝑣𝑡 . (18)

In the model, the measured capacity 𝐶𝑡 is a noisy observation
of a hidden state 𝑥𝑡 , whose evolution follows a simple Gauss-
Markov process. The variances 𝜎2

𝑤 = 𝑄 and 𝜎2
𝑣 = 𝑅

are required inputs of the filter, which needs to distinguish
between temporary variations due to 𝑣𝑡 (estimation noise) and
long-term effects that change the state of the system due to
𝑤𝑡 (process noise). The KF gain 𝐾𝑡 is calculated based on
the a priori and a posteriori estimate of the prediction error
variance. The KF is the optimal estimator if its parameters
are correct for the tracked system, but it needs the values
of 𝑄 and 𝑅 as inputs, and its results can degrade quickly
if the settings are wrong [52]. If the variances are unknown
or can change over time, as in our case, there are several
techniques to estimate them online while tracking the under-
lying process [53]; this extension of the KF is called Adaptive

Kalman Filter (AKF). In our work, we use the recursive AKF
implementation from [54].

The AKF can deal well with gradual changes to the capacity,
but it does not respond quickly enough to sudden capacity
drops or even full outages. Wireless channels are often charac-
terized by sharp drops and temporary outages, and this issue is
particularly significant at higher frequencies, where transitions
from line of sight to non-line of sight propagation due to
blockage from walls, objects or humans are very fast.

In order to describe the operation mode logic, we will
consider time step 𝑡, for which the AKF has a mean 𝑥𝑡 |𝑡−1
and a total variance ΣAKF = Ψ𝑡 |𝑡−1 +𝑄 + 𝑅. First, we examine
the full outage case: if the measured capacity is 0 for at least
𝑡thr samples, the link is in outage and the sending rate should
be reduced drastically. This condition can be recognized by
the occurrence of the following conditions:

𝑡∑︁
𝑘=𝑡−𝑡thr

𝐶𝑘 = 0 and 𝑥𝑡 |𝑡−1 > 0. (19)

If this second condition is verified, the mean of the AKF is
reset to the initial minimum value (50 kB/s in our setup)
straight away. The number of necessary samples 𝑡thr affects
the robustness of the mechanism to random temporary changes
in the capacity, but there is a trade-off between stability and
responsiveness. We found that setting 𝑡thr = 3 guarantees
that the mechanism avoids following noise in the capacity
measurement, while still strongly outperforming standard BBR
in terms of responsiveness to outage event.

Other critical cases to consider involve deep and sudden
variations in path capacity that significantly deviate from the
Gaussian model assumed by the AKF. Therefore, we assume
one such events occurs when the capacity measurement differs
for more than 3𝜎 form the estimate provided by the AKF filter,
i.e., when

|𝐶𝑡 − 𝑥𝑡 |𝑡−1 | > 3
√︁
ΣAKF . (20)

We refer to such events as down-steps or up-steps, depending
on the direction of the capacity change. The occurrence of this
condition takes the capacity estimator into the so-called step-
mode. In case of down-step, the AKF is not updated with the
new capacity measurements, but evolved in open-chain, only
performing the prediction step and, thus, gradually increasing
its variance. The condition (20) is evaluated again at each
update, with the new value of 𝜎, and the down-step mode is
exited when the down-step condition is not verified in at least
𝜏 consecutive steps. However, after 𝑡thr > 𝜏 updating steps in
this mode, the capacity drop is assumed to be long-standing
and the mean of the AKF is reset to the mean capacity value
measured during the down-step, i.e.,

`step =
1
𝑡thr

𝑡∑︁
𝑘=𝑡−𝑡thr+1

𝐶𝑘 . (21)

In case of up-step, the AKF evolves normally, slowly increas-
ing the estimated capacity towards the current measured value,
but after 𝑡thr updating steps, the capacity change is assumed to
be long standing, and the mean of the AKF is set as for (21).

8

Start

Cond. in (19)?

Normal mode

�̂�𝑡 ← `drop

Down-step? 𝑡thr steps?

𝑡thr steps?

Up-step?

�̂�𝑡 ← `s

Down-step mode

Up-step mode

True

False

True

False

False

False True

True

True
False

Fig. 2: Block diagram of the filter operation modes

The modes of operation of the filter are also graphically
illustrated in the block diagram in Fig. 2. These conditions
allow SKIP to maintain responsiveness to sudden events while
following the trend of the capacity.

B. Packet lateness conditions

In order to schedule packets on the multipath connection,
we need to determine the probability that a packet will be
delivered within a given time on a path, given the feedback
information. This can then be used by the multipath scheduler
to determine which paths to send the packet on. Since the
capacity estimation block returns a stochastic estimate of the
path capacity, we consider its output, which has a constant
timestep 𝑇𝑘 , as the capacity CDF. To simplify the calculations,
we consider the maximum latency 𝑇 to be an integer multiple
of 𝑇𝑘 . We consider a window of 𝑛 packets in flight, whose
sending times are contained in the vector t = (𝑡1, . . . , 𝑡𝑛), with
𝑡𝑖 ≥ 𝑡 𝑗∀𝑖 > 𝑗 . The current time is 𝑡𝑛, as the scheduled packet
is the last in the window. If we assume that the propagation
delay 𝜏min is symmetrical, the reception time 𝑟𝑖 is 𝜏min

2 before
the acknowledgment time 𝑎𝑖 for the same packet 𝑖.

In case packet 𝑖 suffers from a queuing delay 𝑞𝑖 , its
reception time 𝑟𝑖 is

𝑟𝑖 = 𝑡𝑖 +
𝜏min
2
+ 𝑞𝑖 +

𝐿

𝐶
, (22)

as a consequence of (10). The value of 𝑞𝑖 is derived from (11).
If we apply (22), we can get a recursive expression of the
queuing delay:

𝑞𝑖 = max
(
0,
𝐿

𝐶
− (𝑡𝑖 − 𝑡𝑖−1)

)
. (23)

If we consider the time when the last acknowledgment packet
was received, 𝑎0, we get the expression of 𝑞1:

𝑞1 = max
(
𝑡1 +

𝜏min
2
, 𝑎0 −

𝜏min
2

)
. (24)

In order to calculate the in-time delivery probability for packet
𝑖, we can use the complementary of its lateness condition,
which can be expressed as 𝑟𝑖 − 𝑡𝑖 ≥ 𝑇 . We can apply (22)
to express this condition as a function of the path capacity,
which yields

𝐶 ≥ 𝐿

𝑇 − 𝜏min
2 − 𝑞𝑖

. (25)

We can now use (23) to distinguish two cases:

𝐶 ≥

𝐿

𝑇 − 𝜏min
2
, if 𝑞𝑖 = 0;

2𝐿
𝑇 − 𝜏min

2 −𝑞𝑖−1+(𝑡𝑖−𝑡𝑖−1)
, if 𝑞𝑖 > 0.

(26)

The same operation can be performed recursively, getting a set
of 𝑖 conditions that need to be respected to guarantee in-time
delivery:

𝐶 ≥ 𝑖𝐿

𝑇 − 𝜏min
2 + (𝑡𝑖 − 𝑡ℓ) − 𝑞1𝛿(ℓ − 1)

∀ℓ ∈ {1, . . . , 𝑖}, (27)

where 𝛿(𝑥) is 1 if 𝑥 is 0 and 0 otherwise. Since the violation
of any of these conditions causes the packet to be late, we
consider the most stringent one, denoting the corresponding
capacity value as 𝐶min.

C. Computing the lateness probability

We now calculate the packet delay CDF in order to be
able to evaluate the probability of meeting the conditions
in (27). As above, we assume that 𝑇 = 𝑘𝑇𝑘 . Since the first
unacknowledged packet is still in flight, the packet capacity in
the first timeslot of the AKF is limited by:

𝐶max =
𝐿

𝑡𝑛 − 𝑡1 − 𝑞1 − 𝜏min
2 − 𝐽

, (28)

where 𝐽 is a term to account for the path jitter. We now know
that 𝐶1 < 𝐶max, but the usable time spans 𝑘 = 𝑇

𝑇𝑘
steps of

the KF; if we know the KF’s parameters 𝑥, 𝑃, 𝑄, and 𝑅, we
need to evolve it blindly for ℓ = 𝜏min

𝑇𝑘
steps to account for the

delay in the feedback: at the 𝑗-th step since the starting time
𝑡𝑖 , the KF should have a mean 𝑥 and a variance (ℓ + 𝑗)𝑄 + 𝑅.
However, we consider the additional information given by the
knowledge that 𝐶1 < 𝐶max. Considering that the distribution of
𝐶1 is now a truncated Gaussian with support

[
0, 𝐿

𝑡𝑛−𝑡1−𝑞1−𝐹−𝐽

]
.

The mean of the KF in successive steps changes, and it is given
by:

𝑥2 |1 =
𝑃 + (ℓ + 1)𝑄

𝑃 + (ℓ + 1)𝑄 + 𝑅𝑥1 |0 +
𝑅𝐶1

𝑃 + (ℓ + 1)𝑄 + 𝑅 . (29)

We know that the mean of a truncated Gaussian variable
𝑋 ∼ N(`, 𝜎2) with support [𝑎, 𝑏] is given by:

�̄� = ` + 𝜎

(
𝜑

(
𝑏−`
𝜎

)
− 𝜑

(𝑎−`
𝜎

))(
Φ

(
𝑏−`
𝜎

)
−Φ

(𝑎−`
𝜎

)) , (30)

where 𝜑(𝑥) is the normal Probability Density Function (PDF)
and Φ(𝑥) is the normal CDF. We can now substitute the mean
of 𝐶1 in (29), getting:

𝑥2 |1 =
𝑃 + (ℓ + 1)𝑄

𝑃 + (ℓ + 1)𝑄 + 𝑅𝑥1 |0 +
𝑅𝐶1

𝑃 + (ℓ + 1)𝑄 + 𝑅 . (31)

The sum of the next 𝑘 − 1 steps is a Gaussian variable, given
by:

𝐶2,...,𝑘 ∼ N
(
(𝑘 − 1)𝑥2 |1,

(𝑘 + ℓ) (𝑘 − 1)𝑄
2

+ 𝑅
)
. (32)

The CDF of the overall capacity can only be computed
numerically [55], [56], since it involves a convolution with

9

a truncated Gaussian. The actual distribution is computed in
the Appendix, but in order to reduce the computational load,
we can approximate the truncated Gaussian variable 𝐶1 as a
normal Gaussian variable in the sum:

𝐶1,...,𝑘 ∼ N
(
𝑥1 |0 + (𝑘 − 1)𝑥2 |1,

(𝑘 + ℓ + 1)𝑄 + 2𝑅
2

)
. (33)

Adding the outage probability 𝑝out to the model to account for
3𝜎 drop events, the lateness probability _(𝑖) = 𝑃[𝑟𝑖 − 𝑡𝑖 ≤ 𝑇]
is given by:

_(𝑖) = 𝑝out + (1 − 𝑝out)Φ
©«
𝐶min − (𝑥1 |0 + (𝑘 − 1)𝑥2 |1)√︃

(𝑘+ℓ+1)𝑄
2 + 𝑅

ª®®¬ ,
(34)

where 𝑝out is a running estimate of the down-step and outage
probability. In case a drop is in progress, capacity is modeled
as an exponential random variable with mean 𝐶out. The sum of
𝑘 exponential random variables is a Gamma random variable
with shape parameter 𝛼 = 2𝑘 and mean parameter ` = 𝐶out:
𝐶1,...,𝑘 ∼ Γ (2𝑘, 𝐶out). In this case, we conservatively assume
that the outage will last until the packet deadline. The delay
CDF can be computed using (34).

VI. TESTING SCENARIO AND RESULTS

In order to test the performance of HOP, we simulated
the protocol over the ns-3 network simulator in a con-
trolled scenario. Although the protocol can operate over
any number of paths, we limit this analysis to the two-
path case, as the results are easier to interpret. We used
two PointToPointChannel objects to simulate the paths,
varying their capacity according to traces, both controlled
and from real wireless networks. In our simulations, a server
periodically sends data blocks to a client through two parallel
paths. The minimum RTT is set to 25 ms, and the deadline
is 35 ms with 98% reliability: this is realistic for an edge
application such as AR with strict real-time constraints. The
MTU is set to 1500 B. The maximum latency 𝑇 is set to
less than 1.5 times the minimum RTT, so retransmissions are
impossible without violating the latency requirement. The 98%
reliability requirement is also very strict, as the failure rate is
5 times lower than what standard MPTCP can usually achieve
in wireless links [39]. In order to compare HOP to state-of-
the-art solutions, we test three other MPTCP variants in this
challenging scenario:
• Uncoupled Cubic congestion control with the LowRTT

scheduler. This version is slightly more aggressive than
current MPTCP implementations, but its mechanism is
similar to currently implemented versions of the protocol.

• Uncoupled BBR [18] congestion control with an en-
hanced version of the DAPS scheduler [34]. This version
uses a latency-aware congestion control and a state-
of-the-art scheduler aimed at reducing delivery delay
and reordering at the receiver, which can exploit BBR’s
estimate of the path capacity to improve its decisions.

• Uncoupled BBR with the STTF scheduler [36], which
schedules packets on the fastest path (considering cur-
rently estimated capacity and queued packets).

• Uncoupled BBR with the DEMS [38] scheduler, using
redundancy to speed up block delivery time. This is the
most meaningful comparison for HOP, as DEMS can use
FEC to protect data blocks and prevent small capacity
drops on one path from affecting the overall transmission.

As the receiver buffer sizes are set to large values in the
simulation, head-of-line blocking is not an issue, so using
uncoupled congestion control provides a better performance
than coupled algorithms. Furthermore, we argue that the
service enabled by QoS-oriented transport will be relevant in
intelligent future networks, which can be expected to have
some form of slicing mechanism to separate different classes
of traffic. Consequently, we leave the study of the fairness of
the protocol towards best-effort TCP flows to future work.

In order to test the protocols in a controlled setting, we
generate synthetic scenarios with fast-varying capacity. In each
scenario, the capacity of the bottlenecks changes every 25 ms:

• In the balanced scenario, the capacity distribution for
the two paths is the same. Samples are Gaussian and
Independent and Identically Distributed (IID), with an
average of 40 Mb/s and a standard deviation of 8 Mb/s;

• In the unbalanced scenario, capacity samples are Gaus-
sian and IID with a standard deviation of 8 Mb/s, but the
mean is different for the two paths. One path has a mean
capacity of 32 Mb/s, while the other’s is 48 Mb/s.

• In the highly unbalanced scenario, capacity samples are
still Gaussian and IID with a standard deviation of 8
Mb/s, but the means of the two distributions are very
different: the first path has a mean capacity of 64 Mb/s,
while the second’s is just 16 Mb/s. This large difference
presents a more challenging scenario, as the scheduler
will need to send enough packets on the low-capacity
path to maintain an accurate capacity estimation.

• In the RTT unbalanced scenario, the capacity is dis-
tributed as in the balanced scenario, but instead of having
a minimum RTT of 25 ms, the two paths have respective
minimum RTTs of 20 ms and 30 ms.

We also added a theoretical bound to the synthetic trace
simulations: by using the capacity distribution, we calculated
the maximum achievable reliability for the given data block
size in case of no queuing and perfect scheduling with full
repetition. If we consider ideal conditions with no queue at the
bottlenecks and set a 98% reliability and a 35 ms maximum
latency, the maximum achievable goodput when respecting the
application constraints is about 51 Mb/s. We remark that the
capacity volatility in these scenarios is significant, and corre-
sponds to a highly congested wireless network. Furthermore,
since this bound does not take queuing into account, it can
be very loose if the scheduler causes self-queuing delays by
sending too many packets on a path. In order to evaluate SKIP,
we also used the JUMP scheduler, feeding it with the correct
capacity distribution. As the scheduler is optimal, this is an
upper bound that considers queuing.

We also captured three live capacity traces and used them
to drive the simulations (with the same parameters used in the
synthetic trace-based simulations).

10

• A WiGig trace with an experimental setup, in a non-line
of sight condition with multiple reflections;

• An 802.11n trace on the 5.75 GHz band in an office with
several other access points and active cross-traffic;

• An LTE trace captured on a commercial network while
driving in Newark, NJ.

These traces have a higher average capacity than the synthetic
ones, but the WiGig trace has a strong risk of sudden drops,
while the LTE and 802.11n traces have a high variance.

A. JUMP stability analysis

JUMP can provide reliability as long as the objective is
achievable, but quickly becomes unstable if it is not, as the
additional FEC packets increase the probability of creating a
queue and lead to a reliability collapse. To avoid this issue, it
would be beneficial to set a lower reliability: when the network
cannot cope with the application’s demands, JUMP tends to
add more FEC, making the system more unstable. While this
is still the correct behavior for the protocol, as HOP can
report to the application that its demands are unsustainable,
the design of a limiting mechanism to make the scheme fail
more gracefully is an interesting avenue for future research.
We expect LEAP to be immune from reliability collapse, as
it is limited by the stricter stability constraint in (8).

In order to show the instability problem, we consider a
measure of packet stability in the balanced synthetic scenario,
giving JUMP the exact capacity distribution. If we assume
the process is time-invariant and IID, the state of the system
is given by the vector q(𝑡) ∈ R𝑚, whose elements represent
the queuing delay on each path. We denote the schedule that
JUMP derives in any state as s (q(𝑡)), and derive the value of
𝑞𝑖 (𝑡) by applying (23):

𝑞𝑖 (𝑡, 𝐶𝑖) = max

(
0, 𝑞𝑖

(
𝑡 − 𝑇𝑏 +

𝜏min
2

)
.

+ 𝐿𝑠𝑖 (q(𝑡 − 𝑇𝑏))
𝐶𝑖

− 𝑇𝑏 +
𝜏min
2

)
,

(35)

assuming that the capacity 𝐶𝑖 is constant over a period 𝑇𝑏 .
Given a schedule s(q(𝑡)), we now define the associated coding
rate 𝑅𝐶 (q(𝑡)) as

𝑅𝐶 (q(𝑡)) =
𝑘∑𝑚

𝑖=1 𝑠𝑖 (q(𝑡))
. (36)

Using the conditions in (27), it naturally follows that a longer
queue results in a lower coding rate. In turn, a larger number
of redundancy packets increase the probability of having a
longer queue, resulting in a positive feedback loop. We can
define a stability criterion:

𝑆(q(𝑡), q(𝑡 + 𝑇𝑏)) = 𝑢 (𝑅𝐶 (q(𝑡)) − 𝑅𝐶 (q(𝑡 + 𝑇𝑏))) . (37)

If the redundancy does not increase, the system stays in a state
that is at least as favorable as the previous one. Naturally,
stability is not certain, since capacity is a stochastic process,
but we can compute the stability probability 𝑃𝑆 (q(𝑡)):

𝑃𝑆 (q(𝑡)) =
∫
(R+)𝑚

𝑆(q(𝑡), q(𝑡 + 𝑇𝑏 ,C))
𝑚∏
𝑖=1

𝜑𝑖 (𝐶𝑖) 𝑑C, (38)

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8

1

Block size (kB)

St
ab

ili
ty

pr
ob

ab
ili

ty
𝑃
𝑆

𝑞 = 0 ms

𝑞 = 2.5 ms

𝑞 = 5 ms

𝑞 = 7.5 ms

𝑞 = 10 ms

Fig. 3: Stability for different values of initial queuing.

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8

1

Block size (kB)

St
ab

ili
ty

pr
ob

ab
ili

ty
𝑃
𝑆

𝑇 = 35 ms, 𝑃thr=0.95

𝑇 = 35 ms, 𝑃thr=0.98

𝑇 = 35 ms, 𝑃thr=0.99

𝑇 = 37.5 ms, 𝑃thr=0.98

𝑇 = 40 ms, 𝑃thr=0.98

Fig. 4: Stability for different values of the deadline and reliability.

where 𝜑𝑖 (𝑥) = 𝜑

(
𝑥−`𝑖
𝜎𝑖

)
. Since the coding rate function is

not simple, we perform the integration numerically. Figure 3
shows the stability probability as a function of the block size
for different values of the initial queuing time (which was the
same for both paths), confirming that a longer initial queue
indeed increases instability. The resulting positive feedback
loop can sharply decrease reliability, as each increase in the
queue takes the system to a more unstable state, making
further increases more likely. Figure 4 shows the stability
probability for different values of the deadline 𝑇 and the
reliability requirement 𝑃thr, confirming the intuitive principle
that tighter deadlines and higher reliability requirements make
the system more unstable by reducing the margin of error in
noisy channels.

B. Simulation results: synthetic traces

Figure 5 shows the performance of the protocols in the bal-
anced scenario as a function of the application block size. The
plot shows the average performance over 10 simulations, each
with a duration of 30 seconds, with error bars representing
the 95% confidence interval. It is easy to see that HOP is the
only protocol that can guarantee that data will be delivered
on time with the required reliability. As expected, the DEMS
scheduler can use capacity estimation to slightly outperform
DAPS and STTF, and they all significantly outperform the
simple LowRTT scheduler, which is not shown in the figure,
as it has a failure probability higher than 0.1 even with a block
size of just 80 kB. However, none of these schedulers is able
to guarantee 98% reliability, even for small block sizes, while
HOP can guarantee 98% reliability with 145 kB blocks, which
correspond to a goodput of 46.4 Mb/s, more than 90% of the
theoretically achievable goodput. In this case, the scheduler’s
performance is very close to the ideal JUMP’s, showing that
SKIP works reliably. The confidence interval confirms that the
results are not an artifact, but hold across several traces.

It is interesting to note that HOP is very close to the
theoretical bound as long as the objective is achievable, but
quickly degrades after that, as the additional FEC packets

11

80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

Block size (kB)

Fa
ilu

re
pr

ob
ab

ili
ty

𝑃thr
DAPS
DEMS
STTF
Ideal JUMP
HOP (JUMP)
HOP (LEAP)
Bound

Fig. 5: Performance of the protocols in the balanced scenario.

80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

Block size (kB)

Fa
ilu

re
pr

ob
ab

ili
ty

𝑃thr
DAPS
DEMS
STTF
Ideal JUMP
HOP (JUMP)
HOP (LEAP)
Bound

Fig. 6: Performance of the protocols in the unbalanced scenario.

80 100 120 140 160 180 200

0.04

0.08

0.12

0.16

0.2

Block size (kB)

Fa
ilu

re
pr

ob
ab

ili
ty

𝑃thr
DAPS
DEMS
STTF
Ideal JUMP
HOP (JUMP)
Bound

Fig. 7: Performance of the protocols in the highly unbalanced scenario.

increase the probability of creating a queue and lead to a
reliability collapse. To avoid this issue, it would be beneficial
to set a lower reliability, avoiding the reliability collapse
described in the previous section. The design of a limiting
mechanism to make the scheme fail more gracefully is an
interesting avenue for future research. This is confirmed by
looking at the number of redundancy packets injected by
HOP: for blocks up to 145 kB, the redundancy overhead
hovers around 5% of the block size, while it rapidly grows
to over 10% if the blocks are larger than 150 kB. However,
the redundancy overhead is limited to less than 20% of the
goodput in all scenarios.

The situation is more complex in the unbalanced scenario.
As Fig. 6 shows, all realistic protocols have more failures, as
the schedulers and congestion control schemes struggle to cope
with the imbalance. As in the previous case, LowRTT is not
even shown in the figure, as its failure rate is always above 0.1.
The difference between DAPS and DEMS is slightly larger,
but both have more failures, and STTF performs worse than
either, as it just considers expected delivery time without trying
to balance the traffic on the two paths. The HOP protocol
can guarantee, within the 95% confidence interval, that 98%
of blocks will be on time for block sizes up to 140 kB
(with a maximum goodput of 44.8 Mb/s, slightly over 85%
of the theoretical bound). Note that, while the scheduler with
perfect capacity estimation is not affected, HOP’s performance

80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

Block size (kB)

Fa
ilu

re
pr

ob
ab

ili
ty

𝑃thr
DAPS
DEMS
STTF
Ideal JUMP
HOP (JUMP)
HOP (LEAP)
Bound

Fig. 8: Performance of the protocols in the RTT unbalanced scenario.

100 120 140 160 180 200
0

0.1
0.2
0.3

Block size (kB)

E
m

p.
PD

F

Balanced

Unbalanced

Fig. 9: Block size histogram of the LEAP scheduler in the balanced and
unbalanced scenarios.

is slightly degraded by the imperfections in the capacity
estimation. At HOP’s limit, DAPS and DEMS perform about
3 to 4 times worse in this scenario. Furthermore, HOP is self-
correcting, as errors in the capacity estimation can never lead
to a delay far beyond the latency bound: the stability limits
in the scheduler ensure it, as it will reduce the number of
scheduled packets on a path as soon as a queue builds up.

The third scenario we consider is the highly unbalanced one
shown in Fig. 7, with a strongly dominant link; in this case,
even HOP is hardly able to track the lower-capacity channel,
which is an order of magnitude smaller than the other. This
is probably due to interactions between the scheduler and the
SKIP estimation mechanism, as the scheduler with ideal inputs
still performs in the same way as for the previous channels.
However, the gain from using our QoS-oriented scheme is even
clearer in this scenario: DAPS, STTF, and DEMS are unable
to maintain a failure probability below 0.1 even with 80 kB
blocks, and HOP has 4 times fewer failures than DEMS and
6 times fewer than DAPS and STTF. As above, LowRTT is
not even shown in the plot, as its failure rate is always higher
than 0.2.

In the RTT unbalanced scenario, the performance gains of
HOP are even more evident: while it is slightly affected by
having two paths with different RTTs, and it has a steeper
increase in the failure probability if the blocks are larger than
140 kB, it is still very close to the optimal bound until that
size. On the other hand, the three legacy algorithms completely
fail to have a failure probability below 0.1 if the block sizes
are larger than 100 kB. In this case, HOP can have 10 to 20
times fewer failures than traditional schedulers.

Finally, we present the results for the LEAP scheduler, with
a guard parameter 𝛼 = 1.25. In the balanced, unbalanced, and
RTT unbalanced scenarios, LEAP had slightly more failures
than the 2% threshold, but it maintained an average block size
between 150 kB and 160 kB. This operating point is consistent
with the performance of the ideal JUMP scheduler, and better
than the real JUMP curve, but LEAP is still slightly too
aggressive. The full histogram of block sizes in the balanced
and unbalanced scenario is shown in Fig. 9: as the two curves

12

0 10 20 30
0

40
80

120 LTE

Time (s)

C
ap

ac
ity

(M
b/

s)

0 10 20 30
0

40
80

120 WiFi

Time (s)

C
ap

ac
ity

(M
b/

s)
0 10 20 30

0
40
80

120 WiGig

Time (s)

C
ap

ac
ity

(M
b/

s)

Fig. 10: Capacity traces used in the realistic simulations.

80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

Block size (kB)

Fa
ilu

re
pr

ob
ab

ili
ty

𝑃thr
DAPS

DEMS

STTF

HOP (JUMP)

HOP (LEAP)

Fig. 11: Performance of the protocols in the WiGig/WiFi scenario.

80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

Block size (kB)

Fa
ilu

re
pr

ob
ab

ili
ty

𝑃thr
DAPS

DEMS

STTF

HOP (JUMP)

HOP (LEAP)

Fig. 12: Performance of the protocols in the LTE/WiGig scenario.

are similar, we confirm that HOP can adapt to several scenarios
with either scheduler, as long as the imbalance between the
paths is not too big. As predicted, LEAP does not suffer
from reliability collapse, dynamically adjusting the goodput
to the capacity. In the highly unbalanced scenario, LEAP’s
performance is not shown, as its average block size is lower
than 80 kB. In this extreme case, the default value 𝛼 = 1.25
is too large, and SKIP underestimates the capacity.

C. Simulation results: live traces

We now show simulations performed over three live traces
over different Radio Access Technologies (RATs). The three
traces are shown in Fig. 10, and have a higher average capacity
than the synthetic ones, but they also have stronger dips and a
less regular pattern: the WiGig trace has the highest capacity,
but it often has sharp drops in the capacity due to blockages.

Figure 11 shows the protocol’s performance in the
WiGig/WiFi scenario. In this case, as in all the real trace ex-
periments, only one 30 s simulation was run, due to the limited
availability of capacity traces. The scenario is not significantly
more challenging than the unbalanced one, and the protocols
even perform slightly better. As for the synthetic scenarios, the
three legacy schemes are far from the required 98% reliability

even for small block sizes, while HOP can for blocks of up
to 130 kB. In general, HOP’s failure rate is less than half
of DAPS’s, until the quick performance degradation when
the QoS constraints are unsustainable. DEMS and particularly
STTF perform worse than DAPS in this scenario, as the DEMS
FEC adjustment seems to suffer when the two paths have a
large capacity difference, while STTF cannot compensate for
quick changes in the capacity. DEMS outperforms DAPS for
all block sizes in the LTE/WiGig scenario, as shown in Fig. 12,
while STTF still has a far higher error than either DAPS or
DEMS. However, HOP is still the only one to reach a 98%
reliability, with less than half of DEMS’s failures.

The WiFi/LTE scenario is the most challenging, as shown
in Fig. 13: in this case, it is hard to achieve reliability, and
the reliable low-latency throughput is much lower. However,
HOP still significantly outperforms DEMS, STTF, and DAPS
for smaller blocks. The performance degradation after the
required reliability becomes unreachable makes it underper-
form for large blocks, but the legacy algorithms also have a
high failure rate in this case: applications should adjust their
demands accordingly to avoid this outcome by lowering their
reliability requirements, increasing the maximum latency, or
using compression to reduce the block size.

The LEAP scheduler confirms the results of the synthetic
traces: in the WiGig/WiFi scenario, it operates close to the
JUMP operating point with a failure probability of approxi-
mately 1%, while in the WiGig/LTE scenario its failure rate is
close to 4%, with a far higher goodput than JUMP manages at
the same rate. In the WiFi/LTE scenario, the LEAP failure rate
is 4%, but the average block size for is just 75 kB. LEAP’s
relative unreliability can be solved by adapting its setting to
the observed failure rate. In all practical scenarios, HOP can
deliver a far higher reliability than even optimized MPTCP
versions. It is the only protocol that achieves 98% reliability
(or even more than 99%, albeit with a lower throughput)
and, more importantly, controls the trade-off between latency,
reliability and throughput. In this way, it provides an entirely
new service, letting applications set their QoS requirements
and informing them when they cannot be met.

Overall, HOP manages to significantly outperform existing
approaches in all scenarios, suffering only when the imbalance
between the two paths is extremely large, but still managing
to achieve far better performance. This is due to its ability
to dynamically manage FEC, striking a balance between
protecting the transmission from capacity fluctuation on either
path and maintaining a short standing queue by minimizing the
load on the connections. SKIP might be the critical issue when
the protocol misses its reliability goal, as a lower capacity
would perhaps require a slower estimation of the path capacity.
If fewer packets are used to compute the RTT gradient, the
noisier result increases the uncertainty of the estimate, making
the system likelier to add more redundancy and cause self-
queuing delay. However, we remark again that the simplifying
assumptions made in the design hold remarkably well under
realistic conditions, as we showed in the last plots: HOP can
reduce the number of late blocks by an order of magnitude
in most considered scenarios. The dynamic adaptation of the
protocol can correct these imperfections, providing flexibility

13

80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

Block size (kB)

Fa
ilu

re
pr

ob
ab

ili
ty

𝑃thr
DAPS

DEMS

STTF

HOP (JUMP)

Fig. 13: Performance of the protocols in the WiFi/LTE scenario.

to highly different network environments.

VII. LIMITATIONS AND FUTURE WORK

While the results presented in this work demonstrate HOP’s
effectiveness at providing QoS in highly dynamic wireless
scenarios, maintaining a low latency even for throughput-
intense applications, the current version of the protocol still
has some limitations that need to be addressed. While our
protocol can outperform legacy solutions for high-throughput
real-time applications, it is not a one-size-fits-all solution to
congestion and end-to-end delay, and its operation parameters
must be kept in mind.

Firstly, its reliance on private buffers means that it might
have significant fairness issues if it is deployed in a legacy
network with shared buffers, and its interactions with the
numerous standard TCP versions currently deployed [26] need
to be better understood before doing so. In any case, the
design of the protocol for low-latency traffic means that its
deployment is not advised in scenarios with long RTTs. The
deployment of HOP in the wild would also require careful
study of the interactions with middleboxes and performance
enhancement strategies at the lower layers, some of which
are enabled on several networks. The use of the protocol for
applications with non-uniform traffic flows, such as encoded
video, also requires further study, and a future version of the
protocol might exploit the temporal patterns to improve its
adaptability.

Secondly, handovers and changes in one or both routes
over which HOP operates are an interesting issue in cellular
networks, particularly when mobility is involved: while the
protocol has not been tested in these kinds of scenarios, we
expect SKIP to be able to recover gracefully thanks to its
ability to handle sudden changes in the link statistics. Further
evaluation on this point will be the focus of future works.

Finally, we remark that HOP is meant for longer flows, such
as video or AR data, which span multiple seconds. The SKIP
mechanism operates in a similar way to TCP’s slow start in its
initial phase, and although it could always reach steady-state
performance within 2 seconds in our simulation (and reach the
channel capacity in less than 1 second), it was not designed
for short-lived flows such as web browsing or machine-type
traffic, and its performance in those scenarios has not been
tested. While such an extension of HOP would be interesting,
it is outside the scope of the current work.

VIII. CONCLUSION

In this work, we presented HOP, a QoS-oriented multipath
transport protocol that can meet explicit reliability and latency
constraints for throughput-intensive applications. We showed
that our protocol far outperforms the state of the art in terms of
reliability in trace-based simulations, both with synthetic and
real wireless network capacity traces. Furthermore, the HOP
protocol can work at different points in the trade-off between
latency and reliability, meeting the demands of applications
when the network can support them.

The protocol opens several possible avenues of future
research: firstly, while the Kalman filter can track capacity
effectively, more complex models may be able to more accu-
rately follow the dynamics of the network and improve the
performance of the overall protocol. The implementation of a
less bursty version of SKIP, which would need to use more
advanced filters to deal with the send rate limit, would also be
interesting, as would its combination with BBR, whose paced
delivery mechanism is friendlier to other flows than HOP’s
bursty sending pattern, but less reliable as a result. Its use for
other types of applications, which could have variable block
sizes and inter-block times, would also be interesting. Finally,
a wider field of future research is the design of a controller
protocol, which dynamically adjusts the QoS constraints to the
network scenario, ensuring the best possible service.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5G be?” IEEE J. on Sel. Areas in Comm.,
vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[2] C. J. Hansen, “WiGiG: Multi-gigabit wireless communications in the 60
GHz band,” IEEE Wireless Comm., vol. 18, no. 6, Dec. 2011.

[3] S. Ferlin, T. Dreibholz, and Ö. Alay, “Multi-path transport over hetero-
geneous wireless networks: Does it really pay off?” in Global Comm.
Conf. (GLOBECOM). IEEE, Dec. 2014, pp. 4807–4813.

[4] S. Kucera, M. Buddikhot, and K. Fahmi, “Multi-path data communica-
tions,” Patent WO 2019/06 368 A1, Apr., 2019.

[5] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC transport
protocol: Design and Internet-scale deployment,” in Conf. of the SIG on
Data Comm. (SIGCOMM). ACM, Aug. 2017, pp. 183–196.

[6] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP
extensions for multipath operation with multiple addresses,” IETF, RFC
6824, Jan. 2013. [Online]. Available: https://rfc-editor.org/rfc/rfc6824.txt

[7] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? Designing and
implementing a deployable Multipath TCP,” in 9th Conf. on Net. Sys.
Design and Impl. (NSDI). USENIX, Apr. 2012, pp. 29–29.

[8] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaventure,
“Are TCP extensions middlebox-proof?” in Workshop on Hot topics in
Middleboxes and Net. Func. Virtualization (HotMiddlebox). ACM, Dec.
2013, pp. 37–42.

[9] M. Scharf and A. Ford, “Multipath TCP (MPTCP) application interface
considerations,” IETF, RFC 6897, Mar. 2013. [Online]. Available:
https://rfc-editor.org/rfc/rfc6897.txt

[10] O. Bonaventure, C. Paasch, and G. Detal, “Use cases and operational
experience with Multipath TCP,” IETF, RFC 8041, Jan. 2017. [Online].
Available: https://rfc-editor.org/rfc/rfc8041.txt

[11] B. Han, F. Qian, and L. Ji, “When should we surf the mobile web using
both WiFi and cellular?” in 5th SIGCOMM Workshop on All Things
Cellular: Op., Appl. and Challenges (AllThingsCellular). ACM, Oct.
2016, pp. 7–12.

[12] M. Polese, R. Jana, and M. Zorzi, “TCP and MP-TCP in 5G mmWave
networks,” IEEE Internet Comp., vol. 21, no. 5, pp. 12–19, Sep. 2017.

[13] M. Li, A. Lukyanenko, S. Tarkoma, Y. Cui, and A. Ylä-Jääski, “Tolerat-
ing path heterogeneity in Multipath TCP with bounded receive buffers,”
in SIGMETRICS Perf. Eval. Rev., vol. 41, no. 1. ACM, Jun. 2013, pp.
375–376.

14

[14] K. Nguyen, G. P. Villardi, M. G. Kibria, K. Ishizu, F. Kojima, and
H. Shinbo, “An enhancement of Multipath TCP performance in lossy
wireless net.” in 41st Conf. on Local Comp. Net. Workshops (LCN
Workshops). IEEE, Nov. 2016, pp. 187–191.

[15] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Op. Sys. Review, vol. 42, no. 5, pp. 64–74,
Jul. 2008.

[16] A. Veres and M. Boda, “The chaotic nature of TCP congestion control,”
in 19th Ann. Joint Conf. of the IEEE Comp. and Comm. Soc. (INFO-
COM), vol. 3. IEEE, Mar. 2000, pp. 1715–1723.

[17] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
ACM Queue, vol. 9, no. 11, p. 40, Apr. 2011.

[18] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
no. 5, p. 50, Oct. 2016.

[19] M. Becke, T. Dreibholz, H. Adhari, and E. P. Rathgeb, “On the fairness
of transport protocols in a multi-path environment,” in Int. Conf. on
Comm. (ICC). IEEE, Jun. 2012, pp. 2666–2672.

[20] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: performance issues and a possible solution,” IEEE/ACM
Trans. on Net., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[21] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for Multipath TCP.”
in 8th Symp. on Net. Sys. Design and Impl. (NSDI), vol. 11. USENIX,
Mar. 2011, pp. 99–112.

[22] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-
path TCP: a joint congestion control and routing scheme to exploit path
diversity in the internet,” IEEE/ACM Trans. on Net., vol. 14, no. 6, pp.
1260–1271, Dec. 2006.

[23] A. Walid, J. Hwang, Q. Peng, and S. Low, “Balanced Linked
Adaptation congestion control algorithm for MPTCP,” IETF, Working
Draft, Jul. 2014. [Online]. Available: http://www.ietf.org/internet-
drafts/draft-walid-mptcp-congestion-control-00.txt

[24] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of Multipath TCP performance
over wireless networks,” in SIGCOMM Internet Measurement Conf.
(IMC). ACM, Oct. 2013, pp. 455–468.

[25] M. Xu, Y. Cao, and E. Dong, “Delay-based congestion
control for MPTCP,” IETF, Working Draft, Jan. 2017.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-xu-mptcp-
congestion-control-05

[26] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong, “The great
Internet TCP congestion control census,” in SIGMETRICS/Performance
Joint International Conference on Measurement and Modeling of Com-
puter Systems. ACM, Jun., pp. 59–60.

[27] T. Zhu, X. Qin, L. Chen, X. Chen, and G. Wei, “wBBR: A bottleneck
estimation-based congestion control for multipath TCP,” in 88th Vehic-
ular Tech. Conf. (VTC-Fall). IEEE, Aug. 2018.

[28] J. Hwang and J. Yoo, “Packet scheduling for Multipath TCP,” in 7th
Int. Conf. on Ubiquitous and Future Net. (ICUFN). IEEE, Jul. 2015,
pp. 177–179.

[29] D. Ni, K. Xue, P. Hong, and S. Shen, “Fine-grained forward prediction
based dynamic packet scheduling mechanism for multipath TCP in lossy
networks,” in 23rd Int. Conf. on Comp. Comm. and Net. (ICCCN).
IEEE, Aug. 2014, pp. 1–7.

[30] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in SIGCOMM Workshop on
Capacity Sharing (CSWS). ACM, Aug. 2014, pp. 27–32.

[31] K. W. Choi, Y. S. Cho, J. W. Lee, S. M. Cho, J. Choi et al., “Optimal
load balancing scheduler for MPTCP-based bandwidth aggregation in
heterogeneous wireless environments,” Comp. Comm., vol. 112, pp. 116–
130, Nov. 2017.

[32] E. Dong, M. Xu, X. Fu, and Y. Cao, “LAMPS: A loss aware scheduler
for Multipath TCP over highly lossy net.” in 42nd Conf. on Local Comp.
Net. (LCN). IEEE, Oct. 2017, pp. 1–9.

[33] H. Shi, Y. Cui, X. Wang, Y. Hu, M. Dai, F. Wang, and K. Zheng, “STMS:
Improving MPTCP throughput under Heterogeneous Net.” in Ann. Tech.
Conf. (ATC). USENIX, Jul. 2018, pp. 719–730.

[34] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“DAPS: Intelligent delay-aware packet scheduling for multipath trans-
port,” in Int. Conf. on Comm. (ICC). IEEE, Jun. 2014, pp. 1222–1227.

[35] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A foun-
tain code-based Multipath Transmission Control Protocol,” IEEE/ACM
Trans. on Net., vol. 23, no. 2, pp. 465–478, Apr. 2015.

[36] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, Ö. Alay, and
N. Kuhn, “Low-latency scheduling in MPTCP,” IEEE/ACM Trans. on
Net., vol. 27, no. 1, pp. 302–315, Dec. 2018.

[37] A. Garcia-Saavedra, M. Karzand, and D. J. Leith, “Low delay random
linear coding and scheduling over multiple interfaces,” IEEE Trans. on
Mobile Comp., vol. 16, no. 11, pp. 3100–3114, Mar. 2017.

[38] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen, “Accelerating
multipath transport through balanced subflow completion,” in 23rd Int.
Conf. on Mobile Comp. and Net. (MobiCom). ACM, Oct. 2017, pp.
141–153.

[39] F. Chiariotti, S. Kucera, A. Zanella, and H. Claussen, “Analysis and
design of a latency control protocol for multi-path data delivery with
pre-defined QoS guarantees,” IEEE/ACM Trans. on Net., vol. 27, no. 3,
pp. 1165–1178, Jun. 2019.

[40] G. Sarwar, P.-U. Tournoux, R. Boreli, and E. Lochin, “eCMT-SCTP:
Improving performance of multipath SCTP with erasure coding over
lossy links,” in 38th Ann. Conf. on Local Comp. Net. IEEE, Oct. 2013,
pp. 476–483.

[41] M. Wang, C. Xu, X. Chen, H. Hao, L. Zhong, and D. O. Wu, “Design
of multipath transmission control for information-centric Internet of
Things: A distributed stochastic optimization framework,” IEEE Internet
of Things J., vol. 6, no. 6, pp. 9475–9488, Jul. 2019.

[42] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
“A survey on recent advances in transport layer protocols,” IEEE Comm.
Surveys and Tut., vol. 24, no. 4, pp. 3584–3608, Aug. 2019.

[43] N. Kuhn, E. Lochin, F. Michel, and M. Welzl, “Coding and congestion
control in transport,” IETF NWCRG, IETF Draft, Oct. 2020.
[Online]. Available: https://tools.ietf.org/id/draft-irtf-nwcrg-coding-and-
congestion-04.html

[44] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Net. slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,” IEEE Comm. Mag., vol. 55,
no. 5, pp. 80–87, May 2017.

[45] Q. Wang, J. Alcaraz-Calero, R. Ricart-Sanchez, M. B. Weiss, A. Gavras,
N. Nikaein, X. Vasilakos, B. Giacomo, G. Pietro, M. Roddy et al.,
“Enable advanced QoS-aware network slicing in 5G networks for slice-
based media use cases,” IEEE Transactions on Broadcasting, vol. 65,
no. 2, pp. 444–453, Mar. 2019.

[46] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM SIGCOMM Comp. Comm. Review, vol. 27, no. 2, pp.
24–36, Apr. 1997.

[47] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in 10th
Symp. on Net. Sys. Design and Impl. (NSDI). USENIX, Apr. 2013, pp.
459–471.

[48] H. Emmons and M. Pinedo, “Scheduling stochastic jobs with due dates
on parallel machines,” Eur. J. of Op. Res., vol. 47, no. 1, pp. 49–55, Jul.
1990.

[49] A. Allahverdi and J. Mittenthal, “Scheduling on 𝑀 parallel machines
subject to random breakdowns to minimize expected mean flow time,”
Naval Res. Logistics (NRL), vol. 41, no. 5, pp. 677–682, Aug. 1994.

[50] J. Jaffe, “Flow control power is nondecentralizable,” IEEE Trans. on
Comm., vol. 29, no. 9, pp. 1301–1306, Sep. 1981.

[51] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar.
1960.

[52] C. Price, “An analysis of the divergence problem in the Kalman filter,”
IEEE Trans. on Aut. Control, vol. 13, no. 6, pp. 699–702, Dec. 1968.

[53] R. Mehra, “On the identification of variances and adaptive Kalman
filtering,” IEEE Trans. on Aut. Control, vol. 15, no. 2, pp. 175–184,
Apr. 1970.

[54] W. Gao, J. Li, G. Zhou, and Q. Li, “Adaptive Kalman filtering with
recursive noise estimator for integrated SINS/DVL systems,” The J. of
Nav., vol. 68, no. 1, pp. 142–161, Jan. 2015.

[55] H.-J. Kim, “On the distribution and its properties of the sum of a normal
and a doubly truncated normal,” Comm. for Stat. Appl. and Methods,
vol. 13, no. 2, pp. 255–266, Aug. 2006.

[56] H. Joe, “Approximations to multivariate normal rectangle probabilities
based on conditional expectations,” J. of the American Stat. Ass., vol. 90,
no. 431, pp. 957–964, Sep. 1995.

[57] B. Allik, C. Miller, M. J. Piovoso, and R. Zurakowski, “The Tobit
Kalman filter: an estimator for censored measurements,” IEEE Trans.
on Control Sys. Tech., vol. 24, no. 1, pp. 365–371, Jun. 2015.

Dr. Federico Chiariotti [S’15 M’19] is currently a post-doctoral researcher
at the Department of Electronic Systems, Aalborg University, Denmark. He

15

received his Ph.D. in information engineering in 2019 from the University
of Padova, Italy. He received the bachelor’s and master’s degrees in telecom-
munication engineering from the University of Padova, in 2013 and 2015,
respectively. In 2017 and 2018, he was a Research Intern with Nokia Bell
Labs, Dublin. He has authored over 40 published papers on wireless networks
and the use of artificial intelligence techniques to improve their performance.
He was a recipient of the Best Paper Award at several conferences, including
the 2020 IEEE INFOCOM WCNEE Workshop. His current research interests
include network applications of machine learning, transport layer protocols,
Smart Cities, bike sharing system optimization, Age of Information, and
adaptive video streaming.

Prof. Andrea Zanella [S’98-M’01-SM’13] is a Full Professor at the De-
partment of Information Engineering (DEI), University of Padova, Italy. He
received the Laurea degree in Computer Engineering in 1998 from the same
University and the PhD in 2001. During 2000, he spent 9 months with Prof.
Mario Gerla’s research team at the University of California, Los Angeles
(UCLA). Andrea Zanella is one of the coordinators of the SIGnals and
NETworking (SIGNET) research lab. His long-established research activities
are in the fields of protocol design, optimization, and performance evaluation
of wired and wireless networks. He has been serving as Technical Area
Editor for the IEEE Internet of Things Journal, and Associate Editor for
the IEEE Transactions on Cognitive Communications and Networking, IEEE
Communications Surveys and Tutorials, and Digital Communications and
Networks.

Dr. Stepan Kucera [SM’13] received Ph.D. degree in Informatics from the
Graduate School of Informatics, Kyoto University, Kyoto, Japan, in 2008.
Currently, he serves as Senior 5G Expert and 3GPP RAN2 delegate at
Nokia Munich in Germany where he is responsible for driving research
and development of advanced 5G NR concepts as well as their 3GPP
standardization, mainly in areas of industrial IoT, V2X sidelink and enhanced
positioning. In the past decade, he developed at Nokia innovative networking
technologies that became the basis for new commercial products and have
been demonstrated to top-tier business customers worldwide and in indus-
try shows. Impactful examples include multi-connectivity with user-defined
latency/reliability guarantees, zero-touch machine-designed self-optimization
for large-scale networks, light-based Gigabit mobile access, optimal interfer-
ence management and medium access for heterogeneous networks. He is the
recipient of multiple professional awards, among others Nokia Top Inventor
2018, Nokia UK&I Top Inventor of All Times, Hummies Gold Award for
Best Human-Competitive Design 2019, and Irish Laboratory Scientist of the
Year Award 2018. He also served as work package leader, primary bene-
ficiary/investigator, board member in large-scale research projects totalling
15+ Mil. EUR (e.g., MINTS, ENLIGHTEM, ELIOT), as well as founded and
managed advanced research projects with six major universities in EU and
Japan. He has filed 50+ patents, published 70+ book chapters, transactions,
and conference papers in peer-reviewed ACM/IEEE venues. He is a Senior
IEEE Member and actively serves on technical boards of major ACM/IEEE
journals and conferences.

Dr. Kariem Fahmi is currently a software architect at Nokia, Ireland. He re-
ceived his PhD in Computer Science in 2021 from the Trinity College Dublin,
Ireland. He received his bachelor’s in Computer Science from Qatar University
in 2015. During his PhD, he collaborated closely with Nokia Bell Labs
on projects related to wireless multi-connectivity, real time communication
and quality of service, and received a certificate of out-standing-achievement
for his contribution to Bell Labs multi-connectivity innovation. His PhD
work became the foundation of new Nokia commercial products in the area
of wireless vehicle-to-ground communication. He has filed over 10 patents
related to computer networks. His research interests include wireless multi-
connectivity, real-time communication and vehicle-to-ground communication.

Dr. Holger Claussen is Head of the Wireless Communications Laboratory at
Tyndall National Institute where he is building up research teams in the area
of RF, Access, Protocols, AI, and Quantum Systems to invent the future of
Wireless Communication Networks. Previously he led the Wireless Commu-
nications Department of Nokia Bell Labs located in Ireland and the US. In
this role, he and his team innovated in all areas related to future evolution,
deployment, and operation of wireless networks to enable exponential growth
in mobile data traffic and reliable low latency communications. His research in
this domain has been commercialized in Nokia’s (formerly Alcatel-Lucent’s)
Small Cell product portfolio and continues to have significant impact. He
received the 2014 World Technology Award in the individual category
Communications Technologies for innovative work of “the greatest likely
long-term significance”. Prior to this, Holger directed research in the areas of
self-managing networks to enable the first large scale femtocell deployments.
Holger joined Bell Labs in 2004, where he began his research in the areas of
network optimization, cellular architectures, and improving energy efficiency
of networks. Holger received his Ph.D. degree in signal processing for digital
communications from the University of Edinburgh, United Kingdom in 2004.
He is author of the book “Small Cell Networks”, more than 130 journal
and conference publications, 78 granted patent families, and 46 filed patent
applications pending. He is Fellow of the World Technology Network, senior
member of the IEEE, and member of the IET.

16

20 30 40 50 60

0
0.5

1

Estimated capacity (Mb/s)

E
m

p.
PD

F
Path 1

Path 2

2 4 6 8 10

0
0.5

1

Estimated capacity deviation (Mb/s)

E
m

p.
PD

F

Path 1

Path 2

Fig. 14: SKIP estimate quality in the unbalanced case using the JUMP
scheduler.

APPENDIX

In this Appendix, we go into the functioning of the SKIP
mechanism in more depth and draw some practical consider-
ations on its use in real-world scenarios. First, we compute
the analytical form of the capacity CDF, for which we used a
non-truncated approximation in the practical implementation
of the algorithm.

We define the standard deviations of 𝐶1 and 𝐶2,...,𝑘 as 𝜎1
and 𝜎2,...,𝑘 , respectively:

𝜎1 =
√︁

Var(𝐶1) =
√︁
(ℓ + 1)𝑄 + 𝑅 (39)

𝜎2,...,𝑘 =
√︁

Var(𝐶2,...,𝑘) =
√︂
(𝑘 + ℓ) (𝑘 − 1)𝑄

2
+ 𝑅 (40)

The sum of the capacities over the 𝑘 steps is then 𝐶1+𝐶2,...,𝑘 ,
or the sum of a doubly truncated Gaussian variable and a
truncated (from below) Gaussian variable, which is restricted
to the interval [0,∞). We define the following auxiliary
variables:

𝑍1 = Φ

(
𝐶max − 𝑥1 |0

𝜎1

)
−Φ

(
−
𝑥1 |0
𝜎1

)
(41)

𝑍2 = 1 −Φ
((1 − 𝑘)𝑥2 |1

𝜎2,...,𝑘

)
(42)

𝑌1 =
(𝑥 − (𝑘 − 1)𝑥2 |1)𝜎2

1 + 𝑥1 |0𝜎
2
2,...,𝑘

𝜎1𝜎2,...,𝑘

√︃
𝜎2

1 + 𝜎
2
2,...,𝑘

(43)

𝑌2 =
−(𝑘 − 1)𝑥2 |1𝜎

2
1 + (𝑥1 |0 − 𝑥)𝜎2

2,...,𝑘

𝜎1𝜎2,...,𝑘

√︃
𝜎2

1 + 𝜎
2
2,...,𝑘

(44)

𝑌3 =
(𝑥 − 𝐶max − (𝑘 − 1)𝑥2 |1)𝜎2

1 + (𝑥1 |0 − 𝐶max)𝜎2
2,...,𝑘

𝜎1𝜎2,...,𝑘

√︃
𝜎2

1 + 𝜎
2
2,...,𝑘

(45)

𝑊 =

√︂
2
𝜋
𝑒
−
(−𝑥+�̂�1|0+(𝑘−1) �̂�2|1)

2

𝑘 (𝑘+1)𝑄+2𝑅 . (46)

The piecewise PDF of the sum of the capacities over the 𝑘

steps is given by

𝑝𝐶1,...,𝑘 (𝑥) =

0 𝑥 < 0

2𝑊 (𝜑 (𝑌1)−𝜑 (𝑌2))

4𝑍1𝑍2

√︃
𝑘 (𝑘+ℓ+1)𝑄

2 +𝑅
𝑥 ∈ [0, 𝐶max)

2𝑊 (𝜑 (𝑌1)−𝜑 (𝑌3))

4𝑍1𝑍2

√︃
𝑘 (𝑘+ℓ+1)𝑄

2 +𝑅
𝑥 ≥ 𝐶max

(47)

−3 −2 −1 0 1 2 3

−2

0

2

Normal theoretical quantile

Sa
m

pl
e

qu
an

til
e

WiGig

WiFi

Fig. 15: Q-Q plot of the SKIP estimate quality in the WiGig/WiFi case using
the JUMP scheduler with 140 kB blocks.

We then look at SKIP’s tracking performance in the syn-
thetic and realistic traces, looking at how well SKIP does at
estimating capacity.

Figure 14 shows the quality of SKIP’s estimate in the
unbalanced scenario, for a block size of 120 kB: while SKIP
is slightly optimistic, estimating a slightly higher average
capacity with a slightly lower standard deviation than the real
distribution, its accuracy is sufficient for HOP to outperform
the other schemes significantly. While the mechanism slightly
underestimates variance, it still performs very well in the
scenario that matches its capacity model. In a more realistic
case, we tried to look at the Q-Q plot of the real capacity
against the normalized estimate. If we look at the Kalman
update rule in (17), the normalized capacity sample is given
by

𝐶𝑛 (𝑡) =
𝐶𝑡 − 𝑥𝑡
ΣAKF

. (48)

If the SKIP estimate were perfect, the distribution of 𝐶𝑛 (𝑡)
would be normal, as the capacity samples would follow the
estimated distribution perfectly. Figure 15 shows the Q-Q plot
for the capacity samples in the WiGig/WiFi scenario with 140
kB blocks. We removed the capacity deviations of more than
3𝜎, as these sharp capacity changes are explicitly dealt with by
the drop and step mode settings explained in Sec. V-A. The
two curves for the two paths are pretty close to the perfect
estimate, although the WiFi channel is slightly overestimated.
The WiGig curve exhibits a slight rightward skew, which can
be explained by its large right tail, as shown in Fig. 10.

These results show that the SKIP capacity mechanism, while
not perfect, can provide a pretty good approximation of the ca-
pacity distribution in real links, while maintaining a relatively
simple model. More complex models would be much more
unstable, requiring careful parameter tuning and a different
setting for each technology. The use of learning models is
a possible avenue of future work, as they would provide a
more tailored estimate of future capacity. Another possible
improvement would be to exploit cross-layer information, if
the node at the bottleneck can make it available: in general,
the modularity of HOP means that these innovations can be
implemented with no modifications to the scheduler, and even
on only part of the paths.

In order to avoid fairness issues due to the bursty nature of
HOP, HOP requires the use of separate buffers for each user.
While this is always the case in modern cellular networks,
separate buffers are not a requirement in 802.11 routers. In
order to verify that most recent models implement this policy,

17

0 50 100 150
0

0.5
1

1.5
2 Apple

Flow 1 rate (Mb/s)

D
el

ay
(s

)

0 20 40 60 80 100
00.20.40.60.81

Netgear

Flow 1 rate (Mb/s)

D
el

ay
(s

)

0 100 200
0

0.5
1

1.5
2 Asus

Flow 1 rate (Mb/s)

D
el

ay
(s

)

RTT probes

Heavy flow

Fig. 16: Results of the buffer analysis on the three tested router models.

we tested three models of home routers from different brands:
an Asus Wireless-AC2900 Dual Band, a Netgear Nighthawk
x10, and an Apple Airport Extreme 802.11ac (1st generation).
We connected a server to each of the Access Points (APs),
using two different Ethernet connections with different ad-

dresses. Then, we started a high-throughput UDP flow to a
client connected to the WiFi through the first interface, varying
its sending rate to create a queue. We also periodically sent
one-packet UDP RTT probes to the client on the other Ethernet
port; if the separate buffer hypothesis is correct, the changes
in the heavy flow’s send rate should not affect the RTT of the
probes, since the packets are not queued together.

As Fig. 16 shows, the delay on both flows is very low as
long as the data rate is lower than the wireless link capac-
ity. When the first heavy-throughput flow starts experiencing
congestion, its delay sharply rises, but the delay of the probes
is almost unchanged. As the first flow’s rate increases, the
probes’ delay slightly increases, but this is most likely due
to contention issues on the Medium Access layer, as sharing
a buffer would cause the two flows’ RTTs to have a similar
pattern and increase at the same rate. The results are very
similar for all three models, confirming our hypothesis.

