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Abstract
Recently, the zebrafish has been established as one of the most important model organisms for medical research. Several 
studies have proved that there is a high level of similarity between human and zebrafish genomes, which encourages 
the use of zebrafish as a model for understanding human genetic disorders, including cancer. Interestingly, zebrafish 
skin shows several similarities to human skin, suggesting that this model organism is particularly suitable for the study 
of neoplastic and inflammatory skin disorders. This paper appraises the specific characteristics of zebrafish skin and 
describes the major applications of the zebrafish model in dermatological research.

1 Introduction

Since their use, animal model systems have offered a technical means to perform studies that could not be otherwise 
undertaken in human subjects. They represent a fundamental part of research and offer precious keys to understanding 
human physiology and pathophysiology. Moreover, not only do they allow for more advanced pharmacokinetic and 
pharmacodynamic studies, but also for the discovery of new treatments for human diseases.

Because of their well-known physiological and genetic similarities to humans, murine and other mammalian models 
have been routinely used for medical research. However, other animal models are showing distinct advantages over 
these conventional models. Therefore, interest in this field has increased over recent years.

Among the animal models studied thus far, fish seem to be the most interesting non-mammalian vertebrate model, 
because of their low maintenance costs and ex uterus development of progeny that allows for in vivo imaging. For 
instance, Platyfish (Xiphophorus) and Medaka (Oryzias latipes) have already been successfully used as models to study 
melanoma [1–3].

2  The zebrafish organism

The zebrafish (Danio rerio) was first introduced as a model for genetic studies by Streisinger and colleagues in the 
early 1980s [4]. Zebrafish are small vertebrate tropical fish characterized by low-cost maintenance and exploited as 
a model for both reverse and forward genetic studies.
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At first, zebrafish were used as a model in forward genetic studies (the identification of a specific genotype through 
observation of a certain phenotype). This was the case in N-ethyl-N-nitrosurea (ENU) induced mutagenesis used to 
produce point mutations, followed by extensive phenotypic screening. However, forward genetic screens using this 
method were time consuming and laborious [5, 6].

Fortunately, increasingly advanced techniques in recent years have allowed to overcome the challenges of creating 
several disease models using zebrafish and to expand zebrafish studies through the reverse genetics (the observation 
of the phenotype produced by a known genotype). Moreover, studies have proved that there is a high level of similar-
ity between human and zebrafish genomes, estimating that 70% of human genes have at least one zebrafish ortholog. 
These data are astonishing, especially if we consider that a mouse shares about 80% of its genome with humans [7, 
8]. Moreover, over 80% of known human disease genes, including oncogenes and tumor suppressor genes, have 
their orthologues in zebrafish and several pathways are also conserved, even those implicated in carcinogenesis [8].

All these characteristics and evidence have boosted the use of zebrafish as a model for understanding human 
genetic disorders, including cancer, and have pointed out their potential for in vivo screening for new therapies, 
which is especially important in our era of personalized medicine.

Therefore, although mouse models remain the most used in the medical research field, the zebrafish has several 
advantages and unique features that murine models do not have, which explain its ancillary and complementary role.

The advantages of using zebrafish as a model are numerous, going beyond their low-cost maintenance and small 
size. They display a high fecundity, with the ability to fertilize about 200–300 eggs every 5–7 days. Fast ex utero 
development together with the embryos’ optical clarity allow for the observation of early physiological and/or 
pathological development by in vivo direct cell imaging [9, 10]. In addition, the casper zebrafish was introduced as a 
genetic strain intentionally created to maintain transparency throughout adult life, making it even more affordable 
to study cancer cells’ behavior in a living organism [11].

Cell-based assays for the study of the absorption, distribution, metabolism and toxicity of compounds and drugs 
give only limited information, whereas pharmacologic molecule screening in zebrafish might help to overcome this 
problem. Parallel physiological responses have been observed in the use of drugs and small molecules in zebrafish 
and mammal models [9]. Drug screenings benefit from both the embryos’ transparency, which makes it easy to col-
lect imaging data after treatment, and the high throughput assays, which are made possible by the female’s ability 
to lay many eggs (about 10,000 eggs per annum). This means that imaging, cellular analysis and advanced statistics 
can be performed simultaneously in an incredibly large number of fish, with laboratory space being the only limit-
ing factor [12, 13]. These premises explain the zebrafish’s potential role as a bridge between cell-based assays and 
biological validation of a certain compound.

Moreover, zebrafish might represent a clue in the attempt to identify therapeutic targets for the treatment of 
human diseases, which remains a big challenge in medical science [14]. In phenotype-guided drug studies, the 
presence of phenotype alterations in the whole organism may suggest the effectiveness of a drug, even when the 
target is unknown. This approach helps both the development of new drugs and the simultaneous identification of 
the molecular pathways underlying the disease that are inducing that specific phenotype [15]. Compared to mice, 
zebrafish studies enable us to analyze a greater number of phenotypes at reduced costs and labor.

Even though this fish model is extremely versatile in medical and especially in pharmacological research, there are 
a few drawbacks that should also be pointed out. Firstly, the zebrafish is a poikilothermic fish that needs to be bred 
in an environment with a temperature around 28 °C to survive. This differs from mammals’ homeostatic temperature, 
thus hindering studies where temperature is a determining factor. However, it can tolerate a wide range of tempera-
ture variation, spanning between 6 and 38 °C, for limited periods of time [16]. Secondly, teleost genome duplication 
involves the presence of genes in more than one copy (paralogs), which might hamper molecular genetic studies. 
Lastly, another disadvantage of the zebrafish is the scarcity of available antibodies that specifically target zebrafish 
proteins, and the technical difficulty in raising antibodies against zebrafish targets [17–19]. This is especially relevant 
for cell surface and secreted proteins, since immunogenic glycans on zebrafish extracellular proteins hamper elicita-
tion of protein-specific antibodies in mammals used for raising such antibodies [20].

2.1  Zebrafish skin

Fish skin comprises the epidermis, dermis, and hypodermis, thus resembling mammalian skin. However, unlike mam-
mals’ and terrestrial vertebrates’ epidermis, which is covered by an outer layer of keratinized dead cells, zebrafish skin 
surface is made of living cells that are covered with mucus and lacks a cornified envelope [21]. Furthermore, zebrafish 
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has no mammalian appendages, since hair follicles and sebaceous glands cannot be detected. However, zebrafish 
presents the breeding tubercle, which is an epidermal appendage shared with mammals [22].

Mammalian epidermis is a well-organized stratified tissue that includes basal, spinous, granular, and horny cells 
from the basal membrane to the skin surface. Teleost epidermis only has three layers [23]. The surface layer is a single 
cell layer in which cells are rich in keratin filaments and are continuously replaced at their death, without producing 
a stratum corneum. The intermediate layer is composed of different cell types, including unicellular glands (mucous 
cells and club cells), sensory cells, ionocytes and undifferentiated cells. The basal layer is a single cell layer which 
is attached to the basement membrane via hemidesmosomes, which tightly link the epidermis to the dermis [24].

Maturation of zebrafish from embryo to fully developed fish only takes a few days. Layers representing the epider-
mis and the dermis are already detectable at one day post-fertilization (dpf ). In adult zebrafish, scales covering the 
epidermis form at around the 30th dpf and sonic hedgehog pathway has been identified has having a role in their 
development [25]. Collagenous stroma formation is dependent on fibroblasts, whereas pigment production derives 
from melanocytes, belonging to neural crest-derived pigment cell system [26].

Several epidermal marker genes, including keratins 1 and 5, the 230 kDa bullous pemphigoid antigen, plectin, and 
several cutaneous basement membrane zone (BMZ) genes, including type IV, VII and XVII collagen, are expressed in 
zebrafish skin in early developmental stages. Most expressed human collagens types, including collagens I, V, and 
VI, are detectable in zebrafish skin from 6th dpf. In conclusion, zebrafish repertoire of genes involved in cutaneous 
development reveals strong similarities with human skin [25].

The zebrafish neural crest produces three different kinds of pigment cells: melanophores, xanthophores and irido-
phores (Fig. 1). Melanophores synthesize melanin and are analogous to melanocytes of vertebrates, xanthophores 
have a yellow appearance caused by pteridine pigments, and iridophores contain iridescent platelets which reflect 
light. Melanophores firstly develop among pigmented cells at approximately 24 h post fertilization from melanogenic 
progenitors deriving from the neural crest [27].

Like in mammalian melanocytes, the tyrosine-protein kinase KIT has a major role in promoting the initial migra-
tion of melanocytes in the first two days of the embryos [28]. Later in zebrafish larval development, a new set of 
melanocytes contribute to formation of stripes characterizing adult zebrafish after metamorphosis [29].

2.2  Skin inflammation in zebrafish

Skin is essential in defending fish from environmental stress factors. Since fish are poikilotherms, even small changes 
in the external parameters may lead to injury and inflammation [30]. A series of epithelial cells, resident non-immune 
cells, vascular endothelial cells and mucosal epithelial cells help initiate and coordinate the inflammatory response 
[31–33]. Interestingly, unlike humans, [34]. fish do not have major lymphoid accumulations. It is still unclear where 

Fig. 1  Comparison between zebrafish and human skin. Bothzebrafish and human adult skin include a multi-layered epidermis, a basalmem-
brane (bm) and an underling dermis containing collagen (col) fibers.Zebrafish epidermis contains mucous cells (muc), while human epider-
mis has astratum corneum (cor) as outermost layer. Zebrafish pigment cells includexanthophores (xp), iridophores (ip) and melanophores 
(mp); human pigment cellsare represented by melanocytes (mc). Images created with BioRender.com
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fish lymphoid cells naturally reside. The most probable theory is that fish leukocytes migrate to the skin via mucus 
secretions in response to damage stimuli [35–37].

Inflammation pathways are regulated by the NF-κB family transcription factor both in mammals and fish [38] and 
classic pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6 prevail as paralogues in most teleosts [39–41], thus 
making the main mechanisms of inflammation similar in the two species. Neutrophils play an essential role in initiat-
ing the inflammatory response in both mammals and zebrafish and in perpetration of the inflammation, especially 
via TNF-α and IL-1β [42–48].

Once activated, monocytes differentiate into classically pro-inflammatory macrophages, functioning as antigen 
presentation cells and producing reactive oxygen species (ROS), TNF-α and IL-1β [42, 49–52].

Besides, neutrophils activation determines exocytosis of their granules [42, 50, 51, 53, 54]. Antigen presenting cells 
such as dendritic cells, macrophages and endothelial cells are also recruited by neutrophils [51]. While in mammals 
leukocytes originate in the bone marrow and mature in lymph nodes, zebrafish lacks such structures [55]. Specifi-
cally, the bone marrow has its counterpart in the head kidney acting as a major hematopoietic and lymphoid organ. 
Indeed, the thymus, spleen and mucosa-associated lymphoid tissues (MALT) are shared between fish and mammals 
[56]. Migration and proliferation of the immune cells in zebrafish skin has been recently studied using fluorescent 
light which induced the early expression of skin genes associated with inflammation [57].

3  Zebrafish as a model system in oncology

One of the biggest obstacles in the field of oncology is to address cancer heterogeneity either in inter-individual 
differences or in intra-tumoral contexts [58, 59]. Innovations in cancer research have largely benefited from further 
exploring these processes in live animals, with a strive to identify and target the most frequent driver mutations as 
a rational approach to treatment [60]. This is especially done in early tumor development at a cellular level.

As an example, patient-derived cancer cell xenotransplantation (PDX) could help to overcome treatment resist-
ance due to added mutations in tumor cells, by means of large-scale drug (small molecules) screening. This process 
is not as easily achievable in murine models as it may be in non-mammalian models such as fish, since recipient 
immunosuppression is required for PDX in mice [61–63].

The zebrafish has recently caught attention due to the aforementioned characteristics, alongside its highly-con-
served cancer signaling pathways compared to the human species.

Moreover, the zebrafish is a versatile model, as it is possible to operate a mutation in a specific gene, thus creat-
ing a stable transgene, or to create a transient over-expression or down-regulation of a specific gene. Forward and 
reverse genetic screens are also possible in zebrafish [64].

Initially, zebrafish have been used in forward genetic screens to test the effects of mutagens on neoplasm devel-
opment. Ethylnitrosurea screens leading to mutations in tp53, one of most studied genes among those involved in 
cancer pathogenesis, were among the first experiments in zebrafish in the field of oncology [65, 66].

Further techniques have been subsequently introduced, which helped cancer studies in zebrafish to progress. 
The aim was to create loss-of-function phenotypes or to introduce transgenes that are typically mutated in human 
cancer into fish models. Research in this field brought forward evidence that many mutated tumor suppressor genes, 
such as Tp53, and oncogenes, such as mMyc and KRas, could generate parallel tumors in zebrafish in the same way 
as they had been observed in humans. This shed light on the evolutionary conservation of drivers and pathways of 
tumorigenesis between man and fish [67].

Currently, the most used techniques for gene manipulation in zebrafish are morpholino oligomers (MOs) [68], zinc 
finger nucleases (ZFNs) [69], transcription activator-like effector nucleases (TALENs) [70] and the CRISPR (clustered 
regularly interspaced short palindromic repeats) system [71]. However, new promising techniques have recently 
been introduced to be used in zebrafish, such as TEAZ (transgene electroporation in adult zebrafish) and tumor cell 
transplantation, especially in the form of PDX (patient-derived cancer cell xenotransplantation).

MOs are small synthetic oligomers that block mRNA translation in vivo; they are easy to use and enable us to obtain 
models in a short amount of time, despite concerns about their off-target effects and their inexact reproduction of 
genome-editing mutants, thus requiring a control with the knockout phenotype [68, 72, 73].

ZNFs is a useful technique for multiplex gene targeting to be performed in one round, either creating knock-outs (loss 
of function) or knock-ins (gain of function) [69].
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TALENs enable us to produce heritable gene disruptions in the vertebrate genome; more importantly, they can create 
mutations in somatic tissues with a high success rate, including bi-allelic mutations [70].

CRISPR/Cas9 is a technique in which Cas9 endonuclease recognizes a specific DNA sequence by means of a guide 
RNA sequence binding both DNA and Cas9. Zebrafish models based on this technique are widely used today due to the 
potential possibility to target multiple genes at the same time and to its high efficiency [71, 74, 75].

TEAZ is a new technique that enables the injection of DNA constructs containing tissue-specific promoters and genes 
of interest into adult tissue. In addition, TEAZ is extremely fast as far as tumor onset is concerned, and the expression of 
genes of interest can be evaluated in adult fish [76]. TEAZ is very promising compared to conventional zebrafish cancer 
models created by means of the aforementioned techniques. In fact, the latter involves the injection of nucleic acids into 
one-cell stage embryos. Therefore, it is sometimes difficult to study cancer pathogenesis and development in animal 
models, since the onset and the site of the developing tumors are not accurate, and the spreading of metastases could be 
hard to evaluate. Alongside TEAZ, cancer cell transplantation in zebrafish embryos and adults could partially overcome 
the problems connected with common techniques [77].

Tumor cell transplantation is an important tool in studying tumor invasiveness. It involves cancer cell transplantation 
from a donor to a recipient of the same species (allograft) or of a different species (xenograft) [78].

Many studies have demonstrated that zebrafish embryos can engraft human cancer cells and give precious insight 
into disease pathogenesis.

As for human cancer xenotransplantation, zebrafish have some advantages compared to murine models, especially 
because a high number of transparent embryos lacking a mature immune system can be transplanted with cancer 
cells and tracked. In other words, visualization of cell-cell interactions in vivo is possible in zebrafish. Moreover, PDX in 
zebrafish can help us find new targets for targeted anti-cancer treatments. There is evidence that pre-clinical research 
might shorten the time for drug approval, mostly due to drug re-purposing [10]. The zebrafish has already shown to be 
a reliable model to assess drug efficacy and sensitivity, since in some experiments patient-derived cells responded well 
to the same drugs that were used in patients [79].

Thus, the use of zebrafish as a pre-clinical screening model for patient-derived cancer cell xenotransplantation might 
revolutionize our approach to cancer, especially in a personalized medicine perspective, and explains the growing inter-
est in PDX studies in zebrafish [77].

The variety of cancer types that have been successfully reproduced in zebrafish prove that this animal model has a 
lot of potential in the analysis of almost every type of cancer observed in humans. Genetic models of cancer in zebrafish 
include peripheral nerve sheath tumor (PNST) [80–82], rhabdomyosarcoma (RMS) [83, 84], melanoma, [85–90] thyroid 
cancer [91], pancreatic cancer [92, 93], hepatocellular carcinoma (HCC) [94–96], intestinal tumors [97, 98], testicular 
tumors [99], T-cell acute lymphoid leukemia (T-ALL) [83, 100–102], Acute Lymphoid leukemia (AML) [103–106], chronic 
myeloid leukemia (CML) [102, 107], myelodysplastic syndrome (MDS) [108].

Some of these cancer types, along with others, have been studied with PDX in Danio rerio [10]. Interestingly, the 
zebrafish has proved to be a reliable model for PDX for some cancers that develop in human organs that fish do not have, 
such as the breast, prostate and lungs [109, 110]. It has proved to be a good model for studying rare cancer pathogenesis 
as well, such as Ewing sarcoma [111].

3.1  Melanoma models in zebrafish

To better understand the mechanisms underlying melanoma, the zebrafish represents an excellent model through the 
use of xenografts [112] and transgenic models [113, 114].

Melanoma has certainly been one of the most studied cancers and the most analyzed skin cancer in zebrafish, since 
the first description of BRAF V600E model. It is known that the V600E mutation, a key melanoma driver found in about 
43–50% of melanomas [10, 115, 116], is also frequently found in benign naevi and moles which do not progress to cancer. 
It is also known that the loss of function of the tumor suppressor gene p53 (p53−/−) is required for cancer progression in 
naevi. However, the long time lapse and rarity of melanoma tumor formation (one to three in a fish’ lifetime) in zebrafish 
carrying both BRAF V600E and p53−/− mutations, imply that there are other molecular alterations and pathways play-
ing a role in melanoma formation. Based on the observation that crestin, the expression of which is generally limited to 
neural crest progenitor cells in developing zebrafish embryos, was expressed in zebrafish melanomas [117], studies were 
performed in which engineered transgenic zebrafish expressing GFP (green fluorescent protein) under the control of 
crestin-regulatory elements were tracked. GFP-positive cells showed that only individual melanocytes that reactivated 
crestin could initiate melanomas. This highlighted that melanoma at a one-cell-state is based on reprogramming the 
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cell to become more neural-crest-like [86]. As confirmation, consistent with crestin expression was the expression of the 
SOX10 transcription factor, a conserved early neural crest marker that helps melanocyte reprogramming to an embryonic 
state. Reactivation of neural crest genes such as crestin (in zebrafish melanoma) and SOX10 (in zebrafish as well as in 
human melanoma cell lines) is probably consequent to epigenetic modifications on histones, as shown by some histone 
markers known as super-enhancers [117].

N-RAS mutation has also been studied in zebrafish and its expression led to hyperpigmentation throughout the 
zebrafish’s body. When p53 mutation was added to mutated N-RAS, the fish developed invasive melanomas which were 
histologically and genetically correlated to human melanomas.

Although less frequent in melanomas than the previously mentioned BRAF and N-RAS mutation, H-RAS-mutated 
zebrafish models also displayed melanoma development [90, 118, 119].

Combining these assets with the excellent melanoma models engineered in zebrafish has led to several significant 
advances in our knowledge of melanoma behavior and molecular asset. New frontiers involve testing even infrequently 
mutated potential drivers, thus broadening the available models of cutaneous melanoma and introducing non-cuta-
neous melanoma zebrafish models [120]. Moreover, loss of function CRISPR/Cas9 gene targeting technology has been 
successfully used to create loss of function models, allowing testing of candidates that may alter disease onset and/or 
progression.

As an example, this technique was used to investigate SPRED1 function as a tumor suppressor in the context of KIT 
mutations in mucosal melanoma. SPRED1 knockdown, determining MAPK activation, conferred resistance to drugs 
inhibiting KIT tyrosine kinase activity. MAPK inhibition in SPRED1-deficient melanomas could therefore be a therapeutic 
hint and again proves the power of zebrafish modeling to investigate genetic interactions in cancer pathways [121].

Concerning the aforementioned cancer intra-tumoral heterogeneity, single cell RNA sequencing (sc-RNA sq) technolo-
gies provide an insight into melanoma complexity [122]. Analysis of cell dynamics at the minimal residual disease (MRD) 
stage, when persistent cells in otherwise disease-free tissue acquire specific properties for melanoma progression, proves 
fundamental to grasp the tumor vulnerability at a crucial point [123]. Sc-RNA sq was used to study MITF-low state role 
in melanoma progression in zebrafish genetic models with low activity of Mitfa, proving that very low or absent MITF 
activity characterized a residual disease like therapy-resistant melanoma [124]. Additional research on melanoma cells 
interaction with their microenvironment has been accomplished in a transgenic zebrafish model, proving the power of 
tools such as spatially resolved transcriptomics, sc- RNA-seq, and single-nucleus RNA-seq [125].

Interaction with metabolism has rarely been considered as an impacting factor in cancer and, more specifically, in 
melanoma; however, interference with liver gluconeogenesis has been successfully investigated in a zebrafish melanoma 
model through isotope tracing, confirming versatility of zebrafish in the field of research [126].

Not only has the zebrafish model helped to investigate melanoma genesis and development as far as its genetics is 
concerned, but also it has recently offered an insight into new therapeutic strategies for melanoma metastatic progres-
sion by targeting specific signaling cascades. For instance, human epidermal growth factor receptor (EGFR) signaling was 
implied when PLD c GMP analog protein kinase G activator 5 (PA5) was injected into zebrafish melanoma models, thus 
targeting the cGMP/protein kinase G pathway [127]. Another receptor tyrosine kinase, Xrmk, was identified as closely 
related to EGFR, and therefore involved in melanoma development and progression; in detail, Xrmk has been studied in 
Xiphophorus platyfish and in zebrafish as a therapeutic target [128]. Moreover, the activation of CD271, a member of the 
tumor necrosis factor receptor (TNFR) family, using a short β-amyloid-derived peptide, combined with chemotherapy 
or MAPK inhibitors, proved to significantly reduce metastasis in a zebrafish xenograft model [129].

3.2  Squamous cell carcinoma models in zebrafish

Even though non-melanoma skin cancer in fish is less common compared to melanoma, zebrafish have been adequately 
used as a model to study the underlying pathogenetic mechanisms in these kinds of cancer as well.

Recent works that employ the SCC xenograft model in zebrafish have identified key molecules involved in the patho-
genesis of squamous cell carcinoma (SCC) [130], as well as compounds that may be used as targets for SCC therapy [131]. 
A crucial molecule to be studied as a therapeutic target is the tyrosine kinase receptor Axl, which is highly expressed in 
SCC [132]. Other important targets are the COL7A1 gene, which is responsible for the development of aggressive SCCs 
in epidermolysis bullosa, and the recombinant type VII collagen (hrCol7), which is able to reverse SCC angiogenesis in 
the zebrafish model [133].



Vol.:(0123456789)

Discover Oncology           (2022) 13:48  | https://doi.org/10.1007/s12672-022-00511-3 Review

1 3

Another interesting in vivo xenograft model study has analyzed the role of the tyrosine kinase discoidin domain 
receptor 2 (DDR2) in cell proliferation, adhesion, differentiation and invasion in head and neck squamous cell carcinoma 
(HNSCC) [134]. The study shows that dasatinib, a Food and Drug Administration (FDA)-approved inhibitor of c-Kit, Proto-
oncogene tyrosine-protein kinase (ABL, SRC) and Abelson murine leukemia viral oncogene homolog, may be potentially 
used in DDR2-positive SCC patients to block tumor cell invasion and migration [134].

Another potential compound for HNSCC treatment is the marine microbial extract luminacin. Studies in zebrafish 
embryos have shown that luminacin treatment of tumor cells stimulates autophagy in SCC cell lines, thus inhibiting 
cancer growth and progression [130].

Lastly, the zebrafish model has also been used to show that Flotillin-1 over-expression in KB cells (a subline of the 
keratin-forming tumor cell line HeLa) boosts KB cell motility and cell growth [135].

These studies prove that the zebrafish model may be adequately used not only in the evaluation of molecular pathways 
involved in SCC development and progression, but also in drug toxicity and screening assays.

3.3  Other dermatological applications of zebrafish

Zebrafish can be used to study not only cancer derived from melanocytes, but also other disorders of melanogenesis, 
since melanogenesis pathways are conserved between zebrafish and mammals, and melanogenesis is a visible process 
in zebrafish embryos and in transparent casper adults [136]. Studying zebrafish albinism models, researchers could clarify 
the function of genes whose role in the pathogenesis of this disorder remains concealed and that might not yet be rec-
ognized as implicated in human albinism. Correct genetic diagnosis might prove crucial in treatment of different, but 
often clinically indistinguishable, forms of albinism. Thus, rapid CRISPR screening for gene function makes zebrafish an 
excellent model for albinism gene discovery. Though counterintuitive, zebrafish albinism models could also help clarify 
chemotherapeutic resistance mechanisms in cancerous melanocytes in melanoma [137, 138].

Hereditary pigment disorders have been investigated using MOs to ascertain the function of specific genes that had 
previously been identified in affected individuals. Protein O-fucosyltransferase 1 (pofut1) and presenilin enhancer-2 
(psenen) knockdown zebrafish both displayed abnormal distribution in pigmentation, thus confirming involvement 
of the aforementioned genes in certain clinical presentations of Dowling-Degos syndrome, also known as reticulate 
pigmented anomaly of flexures. Furthermore, oca2-mutant zebrafish and c10orf11 knockout zebrafish were created to 
explore oculocutaneous albinism-related gene function in vivo, confirming involved conserved gene function through-
out fish, mouse and humans. Hypopigmentation characterized also snow white zebrafish mutant carrying a hps5 gene 
mutation, reproducing Hermansky-Pudlak syndrome (HPS) in fish models. Zebrafish fade out mutant also recreated HPS 
phenotype indicating that fade out gene could have a role in the pathogenesis of HPS. Disorders of copper metabolism 
were also reproduced in zebrafish with the calamity and catastrophe mutant models, underlying the influence that 
copper and, potentially, other nutrients, could have on melanin synthesis in melanocytes. Impact of stress on vitiligo 
development in fish was reproduced by treating zebrafish with interleukin-17, which determined altered pigmentation 
and autophagy in pigment cells [138].

Mutation in NRAS resulting in an I24N amino acid substitution was identified in an individual bearing typical Noo-
nan syndrome features. N-Ras-I24N expressing zebrafish displayed developmental defects which were parallel to other 
Noonan syndrome-associated genes in zebrafish. Activation in N-RAS signaling pathway was therefore confirmed to be 
associated to a Noonan Syndrome phenotype. Of note, MEK inhibition completely rescued the activated N-Ras-induced 
phenotypes, confirming the exclusive mediation of Ras-MAPK signaling in the genesis of the syndrome [139].

Co-occurrence of Mongolian blue spots with vascular birthmarks defines a group of syndromes known as phakomatosis 
pigmentovascularis. Association with activating mutations in GNA11 and GNAQ genes, encoding a Ga subunit of heterotri-
meric G proteins, was discovered and confirmed in a transgenic mosaic zebrafish model expressing mutant GNA11R183C 
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under mitfa promoter, which developed extensive dermal melanocytosis recapitulating the human phenotype. Specifically, 
zebrafish embryos were injected with wild type human GNA11, GNA11R183C, or GNA11Q209L expressed under control of 
the melanocyte mitfa promoter. The embryos were grown to adult fish; their status of genetically mosaic animals was clini-
cally visible as melanocyte patches, which received histological confirmation [140].

RASopathies result from germline mutations of the Ras/MAPK pathway. Systematic predictions on disease progression 
are not yet possible, even though available technologies in genome sequencing allow to identify multiple disease-related 
mutations. Nevertheless, zebrafish embryos represent a valuable model in assessing mutational effects. Jindal et al. suc-
ceeded in ranking several MEK1 mutations, proving that those found in cancer were more severe than those found in shared 
by RASopaties and cancer. Also, the latter resulted as more severe than those characterizing only RASopaties. A conserved 
ranking was observed in Drosophilaand the ranking could predict the drug dose to correct the defects [141]. Wound heal-
ing and re-epithelialization of adult zebrafish skin have been analyzed in several studies. In zebrafish the process of wound 
healing results in minimal scar formation. The process comprises a series of events: rapid re-epithelialization; migration of 
inflammatory cells; formation of granulation tissue consisting of macrophages, fibroblasts, blood vessels, and collagen; 
granulation tissue regression. Major steps and principles of cutaneous wound healing seem to be the same in adult mammals 
and adult zebrafish, thus making the zebrafish a valuable model for studying vertebrate skin repair [142]. Richardson et al. 
studied the wound healing process by creating full-thickness wounds with a laser on the flank of adult zebrafish in a rapid 
and reproducible way, confirming that the zebrafish is a unique and cost-effective model for skin repair [142]. Absence of 
wound scars in zebrafish, as observed in human embryos, due to the lack of the blood-clotting phase and to specific signaling 
mechanism, represents an attractive model to study healing processes and is expected to help to formulate an appropriate 
drug for cutaneous wound healing [143].

Fig. 2  Zebrafish applications in skin biology. Examples of applications of thezebrafish model in the field of skin biology include skin disease 
and tumormodeling, biochemical and genetic tests, drug screen and in vivo imaging, all suitable for large-scale studies. Imagescreated with 
BioRender.com.
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The aforementioned similarities of the zebrafish integument structure together with those of the inflammation mecha-
nisms, make this teleost a fundamental and cost-effective model also to study major dermatologic inflammatory diseases, 
such as psoriasis. Several models, including mutant, morphant and environmentally inducible models, were created to 
investigate genetic alterations and molecular mechanisms of psoriasis [144–152].

4  Conclusions

Inflammatory and neoplastic skin disorders are very common and are increasing worldwide.
Zebrafish can provide a suitable animal model to extend our understanding of the molecular and cellular mechanisms 

of skin disorders and to develop new therapeutic strategies in dermatology (Fig. 2). Zebrafish models of major interest in 
dermatological research are summarized in Table 1 [22, 39, 85–87, 89, 90, 147, 153–167].

Owing to its low maintenance cost, highly conserved genome, and easy genetic manipulation, the zebrafish is an excellent 
model for preclinical research in dermatological laboratories, thus bridging the gap between in vitro cell culture an in vivo 
mammalian models.

5    Methodological approach

The database of Pubmed was queried with the following search string (zebrafish OR/AND dermatology* OR skin cancer* OR 
melanoma*) under all fields (last search December 2021).
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