
Temporal Characterization of XR Traffic with
Application to Predictive Network Slicing
Mattia Lecci∗, Federico Chiariotti†, Matteo Drago∗, Andrea Zanella∗, and Michele Zorzi∗

∗Department of Information Engineering, University of Padova, 35131 Padua, Italy
†Department of Electronic Systems, Aalborg University, 9220 Aalborg Øst, Denmark

Emails: ∗{leccimat, dragomat, zorzi}@dei.unipd.it, †fchi@es.aau.dk

Abstract—Over the past few years, eXtended Reality (XR) has
attracted increasing interest thanks to its extensive industrial
and commercial applications, and its popularity is expected to
rise exponentially over the next decade. However, the stringent
Quality of Service (QoS) constraints imposed by XR’s interactive
nature require Network Slicing (NS) solutions to support its
use over wireless connections: in this context, quasi-Constant
Bit Rate (CBR) encoding is a promising solution, as it can
increase the predictability of the stream, making the network
resource allocation easier. However, traffic characterization of XR
streams is still a largely unexplored subject, particularly with this
encoding. In this work, we characterize XR streams from more
than 4 hours of traces captured in a real setup, analyzing their
temporal correlation and proposing two prediction models for
future frame size. Our results show that even the state-of-the-art
H.264 CBR mode can have significant frame size fluctuations,
which can impact the NS optimization. Our proposed prediction
models can be applied to different traces, and even to different
contents, achieving very similar performance. We also show the
trade-off between network resource efficiency and XR QoS in a
simple NS use case.

Index Terms—Virtual Reality, Extended Reality, Traffic Mod-
eling, Network Slicing, Resource Provisioning

This paper has been submitted to IEEE WoWMoM 2022. Copyright may change without notice.

I. INTRODUCTION

Over the past few years, the rapid technological devel-
opment of Head Mounted Devices (HMDs) and the strong
push towards the virtual world caused by the COVID-19
pandemic have caused an explosion of the eXtended Reality
(XR) market, which includes technologies such as Virtual
Reality (VR), Augmented Reality (AR), and Mixed Reality
(MR). Recent studies estimate hundreds of millions of users
of these technologies in a time span of just 3 years [1],
requiring millions of new devices to be developed, produced,
and shipped around the world for a business in the order of
billions of dollars [2].

While the latest news on the metaverse seem to indicate that
the fastest growth will be in the entertainment and social media
industries, XR is expected to make an impact in a huge variety
of scenarios [3], [4]. Interactive design, marketing, healthcare,
and employee training are just a few of the proposed scenarios,
but industrial remote control in manufacturing and agriculture
might have the largest impact, allowing human operators to

This work was partially supported by the National Institute of Standards and
Technology (NIST) under award no. 60NANB21D127 and by the IntellIoT
project under the H2020 framework grant no. 957218. The work of M. Lecci
was supported by Fondazione CaRiPaRo under grant “Dottorati di Ricerca
2018.”

remotely control machines in risky, hard to reach or unsafe
environments, through a fully interactive virtual framework.

One of the peculiarities shared by all these new applications
is their interactive nature: users do not passively receive the
information or stream a video, but need to manipulate the
environment and affect it in meaningful ways, while main-
taining an illusion of presence which requires the application
to operate under very strict end-to-end delay constraints [5],
[6]. In particular, safety-critical and industrial applications
will have stricter constraints, as the consequences of network
impairments can be significantly more serious. Cybersickness
is another important issue, as a delay over 20 ms between
movements and visual and auditory feedback can cause dis-
orientation and dizziness [1], [7].

In order to fulfill these stringent latency requirements over
a wireless connection, the application and the network need to
cooperate. The Network Slicing (NS) paradigm [8] allows 5G
and Beyond networks to reserve resources to a given stream,
defining Quality of Service (QoS) targets, but most efforts in
this sense focus on relatively predictable applications. In this
setting, the need for predictability in the XR traffic becomes
extremely important, leading to a resurgence of quasi-Constant
Bit Rate (CBR) encoders, which are not used in passive
streaming due to their lower picture quality stability. While
some efforts have been devoted by prominent standard bodies
on this topic [5], [6], the current availability of traffic models
for XR is scarce. Furthermore, to the best of our knowledge,
no detailed analysis of the temporal statistics of quasi-CBR
video streams can be found in the literature, making existing
scheduling schemes rely on uncertain foundations.

However, even CBR encoders are not perfect, and the
interplay between the video content and the movements and
actions of the users may cause significant fluctuations. In
this work, we analyze the traffic from a real VR application
using the Periodic-Intra Refresh mode of the H.264 codec,
which results in relatively small differences in the frame sizes.
Modeling these imperfections, and consequently predicting the
size of future frames in advance, can be extremely significant
in the allocation of network resources, particularly if some
critical QoS metrics have to be reached. For example, this
is the case for Cloud XR, a new trend pursued by some
major players in the telecommunication industry that moves
the processing and rendering steps of the XR content from the
user to the Cloud, making the QoS requirements even more

ar
X

iv
:2

20
1.

07
04

3v
1

 [
cs

.N
I]

 1
8

Ja
n

20
22

critical [9], [10].
In this paper, we hence address the problem of providing

a realistic stochastic characterization of an XR traffic source.
Building upon our previous works [11], [12] where we col-
lected more than 4 hours of live sessions with a real HMD
and performed basic traffic characterization, in this paper we
take the analysis one step further by modeling the size of XR
frames in the stream as a correlated time series. We propose
two parametric regression models to predict the size of future
frames, and show that the behavior of the encoder can be
generalized to other traces and even different applications
with limited regression performance loss. Finally, we present a
simple network slicing use case, in which we show the trade-
off between resource efficiency and latency for different types
of resource scheduling. All our traces as well as the analysis
and simulation code is publicly available.1

The rest of the paper is structured as follows. Sec. II will
discuss the current state of the art on XR modeling, and our
experimental setup and VR application are briefly presented
in Sec. III. Our analysis is reported in Sec. IV, while Sec. V
illustrates how our analysis can be leveraged for a simple NS
use case. Finally, Sec. VI draws conclusions and presents some
avenues for future work.

II. STATE OF THE ART

Despite a steady scientific interest in VR since the
1990s [13], relatively little work has been done to characterize
the details of this type of traffic. With respect to our work, we
can distinguish two main areas of research: the modeling and
characterization of XR traffic, and the scheduling and resource
management of XR data streams.

The former is closely related to 2D video content, and, even
more so, to live, interactive applications such as video confer-
encing and gaming. However, most of the work on the subject
has focused on Variable Bit Rate (VBR) encoding, based either
on the H.264 or the H.265 standards [14], i.e., the customary
encoding for streaming pre-generated video content. VBR can
provide a stable visual quality, improving the user Quality
of Experience (QoE), but is also subject to significant jitter
due to the large frame size fluctuations. Transmitting VBR
videos with low latency can then be a significant challenge
even over channels with constant capacity [15]. On the other
hand, CBR encoding sacrifices some visual quality stability
to obtain an encoded video stream with a stable transmission
rate [16]. Although the higher predictability of the encoded
output makes CBR encoding attractive for interactive video
and XR content, it is still relatively unexplored in the relevant
literature.

A topic related to XR traffic is video game streaming, also
called Cloud gaming. These Cloud frameworks run games over
a remote server, streaming the screen directly to the users
without the need for client-side computation. The stringent
requirements of gaming applications, especially in terms of
latency, and the need to address them with optimized protocols

1Code repository: https://github.com/signetlabdei/vr-trace-analysis

and new transmission strategies, have led to an increased
interest in their characterization.

The authors of [17] carried out an extensive measurement
campaign in Google Stadia, a famous cloud gaming platform,
giving an overview of its inner workings. They studied the
distributions of downlink traffic, packet size, inter-packet time
under multiple settings, including different resolutions, video
codecs, and network conditions. On the other hand, in [18],
[19] direct comparisons were made between different cloud
gaming platforms, mostly focusing only on the bitrate of the
video stream, without including latencies or user experience.

A more comprehensive Cloud gaming testbed, including a
full implementation with different network alternatives and
automated trace acquisition over Ethernet, WiFi, and LTE,
was presented in [20]. This is surely an advantage in terms
of reproducibility and speed of the experiments, but the
unpredictability of the users’ actions in gaming scenarios (and,
more importantly, in XR) is the real challenge that the network
has to face, limiting the usefulness of the results.

These works represent a good starting point for the col-
lection and modeling of XR traffic, as it is reasonable to
assume that most of these Cloud gaming companies will start
providing XR services soon. However, most works focused
specifically on XR still consider simple applications, such as
interactive data visualization [21], and do not provide much
insight on the more complex scenarios. There is an extensive
literature on immersive video streaming [22], but it has been
mostly focused on passive applications in which the user is
only a viewer, with different QoE and encoding considerations.

Regarding XR traffic scheduling and resource management,
some works have already tried to propose schemes for efficient
systems. For example, in [23], [24] game-theoretic approaches
are proposed to tackle the optimization of multi-user VR
streaming over a small cell, with the help of machine learning.
The authors of [25] analyze the scheduling problem from the
perspective of Mobile Edge Cloud (MEC), proposing schedul-
ing strategies and analyzing communication, computing, and
caching trade-offs. While the models proposed for the network
architectures considered in these works are extremely com-
plex, there is no comparison with real-world VR streaming.

To the best of our knowledge, our previous works, which
proposed a simple architecture for collecting traffic traces from
VR games [11] and a simple generative model for the frame
size [12], were the first to use real VR traffic traces. This
work extends our previous ones by characterizing the temporal
behavior of the XR traces and drawing novel conclusions for
NS optimization.

III. XR STREAMING ARCHITECTURE

In this section, we describe the architecture of our XR
streaming acquisition and give some perspective on the full
end-to-end setup. To further understand what are the steps that
most influence the XR performance, it is useful to describe a
common end-to-end XR architecture. First, we can start from
the collection and processing of tracking information, dele-
gated to the HMD. Then, this information is sent to a remote

Video Frame (DL) Frame Feedback (DL) Frame Feedback (UL) Head Tracking (UL)

0 10 20 30 40 50 60 70 80 90 100

0

500

1 000

1 500

Time [ms]

Pa
ck

et
si

ze
[B

]

10.6 10.8 11 11.2

0

500

1 000

1 500

Fig. 1: Portion of traffic trace from Virus Popper (50 Mb/s, 30 FPS). For this trace, about 130–140 individual fragments make
up each video frame burst.

server to compose the viewport, i.e., what is actually shown to
the user. This process includes the rendering of the scene, the
video encoding providing a more robust transmission towards
the mobile device, and possibly some additional information
e.g., the direction in which the rendered frame is supposed to
be displayed. After receiving and decoding the video stream
together with all the additional meta-information, the HMD
generates the images to display at the occurring screen refresh.
These steps need to be accomplished with minimal delay to
guarantee adequate QoE.

Our experimental setup consisted of a desktop computer
equipped with an NVIDIA GeForce RTX 2080 Ti graphics
card acting as the rendering server, and an iPhone XS enclosed
in a VR cardboard acting as the HMD. VR applications were
thus run on the rendering server and streamed to the headset
using the RiftCat 2.0 application (on the server), and VRidge
2.7.7 (on the phone).2

The application uses hardware-accelerated H.264 encoding
via Nvidia Encoder (NVENC) as long as a compatible graphics
card is present on the system. RiftCat’s developers disclosed
that Periodic Intra-Refresh is used, a setting provided by the
encoder that allows each frame to be roughly the same size,
making the stream almost CBR and thus easier to handle from
a network perspective. It does so by replacing key-frames by
waves of refreshed intra-coded blocks, i.e., blocks without any
dependence on other frames, effectively spreading a key frame
over multiple frames. Image quality is balanced with resilience
to packet loss by setting the intraRefreshPeriod pa-
rameter, which determines the period after which an intra re-
fresh happens again, and the intraRefreshCnt parameter,
which sets the number of frames over which the intra refresh
happens [26]. If we consider a 30 Frames per Second (FPS)
video, a value of 30 for the intraRefreshPeriod would

2https://riftcat.com/vridge

ensure that the frame is fully recovered every second. On
the other hand, choosing the value of intraRefreshCnt
determines the number of frames over which the intra refresh
will happen within an intra refresh period, with smaller values
leading to a quicker refresh but lower quality.

Detailed information about the video encoder is of the
utmost importance for our work, since different encoders
typically behave differently, especially when analyzing the
temporal behavior of the encoded source. Still, we believe that
our work offers network researchers a peek into the intricacies
of this topic, showing some key results on how an XR traffic
flow can be analyzed for resource provisioning.

Different freely available games and applications were used
to acquire our dataset, including Minecraft, Virus Popper, and
Google Earth VR. Further details on the acquisition setup
and our traces can be found in [12]. In the following, we
will mostly concentrate on one trace acquired using the Virus
Popper application, but the methodology holds throughout the
dataset, and can be easily replicated for any of the other traces.

IV. VIDEO TRACE ANALYSIS

Analyzing the acquired traces, we determined that the
application used User Datagram Protocol (UDP) over IPv4.
It also used an additional application-layer protocol header of
variable size, which we decoded to determine the types of
packets being exchanged. More specifically, synchronization
and acknowledgment packets were exchanged in both direc-
tions, while the Uplink (UL) stream from the HMD to the
rendering server also contained frequent and relatively small
head-tracking information packets. Naturally, the Downlink
(DL) stream also had regular video frame packet bursts.

Fig. 1 is a visual representation of a slice of bidirectional
VR streaming, showing the main data streams in both DL
and UL. As the figure clearly shows, most of the traffic is

https://riftcat.com/vridge

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Rate (Mb/s)

E
m

pi
ri

ca
l

C
D

F

Individual frames

Window: 2 frames

Window: 5 frames

Window: 10 frames

Window: 30 frames

Window: 60 frames

Window: 120 frames

Window: 300 frames

Ideal CBR

(a) Rate distribution with different moving average windows.

0 50 100 150 200 250 300

0

5

10

Window (frames)

R
at

e
(M

b/
s)

Standard deviation

95th percentile overflow

99th percentile overflow

0 1 2 3 4 5

Window (s)

(b) Overflow rate for different moving average windows.

Fig. 2: Video frame size statistics for Virus Popper (30 Mb/s, 60 FPS).

concentrated in DL and is made up of packet bursts encoding
video frames. Video frame fragments were consistently found
to be 1320 B long in all acquired traces, with a data size (the
UDP payload) of 1278 B.

The low impact of non-video packets on the total streaming
data rate, along with their strong dependence on the applica-
tion setup, led us to focus exclusively on the video frame data,
discarding all other packets from our analysis. Our results can
then be applied to any VR application using the same encoder.
By decoding the application protocol, we managed to identify
frame boundaries and extract the video frame data, removing
metadata and control information. We can then consider the
size of individual frames in a video trace.

The encoder makes use of the H.264 Periodic Intra-Refresh
compression scheme to reduce the variation between frame
sizes, so we do not expect a multimodal distribution, as
would be the case for a classical keyframe-based encoding.
As we mentioned above, encoding VR traffic as CBR can be
significantly better for network optimization, although it leads
to a less stable picture quality: if all frames have the same
size, it is possible for network slicing schemes to provide a
guaranteed latency without wasting resources.

However, CBR encoding is not perfect, and frames may still
have variable size, although the average rate almost perfectly
matches the required one. We can use a simple Moving
Average (MA) filter to examine the behavior of the VR traffic
on longer timescales, which is useful if resource allocation
is performed at a slower pace. Naturally, allocating resources
every N frames leads to a larger jitter between frames, but
it can also improve the resource allocation efficiency, as size
fluctuations will tend to average out over multiple frames.

In order to measure this effect, we consider the Virus Popper
trace, with a required rate R = 30 Mb/s and a ϕ = 60 FPS
refresh rate. We only measure the video traffic, without packet
headers and redundancy added by the application: this results
in an average rate of 29.76 Mb/s. Fig. 2a shows the empirical
Cumulative Distribution Function (CDF) of the rate, consid-
ering different MA window sizes. If we consider each frame

0 10 20 30 40 50

−0.5

0

0.5

1

Lag (frames)

A
ut

oc
or

re
la

tio
n

Autocorr. of F (t)

Autocorr. of ∆F (t)

0 200 400 600 800

Lag (ms)

Fig. 3: Video frame size autocorrelation for Virus Popper
(30 Mb/s, 60 FPS).

individually, there is a significant variation, which gradually
reduces as we increase the period over which the rate is
measured. It is also possible to notice that the frame size
distribution is skewed towards smaller frame sizes, even for
longer windows, as can be seen from the asymmetric tails of
the distributions.

However, providing reliable service will require a significant
overhead even if we relax the scheduling time: Fig. 2b shows
the overflow rate (i.e., the difference between the actual rate
and the expected 30 Mb/s CBR rate) as a function of the
MA window. The plot shows the standard deviation, as well
as the 95th and 99th percentile overflow rates. If our aim is
to provide 99% reliability, we need to overprovision by more
than 8 Mb/s (i.e., almost 30% of the CBR rate) even if we
consider a timescale of 100 ms for resource allocation, i.e.,
6 frames. Even averaging over periods of multiple seconds
leads to worst-case rates almost 4 Mb/s higher than the
average, probably corresponding to highly dynamic content
in the video or to how the CBR encoder works. Interestingly,
the standard deviation does not decay as fast as the 95th and

0 5 10 15 20 25 30 35 40 45 50 55 60

0

60

120

180

240

300

360

420

480

540

Lag (frames)

Ti
m

e
(s

)

−1

−0.75

−0.50

−0.25

0

0.25

0.50

0.75

1
0 200 400 600 800 1 000

Lag (ms)

Fig. 4: Rolling windowed ∆F autocorrelation for Virus Popper
(30 Mb/s, 60 FPS). The windows were 600 frames (10 s) long,
with a time shift of 60 frames (1 s).

99th percentile overflows for longer averaging windows, due
to the fact that the frame size distribution is skewed towards
smaller sizes, as previously highlighted.

We can also analyze the autocorrelation of the frame size
signal F (t), to identify patterns in how the signal changes.
Fig. 3 shows the autocorrelation of F (t) and ∆F (t) = F (t)−
F (t− 1). While F (t) has a strong long-term autocorrelation,
due to the constant component, the ∆F (t) signal has a strong
negative autocorrelation between one frame and the next, while
almost all longer time differences fall within the ±0.05 range.

This means that the encoder tends to balance out fluctuations
between one frame and the next, such that a frame that is
bigger than the previous one tends to be followed by a smaller
one again. We can check that this holds throughout the whole
video by computing a rolling window autocorrelation, showed
in Fig. 4 for ∆F (t). In this case, the plot clearly shows
that there are no strong long-term correlations in any part
of the video. The frame difference signal has a noticeable
autocorrelation only with lag 1 and 3, confirming the result
from Fig. 3.

A. Frame Size Prediction

Let us consider the average size of future frames in the time
interval [t, t+ T), given by

FT (t) =
1

T

T−1∑
i=0

F (t+ i). (1)

We denote by F̂T (t, τ) an estimate of FT (t + τ), τ > 0,
i.e., considering a look-ahead of τ frames. We focus on linear
predictors based on the last N ≥ 0 samples, so that

F̂T (t, τ) = θ0 +

N∑
j=1

θjF (t− j + 1), (2)

where θ = [θ0, . . . , θN] is a weight vector, which determines
the accuracy of the estimate. The difference between actual
and estimated value is captured by the error term w(t, τ, T) =

FT (t+ τ)− F̂T (t, τ), which will be denoted just as w in the
following, for ease of writing.

We can then consider two different regression methods to
determine the value of the parameter vector θ:
• Ordinary Least Squares (OLS) linear regression: least

squares regression was independently developed by
Gauss and Legendre in the 19th century [27], and is
the most classic form of regression. In this case, the
objective is to minimize the `2 norm of the signal w.
OLS regression can be useful in determining the average
behavior of the underlying stochastic process, giving
easily interpretable results on the quality of the prediction
and the dynamics of the frame size over time;

• Quantile regression [28]: this technique estimates
F̂T (t, τ) so that the probability that it is higher than
the real value, is not larger than ps. This has obvious
implications for the main objective of this paper, which
is VR traffic modeling for network resource provisioning:
as we are interested in providing enough resources to send
a frame within the required latency with probability ps,
estimating the corresponding quantile might be the best
way to get the required quality.

We also used Robust linear regression [29] to verify that
the OLS prediction was not too sensitive to outliers. We
considered a robust method using Huber’s T norm instead of
the `2 norm: the two norms have the same quadratic behavior if
the error is smaller than a threshold δ, but Huber’s T increases
linearly for larger values. Setting the threshold to δ = E[|F |]

4 ,
we found that the results matched exactly those of the OLS
model, suggesting that outliers are not playing a relevant role
in this case and thus letting us discard this model.

In this section, we will show results for both the OLS and
the quantile regression models. As we stated above, while the
results from OLS are more immediate, quantile regression is
useful when focusing on scheduling network resources for a
VR stream, which requires a model of the tail of the frame
size distribution to provide latency guarantees.

We can now examine the results of the regression analysis
for the Virus Popper trace, considering a rate of 30 Mb/s
and 60 FPS. We focus on this video trace as the standard
example in the paper, but other traces, even at different bitrates
and frame rates, exhibit a similar behavior. Fig. 5 shows
the complementary CDF of the residual error w, considering
τ = 1 and two different values of T . The first thing we can
notice is that the error distribution has a slightly different shape
for the OLS and quantile regression models, indicating that
the difference in the two models is not simply a shift in the
value of the intercept θ0, but instead the two predictions are
meaningfully different. We can also notice that there is some
benefit from having a longer memory, although increasing N
yields diminishing returns. Finally, we can confirm that the
reliable transmission of this VR content will require significant
overprovisioning, even when using prediction: for T = 1 the
95th percentile error of the OLS prediction is approximately
15 kB higher than the mean with any of the models, i.e.,
about 25% of the average frame size (which is 62.5 kB for

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

−20 −10 0 10 20 30 40

10−3

10−2

10−1

100

Residual error w (kB)

C
C

D
F

(a) OLS regression, T = 1.

−20 −10 0 10 20 30 40

10−3

10−2

10−1

100

Residual error w (kB)

C
C

D
F

(b) Quantile regression (ps = 0.95), T = 1.

−20 −10 0 10 20 30 40

10−3

10−2

10−1

100

Residual error w (kB)

C
C

D
F

(c) OLS regression, T = 6.

−20 −10 0 10 20 30 40

10−3

10−2

10−1

100

Residual error w (kB)

C
C

D
F

(d) Quantile regression (ps = 0.95), T = 6.

Fig. 5: Complementary CDF of the residual error w with τ = 1, for different values of N and T .

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

0 5 10 15 20

0

0.5

1

Lag (frames)

A
ut

oc
or

re
la

tio
n

0 100 200 300

Lag (ms)

(a) OLS regression.

0 5 10 15 20

0

0.5

1

Lag (frames)

A
ut

oc
or

re
la

tio
n

0 100 200 300

Lag (ms)

(b) Quantile regression (ps = 0.95).

Fig. 6: Autocorrelation of the residual error w for next-frame prediction (T = 1, τ = 1) for different values of N .

this trace). In fact, this is close to the difference between the
average predictions of the OLS and quantile models.

This difference is about halved for T = 6, due to the
fact that computing the average over multiple frames allows
errors to compensate and cancel each other out. However,
provisioning over multiple frames means that only the average
amount of resources will be scheduled for the stream, which
will cause larger frames to have a higher latency, thus taking

longer than 1
ϕ seconds to be delivered and causing additional

queuing delay to subsequent frames. Since the frame cannot
be properly shown on screen until it is fully received, this
translates to a higher jitter and reduces the QoE perceived by
the user, making a lower value of T preferable.

Another fundamental component in evaluating the quality
of a predictor is the autocorrelation of the residual error w: if
the autocorrelation between subsequent samples of the residual

0 5 10

2

4

6

8

10

N

τ

(a) OLS regression.

0 5 10

2

4

6

8

10

N

τ

8.5

9

9.5

10

10.5

σ
w

(k
B

)

(b) Quantile reg. (ps = 0.95).

Fig. 7: Heatmap of the residual error standard deviation
(measured in kB) as a function of N and τ , with T = 1.

error is high, the model did not capture some effect, usually
due to an insufficient memory, i.e., too low a value of N . Fig. 6
shows the autocorrelation of w for different values of N : it is
easy to see that models with N < 4, and particularly with N =
0 and N = 1, do not have enough memory to capture the frame
size dynamics. This is more evident in quantile regression,
which shows a higher autocorrelation for these models.

Finally, we can examine the effect of N and τ on the
quality of the prediction by looking at Fig. 7, which shows
the standard deviation of the residual error w as a function of
these two parameters with T = 1. The figure clearly shows that
increasing the memory of the model improves the prediction,
but gives diminishing returns, as the difference between N = 6
and N = 10 is minimal. Furthermore, we see an expected
increase in the error if τ increases, but this is not monotonic for
N < 3: this might be due to the autocorrelation we observed
in the w signal, as N < 3 is not sufficient to fully represent
the state of the stochastic process, resulting in suboptimal
predictions.

B. Model Generalization

In the above, we studied how well regression models can
predict future frame sizes F̂T (t, τ), but we always found the
parameter vector θ based on the same video trace. In the
following, we study how prediction models perform when the
regression is performed over multiple traces, with different
bitrates and types of content. This has significant advantages,
as finding a predictor for each specific video content requires
acquiring traces for each content and quality level, while
generalizing the predictor would allow for simpler deployment.

We consider N = 6 and τ = 1, as we determined that
N = 6 is sufficient to capture the dynamics of the model. In
order to directly compare traces with different bitrates R and
frame rates ϕ, we normalize the video traces by the expected
frame size ϕ−1R, obtaining a normalized parameter vector θ̃,
which, given the linearity of our models, can be converted back
to the original parameter vector as θ = Rθ̃

ϕ of the regression
model in (1). By normalizing our frame sizes, we can train
and use our models on multiple traces with different values of
R and ϕ. We then consider three generalized models:

1) A general model (GM), which computes θ using the
whole dataset, with different frame rates, bitrates, and
video content types;

2) A content-dependent model (CM), which computes θ
using a single type of content (e.g., the Virus Popper
game), but with different bitrates and frame rates;

3) A content- and rate-dependent model (CRM), which
derives the parameter vector on a per-content, frame rate,
and bitrate basis, i.e., a single trace.

Given that different values of R and ϕ can have different
scales of errors which can be difficult to compare directly, in
Fig. 8 we show the error normalized to the expected frame
size R/ϕ. As the figure shows, the model can generalize
quite well: the performance of CM is almost always similar to
that obtained by CRM, making generalization across different
bitrates and frame rates possible for the same video content.
On the other hand, GM performs slightly worse, and has
a large error in the Minecraft trace with R = 40 Mb/s: it
is possible that this trace involves different dynamics in the
content or head movements, leading to sharp differences even
with other traces with the same type of content. On the other
hand, GM has similar performance to CM and CRM with
the OLS predictor, but shows a less consistent behavior for
the quantile regressor. For example, the Minecraft trace with
R = 40 Mb/s shows very different performance between the
three models and different values of T . Furthermore, the Virus
Popper trace seems to have a smaller tail, as GM is more
conservative than the models based only on that video content.

As we can see, using the quantile model leads to the
prediction being between 25% and 40% higher than the
average, skewing the error distribution. We can also note
that the relative error decreases with the bitrate: lower bitrate
traces have a higher prediction error relative to the frame size,
although the raw error w is still larger for increasing bitrates.
As we noted above, averaging over multiple frames can also
significantly reduce the error across almost all traces.

V. NETWORK SLICING USE CASE

In this section, we consider an NS use case for the models
we developed in Sec. IV. The VR stream is assigned to a high-
priority slice, with the objective of allowing each frame to be
delivered before the generation of the next one, i.e., maintain-
ing a latency below 1/60th of a second. Provisioning the time
and frequency resources for VR is a critical component of
Beyond 5G networks, and guaranteeing limited latency while
reducing the impact on other users is an important application
of our model.

We can then assume that the network slicing orchestrator
is equipped with the CM quantile regression from Sec. IV-B,
and can predict the frame sizes for arbitrary values of T and
τ . We consider an orchestrator that can make decisions on the
resource allocation only at times t = kS, k ∈ Z, i.e., every
S frames or, conversely, every ∆t = S

ϕ ms. In the following,
we consider queued bits from earlier frames in the scheduling
as well. At time t = kS, we consider that the previous slice
might have been unable to send all the data in time, leaving
in the queue qt bits that have to be sent in the following slices
with an excess capacity of qt/ϕ.

General model Content-dependent model Content- and rate-dependent model

1020304050102030405010203040501020304050

−1

−0.75

−0.5

−0.25

0

0.25

0.5

Rate (Mb/s)

R
el

at
iv

e
er

ro
r

Minecraft Cities Tour Virus popper

Video content

(a) OLS regression, T = 1.

1020304050102030405010203040501020304050

−1

−0.75

−0.5

−0.25

0

0.25

0.5

Rate (Mb/s)

R
el

at
iv

e
er

ro
r

Minecraft Cities Tour Virus popper

Video content

(b) Quantile regression (ps = 0.95), T = 1.

1020304050102030405010203040501020304050

−1

−0.75

−0.5

−0.25

0

0.25

0.5

Rate (Mb/s)

R
el

at
iv

e
er

ro
r

Minecraft Cities Tour Virus popper

Video content

(c) OLS regression, T = 6.

1020304050102030405010203040501020304050

−1

−0.75

−0.5

−0.25

0

0.25

0.5

Rate (Mb/s)

R
el

at
iv

e
er

ro
r

Minecraft Cities Tour Virus popper

Video content

(d) Quantile regression (ps = 0.95), T = 6.

Fig. 8: Boxplot of the relative residual error ϕw
R for different levels of generalization with N = 6 and τ = 1.

Recalling that our predictors are able to estimate values for
F̂T (t, τ), as expressed in (1), we thus propose two different
models:

1) Constant scheduling (CS), which only allows the sched-
uler to set a constant slice capacity C(t) for the next
S frames, i.e., only one prediction is performed, with
T = S and τ = 1:

CCS(kS + `) = F̂S(kS, 1) +
qt
Sϕ

, ` = 1, . . . , S, (3)

where the excess capacity from the queued bits is spread
among the following S frames;

2) Frame-by-frame scheduling (FS), in which a different
slice capacity C(t) can be set for every inter-frame
period in the next S frames, i.e., there are S independent
predictions, with T = 1 and τ ∈ {1, . . . , S}:

CFS(kS + `) =

{
F̂1(kS, `) + qt

ϕ , ` = 1;

F̂1(kS, `), ` = 2, . . . , S,
(4)

where the excess capacity from the queued bits is added
entirely to the next frame to minimize latency.

As we remarked in the previous section, the FS scheme can
reduce the jitter by having a more fine-grained prediction, as
each frame will be allocated enough resources to be transmit-
ted with probability ps. On the other hand, the CS scheme has
a rougher prediction, with consequently higher jitter, but will
waste fewer network resources, as it can allow larger frames to
be compensated by smaller ones before and after them. Both
models are realistic, as they work under different assumptions:
in the first case, the resources that are allocated for each frame
need to be over both time and frequency, while the second
case gives the slice a constant bandwidth over the scheduling
interval, the most common slicing model in the literature.

We can then look at the schedulers’ performance as a
function of S, setting ps = 0.95 and N = 6: Fig. 9 shows
boxplots of the latency and scheduled capacity for FS and
CS. Fig. 9a clearly shows that, while the scheduler granularity
has a limited effect on FS, the lower precision of CS means
that the longer the scheduling interval, the higher the average
latency, and the worst-case latency, represented by the upper
whisker of the boxplots, increases even more. On the other
hand, as Fig. 9b shows, the capacity required by CS decreases

FS CS

1 2 3 4 5 6 7 8 9 10
5

10

15

20

S (frames)

L
at

en
cy

(m
s)

0 50 100 150

∆t (ms)

(a) Quantile regression (ps = 0.95), latency.

1 2 3 4 5 6 7 8 9 10
25

30

35

40

45

S (frames)

Sc
he

du
le

d
ca

pa
ci

ty
(M

b/
s)

0 50 100 150

∆t (ms)

(b) Quantile regression (ps = 0.95), scheduled capacity.

Fig. 9: Boxplot of scheduling performance for FS and CS with ϕ = 60 FPS, R = 30 Mb/s, N = 6, and τ = 1.

0.9 0.92 0.94 0.96 0.98 1

10

15

20

25

30

35

ps

L
at

en
cy

(m
s)

CS, average FS, average

CS, 95th perc. FS, 95th perc.

CS, 99th perc. FS, 99th perc.

(a) Latency.

0.9 0.92 0.94 0.96 0.98 1

30

35

40

45

50

ps

Sc
he

du
le

d
ca

pa
ci

ty
(M

b/
s)

CS, average FS, average

CS, 95th perc. FS, 95th perc.

CS, 99th perc. FS, 99th perc.

(b) Scheduled capacity.

Fig. 10: Average and worst-case percentiles of the latency and scheduled capacity with S = 6 (100 ms), N = 6, and τ = 1,
as a function of the quantile regression parameter ps.

as S grows, while the average capacity required by the FS
algorithm remains roughly constant irrespective of the value
of S, but always higher than the capacity used by CS.

This behavior is to be expected, as the errors in frame
prediction can compensate over a longer window, but comes
at the cost of a higher latency. Naturally, the choice between
the two models depends not only on the desired point in
the trade-off between QoS and resource efficiency, but also
on the capabilities of the underlying system: state-of-the-art
slicing frameworks often consider scheduling with a period
∆t = 100 ms, which would correspond to S = 6 frames, and
the granularity of the scheduling over time and frequency will
dictate whether FS is even an option.

It is also possible to simply increase the value of C(t),
e.g., by increasing ps, in the CS scheme to match the FS
performance in terms of latency, but CS will always be
less efficient for the same latency target. Fig. 10 shows the
scheduling performance as a function of the value of ps.
Naturally, a higher ps means a more conservative prediction of
getting larger frames, which reduces the latency but increases
the capacity requirements. The closer we get to 1, the more

increasing ps affects the latency, with a correspondingly larger
increase in the capacity that is reserved to the XR flow. We
can also notice that CS requires a much higher value of ps to
get the same performance as FS in terms of latency. A sensible
example is to target a latency of one inter-frame interval,
i.e., ϕ−1 = 16.67 ms (the dashed line in Fig. 10a), with
a probability of 0.95 (the pink lines in Fig. 10). We notice
that to meet this requirement, a value of ps ≥ 0.96 has to
be chosen for the FS scheme, but the same requirement can
only be fulfilled if ps ≥ 0.99 using CS. This corresponds
to an average scheduled capacity of at least 37.45 Mb/s
for FS, but 38.18 Mb/s for CS. While the difference is not
very significant, and the CS scheme can be used without
a big performance loss, choosing the correct value of ps
to compensate for the scheduler’s optimism is not simple,
particularly in more complex network scenarios, while it is
relatively straightforward for FS.

VI. CONCLUSIONS

This work aims at closing a gap in the literature on traffic
source modeling: there are several analyses for passive stream-
ing, both 2D and in immersive setups with Head Mounted

Devices (HMDs), and some for live gaming traffic in 2D,
but none for interactive XR with strict latency requirements
and quasi-CBR encoding. We analyzed live captures from a
setup we devised, publishing both the dataset and the code for
the analysis, and presented the performance of two regression
models. The models are simple and flexible, can be generalized
over different traces with limited performance loss, and can
be used for provisioning. We also showed a simple Network
Slicing (NS) scenario, which highlights the importance of the
trade-off between resource efficiency and QoE.

This is a first step towards fully designing an NS system able
to satisfy the stringent QoS requirements of XR applications
in industrial settings, in which the consequences of network
failures are not only discomfort and nausea for the user, but
also significant delays in production and even safety hazards.
There are several additional analyses and opportunities for
future work, that can be divided in two main directions.

The first potential avenue of research is a wider characteri-
zation, with different encoding parameters and even different
encoders, and considering different applications, going beyond
simple VR games to include the industrial and commercial use
cases we mentioned above, and a wider set of subjects. The
traces should also integrate a record of the head movements
of the users, as they correspond to shifts in the point of view
of the XR headset and are expected to be strongly correlated
with frame size changes.

The other challenge is to actually design schemes and
scheduling algorithms able to take into account the nature
of the traffic and accommodate it, efficiently exploiting the
prediction and adapting to the peculiarities of different com-
munication technologies or even multiple independent links. In
this sense, the allocation of resources over time and frequency,
the prioritization of users and traffic types, and even the
use of packet-level coding to protect the stream from link
failures and deep fading events, can be promising avenues
to design a solid framework to support XR in mission-critical
scenarios. The study of these techniques at all levels of the
communication stack, simulating connection impairments in
repeatable conditions through a full-stack network simulator,
is our first priority in the ongoing work on this subject.

REFERENCES

[1] Huawei Technologies Co., “Empowering consumer-focused
immersive VR and AR experiences with mobile broad-
band,” Huawei Technologies Co., White Paper, 2016. [On-
line]. Available: https://www.huawei.com/en/industry-insights/outlook/
mobile-broadband/insights-reports/vr-and-ar

[2] ——, “AR Insight and Application Practice,” Huawei
Technologies Co., White Paper, 2021. [Online]. Avail-
able: https://carrier.huawei.com/∼/media/CNBGV2/download/bws2021/
ar-insight-and-application-practice-white-paper-en.pdf

[3] Oculus Business, “Virtual Reality – Set to Enter the Business
Mainstream,” Oculus Business, White paper, Sep. 2020. [Online].
Available: https://go.facebookinc.com/security-whitepaper.html

[4] Qualcomm Technologies, “The Mobile Future of eXtended
Reality (XR),” Qualcomm Technologies, Presentation, Nov. 2020.
[Online]. Available: https://www.qualcomm.com/media/documents/files/
the-mobile-future-of-extended-reality-xr.pdf

[5] 3GPP, “Extended Reality (XR) in 5G,” 3GPP, Technical Report (TR)
26.928, Dec. 2020.

[6] ITU-T, “Requirements for mobile edge computing enabled content
delivery networks,” ITU, Report F.743.10, Nov. 2019.

[7] H. G. Kim, W. J. Baddar, H.-t. Lim, H. Jeong, and Y. M. Ro,
“Measurement of exceptional motion in VR video contents for VR
sickness assessment using deep convolutional autoencoder,” in ACM
Symposium on Virtual Reality Software and Technology (VRST), Gothen-
burg, Sweden, Nov. 2017.

[8] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network
slicing using SDN and NFV: A survey of taxonomy, architectures and
future challenges,” Computer Networks, vol. 167, p. 106984, Feb. 2020.

[9] Nokia, “Cloud gaming and 5G – Realizing the opportunity,” Nokia,
White Paper, 2020. [Online]. Available: https://onestore.nokia.com/
asset/207843

[10] Huawei, “Preparing for a Cloud AR/VR Future,” Huawei, White
Paper, 2017. [Online]. Available: https://www-file.huawei.com/-/media/
corporate/pdf/x-lab/cloud vr ar white paper en.pdf?la=en

[11] M. Lecci, A. Zanella, and M. Zorzi, “An ns-3 Implementation of
a Bursty Traffic Framework for Virtual Reality Sources,” in ACM
Workshop on ns-3 (WNS3), Online Event, US, Jun. 2021.

[12] M. Lecci, M. Drago, A. Zanella, and M. Zorzi, “An Open Framework
for Analyzing and Modeling XR Network Traffic,” IEEE Access, vol. 9,
pp. 129 782–129 795, 2021.

[13] J. Latta and D. Oberg, “A conceptual virtual reality model,” IEEE
CG&A, vol. 14, no. 1, pp. 23–29, Jan. 1994.

[14] S. Tanwir and H. Perros, “A Survey of VBR Video Traffic Models,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1778–
1802, Fourth Quarter 2013.

[15] S. Liew and D.-Y. Tse, “A control-theoretic approach to adapting VBR
compressed video for transport over a CBR communications channel,”
IEEE/ACM Trans. on Networking, vol. 6, no. 1, pp. 42–55, Feb. 1998.

[16] N. Mohsenian, R. Rajagopalan, and C. A. Gonzales, “Single-pass
constant- and variable-bit-rate MPEG-2 video compression,” IBM J. Res.
Dev, vol. 43, no. 4, pp. 489–509, Jul. 1999.

[17] M. Carrascosa and B. Bellalta, “Cloud-gaming: Analysis of Google
Stadia traffic,” in arXiv, Sep. 2020.

[18] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano, “A
Network Analysis on Cloud Gaming: Stadia, GeForce Now and PSNow,”
Network, vol. 1, no. 3, pp. 247–260, Oct. 2021.

[19] P. Graff, X. Marchal, T. Cholez, S. Tuffin, B. Mathieu, and O. Festor,
“An Analysis of Cloud Gaming Platforms Behavior under Different
Network Constraints,” in 17th International Conference on Network and
Service Management (CNSM), Virtual Conference, Oct. 2021.

[20] O. S. Peñaherrera-Pulla, C. Baena, S. Fortes, E. Baena, and R. Barco,
“Measuring Key Quality Indicators in Cloud Gaming: Framework and
Assessment Over Wireless Networks,” Sensors, vol. 21, no. 4, Feb. 2021.

[21] B. Hentschel, M. Wolter, and T. Kuhlen, “Virtual Reality-Based Multi-
View Visualization of Time-Dependent Simulation Data,” in IEEE
Virtual Reality Conference, Lafayette, LA, USA, Mar. 2009, pp. 253–
254.

[22] F. Chiariotti, “A survey on 360-degree video: Coding, quality of experi-
ence and streaming,” Computer Communications, vol. 177, pp. 133–155,
Sep. 2021.

[23] M. Chen, W. Saad, and C. Yin, “Virtual Reality Over Wireless Networks:
Quality-of-Service Model and Learning-Based Resource Management,”
IEEE Trans. on Communications, vol. 66, no. 11, pp. 5621–5635, Nov.
2018.

[24] M. Chen, W. Saad, C. Yin, and M. Debbah, “Data Correlation-Aware
Resource Management in Wireless Virtual Reality (VR): An Echo State
Transfer Learning Approach,” IEEE Trans. on Communications, vol. 67,
no. 6, pp. 4267–4280, Jun. 2019.

[25] X. Yang, Z. Chen, K. Li, Y. Sun, N. Liu, W. Xie, and Y. Zhao,
“Communication-Constrained Mobile Edge Computing Systems for
Wireless Virtual Reality: Scheduling and Tradeoff,” IEEE Access, vol. 6,
pp. 16 665–16 677, Mar. 2018.

[26] Nvidia, “Video Codec SDK Documentation,” 2021. [Online].
Available: https://docs.nvidia.com/video-technologies/video-codec-sdk/
nvenc-video-encoder-api-prog-guide/

[27] S. M. Stigler, “Gauss and the invention of least squares,” the Annals of
Statistics, pp. 465–474, May 1981.

[28] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica:
journal of the Econometric Society, pp. 33–50, Jan. 1978.

[29] C. Yu and W. Yao, “Robust linear regression: A review and comparison,”
Communications in Statistics-Simulation and Computation, vol. 46,
no. 8, pp. 6261–6282, Sep. 2017.

https://www.huawei.com/en/industry-insights/outlook/mobile-broadband/insights-reports/vr-and-ar
https://www.huawei.com/en/industry-insights/outlook/mobile-broadband/insights-reports/vr-and-ar
https://carrier.huawei.com/~/media/CNBGV2/download/bws2021/ar-insight-and-application-practice-white-paper-en.pdf
https://carrier.huawei.com/~/media/CNBGV2/download/bws2021/ar-insight-and-application-practice-white-paper-en.pdf
https://go.facebookinc.com/security-whitepaper.html
https://www.qualcomm.com/media/documents/files/the-mobile-future-of-extended-reality-xr.pdf
https://www.qualcomm.com/media/documents/files/the-mobile-future-of-extended-reality-xr.pdf
https://onestore.nokia.com/asset/207843
https://onestore.nokia.com/asset/207843
https://www-file.huawei.com/-/media/corporate/pdf/x-lab/cloud_vr_ar_white_paper_en.pdf?la=en
https://www-file.huawei.com/-/media/corporate/pdf/x-lab/cloud_vr_ar_white_paper_en.pdf?la=en
https://docs.nvidia.com/video-technologies/video-codec-sdk/nvenc-video-encoder-api-prog-guide/
https://docs.nvidia.com/video-technologies/video-codec-sdk/nvenc-video-encoder-api-prog-guide/

	I Introduction
	II State of the Art
	III XR Streaming Architecture
	IV Video Trace Analysis
	IV-A Frame Size Prediction
	IV-B Model Generalization

	V Network Slicing Use Case
	VI Conclusions
	References

