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The biology of plasma cell dyscrasias (PCD) involves both genetic and immune-related
factors. Since genetic lesions are necessary but not sufficient for Multiple Myeloma (MM)
evolution, several authors hypothesized that immune dysfunction involving both B and T
cell counterparts plays a key role in the pathogenesis of the disease. The aim of this study
is to evaluate the impact of cornerstone treatments for Multiple Myeloma into immune
system shaping. A large series of 976 bone marrow samples from 735 patients affected by
PCD was studied by flow analysis to identify discrete immune subsets. Treated MM
samples displayed a reduction of CD4+ cells (p<0.0001) and an increase of CD8+
(p<0.0001), CD8+/DR+ (p<0.0001) and CD3+/CD57+ (p<0.0001) cells. Although these
findings were to some extent demonstrated also following bortezomib treatment, a more
pronounced cytotoxic polarization was shown after exposure to autologous stem cell
transplantation (ASCT) and Lenalidomide (Len) treatment. As a matter of fact, samples of
patients who received ASCT (n=110) and Len (n=118) were characterized, towards
untreated patients (n=138 and n=130, respectively), by higher levels of CD8+ (p<0.0001
and p<0.0001, respectively), CD8+/DR+ (p=0.0252 and p=0.0001, respectively) and
CD3+/CD57+ cells (p<0.0001 and p=0.0006, respectively) and lower levels of CD4+
lymphocytes (p<0.0001 and p=0.0005, respectively). We demonstrated that active MM
patients are characterized by a relevant T cell modulation and that most of these changes
are therapy-related. Current Myeloma treatments, notably ASCT and Len treatments,
polarize immune system towards a dominant cytotoxic response, likely contributing to the
anti-Myeloma effect of these regimens.

Keywords: multiple myeloma, immunophenotyping, treatment, lenalidomide, ASCT-autologous stem cell
transplantation, cytotoxic response
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INTRODUCTION

The biology of plasma cell dyscrasias (PCD) involves both genetic
and immune-related factors (1). The pathogenesis of Multiple
Myeloma (MM) is a multi-step process in which primary events
occurring in the plasma cell are responsible for immortalization
and development of a pre-neoplastic condition defined as
monoclonal gammopathy of undetermined significance (MGUS).
The acquisition of secondary additional events sets the transition to
an overt neoplastic and initially asymptomatic condition
(smoldering Multiple Myeloma, SMM) and then to an active
MM (AMM) requiring treatment (2–4). However, whole-exome
sequencing studies of paired samples from MGUS, SMM and
AMM patients demonstrated that most somatic mutations
preceded the diagnosis of MM, suggesting that genetic lesions are
necessary but not sufficient for the evolution from a pre-neoplastic
condition to an overt neoplastic disease (5, 6). Consequently,
several authors hypothesized that a permissive tumor
microenvironment and more specifically an immune dysfunction
also plays a key role in MM pathogenesis, suggesting that immune
system impairment contributes to the progression of the disease (7,
8). Quantitative and functional alterations involving Natural Killer
cells (NK cells), B and T lymphocytes are well known and described
in previous studies (8–10).

As far as the B cell counterpart is concerned, immune-paresis
is a well-known risk factor of progression from SMM to AMM
(11) and secondary hypogammaglobulinemia contributes to
infective events that represent a common clinical feature in the
setting of symptomatic MM getting worse patients’ survival (12,
13). NK cells are functionally and phenotypically altered in PCD
and progression of MGUS toMM is characterized by reduction of
cytotoxic properties and acquisition of an “exhausted” phenotype
(14, 15). Also the impairment of T cell compartments involving
both CD4+ and CD8+ lymphocytes contributes to Myeloma
pathogenesis with progressive reduction in cytotoxic properties
and acquisition of an exhausted or anergic state (7, 8, 16, 17).

Despite different studies have been focused on the characteristic
of immune cells of patients with PCD, most of them included
limited small cohorts of selected patients enrolled in clinical trial
(17–21). Moreover, in most studies only peripheral blood samples
have been analyzed (19, 20, 22), thus ruling the evaluation out of
the bone marrow microenvironment in which neoplastic plasma
cells grow. To address these unsolved questions, 976 bone marrow
samples of a large cohort of 735 patients affected by PCD were
studied through the characterization of the immune subsets. The
aim of this study is to evaluate the impact of cornerstone
treatments for Multiple Myeloma, namely autologous stem cell
transplantation (ASCT) and novel agents like bortezomib and
lenalidomide, into immune system shaping.
MATERIALS AND METHODS

Study Population
A large series of 976 bone marrow samples from a cohort 735
patients affected by PCD including MGUS, smoldering Multiple
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Myeloma and active Multiple Myeloma followed at the
Hematology Unit of Padua University Hospital was studied.
Bone marrow samples were collected from October 2012 to
November 2019 at different time points according to clinical
practice, to confirm complete response or in case of progressive
disease. Samples of patients affected by other PCD, i.e. IgM
MGUS, Waldenström Macroglobulinemia, light chain
amyloidosis, light/heavy chain deposition disease and POEMS
syndrome were excluded from the study.

This study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional
Review Board of Azienda Ospedaliera di Padova (2491P,
PD-MM-REG1). All patients gave written informed consensus
prior to inclusion in the study.

Flow Cytometry Analysis
Flow cytometry analysis was performed on fresh bone marrow
samples. The frequency of lymphocyte subsets was assessed
by flow cytometry analysis using direct or indirect
immunofluorescence assay combining 6 fluorescences. Briefly,
cells were stained with the appropriate mAbs, scored using a
FACS Canto analyzer (BD Biosciences, San Jose CA) and data
processed by the BD FACS Diva software program (BD
Biosciences). Bone marrow lymphocytes were stained with
fluorochrome conjugated antibodies for CD4 (FITC, clone
SK3), CD8 (PE, clone SK1), HLA-DR (PerCP, clone L243),
CD5 (PeCy7, clone L17F12), CD19 (APC, clone SJ25C1),
CD57 (FITC, clone HNK-1), TCRgd (PE, clone 11F2), CD16
(PerCP-Cy5.5, clone 3G8), CD56 (PeCy7, clone NCAM 16.2),
CD3 (APC, clone SK7) and CD45 (APC-Cy7, clone 2D1) (BD
Biosciences). Based on these combinations, the following subsets
of lymphocytes were identified: CD3+ T, CD4+ T cells, CD8+ T
cells, CD8+/DR+ T cells, CD3+/CD57+ T cells and CD3+/Tgd+
cells, CD19+ B lymphocytes and CD19+/CD5+ B cells, CD3-/
CD16+/CD56+ NK cells along with the CD3-/CD16+/CD56+/
CD57+ NK cell subset.

Statistical Analysis
Data are expressed as mean plus or minus the standard deviation
(SD), and statistical analysis was performed by t-test or by one-
way Anova followed by Tukey’s multiple comparison test, when
appropriated. All the analyses were performed using GraphPad
Prism 6. A p-value <0.05 was accepted as significant.
RESULTS

Distribution of Immune Subsets in Plasma
Cells Dyscrasias
Clinical features of the cohort are reported in Tables 1 and 2. The
976 consecutive bone marrow samples of 746 patients’ samples
collected from October 2012 to November 2019 were distributed
as follows: 167 samples from 164 MGUS patients, 224 samples
from 206 SMM patients and 585 samples from 376 AMM
patients. Among the 585 AMM samples, 254 were from newly
diagnosed patients (NDMM), while the remnant 331 belonged to
June 2021 | Volume 11 | Article 682658
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treated patients (TMM); in detail n=192 (58.3%) received
Autologous Stem Cell Transplantation (ASCT), n=300 (90.6%)
bortezomib (Bort) treatment and n=118 (35.6%) lenalidomide
(Len) treatment (Table 2). Bone marrow samples of treated
patients were performed according to clinical practice, to
confirm complete response or disease progression.

Considering total bone marrow lymphocytes, MGUS samples
displayed reduced lymphocytes percentages towards NDMM
samples (14.16 ± 5.7% vs 16.4 ± 8.7%, p=0.0285); no other
significant differences were found in the remaining subsets. In
TMM cases, no significant differences were found in total T cells
percentages as compared to NDMM, SMM and MGUS patients
(72.5 ± 14.6% vs 73.7 ± 10.5%, p=0.6125, 72.5 ± 14.6% vs 72.5 ±
10.2%, p=0.9999 and 72.5 ± 14.6% vs 72.1 ± 9.4%, p=0.9851,
respectively, Figure 1A). Even though TMM samples did not
show significant differences in total B lymphocytes levels with
respect to NDMM, SMM and MGUS samples (10.5 ± 12.4% vs
9.5 ± 6.4%, p=0.5766, 10.5 ± 12.4% vs 10.7 ± 6.1%, p=0.9941 and
10.5 ± 12.4% vs 12.3 ± 7.5%, p=0.1721, Supplementary Figure
1A) a significant reduction in CD19+/CD5- B cells towards
MGUS (7.4 ± 9.9% vs 10.4 ± 6.6%, p=0.0001, Supplementary
Figure 1B) and a significant increase in CD19+/CD5+ B cells as
compared to NDMM, SMM and MGUS was found (2.8 ± 4.1%
Frontiers in Oncology | www.frontiersin.org 3
vs 1.5 ± 2.6%, p<0.0001, 2.8 ± 4.1% vs 1.8 ± 2.5%, p=0.001 and
2.8 ± 4.1% vs 1.9 ± 2.5%, p=0.0136, respectively, Supplementary
Figure 1C). Considering total NK cells and CD57+NK cells, no
significant differences were found in TMM patients as compared
to NDMM, SMM and MGUS patients (NK cells: 15.1 ± 10.3% vs
15.0 ± 8.4, p=0.9975, 15.1 ± 10.3% vs 14.2 ± 7.8%, p=0.6481 and
15.4 ± 9.5% vs 13.8 ± 7.2%, p=0.4369, respectively,
Supplementary Figure 1D; CD57+ NK cells: 7.0 ± 7.3% vs 7.8 ±
5.8%, p=0.4696, 7.0 ± 7.3% vs 7.9 ± 6.2%, p=0.2939 and 7.0 ± 7.3% vs
6.7 ± 4.9%, p=0.9581, Supplementary Figure 1E).

Analysis of T cell subsets showed that TMM cases were
characterized, with respect to NDMM, SMM and MGUS
samples, by lower CD4+ lymphocytes percentages (25.2 ± 11.7
vs 38.0 ± 10.0, p<0.0001, 25.2 ± 11.7% vs 38.3 ± 9.1%, p<0.0001
and 25.2 ± 11.7% vs 36.6 ± 8.8% respectively, p<0.0001, Figure
1B) and higher CD8+ (49.9 ± 15.2% vs 36.8 ± 9.9%, p<0.0001,
49.9 ± 15.2% vs 36.3 ± 9.8%, p<0.0001 and 49.9 ± 15.2% vs 36.9 ±
9.3% respectively, p<0.0001, Figure 1C), CD8+/DR+ (14.7 ±
16.3% vs 4.4 ± 4.5%, p<0.0001, 14.7 ± 16.3% vs 3.8 ± 4.3%,
p<0.0001 and 14.7 ± 16.3% vs 4.1 ± 4.7 respectively, p<0.0001,
Figure 1D) and CD3+/CD57+ cells levels (22.4 ± 14.0% vs 15.4 ±
10.9%, p<0.0001, 22.4 ± 14.0% vs 14.4 ± 9.0%, p<0.0001 and 22.4 ±
14.0% vs 13.8 ± 9.3%, respectively, p<0.0001, Figure 1E), while no
significant differences were found in Tgd levels (Figure 1F).
Treatment Related Effects on Immune
System Cells in MM Patients
Our results demonstrated that Myeloma treatment induces an
immune cells distribution in MM patients. This was particularly
evident in relationship to the number of previous lines of
therapy. In fact, excluding samples of patients in whom bone
marrow was performed within 3 months from ASCT (n=83), in
patients who received >1 line of treatment a more pronounced
cytotoxic T cell skewing was detected. In particular this latter
subset of patients, compared to MM patients who received one
line of therapy, displayed lower CD4+ lymphocytes (26.2 ±
10.4% vs 30.5 ± 10.7%, p=0.0029, Figure 2B) and higher total
T cells (52.7 ± 13.1% vs 41.1 ± 12.2%, p<0.0001, Figure 2A), CD8+
lymphocytes (52.7 ± 13.1% vs 41.1 ± 12.2%, p<0.0001, Figure 2C),
CD8+/DR+ lymphocytes (14.1 ± 14.8% vs 7.9 ± 10.6%, p=0.0008,
Figure 2D), CD3+/CD57+ lymphocytes (21.1 ± 12.7% vs
TABLE 2 | Clinical features of treated MM patients.

Treated MM (n = 331)

N° of previous treatment
1 201/331 (60.7%)
2 75/331 (22.7%)
≥3 55/331 (16.6%)

Type of previous treatment
Bortezomib 300/331 (90.6%)

Bortezomib alone* 77/331 (23.3%)
Lenalidomide 118/331 (35.6%)
Pomalidomide 14/331 (4.2%)
Daratumumab 10/331 (3.0%)
Carfilzomib 22/331 (6.6%)
ASCT 192/331 (58.3%)

Within 3 months after ASCT 83/331 (25.1%)
MM, Multiple Myeloma.
ASCT, autologous stem cell transplantation.
*With alkylating agents or dexamethasone.
TABLE 1 | Clinical features of the study cohort.

MGUS (n = 167) sMM (n = 224) nMM (n = 254) tMM (n = 331)

Median Age (years) 62 (24-93) 67 (35-85) 69 (39-90) 65 (38-87)
Sex
Female 73/167 (43.7%) 96/224 (42.9%) 118/254 (46.5%) 156/331 (47.1%)
Male 94/167 (53.3%) 128/224 (57.1%) 136/254 (53.5%) 175/331 (52.9%)

Isotype
IgG 112/167 (67.1%) 144/224 (64.3%) 152/254 (59.8%) 211/331 (63.7%)
IgA 36/167 (21.5%) 57/224 (24.4%) 49/254 (19.3%) 44/331 (13.3%)
IgD 0/167 0/224 4/254 (1.6%) 6/331 (1.8%)
Light chain 8/167 (4.8%) 13/224 (5.8%) 42/254 (16.5%) 47/331 (14.2%)
Byphenotypical 11/167 (6.6%) 10/224 (4.5%) 3/254 (1.2%) 6/331 (1.8%)
Non-secretory 0/167 0/224 4/254 (1.6%) 17/331 (5.1%)
June 2021 | Volume 11
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16.4± 10.7%, p=0.0018, Figure 2E) and Tgd cells (5.7 ± 6.0% vs
3.0 ± 3.0%, p<0.0001, Figure 2F).

Impact of Novel Agents’ Treatment
on Immune System
Therapy related information of treated patients are reported in
Table 2. In our cohort most patients received a bortezomib based
regimen as induction treatment, with lenalidomide generally
restricted at patient relapse. To evaluate the impact of novel
agents’ treatment on immune cells, we focused our attention on
treated patients according to the specific backbone drug received
during the induction therapy.

First of all, samples of NDMM patients were compared with a
cohort of bortezomib based treated patients (n=77), in
association with dexamethasone alone or to alkylating agents.
Frontiers in Oncology | www.frontiersin.org 4
To avoid misleading interpretations, patients who received
ASCT and Immunomodulatory drugs (IMIDs) were excluded
from the analysis. Although no significant differences in total T
cells was found (72.8 ± 10.9% vs 73.7 ± 10.5%, p=0.5319, Figure
3A), bortezomib treatment led to a reduction of percentage of
CD4+ cells (34.1% ± 11.1% vs 38.0 ± 9.9%, p=0.0037, Figure 3B)
and to an increase of CD8+ (39.6 ± 12.6% vs 36.8 ± 9.9%,
p=0.0426, Figure 3C), CD8+/DR+ (6.6 ± 9.1% vs 4.4 ± 4.5%,
p=0.0125, Figure 3D) while no differences in CD3+/CD57+
lymphocytes (14.0 ± 9.6% vs 15.4 ± 10.9%, p=0.3104) and Tgd
lymphocytes were found (3.2 ± 2.9% vs 3.2 ± 2.5%, p=0.8037)
(Figures 3E, F, respectively). In addition, in bortezomib
treatment samples a reduction in total B lymphocytes (7.6 ±
6.2% vs 9.5 ± 6.4%, p=0.0182), CD19+/CD5- B cells (6.6 ± 5.8%
vs 8.1 ± 5.4%, p=0.0522, Supplementary Figures 2A, B,
A B

D

E F

C

FIGURE 1 | T cell subsets distribution in MGUS, sMM, nMM and tMM samples. (A) total T cells. (B) CD4+ Lymphocytes. (C) CD8+ Lymphocytes. (D) CD8+/DR+
lymphocytes. (E) CD3+/CD57+ Lymphocytes. (F) Tgd lymphocytes. The comparisons between mean percentages were made by Anova followed by Tukey’s multiple
comparison test. For all plots data are expressed as mean ± standard deviation. MGUS, monoclonal gammopathy of undetermined significance; SMM, smouldering
Multiple Myeloma; NDMM, newly diagnosed Multiple Myeloma; TMM, treated Multiple Myeloma.
June 2021 | Volume 11 | Article 682658
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respectively) and total NK cells (17.6 ± 11.8% vs 15.0 ± 8.4%,
p=0.0283, Supplementary Figure 2D) was found while CD19
+/CD5+ B cells and CD57+ NK cells were unaffected (1.5 ± 2.0 vs
1.5 ± 2.6, p=0.9286 and 9.1 ± 9.8% vs 7.7 ± 5.8%, p=01542,
respectively, Supplementary Figures 2C, E, respectively).

As far as lenalidomide treated patients samples (n=118) are
concerned, a more pronounced cytotoxic skewing was found. In
fact, lenalidomide towards untreated patients (n=130) was able to
substantially increase total T cells (75.9 ± 14.6% vs 69.8 ± 12.4%,
p=0.0004, Figure 4 A), CD8+ cells (53.5 ± 12.8% vs 40.3 ± 11.7%,
p<0.0001, Figure 4C), CD8+/DR+ cells (14.4 ± 15.4% vs 7.4 ±
9.58%, p=0.0001,Figure 4D), CD3+/CD57+ cells (21.35 ± 13.2% vs
16.17 ± 10.1%, p=0.0006,Figure 4E) andTgd cells (5.6 ± 5.7% vs 3.0
± 3.3%, p<0.0001, Figure 4F) and to reduce CD4+ cells (25.9 ±
Frontiers in Oncology | www.frontiersin.org 5
10.5% vs 30.9 ± 11.4%, p=0.0005,Figure 4B), total B cells (5.8 ± 6.1%
vs 11.3 ± 10.5%, p<0.0001), CD19+/CD5- B cells (6.0 ± 11.8% vs
9.3 ± 9.1%, p=0.0122) and CD19+/CD5+ cells (1.1 ± 2.3% vs 2.1 ±
2.9%, p=0.0063) (Supplementary Figures 3A–C). No significant
effect on NK cells (15.9 ± 11.0% vs 16.6 ± 10.7%, p=0.6077) and
CD57+ NK cells (7.5 ± 7.0% vs 8.2 ± 8.7%, p=0.4960) was
documented (Supplementary Figures 3D, E, respectively).
Effect of Autologous Stem Cell
Transplantation on Immune
Subsets Distribution
To evaluate the impact of ASCT on lymphocyte subsets
distribution, 83/331 samples of treated patients were collected
A B

D

E F

C

FIGURE 2 | T cell subsets distribution in active MM patients according to treatment. The histograms show the distribution of T cell subsets in active MM patients
according to the number of previous therapies (1 line or >1 lines). (A) total T cells. (B) CD4+ Lymphocytes. (C) CD8+ Lymphocytes. (D) CD8+/DR+ lymphocytes.
(E) CD3+/CD57+ Lymphocytes. (F) Tgd lymphocytes. The comparisons between mean percentages were made by T-test and results are expressed as mean ±
standard deviation. TMM, treated MM.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Barilà et al. T Cell Modulation in MM
within 3 months from ASCT and compared with paired NDMM
samples. All patients received a bortezomib based induction
regiment, either in association with alkylating agents or
thalidomide. Even though no differences were found in total T
cells levels (72.1 ± 10.3% vs 72.8 ± 15.3%, p=0.7266, Figure 5A), a
cytotoxic T- cell skewing was confirmed in patients who received
ASCT, with reduction of CD4+ cells percentage (15.6 ± 7.0% vs
36.8 ± 9.4.%, p<0.0001, Figure 5B) and increase of CD8+
lymphocytes (59.7 ± 14.4% vs 36.5 ± 9.6%, p<0.0001, Figure
5C), CD8/DR+ lymphocytes (25.5 ± 19.2% vs 4.6 ± 4.6%,
p<0.0001, Figure 5D) and CD3+/CD57+ lymphocytes levels
(33.7 ± 13.6% vs 14.3 ± 10.8%, p<0.0001, Figure 5E) while no
differences in Tgd cells was evidenced (2.2 ± 3.7% vs 3.0 ± 2.5%,
p=0.1732, Figure 5F). At variance, a significant reduction of NK
cells (11.6 ± 7.6% vs 14.7 ± 6.8%, p=0.0135) and CD57+ NK cells
(4.3 ± 4.0% vs 6.9 ± 4.9%, p=0.0003) was found (Supplementary
Frontiers in Oncology | www.frontiersin.org 6
Figures 4A, B, respectively). Finally, a B cell subsets modulation
with reduction of CD19+/CD5- B cells (6.5 ± 7.2% vs 9.5 ± 6.1%,
p=0.0037) and increase of CD19+/CD5+ B cells (6.3 ± 5.5% vs
2.1 ± 3.7%, p<0.0001 was evident in patients who received ASCT
(Supplementary Figures 4C–E).

To avoid possible misleading effects due to viral triggers (i.e.
CMV and/or EBV reactivation) or immune reconstitution after
ASCT, we evaluated the same immune subsets in treated patients
excluding the 83 samples collected close to ASCT. In the samples of
these patients who received ASCT (n=110) with respect to patients
who did not (n=138) we observed a significant reduction in total T
cells (70.3 ± 15.4% vs 74.6 ± 12.0%, p=0.0137, Figure 6A) and CD4+
cells (23.0 ± 8.2% vs 32.8 ± 11.5%, p<0.0001, Figure 6B) and
confirmed a cytotoxic T cell skewing with increase in CD8+ cells
(51.0 ± 13.8% vs 43.0 ± 12.9%, p<0.0001, Figure 6C), CD8+/DR+
cells (12.9 ± 14.9% vs 8.8 ± 10.9%, p=0.0252, Figure 6D) and CD3
A B

D

E F

C

FIGURE 3 | T cell subsets distribution in bortezomib treated MM patients (A) Total T cells; (B) CD4+ Lymphocytes; (C) CD8+ Lymphocytes; (D) CD8+/DR+
lymphocytes; (E) CD3+/CD57+ Lymphocytes; (F) Tgd lymphocytes. The comparisons between mean percentages were made by T-test and results are expressed
as mean ± standard deviation. NDMM, newly diagnosed MM; BORT, Bortezomib.
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+/CD57+ cells (22.2 ± 12.5% vs 15.8 ± 10.7%, p<0.0001, Figure 6E),
while no significant differences in Tgd levels (4.1 ± 5.2% vs 4.3 ±
4.4%, p=0.7376)(Figure 6F) NK cells (15.6 ± 11.1% vs 16.6 ± 10.6%,
p=0.5752) and CD57+ NK cells were found (7.5 ± 7.2% vs 8.2 ±
8.5%, p=0.5152) (Supplementary Figures 5A, B). As reported
before, also B cells were higher in ASCT+ patients (11.43 ± 11.0%
vs 6.5 ± 6.6%, p<0.0001), with significant increase in CD19+/CD5- B
cells (4.6± 4.8% vs 2.1± 2.8%, p<0.0001) and an almost significant
increase of CD19+/CD5+ B cells (1.9 ± 3.1% vs 1.3 ± 2.3%,
p=0.0589) (Supplementary Figures 5C–E).
DISCUSSION

In our large series of cases, we demonstrated a relevant therapy
related T cell modulation in active Multiple Myeloma patients,
Frontiers in Oncology | www.frontiersin.org 7
with a cytotoxic T cell polarization resulting from Myeloma
treatment. More specifically, in treated patients a reduction of
CD4+ T cells and an increase in CD8+, CD8+/DR+ and CD3+/
CD57+ T cell was observed with respect to newly diagnosed
patients, these changes being more pronounced when referred to
the number of previous therapies.

The possibility to collect bone marrow data from this large
series of patients undoubtedly is the strength of our study but at
the same time, due to the impossibility to perform more accurate
evaluations in such a broad period of observations, its numerosity
represents a weakness of our piece. These shortcomings include
the lack of functional studies and the extensive characterization of
CD4+ and CD8+ T lymphocytes subsets and their properties, the
different time points of samples collections and the heterogeneity
of treatment received. However, to our knowledge, an immune
subset characterization of a large cohort of patients affected by
A B

D

E F

C

FIGURE 4 | T cell subsets distribution in lenalidomide treated MM patients (A) Total T cells; (B) CD4+ Lymphocytes; (C) CD8+ Lymphocytes; (D) CD8+/DR+
lymphocytes; (E) CD3+/CD57+ Lymphocytes; (F) Tgd lymphocytes. The comparisons between mean percentages were made by T-test and results are expressed
as mean ± standard deviation. Len, Lenalidomide.
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plasma cell dyscrasias is still lacking, even more outside clinical
trials. Therefore, our study represents a reliable real-life picture of
the immune system distribution in patients affected by plasma
cell dyscrasias.

Considering the different treatments responsible for these
variations, ASCT represents one of the main candidates. Up to
nowmost efficacy of ASCT in MM is likely to be the consequence
of high dose chemotherapy, but several hints suggest something
more than a mere cytoreductive effect. In fact, accumulating
evidence indicates that the melphalan used in conditioning
regimen induces a pro-inflammatory cytokine burst and
disrupts the immune-suppressive tumor micro-environment
(23–25). Our results reporting a switch of T cells toward a
cytotoxic phenotype are consistent with a distinctive
immunological activity of ASCT. These effects are not
Frontiers in Oncology | www.frontiersin.org 8
transiently induced by immune reconstitution and/or a viral
stimulation, since the same changes can be observed also far
from the time of ASCT, thus implying a more profound and
persistent effect of transplantation in immune subsets
distribution. Most importantly, a similar cytotoxic polarization
with reduction of CD4+ cells and increase in CD8+ effector
memory cells (resembling the CD3+/CD57+ cells analyzed in
our cohort) was observed in patients with long term complete
response after ASCT, suggesting a putative immune surveillance
effect (18). Of notice, since NK cells are reduced immediately
after ASCT, strategies including elotuzumab, whose mechanism
of action is fully dependent on NK cells activity, as consolidation
after transplantation might be not effective (26). Otherwise,
adoptive cell therapy strategies based on NK cells can represent
an interesting choice in MM treatment. In fact, chimeric antigen
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FIGURE 5 | T cell subsets distribution in paired MM patients at diagnosis and after autologous stem cell transplantation (n=83) Samples of patients who received
ASCT were collected within 3 months from conditioning regimen. (A) Total T cells. (B) CD4+ Lymphocytes. (C) CD8+ Lymphocytes. (D) CD8+/DR+ lymphocytes.
(E) CD3+/CD57+ Lymphocytes. (F) Tgd lymphocytes. The comparisons between mean percentages were made by T-test and results are expressed as mean ±
standard deviation. NDMM, newly diagnosed MM; ASCT, autologous stem cell transplantation.
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receptor NK cells (CAR-NK) therapy owns several advantages
towards CAR-T cells counterpart, more specifically an off-the
shelf availability with absence of graft versus host disease, lower
risk of cytokine release syndrome and multiple mechanism of
tumor recognition (27). Preclinical data of NKG2D and BCMA
CAR-NK cells showed efficacy to eradicate MM cells and clinical
trials using CD19 CAR-NK and BCMA CAR-NK are now
enrolling (28).

Novel agents like proteasome inhibitors and IMIDs
completely changed the landscape of Multiple Myeloma
treatment improving patient’s survival. Most of them acts
directly on myelomatous plasma cells but, especially for
IMIDs, an indirect activity through immune system has been
postulated (29–32). In our cohort we evaluated the consequence
of bortezomib and lenalidomide treatment on immune subsets
distribution. As expected, lenalidomide treatment was able to
induce a marked cytotoxic T cell skewing without affecting NK
Frontiers in Oncology | www.frontiersin.org 9
cells, besides these effects were also shown following bortezomib
treatment, even if less pronounced. Up to now, lenalidomide
represents the backbone of the most effective treatments used in
patients with newly diagnosed (33–35) and relapsed Multiple
Myeloma (36–39); moreover, lenalidomide maintenance after
ASCT is the standard of care for young patients. Considering the
remarkable cytotoxic polarization induced by these treatments,
our results offer a further strong rationale for lenalidomide
maintenance, in particular after ASCT (40).

Tgd cells are a small subset of lymphocytes recognizing small
non-peptidic phosphorylated antigens, moreover, the activation
of Vg9Tgd cells by amino bisphosphonates has been
demonstrated (41). In our cohort, a significant increase of Tgd
cells was not observed, except for lenalidomide treated patients.
However, almost all patients received bisphosphonates for the
treatment of Myeloma bone disease, thus entirely attributing this
increase to lenalidomide treatment itself.
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FIGURE 6 | T cell subsets distribution in MM treated patients with autologous stem cell transplantation (n=110) as compared to patients treated without autologous
stem cell transplantation (n=138). (A) Total T cells; (B) CD4+ Lymphocytes; (C) CD8+ Lymphocytes; (D) CD8+/DR+ lymphocytes; (E) CD3+/CD57+ Lymphocytes;
(F) Tgd lymphocytes. The comparisons between mean percentages were made by T-test and results are expressed as mean ± standard deviation. ASCT,
autologous stem cell transplantation.
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Immuneparesis is an established progression risk factor in
MGUS patients (11) and patients with active MM are often
characterized by hypogammaglobulinemia (42). In our cohort,
only treated MM patients showed significative B cell reduction,
including following bortezomib based and lenalidomide based
treatments and ASCT. Consequently, at least in the first step of
MMpathogenesis,most B cell dysfunction is qualitative rather than
quantitative. In addition, no significant quantitative differences
were found also in total NK cells, confirming that, in MM
progression process, NK cells are rather dysfunctional than
reduced. Several lines of evidence support this hypothesis,
including an altered balance in favor of immunosuppressive
cytokine like Interleukin 10 and TGF-b (43, 44), NK suppression
viaNKG2Ddown-regulation by solubleMICAandMICB (45) and
by upregulation of HLA-1 on pathological plasma cells (46) and
acquisition of “exhausted” phenotype signature with up-regulation
of programmed death receptor-1 (PD-1) (47).

Given the complexity of tumor microenvironment and the
numerous subsets of bone marrow cells involved in MM biology,
novel multiparametric cytometry approaches like mass
cytometry by time-of flight (CytOF) were recently introduced.
Using this approach, Kourelis et al. identified 12 immune clusters
within the CD45+ compartment of patients with PCD. These
authors also demonstrated that the tumor microenvironment of
light chain amyloidosis is completely different as compared to
other PCD and that treatments, including ASCT, promote the
activation of several immune suppressive populations (48).
Furthermore, they recently suggested that tumor immune
microenvironment features could be used to guide rational
selection of post-ASCT maintenance/consolidation strategies in
MM patients (49).

With the advent of novel immunotherapeutic approaches likes
antibody drug conjugated, bispecific antibodies (50), chimeric
antigen receptor T and NK cells (51, 52), a comprehensive
analysis of immune system is mandatory to assess treatment
efficacy and drug synergy, therefore novel high throughput
analysis as CytOF or single cell RNA sequencing are helpful to
rule out these issues. Given the retrospective nature and the broad
time period of our study, in this study we reported only a limited
immune subsets descriptive analysis, nevertheless the large study
cohort and the real-life evaluation represent somehow a novelty in
the field of Multiple Myeloma immunology.

In conclusion, we demonstrated that AMM patients are
characterized by a profound T cell modulation as compared to
MGUS and SMM patients and that most of these changes are
Frontiers in Oncology | www.frontiersin.org 10
therapy related. Among the different therapeutic strategies
commonly used in MM, ASCT and lenalidomide treatments
polarize immune system toward a dominant cytotoxic response,
likely contributing to the anti-Myeloma effect of these regimens.
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