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Summary

Recurrent events are often encountered in clinical and epidemiological studies where

a terminal event is also observed. With recurrent events data it is of great interest to

estimate the marginal mean of the cumulative number of recurrent events experienced

prior to the terminal event. The standard nonparametric estimator was suggested in

Cook & Lawless (1997) and further developed in Ghosh & Lin (2000). We here investi-

gate the efficiency of this estimator that, surprisingly, has not been studied before. We

1



rewrite the standard estimator as an inverse probability of censoring weighted (IPCW)

estimator. From this representation we derive an efficient augmented estimator using

efficient estimation theory for right-censored data. We show that the standard estimator

is efficient in settings with no heterogeneity. In other settings with different sources

of heterogeneity, we show theoretically and by simulations that the efficiency can be

greatly improved when an efficient augmented estimator based on dynamic predictions

is employed, at no extra cost to robustness. The estimators are applied and compared

to study the mean number of catheter-related bloodstream infections in heterogeneous

patients with chronic intestinal failure who can possibly die, and the efficiency gain is

highlighted in the resulting point-wise confidence intervals.

Some key words: Censoring; Counting processes; Efficiency; Marginal mean; Recurrent

events data; IPCW estimator.

1 Introduction

Recurrent events are observed in many clinical and epidemiological studies on individuals

who may potentially experience a terminal event such as death. Our motivating study

concerns a cohort of patients with chronic intestinal failure who are often treated for long

periods, receiving home parenteral support through a central venous catheter. During

treatments they experience several recurrent events such as catheter-related bloodstream

infections (CRBSI), some patients have a high risk of death and die due to severe failure

and comorbidities. This study is characterized by a strong heterogeneity between pa-

tients, because of high variability both in the number of CRBSI and in the risk of death,

and possible correlation between recurrent events and death. This problem motivated

us to explore the efficiency accounting for such data heterogeneity in a nonparametric
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setting.

A useful analysis of recurrent event data is to compute the marginal mean number

of events of a specific type, in the presence of a terminal event, as described in Cook

& Lawless (1997), developed further in Ghosh & Lin (2000) and extended to regression

models in Ghosh & Lin (2003); Cai & Schaubel (2004). Chen & Cook (2004) considered

extensions to deal with multivariate recurrent event processes with focus on making

statements about the marginal means for several recurrent event processes jointly. In

addition Scheike et al. (2019) considered how to estimate variance and covariance in the

context of multivariate recurrent events, still in the presence of a terminal event. A

broader discussion of the analysis of recurrent events can be found in Cook et al. (2009);

Cook & Lawless (2002).

The aim of this work is to show how the marginal mean of the number of recurrent

events can be estimated efficiently, using the theory of efficient estimation for censored

data (Tsiatis, 2006; Van der Laan & Robins, 2003; Robins & Rotnitzky, 1992; Bang &

Tsiatis, 2000).

The estimator suggested in Cook & Lawless (1997) is simple to compute and its

influence function was derived in Ghosh & Lin (2000). We rewrite the estimator into

an inverse probability of censoring weighted (IPCW) estimator. Further, based on this

representation we can also derive the efficient estimator using the results about efficient

estimation for right-censored data. We show how this increment IPCW estimator with

an appropriated augmentation term is orthogonal to the nuisance tangent space spanned

by the censoring mechanism. The efficiency of the estimator has not been discussed in

detail before, and we show that the standard estimator is indeed efficient in some settings

and in addition how to improve the efficiency in the settings where this is possible.

The improved efficiency can be important, e.g., to extract as much information about

treatment effects in clinical trials with recurrent-event endpoints (EMA, 2020).
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The rewritten estimator resembles that of Bang & Tsiatis (2000) (BT) that was

developed for estimation of medical cost, and the improved efficiency when there is

heterogeneity in data comes from a dynamic prediction in contrast to the simple linear

prediction used in BT. Moreover, efficiency is gained at no extra cost to robustness,

because the augmented procedures remain fully nonparametric even though dynamic

“working models” are used to compute the augmentation term.

The paper is structured as follows. In Section 2 the model is formulated, marginal

properties of the standard nonparametric estimator are described and an IPCW version

of this estimator and of its variance estimator are illustrated. Section 3 presents the

efficient estimators and their variance estimators, together with the derivation of the

augmentation term: an augmented estimator based on dynamic predictions and an al-

ternative version with non-dynamic predictions. In Section 4 simulation studies show

the performance of estimators in small samples under different possible sources of het-

erogeneity. The example on recurrent events of catheter-related bloodstream infection is

illustrated in Section 5. Finally, Section 7 reports a discussion with conclusive remarks.

2 Model formulation

Let D denote the survival time (the terminal event), and let N∗(t) count the number

of recurrent events observed over a time-period [0, t], where t ≤ τ . Due to the terminal

event, we only observe the recurrent event processes up to τ ∧D, where a∧b = min(a, b),

such that N∗(t) = N∗(t ∧ D) because subjects will only have events when still alive.

Observations may also be censored, thus only making it possible to observe the processes

up to the censoring time C. Let us define δ = I(D ≤ C), T = D ∧ C, and let N(t) =

N∗(t ∧ C) be the observed number of events and define the at-risk process Y (t) =

I(T ≥ t). Denote the counting process of the terminal event by ND(t) and denote
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its marginal cumulative hazard by ΛD(t). We make the standard assumption that the

censoring is independent of D and N∗(t). The observations {Ni(t), Ti, δi} are assumed

to be independent replicates of {N(t), T, δ} for i = 1, ..., n and any t ∈ [0, τ ].

2.1 Marginal properties

The mean number of recurrent events up to time t is defined as

µ(t) = E(N∗(t)) =

∫ t

0

S(s)dR(s), (1)

where S(t) = P (D > t) and dR(t) = E(dN∗(t)|D > t) giving the recurrent event rate

among the survivors. This marginal mean is justified by the fact that no further recurrent

events can be experienced after the terminal event time D, i.e., the number of recurrent

events remains constant for any t > D, and thus E{dN∗(t)} = E{dN∗(t ∧ D)) =

E(dN∗(t)I(D ≥ t)}.

Let us define Y•(t) =
∑n

i=1 Yi(t) and N•(t) =
∑n

i=1Ni(t). A simple estimator of µ(t)

(Cook & Lawless, 1997) is to consider

µ̂(t) =

∫ t

0

Ŝ(s)dR̂(s),

where Ŝ(t) is the Kaplan-Meier estimator and

R̂(t) =

∫ t

0

1

Y•(s)
dN•(s),

is the Nelson-Aalen estimator of R(t). The normalized estimator n1/2{µ̂(t)− µ(t)} con-

verges weakly to a mean-zero Gaussian process with variance that can be consistently

estimated, see Ghosh & Lin (2000) for details. The estimator µ̂(t) resembles the estima-

tor of the cumulative incidence function and reflects the fact that the number of observed
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recurrent events depends on both survival and the event rate among the survivors. If

N∗(t) reduces to a counting process where the event of interest can occur at most one

time, we are in a setting where the terminal event acts as a competing risk and µ̂(t)

coincides with the cumulative incidence estimator for the event of interest.

Let MD
i (t) = ND

i (t) −
∫ t
0
Yi(s)dΛD(s) be the martingale associated to the terminal

event and let us define Mi(t) = Ni(t) −
∫ t
0
Yi(s)dR(s) and π(t) = P (T ≥ t). Following

Ghosh & Lin (2000), the estimator µ̂(t) can be expanded and written as a sum of i.i.d.

zero mean processes ϕi(t) as follows

n1/2{µ̂(t)− µ(t)} = n−1/2
n∑
i=1

ϕi(t) + oP (1),

where

ϕi(t) =

∫ t

0

S(s)

π(s)
dMi(s)− µ(t)

∫ t

0

1

π(s)
dMD

i (s) +

∫ t

0

µ(s)

π(s)
dMD

i (s).

Let Gc(t) be the survival distribution of C, the right-censoring time, and let Ĝc(t) be

the Kaplan-Meier estimator for Gc(t). The estimator can be expressed alternatively as

µ̂(t) =

∫ t

0

Ŝ(s)dR̂(s) =
∑
i

∫ t

0

Ŝ(s)Yi(s)
1

Y•(s)
dNi(s)

=
1

n

∑
i

∫ t

0

Yi(s)

Ĝc(s)
dNi(s) =

1

n

∑
i

∫ t

0

ri(s)I(Di ≥ s)dNi(s) (2)

with ri(s) = I(Ci ≥ s)/Ĝc(s) and noting that we can compute I(Ci ≥ s)I(Di ≥ s) =

I(Ti ≥ s), the at-risk indicator, further by using that Y•(s) = n Ŝ(s−)Ĝc(s−). Thus, this

is an increment IPCW estimator, since it is the IPCW sum of increments of the number of

recurrent events, dNi(s), over time in [0, t], and is the limit of the partitioning estimator

of Bang & Tsiatis (2000) developed in the context of cumulative medical cost. Using

the alternative formulation in (2), in the following we develop an alternative variance
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estimator for µ̂(t) and discuss the estimator’s efficiency.

We consider the martingale associated to the censoring time, MC
i (t) = NC

i (t) −∫ t
0
Yi(s)dΛC

i (s), with counting process NC
i (t) = I(Ti ≤ t, δ = 0). Given the identity as

in Robins & Rotnitzky (1992), we have that

I(Di > s)r̃i(s) = I(Di > s)
I(s ≤ Ci)

Gc(s)
= I(Di > s)

{
1−

∫ s

0

1

Gc(u)
dMC

i (u)

}
.

Therefore, the estimator of µ(t), when Gc(t) is known, can be written as

∑
i

∫ t

0

r̃i(s)I(Di > s)dNi(s) =
∑
i

∫ t

0

(
1−

∫ s

0

1

Gc(u)
dMC

i (u)

)
I(Di > s)dN∗i (s)

=
∑
i

∫ t

0

I(Di > s)dN∗i (s)−
∑
i

∫ t

0

Hi(s, t)
1

Gc(s)
dMC

i (s) (3)

with Hi(s, t) =
∫ t
s
I(Di > u)dN∗i (u), obtained by changing the order of integration. It

can be easily shown that this estimator has mean equal to µ(t) and thus it is unbiased.

Note that the first term in (3) is the full-data estimator of µ(t) = E{N∗(t)} when

censoring is not present.

Moreover, using the martingale integral representation for the Kaplan-Meier estima-

tor

Ĝc(s)−Gc(s)

Gc(s)
= −

∑
i

∫ s

0

Ĝc(u−)

Gc(u)

1

Y•(u)
dMC

i (u) (4)

and following along the lines of Bang & Tsiatis (2000), we get that
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n1/2(µ̂(t)− µ(t)) = n−1/2

(∑
i

∫ t

0

Yi(s)

Ĝc(s)
dNi(s)− µ(t)

)

= n−1/2
∑
i

(∫ t

0

I(Di > s)dN∗i (s)− µ(t)

)
− n−1/2

∑
i

∫ t

0

[Hi(s, t)− E(H, s, t)]
1

Gc(s)
dMC

i (s) + op(1)

(5)

where E(H, s, t) = E(Hi(s, t)I(Di ≥ s))/S(s). See Appendix A for a detailed derivation.

The normalized estimator in (5) is given as a sum of i.i.d terms. The variance of the

estimator n1/2(µ̂(t)− µ(t)) is

E

(∫ t

0

I(Di > s)dN∗i (s)− µ(t)

)2

+ E

(∫ t

0

[Hi(s, t)− E(H, s, t)]2Yi(s)
1

G2
c(s)

dΛc(s)

)
,

because conditional on D and N(·), the second term in (5) is still a martingale and

therefore has conditional mean 0, given D and N(·). Note that, comparing (3) and (5),

the contribution of the Kaplan-Meier estimator for Gc(s) to the influence function is the

extra term involving E(H, s, t) in the martingale integral. As a consequence of this, the

terms Hi(s, t) are centered with respect to their conditional mean E(H, s, t), and thus

the variance of the normalized estimator is reduced, if compared with the variance of

the same estimator where the true Gc(s) is used.

The martingale central limit theory can be applied together with the central limit

theorem to show that µ̂(t) is asymptotically normal. We note that the asymptotic

arguments here are based on a different expansion compared to Ghosh & Lin (2000).

The variance of µ̂(t) can be estimated by the following IPCW estimator for the two

terms

1

n

[{
Ê2(H, 0, t)− µ̂2(t)

}
+

1

n

∫ t

0

(
Ê2(H, s, t)

Ŝ(s)
− H̄2(s, t)

)
1

Ĝ2
c(s)

dNC
• (s))

]
(6)
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where NC
• (s) =

∑
iN

C
i (s) and

Ê2(H, s, t) =
1

n

∑
i

∫ t

s

ri(u)I(Di > u)f(Ni(u−)−Ni(s))dNi(u),

H̄(s, t) =
1

nŜ(s)

∑
i

Ĥi(s, t)I(Di > s), Ĥi(s, t) =

∫ t

s

Yi(u)

Ĝc(u)
dNi(u)

with f(k) = (k + 1)2 − k2, see Appendix B for further details. Note that the estimators

Ê2(H, s, t) and H̄(s, t) are always computable from data (see remark in Appendix B).

Other IPCW estimators could also have been used. The variance estimated by (6)

provides an alternative estimator to that of Ghosh & Lin (2000).

3 The efficient estimator

In this section we discuss the efficiency of the increment IPCW estimator, and address

how efficiency can be improved by using the efficient estimation theory for missing data

(Tsiatis, 2006), building on the semiparametric theory of Robins & Rotnitzky (1992).

We show that an efficient estimator for µ(t) is given by

µ̃(t) = µ̂(t) +
1

n

∑
i

∫ t

0

Leffi (s, t)

Ĝc(s)
dM̂C

i (s), (7)

where the second term is called the augmentation term, and the most efficient estimator

is obtained with Leffi (s, t) = E(Hi(s, t)|Histi(s), Di > s). This function is the conditional

mean of Hi(s, t) given the history of the ith subject up to time s among those that have

not experienced the terminal event yet, Di > s. We note that this history shows the

number of recurrent events up to s and when they took place. The intuition underlying

equation (7) comes from the fact that the augmentation term adds the expected value of

the term omitted due to censoring, E(
∫ t
c
I(D > s)dN |T > C = c), minus its mean (from

the compensator of dNC(s)). If Leffi (s, t) is replaced by any other function, we would
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still have a consistent estimator. We show in Appendix C that the augmented estimator

in (7) is orthogonal to the censoring nuisance space and therefore it is efficient.

When E(Hi(s, t)|Histi(s), Di > s) does not depend on the individual i, the augmen-

tation term is zero because
∑

i dM̂
C
i (s) = 0 and the estimator is efficient. Therefore,

importantly, we note that when no heterogeneity is present then the estimator µ̂(t) is

efficient.

The estimator µ̃(t) is optimal in the sense that it has the smallest asymptotic vari-

ance among the class of regular asymptotically linear (RAL) estimators, and thus its

asymptotic variance is equivalent to the semiparametric efficiency bound. However, the

conditional expectation Leffi (s, t) can not be directly computed without any further as-

sumption on the recurrent event process and the death process.

Although the efficiency bound is not reached unless we have the correct conditional

mean for the augmentation term, we can construct an estimator in (7) with improved

efficiency as compared to the simple increment IPCW estimator in (2). A first approach

in this direction is to estimate the conditional expectation by imposing a simple regression

model that, even if incorrect, will provide a locally efficient estimator.

3.1 Computation of Augmentation term

In this section we consider some specific models for Leffi (s, t), by imposing various frailty

models, for which we can compute the augmentation term. This gives some insight into

the type of augmentation that would give efficiency in specific settings. We consider a

scenario with no heterogeneity where both the terminal event and the recurrent events

are completely independent (Model 0); a second scenario where the terminal event is

independent of the recurrent events, but however, there is heterogeneity (Model 1);

finally a setting where both the terminal event and the recurrent events are correlated

(Model 2).

10



In the first model (Model 0) we assume a terminal event rate λd(t) = αd(t) and a

recurrent event rate λ(t) = α(t), such that D is independent of N∗(t) and N∗(t) have

independent increments. In this case, E[dN∗i (u)|Histi(s), Di > s] = λ(u|Di > s) =

α(u)du for any u > s and for all individuals, it is then easy to see that the augmentation

term is zero and therefore the estimator µ̂(t) is efficient.

The second model (Model 1) imposes that λd(t) = αd(t) and λ(t|Z) = Zα(t), where

the frailty variable Z has a Gamma distribution with E(Z) = 1 and V ar(Z) = θ.

Thus the marginal recurrent rate for a survivor at s is E(dNi(u)|Histi(s), Di > s) =

λi(u|Histi(s), Di > s) = α(u)E[Zi|Histi(s), Di > s] = α(u)(1 + θNi(s−))/(1 + θA(s)),

for any u > s, where A(s) =
∫ s
0
α(v)dv. Therefore we get

E(Hi(s, t)|Histi(s), Di > s) =

∫ t

s

exp

(
−
∫ u

s

αd(v)dv

)
1 + θNi(s−)

1 + θA(s)
α(u)du

= α̃(s, t) + β̃(s, t)Ni(s−), (8)

suggesting that a linear prediction model using N(s) as covariate, is sufficient.

A further more complex model (Model 2) can postulate λd(t|Z) = Zαd(t) and

λ(t|Z) = Zα(t) with the same frailty Z as above. Then, the hazard of D and N∗(t)

given the process history Histi(s) and that a subject is still alive at s, will be

E(dNid(u)|Histi(s), Di > s) =
1 + θNi(s−)

1 + θ(A(s) + Ad(s))
αd(u) = α̃d(s, u) + β̃d(s, u)Ni(s−)

E(dNi(u)|Histi(s), Di > s) =
1 + θNi(s−)

1 + θ(A(s) + Ad(s))
α(u) = α̃(s, u) + β̃(s, u)Ni(s−)
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for any u > s and with Ad(s) =
∫ s
0
αd(v)dv. Thus we obtain

E(Hi(s, t)|Histi(s), Di > s) =

∫ t

s

exp

(
−
∫ u

s

α̃d(s, v) + β̃d(s, v)N(s−)dv

)[
α̃(s, u) + β̃(s, u)N(s−)

]
du

=

∫ t

s

Ãd(s, u)B̃d(s, u)N(s−)
[
α̃(s, u) + β̃(s, u)N(s−)

]
du,

(9)

with Ãd(s, u) = exp
(
−
∫ u
s
α̃d(s, v)

)
and B̃(s, u) = exp

(
−
∫ u
s
β̃d(s, v)

)
.

A possible extension of Models 0,1,2 consists of letting both rates α(t) and αd(t),

or just one of them, depend on some baseline covariates X that could be leveraged to

further increase the statistical efficiency of µ̃(t). If we assume a proportional hazards

form for both rates, then the augmentation term under Model 0 is not null and depends

on Xi, but not on Ni(s). For example, under the independence of Model 0 some observed

baseline patient’s characteristics could be responsible for heterogeneity. Using a regres-

sion model for the recurrent event rate, e.g., λ(t|Di > s,X) = α0(t) exp (βTX), we get

E(Hi(s, t)|Di > s,Xi) = exp (βTXi)α̃0(s, t), where α̃0(s, t) is the baseline time-varying

mean function for X = 0. Under Models 1 and 2, results are similar to the scenarios

without covariates, with the only difference that the time-varying coefficients given in

(8) and (9) depend also on Xi.

3.2 Dynamic prediction based augmentation

The specific optimal augmentation term depends on what information the history con-

tains about the risk of subsequent events, and this will not be known, even though it

can be explored by traditional modelling techniques. In the previous section we have

illustrated how various simple frailty models lead to different structures for the condi-

tional mean needed in the augmentation term. Bang & Tsiatis (2000) suggested to solve

this problem by doing essentially linear regression to approximate the conditional mean
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with a simple linear model. We here explore this idea and extend this approach to dy-

namic predictions which turns out to be very important for gaining efficiency with the

increment IPCW estimator.

The idea is simply to choose a set of predictors e(s, t)T = (e1(s, t), ..., eJ(s, t)) and

regress the H(s, t) onto these predictors. We shall therefore explore how to use the

predictions of the conditional mean, E[H(s, t)|Hist(s), D > s)], on the form γ(s, t)T e(s, t)

where γ(s, t) is a J-vector function of time-dependent regression coefficients that are then

estimated to lower the variance of the estimator. We note that Models 0 and 1 from

the previous section indeed can be written on this form, whereas Model 2 can not. Note

that here t is considered as fixed. We thus needs to choose the functionals ej(s, t) that

depends on observed data Hist(s) and possibly t, such as for example (e1(s), e2(s)) =

(N(s−), exp(−N(s)). To simplify the notation we will not necessarily write out explicitly

that ej(s, t) may depend on both s and t, but often just write ej(s).

With known γ(s, t), we can then use the estimator

µ̃2(t) = µ̂(t) +
1

n

∑
i

∫ t

0

γ(s, t)T (ei(s)− ē(s))
Ĝc(s)

dNC
i (s), (10)

with ē(s) =
∑
Yi(s)ei(s)/Y•(s) being the at risk average of the subject-specific predictors

ei(s)
T = (e1i (s, t), ..., e

J
i (s, t)).

The normalized estimator can be expanded and written as n1/2(µ̃2(t) − µ(t)) =

n−1/2
∑

i ϕ̃i(t) + oP (1) where the influence function is

ϕ̃i(t) =

(∫ t

0

I(Di > s)dN∗1i(s)− µ(t)

)
− yi(t) + zi(t), (11)

with

yi(t) =

∫ t

0

[Hi(s, t)−E(H, s, t)]
1

Gc(s)
dMC

i (s), zi(t) =

∫ t

0

γ(s, t)T [ei(s)−E(e, s)]
1

Gc(s)
dMC

i (s)
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and E(e, s) = E(ei(s)|Di > s).

The variance of n1/2(µ̃2(t)− µ(t)) is

E

(∫ t

0
I(Di > s)dN∗i (s)− µ(t)

)2

+E

(∫ t

0
P 2
i (s, t)

Yi(s)

G2
c(s)

dΛc(s)

)
(12)

with Pi(s, t) = [(Hi(s, t) − E(H, s, t)) − γ(s, t)T (ei(s) − E(e, s))]. To minimize the

variance of the estimator, we need to find an optimal choice of γ(s, t) in the second term

in (12). This optimal solution is obtained by regressing (Hi(s, t) − E(H, s, t))Yi(s) on

(ei(s)− ē(s))Yi(s). Thus an estimator of the optimal regression coefficient is given as

γ̂(s, t) =
(

Σ̃(s)
)−1

Ĝc(s)
∑
i

Ĥi(s, t)(ei(s)− ē(s))Yi(s),

with Σ̃(s) =
∑

i Yi(s)(ei(s) − ē(s))⊗2. This expression is similar to the classical re-

gression estimator γ̂(s, t) = (ZTZ)−1ZTY , but with Hi(s, t) replaced by Ĥi(s, t). Note

that
∑

iE(H, s, t)(ei(s) − ē(s))Yi(s) = 0. Note also, by using conditional means, that

E[H̃i(s, t)ei(s)] = E[E(H̃i(s, t)ei(s)|ei(s))] = E[Hi(s, t)ei(s)], with H̃i(s, t) =
∫ t
s
(1/Gc(u))I(Di >

u)dNi(u) and that E[Hi(s, t)ei(s)Yi(s)] = Gc(s)E[Hi(s, t)ei(s)]. Therefore, with the

plug-in of the optimal γ̂(s, t) into the expression (10), we obtain the final augmented

estimator for µ(t) with improved efficiency.

Moreover, the estimated variance of the augmented estimator µ̃2(t) is

v̂ar(µ̂(t))− n−2
∫ t

0

γ̂(s, t)T Σ̃(s)γ̂(s, t)
1

Ĝ2
c(s)Y•(s)

dNC
• (s),

where v̂ar(µ̂(t)) was given in (6).

Similarly, when γ(s, t) is not depending on s, as in Bang & Tsiatis (2000),

γ̂(t) =

(∫ t

0

Σ̃(s)
1

G2
c(s)Y•(s)

dNC
• (s)

)−1 ∫ t

0

∑
i

Ĥi(s, t)(ei(s)− ē(s))
Yi(s)

Ĝc(s)Y•(s)
dNC
• (s),
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and the estimator is

µ̃1(t) = µ̂(t) +
1

n

∑
i

γ̂T (t)

∫ t

0

(ei(s)− ē(s))
Ĝc(s)

dNC
i (s). (13)

In this case, the estimated variance of the augmented estimator is given as

v̂ar(µ̂(t))− n−2γ̂(t)T

[∫ t

0

Σ̃(s)
1

Ĝ2
c(s)Y•(s)

dNC
• (s)

]
γ̂(t)

We observe that we thus can improve the performance of our estimator by projecting

the optimal augmentation term into a specific augmentation space. In practice, when

there is strong heterogeneity, this gain can be quite large if we use the dynamic estimator

µ̃2(t) based on γ(s, t) as we shall see, while the gain is typically quite small if the simple

linear regression estimator µ̃1(t) based on γ(t) is used.

The methodology presented in this section still holds and can be applied when het-

erogeneity is also due to the observed baseline covariates X. In this case, covariates can

be included as predictors in the augmentation term of the proposed estimators µ̃1(t) and

µ̃2(t), with the scope to minimize their variance and thus improve their efficiency. This

statement is supported by a simulation study for the simple case ei(s) = X reported in

the next section.

4 Simulations

We considered the three models for which we did the specific calculations to obtain

the efficient estimator (see Subsection 3.1). Specifically, we can rewrite these models as

Model 0: λd(t) = αd(t) and λ1(t) = k1α1(t); Model 1: λd(t) = αd(t) and λ1(t) = Zk1α1(t)

with Z being a Gamma variable with mean 1 and variance θ; Model 2: λd(t) = Zαd(t)

and λ1(t) = Zk1α1(t), with the same Z. Here we included a constant k1 that we varied
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to obtain different levels of recurrent events. The considered levels were k1 = 0.2, 1, 4. In

addition the variance θ of the random effect was assumed to be either 0.3 or 1. For Models

0,1,2, we considered different sample sizes, different levels of censoring, different levels of

recurrent events and different levels of dependence via the variance of the random effect.

We simulated data that resemble the data provided by the application in the next

section, thus letting αd(t) and α1(t) be piecewise linear approximations of the death rate

and the event rate among survivors that we saw in the data. This led to a survival rate

at around 24 % at 3000 days and an average mean number of events at around 2.3 at

3000 days. The censoring time was exponentially distributed with hazard λc = kc/5000

with kc = 1, 2, 4, the highest level of censoring thus leading to a censoring proportion of

about 81% at 3000 days.

For the three assumed models the number of expected recurrent events are shown in

Table 1, where only minor variation across the models and the size of the random effect

(θ = 0.3) are studied.

Time
k1 Model 500 1000 1500 2000 2500 3000
0.2 0 0.16 0.24 0.31 0.37 0.42 0.47
0.2 1 0.15 0.22 0.28 0.34 0.38 0.42
0.2 2 0.16 0.24 0.31 0.37 0.42 0.47
1 0 0.79 1.19 1.56 1.88 2.12 2.34
1 1 0.74 1.09 1.42 1.7 1.92 2.11
1 2 0.79 1.19 1.56 1.88 2.13 2.35
4 0 3.18 4.75 6.24 7.53 8.5 9.37
4 1 2.98 4.37 5.68 6.8 7.67 8.45
4 2 3.18 4.77 6.27 7.55 8.52 9.39

Table 1: Mean number of events for different levels of k1 in assumed Models 0,1,2 with
θ = 0.3 in simulations.

We investigated the performance of the two prediction augmented estimators µ̃1(t)

and µ̃2(t) based on the non-dynamic predictions with coefficient γ(t) and the dynamic

predictions with γ(s, t), respectively (see equations (13) and (10) in Subsection 3.2). We
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used predictive models of different sizes and based on different covariates. Thus we con-

sidered a simple predictor model using only N1(s) (p-model A1); an extended model with

N1(s), N1(s)
2 (p-model A12); an even larger model with N1(s), N1(s)

2, exp(−N1(s)) (p-

model A13); and finally the model with N1(s), N1(s)
2, exp(−N1(s)), N1(s) exp(−N1(s))

(p-model A14). These models are nested and the number of used predictors increases.

These settings were studied for both the dynamic prediction model based on γ(s, t) and

the simple prediction model with constant effects based on γ(t). Recall again that t is

held fixed.

Simulations results are shown for one of the initial times, t = 1000, and the last time

t = 3000. For prediction model p-model A1 we report the relative efficiency of µ̃1(t),

µ̃2(t), computed as ratio between the sampling variances of the augmented estimator and

the standard estimator, for the three simulation settings Model 0, Model 1, Model 2,

and for all levels of kc, k1 and θ (see Table 2). For these scenarios, Table 3 evaluates the

coverage probabilities. Tables 4, 5, 6 show the relative mean squared error (rMSE) with

respect to the standard estimator, the relative bias (rBias) obtained as the ratio between

empirical bias and true mean value, the ratio between the sample mean of estimated

standard errors and the empirical standard deviation (RSD). We computed the relative

bias to be able to compare settings with a different number of recurrent events that yield

mean values for different sizes (see Table 1). Finally, Tables 7, 8 and 9 compare results

for the different dynamic prediction models used in the augmentation.

From Tables 2, 3 and 4, we observe that under Model 0, the three estimators per-

formed equally well for all considered settings both in terms of bias, coverage probability

and efficiency, and provided nearly equal mean square errors and sampling standard

deviations, as seen by all ratios nearly equal to one. Moreover, when using one of the

alternative more complex p-models A12, A13, A14 (see Table 7), the estimators µ̃1(t),

µ̃2(t) showed no improvements over the standard estimator, similarly to p-model A1.
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Since there is no gain when using the proposed augmented estimators, as expected in

case of complete independence of recurrent events and no heterogeneity (Model 0), we

conclude that in this case the standard estimator µ̂(t) is efficient and it is the preferable

choice.

For all simulation settings, Model 0, Model 1 and Model 2, the estimator of the vari-

ance is performing very well, since the ratios between estimated and empirical standard

errors (RSD) are approximately one (Tables 4, 5 and 6). We observe a slight underesti-

mation for heavy censoring and the smallest sample size n = 200, which however vanishes

as the size increases. For this last setting of heavy censoring and the smallest size, under

Model 1 and Model 2, we note in Table 3 a slightly lower empirical coverage than the

95% nominal level, but only for the estimator µ̃1(t) based on non-dynamic predictions

and only at the latest time t = 3000. In all other settings, the coverage probabilities of

µ̃1(t) and µ̃2(t) are shown to be very good and similar to the standard estimator µ̂(t).

Different conclusions were obtained under Models 1 and 2 with unobserved hetero-

geneity. Under these models and when p-model A1 is used, Tables 2 shows that both the

augmented estimators perform better than µ̂(t), with a considerable gain in efficiency,

specially if there is strong heterogeneity in the data. In general, the efficiency is larger for

highly correlated recurrent events (θ = 1), and even more if Model 2 is assumed where

correlation involves both terminal and recurrent events, and thus data are strongly het-

erogeneous. Indeed, ratios between the empirical variances of the improved estimator

and the simple estimator, are below one in most of the cases, with more reductions con-

centrated at later times (here only t = 3000 is shown) where the variance is generally

higher. In some settings with small sample size (n = 200), the increased efficiency is

particularly evident, we observe an empirical variance that is reduced up to 25% for µ̃2(t)

and to 11% for µ̃1(t) at the latest time. In addition, simulation results indicate that the

efficiency is improved also for large samples, as shown by the case n = 1600. We also

18



note that the relative efficiency of µ̃1(t) and µ̃2(t) with respect to µ̂(t), is improved for

heavy censoring (kc = 4) and when data present an increasing number of recurrent events

(k1 = 4). In these settings, as well as for stronger correlated data, the augmentation pro-

cedure is more useful in recovering information on missing data due to censoring and on

the conditional mean of the recurrent events process over time via the prediction model.

This job in recovering information is more successful for the augmented estimator µ̃2(t),

where prediction models are dynamic in time s. This is particularly so when terminal

event and recurrent events are both correlated (compare, e.g., Model 1 and Model 2 in

Table 2).

Under Model 1 or Model 2, we observe from Tables 5 and 6 that the bias of the

augmented estimators is nearly equal to the bias of the standard estimator, with very

few exceptions of a negligible inflation when both the sample size is small (n = 200)

and we have heavy censoring (kc = 4) that is up to 80% at the latest time t = 3000.

However, this slight increase of bias in this specific setting disappears when the sample

size increases. Moreover, simulation results show that the mean squared errors of µ̃1(t)

and µ̃2(t) are always lower or equal to that of µ̂(t), as we see from all ratios rMSE being

below or equal to one. Similarly to the efficiency discussed above, we note that this

MSE reduction is stronger for µ̃2(t) with more heterogeneity, more censoring and more

recurrent events.

We shall discuss the optimal choice between the considered prediction models used for

computing the augmentation term of µ̃1(t) and µ̃2(t). In combination with the p-model

A1 with only one predictor, these estimators show simultaneously a higher efficiency and

a lower MSE, as compared to µ̂(t), in all settings that we considered.

When there is heterogeneity between recurrent events (Model 1), Table 8 shows

that the optimal choice for the prediction model in the augmentation is p-model A1,

because it provided the lowest MSE and improved the efficiency as well as the larger p-
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models across all settings. The more complex p-models A12, A13, A14 did not bring any

additional improvement and in some cases yielded an inflated MSE. This is in agreement

with the theoretic considerations that showed that indeed the optimal augmentation,

E(Hi(s, t)|Histi(s), Di > s), was on p-model A1 form.

We note in particular, that for the dynamic estimator, µ̃2(t), p-model A1 showed

a clearly advantage over all the alternatives in settings where the sample size is small

(about n = 200) and with heavy censoring.

From Table 9, when also the terminal event is correlated to the recurrent events

(Model 2), we note a different behaviour of the two augmented estimators. For µ̃1(t),

p-models A12, A13, A14 were found to produce lower MSE and efficiency as compared

to p-model A1 in all settings, with a preference for p-models A12 or A13 when sample

size is small. When right censoring is light (kc = 1), also for the estimator µ̃2(t) we

found that p-models A12, A13, A14 produced lower MSE and efficiency as compared

to p-model A1. However, for µ̃2(t), and with heavy censoring in combination with a

small sample (n ≤ 400), the more complex p-models A13 and A14 that include more

predictors, produced still a higher efficiency but at the price of an inflated MSE at latest

times, due to a higher bias. This instability is caused by a lower data information in this

specific extreme setting, and it was observed to be attenuated at n = 1600 where we have

a good bias-variance trade-off. In summary, for all settings the optimal choices appear

to be p-model A12 or A13 for estimator µ̃1(t), in particular p-model A13 resembles the

functional form of covariates exp (N(s)) and N(s) that appears in the assumed model

for the expected number of recurrent events (see Model 2 in Subsection 3.1). The same

conclusion can be reached for the estimator µ̃2(t). However for this estimator, when

censoring is heavy, sample size plays an important role in allowing a more complex

p-model in the augmentation procedure.
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4.1 Augmentation term with baseline covariates

To illustrate the possible efficiency gain by using only baseline covariates in the augmen-

tation term, we also simulated data where the marginal means depended on covariates.

Here, to mimic the worked example in the next section, we considered a baseline covari-

ate with 5 levels with 20 % subjects in each level. The simulated model had proportional

means of recurrent events with a proportionality factors given by k · (0.3,−0.3, 0.3,−0.3)

with k = 1, 2. We still considered independent right censoring that was exponentially

distributed with hazard λc = kc/5000 and kc = 1, 2, 4. Then we computed the dynamic

prediction-based estimators µ̃1(t) and µ̃2(t) where the augmentation p-model uses only

baseline covariates as predictors. Simulations were performed with 10000 replications

and for different sample sizes, we computed the bias and variance of the proposed esti-

mators relative to the variance of the standard un-augmented estimator. We found no

noticeable bias and an accurate estimator of the variance in all settings and therefore

here we only report the relative variances in Table 10. Both the augmented estimators

show an improved efficiency as compared to the standard estimator, specially at later

time points (t = 2000, 3000) and when covariate effect is greater (k = 2). The dynamic

augmented estimator µ̃2(t) provides a relevant higher efficiency than µ̃1(t), and thus it

is the preferable choice when the p-model is based only on covariates.

5 Worked example

Patients with chronic intestinal failure receiving home parenteral support through a

central venous catheter can experience several complications during the often long-term

treatment periods, see Tribler et al. (2018); Scheike et al. (2019). We consider a cohort

of 715 consecutive patients at the University Hospital of Copenhagen, where we here

analysed the number of catheter-related bloodstream infections (CRBSI). Some of the

21



patients died due to severe intestinal failure or co-morbidities, while other patients leaved

the HPS program alive for different reasons during the around 14 years of follow up. We

here studied the mean number of CBRSI’s in the first 5000 days of the follow up, where

only about 20 % of the patients survived.

All estimators are implemented in the mets-package for R and illustrated in a vignette

(Holst & Scheike, 2022). For these data, we fitted a conditional regression model for the

future events rate, with the current number of recurrent events as a predictor, and, using

robust standard errors, we found that this predictor is strongly significant. Thus here

there is clear evidence of strong heterogeneity with some subjects having many infections

(up to 40 infections). The heterogeneity structure was further described in Scheike et al.

(2019). In addition death seems to be related to the number of infections. In fact, the

number of infections resulted to be a strong time-dependent predictor for the death rate

when for example a Cox model is studied. We also note that the estimated probability

Gc(5000) = 0.14 thus suggesting that the censoring adjustment do not get unstable.

Therefore, we would expect that we can improve the efficiency of the standard estimator

quite a bit.

We therefore computed the standard estimator as well as the improved dynamic-

prediction estimator using the more complex model (p-model 14) and the model with only

one predictor (p-model A1) for the augmentation. The improved estimator was computed

only at the time-points, 500, 1000, ...., 5000. The resulting estimates are shown if Figure

1, together with the estimated marginal mean (solid curve) and standard deviation (SD)

of the observed recurrent events (dashed curve) over time. The SD has been computed

as in Scheike et al. (2019). The SD and thus also variance is considerably larger than

the mean and thus indicates strong overdispersion and heterogeneity between recurrent

events. The confidence intervals computed with the improved variance estimator were

around 7% narrower at 5000 days using the large prediction model p-model A14, and
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around 5% narrower using the small prediction model p-model A1. Also at the other time

points we observed a substantial narrower confidence interval under the larger p-model

A14, as expected because of the strong correlation in these data. The improvement

in the size of these confidence intervals is due to the smaller standard errors of the

augmentation-based estimator. This is shown in Table 2 where the ratios between the

improved standard errors and the standard error of the classical estimator is lower than

1 after around 3000 days.

6 Heterogeneity and choice of prediction models

When studying recurrent events in presence of a terminal events, it is of interest in its

own right to explore presence of heterogeneity in data and the possible different sources

of this heterogeneity. This knowledge can be very important in general to provide better

scientific insight, e.g. for individual risk of disease progression and practical clinical

management. In addition, detecting presence and type of data heterogeneity is very

useful for choosing the best estimator for the mean number of recurrent events, and in

particular for selecting the best prediction model in the augmentation term of µ̃1 and µ̃2.

This last issue has been discussed in the simulation studies and Subsection 3.1, where we

assumed, via frailty models, the three different scenarios of no heterogeneity (Models 0),

simple heterogeneity between recurrent events (Model 1) and more complex correlation

that also involves the terminal event (Model 2).

Heterogeneity between recurrent events can be detected by fitting the frailty model

λ(t|Z) = Zα(t) for the recurrent event rate, with V ar(Z) = θ. Then, a score test of

homogeneity can be performed for testing whether the variance θ is equal to zero, see

Commenges & Andersen (1995). Based on the conclusions from this test one may choose

which of the proposed estimators to use.
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An alternative and simple approach to learn if heterogeneity is present in the recurrent

events is to fit a conditional regression model where the currently experienced number

of events is a predictor for the rate of future events, as for example λi(t|Histi(t−)) =

α0(t) exp (βNi(t−)), see further on such approaches in Cook & Lawless (2007).

More complex heterogeneity where both the terminal event and recurrent events are

correlated, can be detected by several procedures. A possible approach is to consider

a joint frailty model for the conditional rates of recurrent events and terminal event,

with common frailty Z such that E(Z) = 1 and V ar(Z) = θ, as given in Subsection

3.1. A possible extension is to consider the hazard functions given as, respectively,

λ(t|Z) = Zα(t) and λd(t|Z) = Zηαd(t), see for example Liu et al. (2004). A score test or

a likelihood ratio test based on the above model with null hypothesis H0 : η = 0 against

H1 : η 6= 0, allows us to verify whether the terminal event is independent of the recurrent

events, and thus heterogeneity concerns only the latter. A correlation score test that

does not require the estimation of the joint model has been aslo proposed by Balan et al.

(2016). Therefore, if H0 is rejected, the assumption of a joint model is fulfilled and η̂ may

suggest an equal or different effect of the frailty on the two rates. An alternative approach

is to explore the dependence between terminal and recurrent events via a Cox regression

model for the terminal event rate, as for example λid(t|Histi(t)) = α0d(t) exp (βNi(t−)),

with an internal time-dependent covariate that describes the recurrent event history.

The recurrent event process can also be studied as a covariate with different functional

forms to explore which p-model could be more appropriate in the augmented estimators.

7 Discussion

We have shown how to estimate the marginal mean for recurrent events efficiently in

the presence of right censoring. Our work demonstrated that the standard estimator
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was efficient when no heterogeneity is present, and that the standard estimator can be

improved considerably when strong heterogeneity is present in data.

To obtain the efficient estimator, assumptions about the dependence among recurrent

events and the dependence between D and N∗(t) were needed. To avoid making these

assumptions explicit, we proposed a prediction-based estimator that simply predicts the

augmentation term by choosing specific prediction models, and still gave considerable im-

provements to the standard estimator. Moreover, we presented a version of this efficient

augmented estimator where dynamic prediction models with time-varying coefficients

are employed in the augmentation term. We found theoretically and via simulations

that the efficiency of the estimator can be improved considerable by dynamic prediction

when data are heterogeneous, as is often the case. Thus dynamic prediction might play

an important role also in general augmented IPCW estimators in other context than the

one discussed in the current paper.

Many recent scientific questions, specially in the biopharmacological context and

based on randomized clinical trials where baseline confounding is not a concern, focus

on estimands for recurrent events in presence of terminal event, and are clearly stated

for a period up to a given time point of interest t∗. See, e.g., EMA (2020) and Fritsch

et al. (2021), where the need for statistical efficiency is also discussed. In regard of

this, it is then of great importance to apply efficient nonparametric estimators for the

marginal mean of recurrent events up to the fixed t∗, together with point-wise confi-

dence intervals, as shown in our worked example. In other applications, however, it

is desirable to have simultaneous confidence bands, which here could also be obtained

for the standard estimators and the proposed augmented ones. These uniform bands

rely on the fact that the normalized estimators written as in (5) and (11), are a sum

of i.i.d. terms and converge to a zero-mean Gaussian process. Therefore, the idea is to

approximate the distribution of the normalized estimators with a zero-mean Gaussian

25



process by a resampling technique. To do so, in the above mentioned equations, the un-

observable martingale increments dMC
i (s) can be replaced with GidM̂i(s), where Gi are

independent standard normal variables, and the other unknown quantities are replaced

by the respective sample estimates. The resulting process, denoted by Ŵ (t), can then

be used to randomly generate a large number of realizations ŵk(t), for k = 1, . . . , K, by

repeatedly simulating the normal samples (G1, . . . , Gi, . . . , Gn) while keeping fixed the

observed data {Ni(t), Ti, δi}.

When the focus is about studying covariate effects on the marginal mean of recurrent

events, in presence of a terminal event, the proposed augmentation methods could also

be extended to regression models based on IPCW estimating equations. Ghosh & Lin

(2002) presented a semiparametric regression model with multiplicative covariate effects

where it is feasible to extend the respective IPCW estimating equation to an augmented

form. Moreover, one may also consider a fixed time regression model that simplify the

functional form of the augmentation term. However, one particular issue here is that

even though an augmented regression estimator is more efficient, it does not correspond

to the most efficient estimator. Therefore, it is technically complicated and remains an

open question how to build and choose the regression setting that leads to a substantially

increased efficiency.

Observed baseline covariates may also be responsible of data heterogeneity. These

covariates can be used as predictors in the dynamic augmentation of the proposed es-

timators, following the same approach of linear regression on N(t). The methodology

presented for µ̃1(t), µ̃2(t) still holds and their efficiency is greatly improved also for this

setting, as confirmed by the results reported from simulations.

The estimators considered in this paper have all been implemented in the R-package

mets (Holst & Scheike, 2022) and are demonstrated in a vignette in the package.
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Appendix

Appendix A: Derivation of the influence function for the incre-

ment IPCW estimator

First we observe that, changing the order of integration and using the identity in (4),

∑
i

∫ t

0

Yi(s)

Ĝc(s)

Ĝc(s)−Gc(s)
Gc(s)

dNi(s) = −
∑
i

∫ t

0

Yi(s)

Gc(s)

∑
j

∫ s

0

Ĝc(u−)

Gc(u)Y•(u)
dMC

j (u)dNi(s)

= −
∑
j

∫ t

0

(∑
i

∫ t

s

Yi(u)

Ĝc(u)
dNi(u)

)
Ĝc(s−)

Gc(s)Y•(s)
dMC

j (s) = −
∑
i

∫ t

0
Ê(H, s, t)

1

Gc(s)
dMC

i (s),

where

Ê(H, s, t) =
Ĝc(s−)

Y•(s)

∑
i

Ĥi(s, t) =
1

nŜ(s)

∑
i

Ĥi(s, t), Ĥi(s, t) =

∫ t

s

Yi(u)

Ĝc(u)
dNi(u),

recalling that Y•(s) = nĜc(s−)Ŝ(s−). Therefore, using the identity in (3), the estimator

can be expanded as

n1/2(µ̂(t)− µ(t)) = n−1/2
∑
i

∫ t

0

Yi(s)

Ĝc(s)
dNi(s)− n1/2µ(t)

= n−1/2
∑
i

(∫ t

0
r̃i(s)I(Di > s)dNi(s)− µ(t)

)
− n−1/2

∑
i

∫ t

0

Yi(s)

Ĝc(s)

Ĝc(s)−Gc(s)
Gc(s)

dNi(s)

= n−1/2
∑
i

(∫ t

0
I(Di > s)dN∗i (s)− µ(t)

)
− n−1/2

∑
i

∫ t

0
[Hi(s, t)− Ê(H, s, t)]

1

Gc(s)
dMC

i (s)

= n−1/2
∑
i

(∫ t

0
I(Di > s)dN∗i (s)− µ(t)

)
− n−1/2

∑
i

∫ t

0
[Hi(s, t)− E(H, s, t)]

1

Gc(s)
dMC

i (s) + op(1)

(14)

where E(H, s, t) = E(Hi(s, t)I(Di > s))/S(s) and Hi(s, t) =
∫ t
s
I(Di > u)dN∗i (u). Note

also that the limit of Ê(H, s, t) is E(H, s, t).
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Appendix B: Increment IPCW estimator for the variance of µ̂(t)

The first term of the variance of n1/2(µ̂(t)−µ(t)) can be written as E[
∫ t
0
I(D > s)dN∗(s)−

µ(t)]2 = E[H(0, t)2]− µ(t)2, where

H(0, t)2 = [

∫ t

0

I(D > s)dN∗(s)]2 =
∞∑
k=0

∫ t

0

I(D > s)f(k)I(N∗(s−) = k)dN∗(s)

with f(k) = (k + 1)2 − k2 and its mean is given by

E(H(0, t)2) =
∞∑
k=0

∫ t

0

S(s)f(k)P (N∗(s−) = k|D > s)E[dN∗(s)|N∗(s−) = k,D > s].

See Scheike et al. (2019). An estimator for this quantity is

Ê2(H, 0, t) =
n∑
i=1

∫ t

0

Ŝ(s)

(∑
k

f(k)I(Ni(s−) = k)

)
dNi(s)

Y•(s)
=

n∑
i=1

∫ t

0

Ŝ(s)f(Ni(s−))Yi(s)
dN∗i (s)

Y•(s)

=
1

n

∑
i

∫ t

0

Yi(s)

Ĝc(s)
f(Ni(s−))dN∗i (s) =

1

n

∑
i

∫ t

0

ri(s)I(Di > s)f(Ni(s−))dN∗i (s)

and we clearly obtain an IPCW estimator for the first term of the variance.

The second term of the variance reduces to

E

(∫ t

0

[Hi(s, t)− E(H, s, t)]2
Yi(s)

G2
c(s)

dΛC
i (s)

)
=

∫ t

0

(
E(Hi(s, t)

2)− S(s)E(H, s, t)2
) 1

Gc(s)
dΛC

i (s).

We can write that

H(s, t)2 = [

∫ t

s

I(D > u)dN∗(u)]2 =
K∑

k=N∗(s)

∫ t

s

I(D > u)f(k−N∗(s))I(N∗(u−) = k)dN∗(u)
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and, similarly to above, the mean E(H(s, t)2) can be estimated by

Ê2(H, s, t) =
n∑
i=1

∫ t

s

Ŝ(u)f(Ni(u−)−Ni(s))
Yi(u)

Y•(s)
dN∗i (u)

=
1

n

∑
i

∫ t

s

ri(u)I(Di > u)f(Ni(u−)−Ni(s))dN
∗
i (u)

Finally, it is easily found that a consistent estimator of E(H, s, t) is H̄(s, t) and dΛC(s)

is estimated by the Nelson-Aalen formula dNC
• (s)/Y•(s), then we get

1

n

∫ t

0

(
Ê2(s, t)

Ŝ(s)
− H̄(s, t)2

)
1

Ĝ2
c(s)

dNC
• (s).

Remark: Note that the estimators Ê2(H, s, t) and H̄(s, t) are computable for all subjects,

even if D is not observed. Indeed, ri(u)I(Di > u) = Yi(u) and the at-risk process can

be evaluated at any time; in H̄(s, t), we have that Ĥi(s, t)I(Di > s) =
∫ t
s
I(Ci >

u)I(Di > max(s, u)dNi(u)/Ĝc(u) =
∫ t
s
Yi(u)dNi(u)/Ĝc(u), which can be also evaluated

for all subjects.

Appendix C: Efficient version of nonparametric IPCW increment

estimator.

We denote the mean-zero influence function of the full data estimator for µ(t) and its

increment IPCW version, respectively, as

αF (t) =

∫ t

0

I(D > s)dN∗(u)− µ(t), αIPCW (t) =

∫ t

0

r̃(s)I(D > s)dN(s)− µ(t).

It follows that, when the model for H(s, t) is known, the observed influence function
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of the augmented estimator for µ(t) given in (7), is

αO(t) = αIPCW (t) + L2 = αIPCW (t) +

∫ t

0

Le(s, t)

Gc(s)
dMC(u),

where in the augmentation term L2, the optimal choice is

Leff (s, t) = E(H(s, t)|Histi(s), D ≥ s)

with H(s, t) =
∫ t
s
I(D > u)dN(u).

Then it follows that the non-parametric estimator in (7) is efficient (Tsiatis, 2006).

Proof

Define an Hilbert space H of mean-zero random vectors with finite variance, with

inner product < h1, h2 >= E(hT1 h2). Consider the nuisance tangent space Λ ⊂ H.

To obtain an efficient version of the IPCW estimator for µ(t), we need to find the

augmentation term L2. By using the projection theorem, a unique function L2 belonging

to the nuisance tangent space Λ ⊂ H, is given by the projection onto Λ, i.e., L2 =

−Π(αIPCW (t)|Λ). This function is closest to αIPCW (t) and such that αIPCW (t) + L2 is

an orthogonal projection of αIPCW (t) onto the orthogonal complement space Λ⊥, i.e.,

< αIPCW (t) + L2, L >= 0 for ∀L ∈ Λ.

Therefore, we need to show that, with the optimal choice Leff (s, t) = E(H(s, t)|Histi(s), D ≥

s), the influence function αO(t) = αIPCW (t) +L2 is orthogonal to the nuisance censoring

space given by Λ = {
∫
αc(t)dM

C(t)|∀αc(t)}. This can be proved following the arguments

as in Tsiatis (2006).

We thus need to show that

<

∫ t

0

r̃(s)I(D > s)dN(s)− µ(t) +

∫ t

0

Leff (s, t)

Gc(s)
dMC(u),

∫
αc(u)dMC(u) >= 0
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for all αc(t). Using that 1 − r̃(t) =
∫ t
0

1/Gc(s)dM
C(s) and the result in we have the

result

∫ t

0

r̃(s)I(D > s)dN(s) =

∫ t

0

I(D > s)dN∗(s)−
∫ t

0

H(s, t)

Gc(s)
dMC(s)

already given in equation (3).

Therefore,

∫ t

0

r̃(s)I(D > s)dN(s)− µ(t) +

∫ t

0

Leff (s, t)

Gc(s)
dMC(u) =

αF (t)−
∫ t

0

(H(s, t)− E(H(s, t)|Histi(s), D > s))

Gc(s)
dMC(s)

See also Appendix A. Due to the linearity of the space H , it is enough to verify that

each term on the right-hand side is orthogonal to
∫
αc(u)dMC(u) for all αc(t). Using

conditional independence of C and D,N∗, we have that

E

[
αF (t)

(∫ t

0

αc(u)dMC(u)

)]
= E

[
αF (t)E

[∫ t

0

αc(u)dMC(u)|D,N∗(·)
]]

where the internal conditional expectation is zero because of the mean-zero censoring

martingale increments, and thus orthogonality is achieved. Similarly, the second term is

also orthogonal to
∫
αc(u)dMC(u), again because of the conditional independence and

because E[(H(s, t)− E(H(s, t)|Histi(s), D > s))I(D > s)] = 0, by construction.
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kc = 1 kc = 4
k1 = 0.2 k1 = 1 k1 = 4 k1 = 0.2 k1 = 1 k1 = 4

θ 0.3 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3 1
n Time Est Model 0
200 1000 µ̃1 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

µ̃2 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
3000 µ̃1 1.00 - 1.00 - 1.00 - 0.98 - 1.01 - 1.02 -

µ̃2 0.99 - 1.00 - 1.00 - 0.92 - 0.98 - 1.02 -
400 1000 µ̃1 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

µ̃2 1.00 - 1.00 - 1.00 - 1.01 - 1.00 - 0.99 -
3000 µ̃1 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.01 -

µ̃2 0.99 - 1.00 - 1.00 - 0.99 - 0.99 - 1.00 -
1600 1000 µ̃1 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

µ̃2 1.01 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
3000 µ̃1 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -

µ̃2 1.01 - 1.00 - 1.00 - 1.01 - 1.01 - 1.00 -
n Time Est Model 1
200 1000 µ̃1 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.98

µ̃2 1.00 1.00 1.00 0.99 1.00 0.98 1.00 1.00 0.99 0.98 0.98 0.96
3000 µ̃1 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.97 0.95 0.96 0.89

µ̃2 1.00 0.99 0.98 0.98 0.98 0.94 0.95 0.92 0.92 0.86 0.90 0.78
400 1000 µ̃1 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.98

µ̃2 1.01 1.00 1.00 0.99 1.00 0.99 1.01 0.99 0.99 0.98 0.98 0.96
3000 µ̃1 1.00 1.00 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.96 0.96 0.92

µ̃2 1.00 0.99 0.99 0.97 0.98 0.96 0.96 0.94 0.96 0.89 0.91 0.81
1600 1000 µ̃1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98

µ̃2 0.99 1.01 1.00 1.00 1.00 0.99 1.00 0.97 1.00 0.99 0.98 0.95
3000 µ̃1 1.00 1.00 1.00 0.99 0.99 0.98 1.00 1.00 0.98 0.95 0.96 0.90

µ̃2 0.99 1.00 0.99 0.98 0.99 0.97 0.98 0.97 0.97 0.91 0.93 0.80
n Time Est Model 2
200 1000 µ̃1 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.98 0.98 0.96

µ̃2 1.00 1.00 0.99 0.99 0.99 0.98 1.01 1.00 0.99 0.94 0.97 0.91
3000 µ̃1 1.00 1.00 1.00 0.98 0.99 1.06 0.98 0.95 0.97 0.90 0.96 0.95

µ̃2 0.99 0.98 0.98 0.95 0.97 0.96 0.92 0.83 0.89 0.74 0.86 0.71
400 1000 µ̃1 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.98 0.99 0.97

µ̃2 0.99 1.01 1.00 1.00 1.00 0.98 1.00 1.00 0.99 0.96 0.98 0.93
3000 µ̃1 1.00 0.99 1.00 0.98 0.99 1.08 0.99 0.98 0.97 0.94 0.94 0.98

µ̃2 1.00 0.99 0.99 0.96 0.97 0.97 0.96 0.89 0.92 0.82 0.86 0.78
1600 1000 µ̃1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.97

µ̃2 1.00 0.99 1.00 0.99 0.99 0.98 1.02 0.98 0.99 0.97 0.97 0.93
3000 µ̃1 1.00 0.99 0.99 0.97 0.98 1.08 1.00 0.98 0.96 0.91 0.94 0.99

µ̃2 1.01 0.98 0.99 0.95 0.97 0.99 0.99 0.97 0.93 0.80 0.86 0.79

Table 2: Efficiency for µ̃1(t) and µ̃2(t), computed as ratio between the empirical variances
of the augmented estimator and the standard estimator. Simulations with prediction model
p-model A1, assuming either Model 0, Model 1 or Model 2 (Model 0 has no assumptions on θ).
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kc = 1 kc = 4
k1 = 0.2 k1 = 1 k1 = 4 k1 = 0.2 k1 = 1 k1 = 4

θ 0.3 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3 1
n Time Est Model 0
200 1000 µ̂ 0.94 - 0.95 - 0.95 - 0.94 - 0.95 - 0.94 -

µ̃1 0.94 - 0.95 - 0.95 - 0.94 - 0.94 - 0.94 -
µ̃2 0.94 - 0.95 - 0.95 - 0.94 - 0.94 - 0.94 -

3000 µ̂ 0.94 - 0.95 - 0.94 - 0.91 - 0.93 - 0.94 -
µ̃1 0.94 - 0.95 - 0.94 - 0.90 - 0.90 - 0.90 -
µ̃2 0.94 - 0.95 - 0.94 - 0.91 - 0.92 - 0.93 -

400 1000 µ̂ 0.95 - 0.94 - 0.95 - 0.95 - 0.94 - 0.95 -
µ̃1 0.95 - 0.94 - 0.95 - 0.95 - 0.94 - 0.95 -
µ̃2 0.95 - 0.94 - 0.95 - 0.95 - 0.94 - 0.95 -

3000 µ̂ 0.94 - 0.94 - 0.94 - 0.93 - 0.94 - 0.95 -
µ̃1 0.94 - 0.94 - 0.94 - 0.92 - 0.92 - 0.93 -
µ̃2 0.94 - 0.94 - 0.94 - 0.93 - 0.93 - 0.94 -

1600 1000 µ̂ 0.95 - 0.95 - 0.95 - 0.95 - 0.95 - 0.95 -
µ̃1 0.95 - 0.95 - 0.95 - 0.95 - 0.95 - 0.95 -
µ̃2 0.95 - 0.95 - 0.95 - 0.95 - 0.95 - 0.95 -

3000 µ̂ 0.94 - 0.95 - 0.95 - 0.95 - 0.94 - 0.95 -
µ̃1 0.94 - 0.95 - 0.95 - 0.95 - 0.94 - 0.94 -
µ̃2 0.94 - 0.95 - 0.95 - 0.95 - 0.94 - 0.95 -

n Time Est Model 1
200 1000 µ̂ 0.94 0.94 0.95 0.95 0.95 0.94 0.94 0.93 0.94 0.94 0.95 0.94

µ̃1 0.94 0.94 0.95 0.95 0.95 0.94 0.93 0.93 0.94 0.94 0.95 0.94
µ̃2 0.94 0.94 0.95 0.95 0.95 0.94 0.93 0.93 0.94 0.94 0.95 0.94

3000 µ̂ 0.94 0.94 0.94 0.94 0.94 0.94 0.90 0.90 0.92 0.91 0.92 0.92
µ̃1 0.94 0.94 0.93 0.94 0.94 0.93 0.89 0.89 0.90 0.89 0.90 0.89
µ̃2 0.94 0.94 0.94 0.94 0.94 0.93 0.90 0.90 0.92 0.91 0.92 0.91

400 1000 µ̂ 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.94
µ̃1 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.94
µ̃2 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.94

3000 µ̂ 0.95 0.95 0.95 0.95 0.95 0.94 0.93 0.92 0.93 0.93 0.93 0.93
µ̃1 0.95 0.95 0.94 0.94 0.94 0.94 0.92 0.91 0.92 0.92 0.92 0.92
µ̃2 0.95 0.95 0.95 0.94 0.95 0.94 0.92 0.92 0.93 0.93 0.93 0.93

1600 1000 µ̂ 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.96 0.94
µ̃1 0.95 0.94 0.96 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.96 0.94
µ̃2 0.95 0.94 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.96 0.94

3000 µ̂ 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.94
µ̃1 0.95 0.95 0.95 0.95 0.96 0.94 0.94 0.94 0.94 0.95 0.94 0.94
µ̃2 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.94

n Time Est Model 2
200 1000 µ̂ 0.94 0.93 0.95 0.94 0.94 0.94 0.94 0.92 0.94 0.93 0.94 0.94

µ̃1 0.94 0.93 0.94 0.94 0.94 0.93 0.94 0.92 0.94 0.92 0.94 0.93
µ̃2 0.94 0.93 0.95 0.94 0.94 0.93 0.94 0.92 0.94 0.92 0.94 0.94

3000 µ̂ 0.94 0.93 0.94 0.93 0.95 0.93 0.91 0.88 0.91 0.88 0.92 0.90
µ̃1 0.94 0.93 0.94 0.93 0.95 0.92 0.90 0.85 0.88 0.85 0.88 0.86
µ̃2 0.94 0.93 0.94 0.93 0.95 0.92 0.90 0.87 0.91 0.88 0.91 0.90

400 1000 µ̂ 0.95 0.93 0.95 0.94 0.94 0.94 0.95 0.94 0.95 0.94 0.94 0.95
µ̃1 0.95 0.93 0.95 0.94 0.94 0.95 0.95 0.94 0.95 0.94 0.94 0.94
µ̃2 0.95 0.93 0.95 0.94 0.94 0.94 0.95 0.94 0.95 0.94 0.94 0.94

3000 µ̂ 0.95 0.93 0.95 0.94 0.94 0.94 0.93 0.90 0.93 0.92 0.93 0.93
µ̃1 0.95 0.93 0.95 0.94 0.94 0.94 0.92 0.89 0.92 0.90 0.92 0.90
µ̃2 0.95 0.93 0.95 0.94 0.94 0.93 0.92 0.91 0.93 0.92 0.94 0.92

1600 1000 µ̂ 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95
µ̃1 0.95 0.93 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95
µ̃2 0.95 0.93 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95

3000 µ̂ 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.93 0.95 0.94 0.94 0.94
µ̃1 0.94 0.94 0.95 0.94 0.95 0.95 0.95 0.92 0.94 0.93 0.94 0.94
µ̃2 0.94 0.94 0.95 0.95 0.95 0.93 0.95 0.93 0.95 0.95 0.94 0.93

Table 3: 95% empirical coverage probability for µ̂(t), µ̃1(t) and µ̃2(t). Simulations with pre-
diction model p-model A1, assuming either Model 0, Model 1 or Model 2 (Model 0 has no
assumptions on θ).
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kc = 1 kc = 2 kc = 4

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

n Time µ̃1(t) µ̃2(t) µ̃1(t) µ̃2(t) µ̃1(t) µ̃2(t) µ̃1(t) µ̃2(t) µ̃1(t) µ̃2(t) µ̃1(t) µ̃2(t)

400 1000 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99
2000 1.00 0.98 0.96 0.94 0.99 0.97 0.97 0.95 0.99 0.97 0.97 0.94
3000 0.99 0.93 0.95 0.89 1.00 0.94 0.96 0.90 0.99 0.94 0.95 0.90

800 1000 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99
2000 0.99 0.98 0.96 0.95 0.99 0.98 0.97 0.95 0.99 0.98 0.97 0.96
3000 0.98 0.95 0.95 0.90 0.99 0.96 0.96 0.90 0.99 0.95 0.96 0.91

Table 10: Efficiency of µ̃1(t) and µ̃2(t), computed as ratio between the empirical variances of the
augmented estimator and the standard estimator. Prediction model based only on covariates.

Time µ̂(t) se µ̂(t) + A14 se se-ratio µ̂(t) + A1 se se-ratio
500 0.77 0.05 0.77 0.05 1.00 0.77 0.05 1.00
1000 1.16 0.07 1.16 0.07 1.00 1.16 0.07 1.00
1500 1.53 0.09 1.53 0.09 1.00 1.54 0.09 1.00
2000 1.86 0.12 1.86 0.12 0.99 1.86 0.12 0.99
2500 2.11 0.14 2.10 0.14 0.99 2.11 0.14 0.99
3000 2.34 0.16 2.31 0.16 0.98 2.33 0.16 0.98
3500 2.56 0.19 2.51 0.18 0.97 2.54 0.18 0.97
4000 2.76 0.22 2.69 0.21 0.95 2.73 0.21 0.96
4500 2.87 0.23 2.79 0.22 0.94 2.84 0.22 0.96
5000 2.94 0.25 2.85 0.23 0.93 2.91 0.24 0.95

Table 11: Mean number of CRBSI up to death with standard error, augmented with
prediction model 14 (µ̂(t) + A14), and with model 1 (µ̂(t) + A1), and relative standard
error compared to standard estimator.
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Figure 1: Mean number of CRBSI up to death from the standard estimator (solid curve)
with 95 % pointwise confidence intervals (grey area), standard deviation of the observed
recurrent events (dashed line) and augmented estimators using dynamic predictions un-
der the small p-model A1 (efficient confidence intervals with vertical black solid lines)
and under the large p-model A14 (efficient confidence intervals with vertical green dotted
lines).

44


