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Abstract
Semiparametric regression models have received considerable attention over the last
decades, because of their flexibility and their good finite sample performances. Here
we propose an innovative nonparametric test for the linear part of the models, based on
random sign-flipping of an appropriate transformation of the residuals, that exploits a
spectral decomposition of the residualizing matrix associated with the nonparametric
part of the model. The test can be applied to a vast class of extensively used semipara-
metric regression models with roughness penalties, with nonparametric components
defined over one-dimensional, as well as over multi-dimensional domains, including,
for instance, models based on univariate or multivariate splines. We prove the good
asymptotic properties of the proposed test. Moreover, by means of extensive simu-
lation studies, we show the superiority of the proposed test with respect to current
parametric alternatives, demonstrating its excellent control of the Type I error, accom-
panied by a good power, even in challenging data scenarios, where instead current
parametric alternatives fail.

Keywords Functional data analysis · Smoothing · Roughness penalty · Sign-flip
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1 Introduction

Semiparametric regression models have a long history in statistics (see, e.g., the
textbooks Green and Silverman 1994; Bickel et al. 1998; Ruppert et al. 2003, and
references therein). Because of their flexibility and versatility, they have been the
object of an extensive and still very active literature. In this work, we propose an
efficient (conditional) resampling-based test (Pesarin 2001; Hemerik and Goeman
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2018b; Chung and Romano 2013) for the linear component in partially linear and
semiparametric regression models with roughness penalties. The test can be applied
to a vast class of extensively used models, with nonparametric components defined
over one-dimensional, as well as over multi-dimensional domains, including manifold
domains. This embraces, for instance, the highly popular semiparametric regression
models based on splines (see, e.g., Heckman 1986; Yu and Ruppert 2002; Wand
and Ormerod 2008; Wang 2019, and references therein), on thin-plate splines (see,
e.g., Wood 2003), and on spherical splines (Wahba 1981), as well as semiparametric
models based on recent smoothing techniques over two-dimensional (possibly irreg-
ularly shaped or curved) domains, such as soap film smoothing (Wood et al. 2008),
bivariate-splines over triangulations (Lai and Schumaker 2007; Baramidze et al. 2006;
Lai et al. 2009; Guillas and Lai 2010; Lai and Wang 2013; Wang et al. 2020), and
Spatial Regression with Partial Differential Equation regularization (SR-PDE) (see,
e.g., Sangalli et al. 2013; Azzimonti et al. 2015; Ettinger et al. 2016; Wilhelm et al.
2016; Sangalli 2021).

Various classical approaches are available to make inference in the context of semi-
parametric regressions, and different strategies have been proposed to cope with the
bias induced by the roughness penalty. Some possibilities include undersmoothing
approaches developed for nonparametric models [see, e.g., the review in Hall and
Horowitz (2013)], Bayesian approaches (Wahba 1983; Nychka 1988;Marra andWood
2012) and various corrections of Wald-type test statistics, such as the sandwich esti-
mators in Gray (1994) and Yu and Ruppert (2002), and the Speckman’s version in
Speckman (1988) and Holland (2017). These approaches might nonetheless have poor
performances in the finite sample scenario, due to the effects of the roughness penalty
(see, e.g., Maas and Hox 2004; Freedman 2006). In particular, as also evidenced by
the simulation studies reported in this work, such tests have a poor control of Type I
error.

Here we propose an innovative test for the linear part of semiparametric regression
models, based on conditional resampling of a transformation of the residuals. This test,
unlike other proposals, allows to overcome the problem of dependence in the residu-
als that is particularly strong in semiparametric models. Some approaches proposed
in the context of classical regression models, such as those in Huh and Jhun (2001)
and Kherad-Pajouh and Renaud (2010), derive transformed residuals from spectral
decomposition of the residualizing matrix that projects into the residual space. In the
setting considered by these authors, the conditional distribution of the test statistic can
be defined on the basis of permutations (see, e.g., Pesarin 2001; Chung and Romano
2013; Pauly et al. 2015; Winkler et al. 2014), rotations (Solari et al. 2014) or sign-flips
(Hemerik et al. 2020) of such transformed residuals. These approaches are nonethe-
less not valid in this context, since the residualizing matrix is not idempotent in the
case of penalized regression models. Because of this, the transformed residuals are not
spherical (i.e., they are not homoscedastic and independent) and the standard permuta-
tion, rotation or sign-flip procedures become invalid in our context. To overcome this
problem, we here study a conditional sign-flip procedure, named eigen sign-flip test,
that preserves the finite sample covariance structure of the residuals, hence ensuring
asymptotically exactness of the derived test. This idea has been explored in Ferrac-
cioli et al. (2021), restricted to a specific case of SR-PDE model. The current work
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addresses instead the broad spectrum of highly popular semiparametric regression
models mentioned above. Moreover, we study in detail the asymptotic properties of
the test. In particular, we prove the asymptotic exactness of the test and derive similar
results for interval hypothesis and confidence intervals. Some of the obtained results
leverage on the asymptotic properties of the estimator of the nonparametric part of
the model. Such properties in turn depend on conditions that are model-specific, since
they depend, for instance, on the dimension and geometry of the domain over which
the nonparametric term is defined, on the roughness term being considered, on the
type of basis, etc. In the present work, we hence define assumptions that are general
enough to cover a variety of semiparametric regression models, and refer the reader
to other works for the appropriate specifications of such assumptions for the specific
model being considered (e.g., toClaeskens et al. (2009) for univariate penalized splines
estimators, to Holland (2017) for multivariate penalized splines estimators, to Xiao
(2019) for general penalized splines and to Arnone et al. (2021) for SR-PDE.)

The paper is organized as follows. In Sect. 2 we briefly review the semiparametric
penalized regression framework, outlining the forms of the associated discrete esti-
mators. In Sect. 3 we recall some classical parametric approaches for inference on the
linear part of a semiparametric regression model and summarize the properties of the
score test statistic in this context. In Sect. 4 we present the eigen-sign flip test and
describe its theoretical and asymptotic properties. In Sect. 5 we compare our proposal
to more classical parametric approaches in extensive simulation studies. In Sect. 6 we
present an application to the study of human development in Nigeria. Finally, some
discussions and possible directions for future research are outlined in Sect. 7.

2 Semiparametric regression

Let yi ∈ R be the value of the variable of interest observed in correspondence of
covariates xi ∈ R

q and of pi ∈ � ⊆ R
d , d ≥ 1. We consider the semiparametric

model
yi = x�

i β + f (pi ) + εi , i = 1, . . . , n, (1)

where β ∈ R
q is the vector of regression parameters, f is a real-valued smooth

function on �, and εi are i.i.d. random errors with E(εi ) = 0 and E(ε2i ) = σ 2.
The interest is to estimate both the linear coefficients β and the nonparametric com-

ponent f . However, the estimation of (β, f ) in model (1) via maximum likelihood
is usually inappropriate or infeasible, due to the infinite-dimensionality of the non-
parametric component f . To avoid this problem, some type of roughness penalty can
be imposed, in order to reduce the space of possible solutions. In general, the result-
ing penalized likelihood estimators for β and f are the solution of the minimization
problem

argmin
β, f

n∑

i=1

(yi − f (pi ) − x�
i β)2 + λnP( f ), (2)

where P(·) is some type of roughness penalty. Depending on the assumptions on the
domain � ⊆ R

d , on the dimension d, and on the required smoothness of the function
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f , various proposals for P( f ) have been considered in the literature, and different
discretization procedures have been adopted to reduce the infinite-dimensional esti-
mation problem (2) to a finite dimensional one. For instance, for d = 1 and � an
interval of the real line, model (1)-(2) can involve the classical and extensively used
O’Sullivan splines (O’Sullivan 1986; Heckman 1986; Yu andRuppert 2002;Wand and
Ormerod 2008), whose penalty is the integrated squared derivative of some order, and
can, for instance, rely on B-spline bases. When � is the real plane, it is possible to use
thin-plate splines (see, e.g., Duchon 1977;Wahba 1990;Wood 2003), which involve as
penalty the so-called thin-plate energy.Moreover, various recent techniques target two-
dimensional bounded planar domains� ⊂ R

2, including: soap-film smoothing (Wood
et al. 2008) that considers a penalty involving the Laplacian of f ; bivariate-splines
over triangulations (Lai and Schumaker 2007; Guillas and Lai 2010; Lai and Wang
2013), whose regularizing termmay include high-order derivatives; SR-PDE (Sangalli
et al. 2013; Azzimonti et al. 2015), where the regularizing term can involve general
second-order partial differential equations, and the estimation problem is discretized
via finite element bases (Sangalli et al. 2013; Azzimonti et al. 2015) or advanced spline
bases (Wilhelm et al. 2016). Some of these techniques also permit the constructions of
semiparametric models over spherical domains (Wahba 1981; Baramidze et al. 2006;
Lai et al. 2009) and general surface domains (Ettinger et al. 2016;Wilhelm et al. 2016).

2.1 Discrete estimators

The estimation of model (1) usually involves the representation of the nonparametric
component f through some type of basis expansion, depending on the penalization
being considered. Let � ∈ R

n × R
K be the matrix of the evaluations of the K basis

functions ψ1, . . . , ψK at the n data locations p1, . . . ,pn , that is,

� =
⎡

⎢⎣
ψ1(p1) . . . ψK (p1)

...
. . .

...

ψ1(pn) . . . ψK (pn)

⎤

⎥⎦ .

Then, we write ( f (p1), . . . , f (pn))� = �γ for some vector of coefficients γ ∈
R

K . Moreover, let P denote the K × K positive semidefinite matrix representing
the discretization of the penalty P(·). Finally, set y = (y1, . . . , yn)�and denote by
X ∈ R

n ×R
q the designmatrix, whose i-th row is given by xi . The estimation problem

(2) is therefore discretized as

argmin
β,γ

{
(y − Xβ − �γ )�(y − Xβ − �γ ) + λnγ � Pγ

}
. (3)

The solution to (3) is uniquely determined by the normal equations

X�(y − Xβ − �γ ) = 0, (4)

(��� + λP)γ − ��(y − Xβ) = 0. (5)
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Setting

Q = In − X(X� X)−1X�,

� = In − �(��� + λP)−1��, (6)

the explicit form of the estimators for β and γ is, respectively,

β̂ = (X��X)−1X��y,

γ̂ = (��Q� + λP)−1��Qy, (7)

or equivalently

β̂ = (X� X)−1X�(y − �γ̂ ),

γ̂ = (��� + λP)−1��(y − X β̂). (8)

3 Inference onˇ

In semiparametric regression, a natural question is whether the covariates X have an
effect on the variable of interest. We are thus interested in the system of hypotheses

H0 : β = β0 versus H1 : β �= β0. (9)

A standard approach to verify (9) is to use a Wald-type test (see, e.g., Schervish
2012), based on the asymptotic distribution of β̂. The study of the asymptotic dis-
tribution of β̂, in semiparametric regression models, has been tackled by a number
of works. See, for instance, Heckman (1986); Yu and Ruppert (2002); Li and Rup-
pert (2008); Holland (2017); Xiao (2019); Yu et al. (2019); Wang et al. (2020) for
semiparametric models based on univariate and bivariate splines.

The parametric Wald-type test may nonetheless have poor performances in small
sample scenarios, due to the overestimation of the variance of the test statistic, induced
by the penalization. A number of corrections to Wald-type test have been proposed
to avoid this issue, such as the sandwich estimators in Gray (1994) and Yu and Rup-
pert (2002) and the Speckman’s version in Speckman (1988) and Holland (2017).
Nonetheless, these approaches can only partially solve the problem, and may lead to
a poor control of the Type I error, especially when a strong temporal/spatial structure
in the covariates is present, as indicated by the simulations carried on in Sect. 5.

In the Sect. 4 we introduce an innovative nonparametric alternative for testing on
β. Such proposal is based on the score statistic. For this reason, in the remainder of
this section we review the properties of the score statistic in the context of penalized
semiparametric regression. The proposedmethod does not rely on the estimation of the
Fisher information matrix to define the null distribution, which is implicitly recovered
by an appropriate nonparametric resampling procedure, as described in Sect. 4.
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3.1 Properties of the score statistic in penalized semiparametric regression

We first study the distributional properties of the score statistic, which constitute the
base of the nonparametric test defined in Sect. 4. Using the normal equation (4), we
can define the classical score test statistic

X�(y − Xβ0 − �γ ). (10)

Since γ is unknown, we can use the plug-in γ̂ . Substituting γ̂ in expression (10), we
define the test statistic T as

T = n−1/2X�(y − �γ̂ − Xβ0)

= n−1/2X�(y − �(��� + λP)−1��(y − Xβ0) − Xβ0)

= n−1/2X�((I − �(��� + λP)−1��)y − (I − �(��� + λP)−1��)Xβ0)

= n−1/2X��(y − Xβ0) = n−1/2X��r. (11)

with r = y − Xβ0. We make the following assumption:

(A1) For n large enough, the matrix ��� is positive definite.

Assumption (A1) is quite general; its specification depends on the basis considered.
In particular, this specification usually involves conditions on the nodes of the basis
and their position with respect to the design points p1, . . . ,pn . More specifically, it
involves the type of basis, the rate at which the number of bases K grows with n,
the minimum distance between the nodes, and the density of the design points inside
the domain. For instance, in the case of univariate penalized splines estimators, (A1)
follows from Assumptions 1–3 in Claeskens et al. (2009). In the case of multivariate
penalized splines estimators, it follows from Assumptions 1–2 in Holland (2017). In
the case of SR-PDE, it follows from Assumptions 3–5 in Arnone et al. (2021).

Here we consider the case of fixed designs, thus implicitly conditioning on the
sample points and the covariates. Similar results can be obtained in the random design
scenario, by introducing further assumptions on the distribution of the design points
and covariates (e.g., that the covariates are realizations of continuous processes on�).

Under (A1), we can consider the Demmler and Reinsch (1975) decomposition

(���)−1/2P(���)−1/2 = Udiag(ρ)U�,

whereU is thematrix of eigenvectors, and ρ is the corresponding vector of eigenvalues
{ρk}K

k=1 (see Eubank 1999, for details). Let us also denote A = �(���)−1/2U . Note
that this matrix is semi-orthogonal, i.e., A� A = IK and AA� = �(���)−1��.
Following Demmler and Reinsch (1975), we can rewrite the matrix � in (6) as

� = In − A(IK + λdiag(ρ))−1A�.

Using this decomposition, we can now study the behavior of the bias of the test statistic
T , in terms of the eigenvalues ρk .
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Lemma 3.1 Assume (A1) and let ˜̃X = A� X and ˜̃γ = A��γ . Let also ˜̃xi be the
q-dimensional vectors corresponding to the rows of ˜̃X, and ˜̃γ i be the elements of the
vector ˜̃γ . Under the null hypothesis (9), the bias bλ of T is

bλ ≤ n−1/2λmax
i

(| ˜̃xi ˜̃γ i |)
K∑

i=1

ρi , (12)

where the inequality is considered element-wise.

Proof Denote by ε the n-dimensional vector of i.i.d. residuals. Under the null hypoth-
esis, we have

E(T ) = n−1/2
E(X��r)

= n−1/2
E(X��(y − Xβ0))

= n−1/2X��E(�γ + Xβ0 − Xβ0 + ε)

= n−1/2X���γ + n−1/2X��E(ε)

= n−1/2X���γ = bλ,

since the termE(ε) is zero by assumption. Using the decomposition in (3.1), it follows
that

� = In − A(IK + λdiag(ρ))−1A�

= AA� − AA� + In − A(IK + λdiag(ρ))−1A�

= A(IK − (IK + λdiag(ρ))−1)A� − AA� + In . (13)

Substituting (13) in bλ, we obtain

bλ = n−1/2[X�(A(IK − (IK + λdiag(ρ))−1)A� − AA� + In)�γ ]
= n−1/2[X� A(IK − (IK + λdiag(ρ))−1)A��γ − X� AA��γ + X��γ ]
= n−1/2[X� A(IK − (IK + λdiag(ρ))−1)A��γ − X��(���)−1���γ + X��γ ]
= n−1/2X� A(IK − (IK + λdiag(ρ))−1)A��γ .

Using the notation ˜̃X = A� X and ˜̃γ = A��γ , the bias can therefore be rewritten as

bλ = n−1/2
K∑

i=1

(
1 − 1

1 + λρi

)
˜̃xi ˜̃γ i = n−1/2

K∑

i=1

(
λρi

1 + λρi

)
˜̃xi ˜̃γ i , (14)

where ˜̃xi are the q-dimensional vectors corresponding to the rows of ˜̃X , and ˜̃γ i the
elements of the vector ˜̃γ . Equation (14) highlights that the bias is a sum of K con-
tributions, weighted by the eigenvalues ρk , and moderated by λ. Since the function
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x/(1 + x) < x , for x > 0, we can bound the bias as follows

bλ = n−1/2
K∑

i=1

(
λρi

1 + λρi

)
˜̃xi ˜̃γ i ≤ n−1/2λ

K∑

i=1

ρi | ˜̃xi ˜̃γ i | ≤ max
i

(| ˜̃xi ˜̃γ i |)n−1/2λ

K∑

i=1

ρi .

	

The expression (14) highlights how the bias depends on the chosen penalization
through the eigenvalues ρk . We finally make the following assumption.

(A2) The smoothing parameter λ = λn is chosen so that λ
∑K

i=1 ρi = o(1).

Thanks to Lemma 3.1, assumption (A2) implies the asymptotic unbiasedness of score
statisticT , since f is a continuous functionon theboundeddomain� and the covariates
are realizations of a continuous process on �. This is a standard assumption when
studying the asymptotic properties of semiparametric and nonparametric penalized
regression models. Likewise for Assumption (A1), also Assumption (A2) needs to be
specified depending on the penalty and basis considered. Indeed, Assumptions (A1)–
(A2) are intentionally left quite general to embrace various semiparametric models;
moreover, the precise rates of convergence are not of direct interest in this work.
Theorem 1 in Claeskens et al. (2009) gives, for instance, the appropriate rates for λ

in the case of univariate penalized splines estimators, Theorem 3 in Holland (2017)
gives it for multivariate penalized spline estimators, while Lemma 3 in Arnone et al.
(2021) gives it for SR-PDE estimators.

We can now state the main result for the asymptotic distribution of the test statistic
T .

Theorem 3.2 Let ν = σ 2X��2X. Under the assumptions (A1)–(A2), the test statistic
T in (11) is asymptotically normal under the null hypothesis (9), with

√
nν−1/2T

·∼ N (0, Iq).

Proof We know that

E(T ) = n−1/2
E(X��r) = n−1/2X���γ + n−1/2X��E(ε)

= n−1/2bλ + n−1/2
n∑

i=1

[X��]iE(εi )

where the notation [X��]i is used to indicate the i-th column of the q×n matrix X��.
Under assumption (A2), it follows from (12) that the bias bλ is asymptotically zero.
The expected value E(T ) is therefore asymptotically zero. For the variance, under the
null hypothesis we have

Var(T ) = Var(n−1/2X��r) = n−1X��Var(�γ + Xβ0 + ε − Xβ0)�X

= n−1X��Var(ε)�X = n−1σ 2X��2X .
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Substituting the expression of � from equation (13) in the previous expression, we
obtain

Var(T ) = n−1σ 2X�(In − A(IK + λdiag(ρ))−1A�)2X

= n−1σ 2X�(In + A(IK + λdiag(ρ))−2 A� − 2A(IK + λdiag(ρ))−1A�)X

= n−1σ 2(X� X + X� A(IK + λdiag(ρ))−2 A� X − 2X� A(IK + λdiag(ρ))−1A� X)

= n−1σ 2X� X + n−1σ 2( ˜̃X�(IK + λdiag(ρ))−2 ˜̃X − 2 ˜̃X�(IK + λdiag(ρ))−1 ˜̃X)

= n−1σ 2X� X + n−1σ 2 ˜̃X�((IK + λdiag(ρ))−2 − 2(IK + λdiag(ρ))−1) ˜̃X

Using the notation ˜̃X = A� X and completing the square in the second term, we hence
get

Var(T ) = n−1σ 2X�(In − AA�)X + n−1σ 2 ˜̃X�((IK + λdiag(ρ))−1 − IK )2 ˜̃X
= n−1σ 2X� X − n−1σ 2X� AA� X + n−1σ 2 ˜̃X�((IK + λdiag(ρ))−1 − IK )2 ˜̃X

= n−1σ 2X�(In − AA�)X + n−1σ 2
K∑

i=1

(
λρi

1 + λρi

)2
˜̃xi ˜̃x�

i , (15)

where ˜̃xi are the q-dimensional vectors corresponding to the rows of ˜̃X . Note that the
first term does not depend on λ. As for the second term, since x2/(1 + x)2 < x2, for
x > 0, we have

σ 2n−1
K∑

i=1

(
λρi

1 + λρi

)2
˜̃xi ˜̃x�

i ≤ σ 2n−1λ2
K∑

i=1

ρ2
i | ˜̃xi ˜̃x�

i |

≤ σ 2max(| ˜̃xi ˜̃x�
i |)n−1λ2

K∑

i=1

ρ2
i

≤ σ 2max(| ˜̃xi ˜̃x�
i |)n−1λ2

(
K∑

i=1

ρi

)2

= σ 2max(| ˜̃xi ˜̃x�
i |)

(
n−1/2λ

K∑

i=1

ρi

)2

,

where the maximum is taken element-wise. Therefore, for n large enough (since
the covariates are realizations of a continuous process on �), assumption (A2)
implies that the second term in (15) vanishes faster than the first term. Concern-
ing the first term in (15), with a similar argument it is easy to check that the
matrix AA� is idempotent with rank K . Thus, it admits the spectral decomposition
AA� = Udiag(1, . . . , 1, 0, . . . , 0)U�, with the first K non-null eigenvalues equal to
1. The term X�(In − AA�)X is therefore the sum of n − K components with bounded
variance, since the covariates are realizations of a continuous process on �, thus the
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Feller condition is satisfied. It follows from the central limit theorem [see, e.g., Van der
Vaart (2000)] that the test statistic T is also asymptotically normal. 	


4 Eigen sign-flip test for the linear component in penalized
semiparametric regressionmodels

In the classical linear regression case, under the standard assumption of i.i.d. random
noise, the score statistics can also be viewed as a sum of n contributions that have
asymptotically zero mean, under the null hypothesis H0 (9). This information can be
used to derive the null distribution of the test statistic, without the need of a direct
estimation of the Fisher information. In the context of semiparametric regression,
instead, a first naive attempt to derive the distribution of the test statistic can be made
by random permutations (or sign-flips) of the contributions of the score (Winkler
et al. 2014; Hemerik et al. 2020). This approach, attempted in Ferraccioli (2020) for a
simple type of SR-PDEmodel (Sangalli et al. 2013), might nonetheless be not optimal
in the semiparametric regression setting. The reason for this lies in the fact that naive
permutation does not account for the correlation between residuals, nor for the bias of
the estimates, which is inherent to semiparametric models. To solve this issue, always
considering a special case of SR-PDE model, Ferraccioli et al. (2021) defines a new
test statistic, that leverages on the spectral decomposition of the matrix �, leading to
the definition of the eigen sign-flip test.

We here defined the eigen sign-flip test on β for a general forms of penalized
semiparametric regression models. We study the properties of the test, proving its
asymptotic distribution. A thorough discussion on the nature of the proposed test in
given in Sect. 4.2.

Definition 1 (Eigen sign-flip test) Let us consider the singular value decomposition
� = V DV �. Set � = diag(π1, . . . , πn), where π = (π1, . . . , πn) is a random
vector uniformly distributed in {−1, 1}n . Let us also define the n-dimensional vectors
X̃ = D1/2V � X and r̃ = D1/2V �r = D1/2V �(y−Xβ0). The eigen sign-flip statistics
is defined as

T� = n−1/2X�V D1/2�D1/2V ��(y − Xβ0) = n−1/2 X̃��r̃.

Note that the observed statistic T = TI corresponds to the case where πi = 1, i =
1, . . . , n. As standard in permutational approaches, the component-wise p-values are
thus computed as the rank of TI with respect to a sample of M sign-flips π , divided
by M (see, e.g., Pesarin 2001).

4.1 Asymptotic properties of the eigen sign-flip test

We now study the asymptotic properties of the test statistic T� in Definition 1. We
first show that the asymptotic distribution of the test statistic T� is the same as TI . We
then show that the eigen sign-flip test is asymptotically exact.
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Theorem 4.1 Let ν = σ 2X��2X. Under the assumptions (A1)–(A2), for any given
�, the distribution of T� is asymptotically normal, with

√
nν−1/2T�

·∼ N (0, Iq).

Proof For the expected value, under the null hypothesis we have

E(T�) = n−1/2
E(X̃��r̃)

= n−1/2
E(X�V �V ��(y − Xβ0))

= n−1/2X�V �V ��E(y − Xβ0)

= n−1/2X�V �V ���γ .

Following the same reasoning of the proof of Theorem 3.2, but with the quantity
V �V � X in place of X , we can show that the expected value of T� is asymptotically
zero.

As for the variance, under the null hypothesis we have

Var(T�) = Var(n−1/2 X̃��r̃)

= Var(n−1/2X�V �DV �(y − Xβ0))

= n−1X�V D�V �Var(ε)V �DV � X

= n−1σ 2X��2X = n−1ν.

It follows from the central limit theorem (Van der Vaart 2000), that the test statistic
T� is also asymptotically normal. 	

Remark 1 Note that the bias in the mean of the test statistic is intrinsic in the regular-
ization approach, and cannot be avoided in the finite sample scenario. Because of this
bias, we are only able to reach asymptotically exact results.

Remark 2 Note also that the matrix � is defined so that it commutes with D. This is
necessary to ensure that the variance of the test statistic is invariant under the action
of �.

We now introduce some notation before establishing themain result, that constitutes
the pivot point to prove the asymptotic control of the probability of Type I error. For
the sake of simplicity of exposition, we consider the results for a single covariate case
in the remainder of this section and in Sect. 4.3. In Sect. 4.4, we outline the procedure
for the general multivariate case. Let α ∈ [0, 1). For any a ∈ R, let a� be the smallest
integer which is larger than or equal to a and let �a� be the largest integer which
is at most a. We consider all the possible w = 2n sign-flips �1, . . . ,�w, where
�1 = I . For a given value of the test statistic T n

I , we hence consider all the associated
sign-flipped values T n

I , T n
�2

, . . . , T n
�w

, where we use the superscript n to highlight the
sample size. We denote by T n

(1) ≤ . . . ≤ T n
(w) the corresponding sorted value. Finally,

we write T n[1−α] = T n
(1−α�w).
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Theorem 4.2 Consider the test that rejects H0 if and only if T n
I > T n[1−α]. Then,

under the null hypothesis, the test is asymptotically exact and the rejection probability
P(T n

I > T n[1−α]) is at most α.

Proof We need to show that the asymptotic distribution of the 2n-dimensional vector
of test statistics T = (T n

I , . . . , T n
�w

)� is invariant under sign-flip transformations �,

that is T d= � ◦T, where d= represent the equality in distribution and the composition
stands for � ◦T = � ◦ (T n

I , T n
�2

, . . . , T n
�w

)� = (T n
�I , T n

��2
, . . . , T n

��w
)�. This will

prove the asymptotic control of the Type I error through Theorem 15.2.1 in Lehmann
and Romano (2008) and Theorem 1 in Hemerik and Goeman (2018a).
Let X̃ be the diagonal n × n matrix with elements (X̃1, . . . , X̃n). The test statistic in
Definition 1 can be rewritten as

T� = X̃��r̃ = 1�
n �X̃r̃,

where 1n is the n-dimensional unit vector. The test statistic T� can hence be viewed as
sum of n contributions, where each element of X̃r̃ is sign-flipped through�. Similarly,
the variance of T� can be written as

Var(T�) = n−1σ 21�
n X̃DX̃1n;

see also Theorem 4.1.
To evaluate the joint distribution of the test statistics T, let us now define � as the

2n × n matrix collecting all the w = 2n vectors of sign-flip row-wise. Therefore, we
can write T = �X̃r̃, and � ◦ T = ��X̃r̃. The joint distribution of T is multivariate
normal with variance Var(T) = σ 2n−1�X̃DX̃�� and asymptotically zero mean.
We now have to show that � ◦ T follows the same asymptotic multivariate normal
distribution. First note that the transformation � does not affect the expected value
that remains asymptotically zero. Furthermore, for the variance we have

Var(� ◦ T) = n−1σ 2��X̃DX̃���

= n−1σ 2���X̃DX̃��

= n−1σ 2�X̃DX̃��.

Thanks to Theorem15.2.1 in Lehmann andRomano (2008) and Theorem1 inHemerik

and Goeman (2018a), this yields the null invariance T d= � ◦ T. It follows that under
H0, P(T n

I > T n[1−α]) ≤ α. 	


Remark 3 The previous result is still valid in the case when w �= 2n , i.e., when not
every element of {1,−1}n is used once (see, e.g., Hemerik and Goeman 2018a).
For computational reasons, it is in fact common practice to sample uniformly from
{−1, 1}n , with or without replacement. The same holds also for the results in the next
section.
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4.2 On the nature of the eigen sign-flip test

A few comments on this approach may be useful to understand its nature.
In the simpler context of linear regression models, it is possible to define a resid-

ualizing matrix that projects into the residual space. This is an orthogonal projection
matrix; as such, it is idempotent, and all its eigenvalues are zero or one. Thanks to
this, for classical linear regressionmodels, Kherad-Pajouh and Renaud (2010) propose
to pre-multiply the residuals by the semiorthogonal matrix defined by the eigenvec-
tors corresponding to the non-null eigenvalues. This pre-multiplication transforms
the n residuals into pseudo-residuals, reducing their cardinality. The number of these
new pseudo-residuals is equal to the rank of the residualizing projection matrix (i.e.,
the number of non zeros eigenvalues, usually equal to the number of covariates).
Being the remaining eigenvalues of residualizing matrix equal to one, the resulting
pseudo-residuals are now independent and homoscedastic (i.e., spherical). In partic-
ular, Kherad-Pajouh and Renaud (2010) suggest the use of a permutation approach,
while Solari et al. (2014) extend it to themore general framework of rotationsmatrices.

Unfortunately, within the semiparametric regression framework, the residualizing
matrix � is not a projection matrix and is not idempotent; therefore, its eigenvalues
do not take values in {0, 1}. A multiplication by these eigenvalues would act as a
scaling factor for the residuals, making them independent, but not homoscedastic.
For this reason, defining � as a permutation or a rotation matrix would not be a
valid solution. Defining instead � as sign-flipping matrix ensures the commutative
property �D = D�, as highlighted in Remark 2. This property is indeed crucial, as
it guarantees that the variance of the test statistics is constant over �, as proved in
Theorem 4.1. It is also worth to emphasize that the test guarantees only asymptotic
exactness since the penalization induces a bias in the estimation of the mean—which
vanishes with increasing n—while, for fixed n, the variance remains constant for all
the test statistics defining the null distribution. On the contrary, the standard parametric
Wald test needs asymptotic results for both the mean and the variance, such as those
obtained in Sect. 3.1. Similar considerations could be drawn for a naive sign-flip score
test that does not decomposes the matrix �. In this case, for finite samples, the sign-
flipped test statistic would not have variance equal to observed test statistic. This
would lead to performances that are comparable to the parametric Wald test, as shown
in Ferraccioli (2020). This difference between the eigen sign-flip test and the other
competitors is crucial in providing an adequate control of Type I error, as shown by
the simulations in Sect. 5.

4.3 Interval hypotheses, two-sided tests and confidence intervals

So far we have defined the eigen sign-flip test for point-wise null hypothesis. The most
common situation in practice is nonetheless to define interval null hypotheses. As for
standard approaches, we need to prove that the p-value computed under any point-wise
null hypothesis H0 : β = β0−ε (∀ ε > 0) has also Type I error probability bounded by
α. For convenience, let us define the test statistic as a function of the tested coefficient,
that is T�(β0) = n−1/2X�V �V ��(y − Xβ0) = n−1/2X�V �DV (y − Xβ0). We
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now give two results for interval hypothesis and two-sided tests, and a third result on
confidence intervals.

Corollary 4.2.1 (Interval hypotheses) Consider the hypotheses H
′
0 : β = β0 − ε and

H
′
1 : β > β0 − ε, with ε > 0. Then for every ε > 0, P(T�(β0 − ε) ≥ TI (β0 − ε)) ≤

P(T�(β0) ≥ TI (β0)). The same is true for the opposite hypothesis: that is, ε < 0 and
H ′
1 : β < β0 + ε.

Proof We have

P(T�(β0 − ε) ≥ TI (β0 − ε))

= P(T�(β0) − n−1/2X�V �DV � Xε ≥ TI (β0) − n−1/2X� DV � Xε)

= P(T�(β0) + n−1/2X�V (I − �)DV � Xε ≥ TI (β0))

≤ P(T�(β0) ≥ TI (β0)).

Note that last inequality holds since

n−1/2X�V (I − �)DV Xε = 1�
n X̃(I − �)X̃1nε ≥ 0 ∀�.

Note that (I − �) is a diagonal matrix with non-negative diagonal entries, thus it is
positive semi-definite for all �. Therefore, any quadratic form of it is nonnegative. 	

Corollary 4.2.2 (Two-sided test) Consider α1, α2 ∈ (0, 1] and such that α1 + α2 < 1.
Then, under H0 : β = β0, as n → ∞,

P
[
(T n

I < T n[α1]) ∪ (T n
I > T n[1−α2])

] → α1 + α2.

That is, the eigen sign-flip test controls the Type I error asymptotically when testing
H0 : β = β0 against the two sided alternative H1 : β �= β0.

Proof Theorem 4.2 proves that P
[
T n

I < T n[α1]
]

→ α1 and P

[
T n

I > T n[1−α2]
]

→ α2.

This, together with the fact that P
[
(T n

I < T n[α1]) ∩ (T n
I > T n[1−α2])

]
→ 0, proves the

corollary. 	

As consequence of the two lemmas above, we can also derive confidence intervals

for the parameter β.

Corollary 4.2.3 (Confidence Interval) Let α ∈ (0, 1]. Then the set

�(β) = {β : P(T�(β) ≥ (≤)TI (β)) ≥ (≤)α}
is a one-sided confidence interval for parameter β with asymptotic coverage 1 − α.
Let also α1, α2 ∈ (0, 1] such that α1 + α2 < 1. Similarly, the set

�(β) = {β : (P(T�(β) ≥ TI (β)) ≥ α1) ∩ (P(T�(β) ≤ TI (β)) ≤ α2)}
is a two-sided confidence interval with asymptotic coverage 1 − (α1 + α2).

Proof The proof follows directly from Corollaries 4.2.1 and 4.2.2. 	
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4.4 Testing a subset of the covariates

We now deal with the case where we have multiple covariates, and we are interested in
testing a subset of the covariates. Specifically, assume X ∈ R

n×R
q represents the set of

covariates of interest, with associated vector of coefficientsβ, and Z ∈ R
n ×R

p the set
of covariates associated with the vector of nuisance coefficients ζ . The minimization
problem in (2) then becomes

argmin
β, f

n∑

i=1

(yi − f (pi ) − x�
i β − z�

i ζ )2 + λnP( f ). (16)

We might be interested in testing

H0 : β = β0 versus H1 : β �= β0,

for any value of ζ and γ . Let us define �∗ = [Z |�] the n × (p + K ) matrix com-
posed by the covariates associated with the nuisance parameters and the bases for the
nonparametric part of the model, with coefficients θ = (ζ , γ ). We can then rewrite
equation (5) as

(�∗��∗ + λP∗)θ − ��(y − Xβ) = 0, P∗ =
[
Op×p Op×K

OK×p PK×K

]
,

where O is a matrix of zeros.
Definition 1 of the eigen sign-flip test remains valid also in this case, with the

only modification of the matrix � in (6), where � is replaced by �∗. Moreover, the
following corollary provides the extension of Theorem 4.2 to the case where β is a
vector.

Corollary 4.2.4 Consider the test that rejects H0 : β = β0 if and only if ϕ(T n
I ) >

ϕ(T n[1−α]), where ϕ(·) is any nonparametric combining function (Section 6.2 Pesarin
2001). Then, under the null hypothesis, the test is asymptotically exact and the rejection
probability P(ϕ(T n

I ) > ϕ(T n[1−α])) is at most α.

Proof In order to extend the proof of Theorem 4.2 to the multivariate framework, we
need to rely on the Nonparametric Combination of dependent test statistics, as defined,
e.g., in Section 6.2 of Pesarin (2001). First of all, recall that the test statistic T is a
vector itself. Moreover, Theorem 3.2 proves the asymptotic multivariate normality of
T and Theorem 4.1 shows that the sign-flipped vectors of test statistics T n

I , . . . , T n
�w

share the same distribution. Therefore, the matrix T = (T n
I , . . . , T n

�w
)� is equal in

distribution to � ◦ T. More precisely, T is the 2n-dimensional vector of test statistics
T n

(·), i.e., each row of T is a sampling from the multivariate test statistics T . We can
therefore use any nonparametric combining function Pesarin (2001) to obtain a p-
value. 	

Among the most commonly used nonparametric combining functions, defined, e.g.,
in Pesarin (2001), are the max-T, sum-T or Mahalanobis distance. As an illustrative
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example, a p-value based on themin-p combining function (Westfall and Young 1993)
rejects the multivariate null hypothesis if the maximum value of T is larger than the
1 − α quantile of the distribution of the maxima computed over the w elements of
(T n

I , . . . , T n
�w

).

5 Simulation studies

In this section we present two simulation studies, to investigate the finite sample per-
formances of the proposed test. Simulation 1, in Sect. 5.1, considers a semiparametric
model based on classical univariate splines (as, for instance, in Heckman 1986; Wand
and Ormerod 2008). Simulation 2, in Sect. 5.2, considers instead a semiparametric
model based on SR-PDE (Sangalli et al. 2013). In these different settings, we compare
the performances of three different tests:

• Wald: a classical Wald-type test based on the asymptotic distribution of β̂;
• Speck: a similar Wald-type test based on the asymptotic distribution of the Speck-
man version of the estimator (Speckman 1988), as derived in Holland (2017);

• ESF: the Eigen sign-flip score test introduced in Definition 1.

The results show the performances of the tests over 1000 simulation repetitions.

5.1 Simulation 1

In Simulation 1, we simulate from model (1), with � = [0, 1] and p1, . . . , pn

randomly sampled from a uniform distribution on �, with n = 200. For the non-
parametric component of the model, we consider the test function 1 from the function
gamSim in the R package mgcv (Wood 2015, 2017), defined as 0.2p11(10(1 −
p))6 + 10(10p)3(1− p)10. We consider q = 1 covariate, and we generate x1, . . . , xn

according to four different stochastic processes:

(a) an i.i.d. random sample from N (0, 0.12);
(b) a Gaussian random field on [0, 1] with mean zero and scale 0.01;
(c) the function

√
p + 2 on [0, 1], with added an i.i.d. random sample from

N (0, 0.12);
(d) the function

√
p + 2 on [0, 1], with added a Gaussian random field with mean

zero and scale 0.01.

The covariates and the true f are standardized, before computing the response variable
y, so that their relative contributions to the response are comparable.We consider both
β0 = 0 and other 10 different values of β0, from 0.01 to 0.1, to check both the Type I
error and the power of the test. Finally, we add i.i.d. normal random errors ε1, . . . , εn,

with zero mean and standard deviation 0.1. For each test case, the generation of the
covariates and noise is repeated 1000 times.

The model is estimated using cubic B-spline bases, with 200 equispaced internal
nodes on �, using the implementation in Wand and Ormerod (2008). The smoothing
parameter is chosen via cross-validation. The tests are performed with nominal value
0.05. For the proposed eigen sign-flip test, we consider 1000 random sign-flips.
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Table 1 Simulation 1 (a) (b) (c) (d)

Wald 0.057 0.260 0.054 0.262

Speck 0.023 0.089 0.023 0.089

ESF 0.051 0.038 0.045 0.042

Proportion of Type I error in 1000 replicates (nominal value of the test:
0.05)

Fig. 1 Simulation 1. Power of the Wald test (green dotted), of its Speckman variant (cyan dashed) and of
the proposed eigen sign-flip (red solid)
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Table 1 shows the control of Type I error, and Fig. 1 shows the power functions for
the three competing tests. The table and figure immediately highlight that the most
challenging scenarios are cases (b) and (d), where the covariates have been generated
with a dependence structure, sampling fromaGaussian process. The classic parametric
test (Wald) shows an extremely poor control of the Type I error in these two cases,
with an observed proportion of Type I error of over 26%, when the nominal value of
the test is 5%. This behavior is possibly due to the poor estimation of the variance
induced by the regularized estimates. The Speckman variant appears more robust,
partly correcting for the misspecified variance. Nonetheless, this test is significantly
underconservative in cases (b) and (d), with a proportion of Type I error of almost
9%, while it is over-conservative in cases (a) and (c), where it returns a proportion of
Type I error of about 2.3%. The proposed eigen sign-flip score test, on the contrary,
maintains an extremely good control of the Type I error, under all scenarios, and it
is never underconservative. Also in the challenging cases (b) and (d), at the cost of a
slightly loss of power, it manages to keep a proportion of Type I error very close (and
just slightly inferior) to the nominal value of the test.

We also considered the case ofmultiple covariates, following the simulation scheme
detailed above, but including simultaneously all four covariates (a), (b), (c) and (d)
in the data generation, and testing one parameter at a time, considering the other
parameters as nuisance, as detailed in Sect. 4.4. The same considerations as those
detailed for the simulation in Fig. 1 can be drown (results non included for sake of
space).

5.2 Simulation 2

In Simulation 2, we simulate from model (1), with � = [0, 1]× [0, 1] and p1, . . . ,pn

randomly sampled from a uniform distribution on �, with n = 225. For the non-
parametric component of the model, we consider the test function 2 from the function
gamSim in the R package mgcv (Wood 2015, 2017), defined as

0.4π0.3
(
1.2 exp

(
− (p1 − 0.2)2

0.32
− (p2 − 0.3)2

0.42

)

+0.8 exp

(
− (p1 − 0.7)2

0.32
− (p2 − 0.8)2

0.42

))
.

We consider q = 1 covariate, and we generate x1, . . . , xn according to four different
stochastic processes:

(a) a Gaussian random field with zero mean and scale 0.05;
(b) a Matern random field with ν = 1, σ = 2 and scale 0.1;
(c) the function cos(5(p1 + p2)) + (2p1 − p1 p22)

2 with added a Gaussian random
field with scale 0.05;

(d) the function cos(5(p1 + p2)) + (2p1 − p1 p22)
2 with added a Matern random field

with ν = 1, σ = 2 and scale 0.1.

The covariates and the true f are standardized, before computing the response variable
y, so that their relative contributions to the response are comparable.We consider both
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Table 2 Simulation 2 (a) (b) (c) (d)

Wald 0.146 0.176 0.270 0.319

Speck 0.084 0.094 0.102 0.103

ESF 0.041 0.040 0.054 0.046

Proportion of Type I error in 1000 replicates (nominal value of the test:
0.05)

β0 = 0 and other 10 different values of β0, from 0.01 to 0.1, to check both the Type I
error and the power of the test. Finally, we add i.i.d. normal random errors ε1, . . . , εn,

with zero mean and standard deviation 0.1. For each test case, the generation of the
covariates and noise is repeated 1000 times.

Themodel is estimated using SR-PDE, with linear finite elements on amesh having
225 nodes on a regular lattice over �, implemented using the package fdaPDE. The
smoothing parameter is chosen via cross-validation. The tests are performed with
nominal value 0.05. For the proposed eigen sign-flip test, we consider 1000 random
sign-flips.

The results are presented in Table 2 and Fig. 2. The classic parametric test (Wald)
has poor performances and very low control of the Type I error in all the scenarios,
with proportion of Type I error of about 15% and higher. The Speckman variant is
always more robust than the Wald, but it is often severely underconservative, with
observed proportion of Type I error of about 10%. The proposed eigen sign-flip, on
the contrary, at a loss of some power, permits an extremely good control of the Type I
error, even in the more challenging scenarios, where the covariate has a strong spatial
structure.

6 Study of human development in Nigeria

In this section we apply the proposed methodology to the analysis of human develop-
ment in Nigeria. In particular, we are interested in better understanding the difference
in socioeconomic and health conditions in the various states of the country. Unfortu-
nately, data at national and subnational level are often poor or not publicly available.
This lack of information and of public domain surveys hamper the efforts to identify
and develop targeted interventions in troubled areas (Jerven 2013). An alternative to
traditional data consists in using other sources of openly accessible data, such as data
from social media, mobile phone networks, or satellites. In particular, a popular recent
approach leverages on satellite images of luminosity at night to estimate economic
activity (Chen and Nordhaus 2011; Jean et al. 2016). These images highlight urban
areas, which typically offer better provisions of basic services such as electricity, water
and public health, as well as more job opportunities, with respect to rural areas.

Herewe use open satellite data (NASAWorldview Snapshots), together with demo-
graphic data, to predict human development. Specifically, as a response variable, we
consider theHumanDevelopment Index (HDI) (available at https://globaldatalab.org/shdi),
an aggregated index that takes into account multiple dimensions at the household and
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Fig. 2 Simulation 2. Power of the Wald test (green dotted), of its Speckman variant (cyan dashed) and of
the proposed eigen sign-flip (red solid)

individual level in health, education and standard of living. This index is available
at states level, for the 36 states of Nigeria, and for the Federal Capital Territory. The
values of this index are shown in panel d of Fig. 3. As covariates, in the parametric part
of themodel, we use the population density, xPop, of each state (data from the National
Bureau of Statistics, Nigeria), shown in panel e of Fig. 3, and the three satellite images
shown in the top panels of the same figure that are

• Nightlight luminosity, xNight , obtained via the VIIRS Nighttime Imagery, that
captures low-light emission sources, under varying illumination conditions (panel
a);

• Short-Wave Infrared, xSW I R , that highlights bare soils, such as deserts (panel b);
• Near Infrared, xN I R , that highlights vegetation (panel c).
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Fig. 3 Panels a–d show the covariates used: nightlight luminosity (a), Short-wave infrared (b), Near infrared
(c) satellite images, and population density (d). Panel e shows the observed HDI. Panel f shows the HDI
predicted by the SR-PDEmodel. Imagery from theWorldview Snapshots application (https://wvs.earthdata.
nasa.gov

We are interested in identifying significant effects of these covariates on human devel-
opment, considering the model

y = f + xPopβPop + xNightβNight + xSW I RβSW I R + xN I RβN I R + .

Since the HDI, the response variable, and one of the covariate, the population density,
are available at state level, we also aggregate the other three covariates at state level,
considering their areal means. We then apply SR-PDE, considering the data located
at the capitals of each state. We use a mesh with 320 nodes and select the smooth-
ing parameter through generalized cross-validation (λn = 0.1). We hence perform
significance tests on each covariate, one at a time, considering the other parameters
as nuisance, as described in Sect. 4.4, using the eigen sign-flip procedure with 5000
random sign-flips.

Nightlight results significant (p < 0.005), with a positive impact on human devel-
opment (the estimated coefficients is 0.29). The finding on nightlight is in line with
other recent research studies (Chen and Nordhaus 2011; Jean et al. 2016). The pre-
sence of urban areas, in fact, plays a huge role in the overall wealth of the population.
This of course does not imply a causality effect, since increased wealth has itself
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an impact on the development of urban areas. Nightlight is nonetheless a good indi-
cator of the socioeconomic status at local level, that does not require any official
statistics, as previously discussed. Short-wave infrared seems to be slightly significant
(0.05 < p < 0.1), with a negative impact on human development (the estimated
coefficients is −0.016). The result might suggest that the presence of deserted areas
with large amounts of bare soil lead to a decrease in human development. The more
advanced states are indeed close to the ocean, in the southern part of the country.
The northern part instead, that is mostly deserted, is not very populated. It is also
worth noting that the aggregation at state level averages localized features, such as the
presence of rivers, lakes or small vegetation, possibly reducing important information.
The third satellite covariate, near infrared, does not appear significant (p > 0.1). The
same apply for population density (p > 0.1). This is possibly due to the fact that
the distribution is highly skewed, with most of the population residing in the state of
Lagos, in the southwest of the country (see panel d in Fig. 3). Panel f in Fig. 3 shows
the predicted MPI values, highlighting the very high explicative power of the model.

7 Discussion

This paper describes a strongly innovative and highly promising inferential approach in
the context of semiparametric regression with roughness penalties. The paper focuses
on tests for the linear part of the models. On the other hand, similar ideas can be used
to develop tests and confidence bands on the nonlinear part of the models. Moreover,
the described approach could be extended to deal with semiparametric regression with
spatiotemporal components [see, e.g., Ugarte et al. (2009, 2010); Aguilera-Morillo
et al. (2017);Marra et al. (2012); Augustin et al. (2013); Bernardi et al. (2018)], further
broadening the spectrum of potential models that could benefit from our proposal.
These developments will be objects of dedicated future studies. We are confident this
inferential approach will become popular and will prove to be highly valuable in the
varied contexts where semiparametric regression is used.
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