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Abstract: We propose a general scenario to estimate the spectral density of an homogeneous
random field from its moments. More precisely, we consider a multidimensional rational
covariance and cepstral extension problem. The latter is usually solved by searching the spectral
density maximizing the entropy rate while matching the moments. The generality of our
mathematical formulation can be seen from the employed entropic index as well as the definition
of cepstral coefficients. We characterize the solution in the circulant case. Finally, we apply our
theory to a 2-d system identification problem.
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1. INTRODUCTION

Homogeneous random fields represent a traditional tool
in the engineering community; for instance, they are
employed for target parameter estimation in automotive
radars, see Engels (2014); Zhu et al. (2019). In this paper,
we consider a zero-mean real-valued Gaussian homoge-
neous random field y(t), where t = (t1, . . . , td) is a vector-
valued index belonging to the discrete domain Zd, with
d ∈ N+. Its covariance ck := E[ y(t + k)y(t) ] depends
only on the index difference k = (k1, . . . , kd) ∈ Zd. In
the 1-dimensional case (d = 1), this is also known as a
(wide-sense) stationary process. By the spectral represen-
tation theorem (cf. e.g., Yaglom, 1957), the covariances are
Fourier coefficients of a nonnegative spectral measure dγ
on Td := (−π, π]d. In practice, we often have to infer the
unknown spectral measure from a number of covariances
typically estimated from a finite-size realization of the
underlying random field. More precisely, let Λ ⊂ Zd be a
specific index set that has a finite cardinality, contains the
all-zero index, and is symmetric with respect to the origin,
i.e. k ∈ Λ implies −k ∈ Λ. Here, we consider Λ as the
multidimensional box {k ∈ Zd : |kj | ≤ nj , j = 1, . . . , d}
where nj ’s are given integers. Assuming that the spectral
measure dγ is absolutely continuous with respect to the
Lebesgue measure, we have the (trigonometric) moment
equations
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ck =

∫

Td

ei〈k, θ〉Φ(eiθ)dµ(θ) for all k ∈ Λ, (1)

where θ = (θ1, . . . , θd) ∈ Td, 〈k, θ〉 :=
∑

j kjθj is the

Euclidean inner product, dµ(θ) = (2π)−d
∏d

j=1 dθj is the

normalized Lebesgue measure on Td, eiθ is a shorthand
notation for (eiθ1 , . . . , eiθd), and Φ(eiθ) is the power spec-
tral density (i.e. the Radon-Nikodym derivative of dγ with
respect to dµ). However, the problem to find Φ satisfying
(1) is typically ill-posed since in general, it has multiple
solutions if one solution exists.

In order to remedy such ill-posedness, a standard approach
in the literature known as Rational Covariance Extension
(RCE) is to reformulate the problem as a constrained
optimization one. As one of the forerunners, Byrnes et al.
(2001) proposed a weighted maximum entropy formulation
in the case of d = 1. It turns out that, under certain
technical conditions, the solution to the above problem has
the form of a rational function Φ(eiθ) = P (eiθ)/Q(eiθ)
where P,Q are positive Laurent polynomials and Q is
uniquely determined by P . Thus, one can obtain a com-
plete parametrization of rational solutions of bounded
degree to the moment equations (1). It is worth noting
that several extensions in the 1-d case have been pro-
posed, see for instance Georgiou and Lindquist (2003);
Ferrante et al. (2008); Zorzi (2015); Zhu (2020), while
few extensions to the multidimensional case are available,
see Georgiou (2006). The importance to obtain a rational
spectral density lies in the observation that one can build
a finite-dimensional linear stochastic system via spectral
factorization of the resulting spectrum, whose output is
equivalent to the original random process in the sense that
they have the same covariance function. For this reason,
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1. INTRODUCTION

Homogeneous random fields represent a traditional tool
in the engineering community; for instance, they are
employed for target parameter estimation in automotive
radars, see Engels (2014); Zhu et al. (2019). In this paper,
we consider a zero-mean real-valued Gaussian homoge-
neous random field y(t), where t = (t1, . . . , td) is a vector-
valued index belonging to the discrete domain Zd, with
d ∈ N+. Its covariance ck := E[ y(t + k)y(t) ] depends
only on the index difference k = (k1, . . . , kd) ∈ Zd. In
the 1-dimensional case (d = 1), this is also known as a
(wide-sense) stationary process. By the spectral represen-
tation theorem (cf. e.g., Yaglom, 1957), the covariances are
Fourier coefficients of a nonnegative spectral measure dγ
on Td := (−π, π]d. In practice, we often have to infer the
unknown spectral measure from a number of covariances
typically estimated from a finite-size realization of the
underlying random field. More precisely, let Λ ⊂ Zd be a
specific index set that has a finite cardinality, contains the
all-zero index, and is symmetric with respect to the origin,
i.e. k ∈ Λ implies −k ∈ Λ. Here, we consider Λ as the
multidimensional box {k ∈ Zd : |kj | ≤ nj , j = 1, . . . , d}
where nj ’s are given integers. Assuming that the spectral
measure dγ is absolutely continuous with respect to the
Lebesgue measure, we have the (trigonometric) moment
equations
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normalized Lebesgue measure on Td, eiθ is a shorthand
notation for (eiθ1 , . . . , eiθd), and Φ(eiθ) is the power spec-
tral density (i.e. the Radon-Nikodym derivative of dγ with
respect to dµ). However, the problem to find Φ satisfying
(1) is typically ill-posed since in general, it has multiple
solutions if one solution exists.

In order to remedy such ill-posedness, a standard approach
in the literature known as Rational Covariance Extension
(RCE) is to reformulate the problem as a constrained
optimization one. As one of the forerunners, Byrnes et al.
(2001) proposed a weighted maximum entropy formulation
in the case of d = 1. It turns out that, under certain
technical conditions, the solution to the above problem has
the form of a rational function Φ(eiθ) = P (eiθ)/Q(eiθ)
where P,Q are positive Laurent polynomials and Q is
uniquely determined by P . Thus, one can obtain a com-
plete parametrization of rational solutions of bounded
degree to the moment equations (1). It is worth noting
that several extensions in the 1-d case have been pro-
posed, see for instance Georgiou and Lindquist (2003);
Ferrante et al. (2008); Zorzi (2015); Zhu (2020), while
few extensions to the multidimensional case are available,
see Georgiou (2006). The importance to obtain a rational
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the RCE paradigm can be viewed as an identification or
modeling problem.

In the above formulation, the polynomial P gives spectral
zeros and it must be properly chosen for a particular
application. In the special case of P ≡ 1, Burg’s maximum
entropy principle can be recovered, which yields an all-pole
model. One way to choose such P is to use additional data
in the form of cepstral coefficients, which are defined as
follows:

mk =

∫

Td

ei〈k, θ〉 log Φ(eiθ)dµ(θ) for all k ∈ Λ0, (2)

where the index set Λ0 = Λ \ {0}. Notice that the cepstral
coefficient at index 0 does not play a role in the analysis,
and hence it is excluded at the beginning. We can then set
up a constrained maximum entropy problem (Ringh et al.,
2016, 2018):

max
Φ≥0

∫

Td

log Φ(eiθ)dµ(θ) s.t. (1) and (2). (3)

The latter is referred to as the multidimensional rational
covariance and cepstral extension problem. If some techni-
cal conditions are satisfied, such a problem admits a unique
solution having the form Φ(eiθ) = P (eiθ)/Q(eiθ) with the
constant term of the numerator p0 = 1 fixed.

The aim of this paper is to generalize the above framework
in two respects. First, we employ the α-entropy as the
the objective functional which is more general than the
one used in (3). Second, we generalize the constraint (2)
accordingly. We analyze the existence of a solution to the
corresponding problem by means of duality theory. It turns
out that such a solution does not always exist. On the other
hand, it is always possible to find an approximate solution
which solves a regularized version of the dual problem.
Finally, we apply this generalized theory to solve a 2-d
system identification problem.

2. GENERALIZED PROBLEM

Before introducing our general problem formulation, we
need to generalize the concept of cepstral coefficients.

Definition 1. Given the power spectral density Φ(eiθ) and
a real number α such that 0 < α ≤ 1, the generalized
cepstral coefficients are defined as (Tokuda et al., 1990)

mα,k =





1

α

∫

Td

ei〈k, θ〉Φ(eiθ)αdµ(θ) if k �= 0,

1

α

(∫

Td

Φ(eiθ)αdµ(θ)− 1

)
if k = 0.

(4)

Extending by continuity the above definition we have

lim
α→0

mα,k =

∫

Td

ei〈k, θ〉 log Φ(eiθ)dµ(θ),

that is, we recover the standard cepstral coefficients. To
ease the notation, we drop the subscript α and just write
mk instead. The idea is to generalize the problem in (3)
by using the definition above for the cepstral coefficients.
Accordingly, given two sets of real numbers c = {ck}k∈Λ

such that ck = c−k, and m = {mk}k∈Λ0
such that mk =

m−k, we want to find a rational function Φ : Td → R+

such that (1) and

mk =
1

α

∫

Td

ei〈k, θ〉Φ(eiθ)αdµ(θ) for all k ∈ Λ0 (5)

hold.

At this point we need to introduce a suitable definition
of entropy which is “consistent” with the definition of
the generalized cepstral coefficients in (4). An entropic
index should measure how close the spectral density is to
normalized white noise, i.e. a random field having constant
spectral density equal to one. To this purpose, we consider
the alpha divergence between two spectral densities Φ and
Ψ (Zorzi, 2014):

Dα(Φ‖Ψ) =

∫

Td

(
1

α(α− 1)
Φ(eiθ)αΨ(eiθ)1−α

+
1

1− α
Φ(eiθ) +

1

α
Ψ(eiθ)

)
dµ(θ)

where α ∈ R \ {0, 1}. Then, given the power spectral
density Φ(eiθ) and α ∈ R \ {0, 1}, we define as alpha-
entropy:

Hα(Φ) = −Dα(Φ‖1) +
1

1− α

(∫

Td

Φ(eiθ)dµ(θ)− 1

)

=
1

α(α− 1)

(
1−

∫

Td

Φ(eiθ)αdµ(θ)

)
. (6)

The latter can be extended by continuity to α = 0:

lim
α→0

Hα(Φ) =

∫

Td

log Φ(eiθ)dµ(θ)

which corresponds to the usual entropy rate. Indeed,∫
Td Φdµ is fixed by the constraint (1) with k = 0.

Hence, the constant term
∫
Td Φdµ − 1 plays no role in

our problem. Combining the alpha-entropy defined in (6)
and the generalized cepstral coefficients defined in (4), we
obtain the generalized problem

max
Φ≥0

Hα(Φ) s.t. (1) and (5) (7)

which incorporates (3) as a limit case (α → 0). In the case
where α → 1, it is not difficult to see that (5) boils down
to (1).

Although the optimization problem in (7) looks appealing,
one may encounter significant technical difficulties in its
analysis due to multiple dimensionality. As noticed by
Ringh et al. (2015) and Zhu et al. (2021), the situation
is simpler if one considers the discrete version of the
problem, which at the same time, yields a computable
theory. In particular, the fast Fourier transform (FFT)
can be used to compute the Fourier integrals on a discrete
grid. In addition, the discrete spectrum can be viewed as
a sampling in the frequency domain, which corresponds
to a periodic homogeneous field (in the “space” domain)
as explained in Zhu et al. (2021). Since the covariance
matrix of a stationary periodic process in the 1-d case has
a circulant structure, the discrete problem is also referred
to as Circulant Rational Covariance Extension. Since in
practice we always have a finite collection of observations
of the random field, we may just adopt the mathematical
idealization that the data come from a periodic field,
provided that the period is sufficiently large, see Carli et al.
(2011); Lindquist and Picci (2013).

In order to state the discrete problem, we need to set some
notations first. LetN denote the vector (N1, N2, . . . , Nd) ∈
Nd

+, where the component Nj stands for the num-
ber of equal-length partitions of the interval (−π, π] in
the j-th dimension of Td. Next, define the index set
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idealization that the data come from a periodic field,
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In order to state the discrete problem, we need to set some
notations first. LetN denote the vector (N1, N2, . . . , Nd) ∈
Nd

+, where the component Nj stands for the num-
ber of equal-length partitions of the interval (−π, π] in
the j-th dimension of Td. Next, define the index set

Zd
N := {� = (�1, . . . , �d) : 0 ≤ �j ≤ Nj − 1, j = 1, . . . , d},

whose cardinality is |N| :=
∏d

j=1 Nj . We can now dis-

cretize the domain Td as Td
N := {( 2π

N1
�1, . . . ,

2π
Nd

�d) : � ∈
Zd
N}, so the number of grid points is also |N|. Moreover,

let us introduce the symbol ζ� := (ζ�1 , . . . , ζ�d) for a point
in the discrete d-torus with ζ�j = ei2π�j/Nj and define

ζk
� :=

∏d
j=1 ζ

kj

�j
, which is just the complex exponential

function ei〈k, θ〉 evaluated at a grid point in Td
N. We can

now define a discrete measure with equal mass on the grid
points in Td

N as

dη(θ) =
∑

�∈Zd
N

δ(θ1 −
2π

N1
�1, . . . , θd −

2π

Nd
�d)

d∏
j=1

dθj
Nj

. (8)

One can easily verify that integrals against dη are essen-
tially Riemann sums. The discrete version of the optimiza-
tion problem (7) results when we replace the normalized
Lebesgue measure dµ with the discrete measure dη. In
addition, for reasons that will be clear in the next section,
we take the parametrization α = 1−ν−1 with ν ∈ N+ and
ν > 1. So the optimization problem in (7) becomes

max
Φ≥0

ν2

(ν − 1)


 1

|N|
∑

�∈Zd
N

Φ(ζ�)
ν−1
ν − 1




s.t. ck =
1

|N|
∑

�∈Zd
N

ζk
�Φ(ζ�) ∀k ∈ Λ,

mk =
ν

ν − 1

1

|N|
∑

�∈Zd
N

ζk
�Φ(ζ�)

ν−1
ν ∀k ∈ Λ0.

(9)

This will be the focus of investigation in the rest of this
paper.

3. DUAL ANALYSIS

The aim of this section is to characterize the rational
solution (if it exists) to Problem (9) by means of the
dual analysis. Thus, we consider the objective function in
(9) multiplied by ν−1 and discard the constant term not
depending on Φ. Thus, the Lagrangian is

Lν(Φ, P,Q) =
ν

(ν − 1)|N|
∑

�∈Zd
N

P (ζ�)Φ(ζ�)
ν−1
ν

− 1

|N|
∑

�∈Zd
N

Q(ζ�)Φ(ζ�) + 〈q, c〉 − 〈p, m〉
(10)

where p = {pk}k∈Λ and q = {qk}k∈Λ are the Lagrange
multipliers such that p0 = 1, pk = p−k ∈ R and qk =
q−k ∈ R. Moreover,

P (ζ�) =
∑
k∈Λ

pkζ
−k
� , Q(ζ�) =

∑
k∈Λ

qkζ
−k
� (11)

are Laurent polynomials. The inner product between two
multisequences is denoted by 〈q, c〉 :=

∑
k∈Λ qkck, and in

〈p, m〉 we set m0 equal to an arbitrary but fixed number.
Notice that we take the integer ν ≥ 2 so that the fraction
ν/(ν − 1) > 0. Next we fix the Lagrange multipliers q and
p, or equivalently the polynomials Q and P , and consider
the problem

sup
Φ(ζ�)≥0 ∀�∈Zd

N

Lν(Φ, P,Q).

The last two inner products in (10) do not depend on Φ,
and thus can be ignored in the sup problem. There are a
number of cases to analyze. We first claim that in order for
the supremum to be finite, it is necessary that Q ≥ 0 on
Td
N (more precisely, on the d-torus). To see this, consider

the following two cases:

(i) If Q(ζ�) < 0 for some � ∈ Zd
N and P (ζ�) ≥ 0, then we

can take Φ(ζ�) → +∞ and Φ = 0 elsewhere on Td
N, which

leads to

Lν(Φ, P,Q) =
ν

(ν − 1)|N|
P (ζ�)Φ(ζ�)

ν−1
ν

− 1

|N|
Q(ζ�)Φ(ζ�) + · · · → +∞.

(12)

(ii) If Q(ζ�) < 0 for some � ∈ Zd
N and P (ζ�) < 0, we

can take the same choice of Φ as in the previous point. By
comparison of the first two terms on the right-hand side
of (12)

ν
(ν−1)|N|P (ζ�)Φ(ζ�)

ν−1
ν

1
|N|Q(ζ�)Φ(ζ�)

=
νP (ζ�)

(ν − 1)Q(ζ�)
Φ(ζ�)

− 1
ν → 0,

we conclude again that Lν(Φ, P,Q) → +∞.

Thus, we have to assume Q(ζ�) ≥ 0 for all � ∈ Zd
N. Next,

we discuss different situations concerning the polynomial
P . Suppose P (ζ�) < 0 for some index �. Then the
summand in the Lagrangian

1

|N|

[
ν

ν − 1
P (ζ�)Φ(ζ�)

ν−1
ν −Q(ζ�)Φ(ζ�)

]
≤ 0. (13)

In other words, Φ(ζ�) = 0 maximizes the Lagrangian.
Therefore, it is equivalent to consider the problem

sup
Φ(ζ�)≥0 ∀�∈Zd

N

L′
ν(Φ, P,Q)

where the modified Lagrangian is

L′
ν(Φ, P,Q) :=

∑
�:P (ζ�)≥0

[
ν

ν − 1
P (ζ�)Φ(ζ�)

ν−1
ν

−Q(ζ�)Φ(ζ�)] .

We divide our discussion into the following four situations.

(i) Points ζ� where P (ζ�) = Q(ζ�) = 0. In this case, Φ(ζ�)
has no effects on L′

ν(Φ, P,Q) and can be set arbitrarily.
(ii) Points ζ� where P (ζ�) = 0 and Q(ζ�) > 0. The
reasoning is the same as that in (13) so one should set
Φ(ζ�) = 0.
(iii) Points ζ� where P (ζ�) > 0 and Q(ζ�) = 0. In this
case, taking Φ(ζ�) → +∞ and Φ = 0 elsewhere gives a
value of the Lagrangian equal to +∞. In other words,
if L′

ν(Φ, P,Q) is finite, we must have P (ζ�) > 0 =⇒
Q(ζ�) > 0. Such a condition can also be rephrased as
supp(Q) ⊃ {ζ� : P (ζ�) > 0} where supp(·) denotes the
support of a function.
(iv) Points ζ� where P (ζ�) > 0 and Q(ζ�) > 0. For a
feasible direction δΦ such that Φ + εδΦ ≥ 0 on Td

N for
sufficiently small ε > 0, let us compute the directional
derivative of the modified Lagrangian

δL′
ν(Φ, P,Q; δΦ)

=
∑

�:P (ζ�)>0

[(
P (ζ�)Φ(ζ�)

− 1
ν −Q(ζ�)

)
δΦ(ζ�)

]
.

Clearly, the stationary point of the modified Lagrangian
is such that P (ζ�)Φ(ζ�)

− 1
ν −Q(ζ�) = 0 which yields
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Φ(ζ�) =

(
P (ζ�)

Q(ζ�)

)ν

. (14)

Notice that this is a well defined function since we have
started from the condition Q(ζ�) > 0.

It is not difficult to show that L′
ν(Φ, P,Q) is a concave

function in Φ (via reasoning on each summand) so that a
stationary point is indeed a maximizer. To summarize, the
supremum of the Lagrangian is attained at the function

Φν(ζ�) =

{
0 if P (ζ�) ≤ 0

(P (ζ�)/Q(ζ�))
ν

if P (ζ�) > 0.
(15)

Plugging the functional form Φν into the original La-
grangian (10), we obtain the dual function

Jν(P,Q) =
1

(ν − 1)|N|
∑

�:P (ζ�)>0

P (ζ�)
ν

Q(ζ�)
ν−1

+〈q, c〉−〈p, m〉.

(16)
The dual problem is

min
P,Q

Jν(P,Q) s.t. (P,Q) ∈ L (17)

with feasible set

L := {(P,Q) : Q ≥ 0, supp(Q) ⊃ {ζ� : P (ζ�) > 0}}.
(18)

Let us proceed to compute the first variations of Jν at any
interior point (P,Q) along directions δP and δQ:

δJν(P,Q; δQ)

=
∑
k∈Λ

δqk


− 1

|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν

+ ck


 ,

δJν(P,Q; δP )

=
∑
k∈Λ

δpk


 ν

(ν − 1)|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν−1

−mk


 .

Imposing the derivatives to vanish in any feasible direction,
we arrive at the conditions of covariance and generalized
cepstral matching:

ck =
1

|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν

∀k ∈ Λ,

mk =
ν

(ν − 1)|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν−1

∀k ∈ Λ0.

(19)

Therefore, if the dual problem (17) has an interior-point
minimizer, it must be a stationary point where we have
both covariance and generalized cepstral matching for the
function Φν in (15). This means that Φν is the unique
solution to Problem (9). Moreover, Φν is rational because
ν ∈ N+. The latter observation explains why we chose
ν ∈ N+. However, the existence of such a minimizer seems
rather nontrivial to prove given the shape of the feasible
set L in (18), since in general the polynomial P is allowed
to take negative values on some grid points. On the other
hand, if the optimal (P̂ , Q̂) is such that P̂ (ζ�) > 0 for all

� ∈ Zd
N, then we automatically have Q̂ > 0 at all the grid

points, and hence (P̂ , Q̂) is in the interior of L . Drawing
inspiration from Enqvist (2004), we tackle this issue by
considering the regularized dual function

Jν,λ(P,Q) := Jν(P,Q)− λ

|N|
∑

�∈Zd
N

logP (ζ�)

where λ > 0 is the regularization parameter and the
penalty term can be equivalently written as the integral
of − logP (eiθ) on Td against the discrete measure dη(θ).
Due to the presence of the logarithm, the polynomial P is
forced to take positive values on all the grid points ζ�. As
a consequence, the feasible set of the regularized problem
is

Lλ := {(P,Q) : Q(ζ�) > 0 and P (ζ�) > 0 ∀� ∈ Zd
N},

which is significantly simplified with respect to (18). The
regularized dual problem is just

min
P,Q

Jν,λ(P,Q) s.t. (P,Q) ∈ Lλ. (20)

Let us first check the behavior of the function Jν,λ near
the boundary of Lλ which is composed of polynomial pairs
(P,Q) such that P (ζ�) = 0 or Q(ζ�) = 0 for some � ∈ Zd

N.
Consider a sequence (Pk, Qk) that tends to a point (P,Q)
on ∂Lλ. There are two cases.

(i) If the limit point is such that P (ζ�) = 0 for some grid
point, then, since all the summands in the first term of
(16) are positive, we have (as k → ∞)

Jν,λ(Pk, Qk) > 〈qk, c〉 − 〈pk, m〉

− λ

|N|
∑

�∈Zd
N

logPk(ζ�) → +∞.

(ii) If the limit point is such that P (ζ�) > 0 for all � ∈ Zd
N,

then it must happen that Q(ζ�) = 0 for some grid point.
It follows again that Jν,λ(Pk, Qk) → +∞ because at least

one term in the sum Pk(ζ�)
ν

Qk(ζ�)
ν−1 blows up while the inner

products and the sum of logP (ζ�) remain bounded.

In view of the reasoning above, for a sufficiently large real
number β, any point in the sublevel set of the regularized
dual function

J−1
ν,λ(−∞, β] := {(P,Q) ∈ Lλ : Jν,λ(P,Q) ≤ β}

must be away from ∂Lλ. It is not difficult to prove that
Jν,λ is strictly convex. Hence, if an interior-point solution

to (20) exists, say (P̂ , Q̂), then it is a stationary point
of Jν,λ which is also unique. The stationarity condition

implies that the spectral density Φ̂ = (P̂ /Q̂)ν satisfies
the covariance constraints in (19). The cepstral constraints
however, are not exactly satisfied. Indeed, we have

mk + εk =
ν

(ν − 1)|N|
∑

�∈Zd
N

ζk
�

(
P (ζ�)

Q(ζ�)

)ν−1

∀k ∈ Λ0,

(21)

where the error term is

εk =
λ

|N|
∑

�∈Zd
N

ζk
�

1

P (ζ�)
. (22)

In other words, Φ̂ = (P̂ /Q̂)ν fulfills covariance matching
and approximate generalized cepstral matching with error
εk for each index k ∈ Λ0. As seen from (22), the regular-
ization parameter λ controls the cepstral matching error:
the smaller λ is, the better the cepstral approximation is
(at the price that the solution could be very close to ∂Lλ

and thus difficult to compute numerically with a gradient
method).
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Φ(ζ�) =

(
P (ζ�)

Q(ζ�)

)ν

. (14)

Notice that this is a well defined function since we have
started from the condition Q(ζ�) > 0.

It is not difficult to show that L′
ν(Φ, P,Q) is a concave

function in Φ (via reasoning on each summand) so that a
stationary point is indeed a maximizer. To summarize, the
supremum of the Lagrangian is attained at the function

Φν(ζ�) =

{
0 if P (ζ�) ≤ 0

(P (ζ�)/Q(ζ�))
ν

if P (ζ�) > 0.
(15)

Plugging the functional form Φν into the original La-
grangian (10), we obtain the dual function

Jν(P,Q) =
1

(ν − 1)|N|
∑

�:P (ζ�)>0

P (ζ�)
ν

Q(ζ�)
ν−1

+〈q, c〉−〈p, m〉.

(16)
The dual problem is

min
P,Q

Jν(P,Q) s.t. (P,Q) ∈ L (17)

with feasible set

L := {(P,Q) : Q ≥ 0, supp(Q) ⊃ {ζ� : P (ζ�) > 0}}.
(18)

Let us proceed to compute the first variations of Jν at any
interior point (P,Q) along directions δP and δQ:

δJν(P,Q; δQ)

=
∑
k∈Λ

δqk


− 1

|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν

+ ck


 ,

δJν(P,Q; δP )

=
∑
k∈Λ

δpk


 ν

(ν − 1)|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν−1

−mk


 .

Imposing the derivatives to vanish in any feasible direction,
we arrive at the conditions of covariance and generalized
cepstral matching:

ck =
1

|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν

∀k ∈ Λ,

mk =
ν

(ν − 1)|N|
∑

�:P (ζ�)>0

ζk
�

(
P (ζ�)

Q(ζ�)

)ν−1

∀k ∈ Λ0.

(19)

Therefore, if the dual problem (17) has an interior-point
minimizer, it must be a stationary point where we have
both covariance and generalized cepstral matching for the
function Φν in (15). This means that Φν is the unique
solution to Problem (9). Moreover, Φν is rational because
ν ∈ N+. The latter observation explains why we chose
ν ∈ N+. However, the existence of such a minimizer seems
rather nontrivial to prove given the shape of the feasible
set L in (18), since in general the polynomial P is allowed
to take negative values on some grid points. On the other
hand, if the optimal (P̂ , Q̂) is such that P̂ (ζ�) > 0 for all

� ∈ Zd
N, then we automatically have Q̂ > 0 at all the grid

points, and hence (P̂ , Q̂) is in the interior of L . Drawing
inspiration from Enqvist (2004), we tackle this issue by
considering the regularized dual function

Jν,λ(P,Q) := Jν(P,Q)− λ

|N|
∑

�∈Zd
N

logP (ζ�)

where λ > 0 is the regularization parameter and the
penalty term can be equivalently written as the integral
of − logP (eiθ) on Td against the discrete measure dη(θ).
Due to the presence of the logarithm, the polynomial P is
forced to take positive values on all the grid points ζ�. As
a consequence, the feasible set of the regularized problem
is

Lλ := {(P,Q) : Q(ζ�) > 0 and P (ζ�) > 0 ∀� ∈ Zd
N},

which is significantly simplified with respect to (18). The
regularized dual problem is just

min
P,Q

Jν,λ(P,Q) s.t. (P,Q) ∈ Lλ. (20)

Let us first check the behavior of the function Jν,λ near
the boundary of Lλ which is composed of polynomial pairs
(P,Q) such that P (ζ�) = 0 or Q(ζ�) = 0 for some � ∈ Zd

N.
Consider a sequence (Pk, Qk) that tends to a point (P,Q)
on ∂Lλ. There are two cases.

(i) If the limit point is such that P (ζ�) = 0 for some grid
point, then, since all the summands in the first term of
(16) are positive, we have (as k → ∞)

Jν,λ(Pk, Qk) > 〈qk, c〉 − 〈pk, m〉

− λ

|N|
∑

�∈Zd
N

logPk(ζ�) → +∞.

(ii) If the limit point is such that P (ζ�) > 0 for all � ∈ Zd
N,

then it must happen that Q(ζ�) = 0 for some grid point.
It follows again that Jν,λ(Pk, Qk) → +∞ because at least

one term in the sum Pk(ζ�)
ν

Qk(ζ�)
ν−1 blows up while the inner

products and the sum of logP (ζ�) remain bounded.

In view of the reasoning above, for a sufficiently large real
number β, any point in the sublevel set of the regularized
dual function

J−1
ν,λ(−∞, β] := {(P,Q) ∈ Lλ : Jν,λ(P,Q) ≤ β}

must be away from ∂Lλ. It is not difficult to prove that
Jν,λ is strictly convex. Hence, if an interior-point solution

to (20) exists, say (P̂ , Q̂), then it is a stationary point
of Jν,λ which is also unique. The stationarity condition

implies that the spectral density Φ̂ = (P̂ /Q̂)ν satisfies
the covariance constraints in (19). The cepstral constraints
however, are not exactly satisfied. Indeed, we have

mk + εk =
ν

(ν − 1)|N|
∑

�∈Zd
N

ζk
�

(
P (ζ�)

Q(ζ�)

)ν−1

∀k ∈ Λ0,

(21)

where the error term is

εk =
λ

|N|
∑

�∈Zd
N

ζk
�

1

P (ζ�)
. (22)

In other words, Φ̂ = (P̂ /Q̂)ν fulfills covariance matching
and approximate generalized cepstral matching with error
εk for each index k ∈ Λ0. As seen from (22), the regular-
ization parameter λ controls the cepstral matching error:
the smaller λ is, the better the cepstral approximation is
(at the price that the solution could be very close to ∂Lλ

and thus difficult to compute numerically with a gradient
method).

Finally, we report the following result, whose proof is
omitted due to the limit space constraint.

Theorem 1. Assume that there exists a function Φ0 de-
fined on the discrete d-torus such that Φ0(ζ�) > 0 for all
� ∈ Zd

N and the covariances admit a representation

ck =
1

|N|
∑

�∈Zd
N

ζk
�Φ0(ζ�) ∀k ∈ Λ.

Then, the regularized dual problem (20) admits a unique

solution (P̂ , Q̂) in the open set Lλ such that the func-

tion Φ̂ = (P̂ /Q̂)ν defined on the discrete grid achieves
covariance matching and approximate generalized cepstral
matching as detailed in (21).

4. APPLICATION IN 2-D SYSTEM IDENTIFICATION

We apply our theory to the identification of a 2-
dimensional linear stochastic systems in the same fashion
as that of Ringh et al. (2016, Section 7).

W (z1, z2)
e(t1, t2) y(t1, t2)

Consider a 2-d linear time-invariant (LTI) system de-
scribed by the transfer functionW (z1, z2), which is excited
by a white noise process/field e(t1, t2) and produces an
output process y(t1, t2), see the picture above. Further-
more, let the true system W have the structure that
corresponds to our optimal spectrum (14), namely

W (z) =

[
b(z)

a(z)

]ν
=

[∑
k∈Λ+

bkz
−k

∑
k∈Λ+

akz−k

]ν

where Λ+ := {(k1, k2) : 0 ≤ k1, k2 ≤ 1}, (z1, z2)

is abbreviated as z, and zk stands for zk1
1 zk2

2 . If the
white noise input has unit variance, then the spectral
density of the output process y is (P/Q)ν with P (eiθ) =
|b(eiθ)|2, Q(eiθ) = |a(eiθ)|2. We fix the integer ν = 2.
For simplicity, we also impose a separable form (1 −
α1z

−1
1 )(1 − α2z

−1
2 ) on the polynomials a, b and take

|αj | < 1, for j = 1, 2, so that the transfer function
W is stable and minimum-phase (under the engineering
convention). The system parameters can be assigned via
[a0,0 a0,1 a1,0 a1,1] = [1 −α2 −α1 α1α2] . It is convenient
to collect the 2-d system parameters into matrices. In our
particular example, we have

A =

[
1 −0.7

−0.5 0.35

]
, B =

[
0.6696 −0.5357
−0.4018 0.3214

]
, (23)

where ak1,k2
= [A]k1+1,k2+1 and similar for bk1,k2

. Notice
that the constraint p0 = 1 translates into a normalization
condition ‖B‖F = 1, where ‖ · ‖F denotes the Frobenius
norm. The true spectrum Φ defined on the 2-d domain is
shown in Fig. 1(left).

Next, we demonstrate how to recover the system matrices
A and B from the covariances and generalized cepstral
coefficients of the output process y with the indices in the
set Λ = {(k1, k2) : −1 ≤ k1, k2 ≤ 1}. In our framework,
such a procedure can be divided into three steps:

(i) Evaluate the power spectrum of the output process y
on a discrete grid and compute ck’s and mk’s with k ∈ Λ;
(ii) Solve the dual optimization problem (20), given ck’s

Fig. 1. Left. The true spectrum Φ of y. Center. Estimated
spectrum Φ̂ via solving the regularized dual optimiza-
tion problem with λ = 10−10 and true covariances -
generalized cepstral coefficients. Right. The pointwise
relative error.

and mk’s in Step (i) and a regularization parameter λ > 0;

(iii) Factorize the optimal spectrum Φ̂ in order to obtain

a transfer function Ŵ (z1, z2).

Since our theory developed in the previous sections builds
a rational spectral density from data, the spectral factor-
ization in Step (iii) reduces to that of polynomials. An
immediate remark is that the factorization of a positive
Laurent trigonometric polynomial into one square is in
general impossible in the case of several variables 1 (which
we call “multidimensional”). Fortunately in the 2-d case,
Geronimo and Woerdeman (2004, Theorems 1.1.1 & 1.1.3)
have given a sufficient and necessary condition to check
such factorability and an explicit formula to compute the
factors when the factorization is possible. The nontrivial
part of the condition states that a certain reduced co-
variance matrix should have a specific low rank. Notice
also that a factor a(eiθ) can nonetheless be computed
from a positive Laurent polynomial P (eiθ) even when
the aforementioned rank condition is not met. However,
as discussed in Ringh et al. (2016, Section 7), such an
operation results in a large difference between P (eiθ) and
|a(eiθ)|2.
For Step (i), we compute the covariances and the gener-
alized cepstral coefficients using the true spectrum eval-
uated on a 30 × 30 grid in the frequency domain T2.
Due to the symmetry, we only need to evaluate c =
[c0,0 c0,1 c1,−1 c1,0 c1,1], m = [m0,1 m1,−1 m1,0 m1,1]
which are put in lexicographic ordering. Clearly, the vari-
ables p and q can be arranged in the same way so that we
have 9 real variables in total. Then the regularized dual
problem (20) with λ = 10−10 (very weak regularization)
is solved using a gradient descent algorithm initialized
at q00 = 1 and the rest variables equal to 0, which
corresponds to constant polynomials P = Q ≡ 1. The
iterations terminate when the norm of the gradient is less
than 10−4. The optimal spectrum Φ̂ returned by the solver
is plotted in Fig. 1(center). Let us define the pointwise

relative error as |Φ̂(eiθ) − Φ(eiθ)|/Φ(eiθ) and plot it in
Fig. 1(right). One can see that the errors are visible (up to
a maximum of 3.44%) near the boundaries of the domain,
i.e., the axes θ1 = 0 and θ2 = 0, while in the interior,
the error plot is quite flat. As a complement, we also
compute the cumulative relative error on the whole grid
‖Φ̂ − Φ‖F/‖Φ‖F = 0.22%, meaning that the two spectra
are practically indistinguishable.

1 It has been shown that sum-of-squares factorization is always pos-
sible for multivariate Laurent polynomials that are strictly positive
on the multi-torus (Dritschel, 2004). However, the factors in general
have degrees larger than the original Laurent polynomial.
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Given the optimal polynomials P̂ and Q̂, we proceed to run
the factorization algorithm in Geronimo and Woerdeman
(2004, Theorems 1.1.1 & 1.1.3) and compute factors â and

b̂. The numerical values of their coefficients are reported
in the matrices

Â =

[
1.0029 −0.7021
−0.4955 0.3461

]
, B̂ =

[
0.6716 −0.5377
−0.3989 0.3188

]
.

After a comparison with (23), we can conclude that the
system parameters are recovered with very small errors,
which is an expected result since the true model coincides
with the solution form of our optimization problem.

Finally, we observe that in many practical situations,
the covariances ck and the cepstral coefficients mk are
unknown, and instead we can only measure the output
process y(t1, t2) at a finite number of “time” indices. In
plain words, we have to infer the transfer function W from
the samples of the output, say a regularly spaced dataset
Y = {y(t1, t2) : 0 ≤ t1 ≤ N1 − 1, 0 ≤ t2 ≤ N2 − 1}.
In that case, Step (i) of the previous procedure needs to
be changed as the covariances and cepstral coefficients now
must be estimated from Y. In such a scenario, it is possible
to adopt similar ideas of those ones in Zhu et al. (2021) and
Stoica and Moses (2005, Chapter 2) in order to estimate
ck’s and mk’s satisfying the assumptions of Theorem 1.

5. CONCLUSIONS

We proposed a general framework for the multidimensional
rational covariance and cepstral extension problem. The
idea is to generalize the definition of entropy and cep-
stral coefficient. We showed that in the circulant case this
problem admits a rational solution matching the covari-
ances while cepstral matching is approximate. Finally, we
applied our theory to solve a 2-d system identification
problem. Our future research direction is to characterize
the solution in the non-circulant scenario. As highlighted
by Karlsson et al. (2016), when d ≥ 3, it is not even
guaranteed that the regularized version of Problem (3)
admits a rational solution. Our conjecture is that, given
d ≥ 3, it is always possible to find a ν ∈ N+ sufficiently
large for which our generalized framework provides a ra-
tional spectral density matching the ck’s while the mk’s
are matched approximately.
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