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Abstract: Fabric care manufactures are striving to make more energy efficient and more user-friendly
products. The aim of this work is to develop a Soft Sensor (SS) for a household Washer-Dryer (WD) that
is able to distinguish between different fabrics loaded in the machine; the knowledge of load composition
may lead to a more accurate drying, faster processed and lower energy consumption without increasing
the production costs. Moreover, automatic classification of load fabric will lead to an enhanced user
experience, since user will be required to provide less information to the WD to obtain optimal drying
processes. The SS developed in this work exploits sensors already in place in a commercial WD and, on
an algorithmic point of view, it exploits regularization methods and Random Forests for classification.
The efficacy of the proposed approach has been tested on real data in heterogeneous conditions.
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1. INTRODUCTION

In the context of household fabric care appliances development,
manufacturers are constantly striving for making products more
efficient and more user friendly. One of the main obstacle in
this process of optimization can be related to the uncertainty in
the laundry loaded in the appliance. The laundry characteristics
(like weight, fabric, contained water) has a major impact in
the drying and washing processes: being aware or estimating
such characteristics can enable several process optimizations, in
terms of both performances and consumptions. In particular, the
availability of information about the laundry could be exploited
in several apparent ways during a washing or drying cycle:
for example, in washing processes, the knowledge of laundry
composition can be exploited to load the proper amount of
water while, in drying processes, such information can be used
to set the drying process duration or to provide the user with an
accurate estimation of the remaining time of the process.

Classically, in some laundry treating appliances, the user can
or is requested to provide information (such as weight or fab-
ric typology) regarding the laundry through a user interface.
However, such practice is deplorable for some reasons: (i)
users provide subjective and inaccurate information; (ii) the
request of information from the machine may be considered
as inconvenient and generating discomfort. The usage of dedi-
cated physical sensors to characterize laundry is generally not
possible or not costly-effective in household appliances. For
these reasons, manufacturers have to resort to indirect infor-
mation on the laundry inferred from other sensors or provided
by the users. For example in [Zambonin et al. 2018, Susto
et al. 2018b,a] Soft Sensors (SS) [Kadlec et al. 2009] based
on Machine Learning approaches have been presented to esti-

mate the laundry weight in Washing Machines, Washer-dryers
and Tumble Dryers. A SS aims at providing through a model
an estimate of a relevant quantity, called output, that may be
unmeasurable or costly/time-consuming to measure based on
more accessible ’cheap to measure’ variables, called inputs.
Such technology is generally based on Machine Learning (ML)
supervised techniques [Hastie et al. 2009] that exploit the avail-
ability of historical data where the relationship between inputs
and output is measured.

In this work we present a SS for the automatic estimation of
laundry fabric type in household Heat Pump Washer-Dryers
(WD-HP). Developing a SS for laundry household equipment is
a challenging task for many reasons: (i) laboratory data, where
the water content is accurately measured and laundry compo-
sition is precisely described, are costly; (ii) computational ca-
pacity in current appliances is limited, posing an hard constrain
on the ML-based solutions to be embedded in the equipment.
In this work we overcome these two issues by exploiting lab-
oratory data already collected for other product development
purposes and by exploiting regularization Scholkopf and Smola
[2001], a Machine Learning framework that allows, in some
cases, to provide effective sparse linear models that are easily
implementable.

The contributions of this paper are the following:

e the one presented here is one of the first SS for home
appliances and the first to estimate load fabric typology
in fabric care home appliances;

e regularization approaches are used to enable on-board im-
plementation of SS, while Random Forest are employed
for ceiling analysis and for assessing classification perfor-
mance in future hardware and architectures;

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2019.09.127



Gian Antonio Susto et al. / IFAC PapersOnLine 52-11 (2019) 116-121 117

e particular focus has been provided to the timing in which
the SS provides the estimation; the availability of such
result can be exploited in various ways in different phases
of the drying process. In this perspective, two different
solutions with different timing are illustrated in this work:
a EARLY classification where the typology estimation is
used for improving process handling and a LATE classi-
fication where such estimation is exploited for improving
the end-cycle detection;

e results are validated on real experiments.

The remainder of the paper is organized as follows. Section 2 is
dedicated to review SS solutions and estimation approaches in
fabric care appliances and other contexts with limited computa-
tional resources; in Section 3, Machine Learning basic concepts
are introduced and the methods employed in this work are
illustrated. In Section 4 and in Section 5 the use case and the
proposed Soft Sensor are respectively described. Section 6 is
devoted to summarize the experimental results obtained on real
industrial data. Remarks are then reported in Section 7.

2. RELATED LITERATURE REVIEW

The SS technologies have proliferated in the past years given
the increased availability of data in many engineering scenar-
ios and the growing attention in dedicated to extract valuable
information from such data. SS technologies go under different
names depending on the application area and/or background of
the involved researchers; for example, ’Soft Sensor’ is used in
chemical and pharmaceutical manufacturing Bosca and Fissore
[2011], ’Virtual Metrology’ is used in semiconductor manu-
facturing Pampuri et al. [2012], Park and Kim [2016] while
’Virtual Sensor’ is used in automotive Stephant et al. [2004].
SS technologies are also used for control purposes Tabbache
et al. [2013]. As anticipated in the Introduction Section, only
few works about the use of SS for household major appliances
are available in scientific literature, in particular, for laundry
load estimation problem: Zambonin et al. [2018], Susto et al.
[2018b,a].

Some references could be found in literature for similar
resource-constrained environments like wearable devices®.
Wearable devices are constrained in terms of computational
capability and memory, which calls for the design of algo-
rithmic solutions that explicitly take into account these issues
Belgioioso et al. [2014], Cenedese et al. [2015], Terzi et al.
[2017].

Another example of SS development for a similar problem in
industrial applications can be found in Paciello and Sommella
[2013] where smart sensing issues concerning a challenging
motorcycle application are studied. SS have been proposed here
to solve problems such as measuring system backup and and
fault diagnosis strategies. Vehicle suspensions represent one
of the most interesting applications of dampening; developing
damping technologies involves searching solutions for mea-
surement challenges. Smart sensing is able both to improve
noise filtering of the signals provided by low-cost sensors and
detect specific motorcycle dynamics which most influence the
road holding and comfort. A SS has been modeled and adopted
as a benchmark (in terms of false alarms and correctly detected

1 The rapid growth of IMUs (Inertial-Measurement Units) has allowed, in
recent years, the development of compact sensor-equipped devices (e.g. smart-
watches and smartphones) which lead efficient monitoring of human activities
to be feasible.

faults) in the development of fault detection strategies (i.e.,
threshold identification) directed to the sensor validation of the
rear suspension stroke.

No other works to the best of our knowledge are available
in literature for automatic laundry typology identification for
major appliances and this is the main novelty of this work.
When the aim is to quantify some essential information for
the (washing/drying) process handling, all methods reported in
patent literature for similar purposes are based or related to the
knowledge of the process of interest and their implementations
suffer from the adaptability to different operating conditions of
washer and dryer machines.

3. MACHINE LEARNING FOR CLASSIFICATION

In this Section the methodologies employed for classification
are briefly detailed; we refer the interested reader to Hastie et al.
[2009] for a more detailed treatise of classification approaches.
Two types of algorithms have been adopted: (i) regulation
methods that can be easily implemented in present fabric care
appliances and (ii)) Random Forests, one of the most accurate
approach to classification [Fernandez-Delgado et al. 2014],
that represent in this context a benchmark for regularization
methods and allow us to have an assessment of load type fabric
classification performance for future hardware or architectures.

3.1 Logistic Regression

Logistic Regression (LR) is one of the most widely-used classi-
fiers Menard [2002]. In the binary case, given two possible re-
sponse classes, the logistic regression describes the probability
that the response belongs to one of the two classes. For exam-
ple, let C = {c1, e} be the set with the two possible response
classes, Z be an observation and g its unknown response; then
the logistic regression model is Pr(§ = ¢1|Z).

To model the relationship between p(&) = Pr(g = ¢1|Z) and
and obtain values between 0 and 1, we use the logistic function
Hastie et al. [2009]:
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where 7 are the elements of the vector of measurements Z and

B; are some coefficients that needs to be estimated. After a bit
of manipulation:

(7) S
109<1fp(j)> = Bo + ;53‘%‘ )

where the left-hand side is called the logit; we can then see that
the logistic regression model has a logit that is linear in Z.

To estimate the unknown coefficients /3; we can use the method
of maximum likelihood, for which the likelihood function is:
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The logistic regression classification is able to predict only a
binary response, so it doesn’t work for problems with more than
two response classes, as is the case of the problem faced in this
work. For this reason the logistic regression will be extended
for multiclass (or multinomial) classification Aly [2005]. In
order to reduce the overfitting problem, regularized LR will
be adopted using weel-known shrinkage methods like Ridge
Regression (RR) and Least Absolute Shrinkage and Selection
Operator (LASSO).
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3.2 Decision Trees and Random Forests

A classification problem can be solved by asking a series of
carefully crafted questions about the features of the observa-
tions Larose and Larose [2014]. Each time an answer is given, a
follow-up question is asked until is reached a conclusion about
the class label of the observation. The series of questions and
their possible outcomes can be organized in the form of a tree-
structure where: (i) each interior node is a feature, and there are
edges to children for each possible value of the feature; (ii) each
leaf is a class. One of the algorithms that can be used to grown
a Decision Tree (DT) is Hunt’s Quinlan [1990], that recursively
partitions the training dataset into successively purer subsets.
Let Sy = {1, 2, ..., .} be the subset of the training dataset .S
associated with node t and y = {y1, ¥, ..., Y.} the class labels.
The following is a recursive definition of Hunt’s algorithm:

(1) if all observations in Sy belong to the same class y;, then
t is a leaf node labelled as y;;

(2) if Sy contains observations that belong to more than one
class an attribute test condition is selected to partition the
records into smaller subsets. A child node is created from
each outcome of the test condition and the records in S;
are distributed to the children based on the outcomes. The
algorithm is then recursively applied to each child node.

This definition needs to be applied starting from the root r of
the tree, where the starting conditions are: ¢t = r, S, = S and
y=0C.

Using DTs brings many advantages, since they are easily inter-
pretable, they require no data normalization, the computational
expensive part is done off-line once and the classification is im-
mediate; however they are high variance classifiers: they fully
represent the dataset observations with the risk of overfitting.
To reduce this effect we can use Random Forests (RF), one of
the most powerful and used classifier, still based on DTs. RF is
an ensemble learning method ? Dietterich [2000], Hastie et al.
[2009], where a set of several different DTs is generated and
the classification is done by a majority vote. To obtain a set
of different DTs, RF uses bagging (or bootstrap aggregating)
Breiman [1996], consisting on the creation of datasets by uni-
formly sampling with replacement from the original dataset.

4. DATA DESCRIPTION

Some of the tests contained a full wash and dry cycle (W&D),
meaning that before the drying phase of the cycle there was the
washing phase too. The signals provided include:

e data streams of sensors;

e signals that describe the work of several components, like
compressor, motor, temperature probe, etc;

e additional signals constructed from the previous ones us-
ing filters or other data manipulations techniques;

e some external information, like laboratory conditions (e.g.
humidity and temperature), energy consumption etc.

A subset of 23 signals among all the ones available has been
selected, based on domain experts’ advice and the study of sev-
eral plots showing the signals behaviour in different conditions
and with different load types.

2 Ensemble methods use multiple learning algorithms to obtain better predic-
tive performances than could be obtained from any of the constituent learning
algorithms alone.

@ Type A
@ Type B
O Type C

Fig. 1. Laundry load type distribution in the data, 3 classes.

A total of 211 tests is available and the goal is to use them to
distinguish between 3 classes of load typology: Type A , Type
B and Type C 3. Table 1 shows the description of dataset
in terms of laundry load size and machine temperature while
Figure 1 represents the distribution of classes in the dataset.
Tests can be Cold or Hot referring to the machine temperature

Table 1. Drying tests available. In brackets there
is the number of drying tests extracted from a
complete wash and dry cycle.

Type A Type B Type C

Cold Hot | Cold Hot Cold Hot
load I 8 (2 W&D) 7 - - 4 4
load II - - - - 6 (1 W&D) 4
load IIT 7 4 - - -
load IV 8 (2 W&D) 6 - 34 1 1
load V - - - - 6 (1 W&D) 1
load VI 3 3 8 (1 W&D) -
load VII 3 3 7 6 - -
load VIII | 14 (5 W&D) 3 5 - - -
load IX 22 (7T W&D) 3 30 - -
Tot. 65 29 42 40 25 10

during process of interest. This distinction is made because
the behaviour of several variables is strongly influenced by
this characteristic, and many of these variables can be used
to easily separate this two types of tests. There are just a few
tests for every possible case, sometimes none; for this reason,
it is difficult to study the differences between the three types of
load in the same conditions ¢ . Furthermore, for each of the load
types there are many tests all with the same particular weight.
For the reasons mentioned above, the available dataset can be
considered imbalanced. Some common and simple strategies
could be used to face the problem of imbalanced data (Guo
et al. [2008]) such as undersampling the majority class or
oversampling the minority class; however, these approaches
have not been exploited here because of our small set of
provided data® .

5. SOFT SENSOR FOR FABRIC LOAD CLASSIFICATION

As anticipated before, one goal is to determine the LATE load
estimation in useful time to improve the end-cycle detection.
Therefore, experts suggested to consider only features © in the
first “half” of the test, where the first “half” is computed as half
of the time-to-end 7 estimated at the beginning of the cycle.
After the first variable selection, for each variable one or more

3 Details about laundry composition, machine temperature and signals avail-
able will be omitted here because of intellectual property rights.

4 With equal load weight and Cold/Hot condition.

5 Ttis preferred to use the dataset as it is avoiding undersampling here.

6 The term “feature” is used here to describe elaborations of the raws signals
that are statistically significant quantities extracted from such signals using the
experts’ knowledge and employed to summarize the informative content.

7 Time-to-end is the expected end-time for the drying cycle.
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Fig. 2. Visual representation of the correlation matrix ® of
the extracted features. Features extracted from the same
signals are in succession, that’s why there is higher corre-
lation between closer features.

features were chosen and for every test, all the features were
extracted and collected in a Design Matrix X € R™*™, where
n is the number of tests in the dataset and m the number of
the chosen features. Similarly, an Output Matrix Y € R7*1
was built indicating the class of each test with the values y; to
indicate Type A , ys to indicate Type B and y3 to indicate Type
C . As already anticipated in section 1, we need to implement
estimation procedures that are deployable in firmware program,
so the chosen features are simple to compute: they are for exam-
ple maximum or minimum values and relative time positions,
means, slopes.

In Figure 2, the correlation matrix ® € I"*™, with I € [0, 1]
and [®]; ; = |corr(x;, x;)|, of the extracted features is de-
picted ® . Every little square represents a degree of correlation
between a couple of features. Basically in the diagonal of ®
are represented the correlations between the features and them-
selves, that are always equal to one. On the rest of the matrix
we can see that some areas tends to have higher correlations (it
happens because features extracted from the same signals are
in succession).

The classification will also be distinguished based on the fea-
tures used:

e EARLY classification where only the features in the first
minutes of the drying cycle are used, for a total of 41
features;

e LATE classification where all the features in the first
minutes of the dring cycle plus the features that comes
later are used, for a total of 55 features;

e trivial classification, where one or at most two features
computed for the EARLY case are used: feature 1 and
feature 29 ..

For each classification type we tested two different approaches,
based on the considerations made in 4 about Hor and Cold tests:

(1) Together, without distinction between Hot and Cold tests:
in this approach we train one single model on all the tests
(Figure 3);

(2) Divided, with distinction between Hot and Cold tests: in
this approach we first separate the tests in Hot and Cold
based on a variable available from data and then training

8 The correlation coefficient of two random variables is a measure of their
linear dependence. The MATLAB function corrcoef was used to compute such
values.

9 Details about feature computation and significance will be deliberately
omitted because of the as agreed between authors and industrial partner.

two models, one for Hot tests and one for Cold ones. This
approach aims to take into account the different behaviour
that many variables present in Hot or Cold situations
(Figure 4).

Input:
sensor
measures

Output:

laundry
typology

typology

—>| estimation: [————>

single model

Fig. 3. Estimation algorithm using Together approach.

typology
estimation
for Hot

Input:
sensor
measures

Output:

laundry

typology
—>

typology
estimation
for Cold

Fig. 4. Estimation algorithm using Divided approach.

To train the models we used the following approaches:

o regularized Logistic Regression (rLR), with 10 cross vali-
dation folds Hastie et al. [2009] for the lambda choice and
two possible lambdas:

- Amin, that is the value of A that gives minimum
mean cross-validated error; in the following we will
indicate with LR),,,;,, the associated results;

- A1se, that is an heuristic choice producing a less
complex model, which gives the most regularized
model such that error is within one standard error of
the minimum error.

e Random Forest, with 100 trees.

All the models were validated using 1000 Monte Carlo Cross-
validations (CV) folds Hastie et al. [2009], with the dataset
portioned in: 70% as training set and 30% as test set.

In particular, rLR is a preferable modelling approach for its
simple implementability; however, we want to compare the
performances of this model with the performances of RF to see
how much better a more complex model can perform.

For each model the classification performances were calculated
using the confusion matrix, that is a specific table layout that
allows visualization of the performance of an algorithm; in
this layout each column represents the instances in a predicted
class, while each row represents the instances in an actual
(real) class (or vice versa). This representation makes it easy
to see if the system is confusing two classes (i.e. commonly
mislabelling one as another) since in the main diagonal of
the confusion matrix there is the percentage of exact matches
between predicted and real classes, while other values represent
the the mismatch between predicted and real classes. The
classes of the confusion matrix are: Type A Hot, Type B Hot,
Type A Cold and Type B Cold. An example of confusion matrix
is depicted in Figure 5.

As mentioned before, among the features there is the weight
estimation, that is a soft sensor prediction of the weight of
the load Susto et al. [2018b], Zambonin et al. [2018], Susto
et al. [2018a]. Being this feature an estimation, it’s not always
correct, thus we wanted to see how its precision affects the final
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load type estimation. In order to do so, we tried to train the LR
model with \,,;,, and Hot and Cold divided for the EARLY and
for the LATE classification with this feature.

6. RESULTS

As already explained, the goal for this work is to recognize
the load type between the Type A , Type B and Type C , so
a 3 classes classification problem. Because Type C loads have
dedicated drying programs, a particular attention could be given
to distinguish between the first two types. Thus the goal could
be redrafted using only two possible classification classes and
using 176 out of the 211 available tests. Therefore, In this work
also a binary classification problem had been addressed but
results reported here concern only multinomial classification
problem since it was the main objective of this research.

6.1 Early classification

Table 2 visualizes the performances of the different models
for the EARLY classification. The classifiers have good perfor-
mances considering Type A and Type A classes, however,
for the Type C class the models don’t perform as well as for
the other two classes: as we can see in the table, the Type C
Cold have a Classification Rate (CR) -with LR- of 92%, but
the Type C Hot have a CR!? of 57% in the best case. This
situation, as for the other cases, is invariant to the model or
the features used to classify. Probably the problems with Type
C Hot classification are caused by the low number of tests that
belong to this category and by the distribution of these tests (see
Table 1): there are only 10 tests that are Type C Hot, and they
have all low weights (not represented in Table 1).

Regarding the sizes of the models, we have to consider that,
since it’s a multinomial classification with three classes, the LR
method will generate three models (one for each class) in the
Together case, and six models (one for Hot and one for Cold for
each one of the three classes) in the Divided case. In Figure 5,

Table 2. Performances of the different models for
the EARLY multinomial classification. Average re-
sults/statistics over 1000 Monte Carlo simulations.

TypeAHot

TypeBHot 98.00

TypeCHot |  8.00 34.00

Predicted Class

TypeACold

TypeBCold

TypeCCold

TypeAHot TypeBHot TypeCHot TypeACold TypeBCold TypeCCold
Real Class

Fig. 5. Confusion matrix for the EARLY classification, values in
[%] and correct classification in the main diagonal.

6.2 Late classification

Also in this case similar considerations made for 7ype C EARLY
classification are still valid i.e, as represented in Table 3 the
Type C , in the Cold case are recognized correctly the most
of the times, while in the Hot case they still have a very low
classification rate (57% at best).

Table 3. Performances of the different models for
the LATE multinomial classification. Average re-
sults/statistics over 1000 Monte Carlo simulations.

Classification rate [%]
Model Approach Type A Type B Type C Type A Type B Type C
Hot Hot Hot Cold Cold Cold
LR Apin Together 81 92 57 92 96 90
Divided 88 98 33 96 99 93
Random Together 86 929 48 96 96 86
Forest Divided 89 100 32 97 96 87

Classification rate [%]
Model Approach Type A Type B Type C Type A Type B Type C
Hot Hot Hot Cold Cold Cold
LR Apin Together 83 90 57 91 91 92
Divided 91 98 34 96 99 92
Random Together 86 97 38 97 93 85
Forest Divided 88 98 32 97 93 86

the confusion matrix of the models in Table 2 is shown as an
example of final visualization; in particular Figure 5 shows re-
sults for LR,,,;,, models with Divided approach since it turned
out to be an interesting result considering the trade off between
performance and implementation constrains. From this matrix
we can see that the Type C tests (in particular the Hot ones)
that are not correctly classified are almost all confused with the
Type A tests. For the Hot tests we can imagine that this problem
arises because of the distribution and the number of the Type C
Hot tests: as we have seen previously, the Type C Hot tests have
all low weights and they are few in number, while the most of
the low weights observations in the dataset belongs to the Type
A class; for this reason we suppose that it is difficult for the
model to distinguish between Type A Hot and Type C Hot.

__total matches
total comparisons

1OCR has been computed as CR = [ 100—‘ .

Considering EARLY and LATE classification (Table 2 and Ta-
ble 3 respectively), in the latter 14 more features are used
exploiting additional information from the drying cycle. CR in
LATE case shows only a little improvement revealing the fact
that the first part of the drying cycle seems to be more useful
for the typology classification problem at hand.

6.3 Trivial classification

In Table 4 the results of the trivial classification for the multi-
nomial problem are reported. As table shows, the performances
of Type C are very bad in both Hot and Cold case and this is
supposed to be due to the fact that the two features exploited
to obtain classification results do not describe well Type C data
which are characterized by a low sample size.

Table 4. Performances of the different models for
the trivial multinomial classification. Average re-
sults/statistics over 1000 Monte Carlo simulations.

Model Features Classification rate [%]
used Type A Type B Type C Type A Type B Type C
Hot Hot Hot Cold Cold Cold
feature 1 87 95 0.00 74 85 40
LR Anin Seature 2 62 86 00 79 54 33
Both 83 94 02 79 85 40

This kind of result (trivial classification) was studied with
the aim of exploring possibilities for online implementation
considering a very limited set of features. Observing Table 4
and Table 2 it is possible to quantify the loss of performance
using only one/two features according to the case of interest.
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7. CONCLUSION

This work dealt with the development of Soft Sensors to esti-
mate load fabric type in household Heat Pump Washer-Dryers
during the drying phase in order to improve drying perfor-
mance, energy efficiency and user experience. To the best of
our knowledge, this is the first work in literature to address this
problem. The purpose was to obtain estimates taking advantage
of signals and sensors already available in heat pump washer-
dryers, in order to not increase hardware costs. These chal-
lenges have led to usage of statistical predictors; in particular,
a regularized linear model, with limited number of inputs, was
welcomed for its straightforward implementability. In order to
have a benchmark, a second type of classifier has been em-
ployed, RF which generally outperforms linear solutions, and,
while not being simple to be implemented on a fabric care
product, it is here employed to provide a ceiling analysis.

Main results can be summarized as below:

e High difficulty to distinguish the Type C class in the
Hot case, probably due to a very limited availability of
tests. On the other hand, Type B shows good classification
results in general;

e In all the studied cases, the performance of Random
Forests were comparable to the one of regularized logistic
regression, so a logistic regression solution will always be
preferred for implementation given its simple form;

e The number and type of features influenced the perfor-
mances of the classification only partially: the best results
(almost identical) were obtained with EARLY and LATE
classification, while slightly worse results were obtained
with trivial classification (except for Type C case).

In addition to the goodness of the results obtained, two strength
of this work needs to be underlined: (i) the novelty of the
work: to the best of our knowledge there are no other works in
literature that discuss virtual sensors development for laundry
load type estimation; (ii) an effective soft approach: no impact
on hardware and no dedicated Design of Experiments (DOE)
was required.

Some potential development lines have emerged during this
work such as further studies using a more homogeneous dataset
in number of tests for laundry type and load size; in particular
the use of a new richer amount of data could improve the
performance of the multinomial classification.
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