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SUMMARY

Recurrent events are often encountered in clinical and epidemiological studies where
a terminal event is also observed. With recurrent events data it is of great interest to
estimate the marginal mean of the cumulative number of recurrent events experienced
prior to the terminal event. The standard nonparametric estimator was suggested in
Cook & Lawless (1997) and further developed in Ghosh & Lin (2000). We here investi-

gate the efficiency of this estimator that, surprisingly, has not been studied before. We



rewrite the standard estimator as an inverse probability of censoring weighted (IPCW)
estimator. From this representation we derive an efficient augmented estimator using
efficient estimation theory for right-censored data. We show that the standard estimator
is efficient in settings with no heterogeneity. In other settings with different sources
of heterogeneity, we show theoretically and by simulations that the efficiency can be
greatly improved when an efficient augmented estimator based on dynamic predictions
is employed, at no extra cost to robustness. The estimators are applied and compared
to study the mean number of catheter-related bloodstream infections in heterogeneous
patients with chronic intestinal failure who can possibly die, and the efficiency gain is

highlighted in the resulting point-wise confidence intervals.

Some key words: Censoring; Counting processes; Efficiency; Marginal mean; Recurrent
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1 Introduction

Recurrent events are observed in many clinical and epidemiological studies on individuals
who may potentially experience a terminal event such as death. Our motivating study
concerns a cohort of patients with chronic intestinal failure who are often treated for long
periods, receiving home parenteral support through a central venous catheter. During
treatments they experience several recurrent events such as catheter-related bloodstream
infections (CRBSI), some patients have a high risk of death and die due to severe failure
and comorbidities. This study is characterized by a strong heterogeneity between pa-
tients, because of high variability both in the number of CRBSI and in the risk of death,
and possible correlation between recurrent events and death. This problem motivated

us to explore the efficiency accounting for such data heterogeneity in a nonparametric



setting.

A useful analysis of recurrent event data is to compute the marginal mean number
of events of a specific type, in the presence of a terminal event, as described in Cook
& Lawless (1997), developed further in Ghosh & Lin (2000) and extended to regression
models in Ghosh & Lin (2003); Cai & Schaubel (2004). Chen & Cook (2004) considered
extensions to deal with multivariate recurrent event processes with focus on making
statements about the marginal means for several recurrent event processes jointly. In
addition Scheike et al. (2019) considered how to estimate variance and covariance in the
context of multivariate recurrent events, still in the presence of a terminal event. A
broader discussion of the analysis of recurrent events can be found in Cook et al. (2009);
Cook & Lawless (2002).

The aim of this work is to show how the marginal mean of the number of recurrent
events can be estimated efficiently, using the theory of efficient estimation for censored
data (Tsiatis, 2006; Van der Laan & Robins, 2003; Robins & Rotnitzky, 1992; Bang &
Tsiatis, 2000).

The estimator suggested in Cook & Lawless (1997) is simple to compute and its
influence function was derived in Ghosh & Lin (2000). We rewrite the estimator into
an inverse probability of censoring weighted (IPCW) estimator. Further, based on this
representation we can also derive the efficient estimator using the results about efficient
estimation for right-censored data. We show how this increment IPCW estimator with
an appropriated augmentation term is orthogonal to the nuisance tangent space spanned
by the censoring mechanism. The efficiency of the estimator has not been discussed in
detail before, and we show that the standard estimator is indeed efficient in some settings
and in addition how to improve the efficiency in the settings where this is possible.
The improved efficiency can be important, e.g., to extract as much information about

treatment effects in clinical trials with recurrent-event endpoints (EMA, 2020).



The rewritten estimator resembles that of Bang & Tsiatis (2000) (BT) that was
developed for estimation of medical cost, and the improved efficiency when there is
heterogeneity in data comes from a dynamic prediction in contrast to the simple linear
prediction used in BT. Moreover, efficiency is gained at no extra cost to robustness,
because the augmented procedures remain fully nonparametric even though dynamic
“working models” are used to compute the augmentation term.

The paper is structured as follows. In Section 2 the model is formulated, marginal
properties of the standard nonparametric estimator are described and an IPCW version
of this estimator and of its variance estimator are illustrated. Section 3 presents the
efficient estimators and their variance estimators, together with the derivation of the
augmentation term: an augmented estimator based on dynamic predictions and an al-
ternative version with non-dynamic predictions. In Section 4 simulation studies show
the performance of estimators in small samples under different possible sources of het-
erogeneity. The example on recurrent events of catheter-related bloodstream infection is

illustrated in Section 5. Finally, Section 7 reports a discussion with conclusive remarks.

2 Model formulation

Let D denote the survival time (the terminal event), and let N*(¢) count the number
of recurrent events observed over a time-period [0, ¢], where ¢ < 7. Due to the terminal
event, we only observe the recurrent event processes up to 7 A D, where a Ab = min(a, b),
such that N*(t) = N*(t A D) because subjects will only have events when still alive.
Observations may also be censored, thus only making it possible to observe the processes
up to the censoring time C. Let us define 6 = I(D < (), T = D A C, and let N(t) =
N*(t A C) be the observed number of events and define the at-risk process Y (t) =

I(T > t). Denote the counting process of the terminal event by N”(¢) and denote



its marginal cumulative hazard by AP(t). We make the standard assumption that the
censoring is independent of D and N*(t). The observations {N;(t),T;,d;} are assumed

to be independent replicates of {N(t),T,¢} for i =1,...,n and any ¢ € [0, 7].

2.1 DMarginal properties

The mean number of recurrent events up to time ¢ is defined as
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where S(t) = P(D > t) and dR(t) = E(dN*(t)|D > t) giving the recurrent event rate
among the survivors. This marginal mean is justified by the fact that no further recurrent
events can be experienced after the terminal event time D, i.e., the number of recurrent
events remains constant for any ¢ > D, and thus E{dN*(t)} = E{dN*(t A D)) =
E(dN*(t)I(D > t)}.

Let us define Y, (¢) = Y"1, Yi(t) and No(t) = > ", N;(t). A simple estimator of u(t)
(Cook & Lawless, 1997) is to consider

where S(t) is the Kaplan-Meier estimator and
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is the Nelson-Aalen estimator of R(t). The normalized estimator n'/2{ji(t) — u(t)} con-
verges weakly to a mean-zero Gaussian process with variance that can be consistently
estimated, see Ghosh & Lin (2000) for details. The estimator /i(t) resembles the estima-

tor of the cumulative incidence function and reflects the fact that the number of observed



recurrent events depends on both survival and the event rate among the survivors. If
N*(t) reduces to a counting process where the event of interest can occur at most one
time, we are in a setting where the terminal event acts as a competing risk and /i(t)
coincides with the cumulative incidence estimator for the event of interest.

Let MP(t) = fo s)dAP(s) be the martingale associated to the terminal
event and let us define M;(t) fo ) and 7(t) = P(T > t). Following
Ghosh & Lin (2000), the estimator /l(t) can be expanded and written as a sum of i.i.d.

zero mean processes @;(t) as follows

G = ) = 17D 0+ or(

where

oilt) = / 5 ivti(s) — ult) / SAME(s) + / %dMP@).

Let G,(t) be the survival distribution of C, the right-censoring time, and let G.(t) be

the Kaplan-Meier estimator for G.(t). The estimator can be expressed alternatively as

i) = [ $s)a Z/ Dy
_ Z/ (5) Z/ [(D: > s)dNi(s) (2)

S

with 7;(s) = I(C; > s)/Ge(s) and noting that we can compute I(C; > s)I(D; > s) =
I(T; > s), the at-risk indicator, further by using that Y,(s) = n S(s—)G.(s—). Thus, this
is an increment IPCW estimator, since it is the IPCW sum of increments of the number of
recurrent events, dV;(s), over time in [0, ¢], and is the limit of the partitioning estimator
of Bang & Tsiatis (2000) developed in the context of cumulative medical cost. Using

the alternative formulation in (2), in the following we develop an alternative variance

6



estimator for fi(t) and discuss the estimator’s efficiency.

We consider the martingale associated to the censoring time, M (t) = NE(t) —
fo s)dA{ (s), with counting process NE(t) = I(T; < t,6 = 0). Given the identity as
in Robins & Rotnitzky (1992), we have that

[(D; > 8)iy(s) = I(D; > 3)](8%(5)@) — I(D; > 5) {1 - /0 G(Jl(u) Z. (u)} .

Therefore, the estimator of u(t), when G.(t) is known, can be written as

Z/ 7(s)I(Ds > s)dN(s / ( /SGlu : (u)) I(D; > s)dN? (s)

—Z/ (D; > s)dN7(s (s) (3)

with H;(s,t) f I(D; > u)dN}(u), obtained by changing the order of integration. It
can be easily shown that this estimator has mean equal to u(t) and thus it is unbiased.
Note that the first term in (3) is the full-data estimator of u(t) = E{N*(t)} when
censoring is not present.

Moreover, using the martingale integral representation for the Kaplan-Meier estima-

tor
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and following along the lines of Bang & Tsiatis (2000), we get that



where F(H, s,t) = E(H;(s,t)I(D; > s))/S(s). See Appendix A for a detailed derivation.
The normalized estimator in (5) is given as a sum of i.i.d terms. The variance of the

estimator n'/2(fu(t) — u(t)) is

2 1

+E (/ [Hi(s,t) = B(H, 5, O3 (5) g 5

B ( /O 1Dy > $)AN?(s) — u(t)) dAc(s)> ,

because conditional on D and N(-), the second term in (5) is still a martingale and
therefore has conditional mean 0, given D and N(-). Note that, comparing (3) and (5),
the contribution of the Kaplan-Meier estimator for G.(s) to the influence function is the
extra term involving E(H, s,t) in the martingale integral. As a consequence of this, the
terms H;(s,t) are centered with respect to their conditional mean F(H,s,t), and thus
the variance of the normalized estimator is reduced, if compared with the variance of
the same estimator where the true G,(s) is used.

The martingale central limit theory can be applied together with the central limit
theorem to show that fi(¢) is asymptotically normal. We note that the asymptotic
arguments here are based on a different expansion compared to Ghosh & Lin (2000).
The variance of fi(t) can be estimated by the following IPCW estimator for the two

terms
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where NE(s) = >, NE(s) and

Bo(H, s,1) = 2/ ro(W)I(D; > u) F(Ni(u—) — Ni(s))dN(w),

: : ' Yi(u)
H(s,t) = — H;(s,t)I(D; > s), His,t:/ = dN;(u
<>n5(5>2<>< A0 = [ 2
with f(k) = (k+1)? — k?, see Appendix B for further details. Note that the estimators
EQ(H ,s,t) and H(s,t) are always computable from data (see remark in Appendix B).
Other IPCW estimators could also have been used. The variance estimated by (6)

provides an alternative estimator to that of Ghosh & Lin (2000).

3 The efficient estimator

In this section we discuss the efficiency of the increment IPCW estimator, and address
how efficiency can be improved by using the efficient estimation theory for missing data
(Tsiatis, 2006), building on the semiparametric theory of Robins & Rotnitzky (1992).

We show that an efficient estimator for p(t) is given by

~ A l ' Lfff(sv t) rC
0 =)+, 37 [ = S s )

where the second term is called the augmentation term, and the most efficient estimator
is obtained with L/ (s, t) = E(H;(s, )|Hist;(s), D; > s). This function is the conditional
mean of H,(s,t) given the history of the i** subject up to time s among those that have
not experienced the terminal event yet, D; > s. We note that this history shows the
number of recurrent events up to s and when they took place. The intuition underlying
equation (7) comes from the fact that the augmentation term adds the expected value of
the term omitted due to censoring, E(fct I(D > s)dN|T > C = ¢), minus its mean (from

the compensator of dN(s)). If L/ (s, ) is replaced by any other function, we would
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still have a consistent estimator. We show in Appendix C that the augmented estimator
in (7) is orthogonal to the censoring nuisance space and therefore it is efficient.

When E(H;(s,t)[Hist;(s), D; > s) does not depend on the individual ¢, the augmen-
tation term is zero because Y, dMC (s) = 0 and the estimator is efficient. Therefore,
importantly, we note that when no heterogeneity is present then the estimator fi(t) is
efficient.

The estimator fi(t) is optimal in the sense that it has the smallest asymptotic vari-
ance among the class of regular asymptotically linear (RAL) estimators, and thus its
asymptotic variance is equivalent to the semiparametric efficiency bound. However, the
conditional expectation Lff f (s,t) can not be directly computed without any further as-
sumption on the recurrent event process and the death process.

Although the efficiency bound is not reached unless we have the correct conditional
mean for the augmentation term, we can construct an estimator in (7) with improved
efficiency as compared to the simple increment IPCW estimator in (2). A first approach
in this direction is to estimate the conditional expectation by imposing a simple regression

model that, even if incorrect, will provide a locally efficient estimator.

3.1 Computation of Augmentation term

In this section we consider some specific models for Lff f (s,t), by imposing various frailty
models, for which we can compute the augmentation term. This gives some insight into
the type of augmentation that would give efficiency in specific settings. We consider a
scenario with no heterogeneity where both the terminal event and the recurrent events
are completely independent (Model 0); a second scenario where the terminal event is
independent of the recurrent events, but however, there is heterogeneity (Model 1);

finally a setting where both the terminal event and the recurrent events are correlated

(Model 2).
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In the first model (Model 0) we assume a terminal event rate A\;(t) = «aq4(t) and a
recurrent event rate A\(t) = «(t), such that D is independent of N*(t) and N*(¢) have
independent increments. In this case, E[dN}(u)|Hist;(s),D; > s] = ANu|D; > s) =
a(u)du for any u > s and for all individuals, it is then easy to see that the augmentation
term is zero and therefore the estimator fi(t) is efficient.

The second model (Model 1) imposes that A\;(t) = ay(t) and \(¢t|Z) = Za(t), where
the frailty variable Z has a Gamma distribution with E(Z) = 1 and Var(Z) = 6.
Thus the marginal recurrent rate for a survivor at s is E(dN;(u)|Hist;(s), D; > s) =
Ai(ulHist;(s), D; > s) = a(u)E[Z;|Hist;(s), D; > s] = a(u)(1 4+ 0N;(s—))/(1 4+ 0A(s)),

for any u > s, where A(s) = [

o @(v)dv. Therefore we get

B(Hi(s, t)[Hist;(s), D; > 5) = / Cexp (- / ’ ad(v)dv) %a(u)du

= a(s, 1) + B(s, 1) Ni(s—), (8)

suggesting that a linear prediction model using N(s) as covariate, is sufficient.

A further more complex model (Model 2) can postulate A\4(t|Z) = Zay(t) and
At|Z) = Za(t) with the same frailty Z as above. Then, the hazard of D and N*(t)
given the process history Hist,(s) and that a subject is still alive at s, will be

1 + QNZ(S—) ~

E(dN;q(u)|Hist;(s), D; > s) = TF00A(s) + Ad(s))ad(u) = aq(s,u) + Ba(s, u)Ni(s—)

1+ 6N;(s—) 1)t e ) Nofs
T 0(AQ) + Ag(ey) W) = Al ) + Bls ) Nifs—)

E(dN;(u)|Hist;(s), D; > s) =
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for any u > s and with A4(s) = [ aq(v)dv. Thus we obtain

B(H(s,)|Histy(s), D; > 5) = /: exp (— / Gal(s, v) +Bd(s,v)N(s—)du> [a(s,u) + Bs, w)N (5] du

— / t Aq(s,u)By(s,u)N) [@(s, w) + f(s, u)N(s—)} du,

(9)

with Ag(s,u) = exp (= [ aq(s,v)) and B(s,u) = exp (— [ Bd(s,v)>.

A possible extension of Models 0,1,2 consists of letting both rates a(t) and aqy(t),
or just one of them, depend on some baseline covariates X that could be leveraged to
further increase the statistical efficiency of fi(t). If we assume a proportional hazards
form for both rates, then the augmentation term under Model 0 is not null and depends
on X;, but not on N;(s). For example, under the independence of Model 0 some observed
baseline patient’s characteristics could be responsible for heterogeneity. Using a regres-
sion model for the recurrent event rate, e.g., A\(t|D; > s, X) = ap(t) exp (87 X), we get
E(H;(s,t)|D; > s,X;) = exp (BT X;)éo(s,t), where ao(s,t) is the baseline time-varying
mean function for X = 0. Under Models 1 and 2, results are similar to the scenarios
without covariates, with the only difference that the time-varying coefficients given in

(8) and (9) depend also on X.

3.2 Dynamic prediction based augmentation

The specific optimal augmentation term depends on what information the history con-
tains about the risk of subsequent events, and this will not be known, even though it
can be explored by traditional modelling techniques. In the previous section we have
illustrated how various simple frailty models lead to different structures for the condi-
tional mean needed in the augmentation term. Bang & Tsiatis (2000) suggested to solve

this problem by doing essentially linear regression to approximate the conditional mean
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with a simple linear model. We here explore this idea and extend this approach to dy-
namic predictions which turns out to be very important for gaining efficiency with the
increment IPCW estimator.

The idea is simply to choose a set of predictors e(s,t)T = (el(s,t),...,e’(s,t)) and
regress the H(s,t) onto these predictors. We shall therefore explore how to use the
predictions of the conditional mean, E[H (s, t)|Hist(s), D > s)], on the form (s, )7 e(s, t)
where (s, t) is a J-vector function of time-dependent regression coefficients that are then
estimated to lower the variance of the estimator. We note that Models 0 and 1 from
the previous section indeed can be written on this form, whereas Model 2 can not. Note
that here ¢ is considered as fixed. We thus needs to choose the functionals €’(s,t) that
depends on observed data Hist(s) and possibly ¢, such as for example (e!(s), e%(s)) =
(N(s—),exp(—N(s)). To simplify the notation we will not necessarily write out explicitly
that €’(s,t) may depend on both s and ¢, but often just write e’(s).

With known 7(s, ), we can then use the estimator

e =i+ [ s ”(Gi)) e gne(s), (10)

S

with e(s) = >_ Yi(s)ei(s)/Ye(s) being the at risk average of the subject-specific predictors

ei(S)T = (61'1(87t)7 '-'76;](8775))'
The normalized estimator can be expanded and written as n'/2(fiy(t) — p(t)) =

n~Y23" 3i(t) + op(1) where the influence function is

5ilt) = ( [ 10> i) - u(t>> () + (), (1)

with

1
Ge(s)

yi(t) = / (Hy(s, ) E(H, 5,1)]| oo dME(s),  2(t) = / (5,6 es(s)—Be, )]

Ge(s)
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and E(e,s) = E(e;(s)|D; > s).

The variance of n'/?(fiy(t) — p(t)) is
t 2 t (s
E </0 I(D; > s)dN; (s) — ,u(t)) +E </0 Pf(s,t)g;()df\c(s)) (12)

with Py(s,t) = [(Hi(s,t) — E(H,s,t)) — v(s,t)T(e;(s) — E(e,s))]. To minimize the
variance of the estimator, we need to find an optimal choice of (s, ?) in the second term
n (12). This optimal solution is obtained by regressing (H;(s,t) — E(H,s,t))Y;(s) on

(e;(s) —e(s))Y;(s). Thus an estimator of the optimal regression coefficient is given as

3(s.0) = (56)) " Guls) 3 Fils ) (ex(s) — () Vi),

with X(s) = 3. Yi(s)(ei(s) — &(s))®2. This expression is similar to the classical re-
gression estimator 4(s,t) = (Z7Z)'ZTY, but with H;(s,t) replaced by H;(s,t). Note

that >, E(H,s,t)(ei(s) — €(s))Yi(s) = 0. Note also, by using conditional means, that
E[H(s,t)ei(s)] = E[E(H;(s,t)ei(s)|ei(s))] = E[H;(s, t)es(s)], with Hi(s, ) = f;(l/Gc(u))](Di >
u)dN;(u) and that E[H;(s,t)e;(s)Yi(s)] = G.(s)E[H;(s,t)e;(s)]. Therefore, with the
plug-in of the optimal 4(s,t) into the expression (10), we obtain the final augmented
estimator for p(t) with improved efficiency.

Moreover, the estimated variance of the augmented estimator fis(t) is

GaR(p(t) —n2 / 35,67 S(5)3(s, t)ﬁdfv?(s»

C

where var(ji(t)) was given in (6).

Similarly, when ~(s,t) is not depending on s, as in Bang & Tsiatis (2000),
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and the estimator is

(0 = i) + 1 3470 [ e (13)

In this case, the estimated variance of the augmented estimator is given as

var(ji(t)) —n=*3(t)" [ /O E(S)Wdﬁf? (8)] ()

We observe that we thus can improve the performance of our estimator by projecting
the optimal augmentation term into a specific augmentation space. In practice, when
there is strong heterogeneity, this gain can be quite large if we use the dynamic estimator
fi2(t) based on (s, t) as we shall see, while the gain is typically quite small if the simple
linear regression estimator fi;(t) based on (t) is used.

The methodology presented in this section still holds and can be applied when het-
erogeneity is also due to the observed baseline covariates X. In this case, covariates can
be included as predictors in the augmentation term of the proposed estimators fi; (t) and
fi2(t), with the scope to minimize their variance and thus improve their efficiency. This
statement is supported by a simulation study for the simple case e;(s) = X reported in

the next section.

4 Simulations

We considered the three models for which we did the specific calculations to obtain
the efficient estimator (see Subsection 3.1). Specifically, we can rewrite these models as
Model 0: A\j(t) = aq(t) and Ay (t) = ki (t); Model 1: A\i(t) = aq(t) and A\ (t) = Zkiaq(t)
with Z being a Gamma variable with mean 1 and variance §; Model 2: A\4(t) = Zay(t)

and Ay (t) = Zkyay(t), with the same Z. Here we included a constant k; that we varied
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to obtain different levels of recurrent events. The considered levels were k1 = 0.2,1,4. In
addition the variance 6 of the random effect was assumed to be either 0.3 or 1. For Models
0,1,2, we considered different sample sizes, different levels of censoring, different levels of
recurrent events and different levels of dependence via the variance of the random effect.

We simulated data that resemble the data provided by the application in the next
section, thus letting ay(t) and «y () be piecewise linear approximations of the death rate
and the event rate among survivors that we saw in the data. This led to a survival rate
at around 24 % at 3000 days and an average mean number of events at around 2.3 at
3000 days. The censoring time was exponentially distributed with hazard A. = k./5000
with k. = 1, 2,4, the highest level of censoring thus leading to a censoring proportion of
about 81% at 3000 days.

For the three assumed models the number of expected recurrent events are shown in
Table 1, where only minor variation across the models and the size of the random effect

(0 = 0.3) are studied.

Time
ki Model | 500 1000 1500 2000 2500 3000
0.2 0 0.16 0.24 031 037 042 047
0.2 1 0.15 0.22 028 0.34 038 042
0.2 2 0.16 0.24 031 0.37 0.42 047
1 0 0.79 1.19 156 188 212 234
1 1 0.74 1.09 142 1.7 192 211
1 2 0.79 119 156 188 213 235
4 0 3.18 4.75 6.24 753 85 937
4 1 298 437 568 68 767 845
4 2 3.18 477 627 T7.55 852 9.39

Table 1: Mean number of events for different levels of k; in assumed Models 0,1,2 with
6 = 0.3 in simulations.

We investigated the performance of the two prediction augmented estimators fi;(t)
and fiz(t) based on the non-dynamic predictions with coefficient v(¢) and the dynamic

predictions with (s, t), respectively (see equations (13) and (10) in Subsection 3.2). We
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used predictive models of different sizes and based on different covariates. Thus we con-
sidered a simple predictor model using only N;(s) (p-model Al); an extended model with
Ni(s), Ni(s)? (p-model A12); an even larger model with Ny(s), N1(s)?, exp(—N;(s)) (p-
model A13); and finally the model with Ny(s), Ni(s)?, exp(—Ny(s)), Ni(s) exp(—N;(s))
(p-model A14). These models are nested and the number of used predictors increases.
These settings were studied for both the dynamic prediction model based on (s, t) and
the simple prediction model with constant effects based on 7(¢). Recall again that ¢ is
held fixed.

Simulations results are shown for one of the initial times, ¢ = 1000, and the last time
t = 3000. For prediction model p-model A1l we report the relative efficiency of fi;(t),
fi2(t), computed as ratio between the sampling variances of the augmented estimator and
the standard estimator, for the three simulation settings Model 0, Model 1, Model 2,
and for all levels of k., k1 and 6 (see Table 2). For these scenarios, Table 3 evaluates the
coverage probabilities. Tables 4, 5, 6 show the relative mean squared error (rMSE) with
respect to the standard estimator, the relative bias (rBias) obtained as the ratio between
empirical bias and true mean value, the ratio between the sample mean of estimated
standard errors and the empirical standard deviation (RSD). We computed the relative
bias to be able to compare settings with a different number of recurrent events that yield
mean values for different sizes (see Table 1). Finally, Tables 7, 8 and 9 compare results
for the different dynamic prediction models used in the augmentation.

From Tables 2, 3 and 4, we observe that under Model 0, the three estimators per-
formed equally well for all considered settings both in terms of bias, coverage probability
and efficiency, and provided nearly equal mean square errors and sampling standard
deviations, as seen by all ratios nearly equal to one. Moreover, when using one of the
alternative more complex p-models A12, A13, Al14 (see Table 7), the estimators fi;(t),

fi2(t) showed no improvements over the standard estimator, similarly to p-model Al.
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Since there is no gain when using the proposed augmented estimators, as expected in
case of complete independence of recurrent events and no heterogeneity (Model 0), we
conclude that in this case the standard estimator fi(t) is efficient and it is the preferable
choice.

For all simulation settings, Model 0, Model 1 and Model 2, the estimator of the vari-
ance is performing very well, since the ratios between estimated and empirical standard
errors (RSD) are approximately one (Tables 4, 5 and 6). We observe a slight underesti-
mation for heavy censoring and the smallest sample size n = 200, which however vanishes
as the size increases. For this last setting of heavy censoring and the smallest size, under
Model 1 and Model 2, we note in Table 3 a slightly lower empirical coverage than the
95% nominal level, but only for the estimator fi;(¢) based on non-dynamic predictions
and only at the latest time ¢t = 3000. In all other settings, the coverage probabilities of
fi1(t) and fis(t) are shown to be very good and similar to the standard estimator fi(t).

Different conclusions were obtained under Models 1 and 2 with unobserved hetero-
geneity. Under these models and when p-model A1 is used, Tables 2 shows that both the
augmented estimators perform better than fi(t), with a considerable gain in efficiency,
specially if there is strong heterogeneity in the data. In general, the efficiency is larger for
highly correlated recurrent events (# = 1), and even more if Model 2 is assumed where
correlation involves both terminal and recurrent events, and thus data are strongly het-
erogeneous. Indeed, ratios between the empirical variances of the improved estimator
and the simple estimator, are below one in most of the cases, with more reductions con-
centrated at later times (here only ¢ = 3000 is shown) where the variance is generally
higher. In some settings with small sample size (n = 200), the increased efficiency is
particularly evident, we observe an empirical variance that is reduced up to 25% for jio(t)
and to 11% for fi;(t) at the latest time. In addition, simulation results indicate that the

efficiency is improved also for large samples, as shown by the case n = 1600. We also
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note that the relative efficiency of fi;(t) and fis(t) with respect to fi(t), is improved for
heavy censoring (k. = 4) and when data present an increasing number of recurrent events
(k1 = 4). In these settings, as well as for stronger correlated data, the augmentation pro-
cedure is more useful in recovering information on missing data due to censoring and on
the conditional mean of the recurrent events process over time via the prediction model.
This job in recovering information is more successful for the augmented estimator fis(t),
where prediction models are dynamic in time s. This is particularly so when terminal
event and recurrent events are both correlated (compare, e.g., Model 1 and Model 2 in
Table 2).

Under Model 1 or Model 2, we observe from Tables 5 and 6 that the bias of the
augmented estimators is nearly equal to the bias of the standard estimator, with very
few exceptions of a negligible inflation when both the sample size is small (n = 200)
and we have heavy censoring (k. = 4) that is up to 80% at the latest time ¢ = 3000.
However, this slight increase of bias in this specific setting disappears when the sample
size increases. Moreover, simulation results show that the mean squared errors of fi;(t)
and fi2(t) are always lower or equal to that of fi(t), as we see from all ratios rMSE being
below or equal to one. Similarly to the efficiency discussed above, we note that this
MSE reduction is stronger for fio(t) with more heterogeneity, more censoring and more
recurrent events.

We shall discuss the optimal choice between the considered prediction models used for
computing the augmentation term of fi;(t) and fiz(¢). In combination with the p-model
A1 with only one predictor, these estimators show simultaneously a higher efficiency and
a lower MSE, as compared to ji(t), in all settings that we considered.

When there is heterogeneity between recurrent events (Model 1), Table 8 shows
that the optimal choice for the prediction model in the augmentation is p-model A1,

because it provided the lowest MSE and improved the efficiency as well as the larger p-
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models across all settings. The more complex p-models A12, A13, A14 did not bring any
additional improvement and in some cases yielded an inflated MSE. This is in agreement
with the theoretic considerations that showed that indeed the optimal augmentation,
E(H;(s,t)|Hist;(s), D; > s), was on p-model Al form.

We note in particular, that for the dynamic estimator, fis(t), p-model Al showed
a clearly advantage over all the alternatives in settings where the sample size is small
(about n = 200) and with heavy censoring.

From Table 9, when also the terminal event is correlated to the recurrent events
(Model 2), we note a different behaviour of the two augmented estimators. For fi(t),
p-models A12, A13, A14 were found to produce lower MSE and efficiency as compared
to p-model Al in all settings, with a preference for p-models A12 or A13 when sample
size is small. When right censoring is light (k. = 1), also for the estimator fiy(t) we
found that p-models A12, A13, A14 produced lower MSE and efficiency as compared
to p-model Al. However, for fiz(t), and with heavy censoring in combination with a
small sample (n < 400), the more complex p-models A13 and A14 that include more
predictors, produced still a higher efficiency but at the price of an inflated MSE at latest
times, due to a higher bias. This instability is caused by a lower data information in this
specific extreme setting, and it was observed to be attenuated at n = 1600 where we have
a good bias-variance trade-off. In summary, for all settings the optimal choices appear
to be p-model A12 or A13 for estimator fi;(t), in particular p-model A13 resembles the
functional form of covariates exp (N(s)) and N(s) that appears in the assumed model
for the expected number of recurrent events (see Model 2 in Subsection 3.1). The same
conclusion can be reached for the estimator fis(f). However for this estimator, when
censoring is heavy, sample size plays an important role in allowing a more complex

p-model in the augmentation procedure.
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4.1 Augmentation term with baseline covariates

To illustrate the possible efficiency gain by using only baseline covariates in the augmen-
tation term, we also simulated data where the marginal means depended on covariates.
Here, to mimic the worked example in the next section, we considered a baseline covari-
ate with 5 levels with 20 % subjects in each level. The simulated model had proportional
means of recurrent events with a proportionality factors given by k- (0.3,—0.3,0.3,—0.3)
with £ = 1,2. We still considered independent right censoring that was exponentially
distributed with hazard A\. = k./5000 and k. = 1,2,4. Then we computed the dynamic
prediction-based estimators fi;(¢) and fio(t) where the augmentation p-model uses only
baseline covariates as predictors. Simulations were performed with 10000 replications
and for different sample sizes, we computed the bias and variance of the proposed esti-
mators relative to the variance of the standard un-augmented estimator. We found no
noticeable bias and an accurate estimator of the variance in all settings and therefore
here we only report the relative variances in Table 10. Both the augmented estimators
show an improved efficiency as compared to the standard estimator, specially at later
time points (¢ = 2000, 3000) and when covariate effect is greater (k = 2). The dynamic
augmented estimator fis(f) provides a relevant higher efficiency than fi;(¢), and thus it

is the preferable choice when the p-model is based only on covariates.

5 Worked example

Patients with chronic intestinal failure receiving home parenteral support through a
central venous catheter can experience several complications during the often long-term
treatment periods, see Tribler et al. (2018); Scheike et al. (2019). We consider a cohort
of 715 consecutive patients at the University Hospital of Copenhagen, where we here

analysed the number of catheter-related bloodstream infections (CRBSI). Some of the
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patients died due to severe intestinal failure or co-morbidities, while other patients leaved
the HPS program alive for different reasons during the around 14 years of follow up. We
here studied the mean number of CBRSI’s in the first 5000 days of the follow up, where
only about 20 % of the patients survived.

All estimators are implemented in the mets-package for R and illustrated in a vignette
(Holst & Scheike, 2022). For these data, we fitted a conditional regression model for the
future events rate, with the current number of recurrent events as a predictor, and, using
robust standard errors, we found that this predictor is strongly significant. Thus here
there is clear evidence of strong heterogeneity with some subjects having many infections
(up to 40 infections). The heterogeneity structure was further described in Scheike et al.
(2019). In addition death seems to be related to the number of infections. In fact, the
number of infections resulted to be a strong time-dependent predictor for the death rate
when for example a Cox model is studied. We also note that the estimated probability
G.(5000) = 0.14 thus suggesting that the censoring adjustment do not get unstable.
Therefore, we would expect that we can improve the efficiency of the standard estimator
quite a bit.

We therefore computed the standard estimator as well as the improved dynamic-
prediction estimator using the more complex model (p-model 14) and the model with only
one predictor (p-model A1) for the augmentation. The improved estimator was computed
only at the time-points, 500, 1000, ....,5000. The resulting estimates are shown if Figure
1, together with the estimated marginal mean (solid curve) and standard deviation (SD)
of the observed recurrent events (dashed curve) over time. The SD has been computed
as in Scheike et al. (2019). The SD and thus also variance is considerably larger than
the mean and thus indicates strong overdispersion and heterogeneity between recurrent
events. The confidence intervals computed with the improved variance estimator were

around 7% narrower at 5000 days using the large prediction model p-model A14, and
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around 5% narrower using the small prediction model p-model Al. Also at the other time
points we observed a substantial narrower confidence interval under the larger p-model
Al4, as expected because of the strong correlation in these data. The improvement
in the size of these confidence intervals is due to the smaller standard errors of the
augmentation-based estimator. This is shown in Table 2 where the ratios between the
improved standard errors and the standard error of the classical estimator is lower than

1 after around 3000 days.

6 Heterogeneity and choice of prediction models

When studying recurrent events in presence of a terminal events, it is of interest in its
own right to explore presence of heterogeneity in data and the possible different sources
of this heterogeneity. This knowledge can be very important in general to provide better
scientific insight, e.g. for individual risk of disease progression and practical clinical
management. In addition, detecting presence and type of data heterogeneity is very
useful for choosing the best estimator for the mean number of recurrent events, and in
particular for selecting the best prediction model in the augmentation term of fi; and fis.
This last issue has been discussed in the simulation studies and Subsection 3.1, where we
assumed, via frailty models, the three different scenarios of no heterogeneity (Models 0),
simple heterogeneity between recurrent events (Model 1) and more complex correlation
that also involves the terminal event (Model 2).

Heterogeneity between recurrent events can be detected by fitting the frailty model
At|Z) = Za(t) for the recurrent event rate, with Var(Z) = 6. Then, a score test of
homogeneity can be performed for testing whether the variance 6 is equal to zero, see
Commenges & Andersen (1995). Based on the conclusions from this test one may choose

which of the proposed estimators to use.
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An alternative and simple approach to learn if heterogeneity is present in the recurrent
events is to fit a conditional regression model where the currently experienced number
of events is a predictor for the rate of future events, as for example \;(t|Hist;(t—)) =
ap(t) exp (BN;(t—)), see further on such approaches in Cook & Lawless (2007).

More complex heterogeneity where both the terminal event and recurrent events are
correlated, can be detected by several procedures. A possible approach is to consider
a joint frailty model for the conditional rates of recurrent events and terminal event,
with common frailty Z such that E(Z) = 1 and Var(Z) = 6, as given in Subsection
3.1. A possible extension is to consider the hazard functions given as, respectively,
At|Z) = Za(t) and A\y(t|Z) = Z"aq(t), see for example Liu et al. (2004). A score test or
a likelihood ratio test based on the above model with null hypothesis Hy : 7 = 0 against
Hy :n # 0, allows us to verify whether the terminal event is independent of the recurrent
events, and thus heterogeneity concerns only the latter. A correlation score test that
does not require the estimation of the joint model has been aslo proposed by Balan et al.
(2016). Therefore, if Hy is rejected, the assumption of a joint model is fulfilled and 7 may
suggest an equal or different effect of the frailty on the two rates. An alternative approach
is to explore the dependence between terminal and recurrent events via a Cox regression
model for the terminal event rate, as for example \;4(t|Hist;(t)) = aoq(t) exp (BN;(t—)),
with an internal time-dependent covariate that describes the recurrent event history.
The recurrent event process can also be studied as a covariate with different functional

forms to explore which p-model could be more appropriate in the augmented estimators.

7 Discussion

We have shown how to estimate the marginal mean for recurrent events efficiently in

the presence of right censoring. Our work demonstrated that the standard estimator
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was efficient when no heterogeneity is present, and that the standard estimator can be
improved considerably when strong heterogeneity is present in data.

To obtain the efficient estimator, assumptions about the dependence among recurrent
events and the dependence between D and N*(t) were needed. To avoid making these
assumptions explicit, we proposed a prediction-based estimator that simply predicts the
augmentation term by choosing specific prediction models, and still gave considerable im-
provements to the standard estimator. Moreover, we presented a version of this efficient
augmented estimator where dynamic prediction models with time-varying coefficients
are employed in the augmentation term. We found theoretically and via simulations
that the efficiency of the estimator can be improved considerable by dynamic prediction
when data are heterogeneous, as is often the case. Thus dynamic prediction might play
an important role also in general augmented IPCW estimators in other context than the
one discussed in the current paper.

Many recent scientific questions, specially in the biopharmacological context and
based on randomized clinical trials where baseline confounding is not a concern, focus
on estimands for recurrent events in presence of terminal event, and are clearly stated
for a period up to a given time point of interest t*. See, e.g., EMA (2020) and Fritsch
et al. (2021), where the need for statistical efficiency is also discussed. In regard of
this, it is then of great importance to apply efficient nonparametric estimators for the
marginal mean of recurrent events up to the fixed t*, together with point-wise confi-
dence intervals, as shown in our worked example. In other applications, however, it
is desirable to have simultaneous confidence bands, which here could also be obtained
for the standard estimators and the proposed augmented ones. These uniform bands
rely on the fact that the normalized estimators written as in (5) and (11), are a sum
of i.i.d. terms and converge to a zero-mean Gaussian process. Therefore, the idea is to

approximate the distribution of the normalized estimators with a zero-mean Gaussian
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process by a resampling technique. To do so, in the above mentioned equations, the un-
observable martingale increments dMiC(s) can be replaced with G,-dMi(s), where G, are
independent standard normal variables, and the other unknown quantities are replaced
by the respective sample estimates. The resulting process, denoted by W(t), can then
be used to randomly generate a large number of realizations wy(t), for k =1,..., K, by
repeatedly simulating the normal samples (Gy,...,G;,...,G,) while keeping fixed the
observed data {N;(t),T;,0;}.

When the focus is about studying covariate effects on the marginal mean of recurrent
events, in presence of a terminal event, the proposed augmentation methods could also
be extended to regression models based on IPCW estimating equations. Ghosh & Lin
(2002) presented a semiparametric regression model with multiplicative covariate effects
where it is feasible to extend the respective IPCW estimating equation to an augmented
form. Moreover, one may also consider a fixed time regression model that simplify the
functional form of the augmentation term. However, one particular issue here is that
even though an augmented regression estimator is more efficient, it does not correspond
to the most efficient estimator. Therefore, it is technically complicated and remains an
open question how to build and choose the regression setting that leads to a substantially
increased efficiency.

Observed baseline covariates may also be responsible of data heterogeneity. These
covariates can be used as predictors in the dynamic augmentation of the proposed es-
timators, following the same approach of linear regression on N(t). The methodology
presented for iy (t), fia(t) still holds and their efficiency is greatly improved also for this
setting, as confirmed by the results reported from simulations.

The estimators considered in this paper have all been implemented in the R-package

mets (Holst & Scheike, 2022) and are demonstrated in a vignette in the package.
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Appendix

Appendix A: Derivation of the influence function for the incre-
ment IPCW estimator

First we observe that, changing the order of integration and using the identity in (4),

Z/ G GCS Gl SC;C( Z/ . Z Z/ e dMC( )AN;(s)

where

)

E(H, s,t) = %SS_)) D Hi(s,t) =

recalling that Y, (s) = nG,(s—)S(s—). Therefore, using the identity in (3), the estimator
can be expanded as

20 ) =02 Y [ 2N s) - )

i

where E(H, s,t) = E(H;(s,t)I(D; > 5))/S(s) and H(s,t) = [ I(D; > u)dN; (u). Note
also that the limit of E(H, s,t) is E(H, s,t).
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Appendix B: Increment IPCW estimator for the variance of [i(t)

The first term of the variance of n'/?(ji(t)—pu(t)) can be written as E[ [, I(D > s)dN*(s)—
pu(t))? = E[H(0,1)?] — u(t)?, where

H(0,t)? = [/tI(D > 5)dN*(s Z/ (D > s)f(k)I(N*(s—) = k)dN*(s)
with f(k) = (k4 1)? — k? and its mean is given by
_ Z/ S(s) F(k) P(N*(s—) = K|D > $)E[AN*(s)|N*(s—) = k. D > 3.
k=070

See Scheike et al. (2019). An estimator for this quantity is

E,(H,0,t) = Z/o S(s) <Z f(R)I(Ni(s—) = )
it

dN}(s)
Z/ DT 5
Z/n 1(D, > ) f(Nils—))aN; (s)

and we clearly obtain an IPCW estimator for the first term of the variance.

The second term of the variance reduces to

Yi(s)
G2(s)

dAf(s)> :/0 (E(H;(s,t)*) — S(s)E(H, s,t)?) Gl dA%(s).

E (/Ot[Hl-(s,t) — B(H,s,t))? Gols)™

We can write that

= ) / I(D > u)f(k—N*(s))I(N*(u—) = k)dN*(u)

t
H(s,t)*> = [/ I(D > u)dN*(u
s k=Nx*(s)
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and, similarly to above, the mean E(H(s,t)?) can be estimated by

B n) = 3 [ S0 £(040) = o)) N

_ ! Z / I(Dy > ) f(Ni(u=) — Ni(s))dN(w)

Finally, it is easily found that a consistent estimator of E(H,s,t) is H(s,t) and dA®(s)

is estimated by the Nelson-Aalen formula dNS (s)/Y,(s), then we get

l ! EZ(Svt) — H(s #)? 1 Clg
= ( e H(i))éz(s)dN.()-

C

Remark: Note that the estimators EQ(H ,s,t) and H(s,t) are computable for all subjects,
even if D is not observed. Indeed, r;(u)I(D; > u) = Y;(u) and the at-risk process can
be evaluated at any time; in H(s t), we have that H;(s,t)I(D; > s) = f:](C’i >

w)l(D; > max(s,u)dN;(u f Yi(u u)/G.(u), which can be also evaluated

for all subjects.

Appendix C: Efficient version of nonparametric IPCW increment

estimator.

We denote the mean-zero influence function of the full data estimator for p(¢) and its

increment IPCW version, respectively, as

o (1) = /0 1D > $)AN*(u) — u(t),  alPW (1) = /0 F(s)I(D > s)dN(s) — u(t).

It follows that, when the model for H(s,t) is known, the observed influence function
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of the augmented estimator for pu(t) given in (7), is

P Le(s,t)
0 GC(S)

af(t) = o'V (t) + Ly = oV (1) + dMC (u),

where in the augmentation term Lo, the optimal choice is
L (s,t) = E(H (s,t)|Hist;(s), D > s)

with H(s,t) = [1 (D > u)dN(u).

Then it follows that the non-parametric estimator in (7) is efficient (Tsiatis, 2006).
Proof

Define an Hilbert space H of mean-zero random vectors with finite variance, with
inner product < hy, hy >= E(hThy). Consider the nuisance tangent space A C H.

To obtain an efficient version of the IPCW estimator for u(t), we need to find the
augmentation term L,. By using the projection theorem, a unique function L, belonging
to the nuisance tangent space A C H, is given by the projection onto A, i.e., Ly =
~I(afPCW (t)|A). This function is closest to a!FCW () and such that a/FCW (¢) + L, is

IPCW(#) onto the orthogonal complement space AL, i.e.,

an orthogonal projection of «
< alPW(t) + Ly, L >= 0 for VL € A.

Therefore, we need to show that, with the optimal choice L/ (s,t) = E(H (s, t)|Hist;(s), D >
= oPOW (1)

s), the influence function o (t) + Ly is orthogonal to the nuisance censoring

space given by A = { [ a.(t)dM (t)|Va.(t)}. This can be proved following the arguments
as in Tsiatis (2006).

We thus need to show that



for all a.(t). Using that 1 — 7(t) = fot 1/G.(s)dM®(s) and the result in we have the

result

/0 F(s)I(D > s)dN(s) = /0 [(D > s)dN*(s) — /0 Z(j;?dMC(s)

already given in equation (3).

Therefore,

FL (s, 1)

/0 7(s)I(D > s)dN(s) — u(t) —I—/O T(S)dMC(U) =

o (1) — /0 (H(s,t) — E(H(th(l])}listi(s),D > S))d]\/[c(s)

See also Appendix A. Due to the linearity of the space H , it is enough to verify that
each term on the right-hand side is orthogonal to [ a.(u)dM%(u) for all a.(t). Using

conditional independence of C' and D, N*, we have that

E {aF(t) < /O t ac(u)dMC(u)ﬂ _E {aF(t)E { /0 t ac(u)dMC(u)|D,N*(~)H

where the internal conditional expectation is zero because of the mean-zero censoring
martingale increments, and thus orthogonality is achieved. Similarly, the second term is
also orthogonal to [ a.(u)dM®(u), again because of the conditional independence and

because E[(H(s,t) — E(H(s,t)|Hist;(s), D > s))I(D > s)] = 0, by construction.
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ke=1 ke =4
k1=02 k=1 ki=4 | k1=02 k=1 ki =4
o3 1 Jo3 1 03 1 J03 1 J0o3 1 [03 1

n  Time Est Model 0
200 1000 iy 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
2 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
3000 [y 1.00 - 1.00 - 1.00 - 0.98 - 1.01 - 1.02 -
12 0.99 - 1.00 - 1.00 - 0.92 - 0.98 - 1.02 -
400 1000  jiq 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
fio 1.00 - 1.00 - 1.00 - 1.01 - 1.00 - 0.99 -
3000 fiq 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.01 -
2 0.99 - 1.00 - 1.00 - 0.99 - 0.99 - 1.00 -
1600 1000 iy 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
2 1.01 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
3000 [y 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
fio 1.01 - 1.00 - 1.00 - 1.01 - 1.01 - 1.00 -

n  Time Est Model 1

200 1000 iy 1.00 1.00 {1.00 1.00 (1.00 0.99 |1.00 1.00 |1.00 0.99 [0.99 0.98
12 1.00 1.00 [1.00 0.99 [1.00 0.98 |1.00 1.00 |0.99 0.98 [0.98 0.96

3000 [y 1.00 0.99 [0.99 0.99 [0.99 0.98 [0.99 0.99 |0.97 0.95 [0.96 0.89

2 1.00 0.99 [0.98 0.98 [0.98 0.94 |0.95 0.92 |0.92 0.86 [0.90 0.78

400 1000  jiq 1.00 1.00 [1.00 0.99 [1.00 0.99 |1.00 1.00 |1.00 0.99 [0.99 0.98
2 1.01 1.00 {1.00 0.99 [1.00 0.99 |1.01 0.99 |0.99 0.98 [0.98 0.96

3000 fiq 1.00 1.00 [1.00 0.99 [0.99 0.98 [0.99 0.99 |0.99 0.96 [0.96 0.92

12 1.00 0.99 [0.99 0.97 [0.98 0.96 |0.96 0.94 |0.96 0.89 [0.91 0.81

1600 1000 iy 1.00 1.00 {1.00 1.00 (1.00 1.00 |1.00 1.00 |1.00 0.99 [0.99 0.98
2 0.99 1.01 |1.00 1.00 {1.00 0.99 [1.00 0.97 |1.00 0.99 |0.98 0.95

3000 [y 1.00 1.00 [1.00 0.99 [0.99 0.98 |1.00 1.00 [0.98 0.95 [0.96 0.90

12 0.99 1.00 |0.99 0.98 [0.99 0.97 [0.98 0.97 [0.97 0.91 |0.93 0.80

n  Time Est Model 2
200 1000 1y 1.00 1.00 [1.00 0.99 [0.99 1.00 |1.00 1.00 |1.00 0.98 [0.98 0.96
2 1.00 1.00 [0.99 0.99 [0.99 0.98 |1.01 1.00 {0.99 0.94 [0.97 0.91

3000 [y 1.00 1.00 [1.00 0.98 [0.99 1.06 |0.98 0.95 |0.97 0.90 [0.96 0.95

2 0.99 0.98 |0.98 0.95 [0.97 0.96 [0.92 0.83 |0.89 0.74 |0.86 0.71

400 1000  jiq 1.00 1.00 {1.00 1.00 |1.00 0.99 |1.00 1.00 [1.00 0.98 [0.99 0.97
2 0.99 1.01 |1.00 1.00 {1.00 0.98 [1.00 1.00 [0.99 0.96 |0.98 0.93

3000 [y 1.00 0.99 [1.00 0.98 [0.99 1.08 |0.99 0.98 |0.97 0.94 [0.94 0.98

12 1.00 0.99 [0.99 0.96 [0.97 0.97 |0.96 0.89 |0.92 0.82 [0.86 0.78

1600 1000 jiq 1.00 1.00 {1.00 1.00 (1.00 1.00 |1.00 1.00 |[1.00 0.98 [0.99 0.97
2 1.00 0.99 [1.00 0.99 [0.99 0.98 |1.02 0.98 |0.99 0.97 [0.97 0.93

3000 f[iq 1.00 0.99 [0.99 0.97 [0.98 1.08 |1.00 0.98 |0.96 0.91 [0.94 0.99

2 1.01 0.98 [0.99 0.95 [0.97 0.99 |0.99 0.97 |0.93 0.80 [0.86 0.79

Table 2: Efficiency for fi1(t) and fi2(¢), computed as ratio between the empirical variances
of the augmented estimator and the standard estimator. Simulations with prediction model
p-model A1, assuming either Model 0, Model 1 or Model 2 (Model 0 has no assumptions on 6).
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k1 =0.2 k1= k1 =4 k1 =0.2 k1 = ki1 =4
o3 1 Jo3 1 Jo3 1 03 1 Jo3 1 Jo3 1
n  Time Est Model 0
200 1000 4  [0.94 - 0.95 - 0.95 - 0.94 - 0.95 - 0.94 -
A1 094 - 0.95 - 0.95 - 0.94 - 0.94 - 0.94 -
fiz 094 - 0.95 - 0.95 - 0.94 - 0.94 - 0.94 -
3000 4 094 - 0.95 - 0.94 - 091 - 093 - 0.94 -
A1 094 - 0.95 - 0.94 - 0.90 - 0.90 - 0.90 -
fiz 094 - 0.95 - 0.94 - 0.91 - 0.92 - 0.93 -
400 1000 4 [0.95 - 0.94 - 0.95 - 0.95 - 0.94 - 0.95 -
A1 095 - 0.94 - 0.95 - 0.95 - 0.94 - 0.95 -
fiz 095 - 0.94 - 0.95 - 0.95 - 0.94 - 0.95 -
3000 4 [0.94 - 0.94 - 0.94 - 0.93 - 0.94 - 0.95 -
A1 094 - 0.94 - 0.94 - 0.92 - 0.92 - 0.93 -
fiz 094 - 0.94 - 0.94 - 0.93 - 0.93 - 0.94 -
1600 1000 4  |0.95 - 0.95 - 0.95 - 0.95 - 0.95 - 0.95 -
A1 |0.95 - 0.95 - 0.95 - 0.95 - 0.95 - 0.95 -
fiz 095 - 0.95 - 0.95 - 0.95 - 0.95 - 0.95 -
3000 4 094 - 0.95 - 0.95 - 0.95 - 0.94 - 0.95 -
A1 094 - 0.95 - 0.95 - 0.95 - 0.94 - 0.94 -
fiz 094 - 0.95 - 0.95 - 0.95 - 0.94 - 0.95 -

n  Time Est Model 1
200 1000 4 0.94 0.94 [0.95 0.95 [0.95 0.94 [0.94 0.93 |0.94 0.94 |0.95 0.94
1 0.94 0.94 (095 0.95 [0.95 0.94 [0.93 0.93 |0.94 0.94 |0.95 0.94

L2 0.94 0.94 [0.95 0.95 [0.95 0.94 [0.93 0.93 |0.94 0.94 |0.95 0.94

3000 i 0.94 0.94 [0.94 0.94 [0.94 0.94 [0.90 0.90 |0.92 0.91 [0.92 0.92

o 0.94 0.94 (093 0.94 [0.94 0.93 [0.89 0.89 |0.90 0.89 |0.90 0.89

L2 0.94 0.94 (094 0.94 (094 0.93 [0.90 0.90 |0.92 0.91 |0.92 0.91

400 1000 4 0.95 0.94 [0.95 0.94 [0.95 0.95 [0.95 0.94 |0.94 0.94 |0.95 0.94
1 0.95 0.94 (095 0.94 [0.95 0.95 [0.95 0.94 |0.94 0.94 |0.95 0.94

L2 0.95 0.94 [0.95 0.94 [0.95 0.95 [0.95 0.94 |0.94 0.94 |0.95 0.94

3000 0.95 0.95 [0.95 0.95 [0.95 0.94 [0.93 0.92 |0.93 0.93 |0.93 0.93

a1 0.95 0.95 [0.94 0.94 (094 0.94 [0.92 0.91 |0.92 0.92 |0.92 0.92

L2 0.95 0.95 [0.95 0.94 [0.95 0.94 [0.92 0.92 |0.93 0.93 |0.93 0.93

1600 1000 4 0.94 0.94 [0.95 0.95 [0.95 0.94 [0.95 0.94 |0.95 0.95 |0.96 0.94
1 0.95 0.94 [0.96 0.95 [0.95 0.94 [0.95 0.94 |0.95 0.95 |0.96 0.94

L2 0.95 0.94 [0.95 0.95 [0.95 0.94 [0.95 0.94 |0.95 0.95 |0.96 0.94

3000 4 0.95 0.95 [0.95 0.95 [0.95 0.94 [0.94 0.94 |0.95 0.95 |0.95 0.94

f 0.95 0.95 [0.95 0.95 [0.96 0.94 [0.94 0.94 |0.94 0.95 |0.94 0.94

L2 0.95 0.95 [0.95 0.95 [0.95 0.94 [0.94 0.94 |0.95 0.95 |0.95 0.94

n  Time Est Model 2
200 1000 0.94 0.93 [0.95 0.94 [0.94 0.94 [0.94 0.92 |0.94 0.93 |0.94 0.94
a1 0.94 0.93 (094 0.94 (094 0.93 [0.94 0.92 |0.94 0.92 |0.94 0.93

e 0.94 0.93 [0.95 0.94 [0.94 0.93 [0.94 0.92 |0.94 0.92 |0.94 0.94

3000 0.94 0.93 [0.94 0.93 [0.95 0.93 [0.91 0.88 |0.91 0.88 |0.92 0.90

i1 0.94 0.93 [0.94 0.93 |0.95 0.92 [0.90 0.85 |0.88 0.85 |0.88 0.86

e 0.94 0.93 [0.94 0.93 [0.95 0.92 [0.90 0.87 |0.91 0.88 |0.91 0.90

400 1000 4 0.95 0.93 [0.95 0.94 [0.94 0.94 [0.95 0.94 |0.95 0.94 |0.94 0.95
f1 0.95 0.93 [0.95 0.94 (094 0.95 [0.95 0.94 |0.95 0.94 |0.94 0.94

e 0.95 0.93 [0.95 0.94 [0.94 0.94 [0.95 0.94 |0.95 0.94 |0.94 0.94

3000 [ 0.95 0.93 [0.95 0.94 [0.94 0.94 [0.93 0.90 |0.93 0.92 |0.93 0.93

[ 0.95 0.93 [0.95 0.94 [0.94 0.94 [0.92 0.89 |0.92 0.90 |0.92 0.90

L2 0.95 0.93 [0.95 0.94 [0.94 0.93 [0.92 0.91 |0.93 0.92 |0.94 0.92

1600 1000 4 0.95 0.94 [0.95 0.95 [0.95 0.95 [0.95 0.94 |0.95 0.95 |0.95 0.95
[ 0.95 0.93 [0.95 0.95 [0.95 0.95 [0.95 0.94 |0.95 0.94 |0.95 0.95

L2 0.95 0.93 [0.95 0.95 [0.95 0.95 [0.95 0.94 |0.95 0.94 |0.95 0.95

3000 4 0.95 0.94 [0.95 0.95 [0.95 0.95 [0.95 0.93 |0.95 0.94 |0.94 0.94

fi1 0.94 0.94 |0.95 0.94 (095 0.95 [0.95 0.92 |0.94 0.93 |0.94 0.94

L2 0.94 0.94 (095 0.95 [0.95 0.93 [0.95 0.93 |0.95 0.95 |0.94 0.93

Table 3: 95% empirical coverage probability for fi(t), f11(t) and fia(t). Simulations with pre-
diction model p-model Al, assuming either Model 0, Model 1 or Model 2 (Model 0 has no
assumptions on ).

36



(0 ToPOIN) @ouepuadopur o3o[duiod Tepun ‘1y [opouw-d [opowt

uorjorpald Yym suoryernualg “((SY) uolyeraop prepuels Surdures o) pur SIOLID PIRPURIS POJRUII)SO JO UeoW o[dUIRS O} UdM)I( OIjRI (URIU

OILI} O} JO OZIS Y} 03 300dsoT YA (SBIFI) SRIQ SAIJR[OI I0JRUIIISO PIRPUR)S 93 03 300dsor ym (HSNL) 10110 porenbs ueowr ARy :f O[(R],

660 00°0—
66°0 000
660 000

00°T
00°T
00°T

00'T 000 00T
00'T 000 00T
00°'T 000 00T

L6'0 T00— €01
460 0000 00T
860 000 00T

660 0000 660
660 0000 00T
660 000 00T

160 €0°0— TIT'T
€6'0 T00— €01
G660 000 00T

260 000— TOT
260 000— 00T
86'0 00°0— 00T

i
o
7

860 000—
660 000
660 000

10°T
00T
00T

00°T 000 00T
660 0000 00T
660 000 00T

660 TO0— 00T
660 0000 00T
00'T 000 00T

10T 000 00T
10T 000 00°T
T0'T 000 00T

€6'0 €00— VO'T
€60 T00— 10T
G660 000 00T

660 000— 00T
660 0000 00T
660 000 00T

7
trf
n

660 000
660 T00
660 100

00°T
00°T
00°T

10°T 000 00T
10T 000 00T
T0'T 000 00T

G660 00°0— 860
G660 TO0O 00T
960 TO0O 00T

860 0000 10T
660 0000 00T
660 000 00T

¥6'0 €0°0— 760
¢6'0 000— 860
€6'0 0000 00T

660 000— 00T
00°T 000 00T
00°'T 000 00T

o
uf
7

¢0

00°'T 000
00°T 000
00°'T 000

00°T
00°T
00°T

10°T 000 00T
00°'T 000 00T
00°'T 000 00T

860 000 00T
86°0 000 00T
860 000 00T

660 0000 00T
660 0000 00T
660 000 00T

860 0000 00T
86°0 0000 00T
860 000 00T

660 0000 00T
660 0000 00T
660 000 00T

o
uf
7

00'T 000
00'T 000
00'T 000

00T
00T
00T

10°T 000 00'T
10°T 000  00°T
T10°T 000 00°T

00'T 000 00T
00'T 000 00T
00'T 000 00T

10T 000 00T
10T 000 00°T
T0'T 000 00T

660 00°0— 00T
660 0000 00T
660 000 00T

00'T 000— 00T
00'T 00°0— 00T
00'T 00°0— 00T

Z
R
o

66'0 100
00°'T TOO
00T TOO

10°T
00°T
00°T

660 0000 10T
00°T 000 00T
00°'T 000 00T

10°T 100 660
10T 100 00T
10T 100 00T

00'T 000 00T
00°'T 000 00T
00T 000 00T

660 100 660
660 100 00T
660 TO0 00T

660 0000 00T
660 0000 00T
660 000 00T

o
f
17

¢0

—

sy serdr HSINT

000€ =1

Sy sergl HSINI
000T = ¢

dsy serdt HSINT
000€ = ?#

dsy serdd HSINT
000T = ¢

dsy serds JSINT
000€ =1

dSHy sergl HSINI
000T =17

1SH

Ty

0091 = u

0oy =u

00c =u

37



(T TOPOJN) SIUOAD JUOLINDDI POJR[OLIOD Iopun ‘1Y [opouwr-d [opour

uorjorpald Yum suoryernualg ‘((SY) Uolyeradp prepueis Surdures o) pur SIOLID PIRPURIS POJRUIIISO JO UeoW o[dUIRS O} UdM)O( ORI ‘URIU

OILI} O} JO OZIS Y} 03 300dsoT YA (SBIFT) SBIQ SAIR[OI LIOJRWIIISO PIRPUR)S 9U) 03 300dsor ym (HSNL) 10110 porenbs ueowr oAlRRY G d[(R],

00T T00— T80[ 660 000 S60] 660 00— 80 20T 000— 96°0] 960 V00— L80[ 860 100— 960 &7
66'0 000~ T6°0| 660 000 860 860 000~ 60| 10T 000 86°0| 960 100~ 680| 860 000~ 860 7
86°000°0— 00°T| 660 000 00T| 860 00°0— 00°T| Z0'T 000 00| 60 000— 00| 860 000= 00| # T
660 000~ S6°0| T0°T 000 86°0| 860 00— 96°0| 00T 000 860 €60 €00~ L60| 660 000~ 860 1
66°0 000— 96°0| TO'T 000 6670 860 000— 96°0| 00T 000 660 €60 100~ 960 660 000 660
66)0_00°0— 00°T| T0'T 000 00'L| 860 000 00°T| 00T 000 00T| €60 000 00| 660 000 00T| ¥ €0 ¥
66'0 T0'0— 60| 00T 000— 660 00T 20'0— 60| 00T 000 860 Y60 €0°0— 160 960 000— 660
66'0 000 G6°0| 00T 00°0— 66°0| 660 000— 96°0| 660 000 660 €60 000~ $6°0| 960 000 660 7
66'0 000 00°T| 00°T 00°0— 00L| 660 000 00°T| 660 000 00| €60 000 00T| 960 000 00T| 7 T
00T 000— 46°0[ 00T 000 00°T| 960 20'0— 66°0| 00T 000 660 960 €0°0— 860 00T 000— 660
00T 000 860/ TO'T 000 00T 960 00°0— 66°0| 00T 000 00| ¥6°0 100~ 86°0| 00T 000 00T 7
00T 000 00°T| TO'T 000 00| 260 000 00°T| 00T 000 00| 60 000= 00| 00T 000 00T| 7 €0 1
66'0 100~ 66°0[ 00T T0°0— 86°0| 860 20'0— 960 00T 00— 66'0| ¥60 ¥0'0O— 960 860 00— 00| &7
86°0 T00— 00°T| 660 T0'0— 00T| L650 T0'0— 660/ 00T T0°0— 00'T| €60 T10°0— 660 860 100~ 00T|
66'010°0— 00°T| 660 T0'0— 00L| 260 00°0— 00'T| 00T T0°0— 00'T| ¥60 10°0= 00| 66°0 100— 00| ¥ T
00T 000— 860| 660 T00— TOT| 260 T00— 60| 860 000 T0°T| 160 €0°0— L60| 660 000— 00°T| @
66°0 00'0— 00°T| 00°T 00°0— 00T 960 00°0— 660/ 660 000 00| 160 T0°0— 660 660 000 00T| 7
66°0 000~ 00°T| 00°T 00°0— 00°L| 60 000 00°T| 660 000 00| 260 000 00| 660 000 001| 7 €0 z0| ¥
660 000— 60| 660 000 660 860 000— 96°0| 00T 000 66°0[ 00T T100— 960 860 000— 860 &
00T 000— 860/ 660 000 00T| L650 00°0— 86°0| 00T 000 00| 00T 000~ 860 860 000~ 660 7
00T 00°0— 00°T| 660 000 00°L| 860 00°0— 00°L| 00T 000 00°L| 00T 000= 00T| 60 000— 00| ¥ 1T
20T 000— 66°0] TO'T 000 00T| 660 000— 86°0| 00T 000 00| 660 000— 660 660 000— 00| @7
20T 000 00T| TOT 000 00T 660 00°0 66°0| 00T 000 00°T| 660 000~ 660 660 000 00| 7
201000 00T| TOT 000 00T} 660 00°0 00T} 00°T 000 00°T| 660 000— 00| 660 000 00T| 7 €0 ¥
660 000 86°0[ 00T 000 00T| 00T 000— 60| 10T 000 660 660 10°0— 860 00T 000— 660 27
660 000 660/ 00T 000 00T| 00T 000 660 10T 000 00| 660 000~ 660 00T 000~ 00T| 7
66'0 000 00°T| 00T 00°0  00L| 00°T 000 00°T| T0'T 000 00| 660 000= 00T| 00T 000= 00| # T
10T 000~ 66'0] 00T 000 00| 00T 000~ 660] 660 000 00°T| 00T 000— 66'0] 00T 000 00T| &
10T 000~ 00°T| TO'T 000 00T| 00T 000— 00T| 660 00°0 00T| 00T 000— 660| 00T 000 00T|
10T 000 00| T0'T 000 00'T| 00T 00°0= 00T| 660 00°0 00T} 00°L 000 00'L| 00T 000 00T| 7 €0 T
86'0 000— 00°T| 860 T0'0— TOT| 660 T0°0— 660 660 10°0— 00°T| 660 T10°0— 660 860 100~ 00| @
66°0 00°0— 00°T| 660 TO'0— 00T 860 000— 00°T| 660 T10°0— 00°T| 660 T10°0— 00| 660 100~ 00T| 7
66'000°0— 00°T| 660 T0'0— 00'L| 860 000— 00T 660 T10°0— 00'T| 66°0 10°0— 00'T| 860 T100— 00| o T
10T 000~ 660 T0T 000— 66'0] 660 000 00| 00T 000 TOT| 860 T0°0— T0T| 860 00— 00| &
00T 000~ 00°T| 00°T 00°0— 00T 660 000 00°T| T0T 000 00| 660 000~ 00| 660 000~ 00°T| 7
00T 00°0— 00°T| 00°T_00°0— 00T| 660 000 00°T| T0'T 000 00T| 66°0 000— 00T| 660 000— 00T| 7 €0 z0| T
asy seidgd S| ASY seidd HSINA| ASY serdd SN[ (SH serdd ASING| (SH serds WSINE| ASY seidd WS s 9 W[ 7y

000§ =7 0001 =7 000§ = 7 0001 =1 000€ = 7 0001 = 7

0091 = u 007 = u 00 = u

38



"(Z TOPOIN) POYe[OLI0D [0 SIUOAD JUSLINIDI PUR JUOAD [RUINLIYY) Sultunsse ‘Ty [ppow-d [ppowt

uorjorpald Yum suoryernualg ‘((SY) Uolyeradp prepueis Surdures o) pur SIOLID PIRPURIS POJRUIIISO JO UeoW o[dUIRS O} UdM)O( ORI ‘URIU

OILI} O} JO OZIS Y} 03 300dsoT YA (SBIFT) SRIQ SAIR[OI LIOJRWIIISO PIRPUR)S 9U) 03 300dsor ym (HSNL) 10110 parenbs ueowr oAlRRY :Q J[(R],

L6°0 00°0— 6.0 860 000 €60| ¥6'0 €0°0— S80| 660 000— ¥6'0| ¥60 900— ¥80| 10T T100— T160|
760 100 00 T| 80 000 L60| ¥6'0 000 860| 660 000— L6°0| ¢60 000— S60| TOT 000 960
660 000— 00T 860 000 00T| 460 000— 0O0T| 660 000 00T| ¥6°0 000— 00T| 00T 000 00T 7 T
00T T00— 2.80| I0T 000— 86°0| 86°0 ©0'0— 060 TO'T 000— 860 €60 ¥00— 96°0| 860 T100— 860|
00T 000— ¥6'0| I0'T 000— 660 660 000— ¥60| T0'T 000— 660 ¢60 T00— L60| 660 000— 860 '
00T 000 00T| 00T 000— 00T| 660 000 00T| 20T 000— 00T| ¥6°'0 00°0— 0O0'T| 860 000— 00T 7 €0 ¥
00'T TO0— €80| T0T 000— L60| ¥6'0 €0°0— 88°0| 860 T100— L6°0| ¢60 900— ¥80| 660 T100— S60| ¢
00T 000— 160 T0O'T 000— 660 $60 000— ¥6°0| 80 000— 860/ 160 T00— 06°0| 860 000— 860 7
660 000 00T| TO'T 000— 00'T| 60 000— 00T| 80 000— 00'T| 0660 000 00T| 460 000— 00T 4 1
00T T00— 960 T0O'T 000— 660 960 G0'0— S6°0| 660 000— 660 €60 ¥0'0— 96°0| 860 000— 00T| 2
00T 000— L6°0| 00T 000 00'T| 960 000— L60| 660 000 00T| 60 T00— L60| 660 000 00T| 7
660 000— 00T 00T 000 00'T| 960 000 0O0T| 660 000 00'T| ¢60 000— 0O0T| 660 000 00T 7 €0 1
860 C0'0— 660 660 €O0— 860| 960 ¥0'0— ¥60| 660 ¢O0— 00T| 160 L00— 16°0| 00T GO'0— 00 T| ¢
66'0 TO0— 86°0| 8°0 T00— 00T| ¥6'0 T100— 86°0| 660 €0'0— 00°T| 680 €0°0— 960/ 00T 00— 00T| ™
660 T00— 00T| 80 TO0'0— 00'T| 60 TO0— 00T| 660 200— 00T| 680 ¢00— 00T| 00T TO'0— 00T 7 T
66'0 000 66°0| 660 000 COT| 260 T10°0— 960| 660 100 00T| ¢60 €0°0— ¥60| L6°0 000— TOT| &
660 100 660 00T 000 00'T| 960 000 660 660 T00 00T| 160 TO0— 860| 860 000 00T| I
00T TO0 00T| 00T 000 00T| 960 TO0O 00T| 660 T00 00T| 260 000 0O0T|] 660 000 00T 7 €0 To| ¥
86'0 000 00 T| 660 000 860 660 000 L6°0| 00'T 000 86°0| 80 T100— 960| 00T 000— 860| &
G660 100 ST'T| 660 000 00| G660 100 OTL'T| 00T 000 660/ $60 100 LOT| 00T 000 O0OT| '
00T 000— 00T| 660 000 00T| 00T 000— 00T| 00T 000 00T| 660 000— 00T| 00T 000 00T 7 T
¢0'T 000 L6°0| ¢O'T 000— 00°T| 660 000— L6°0| 00T 000— 00'T| 00T 00°0— 2L60| 00T 000— 660| oo
¢0'T 000 8670/ ¢O'T 00°0— 00T| 660 000 660/ 00T 000— 00'T| 00T 000 660 00T 000— 00T| '
¢0'T 000 00T| 0T 000— 00T| 00T 000 00T| 00T 000— 00T| 00T 000 00T| 00T 000— 00T 7 €0 ¥
10T 00°0— S6°0| TO'T 000— 00°T| 960 000— L6°0| 86°0 000— 00 T| TO'T TI00— S6°0| T0T 000— 660 o
10T 00°0— 246°0| ¢0O'T 00°0— 00'T| L6°0 000— 86°0| 660 000— 00T| T0T 000— 86°0| TO'T 000— 660| 7
00T _000— 00T| TO'T 000— 00'T| 960 000— 00T| 660 000— 00'T| TO'T 000— 00T| TOT 000— 00T 7 T
00T 000— 660 80 000 00T| T0T 000— 660 00T 000 00T| 660 T00— 660| 660 000— 00T| 27
10T 000 66°0| 80 000 00T| IO'T 000— 00'T| 00T 000 O00T| 660 TI00— 00'T| 660 000— 00| T
10T 000 00'T| 80 000 00T| T0T 000 00'T| 00T 000 00T| 660 000— 0O0T| 660 000— 00T 7 €0 1
00T T100— 660 00T T00— 660/ .60 100— 660| 860 TI00— TOT| 860 ¢00— 660| 660 TO0— TOT| o
00T T00— 660 00T T00— 00'T| .60 TO0— 660| 80 T00— 00°T| 8°0 T00— 00| 660 T00— 00T| 7
00T _T00— 00T| 00T T00— 00'T| 460 TO0— 00T| 80 T10°0— 00'T| 80 T00— 00T| 660 T100— 00T 4 T
00T 100 TOT| 00T T00 TOT| 00T TO0 660 00T T00 660 .60 000 660/ 860 000 00T| 27
10T 100 00°I| 00T 100 00T| 00T 100 OOT| 00T TO0 O00T| L60 100 00T| 80 000 00T 7
T0°'T 100 00'T| 00T TOO 00T| O0OT TO0O OOT| 00T TOO 0O0T| .60 T00 0O0T| 80 000 00T 7 €0 to| I
dsy setdd HSINI| dSY seldl HSINT| dSY seldl HSINI| dSY seldl HSINT| dSY seldr HSINT| dSY seigl HSINI| 1S 0 ty | 2y
000€ =17 000T =7 000€ =17 000T =17 000€ =17 000T =1
0091 = u 00y =u 00c =u

39



(0 ToPOIN) @ouepuadopur 939[dwod Iopun suolye[nwIs Yjm poredurod are (1) ¢(7) T sI0jewir)se o) Ul ULIO) UOI)RIUSWSNE oY)

I0] FIV ‘€TV ‘CIV ‘1V sepour uonorpaxd otwreudd “(SY) UONRIAGD plepur)s urjdures o} PUR SIOLIO PIRPUR)S POJRIIIISO JO Ueow ojdures o1}

U09MJO( OTFRL (7)1 I0JRUIIISO PIRPURYS O3 03 309dsol [3Im sorjel sk pajnduiod ‘(gi) Lousnyge pue (FSINL) 10110 porenbs ueout sayeey :) [R],

60 00T IT'T| 00T OO'T 00T| 160 ¢O'T 99T| L6'0 00T TOT| ¢80 LOT €I'C| 860 660 VOT| ¥I

860 00T 80°'T| 00T 00T O00T| €60 <COT €€T| 660 660 00T| 980 ¥O'T ¥LT| O0OT 00T 2OT| €T

66'0 TO'T ¢O'T| 00T 00T 00T| ¥6'0 TO'T 8I'T| 00T 00T 0O0'T| 880 ¢<¢O'T 8ET| 660 660 00T| <I

660 00'T  00T| 00T 00T 00T| 260 00T €0T| 660 660 660 160 0T TIT'T| 460 00T 00T| T (en

860 00T 00°T| O0OCT 00T 00T| 960 <CO'T ¢O'T| 60 00T 0O0T| 060 90T LO'T| 660 00T 0O0T| ¥I

66'0 00T 00°T| O0OCT 00T 00T| 60 <¢O'T ¢OT| 660 00T 0O0T| I6'0 SO'T SO'T| OOT OO'T 0OOT| €T

00'T 10T 00Tl OOT OO'T 00T| 960 TOT TOT| OOT OOT O0OT| I60 SO'T SO'T| 660 00T 0O0T| <T

660 00T 00T| 00T 00T 00T| .60 T0T 00T| 660 00T 00T| €0 g0T €0T| L60 00T 00T 1T @M %

L6'0 660 S0°'T| 660 00T 00T| €60 8'0 8€TI| 660 660 00T| 680 060 691| 00T 660 O00'T| ¥I

00T 660 €0°T| 00T 00T O00T| ¥6'0 L6'0 €C'T| 860 00T O00T| 80 €60 8ET| 660 660 660 €T

66'0 660 00°T| 10T 00T 00'T| 960 160 OI'T| 80 00T 00T| 060 960 O0c'T| L6°0 00T 00T| <I

860 TO'T T0T| 660 00T 660| 660 660 00T| T0'T 00T 00T| €0 860 %0 I| 660 00T 00T T (Her

60 10T 00T 660 00T O00T| ¥6'0 90T 90°T| 660 00T O00'T| G20 0ST 1I9T| 660 ¢OT <COT| ¥I

00'T TO'T 00°T| OOT 00T 00T| ¥6'0 <¢O'T €0°T| 860 00T O00T| 80 L0'T 80T| 80 00T 00T| €T

66'0 00T 00T| TO'T 00T 0O0T| 460 00T 0O0T| 80 00T 0O0T| I60 <CO'T ¢O'T| 460 00T 0O0T| ¢<T

660 00T 00T| 660 00T 0O0T| 660 00T 00T| TOT 00T 0O0T| €60 10T 10T 660 00T 00T| T W™ 1 ¥

66'0 00T 660| 860 00T 00T| 660 00T O00T| 660 00T 00T| 660 00T <¢OT| 00T 00T 0O0T| ¥I

00'T 00T 66°0) ¢cOT 00T 00T| 660 00T 00°T| OOOT O0'T O00T| 80 00T T10°T| TO'T 00T 00°T| €T

10°'T 00T O00'T| 00T 00T 0O0T| 80 00T O0T| 80 00T 00T| 860 00T O0T| 80 00T O00T| CI

00T 00T 00T| T0OT 00T 00T| 80 00T 00T| 660 00T 00T| 80 00T 00| 660 00T 00T| T (per

66'0 00T 00°T| 80 00T 00T| 660 00T O00T| 660 00T 00T| 660 00T 00T| OOT 00T 0O0T| ¥I

00'T 00T 00T| ¢OT 00T 00T| 660 00T 00T| OOCT OO'T 00T| 80 00T 00T| TOT 00T O00T| €T

T0°'T 00'T 00'T| O0'T 00T 00T| 80 00T O00T| 80 00T 00T| 80 00T O0T| 80 00T 00T| ¢I

00T 00T 00T| 00T 00T 00T| 80 00T 00T| 660 00T 00T| 80 00T 00| 660 00T 00T| 1T M ¥

00'T 00T 660/ 660 00T 00T| 80 00T 00T| 660 00T O00T| 00T 660 00T| OOCT 00T 0O0T| ¥I

00'T 00T 66°0f 660 00T 00T| 80 00T 00T| OOCT 00T O00T| 660 00T 0O0T| TO'T 00T O00T| €T

00'T 00T 00Tl 660 00T 00T| 80 00T 66°0| 860 00T O00T| 660 660 660 00T 00T 0O0T| CT

00T 00T 00T| T0T 00T 00T| 00T 00T 00T| T0T 00T 00T| 660 00T 00T| 00T 00T 00T| T (pen

00'T 00T 00T| 660 00T 00T| 80 00T 00T| 660 00T 00T| 00T 00T 00T| OOCT 00T O00T| ¥I

00'T 00T 00Tl 660 00T O00T| 80 00T 00T| OOCT 00T 0O0T| 660 00T O00T| IO'T 00T 0O0T| €T

00'T 00T 00T| 660 00T 00T| 80 00T 00T| 80 00T 00T| 660 00T 00T| OOCT 00T 00T| @I

00T 00T 00T| T0T 00T 00| 00T 00T 00T| I0T 00T 00T| 660 00T 00T| 00T 00T 00T| T (N 1 T

asd Bd HASNY| dSY  BA ISINI| dSY  BA HUSNI| dSY  BA HSIWI| dSY  BI US| dSY  BH ASWI| VoA Y| %y
000€ =17 000T =1 000€ =17 000T =1 000€ =1 000T =1

0091 = u

00y =u

00c =u

40



‘T = ¢ pue (T [OPOJA) SIUSAD JUSLINODI POJR[OLIOD IOPUN SUOTIRINWIIS [Im poledwod axe (7)%r (72)Trf sIopew}se o) Ul ULIO) UOIIRIUSWISNR oY)

I0] FIV ‘€TV ‘CIV ‘1V sepour uonorpaxd otwreudd “(SY) UONRIAGD plepur)s urjdures o} PUR SIOLIO PIRPUR)S POJRIIIISO JO Ueow ojdures o1}

U09MJO( OTFRL (7)1 I0JRUIIISO PIRPURYS 01} 03 309dsol [3Im sorjel sk pajndutod ‘(gi) Lousyge pue (FSNL) 10110 porenbs ueout sanpeeYy :Q O[(R],

L6°0 180 ¢6'0f 660 960 960| 96°0 8L0 ST'T| TOT ¥6'0 960| 160 €L0 6ET| 660 €60 L60| VI

66'0 €80 €6'0| 00T 960 960] 960 6.0 90°T| 80 960 L60] ¢6'0 TLO0 SI'T| 860 ¥60 960 €T

66'0 ¢80 L80| 660 <60 S6°0] 960 LL'O G6'0| 660 <6°0 96°0] €60 GL°0 ¥O'T| 860 ¥6'0 G6°0| <I

00T 080 TI80| 660 S6°0 S6°0| 660 180 980 T0T 960 96°0| S6°0 840 L80| 860 960 960| 1 (ped
60 160 16°0| 00T L6°0 L60| 960 060 16°0| 00T L6°0 L60] 160 ¢C60 €6'0| 660 960 960 ¥I

660 €60 €6'0| 10T L6°0 L6°0] L6'0 060 160| 860 L6°0 L6°0] ¢6'0 680 060 860 L60 L60| €I

86'0 ¢60 €6'0| 660 L6°0 L60] 960 160 160| 660 L6°0 L60] ¥6'0 680 060| 80 L6°0 L60| CI

660 060 060| 660 80 860| 80 260 &60| T0T 860 86°0| 960 680 68°0| 860 80 80| 1T @M %
00'T 880 660 660 860 80| L6°0 180 SI'T| 660 960 860| 160 9.0 <CET| 660 960 660 VI

66'0 060 60| €0'T 860 660] L6'0 980 LO'T| 660 860 86°0| €60 8L0 TIT'T| 80 L6°0 L6°0| €T

I0°'T 68°0 ¢60] 00'T 860 860 960 98°0 L6°0| 00'T 860 860 €60 180 660 00T 80 860| <I

660 160 60| 00T 660 660 00T 680 T60| 660 860 860 ¥6'0 980 160 960 860 660 1 (Her
66'0 160 L6'0| 660 660 660 ¥6'0 660 00T| 80 660 660 92°0 G&€T 9€T| L6°0 ¢O'T <COT| ¥I

66'0 960 96°0| €0'T 660 660/ 960 960 L60| 660 660 660 060 860 660| 860 660 660 €I

00'T 660 96°0| 660 660 660| 960 960 960/ 00T 660 660| ¢6°0 S6'0 96°0| 660 660 660| CT

66°0 S6°0  S6°0| 00T 660  660] 660 960 96°0| 660 660 660| €60 $60 S60| 960 660 660 1 B T ¥
00'T 960 L6°0| 00'T 660 660| 860 ¥6'0 960 860 660 80| 660 ¥6'0 960 00'T 660 660 VI

00'T 960 L6°0| 00T 660 660| 00T 960 960/ 00T 660 660| 00T S6'0 96°0| 00T 860 86'0| €T

10T 960 96'0] TO'T 660 660 ¢OT ¥60 960/ 00T 660 660 00T ¥6°0 960 660 660 660| CI

660 L6°0 L60| 660 660 660| 860 960 960| 00T 660 66°0| 00T ¥60 G60| 860 860 860 T (Hor
T0°'T L6°0 L6°0] 00'T 660 660 860 960 960| 86’0 660 660 860 960 L60] 00T 660 660 VI

00'T 460 16°0| 00T 00'T 00°T| 00T 460 L6°0| 00T 660 660| 00T 160 L6°0| 00T 660 660| €T

¢O0'T L6'0 L6°0| T0'T 660 660/ TOT L6'0 L6'0| 00T 660 66°0f 00T L6'0 L60| 00T 660 660 <I

66°0 86°0 86°0] 660 00T 00T| 260 80 860| 00T 660 660| 00T 860 860 860 660 660 [ (BN ¥
00'T 860 860/ 660 660 660 00T L60 660/ 00T 660 O00T| 660 960 660| 660 660 660 ¥I

00'T 860 660 660 00T 00T| 660 8'0 860 00T 00'T O00T| 660 L60 860 I0'T 660 660| €T

66'0 80 860| 660 00T 00T| 660 80 860| T0OT 00T 00T| 660 L60 L60| 660 660 660 CI

660 860 86°0| 00T 00T 00T| 00T 260 L60| T0T 660 660| 660 80 860| 00T 660 660 1 (2
00'T 860 860 660 00T 00T| 00T 80 860/ 00T 00'T 00T| 660 660 660 660 00T 00T| ¥I

00'T 860 860/ 660 00T 00T| 660 80 860| 00T 00T O00T| 660 660 660 00T 00T 0O0T| €T

66'0 860 86'0| 66'0 00T 00T|] 660 660 660| 10T 00T 00T| 80 860 80| 660 00T 00T| <I

660 66'0 660] 00T 00T 00T| 00T 660 660] 10T 660 660] 660 660 660 00T 00T 00T| T @MW 1 T
asd Bd HASNY| dSY  BA ISINI| dSY  BA HUSNI| dSY  BA HSIWI| dSY  BI US| dSY  BH ASWI| VoA Y| %y

000€ =17

000T =1

000€ =17

000T =1

000€ =1

000T =1

0091 = u

00y =u

00c =u

41



‘T = ¢ pPue ‘(g [PPOJA) POIRIOLIOD [IOQ OIR SIUIAD
JUSIINIAI PUR JUAS [RUIULISY o1} eT[} uorydwnsse o) I9PUN SUOTRNWIS 1M pareduod are (7)%1 ‘()11 sI0yeUIISe 9} UT ULISY UOTYRIUSTUSNE IT[)
105 FIV ‘€TV ‘CTV ‘TV sppow uonarpaid osrureus(q *((SY) uolyerasp prepue)s Surjdures a1} pue SIOLId PIEPUER)S PIIBWIIISS Jo Ueawn o[dures a1}
U0oM}0q ORI {(7)1] J0YRUINISO pIepue)s o1} 0} 109dsol [jim soryel se pajnduwod ‘(g ) Aouebyge pue (FHSNI) 10110 parenbs ueaw oAy G S[qR],

86'0 9.0 980| 66'0 €60 €6'0] §6'0 <CL0 AT'T| ¢0O'T 160 ¥6°0f L80 990 9€'T| 660 880 €60 ¥I

860 9.0 ¥80| 80 €60 €60 960 ¢L0 €0T| 660 160 <60f 060 990 IZT| 00T 060 ¥6°0| €T

L6°0 GL0 €80l 860 ¢60 <¢60| 960 ¢L'0 860 660 ¢60 €60| 160 890 II'T| 00T 060 60| CT

L6'0 6.0 6L°0] 860 €60 €60| ¥60 8.0 S8°0| 660 €60 ¥6°0| ¥60 1.0 €80 10T 160 160| 1 (ped

86'0 880 88°0| 00T 96°0 G96°0] 960 L80 680| TOT S6°0 G96°0] 680 G980 L80| 660 €60 €60 VI

66'0 880 880| 660 960 96°0] 96'0 L80 88'0| 00T ¥6°0 ¥6°0f 060 980 880| 00T <60 G96°0| €I

86'0 980 L80| 80 960 96°0| L6'0 980 L80| 80 960 96°0] €60 980 880| 00T 460 G6°0| <I

760 660 00T| 860 L60 60| €60 860 860| 660 L60 L60| t60 S60 S60] 00T 960 960 T (BN ¥

66'0 080 T0T| 00T 960 86°0] ¢60 VL0 ¥&'T| 660 960 66°0] L80 890 6V'I| 660 €60 860 VI

66'0 6.0 96°0| 00T .60 660] 960 ¥.0 ¢CI'T| T0OT 960 86°0] 880 0L0 82'T| 00T G6°0 86°0| €T

L6°0 ¢80 ¢6'0f 860 L60 86°0| 60 ¥,L0 960 00T 960 L6°0| 160 690 €0'T| 00T G6°0 L6'0| CI

00T 080 €80| 10T 160 L60| ¥60 T80 88°0| 860 960 L6°0| 560 ¥.L0 ¥80| 660 ¥60 S60| 1 (ped

860 ¢60 ¢6'0| 00T 860 86°0] €60 160 16'0| 80 660 660 980 L60 660| 80 860 860 ¥I

66'0 160 16'0| 00T 860 86°0] 960 160 ¢60| 10T 860 86°0| 880 ¢60 ¥60| 660 80 860 €I

96'0 ¢60 €6'0| 860 860 860 960 680 060| 00T 860 86°0| 680 880 060| 00T L6°0 86°0| CT

00T 160 160| T0T 80 660| S60 ¥60 ¥60| 860 860 860| 160 060 060| L60 80 80| T N 1 ¥

86'0 960 96'0| 66'0 860 860 860 ¥6'0 G6'0| 660 860 86°0| L6'0 €60 96°0| 860 860 860 VI

86'0 L60 L6°0| 660 860 86°0] 00T ¥6'0 G6'0| 660 L6°0 L6°0] 960 €60 ¥6'0| 80 860 860 €T

860 960 G6°'0| 860 860 860 860 ¥6'0 ¥60| 860 860 860 L60 €0 ¥60| 660 80 860 <I

L6'0 660  00'T| 660 860 860| 660 L60 L60] 00T 860 86°0| 860 960 960| 00T 860 860 T (per

00'T 460 96°0) 660 66'0 660 660 ¥6'0 96°0| 66'0 660 660 860 S6'0 G6'0| 860 660 660 ¥I

00T 960 960 6660 660 660| 10T ¥60 ¥6°0| 660 660 660| 860 ¥6'0 ¥6°0| 860 860 860| €T

00T ¥6'0 96°0| 860 66'0 660| 00T €60 €6°0| 860 660 660| 660 ¥6'0 ¥6°0| 860 660 660| CI

G660 80'T SI'T| 660 00T 00T| $60 80T OL'T| 00T 660 660| S60 90T L0I| 00T 00T 00T| T (MWW ¥

00T ¥6'0 960 660 660 660 00T S6'0 L6°0| 660 660 00T| 660 ¢60 960 860 660 660| VI

86'0 960 L6°'0| 66'0 660 00'T| 660 960 96'0| I0'T 660 00'T| .60 ¥6'0 G6'0| 860 660 660 €I

00T 960 L6°0| 00T 660 00'T| 00T 960 96°0| 660 660 00T| 660 T60 €60| 660 80 660 CI

T0T S6°0  S60| TOT 660 00T| 960 960 26°0| 80 00T 00| 10T S60 S60| 10T 660 660 1 (1)

00'T 960 960 660 660 660| 00T L6'0 L6°0| 660 00T O00T| 80 960 L6°0| 860 660 660| VI

860 860 860| 66'0 00T 00T| 660 160 860| T0OT 00T 00T| 960 L60 L60| 80 660 00T| €T

00'T 860 86°0| 00T 00'T 00T| 660 8'0 860 660 00T O00T| 80 960 960 660 660 660| CI

10T .60 260 TOT 00T 00T| 960 860 86°0| 660 00T 00T| I0T 860 860| 10T 660 660 T MM 1 T

asd Bd dSWI| dSY  PA ASINI| dSH  BH HSINI| dSY  BA ISIWI| dSY  BA HASINY| dSY  BA dSWI| VO osH Ty %y
000€ =17 000T =1 000€ =17 000T =1 000€ =1 000T =1

0091 = u 00y =u 00C =u

42



ke=1 ke =2 ke=14
k=1 k=2 k=1 k=2 k=1 k=2
n Time |f1(t) fg(t) |fn(t) fia(t) [fa(t) po(t) |pa(t) fo(t) |fn(t) fia(t) [fa(t) fAeo(t)
400 1000 |1.00 0.99 |0.99 0.99 |1.00 1.00 |1.00 0.99 |1.00 0.99 |0.99 0.99
2000 {1.00 0.98 [096 0.94 [099 097 [0.97 095 [0.99 0.97 |0.97 0.94
3000 [0.99 093 |0.95 0.89 |1.00 0.94 096 0.90 [0.99 094 |0.95 0.90
800 1000 |1.00 0.99 [0.99 0.99 |1.00 0.99 099 0.99 [1.00 0.99 |1.00 0.99
2000 {0.99 0.98 [096 0.95 [0.99 098 [0.97 095 [0.99 0.98 |0.97 0.96
3000 [0.98 095 [0.95 0.90 |0.99 0.96 (096 0.90 [0.99 095 [0.96 0.91

Table 10: Efficiency of fi;(t) and fi2(t), computed as ratio between the empirical variances of the
augmented estimator and the standard estimator. Prediction model based only on covariates.

Time | a(t) se | p(t) + Al4  se  seratio | a(t) + A1 se  se-ratio
500 0.77 0.05 0.77 0.05 1.00 0.77 0.05 1.00
1000 | 1.16 0.07 1.16 0.07  1.00 1.16 0.07  1.00
1500 | 1.53 0.09 1.53 0.09 1.00 1.54 0.09 1.00
2000 | 1.86 0.12 1.86 0.12  0.99 1.86 0.12  0.99
2500 | 2.11 0.14 2.10 0.14 0.99 2.11 0.14 0.99
3000 | 2.34 0.16 2.31 0.16  0.98 2.33 0.16  0.98
3500 | 2.56 0.19 2.51 0.18  0.97 2.54 0.18  0.97
4000 | 2.76 0.22 2.69 0.21 0.95 2.73 0.21 0.96
4500 | 2.87 0.23 2.79 0.22 0.94 2.84 0.22 0.96
5000 | 2.94 0.25 2.85 0.23  0.93 291 024 095

Table 11: Mean number of CRBSI up to death with standard error, augmented with
prediction model 14 (j(t) + Al4), and with model 1 (i(t) + Al), and relative standard
error compared to standard estimator.
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Figure 1: Mean number of CRBSI up to death from the standard estimator (solid curve)
with 95 % pointwise confidence intervals (grey area), standard deviation of the observed
recurrent events (dashed line) and augmented estimators using dynamic predictions un-
der the small p-model Al (efficient confidence intervals with vertical black solid lines)
and under the large p-model A14 (efficient confidence intervals with vertical green dotted
lines).
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