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Abstract: Bivariate random-effects models represent an established approach for meta-analysis of accuracy
measures of a diagnostic test, which are typically given by sensitivity and specificity. A recent formulation
of the classical model describes the test accuracy in terms of study-specific Receiver Operating Characteris-
tics curves. In this way, the resulting summary curve can be thought of as an average of the study-specific
Receiver Operating Characteristics curves. Within this framework, the paper shows that the standard likeli-
hoodapproach for inference isprone toseveral issues. Small sample sizecangive rise tounreliable conclusions
and convergence problems deeply affect the analysis. The proposed alternative is a simulation-extrapolation
method, called SIMEX, developed within the measurement error literature. It suits the meta-analysis frame-
work, as the accuracy measures provided by the studies are estimates rather than true values, and thus are
prone to error. The methods are compared in a series of simulation studies, covering different scenarios of
interest, including deviations from normality assumptions. SIMEX reveals a satisfactory strategy, providing
more accurate inferential results if compared to the likelihood approach, while avoiding convergence fail-
ure. The approaches are applied to a meta-analysis of the accuracy of the ultrasound exam for diagnosing
abdominal tuberculosis in HIV-positive subjects.

Keywords: diagnostic test; likelihood inference; multivariate meta-analysis; ROC curve; SIMEX.

Bivariate random-effects models represent a well-established approach for meta-analysis of diagnostic accu-
racy studies [1–4]. Accuracy of a diagnostic test is typically measured in terms of sensitivity, that is, the
conditional probability of testing positive in diseased subjects, and specificity, that is, the conditional prob-
ability of testing negative in nondiseased subjects. The bivariate random-effects approach allows a joint
modelization of sensitivity and specificity while accounting for measurement errors affecting the study-
specific measures of accuracy of the test. In this way, the approach outperforms the criticized traditional
method developed in Littenberg and Moses [5] that constructs a summary Receiver Operating Characteristic
(ROC) curve based on the regression of the difference between sensitivity and specificity on their sum [2].
Inference under the bivariate random-effects model specification has the aim of providing an overall mea-
sure of sensitivity and/or specificity, diagnostic odds ratio and summary ROC curves. Typically, the aim is
attained via a standard likelihood-based approach, although the literature warns against several issues that
can affect inferential conclusions. Issues include small sample size, model misspecification and convergence
problems. See, e.g., Guolo [6] and Takwoingi et al. [7] for illustrations. More sophisticated solutions based, for
example, on pseudo-likelihood [8], copula models [9] or non-parametric approaches [10] have been recently
proposed. Guolo [11] suggests the use of SIMEX, a simulation-extrapolation approach developed within the
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measurement error literature, that is flexible enough to cover different measurement error structures, and
that is characterized by an effortless implementation with standard software, see, e.g., Carroll et al. [12].

Despite the chosen approach for estimation, the formulation of the original bivariate random-effects
approach [1, 2] has been criticized with respect to the interpretation of the resulting summary ROC curve.
Hamza et al. [3] notice that themodel does not necessarily allow to interpret the resulting summary ROC curve
as a kind of average or overall ROC representative of the study-specific ROC curves. In order to obtain such an
average ROC curve, Hamza et al. [3] propose a modification of the traditional bivariate random-effects model
starting from the ROC study-specific curves and under extra assumptions on the test accuracy measures. The
model is such that the estimated summary ROC curve can be considered a real overall summary ROC curve.
Hamza et al. [3] suggest a likelihood-based approach for inference, but the performance of the proposed
methodology is not deeply investigated. Within this framework, the aim of the paper is twofold. First of all,
the paper investigates the performance of the likelihood-based strategy under a Normal approximation for
the random-effects distribution in the model proposed in Hamza et al. [3]. Drawbacks of the likelihood-based
approach in caseof small sample size andcomputational problemsask for analternative solution for inference
on the accuracymeasures of a test. To this aim, the paper develops a SIMEX-typemethodology. The likelihood-
based solution and the SIMEX approach are investigated and compared in terms of accuracy of the inferential
procedures and from the computational point of view. Simulation studies for comparison are designed in
order to reflect the real data-generating mechanism of the meta-analysis study level. Different scenarios
are taken into account involving small to moderate sample size, increasing accuracy of the diagnostic test,
deviations from the normality assumptions on the distribution of the unknown test accuracy measures. The
last case deserves special attention, as model misspecifications are known to affect the likelihood-based
procedures. SIMEX, conversely, is a functional method making no assumption on the distribution of the
unknown mismeasured quantities. Thus, it is expected not to suffer from deviations from normality. The
performance of the competing methods is further evaluated on a real meta-analysis about the accuracy of
ultrasound exam for the diagnosis of abdominal tuberculosis in HIV-positive subjects.

1 Bivariate random-effects model
Consider a meta-analysis of K independent studies about the accuracy of a diagnostic test. Let ni11, ni10, ni01,
ni00 be the number of true positives, false positives, false negatives and true negatives, respectively, from
study i, i = 1,… ,K, obtained comparing the results from the diagnostic test to a reference test, assumed to
be a gold standard [4]. Let ni1 = ni11 + ni01 be the number of diseased subjects and let ni0 = ni10 + ni00 be the
number of free-diseased subjects, see Table 1.

Consider the sensitivity Sei and the specificity Spi as diagnostic accuracy measures from study i,
i = 1,… ,K. The estimates of sensitivity and specificity obtained from Table 1 are Ŝei = ni11∕(ni11 + ni01) and
Ŝpi = ni00∕(ni00 + ni10), respectively.Keepingwithmuchof the literature,meta-analysis ofdiagnostic accuracy
studies can be carried out on logit transformations of Sei and 1− Spi, namely,

𝜂i = log
(

Sei
1− Sei

)
and 𝜉i = log

(
1− Spi
Spi

)
, i = 1,… ,K,

Table 1: Reference table for the ith study.

Reference test

Positives Negatives

Diagnostic test Positives ni11 ni10
Negatives ni01 ni00

Total ni1 ni0 ni
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whose estimates are given by

𝜂i = log
(
ni11
ni01

)
and 𝜉i = log

(
ni10
ni00

)
, i = 1,… ,K.

1.1 Classical formulation
The classical bivariate random-effects model developed in Reitsma et al. [1] and in Arends et al. [2] has a
hierarchical structure, distinguishing a between-study level and a within-study level. The between-study
model considers a Normal joint distribution for (𝜂i, 𝜉i)⊤,(

𝜂i
𝜉i

)
∼ 

((
𝜂

𝜉

)
,Σ1

)
, with Σ1 =

(
𝜎2
𝜂 𝜎𝜉𝜂

𝜎𝜉𝜂 𝜎2
𝜉

)
, (1)

where 𝜂 and 𝜉 are the means over the studies, 𝜎2
𝜂 and 𝜎2

𝜉
are the between-study covariances and 𝜎𝜉𝜂 is the

covariance between 𝜂 and 𝜉. The covariance is typically positive as sensitivity and 1-specificity tend to be
positively correlated. The within-study model relates the observed pair (�̂�i, 𝜉i)⊤ to (𝜂i, 𝜉i)⊤. For computational
convenience, a Normal distribution is adopted, namely,(

�̂�i
𝜉i

)||||||
(
𝜂i
𝜉i

)
∼ 

((
𝜂i
𝜉i

)
, Si

)
, where Si =

(
n−1i1 Ŝe

−1
i (1− Ŝei)−1 0

0 n−1i0 Ŝp
−1
i (1− Ŝpi)−1

)
. (2)

The variance/covariance matrix Si is diagonal, as sensitivity and specificity are evaluated on different
subjects, with non-zero entries are estimated from each study. Under the previous Normal distributions, it
follows that, marginally, (

�̂�i
𝜉i

)
∼ 

((
𝜂

𝜉

)
,Σ1 + Si

)
. (3)

Likelihood-based inference on the parameter vector
(
𝜂, 𝜉, 𝜎2

𝜂, 𝜎
2
𝜉
, 𝜎𝜉𝜂

)⊤

takes advantage of the closed-
form of the likelihood function. Themodel resulting from (1) to (2) is strictly connected to themodel suggested
in Rutter and Gatsonis [13] within a Bayesian framework, although with a different parameterization [14].
Nevertheless, the implementation of (3) is more convenient [2].

Parameter estimation is typically performed via maximum likelihood or restricted maximum likelihood
[2]. Despite the feasibility of the approach, the literature warns against unreliable inferential conclusions due
to small sample size, convergence problems, deviations from normality assumptions [6, 7].

When themaximum likelihood estimate or restrictedmaximum likelihood estimate of the parameter vec-
tor

(
𝜂, 𝜉, 𝜎2

𝜂, 𝜎
2
𝜉
, 𝜎𝜉𝜂

)⊤

is available, theoverall estimateof sensitivitySeandspecificitySpareobtainedbyback-
transforming the estimates of 𝜂 and 𝜉. The associated standard errors can be obtained using the deltamethod.
Other measures of diagnostic test accuracy include the positive likelihood ratio LR+ = Se∕(1− Sp), the
negative likelihood ratio LR− = (1− Se)∕Sp and the diagnostic odds ratio dOR = Se∕(1− Se) × Sp∕(1− Sp).
A useful description of the diagnostic test is provided through the summary ROC curve. As Arends et al. [2]
illustrate, the summary ROC curve can be obtained after characterizing the bivariate Normal model via an
appropriate line or relationship between sensitivity ands specificity and then by transforming the line to the
ROC space. Common choices are the regression line of 𝜂i over 𝜉i or the alternative regression line of 𝜉i over 𝜂i.

1.2 Alternative formulation
Criticism towards the use of the classical specification of the summary ROC curve as in Arends et al. [2] is
expressed in Hamza et al. [3], who note that the bivariate model does not make assumptions on the study
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specific curves. Consequently, the chosen summary ROC curve does not correspond to an average summary
ROCcurveoranoverall representative summaryROCcurve for theROCsof thedifferent studies. For this reason,
Hamza et al. [3] suggest a new formulation of the bivariate model, providing a summary ROC curve that is an
average of the study specific ROC curves. For each study i, themodel assumes a linear relationship between 𝜂i
and 𝜉i, given by 𝜂i = 𝛼i + 𝛽𝜉i, with 𝛼i ∼ 

(
𝛼, 𝜎2

𝛼

)
and 𝜉i ∼ 

(
𝜉, 𝜎2

𝜉

)
, i = 1, . . . ,K. The relationship implies

that the ROC curves have a different intercept 𝛼i but the same slope 𝛽, in the (𝜉, 𝜂) space. The between-study
model is a modification of (1)(

𝜂i
𝜉i

)
∼ 

((
𝛼 + 𝛽𝜉

𝜉

)
,Σ2

)
, where Σ2 =

(
𝜎2
𝛼 + 𝛽2𝜎2

𝜉
+ 2𝛽𝜎𝛼𝜉 𝜎𝛼𝜉 + 𝛽𝜎2

𝜉

𝜎𝛼𝜉 + 𝛽𝜎2
𝜉

𝜎2
𝜉

)
. (4)

Given the within-study model (2), the marginal model is(
�̂�i
𝜉i

)
∼ 

((
𝛼 + 𝛽𝜉

𝜉

)
,Σ2 + Si

)
, (5)

with variance/covariance matrix

Σ2 + Si =
(
s2𝜂i + 𝜎2

𝛼 + 𝛽2𝜎2
𝜉
+ 2𝛽𝜎𝛼𝜉 𝜎𝛼𝜉 + 𝛽𝜎2

𝜉

𝜎𝛼𝜉 + 𝛽𝜎2
𝜉

s2
𝜉i
+ 𝜎2

𝜉

)
.

Model (5) is similar to (3), with a different parameterization characterized by the fixed-effect component 𝛽
entering the variance/covariance matrixΣ2 + Si, and one parameter more. Thus, model (5) is not identifiable.
In order to guarantee identifiability, further assumptions are needed. A first solution is setting the correlation
between 𝛼i and 𝜉i to zero, namely, 𝜎𝛼𝜉 = 0. Hamza et al. [3] underline that such an assumption would imply
that investigators in selecting the level of 𝜉i are not lead by the intercept of their specific ROC curve. Under the
assumption 𝜎𝛼𝜉 = 0, 𝛽 is the slope of the regression line of 𝜂i on 𝜉i. Then, the regression of 𝜂i on 𝜉i produces
the average line over the studies and, in the ROC space, the associated summary ROC curve can be interpreted
as an average ROC curve. A second assumption considers the correlation between 𝜂i and 𝛼 is zero, namely,
𝜎𝛼𝜂 = 0. In this case, 𝜎𝜂𝜉 = −𝜎2

𝛼∕𝛽 and 𝛽 is the slope of the regression of 𝜉i on 𝜂i. Then, the regression of
𝜉i on 𝜂i produces the average line over the studies and, in the ROC space, the associated SROC curve can be
interpreted as an average ROC curve. Alternative formulations are possible, including linear combinations of
𝜂i and 𝜉i, see Arends et al. [2] and Hamza et al. [3]

1.3 Measurement errors
The information available from the studies included in the meta-analysis is affected by error, as the observed
𝜂i and 𝜉i are estimated versions of the true 𝜂i and 𝜉i. This is quite a common problem in meta-analysis, given
the nature of the available data that are summary information obtained from each study, see Arends et al.
[15], Ghidey et al. [16], Guolo [17]. Not accounting for measurement errors can result in misleading inference,
as a huge literature testifies, see, e.g., Keogh et al. [18] and Shaw et al. [19]. Consequences of ignoring the
presence of measurement errors in variables are various, with negligible to relevant effects on inferential
conclusions. The most famous effect in simple linear regression models with mismeasured covariate is the
slope biased towards zero, a phenomenon known as attenuation. Attenuation occurs in case of classical and
additive measurement error [20], that is, when the observed measure X∗ is the sum of the true unobserved
covariate X plus an error component U, where U is independent of X, with zero mean and constant variance.
In case of non-linear models or complex error structures, effects are unpredictable, see, e.g., Chapter 3 in
Carroll et al. [12]. Inmeta-analysis of diagnostic accuracy studies, an attenuated slope of the regression line of
the summary ROC curve is the result of the measurement errors affecting 𝜂i and 𝜉i, see Arends et al. [2]. In the
context ofmeta-analysis of diagnostic accuracy studies, themeasurement error problem is somehowpeculiar.
Commonly, measurement error impacts inference when a covariate is affected, while errors in the measure of
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the response variable of a regression model give rise to less concern. In case of diagnostic accuracy studies,
there is no clear definition of the response and the covariate, that is, the role of 𝜂i and 𝜉i is not undoubtedly
established, as 𝜂i and 𝜉i can act as response or covariate according to the specific regression model chosen
for the summary ROC curve, see, e.g., Arends et al. [2]. Only when a specific summary ROC curve is chosen,
then the role of 𝜂i and 𝜉i in terms of response variable or covariate is defined.

The likelihood approach based on the random-effects bivariate model in (3) implicitly accounts for the
measurement error in

(
�̂�i, 𝜉i

)⊤

through the specification of thewithin-studymodel that defines a relationship

between the error prone
(
�̂�i, 𝜉i

)⊤

and the true unobserved (𝜂i, 𝜉i)
⊤ [2, 21, 22]. A similar conclusion holds with

respect to themodel formulation proposed in Hamza et al. [3] giving rise to (5). Nevertheless, the performance
of the likelihood approach with reference to model (5) has not been evaluated in detail, neither alternative
solutions inspired by themeasurement error literature have been explored. In the following section, we adapt
the SIMEX methodology, a simulation-based technique used to estimate and correct for measurement error
in regression models, to the model in Hamza et al. [3] and investigate its performance compared to that of the
likelihood approach in a series of simulation studies.

2 SIMEX
SIMEX is a general-purpose simulation-extrapolation technique developed to estimate and reduce bias due to
measurement error [23–26]. SIMEX is well suited to deal with errors having a classical and additive structure,
that is, when the error prone variable W is an unbiased measure of the unobserved variable X, such that
W = X + U, with E(U|X) = 0. Actually, it can be easily extended to scenarioswheremeasurement error can be
simulated, as, for example, when the measurement error variance is known or approximately known. SIMEX
consists of a simulation step followed by an extrapolation step. In the simulation step, a resampling-like
strategy is used to generateM datasets with increasing measurement error. Each dataset is used to estimate
the parameters of interest. In the extrapolation step, the relationship between the estimates and the amount
of additional error is obtained and used to extrapolate the corrected SIMEX estimate of the parameter to the
case of no measurement error.

In the following we illustrate the application of SIMEX to meta-analysis of diagnostic accuracy studies,
when the reference model is the bivariate random-effects model according to the formulation in Hamza et al.
[3]. The application of SIMEX within this framework is inspired by Guolo [11], who applied SIMEX in the
traditional bivariate random-effects model for meta-analysis of diagnostic accuracy studies, and by Guolo
[17], who considered SIMEX in meta-analysis including information about the underlying risk of disease in
healthy subjects.

Let Wi(𝜆) =
(
𝜉i, �̂�i

)⊤

and let Xi = (𝜉i, 𝜂i)
⊤ be the vector of error-prone covariates and the vector of true

variables, respectively. We consider the measurement error model relating Wi to Xi being the within-study
model (2). Themeasurement error structure perfectly suits the assumption in the original SIMEXmethodology
development, as we deal with classical and additive errors, with approximately known variance/covariance
matrix Si. The components of Wi can act as response variable or as covariate when the relationship useful
to obtain the summary ROC curve is specified. Accordingly, the SIMEX methodology is called double SIMEX,
following Holcomb [27] who firstly investigated the use of SIMEX in case of measurement error affecting both
the response variable and the covariate in regression models.

In the simulation step, B datasets with additional error are generated. For fixed 𝜆 ≥ 0, let Wb,i = Wi +√
𝜆S−1∕2i Ub,i be the ith observation of the bth dataset, b = 1,… ,B, where Si is the variance/covariance matrix

of Wi and the pseudo errors Ub
i , i = 1,… ,K are simulated from a Gram–Schmidt process [27] in order to

guarantee zero mean and unit variance. Such a choice reduces the Monte Carlo variance of the SIMEX
estimates, see Chapter 5 in Carroll et al. [12]. Variable Wb,i can be seen as a remeasurement of Wi, with
variance Var(Wi) = 𝜎2

u. Consider that Var(Wi|Xi) = 𝜎2
u and that
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Var{Wb,i(𝜆)|Xi} = (1+ 𝜆) Var{Wi(𝜆)|Xi} = (1+ 𝜆)𝜎2
u.

Since E{Wb,i(𝜆)|Xi} = Xi, the mean squared error ofWb,i

MSE{Wb,i(𝜆)} = (1+ 𝜆)𝜎2
u

converges to zero as 𝜆→−1. Let �̂�b(𝜆) be the estimator of 𝜃 using dataWb,i(𝜆) for fixed 𝜆 obtained by a chosen
approach, e.g., the method of moments, and let 𝜃(𝜆) be the sample mean of 𝜃b(𝜆). The peculiar feature of
model (5), with the fixed-effects components 𝛽 entering the variance/covariance matrix, implies that the
method-of-moments estimate of 𝜃b(𝜆) =

(
𝛼, 𝛽, 𝜉, 𝜎2

𝛼, 𝜎
2
𝜉

)⊤

based on
(
�̂�i,b, 𝜉i,b

)⊤

from the b−th dataset is not
a useful choice, differently from the classical framework in model (3) investigated in Guolo [11]. We suggest to
estimate 𝜃b(𝜆) by maximizing the log-likelihood function

𝓁b(𝜃) = − 1
2

(
log𝜎2

𝜉
+ log𝜎2

𝛼

)
− 1
2𝜎2

𝛼𝜎
2
𝜉

{
𝜎2
𝜉

(
�̂�i,b − 𝛼 − 𝛽𝜉

)2
+
(
𝜎2
𝛼 + 𝛽2𝜎2

𝜉

)(
𝜉i,b − 𝜉

)2
− 2𝛽𝜎2

𝜉

(
�̂�i,b − 𝛼 − 𝛽𝜉

)(
𝜉i,b − 𝜉

)}
. (6)

Differently from the classical bivariate random-effects model in Reitsma et al. [1] and Arends et al. [2], the
maximumlikelihoodestimateof𝜃 in (6) isnotavailable inclosed form.An iterativealgorithmformaximization
can be used with starting values available, for example, from the method-of-moments type estimators.

In the extrapolation step, a relationship between 𝜃(𝜆) and 𝜆 is defined and used to obtain the SIMEX
estimate of 𝜃, 𝜃SIMEX, as the extrapolation to the case 𝜆 = −1. In practice, two popular solutions are the linear
extrapolation function and the quadratic extrapolation function. The quadratic extrapolation function is
usually preferable given its numerical stability, see Chapter 3 in Carroll et al. [12]. The SIMEX estimate of 𝜃 is
the SIMEX estimate of each component, after applying the extrapolation function to each set of B estimates
of the parameters resulting from the simulation step. The resulting SIMEX estimator 𝜃SIMEX is a consistent
estimator of 𝜃 with asymptotically Normal distribution [25]. The computation of the standard error of �̂�SIMEX
canbeobtainedviaa similar approachusing toderive theSIMEXestimate. Let s2b(𝜆) be thevariance/covariance
matrix estimate of 𝜃b, obtained by means of the sandwich estimator or the inverse of the observed Fisher
Information matrix. Let s2(𝜆) be the average of the B variance estimates, s2(𝜆) = B−1∑B

b=1s2b(𝜆), and let s
2
Δ(𝜆)

be the sample variance/covariancematrix of the terms 𝜃b, b = 1,… ,B. The variance/covariancematrix of the
SIMEX estimator is obtained by extrapolating s2(𝜆)− s2Δ(𝜆) to the case 𝜆 = −1, see Stefanski and Carroll [24]
and Appendix B.4 in Carroll et al. [12].

3 Simulation study

3.1 Set-up
The performance of SIMEX is evaluated in a series of simulation studies and compared to that of the likelihood
approach based on a Normal approximation for the within-study model, as described in Section 1.

Data are generated according to a two-step approach. In the first step, values of 𝜂i and 𝜉i
are generated for each study included in the meta-analysis, starting from the between-study model
(4) under the identifiability assumption 𝜎𝛼𝜉 = 0. Values of parameters 𝛼, 𝛽, 𝜉 are chosen in order
to reflect a high accuracy of the test (𝛼 = 3.5, 𝛽 = 0.25, 𝜉 = −2.2), a medium accuracy of the test
(𝛼 = 1.76, 𝛽 = 0.25, 𝜉 = −1.5) and a low accuracy of the test (𝛼 = 0.83, 𝛽 = 0.25, 𝜉 = −0.85). The choice
ensures different values of sensitivity/specificity, namely, Se ∈ {0.95,0.8,0.65} and Sp ∈ {0.9,0.82,0.7},
respectively. Values of the variance components 𝜎2

𝜉
and 𝜎2

𝛼 are chosen in way to consider increasing
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levelsof correlation𝜌 = 𝛽𝜎2
𝜉

{(
𝜎2
𝛼 + 𝛽2𝜎2

𝜉

)
𝜎2
𝜉

}−1∕2
between𝜂i and𝜉i, namely,𝜌 = 0.222

(
𝜎2
𝜉
= 0.5, 𝜎2

𝛼 = 0.6
)
,

𝜌 = 0.438
(
𝜎2
𝜉
= 1.9, 𝜎2

𝛼 = 0.5
)
and 𝜌 = 0.800

(
𝜎2
𝜉
= 4, 𝜎2

𝛼 = 0.141
)
. In the second step, given the values

of (𝜂i, 𝜉i)
⊤, values of true positives n11i and false positives n10i for study i are simulated from a Binomial

distribution, namely,

n11i ∼ Bin
{
n1i, (1+ e−𝜂i )−1

}
, n10i ∼ Bin

{
n0i,

(
1+ e−𝜉i

)−1}. (7)

The number of positives n1i and the number of negatives n0i are drawn from a Uniform distribution on
[40, 200], respectively. The simulation studyconsiders an increasingnumberK of studies included in themeta-
analysis, K ∈ {10, 20, 50}. The simulation experiment has been repeated 1000 times for each combination of
the parameters.

The simulation study examines the robustness of the methods against model misspecifications, by
investigating deviations from the normality assumption of the random-effect. In a first case, values of 𝜉i
are generated from a Skew-Normal distribution [28] in order to account for skewness of the distribution,
with skewness parameter assuming values in {0.4,0.55,0.65}. Two additional cases have been considered,
namely, a Student t distribution in order to account for heavy tails of the distribution and the logarithm
of a Pareto distribution. Increasing value of the degrees of freedom for the Student t distribution has been
considered, {3, 6, 10}. With respect to the Pareto distribution, the shape parameter is fixed to 3, while the
scale parameter assumes values in {0.008,0.16,0.31}. For each scenario, the choice of the parameters values
guarantees a mean of 𝜉 in {−2.2,−1.5,−0.85}, in order to generate a high accuracy scenario, a medium
accuracy scenario and a low accuracy scenario.

When applying the likelihood approach, the sandwich estimate of the variance is adopted in order to
account for potential model misspecifications. The application of SIMEX considers 𝜆 assuming values on a
grid, 𝜆 ∈ {0.0,0.5, 1, 1.5, 2}, a number B = 100 of remeasured data generated using the Gram–Schmid pro-
cess, and the quadratic extrapolating function, given its numerical stability, see, e.g., Chapter 5 in Carroll
et al. [12]. In the simulation step, the estimation of the parameters is performed through the optimization
of the likelihood function (6), with initial values obtained from a method-of-moments strategy. The R pro-
gramming language [29] has been used for analysis. The software for implementing SIMEX is available as
Supplementary Material.

The competing methods are examined in terms of bias, estimated standard error and standard deviation
of the estimators of the parameters 𝛼, 𝛽, 𝜉, 𝜎2

𝜉
, 𝜎2

𝛼 and in terms of the 95% Wald-type confidence interval
for the estimators of 𝛼, 𝛽, 𝜉. The measures of test accuracy given by the diagnostic odds ratio dOR, the
positive likelihood ratio LR+ and the negative likelihood ratio LR− are provided as well. The methods
are evaluated also in terms of convergence problems. Successful convergence is intended as meeting the
criterion convergence (e.g., difference between current and updated estimates less than 0.0001) and positive
definite variance/covariancematrix. The results under non-convergence are excluded when summarising the
simulation results.

3.2 Results
Under a Normal specification for the distribution of 𝜉i, the likelihood-based approach tends to provide
estimators of 𝛼, 𝛽, 𝜉 more biased than SIMEX, as illustrated in Table A1 for the high accuracy scenario
and the low accuracy scenario, and in Table S1 in the Supplementary Material for the medium accuracy
scenario, when K = 10. The bias is larger under the high accuracy scenario, and it tends to decrease moving
to the medium accuracy case (Table S1 in the Supplementary Material) and to the low accuracy case. As
expected from a theoretical point of view, the bias decreases as the sample size increases, see Tables S2 and
S3 in the Supplementary Material referred to K = 25 and K = 50. For both themethods the bias is larger when
the correlation 𝜌 between 𝜂i and 𝜉i close to the upper boundary level, with the effect being more pronounced
for the likelihood approach.
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Similar results are experienced for the estimators of the variance components, see Table A2 for K = 10
and Tables S4 and S5 in the Supplementary Material for larger K. The bias is even larger when relying on the
likelihood approach than it was with respect to the regression coefficients 𝛼, 𝛽, 𝜉, especially for small sample
size and large correlation 𝜌. Results are more biased in case of high accuracy of the test.

The likelihood approach provides larger standard errors of the estimators than SIMEX, mainly with
reference to the estimators of 𝛼 and 𝛽, while smaller results are provided with reference to the estimator of
the variance component 𝜎2

𝜉
. For both the cases, bias tends to reducemoving to scenarios with lower accuracy.

Figures 1 and 2 report the empirical coverage probability at nominal level 0.95 for the estimators of𝛼, 𝛽, 𝜉,
under high accuracy or low accuracy of the diagnostic test, for increasing 𝜌 and sample size K. The results for
the medium accuracy case are reported in Figure S1 in the Supplementary Material.
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Figure 1: Empirical coverage probabilities of confidence intervals for the estimators of 𝛼, 𝛽, 𝜉, based on the likelihood approach
under a normal specification of the random-effects (grey points) and SIMEX (black points). Values of (𝜂i, 𝜉i)⊤ are generated from
a bivariate normal distribution, under high accuracy scenario. Results are reported for increasing correlation and sample size K,
on the basis of 1000 replicates. The grey horizontal line is the target 0.95 nominal level.
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Figure 2: Empirical coverage probabilities of confidence intervals for the estimators of 𝛼, 𝛽, 𝜉, based on the likelihood approach
under a normal specification of the random-effects (grey points) and SIMEX (black points). Values of (𝜂i, 𝜉i)⊤ are generated from
a bivariate normal distribution, under low accuracy scenario. Results are reported for increasing correlation and sample size K,
on the basis of 1000 replicates. The grey horizontal line is the target 0.95 nominal level.

Results show that the likelihood approach tends to underestimate the target level, especially in case
of small sample size and under the high accuracy scenario. See, for example, the low empirical coverage
probability for the estimator of 𝛼 in case of high accuracy scenario in Figure 1. Increasing the sample size does
not help, as the standard error of the estimators decreases faster than the associated bias, implying that the
confidence intervals are centered on values far from the true ones. Results from SIMEX are more satisfactory.
Empirical coverage probability for all the examined parameters tend to be closer to the target level, under
different values of 𝜌, sample size K and under either the high accuracy scenario or the low accuracy scenario.
Such a superior performance with respect to the likelihood approach is more evident for the high accuracy
case, with increasing K, see Figure 1, bottom panels.

Figure 3 and Figure S2 in the Supplementary Material report the empirical coverage probabilities at
nominal level0.95 for thepositiveandnegative likelihood ratios and for thediagnostic odds ratio, respectively.

With reference to the diagnostic odds ratio, results from SIMEX notably outperform the likelihood
approach, which suffer from empirical coverage probabilities substantially lower than the target level, mainly
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Figure 3: Empirical coverage probabilities of confidence intervals for the estimators of diagnostic odds ratio (dOR), based on the
likelihood approach under a normal specification of the random-effects (grey points) and SIMEX (black points). Values of (𝜂i, 𝜉i)⊤
are generated from a bivariate normal distribution, under high and low accuracy scenario. Results are reported for increasing
correlation and sample size K, on the basis of 1000 replicates. The grey horizontal line is the target 0.95 nominal level.

for the high accuracy scenario, see Figure 3. In case of low accuracy of the test, the performance of the
competing methods is similar. A more satisfactory performance of SIMEX is experienced also in terms of
positive and negative likelihood ratio, with the discrepancy in favour of SIMEX being more evident for large
K and under the high accuracy scenario. Analogous results for the medium accuracy scenario are reported in
Figure S3 in the Supplementary Material.

Substantial differences between the methods occur in terms of failure rate of the estimation process. The
likelihood approach suffers from computational problems for large values of 𝜌 and under the high accuracy
case, see the larger values of the failure rate in Table A1. Issues are mostly related to the estimate of the
parameters on the boundary of the parameter space. Such a result is in line with previous studies in the
literature, see, for example, Diaz et al. [30], Chen et al. [8], Guolo [11], Takwoingi et al. [7]. As expected,
increasing the sample size is helpful in reducing the computational issues. See the very low failure rate
for K = 50 in Table S3 in the Supplementary Material. Conversely, no convergence problems have been
encountered when applying SIMEX, independently of the sample size K, the correlation 𝜌 or the level of
accuracy of the test.

Results in case of misspecification of the distribution of 𝜉i, considering either a Skew-Normal dis-
tribution, a Student t distribution or a log Pareto distribution, are reported in Tables S6–S11 and
Figures S4–S14 in the Supplementary Material. The behavior of the likelihood approach and SIMEX is similar
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to that under the Normal distribution. A larger bias of the likelihood-based estimation of the parameters of
interest with respect to SIMEX is still present, especially in case of small sample size. See, for example, the
large bias of the likelihood-based estimator of 𝜉 and of the variance components under a Student t distribu-
tion for small sample size K = 10 and the large bias of the likelihood-based estimator of 𝛼 under a log Pareto
distribution for small sample size K = 10 (Tables S6 and S7). A discrepancy between the estimated standard
error and the standard deviation of the parameter estimators is expected as a consequence of the model
misspecification. The effects of misspecification of the distribution of 𝜉i are evident in terms of empirical
coverage probability, with results from the likelihood approach sometimes very far from the target level.
See the empirical coverage probability close to 50% for the estimator of 𝜉 under the Student t distribution
for the high accuracy case in Figure S5. The advantages of SIMEX include empirical coverage probabilities
that tend to have a quite stable behaviour close to the target level, under the misspecification scenarios, see
Figures S4–S7. As for the Normal case, such a behavior is not affected by variations of the sample size K as
well as variations of the accuracy of the diagnostic test.

Figures S8–S14 in the Supplementary Material report the empirical coverage probabilities of the positive
likelihood ratio, the negative likelihood ratio, and the diagnostic odds ratio in case of misspecification of
the distribution of 𝜉i. Differences between the competing methods are more evident under the Skew-Normal
distributionand theStudent tdistribution for thehighaccuracycase, seeFiguresS8andS11. In these cases, the
likelihood-based approach provides empirical coverage probabilities substantially far from the target level,
while the performance of SIMEX is less affected. Notable improvements of SIMEX over the likelihood solution
are experienced under a Student t distribution for 𝜉i with a small number of degrees of freedom, especially
when estimating the diagnostic odds ratio, see Figure S11. Differences between the methods reduce moving
from the high accuracy scenario to the low accuracy scenario. Increasing the sample size does not help the
likelihood approach to improve on empirical coverage probabilities. This result is an expected consequence
of the poor behaviour of the likelihood approach when estimating the regression components 𝛼, 𝛽, 𝜉. Less
marked differences in terms of empirical coverage probabilities between the likelihood approach and SIMEX
appear under a log Pareto distribution for 𝜉, for increasing values of the scale parameter, see Figure S14.

The comparison of the methods with respect to the convergence problems still highlights a large failure
rate for the likelihood approach, with evidence in case of small sample size, while no computational issues
affect SIMEX, see Table S6 in the Supplementary Material for K = 10. The failure rate for the likelihood
approach reduces when increasing the sample size, see Tables S8 and S10 in the Supplementary Material.

4 Data example
Tuberculosis is an infection involving mostly the lungs. Nowadays, it remains a major cause of ill health,
being one of the top ten causes of death worldwide, mainly affecting adult men [e.g., 31]. In HIV-positive
people with advanced immunosuppression, tuberculosis is challenging to detect, since symptoms are similar
to those presented by other pulmonary infections. As a consequence, a substantial portion of tuberculosis
cases remained undiagnosed at death. Nevertheless, autopsy studies indicate a very high proportion of tuber-
culosis in HIV patients [32]. Within the population having tuberculosis associated with HIV, up to 50% of
the cases is estimated to correspond to extrapulmonary tuberculosis including abdominal or disseminated
tuberculosis [e.g., 33]. van Hoving et al. [34] evaluate the accuracy of the abdominal ultrasound exam to
diagnose the infection from abdominal or disseminated tuberculosis in HIV-positive subjects. The reference
standard is represented by a bacteriological confirmation, usually associated to clinical diagnosis based on
X-ray abnormalities or suggestive histology.We consider the data referred to ascites on abdominal ultrasound
for tuberculosis detection, including eight studies, for a total of 891 subjects. The forest plot for the estimates
of sensitivity and specificity provided by each study included in themeta-analysis is reported in Figure 4. Uni-
variate meta-analysis provides an estimate of the overall sensitivity and an estimate of the overall specificity
equal to 0.342 (standard error 0.09) and 0.817 (standard error 0.091), respectively.
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Figure 4: Forest plot of sensitivity and specificity for the meta-analysis of abdominal ultrasound examination for diagnosing
tuberculosis in HIV-positive subjects [34].

Data have been examined through the likelihood approach and SIMEX, using amethod-of-moments type
estimate as starting value in the optimization process. The application of the likelihood approach did not
reach convergence as the estimate of the variance components reaches the boundary of the parameter space,
and the resulting variance/covariance matrix is not positive-definite. Changes in the optimization algorithm
and changes of the starting values do not solve the non-convergence problem. Results are thus reported only
for SIMEX, whose application has no convergence issues. The estimates of the parameters 𝛼, 𝛽, 𝜉, 𝜎2

𝜉
, 𝜎2

𝛼 in
model (5) and the associated standard errors are reported in Table 2, under the identifiability assumption
𝜎𝛼𝜉 = 0 (left column) and under the identifiability assumption 𝜎𝛼𝜂 = 0 (right column). Results for sensitivity
and specificity, likelihood ratios and diagnostic odds ratio are reported as well. The corresponding standard
errors are evaluated using the delta method. Differences between the scenarios include a larger estimate of
the fixed-effects components 𝛼 and 𝛽 and a larger estimate of𝜎2

𝛼 under the identifiability assumption𝜎𝛼𝜂 = 0.

Table 2: Estimates and associated standard error of parameters
𝛼, 𝛽, 𝜉, 𝜎2

𝜉
, 𝜎2

𝛼 , sensitivity, specificity, LR+, LR−, dOR obtained
from SIMEX for the analysis of abdominal ultrasound for
diagnosing tuberculosis in HIV-positive subjects [34] under
identifiability assumptions 𝜎𝛼𝜉 = 0 and 𝜎𝛼𝜂 = 0.

Estimate 𝛔𝛂𝛏
= 0 𝛔𝛂𝛈

= 0

𝛼 0.329 (0.547) 1.561 (1.047)
𝛽 0.535 (0.204) 1.103 (0.424)
𝜉 −2.226 (0.595) −2.214 (0.599)
𝜎2
𝜉

2.727 (1.405) 2.783 (1.441)
𝜎2
𝛼 0.810 (0.438) 1.763 (1.636)

Sensitivity 0.297 (0.094) 0.293 (0.091)
Specificity 0.902 (0.353) 0.901 (0.353)
LR+ 3.048 (1.531) 2.976 (2.369)
LR− 0.779 (0.080) 0.784 (0.079)
dOR 3.913 (1.707) 3.796 (1.699)
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Figure 5: Study-specific ROC curves and estimated average
ROC curve from SIMEX, under the assumption 𝜎𝛼𝜂 = 0, for the
abdominal ultrasound examination for diagnosing tuberculosis
in HIV-positive subjects [34].

Within the same scenario, larger standard errors affect the estimators of the parameters if compared to the
case 𝜎𝛼𝜂 = 0. There are no substantial variations in terms of measures of the diagnostic test accuracy with
respect to the identifiability assumptions. Under the assumption 𝜎𝛼𝜉 = 0, the estimated sensitivity is 0.297
and estimated specificity is 0.902, while under the assumption 𝜎𝛼𝜂 = 0, the estimated sensitivity is 0.293 and
estimated specificity is 0.901. The study-specific ROC curves and the estimated average ROC curve obtained
from SIMEX applied to model (5) under the identifiability assumption 𝜎𝛼𝜉 = 0 are reported in Figure 5.

5 Conclusions
This paper considered a random-effects structure for the meta-analysis model following the specification in
Hamza et al. [3] for the evaluation of accuracy of a diagnostic test. Themodel specification allows the resulting
summary ROC curve as an average of the ROC curves from the studies included in the meta-analysis. As an
alternative to the classical likelihood approach based on a Normal approximation for the logit transformation
of sensitivity and specificity, the paper investigated the applicability of SIMEX, a simulation-based approach
derived from themeasurement error literature. Both the solutions take into account the presence of errors due
to the fact that the available information is a summary measure of the true unknown study-specific accuracy
of the diagnostic test. The performance of the methods has been compared in a series of simulation studies
exploring different scenarios, without and against violations of model assumptions, in particular concerning
the normality distribution for the random effects components. SIMEX tends to outperform the likelihood
approach in terms of bias of the estimators and in terms of empirical coverage probabilities, especially in
case of scenarios characterized by high accuracy of the diagnostic test, small sample size and correlation
between (logit) sensitivity and specificity close to boundary of the parameter space. Such a performance is
even more evident in case of departures from the normality assumption for the random-effects components,
where SIMEX is not seriously affected by skewness or kurtosis of the distribution of the (logit) specificity.
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In thementioned scenarios, the likelihood-based analysis tends to provide unreliable conclusions, a result in
line with previous investigations in the literature [7, 8, 11].

The straightforward implementation of the likelihood approach as well as the negligible computational
effort required for likelihood evaluation and maximization is paid in terms of convergence issues. The large
failure rate experienced for small sample size, large correlation between (logit) sensitivity and specificity and
under model misspecification substantially reduces the appealing of the method. Conversely, the failure rate
of SIMEX is zero in most of the examined scenarios and close to zero under violations of the identifiability
assumptions of the model. The computational effort of SIMEX is slightly superior to that required by the
likelihood approach as a consequence of the first simulation-based step of SIMEX.

The likelihood approach considered in the paper is based on the commonly adopted approximate Normal
distribution for the logit transformation of sensitivity and specificity at the within-study level. A natural
alternative substitutes the approximate model with the exact Binomial distribution for the number of true
positives and false negatives, see Hamza et al. [37, 38]. The resulting likelihood function is not in closed-form,
with the need of numerical evaluation of integrals. Simulation studies in the literature, e.g. [7, 11, 39], within
the classical bivariate random-effects model [2] show that such a specification can be preferable in terms of
accuracy of the results, but at the price of additional substantial convergence problems.

The approaches examined in this paper can be extended to include study-level specific covariates. In
case of no mismeasured covariates, straightforward extensions involve modifications of the mean in the
between-study model (4), with no substantial complications. In case of mismeasured covariates, instead,
such an extension needs to be accompanied by a proper model for themeasurement error structure, similarly
to that relating

(
�̂�i, 𝜉i

)⊤

to (𝜂i, 𝜉i)
⊤. With reference to SIMEX, modifications useful to include mismeasured

covariates is straightforward from a theoretical point of view, and it would affect only the simulation step.
However, the number of remeasured datasets has to substantially increase to guarantee the results having
an acceptable precision. Thus, the total computational effort of SIMEX might be not negligible. We refer the
interested reader to Carroll et al. [12, Section 5.3] for details.

As a Referee pointed out, a Bayesian approach for inference might be considered. In this case, the
Bayesian solution would enter the simulation step of the SIMEX strategy, useful to estimate the vector of the
parameters bymaximizing the log-likelihood function (6)which is not in closed-form. Such a choice, however,
could increase the computational burden, when MCMC instrument are involved.

Thispaper focusedonmeta-analysis for evaluatingadiagnostic test in termsof its capability todistinguish
between diseased and non-diseased subjects, that is, to classify the subjects with respect to one threshold.
However, test performance can be evaluated at multiple thresholds, or at ordered categories. The multiple
thresholds extension of the examined model [3, 35] would lead to an overall summary ROC curve and to
summary sensitivity and specificity for each threshold. Likelihood inference under the Normal specification
for the random-effects component in the multiple thresholds extension of the model in Arends et al. [2] is
shown to perform poorly and suffering from non-convergence problems [36]. Investigating the applicability
of SIMEX in case of multiple thresholds, its capability to provide satisfactory results as in the one threshold
case, while guaranteeing high convergence rates, is an interesting topic of feature research.
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Appendix A
Table A1: Bias of the estimators of 𝛼, 𝛽, 𝜉, associated standard error (SE), standard deviation (SD) and failure rate obtained from
the likelihood approach under a normal specification of (𝜂i, 𝜉i)⊤ and SIMEX, by distinguishing high accuracy scenario and low
accuracy scenario. Values of (𝜂i, 𝜉i)⊤ are generated from a bivariate normal distribution. Results are reported for increasing
correlation and sample size K = 10, on the basis of 1000 replicates.

High accuracy scenario Low accuracy scenario

Likelihood approach SIMEX approach Likelihood approach SIMEX approach

𝜶 𝜷 𝝃 𝜶 𝜷 𝝃 𝜶 𝜷 𝝃 𝜶 𝜷 𝝃

𝜌 = 0.222

True 3.500 0.250 −2.200 3.500 0.250 −2.200 0.830 0.250 −0.850 0.830 0.250 −0.850
Bias −0.192 0.003 0.072 −0.031 −0.055 −0.058 0.004 0.021 0.007 −0.002 −0.019 −0.021
SE 1.245 0.681 0.229 0.899 0.382 0.242 0.419 0.408 0.214 0.386 0.353 0.219
SD 1.399 0.766 0.233 1.122 0.474 0.268 0.607 0.624 0.235 0.484 0.461 0.245
Failure 0.200 0.200 0.200 0.000 0.000 0.000 0.008 0.008 0.008 0.000 0.000 0.000

𝜌 = 0.438

True 3.500 0.250 −2.200 3.500 0.250 −2.200 0.830 0.250 −0.850 0.830 0.250 −0.850
Bias −0.164 0.016 0.150 0.077 −0.012 −0.032 0.014 0.018 0.025 0.027 −0.002 −0.024
SE 0.774 0.327 0.425 0.517 0.200 0.423 0.256 0.171 0.407 0.265 0.169 0.422
SD 0.641 0.276 0.417 0.639 0.248 0.466 0.345 0.235 0.419 0.332 0.205 0.448
Failure 0.210 0.210 0.210 0.000 0.000 0.000 0.003 0.003 0.003 0.000 0.000 0.000

𝜌 = 0.800

True 3.500 0.250 −2.200 3.500 0.250 −2.200 0.830 0.250 −0.850 0.830 0.250 −0.850
Bias −0.123 0.021 0.183 0.112 0.010 0.014 −0.005 0.015 0.062 0.011 −0.004 0.005
SE 0.845 0.269 0.568 0.318 0.111 0.570 0.142 0.076 0.568 0.146 0.071 0.596
SD 0.371 0.136 0.580 0.395 0.133 0.619 0.163 0.094 0.603 0.164 0.087 0.654
Failure 0.520 0.520 0.520 0.000 0.000 0.000 0.045 0.045 0.045 0.000 0.000 0.000
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Table A2: Bias of the estimators of 𝜎2
𝜉
, 𝜎2

𝛼 , associated standard error (SE) and standard deviation (SD), obtained from the
likelihood approach under a Normal specification of (𝜂i, 𝜉i)⊤ and SIMEX, by distinguishing high accuracy scenario and low
accuracy scenario. Values of (𝜂i, 𝜉i)⊤ are generated from a bivariate Normal distribution. Results are reported for increasing
correlation and sample size K = 10, on the basis of 1000 replicates.

High accuracy scenario Low accuracy scenario

Likelihood approach SIMEX approach Likelihood approach SIMEX approach

𝛔2
𝛏 𝛔2

𝛂 𝛔2
𝛏 𝛔2

𝛂 𝛔2
𝛏 𝛔2

𝛂 𝛔2
𝛏 𝛔2

𝛂

𝜌= 0.222

True 0.500 0.600 0.500 0.600 0.500 0.600 0.500 0.600
Bias −0.131 −0.308 0.113 0.100 −0.079 −0.167 0.008 −0.074
SE 0.195 0.263 0.285 0.334 0.187 0.198 0.230 0.238
SD 0.232 0.237 0.334 0.351 0.236 0.238 0.273 0.260

𝜌= 0.438

True 1.900 0.500 1.900 0.500 1.900 0.500 1.900 0.500
Bias −0.519 −0.238 −0.042 0.118 −0.289 −0.122 −0.014 −0.038
SE 0.745 0.374 0.849 0.297 0.683 0.173 0.851 0.209
SD 0.716 0.231 0.815 0.314 0.801 0.218 0.956 0.242

𝜌= 0.800

True 4.000 0.141 4.000 0.141 4.000 0.141 4.000 0.141
Bias −1.171 −0.062 −0.637 0.193 −0.829 −0.038 −0.265 0.019
SE 1.512 0.420 1.527 0.170 1.316 0.061 1.687 0.074
SD 1.459 0.090 1.477 0.191 1.552 0.073 1.753 0.087
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