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Abstract

The evaluation of research and theoretical hypotheses is one of the principal goals
of empirical research. In fact, when conducting a study, researchers usually have
expectations based on hypotheses or theoretical perspectives they want to evaluate
according to the observed data. To do that, different statistical approaches have
been developed, for example, the Null Hypothesis Significance Testing (NHST).

In psychology, the NHST is the dominant statistical approach to evaluate re-
search hypotheses. In reality, however, the NHST approach does not allow re-
searchers to answer the question they usually are interested in. In fact, the NHST
approach does not quantify the evidence in favour of a hypothesis, but it only
quantifies the evidence against the null hypothesis. This can easily lead to the
misinterpretation of the results that, together with a mindless and mechanical ap-
plication of the NHST approach, is considered as one of the causes of the ongoing
replicability crisis.

In the first part of the thesis, we introduce the Design Analysis framework that
allows us to evaluate the inferential risks related to effect size estimation when se-
lecting for significance. In the case of underpowered studies evaluating complex
multivariate phenomena with noisy data (all very common conditions in psychol-
ogy), selecting for significance can easily lead to misleading and unreliable results.
This aspect is often neglected in traditional power Analysis. Design analysis, in-
stead, highlights this relevant issue.

In the second part of the thesis, we move away from the NHST towards the model
comparison approach. Model comparison allows us to properly evaluate the relative
evidence in favour of one hypothesis according to the data. First, research hypothe-
ses are formalized into different statistical models, subsequently, these are evaluated
according to different possible criteria. We consider the information criteria and the
Bayes Factor with encompassing prior. Information criteria assess models predic-
tive ability penalizing for model complexity. Bayes Factor with encompassing prior,
instead, allows researchers to easily evaluate informative hypotheses with equality
and inequality constraints on the model parameters.
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Abstract (Italian)

La valutazione di ipotesi definite in accordo con le aspettative dei ricercatori o di
prospettive teoriche è uno degli obiettivi principali della ricerca empirica. Quando
viene condotto uno studio, infatti, i ricercatori di solito vogliono valutare la plausi-
bilità delle loro ipotesi sulla base dei dati osservati. Per fare ciò, sono stati sviluppati
diversi approcci statistici come, ad esempio, il Null Hypothesis Significance Testing
(NHST).

In psicologia, il NHST è l’approccio statistico dominante per valutare le ipotesi
di ricerca. In realtà, tuttavia, l’approccio NHST non consente ai ricercatori di
rispondere alla domanda a cui di solito sono interessati. Infatti, l’approccio NHST
non quantifica l’evidenza a favore di un’ipotesi, ma quantifica solo l’evidenza contro
l’ipotesi nulla. Ciò può facilmente portare a un’errata interpretazione dei risul-
tati che, insieme all’applicazione meccanica ad insensata dell’approccio NHST, è
considerata una delle cause dell’attuale crisi di replicabilità.

Nella prima parte della tesi, introduciamo il framework della Design Analysis
che ci permette di valutare i rischi inferenziali legati alla stima della dimensione
dell’effetto quando si seleziona per la significatività. Nel caso di studi con campioni
ridotti che valutano fenomeni complessi e con grande variabilità nei dati (tutte
condizioni molto comuni in psicologia), la selezione per significatività può facilmente
portare a risultati fuorvianti ed inaffidabili. Questo aspetto è spesso trascurato nella
Power Analysis tradizionale. La Design Analysis, invece, mette in evidenza questo
importante problema.

Nella seconda parte della tesi, ci spostiamo dal NHST verso l’approccio del
Model Comparison. Il Model Comparison ci consente di valutare correttamente
l’evidenza relativa a favore di un’ipotesi in base ai dati. In primo luogo, le ipotesi
di ricerca vengono formalizzate sotto forma di diversi modelli statistici. Successiva-
mente, queste vengono valutate secondo diversi possibili criteri come, ad esempio,
gli Information Criteria e il Bayes Factor con encompassing prior. Gli Information
Criteria valutano la capacità predittiva dei modelli penalizzando per la complessità
del modello. Il Bayes Factor con encompassing prior, invece, consente ai ricercatori
di valutare facilmente ipotesi informative con vincoli di uguaglianza e disuguaglianza
sui parametri del modello.
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1
Introduction

” All models are wrong but some are useful

— Box (1979)

If I ever get a tattoo, this quote would be the first choice, probably together
with “on CRAN”. Fortunately, I am afraid of needles so this will never happen
and I will not have to care about having embarrassing tattoos. Nevertheless, Box’s
famous words are truly inspiring as they summarize the aim of applied statistics and
scientific research more in general: we build models that approximate the reality,
these are never perfect but they allow us to understand and predict what surround
us.

In Psychology, however, sometimes it seems that we forgot about it. Thus,
the purpose of this thesis is to reason about how we apply statistical inference to
answer our research questions and the take-home message is simply “stop testing
start modeling”. Of course, this is provocative as there will never be a rule that
applies to all cases but different situations would always require different solutions1.
In this way, however, we hope to enhance researchers’ awareness about the issues
related to the misuse of statistical techniques: statistical inference should not be
used mechanically as a black box but it is important to understand its mechanisms
and properly applying the different available statistical techniques. We think that

1This is not intended to be a rule otherwise we enter the Barber Paradox ;). See https:
//en.wikipedia.org/wiki/Barber paradox
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1.1. A Three Years Long Journey into Statistical Inference

this becomes more natural when thinking about modeling the data rather than
testing it, but, to clarify this let’s start from the beginning.

1.1 A Three Years Long Journey into

Statistical Inference

Considering a thesis uniquely as a sum of studies is extremely reductive, there is
much more going on underneath. A thesis is the result of a three years-long process
in which a PhD student grows up becoming a young researcher. This is an extremely
stimulating period in which the formation received and the surrounding academic
culture will direct future researchers’ attitudes. Thus, to properly understand the
meaning and reasons behind a thesis, it is important to consider the circumstances
during its creation.

Before starting my PhD, I thought these were really exciting times for research
in psychology. During the university courses, professors presented us with many
interesting studies about brain functioning and any type of psychological or social
behaviours. I thought we were close to revealing many mysteries of the human
mind, so what better moment to start a PhD than this? Well, as soon as I started
my PhD, I find out a pretty uncomfortable truth: we were in the middle of the
replicability crisis.

1.1.1 Replicability Crisis

Following Ioannidis (2005) “Why Most Published Research Findings Are False” pa-
per, there has been a growing concern about the reliability of the results in psy-
chology and social sciences. Many studies failed to replicate previous results in
the literature or, if replicated, the estimated effects were much smaller than the
original ones (Camerer et al., 2018; Open Science Collaboration, 2015). To refer to
this issue, researchers started using the term “replicability crisis”, a phenomenon
that is not limited to psychological and social sciences but, as suggested by different
surveys, involves many other scientific fields (Baker, 2016).

This ongoing replicability crisis created a huge debate in the literature regarding
Questionable Research Practices (QRPs; John et al., 2012), questionable measure-
ment practices (Flake & Fried, 2020; Schimmack, 2021), and other methodological
issues (Pashler & Wagenmakers, 2012; Stangor & Lemay, 2016). In particular, the
use of Null Hypothesis Significance Testing (NHST) procedure has been strongly
criticized (Cumming, 2014; Greenland et al., 2016; Nuzzo, 2014; Wasserstein et al.,
2019).

2



CHAPTER 1. INTRODUCTION

1.1.2 Null Hypothesis Significance Testing

The Null Hypothesis Significance Testing (NHST) is the dominant statistical ap-
proach in psychological and social research (Chavalarias et al., 2016). Surprisingly,
however, the NHST does not properly exist in statistical sciences but it is given by
the combination of two different conflicting approaches: Fisher’s significance testing
and Neyman and Pearson’s hypothesis testing (Gigerenzer et al., 2004; Perezgon-
zalez, 2015).

Without going into details, the resulting approach has several limitations, these
will be discussed in the next chapters and interested readers can refer to Greenland
et al. (2016) and Szucs and Ioannidis (2017). In particular, NHST mindless appli-
cation, in what Gigerenzer et al. (2004) defined as the “ Null Ritual”, can often
lead to misleading and unreliable results. For example, imagine that we would like
to evaluate the efficacy of a new psychological treatment. To do that we compare a
treatment group and a control group, each one formed by 20 participants. Suppose
we observe a Cohen’s d of .8. In this case, in a two-tailed t-test with a traditional α
value of .5, we would obtain a statistical significant result (t(38) = 2.53, p = .016),
see Figure 1.1.

Observed d = .8Observed d = .8

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

Choen’s d

Hypothesis

H0 : d = 0

Error

α = .05

Figure 1.1: NHST comparing a treatment group and a control group (ntot = 40),
distribution under H0 : d = 0.

At this point, we would be really happy as we have found a statistically signifi-
cant result and we can publish it. However, we have forgotten to consider another
important element of statistical inference, which is statistical power. The NHST
does not require the formalization of the alternative hypothesis H1 but only the

3



1.1. A Three Years Long Journey into Statistical Inference

null-hypothesis H0 is needed to compute the p-value. For this reason, the alterna-
tive hypothesis is often neglected by the researchers until they have to compute the
power. Suppose that, after an extensive literature review, we consider as a plausible
effect size H1 : d = .25 and we find out that the resulting power is only 12%, see
Figure 1.2.

Observed d = .8Observed d = .8

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

Choen’s d

Hypothesis

H0 : d = 0

H1 : d = .25

Error

α = .05

β = .88

Figure 1.2: NHST comparing a treatment group and a control group (ntot = 40),
distribution under H0 : d = 0 and H1 : d = .25.

This is rather disappointing as the power level is very low. However, we may
think: “Well, we have low power, nevertheless we still have a statistically significant
result. This means that our results are even more remarkable”. Unfortunately, this
is a wrong deduction and it is referred to as the “the winner’s curse” (Button et
al., 2013). In the case of low power, statistically significant results are unreliable
as they are almost surely an overestimation of the actual effect if an effect exists.
Considering again our example, the observed effect d = .8 is much large than the
plausible effect H1 : d = .25.

Fortunately, in the last years, power analysis has become a common require-
ment for publication in high-quality journals. Many researchers, however, may still
neglect the fundamental role of statistical power in the reliability of their results.
To highlight the relation between statistical power the inferential errors related to
effect size estimation, Gelman and Carlin (2014) introduced the Design Analysis.

4



CHAPTER 1. INTRODUCTION

1.1.3 Design Analysis

The Design Analysis enhances researchers’ awareness about the consequence of con-
ducting underpowered studies. In particular, what could pass unnoticed is that, in
the case of underpowered studies, there is not only a higher probability of not re-
jecting the Null Hypothesis if this is false but, even more importantly, there is also
a higher risk of obtaining misleading estimates in case of significant results.

While traditional power analysis has a narrow focus on statistical significance,
the Design Analysis extends it to evaluate also other inferential risks related to
effect size estimation (Gelman & Carlin, 2014). In particular, the Design Analysis
compute:

• Type-M error - the predictable average overestimation of an effect that
emerges as statistically significant

• Type-S error - the risk that a statistically significant effect is estimated in
the wrong direction

Considering the previous example with a plausible effect size of d = .25, we
would obtain a Type-M error of 3.19 (i.e., on average statistically significant results
overestimate the actual effect of more than three times) and a Type-S error of 2%
(i.e., two percent of statistically significant results would be in the wrong direction).
At this point, we would be much more cautious in the interpretation of the results
and, hopefully, we would consider the necessity to replicate the results with a much
larger sample.

The Design Analysis framework will be presented in detail in the first part
of the thesis. Interestingly, the Design Analysis also helps us to understand the
reasons beyond the replicability crisis. In fact, psychological studies are usually
characterized by heterogeneity of phenomena under investigation, noisy data, and
low statistical power (Stanley et al., 2018). It is clear that, in these conditions,
applying the significance filter will likely result in an overestimation of the actual
effects (if the actual effects exist) that we later observed in the replicability crisis.

However, Design Analysis per se does not solve the issues related to the NHST,
but it only helps to highlight its consequences. In particular, the NHST does not
allow researchers to answer the question they usually are more interested in, that
is evaluating the evidence in favour of their hypotheses. To overcome this limit, we
need to move away from significance testing towards the evaluation of informative
hypotheses using the model comparison.

1.1.4 Model Comparison

Abuse of the NHST, led to a narrow focus on testing by mechanically applying sta-
tistical techniques rather than properly evaluate the hypotheses of interest. Usually,

5



1.2. Thesis Outline

researchers have specific expectations or theoretical hypotheses they would like to
evaluate. In this case, however, the NHST is not a suitable approach as it does
not allow quantifying the evidence in favour of a hypothesis but only against it. To
evaluate the evidence in favour of a hypothesis according to the data, thus, it is nec-
essary to follow a different statistical approach, for example, the model comparison
approach.

Model comparison requires first to formalize the research hypotheses into differ-
ent statistical models. This is an important step as it forces researchers to define
appropriate statistical models that reflect the data generative process. Moreover,
it allows to specify and clarify the underlying assumptions of the hypotheses of
interest.

Subsequently, it is possible to evaluate which is the most supported model among
those considered according to the data. To do that different criteria are available
for example the information criteria or the Bayes Factor. In particular,

• Information Criteria evaluate the quality of a model according to its ability
to predict new data. Popular information criteria are the Akaike Information
Criterion (AIC; Akaike, 1973) and the Bayesian Information Criterion (BIC;
Schwarz, 1978).

• Bayes Factor quantifies the relative support of the data for two compet-
ing models. In particular, within a Bayesian framework, the Bayes Factor
evaluates how likely the data are under the two models a priori.

These approaches will be presented in detail in the second part of the thesis.
Overall, as suggested at the beginning with the provocative sentence “stop testing
start modeling”, we think that focusing on modeling rather than testing would
enhance researchers’ reasoning about statistical inference. In particular, researchers
should avoid mindless testing and mechanical application of statistical techniques
favouring instead the formalization of the phenomena of interest into statistical
models and the evaluation of informative hypotheses. Using Luce (1988) words
“[doing good research is] measuring effects, constructing substantive theories of
some depth, and developing probability models and statistical procedures suited to
these theories” (p.582).

1.2 Thesis Outline

1.2.1 Part I: Design Analysis

In the first part of the thesis, we offer an introduction to the Design Analysis
framework considering common effect size measures and examples in psychology.
In particular,

6



CHAPTER 1. INTRODUCTION

• Chapter 2 - We introduce the elements of the Design Analysis illustrating
its advantages over traditional power analysis. Differences between two inde-
pendent groups are considered using Cohen’s d as a measure of effect size.

• Chapter 3 - Design Analysis is extended to the case of Pearson’s correlation
coefficients.

• Chapter 4 - We present the PRDA R-package. This package allows performing
design analysis in the case of Pearson’s correlation between two variables or
mean comparisons.

1.2.2 Part II: Model Comparison

In the second part of the thesis, we present the model comparison approach using
the information criteria and the Bayes Factor considering two different real case
applications.

• Chapter 5 - We introduce the model comparison approach using the in-
formation criteria to evaluate the stereotype threat effects on Italian girls’
mathematics performance.

• Chapter 6 - We introduce the model comparison approach using the Bayes
Factor to evaluate the relative evidence of different theoretical perspectives
regarding the role of mother and father attachment.

1.2.3 Appendix and Supplemental Materials

Considering the important role of collaboration in modern research, we present in
Appendix A trackdown, an R package offering a simple solution for collaborative
writing and editing of reproducible documents (i.e. R-Markdown documents).

Moreover, in line with modern open science practices, the Supplemental Mate-
rials of each study are available online. Links are provided at the beginning of each
Chapter.

1.2.4 Info Boxes

Along the thesis you will find two different boxes with special information.

Road Map

At the beginning of each chapter, we provide a brief summary. This is intended to facilitate
the reading of the thesis and to help follow the logical connections between the chapters.

7



1.2. Thesis Outline

Round Table

Given the great value of the reviewers’ comments, we decided to include a dedicated section
to expand on all the relevant issues at the end of Chapter 2, 5, and 6. This is intended
to create an open, constructive discussion that reminds us of the importance of analyzing
everything with a critical eye. Science should always be open to constructive debating as
this allows to consider new valuable perspectives opening the way for improvement.

8
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Design Analysis





2
Enhancing Statistical Inference

via Design Analysis1

” If statisticians agree on one thing, it is that
scientific inference should not be made mechanically

— Gigerenzer and Marewski (2015, p. 422)

” Accept uncertainty. Be thoughtful, open, and modest.
Remember “ATOM”

— Wasserstein et al. (2019, p. 2)

Road Map

In this chapter, we introduce the Design Analysis that allows researchers to evaluate the
inferential risks related to effect size estimation in underpowered studies. In particular,

1This chapter is adapted from Altoè et al. (2020), in which I contributed to the development of
the original idea, writing of the manuscript, statistical analysis and the graphical representations.
Supplemental Materials available at https://osf.io/j8gsf/. Full reference:
Altoè, G., Bertoldo, G., Zandonella Callegher, C., Toffalini, E., Calcagǹı, A., Finos, L., &
Pastore, M. (2020). Enhancing Statistical Inference in Psychological Research via Prospective
and Retrospective Design Analysis. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.
2019.02893

11

https://osf.io/j8gsf/
https://doi.org/10.3389/fpsyg.2019.02893
https://doi.org/10.3389/fpsyg.2019.02893


2.1. Introduction

in case of underpowered studies, there is not only a higher probability of not rejecting
the Null Hypothesis if this is false, but, even more importantly, there is also a higher risk
of obtaining misleading estimates in case of significant results. Examples considering the
Cohen’s d as effect size are presented.

2.1 Introduction

In the past two decades, psychological science has experienced an unprecedented
replicability crisis (Ioannidis, 2005; Open Science Collaboration, 2015; Pashler &
Wagenmakers, 2012) which uncovered a number of problematic issues, including the
adoption of Questionable Research Practices (John et al., 2012) and Questionable
Measurement Practices (Flake & Fried, 2020), the reliance on excessively small
samples (Button et al., 2013), the misuse of statistical techniques (Pastore et al.,
2019), and the consequent misleading interpretation and communication of research
findings (Wasserstein et al., 2019).

Whereas some important reasons for the crisis are intrinsically related to psychol-
ogy as a science (Chambers, 2019), which lead to a renewed recommendation to rely
on strong and well-formalized theories when planning a study, the use of statistical
inference undoubtedly plays a key role. Specifically, the inferential approach most
widely used in psychological research, namely Null Hypothesis Significance Testing
(NHST), has been strongly criticized (Gelman, 2018; Gigerenzer et al., 2004; Mc-
Shane et al., 2019). As a consequence, several alternative approaches have received
increasing attention, such as the use of Bayes Factors for hypothesis testing, and
the use of both Frequentist and Bayesian methods to estimate the magnitude of
the effect of interest with uncertainty (see J. K. Kruschke and Liddell, 2018a, for a
comprehensive historical review).

In the current paper we focus on an upstream, but still neglected issue that
is unrelated to the approach chosen by the researcher, namely the need for statis-
tical reasoning, i.e., “to reason about data, variation and chance” (Moore, 1998,
p. 1253), during all phases of an empirical study. Our work was inspired by the
famous statistician Ronald Fisher (1890 -1962), who stated that “To consult the
statistician after an experiment is finished is often merely to ask him to conduct
a post mortem examination. He can perhaps say what the experiment died of”
(Fisher, 1938, p. 17). Indeed, we argue that too often statistical inference is seen
as an isolated procedure, which is limited to the analysis of data that have already
been collected. In particular, we emphasize the non-trivial importance of making
statistical considerations at the onset of a research project. Furthermore, we stress
that although Fisher has ironically defined them a “post mortem examination”,
appropriate evaluations of published results can provide a relevant contribution to
the progress of (psychological) science. The ultimate goal of this paper is to in-
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crease researchers’ awareness by promoting active engagement when designing their
research.

To achieve this goal, we build on and further develop an idea proposed by
Gelman and Carlin (2014) called “prospective and retrospective design analysis”,
which is virtually absent in current research practice. Specifically, to illustrate
the benefits of design analysis to the widest possible audience, we use a familiar
example in psychology where the researcher is interested in analyzing the differences
between two independent groups considering Cohen’s d (Cohen, 1988) as an effect
size measure.

In brief, the term design analysis has been proposed by Gelman and Carlin
(2014) as a broader definition of power analysis, a concept that in the statisti-
cal literature traditionally indicates the determination of an appropriate sample
size given prespecified levels of Type I and Type II errors and a “plausible effects
size” (Gigerenzer et al., 2004). Indeed, a comprehensive design analysis should also
explicitly consider other inferential risks, including the exaggeration ratio (Type
M error, i.e., the predictable average overestimation of an effect that emerges as
statistically significant) and the sign error (Type S error, i.e., the risk that a statisti-
cally significant effect is estimated in the wrong direction). Notably, the estimation
of these errors will require an effort from psychologists to introduce their expert
knowledge and hypothesize what could be considered a “plausible effect size”. As
we will see later, a key aspect of design analysis is that it can be usefully carried
out both in the planning phase of a study (i.e., prospective design analysis) and
for the evaluation of studies that have already been conducted (i.e., retrospective
design analysis).

Although the idea of design analysis could be developed within different inferen-
tial statistical approaches (e.g., Frequentist and Bayesian), in this paper we will rely
on the Neyman-Pearson (N-P) approach (Pearson & Neyman, 1928) as opposed to
the widely used NHST. The rationale for this choice is that, in addition to other
strengths, the N-P approach includes formalization of the Null Hypothesis (i.e., the
absence of an effect) like NHST, but also an explicit formalization of the Alternative
Hypothesis (i.e., the magnitude of the expected effect). For a more comprehensive
description of the difference between N-P and NHST approaches, we refer the reader
to Gigerenzer and colleagues (2004).

The remainder of this paper is structured as follows. In the next paragraphs, we
will briefly review the main consequences of underpowered studies, discuss two rele-
vant misconceptions concerning the interpretation of statistically significant results,
and present a theoretical framework for design analysis including some clarifications
regarding the concept of “plausible effect size”. In Section 2.2, through familiar ex-
amples within psychological research, the benefits of prospective and retrospective
design analysis will be highlighted. Subsequently, in Section 2.3, a real case study
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will be presented and analyzed. Finally, in Section 2.4, we will summarize poten-
tials, further developments, and limitations of our proposal.

2.1.1 The Consequences of Underpowered Studies
in Psychology

In 1962, Cohen raised attention towards a problem affecting psychological research
that is still very much alive today (Cohen, 1962). Researchers seemed to ignore
the statistical power of their studies - which is not considered in NHST (Gigerenzer
et al., 2004) - with severe consequences for the robustness of their research findings.
In the N-P approach, the power of a statistical test is defined as the probability that
the test has to reject the Null Hypothesis (H0) when the Alternative Hypothesis
(H1) is true. One of the problems with underpowered studies is that the probability
of finding an effect, if it actually exists, is low. More importantly, if a statistically
significant result (i.e., “in general”, when the observed p − value is less than .05,
and consequently H0 is rejected; see, Wasserstein et al., 2019) is obtained in an
underpowered study, the effect size associated with the observed p − value might
be “too big to be true” (Button et al., 2013; Gelman & Carlin, 2014).

This inflation of effect sizes can be seen when examining results of replication
projects, which are usually planned to have higher power than the original stud-
ies. For example, the Open Science Collaboration (2015, pp. 4-5) reported that
“Overall, original study effect sizes (M = 0.403, SD = 0.188) were reliably larger
than replication effect sizes (M = 0.197, SD = 0.257)”, and in the Social Science
Replication Project (Camerer et al., 2018, p. 637), “the effect size of the replication
was on average about 50% of the original effect size”. These considerations con-
tributed to the introduction in the literature of the term “decline effect”, defined
as “the notion that science routinely observes effect sizes decrease over repeated
replications for reasons that are still not well understood” (Schooler, 2014, p. 579).

Given that underpowered studies are widespread in psychology (Cohen, 1962;
Maxwell, 2004; Sedlmeier & Gigerenzer, 1989), the shrinkage of effect-sizes in repli-
cations could be partially explained by the fallacy of “what does not kill statistical
significance makes it stronger” (Loken & Gelman, 2017) and by the trap of the
“winner’s curse” (Button et al., 2013).

2.1.2 The “Winner’s Curse” Trap

When a statistically significant result is obtained in an underpowered study (e.g.,
power = 40%), in spite of the low probability of this event to happen, the result
might be seen as even more remarkable. In fact, the researcher might think: “If
obtaining a statistically significant result is such a rare event, and in my experiment
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I obtained a statistically significant result, it must be a strong one”. This is called
the “what does not kill statistical significance makes it stronger” fallacy (Loken &
Gelman, 2017). The reason why this is a fallacy lies in the fact that it is possible
to obtain statistical significance because of many other factors different from the
presence of a real effect. The researcher degrees of freedom, large measurement
errors, and small sample sizes all contribute to create noise in the data, therefore
inflating the perhaps true, but small underlying effect. Then, if the procedure
used to analyze those data is only focused on a threshold (like in NHST, with
the conventional significance level of .05), the noise in the data allows to pass this
threshold.

In these situations, the apparent win in terms of obtaining a statistically signifi-
cant result is actually a loss, in that the “the lucky” scientist who makes a discovery
is cursed by finding an inflated estimate of that effect (Button et al., 2013). This is
called the “Winner’s curse”, and Figure 2.1 shows an example. In this hypothetical
situation, the researcher is interested in studying an effect that can plausibly be of
small dimensions, e.g. Cohen’s d of .20. If s/he decides to compare two groups on
the outcome variable of interest, using 33 participants per group (and performing
a two-tailed test), s/he will never be able to simultaneously reject H0 and find an
effect close to what it is plausible in that research field (i.e., .20). In fact, in this
underpowered study (i.e., based on a d of .20, the actual power is only 12%) all the
effects falling in the “rejection regions” are higher than .49 or smaller than -.49,
and .20 falls in the region where the decision rules state that you cannot reject H0

under the NHST approach, nor can you accept H0 under the N-P approach.

2.1.3 Beyond Power: The Design Analysis

As we saw in the previous example, relying solely on the statistical significance of
a result can lead to completely misleading conclusions. Indeed, researchers should
take into account other relevant information, such as the hypothesized “plausible ef-
fect size” and the consequent power of the study. Furthermore, to assist researchers
with evaluating the results of a study in a more comprehensive way, Gelman and
Carlin (2014) suggested to consider other two relevant types of errors in addition
to the traditional Type I and Type II errors, namely Type M and Type S error
(see also, Gelman & Tuerlinckx, 2000; Lu et al., 2019). Specifically, Type M
[magnitude] error or exageration ratio can be viewed as the the expected average
overestimation of an effect that emerges as statistically significant, whereas Type S
[sign] error can be viewed as the probability of obtaining a statistically significant
result in the opposite direction with respect to the sign of the hypothesized plausible
effect size.

Based on this consideration, Gelman and Carlin (2014) proposed the term “de-
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Figure 2.1: The Winner’s Curse. Hypothetical study where the plausible true
effect size is small (Cohen’s d = .20) and a two tailed independent samples t-test
is performed with 33 people per group. In order to reject H0, the researcher has
to overestimate the underlying true effect which is indicated by the dashed vertical
line. Note: the rejection regions of H0, given a significance level of .05, lie outside
the vertical black lines

sign analysis” to broadly identify the analysis of studies’ properties, such as their
statistical power, Type M and Type S error. Moreover, as we shall see in the
next paragraph, in design analysis particular emphasis is given on the elicitation
and formalization of what can be considered a plausible effect size (see also para-
graph 2.1.4) for the study of interest. In this regard, it is important to make a
clarification. Although Gelman and Carlin (2014) developed design analysis relying
on an unstandardized effect size measure (i.e., the difference between two means),
in this paper we have adapted their method to deal with Cohen’s d, a standardized
measure of effect size that is more commonly used in psychology.

Given these premises, the steps to perform design analysis using Cohen’s d as a
measure of effect size can be summarized in three steps:

1. A plausible effect size for the study of interest needs to be identified. Rather
than focusing on data at hand or on noisy estimates of a single pilot study,
the formalization of a plausible effect size should be based on an extensive
theoretical literature review and/or on meta-analyses. Moreover, specific tools
(see for example O’Hagan, 2019; Zandonella Callegher et al., 2019; Zondervan-
Zwijnenburg et al., 2017) that allow to incorporate expert knowledge can also
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be considered to increase the validity of the plausible effect size elicitation
process.2

2. Based on the experimental design of the study of interest (in our case, a
comparison between two independent groups), a large number of simulations
(i.e., 100,000) will be performed according to the identified plausible effect
size. This procedure serves to provide information about what to expect if
the experiment was replicated an infinite number of times assuming the pre-
identified plausible effect as true.

3. Given a fixed level of Type I error (e.g., .05), power, type M and type S error
will be calculated. Specifically, power will be estimated as the ratio between
the number of obtained significant results and the number of replicates (i.e.,
the higher the power, the higher the probability to detect the plausible effect).
Type M error will be estimated as the ratio between the mean of the absolute
values of the statistically significant replicated effect sizes and the plausible
effect size. In this case, larger values indicate an expected large overestimation
of the plausible effect size. Type S error will be the ratio between the number
of significant results with opposite sign with regard to the plausible effect size
and the the total number of significant results. Put in other terms, type S
error estimates the probability of obtaining a significant result in the wrong
direction.

Although the procedure may seem complex to implement, at the link https://
osf.io/wqd7b/ we made available some easy-to-use R functions that allow to perform
different types of design analysis for less experienced users. The same functions will
also be used in the examples and application presented in this paper.

To get a first idea of the benefits of design analysis, let us re-analyze the hy-
pothetical study presented in Figure 2.1. Specifically, given a plausible effect size
equal to d = .20 and a sample size of 33 participants per group, a design analysis
will highlight the following information: power = 12%, Type M error = 3.10, and
Type S error = 2%. Despite the low power, which shows that the study has only a
12% probability to detect the plausible effect size, type M error explicitly indicates
that the expected overestimate of a result that will emerge as statistically signifi-
cant is around 3 times the plausible effect. Furthermore, given a Type S error of
2%, there is also a non negligible probability of obtaining a significant result in the
wrong direction. Overall, the results of design analysis clearly tell the researcher

2To obtain a more comprehensive picture of the inferential risks associated with their study,
we suggest researchers to inspect different scenarios according to different plausible effect sizes
and thus to perform more than one design analysis (see for example our application to a real case
study in Section 2.3).
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that the study of interest could provide very poor support to both the existence
and non-existence of a plausible effect size.

Another advantage of design analysis, which will be better explored in the fol-
lowing sections, is that it can be effectively used in the planning phase of a study,
i.e., prospective design analysis, as well as in the evaluation of already obtained
study results, i.e., retrospective design analysis. For example, in prospective design
analysis, considerations concerning power, Type M , and Type S error could assist
researchers to decide the appropriate sample size for detecting the effect of inter-
est (if it actually exists). In a retrospective design analysis, power, Type M and
Type S error (always calculated using the theoretically plausible effect size) can be
used to obtain information about the extent to which the results of the study could
be exaggerated and/or in the wrong direction. Most importantly, we believe that,
engaging in a retrospective design analysis helps researchers to recognize the role
of uncertainty and to make more reasonable statistical claims, especially in those
cases at risk of falling in the aforementioned “Winner’s Curse” trap.

In conclusion, it is important to note that whatever the type of design analysis
chosen (prospective or retrospective), the relationships between power, type M
error, and type S error are the same. For illustrative purposes, these relationships
are graphically displayed as a function of sample size in Figure 2.2. A medium-to-
small effect of d = .35 (i.e., a reasonable average effect size for a psychological study
in the absence of other relevant information, see also Section 2.3) was considered as
a plausible effect size, and Type I error was set at .05.

As expected, power increases as sample size increases. Moreover, type M and
type S error decrease as the size of the sample increases, with the latter showing a
much steeper decrease.

From an applied perspective, issues with type M and S errors emerge with
underpowered studies which are very common in psychological research. Indeed, as
can be seen in Figure 2.2, for a power of 40% (obtained with 50 participants per
group), type M error reaches the worrisome value of 1.55; for a power around 10%
(i.e., with 10 participants per group), even type S error becomes relevant (around
5%).

2.1.4 What Does “Plausible Effect Size” Mean?

” Thinking hard about effect sizes is important for any school
of statistical inference [i.e., Frequentist or Bayesian],
but sadly a process often neglected

— Dienes (2008, p. 92)

The main and most difficult point rests on deciding what could be considered a
“plausible effect size”. Although this might seem complex, usually studies are not
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Figure 2.2: Relationship between sample size and Power, Type M and Type S
for a Cohen’s d of .35 in an independent samples t-test. Type I error is set at .05.

developed in a void. Hypotheses are derived from theories that, if appropriately
formalized in statistical terms, will increase the validity of the inferential process.
Furthermore, researchers are commonly interested in knowing the size and direction
of effects; as shown above, this corresponds to control for Type M [magnitude] error
and type S [sign] error.

From an epistemological perspective, J. Kruschke (2013) suggests an interesting
distinction between strong theories and weak theories. Strong theories are those that
try to make precise predictions and could be, in principle, more easily disconfirmed.
For example, a strong theory could hypothesize a medium-sized positive correlation
between two variables. In contrast, weak theories make broader predictions, such
as the hypothesis that two variables are correlated without specifying the strength
and direction of the correlation (Dienes, 2008). The former type allows many more
research findings to disconfirm the hypothesis, whereas the latter type allows only
the result of no correlation to disconfirm it. Specifically, following Karl Popper
(1902–1994), it could be argued that theories explaining virtually everything and
being hard to disconfirm risk to be out of the realm of science3. Thus, scientific
theories should provide at least a hint on the effect that is expected to be observed.

A challenging point is to establish the dimension of this effect. It might seem
paradoxical that the researcher has to provide an estimate of the effect size before
running the experiment, given that s/he will conduct the study exactly with the
aim of finding what that estimate is. However, strong theories should allow to
make such predictions, and the way in which science accumulates should provide
increasing precision to these predictions.

In practice, it might be undesirable to simply take the estimate found in a pilot
study or from a single previous study published in the literature as a “plausible

3For a recent discussion about theory crisis in psychology see Eronen and Bringmann (2021)
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effect size”. In fact, the plausible effect size refers to what could be approximately
the true value of the parameter in the population, whereas the results of pilots or
single studies (especially if underpowered) are noisy estimates of that parameter.

In line with Gelman and Carlin (2014), we suggest to use information outside
the data at hand, such as literature reviews and/or meta-analyses taking into ac-
count issues concerning publication bias (Borenstein et al., 2009). Moreover, as
stated in the previous paragraph, promising procedures to elicit and formalize ex-
pert knowledge should also be considered. It is important to note that, whatever the
procedures, all assumptions that will lead to the identification of a plausible effect
size must be communicated in a transparent manner, thus increasing the informa-
tion provided by a study and ensuring more reasonable statistical claims related to
the obtained results, whether they are significant or not.

As we have seen, the identification of a plausible effect size (or a series of plausible
effect sizes to explore different scenarios) requires a big effort from the researcher.
Indeed, we believe that this kind of reasoning can make a substantial contribution
to the planning of robust and replicable studies, as well as to the efficient evaluation
of obtained research findings.

To conclude, we leave the reader with the following question: “All other con-
ditions being equal, if you had to evaluate two studies of the same phenomenon,
the first based on a formalization of the expected plausible effect sizes of interest
that is as accurate as possible, and the second one in which the size of the effects of
interest was not taken into account, the findings of which study would you believe
the most?” (van de Schoot, 2019).

2.2 Prospective and Retrospective

Design Analysis

To highlight the benefits of design analysis, and to familiarize with the concepts
of Type M and Type S errors, we will start from a simple example that is well
known in psychological research, i.e., the comparison between the means of two
independent groups4.

In particular, the goal of our hypothetical case study is to evaluate the differences
between two treatments that aim to improve a cognitive ability called Y . Both
treatments have the same cost, but the first is innovative, whereas the second is
traditional. To this end, the researchers recruit a sample of participants who are
homogeneous with respect to prespecified relevant study variables (i.e., age, IQ
. . . ). Next, they randomly assign each participant to one of the two conditions (i.e.,

4We remind the reader that source code of ad-hoc R functions used in the paper is available
at the link https://osf.io/wqd7b/
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innovative vs traditional treatment). After the treatment phase is completed, the
means of the two groups are compared.

2.2.1 Prospective Design Analysis

Before collecting data, the researchers decide to plan the appropriate sample size
to test their hypotheses, namely that there is a difference between the means of G1
(the group to which the innovative treatment is administered) and G2 (the group
to which the traditional treatment is administered) vs there is no difference.

After an extensive literature review concerning studies theoretically comparable
to their own, the researchers decide that a first reasonable effect size for the dif-
ference between the innovative and the traditional treatment could be considered
equal to a Cohen’s d of .30. Due to the possible presence of publication bias (Boren-
stein et al., 2009), which could lead to an overestimation of the effects of published
studies, the researchers decide to be more conservative about the estimate of their
plausible effect size. Thus, they decide to consider a Cohen’s d of .25. Eventually,
all researchers agree that a Cohen’s d of .25 could also represent a clinically relevant
effect in order to support the greater efficacy of the innovative treatment.

Based on the above considerations, the researchers start to plan the sample size
for their study. First, they fix the Type I error at .05 and - based on commonly
accepted suggestions from the psychological literature - fix the power at .80. Fur-
thermore, to explicitly evaluate the inferential risks connected to their choices they
calculate the associated Type M and Type S errors.

Using our R function design analysis, they obtain the following results:

design_analysis(d=.25, power=.80)

## d power n typeS typeM

## 0.25 0.80 252 0.00 1.13

Based on the results, to achieve a power of .80, a sample size of 252 for each
group is needed (i.e., total sample size = 504). With this sample size, the risk of
obtaining a statistically significant result in the wrong direction (Type S error) is
practically 0 and the expected exaggeration ratio (Type M error) is 1.13. In other
words, the expected overestimation related to effects that will emerge as statistically
significant will be around 13% of the hypothesized plausible effect size.

Although satisfied in terms of expected type S and type M risks, the researchers
are concerned about the economic feasibility of recruiting such a “large” number
of subjects. After a long discussion, they decide to explore which inferential risks
would result for a lower level of power, namely 60%5.

5Specifically, we agree with Gelman (2019a) that an 80% level of power should not be used as an
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Using the function design analysis

design_analysis(d=.25, power=.60)

## d power n typeS typeM

## 0.25 0.60 158 0.00 1.30

they discover that: 1) the overall required sample size is considerably smaller (from
504 to 316 = 158 × 2), thus increasing economic feasibility of the study; 2) the Type
S error remains negligible (0%) ; 3) the exaggeration ratio considerably increases
(from 1.13 to 1.30); thus, an effect that will emerge as statistically significant will
be on average 130% of the hypothesized plausible effect size.

The researchers now need to make a decision. Even though, from a merely
statistical point of view, the optimal choice would be to consider a power of 80%,
other relevant aspects must be evaluated, such as the possibility to obtain additional
funding, the practical implications of an expected overestimation of the plausible
effect size, and the phase of the study (i.e., preliminary/exploratory, intermediate
or final/confirmatory).

Whatever the decision, the researchers have to be aware of the inferential risks
related to their choice. Moreover, when presenting the results, they have to be
transparent and clear in communicating such risks, thus highlighting the uncertainty
associated with their conclusions.

2.2.2 Retrospective Design Analysis

To illustrate the usefulness of retrospective design analysis, we refer to the example
presented in the previous paragraph. However, we introduce three new scenarios
which can be considered as representative of what commonly occurs during the
research process:

• Scenario 1 (S1): Evaluating sample size based on a single published
study.6

Imagine that the researchers decide to plan their sample size based on a single
published study in the phase of formalizing a plausible effect size, either be-
cause the published study presents relevant similarities with their own study,
or because there are no other published studies available.

automatic routine, and that requirements of 80% power could encourage researchers to exaggerate
their effect sizes when planning sample size.

6Even though in this paper we strongly recommend not to plan sample size based on a single
study, we propose this example to further emphasize the inferential risks associated with the
information provided by a single underpowered study.
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Question: What type of inferential risks can be associated with this decision?
Issues : Using a single study as a reference point without considering other
sources (e.g., theoretical framework, experts’ opinion, or a meta-analysis), es-
pecially when the study has a low sample size and/or the effect of interest is
small, can lead to use an excessively optimistic estimate of the effect size to
plan an appropriate sample size (Gelman & Carlin, 2014).

• Scenario 2 (S2): Difficulty in recruiting the planned number of re-
search participants.
Imagine that, due to unforeseen difficulties (e.g., insufficient funding), the re-
searchers are not able to recruit the pre-planned number of participants as
defined based on prospective design analysis.
Question: How to evaluate the inferential risks associated with the new re-
duced sample size? How to communicate the obtained results?
Issues : Researchers are often tempted to evaluate the results of their study
based on the observed effect size. This procedure, known as “post-hoc power
analysis”, has been strongly criticized and many statistical papers explicitly
advise against its use (see for example, Gelman, 2019a; S. Goodman & Berlin,
1994). Indeed, to evaluate the information provided by the obtained results,
researchers should use the a priori plausible effect size, i.e., the one formalized
before collecting their data.

• Scenario 3 (S3): No prospective design analysis because the number
of participants is constrained.
Imagine the number of participants involved in the study have specific char-
acteristics which make it impossible to yield a large sample size, or that the
type of treatment is particularly expensive and therefore it cannot be tested
on a large sample. In this case, the only possibility is to recruit the largest
possible number of participants.
Question: What level of scientific quality can be provided by the results?
Issues : Although study’s results can provide a useful contribution to the field,
there are several associated inferential risks that the researchers need to com-
municate in a transparent and constructive way.

As we will see below, retrospective design analysis can be a useful tool to deal
with the questions and the issues raised across all three scenarios.

For the sake of simplicity and without loss of generalizability, suppose that in
each of the three scenarios the researchers obtained the same results (see Table 2.1).

At a first glance, the results indicate a statistically significant difference in favor
of the innovative treatment (see Table 2.1), with a large effect size (i.e., d = .90).
However, the 95% confidence interval for Cohen’s d is extremely wide, suggesting
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Table 2.1: Comparison of the cognitive skill Y between the two groups.

Group n M SD t (df) p Cohen’s d (95% CI)

Innovative treatment 31 114 16 3.496 (60) 0.001 0.90 (0.38-1.43)
Traditional treatment 31 100 15

that both medium-small (i.e., d = .38) and very large (i.e., d = 1.43) effects are
consistent with the observed data.

A closer look indicates that the estimated effect size seems too large when com-
pared with the initial guess of the researchers (i.e. d = .25). Furthermore, an
estimated d of .90 seems, in general, implausibly large for a difference between two
cognitive treatments. The latter interpretation seems to be also supported by the
fact that the hypothesized plausible effect size is not even included in the esti-
mated confidence interval. Overall, in order to prevent the aforementioned “Win-
ner’s Curse” and “What Does Not Kill Statistical Significance Makes It Stronger”
heuristics, results must be evaluated and eventually communicated with caution
and skepticism.

To obtain a clearer picture of the inferential risks associated with the observed
results, we can perform retrospective design analysis using d = .25 as plausible
effect size and 31 participants per group as sample size:

design_analysis(n=31, d=.25)

## d n power typeS typeM

## 0.25 31 0.16 0.01 2.60

As can be seen, the power is markedly low (i.e, only 16%) and the Type M error
even suggests an expected overestimation around two and a half times the plausible
effect size. Lastly, the Type S error, although small, indicates a 1% risk of obtaining
a significant result in the wrong direction (i.e., the traditional treatment is better
than the innovative treatment). Let’s see how this information could be helpful to
deal with the three presented scenarios.

In S1, the researchers took a single noisy estimate as the plausible effect size
from a study that found a “big” effect size (e.g., 0.90). The retrospective design
analysis shows what happens if the plausible effect size is, in reality, much smaller
(i.e., 0.25). Specifically, given the low power and the high level of Type M error,
researchers should definitely abandon the idea of planning their sample size based
on a single published study. Furthermore, issues regarding the presence of Ques-
tionable Research Practices (Arrison, 2014; John et al., 2012) and Questionable
Measurement Practices (Flake & Fried, 2020) in the considered published study
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must be at least explored. From an applied perspective, researchers should con-
tinue with a more comprehensive literature review and/or consider the opportunity
to use an effect size elicitation procedure based on experts’ knowledge (O’Hagan,
2019; Zondervan-Zwijnenburg et al., 2017).

In S2, to check the robustness of their results, researchers might initially be
tempted to conduct a power analysis based on their observed effect size (d = .90).
Acting in this way, they would obtain a completely misleading post-hoc power of
94%. In contrast, the results of retrospective design analysis based on the a-priori
plausible effect size (d = .25) highlight the high level of inferential risks related to
the observed results. From an applicative perspective, researchers should be very
skeptical about their observed results. A first option could be to replicate the study
on an independent sample, perhaps asking for help from other colleagues in the
field. In this case, the effort to recruit a larger sample could be well-justified based
on the retrospective design analysis.

In S3, given the low power and the high level of Type M error, results should
be presented as merely descriptive by clearly explaining the uncertainty that char-
acterizes them. Researchers should first reflect on the possibility of introducing
improvements to the study protocol (i.e., improving the reliability of the study
variables). As a last option, if improvements are not considered feasible, the re-
searchers might consider not continuing their study.

Despite its advantages, we need to emphasize that design analysis should not
be used as an automatic problem solver machine: “Let’s pull out an effect size
. . . let me see the correct sample size for my experiment”. In other words, to ob-
tain reliable scientific conclusions there is no “free lunch”. Rather, psychologists
and statisticians have to work together, case by case, to obtain a reasonable effect
size formalization and to evaluate the associated inferential risks. Furthermore, re-
searchers are encouraged to explore different scenarios via sensitivity analysis (see,
Section 2.3) to better justify and optimize their choices.

2.3 An Illustrative Application to a Case Study

To illustrate how design analysis could enhance inference in psychological research,
we will consider a real case study. Specifically, we will focus on Study 2 of the
published paper “A functional basis for structure-seeking: Exposure to structure
promotes willingness to engage in motivated action” (Kay et al., 2014).

The paper presents 5 studies arising from findings showing that human beings
have a natural tendency to perceive structure in the surrounding world. Various
social psychology theories propose plausible explanations which share a similar as-
sumption that had never been tested before, that is, perceiving a structured world
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could increase people’s willingness to make efforts and sacrifices towards their own
goals. In Study 2, the authors decided to test this hypothesis by randomly assign-
ing participants to two different conditions differing in the type of text they had
to read. In the “random” condition, the text conveyed the idea that natural phe-
nomena are unpredictable and random, whereas in the “structure” condition the
phenomena were described as predictable and systematic. The outcome measure
was the willingness to work towards a goal that each participant chose as their
“most important”. The expected result was that participants in the “structure”
condition would report a higher score in the measure of goal directed behavior than
those in the “random” condition.

Prospective design analysis

As we saw in the previous paragraphs, before collecting data is fundamental to plan
an appropriate sample size via prospective design analysis. In this case, given the
relative novelty of Study 2, is hard to identify a single plausible value for the size of
the effect of interest. Rather, it seems more reasonable to explore different scenarios
according to different plausible effect sizes and power levels. We will start with a
minimum d of .20, so that the study is planned to detect at least a “small” effect
size. If the final results do not reach statistical significance, the researchers could
conclude that it is unlikely that the true effect is equal to or greater than .20, and
eventually decide whether it is worth replicating the study, perhaps by modifying
their protocol.

As the most plausible effect size, we will consider d = .35, which could be
considered – at least in our opinion - a typical average level to test a hypothesis
in psychological research in the absence of informative external sources (see for
example the results reported in Open Science Collaboration, 2015)7. As an extrema
ratio, we will include also a d of .5, which in the words of Jacob Cohen can be referred
to as “differences that are large enough to be visible to the naked eye” (see Cohen,
1988, p.26), and that, given the experiment under investigation, could be viewed as
an extremely optimistic guess. Finally, to take issues concerning the feasibility of
the study into account, we will also consider two levels of power, namely 80% and
60%.

7In the Open Science Collaboration (2015), the authors conducted replications of 100 experi-
mental and correlational studies published in three psychology journals using high powered designs
and original materials when possible. They found an average effect size of r = .197, (i.e. d = .41).
Given the heterogeneity of the 100 studies, we propose to use a more conservative value as being
representative of a typical average effect in psychology. Overall, it should be noted that all the
pre-specified values of d, albeit plausible, are not based on a thorough theoretical revision and/or
on the formalized knowledge of experts in the field. Indeed, an appropriate use of the latter two
external sources would undoubtedly contribute to produce more reliable results, but discussion of
these strategies is beyond the scope of this paper.
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Overall, our “sensitivity” prospective design analysis (see Table 2.2) suggests
that the sample size chosen by the authors (n = 67) is inadequate. Indeed, even in
the least reasonable scenario (d = .50, power = .60), a minimum of 80 participants
is required. Furthermore, is should be noted, that the associated Type M error is
considerably high, i.e. 131%, signaling a high risk of overestimating the plausible
effect.

Table 2.2: Sample size, Type M and Type S error by power and plausible effect
size. Type I error is fixed at .05

Power Cohen’s d n (per sample) Total n Type M error Type S error

0.20 392 784
0.80 0.35 130 260 1.13 0.00

0.50 64 128
0.20 244 488

0.60 0.35 80 160 1.30 0.00
0.50 40 80

A good compromise could be to consider the second scenario (d = .35, power
= .80), which requires a total sample size of 260, guaranteeing optimal control of
the Type M error. After conducting the study with this sample size, a significant
result would lead to accept the researcher’s hypothesis, while a non-significant result
would indicate that if an effect exists, it will presumably be less than .35. Whatever
the result, the researchers could eventually present their findings in a transparent
and informative way. In any case, the results could be used to improve scientific
progress. As an example, other researchers could fruitfully use the observed results
as a starting point for a replication study.

Retrospective design analysis

Let us now evaluate Study 2 from a retrospective point of view. Based on their
results (Mstructure = 5.26, SDstructure = 0.88, Mrandom = 4.72, SDrandom = 1.32,
ntotal = 67; t(65) = 2.00, p = .05, Cohen’s d = 0.50)8, the authors concluded that
“participants in the structure condition reported higher willingness to expend effort
and make sacrifices to pursue their goal compared to participants in the random
condition.” Kay et al. (2014, p. 487), thus supporting their initial hypothesis.

8The authors reported only the total sample size (n = 67). Since participants were randomly
assigned to each of the two experimental conditions, in the following we will assume, without loss
of generalizability, that 34 participants were assigned to the “structure” condition, and 33 to the
“random” condition.
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To evaluate the inferential risks associated with this conclusion, we now run a
sensitivity retrospective design analysis on the pre-identified plausible effect sizes
(i.e., d = .20, d = .35, d = .50).

In line with the results emerging from prospective analysis, the retrospective
design analysis indicates that the sample size used in Study 2 exposes to high
inferential risks. In fact, both for a plausible effect of d = .20 (power = 12%, type
M = 3.09, type S = 0%) and for a plausible effect of d = .35 (power = 30%, type
M = 1.86, type S = 1%), the power is very low and the Type M error reaches
worrying levels. For a d of .50 (chosen on the basis of plausible effects and not
based on the results observed in Study 2), the Type M error is 1.39, indicating an
expected overestimate of 39%. Furthermore, the power is 51%, suggesting that if
we replicate the study on a new sample with the same number of participants, the
probability of obtaining a significant result will be around the chance level.

In summary, our retrospective design analysis indicates that, although statis-
tically significant the results of Study 2 are inadequate to support the authors’
conclusions.

As mentioned at the beginning of this paragraph, the Study 2 of Kay et al. (2014)
was selected for illustrative purposes and for a constructive perspective. For a more
comprehensive picture, we invite interested readers to consult the “Many Labs 2
project” (Klein et al., 2018), which showed that with a large sample size (n = 6506)
the original conclusion of Study 2 cannot be supported (i.e., t(6498.63) = −0.94,
p = .35, d = −0.02, 95%CI = [−0.07, 0.03]), as well as the subsequent response of
the original authors (Laurin et al., 2018).

2.4 Discussion and Conclusions

In psychological research, statistical inference is often viewed as an isolated pro-
cedure which limits itself to the analysis of data that have already been collected.
In this paper, we argue that statistical reasoning is necessary both at the planning
stage and when interpreting the results of a research project. To illustrate this
concept, we built on and further developed Gelman and Carlin’s (2014) idea of
“prospective and retrospective design analysis”.

In line with recent recommendations (Cumming, 2014), design analysis involves
an in-depth reasoning on what could be considered as a plausible effect size within
the study of interest. Specifically, rather than focusing on a single pilot or published
study, we underlined the importance of using information outside the data at hand,
such as extensive literature reviews and meta-analytic studies taking issues related
to publication bias into account. Furthermore, we introduced the potentials of elici-
tation of expert knowledge procedures (see for example O’Hagan, 2019; Zondervan-
Zwijnenburg et al., 2017). Even though these procedures are still underutilized
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in psychology, they could provide a relevant contribution to the formalization of
research hypotheses.

Moving beyond the simplistic and often misleading distinction between signif-
icant and non significant results, design analysis allows researchers to quantify,
consider, and explicitly communicate two relevant risks associated with their in-
ference, namely exaggeration ratio (Type M error) and sign error (Type S error).
As illustrated in the paper, the evaluation of these risks is particularly relevant in
studies which investigate small effect sizes in the presence of high levels of intra-
and inter-individual variability, with a limited sample size – a situation that is quite
common in psychological research.

Another important aspect of design analysis is that it can be usefully carried
out both in the planning phase of a study (i.e., prospective design analysis) and
to evaluate studies that have already been conducted (i.e., retrospective design
analysis), reminding researchers that the process of statistical inference should start
before data collection and does not end when the results are obtained. In addition,
design analysis contributes to have a more comprehensive and informative picture
of the research findings through the exploration of different scenarios according to
different plausible formalizations of the effect of interests.

To familiarize the reader with the concept of design analysis, we included several
examples and an application to a real case study. Moreover, to allow researchers to
use all the illustrated methods with their own data, we also provided two easy-to-
use R functions which are available at the Open Science Framework (OSF) at the
link https://osf.io/wqd7b/.

For the sake of simplicity, in this paper we limited our consideration to Cohen’s
d as an effect size measure within a Frequentist approach. However, the concept
of design analysis could be extended to more complex cases and to other statistical
approaches. For example, our R functions could be directly adapted to other effect
size measures, such as Hedges’ g, Odds Ratio, η2 and R2.

Also, it is important to note that our considerations regarding design analysis
could be fruitfully extended to the increasingly used Bayesian methods. Indeed,
our proposed method to formalize uncertainty via probability distributions finds
its natural extension in the concept of Bayesian prior. Specifically, design analysis
could be useful to evaluate the properties and highlight the inferential risks (such as
type M and type S errors) associated with the use of Bayes Factors and parameter
estimation with credible Bayesian intervals.

In sum, even though a design analysis requires big effort, we believe that it
has the potential to contribute to planning more robust studies and promoting
better interpretation of research findings. More generally, design analysis and its
associated way of reasoning helps researchers to keep in mind the inspiring quote
presented at the beginning of this paper regarding the use of statistical inference:
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“Remember ATOM”.

Round Table

1. The concept of “plausible effect size” is sometimes used interchangeably to the
concept of “population effect size”. In particular, the use of NHST in underpowered
studies (plus some form of publication bias that prevents null results to be available
to the scientific community) leads to overestimating effect sizes not just compared to
what could be considered plausible, but compared to what is true in the population
of interest (which is a worse problem). Then of course since the population effect
size is unknown, the plausible effect size can be used as a proxy in power and design
analysis, but this should be perhaps discussed more clearly.

Answer : We agree with the reviewer that using the terms “plausible effect
size” interchangeably to the concept of “population effect size”, could be confusing.
As suggested by the reviewer, the plausible effect size is used as a proxy for the
population effect size in power and design analysis. However, since “the population
effect sizes is unknown”, we will not know whether this is a good approximation
or not. As the reviewer underlined, this could be problematic since researchers
could easily overestimate the population effect sizes due to several issues in the
literature (e.g., underpowered studies and publication bias). For these reasons,
we underlined the importance of critically evaluating the literature taking into
account all available information. As an alternative, researchers could define the
plausible effect size according to other requirements, for example considering the
minimum effect size of interest. Design analysis can be straightforwardly extended
to these cases as well. In the framework in which we introduced the design analysis,
however, plausible effect size refers to what could be approximately the true value
of the parameter in the population.

2. In Section 2.2.2, three specific scenarios are presented to exemplify the retrospective
design analysis, giving practical suggestions in each scenario. However, a general
description of the retrospective design analysis and its utility, before presenting the
scenarios, could be useful in my opinion. In general, whereas I see the value of the
prospective design analysis, the dissertation could do more to convince the reader
about the utility of the retrospective design analysis. Scenario S1, in particular,
puzzles me a lot. In this scenario, a research team plans a sample size based on a
single published study (e.g., because it is the only study available). Suppose that
this effect size is d = .72, since they collect N = 62 participants for a two-tailed
t-test (as in Table 2.1) and I assume that they used alpha = .5 and beta = .20.
After the study, they obtain as a result an effect d = .90. According to what is said
in the dissertation, they retrospectively reason on their study (or remember their
thoughts before even reading the paper they used for power analysis - and trust
their memories more than the published study) and decide that a plausible effect
size is not d = .72, but d = .25. They run a design analysis and conclude that
their type M error is very large. I find this course of action very implausible. The
researchers, if wise, will probably use d = .72 or some slight downward adjustment
of that as plausible effect size (if not wise they will even use d = .90; but that’s
another story!). In short, if they (or their readers) do not realize that all the effect
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sizes that they are encountering on their path (from the published study and from
their own data) are heavily inflated, the design analysis will not help them much.
If they do realize that all effect sizes in this scenario are inflated, they would be
probably very suspicious about their own results with or without retrospective
design analysis. Perhaps this type of issue could be discussed a bit more.

Answer : We use this point as an opportunity to further discuss the utility
of retrospective design analysis. Retrospective design analysis is useful to evaluate
the inferential risks in studies that have already been conducted helping the
researchers to interpret the results. Retrospective design analysis should not be
confused with post-hoc power analysis. The former defines the plausible effect size
according to previous results in the literature or other information external to the
study, whereas the latter defines the plausible effect size based on the observed
results in the study (a widely-deprecated practice). As underlined by the reviewer,
however, the definition of a plausible effect size is very problematic if researchers do
not take into account that effect sizes in the literature could be inflated. In Scenario
S1 (that is true is a little bit confusing), we wanted to highlight the consequences of
using an inflated plausible effect size rather than a more reasonable one. Imagine
that researchers plan their sample size considering as plausible effect size d = .90
(an inflated value from a single study). In this case, the required sample size to
obtain 80% of power it’s 20 participants per group, but let’s say, without loss of
generalizability, they had enough budget to collect 31 participants per group. In
this case, the power level is even higher than the canonical 80% (the actual value
is 93%), thus researchers would be really confident when interpreting their result.
However, imagine that after collecting the data they conducted a retrospective
design analysis considering d = .25 as plausible effect size (a more reasonable
value). In this case, they would obtain much worse results with very low power
(16%) and high Type M error (2.6). Now, they will be much more cautious in the
interpretation of the results and probably they would not rely on the estimated
effect size. Of course, this is a fictional example (why would the researcher use
different effect sizes in the power analysis and in the retrospective design analysis?),
but we wanted to stress the importance of critically evaluating the literature and
carefully reasoning when defining the plausible effect size. However, let’s discuss
two other examples where retrospective design analysis could be very useful: 1)
Retrospective design analysis can be used by researchers when interpreting already
published studies to assess the results reliability; 2) In case of complex statistical
models, researchers could plan the sample size according to a simplified version of
the model (e.g., without considering the covariance structure of the model). After
collecting the data, researchers can use retrospective design analysis to assess the
reliability of their results considering a range of plausible effect sizes on the fitted
model. That is, using the fitted model structure (fixed effects, random effects, and
covariance structure of the model estimated on adequately large sample size), the
researcher varies only the values of the main effect of interest.

3. Another problem in Scenario 1 is that the description seems to assume that using
an effect size from a single study is, by itself, problematic (at p. 24, “researchers
should definitely abandon the idea of planning their sample size based on a single
published study”). I think that the characteristics of the study are also very
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important. For example, an effect found in a single preregistered study with a
convincing sampling strategy can be trusted much more than the same effect found
in many non-preregistered small-sample studies (or meta-analyses of those studies;
Friese & Frankenbach, 2020). I find Scenarios 2 and 3 more convincing because
they assume that researchers have some a priori idea that the population effect size
is close to d = .25, but fail to collect a sample size as large as desired for other reasons.

Answer : We agree with the reviewer that quantity is not quality. For this
reason, we stress again the importance of critically evaluating the literature and
carefully reasoning about the definition of the plausible effect size, taking into
account all sources of available information. An easy (albeit not really scientific)
method to evaluate the quality of published studies is to ask ourselves if we would
bet money on the reported effect sizes. I am sure almost everyone would bet on the
effect size found in a single preregistered study with a convincing sampling strategy
rather than on the effect found in many non-preregistered small-sample studies.

4. At p. 28, the dissertation suggests that power of .51 is problematic (I agree!), but in
other parts of the chapter a power of .60 (not very far from that .51!) is presented
as reasonable for planning a study (e.g., p. 21).

Answer : These could indeed appear as inconsistent advice about the opti-
mal level of power required. However, the aim of the chapter is not to provide
thresholds but rather to enhance researchers’ reasoning about the inferential
process. Thus, these examples should not be interpreted as a recommendation. Of
course, the higher the merrier, but other aspects should be also considered when
defining the required level of power. For example, the cost-value trade-off of the
different inferential errors could differ substantially in different scenarios. The same
power of 60% could be fine in some cases or absolutely unacceptable in others. The
important thing is to always justify the reasons behind the different choices.
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3
Design Analysis for Pearson Correlation

Coefficient: Evaluating Research Results1

Road Map

In the previous chapter, we introduced the Design Analysis, a useful framework that en-
hances researchers’ awareness about the consequence of conducting underpowered studies.
In this chapter, we extend the Design Analysis to the case of Pearson’s correlation coef-
ficient. This allows us to stress the importance of considering inferential risks related to
effect size estimation in a prospective or retrospective design analysis.

3.1 Introduction

Psychological science is increasingly committed to scrutinizing its published findings
by promoting large-scale replication efforts, where the protocol of a previous study
is repeated as closely as possible with a new sample (Camerer et al., 2016; Camerer
et al., 2018; Ebersole et al., 2016; Klein et al., 2014; Klein et al., 2018; Open

1This chapter is adapted from Bertoldo et al. (in press), in which I contributed to the de-
velopment of the original idea, writing of the manuscript, development of the R functions, sta-
tistical analysis and the graphical representations. Supplemental Materials available at https:
//osf.io/b3u8w/. Full reference:
Bertoldo, G., Zandonella Callegher, C., & Altoè, G. (in press). Designing Studies and Evalu-
ating Research Results: Type M and Type S Errors for Pearson Correlation Coefficient [Preprint].
Meta-Psychology. https://doi.org/10.31234/osf.io/q9f86
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Science Collaboration, 2015). Interestingly, many replication studies found smaller
effects than originals (Camerer et al., 2018; Open Science Collaboration, 2015)
and among many possible explanations, one relates to a feature of study design:
statistical power. In particular, it is plausible for original studies to have lower
statistical power than their replications. In the case of underpowered studies, we
are usually aware of the lower probability of detecting an effect if this exists, but
the less obvious consequences on effect size estimation are often neglected. When
underpowered studies are analyzed using thresholds, such as statistical significance
levels, effects passing such thresholds have to exaggerate the true effect size (Button
et al., 2013; Gelman et al., 2017; Ioannidis, 2008; Ioannidis et al., 2013; Lane &
Dunlap, 1978). Indeed, as will be extensively shown below, in underpowered studies
only large effects correspond to values that can reject the null hypothesis and be
statistically significant. As a consequence, if the original study was underpowered
and found an exaggerated estimate of the effect, the replication effect will likely be
smaller.

The concept of statistical power finds its natural development in the Neyman-
Pearson framework of statistical inference and this is the framework that we adopt in
this contribution. Contrary to the Null Hypothesis Significance Testing (NHST), the
Neyman-Pearson approach requires to define both the Null Hypothesis (i.e., usually,
but not necessarily, the absence of an effect) and the Alternative Hypothesis (i.e., the
magnitude of the expected effect). Further discussion on the Neyman and Pearson
approach and a comparison with the NHST is available in Altoè et al. (2020) and
Gigerenzer et al. (2004). When conducting hypothesis testing, we usually consider
two inferential risks: the Type I error (i.e., the probability α of rejecting the Null
Hypothesis if this is true) and the Type II error (i.e., the probability β of not
rejecting the Null Hypothesis if this is false). Then, statistical power is defined
as the probability 1-β of finding a statistically significant result if the Alternative
Hypothesis is true. All this leads to a narrow focus on statistical significance in
hypothesis testing, overlooking another important aspect of statistical inference,
namely, the effect size estimation.

When effect size estimation is conditioned on the statistical significance (i.e.,
effect estimates are evaluated only if their p-values are lower than α), effect size
exaggeration is a corollary consequence of low statistical power that might not be
evident at first. This point can be highlighted considering the Type M (magnitude)
and Type S (sign) errors characterizing a study design (Gelman & Carlin, 2014).
Given a study design (i.e., sample size, statistical test directionality, α level and
plausible effect size formalization), Type M error, also known as Exaggeration Ratio,
indicates the factor by which a statistically significant effect would be, on average,
exaggerated. Type S error indicates the probability to find a statistically significant
effect in the opposite direction to the one considered plausible. The analysis that
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researchers perform to evaluate the Type M and Type S errors in their research
practice is called design analysis, given the special focus posed into considering the
design of a study (Altoè et al., 2020; Gelman & Carlin, 2014).

Both errors are defined starting from a reasoned guess on the plausible mag-
nitude and direction of the effect under study, which is called plausible effect size
(Gelman & Carlin, 2014). A plausible effect size is an assumption the researchers
make about which is the expected effect in the population. This should not be
based on some noisy results from a pilot study but, rather, it could derive from
an extensive evaluation of the literature (e.g., theoretical or literature reviews and
meta-analyses). When considering the published literature to define the plausible
effect size, however, it is important to take into account the presence of publication
bias (Franco et al., 2014) and consider techniques for adjusting for the possible in-
flation of effect size estimates (Anderson et al., 2017). For example if, after taking
into account possible inflations, all the main results in a given topic, considering a
specific experimental design indicate that the correlation ranges between r = .15
and r = .25, we could reasonably choose as plausible effect size a value within this
range. Or even better, we could consider multiple values to evaluate the results in
different scenarios. Note that the definition of the plausible effect size is inevitably
highly context-dependent so any attempt to provide reference values would not be
useful, instead, it would prevent researchers from reasoning about the phenomenon
of interest. Even in extreme cases where no previous information is available, which
would question the exploratory/confirmatory nature of the study, researchers could
still evaluate which effect would be considered relevant (e.g., from a clinical or
economic perspective) and define the plausible effect size according to it.

Why do these errors matter? The concepts of Type M and Type S errors allow
enhancing researchers’ awareness of a complex process such as statistical inference.
Strictly speaking, Design Analysis used in the design phase of a study provides
similar information as the classical power analysis, indeed, to a given level of power
there is a corresponding Type M and Type S errors. However, it is a valuable
conceptual framework that can help researchers to understand the important role
of statistical power both when designing a new study or when evaluating previous
results from the literature. In particular, it highlights the unwanted (and often over-
looked) consequences on effect estimation when filtering for statistical significance
in underpowered studies. In these scenarios, there is not only a lower probability of
rejecting the null when it is actually false but, even more importantly, any signifi-
cant result would most likely lead to a misleading overestimation of the actual effect.
The exaggeration of effect sizes, in the right or the wrong direction, has important
implications on a theoretical and applied level. On a theoretical level, studies’ de-
signs with high Type M and Type S errors can foster distorted expectations on
the effect under study, triggering a vicious cycle for the planning of future studies.
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This point is relevant also for the design of replication studies, which could turn
out to be underpowered if they do not take into account possible inflations of the
original effect (Button et al., 2013). When studies are used to inform policymak-
ing and real-world interventions, implications can go beyond the academic research
community and can impact society at large. In these settings, we could assist to a
“hype and disappointment cycle” (Gelman, 2019b), where true effects turn out to
be much less impressive than expected. This can produce undesirable consequences
on people’s lives, a consideration that invites researchers to assume responsibility
in effectively communicating the risks related to effects quantification.

To our knowledge, Type M (magnitude) and Type S (sign) errors are not widely
known in the psychological research community but their consideration during the
research process has the potential to improve current research practices, for exam-
ple, by increasing the awareness that design choices have on possible studies’ results.
In a previous work, we illustrated Type M and Type S errors using Cohen’s’d as a
measure of effect size (Altoè et al., 2020). The purpose of the present contribution
is to further increase the familiarity with Type M and Type S errors, considering
another common effect size measures in psychology: Pearson correlation coefficient,
ρ. We aim to provide an accessible introduction to the Design Analysis framework
and enhance the understanding of Type M and Type S errors using several edu-
cational examples. The rest of this article is organized as follows: introduction to
Type M and Type S errors; description of what is a design analysis and how to
conduct one; analysis of Type S and Type M errors when varying alpha levels and
hypothesis directionality.

3.2 Type M and Type S Errors

Pearson correlation coefficient is a standardized effect size measure indicating the
strength and the direction of the relationship between two continuous variables (Co-
hen, 1988; Ellis, 2010). Even though the correlation coefficient is widely known, we
briefly go over its main features using an example. Imagine that we were interested
to measure the relationship between anxiety and depression in a population and we
plan a study with n participants, where, for each participant, we measure the level
of anxiety (i.e., variable X) and the level of depression (i.e., variable Y). At the end
of the study, we will have n pairs of values X and Y. The correlation coefficient helps
us answer the questions: how strong is the linear relationship between anxiety and
depression in this population? Is the relationship positive or negative? Correlation
ranges from -1 to +1, indicating respectively two extreme scenarios of perfect nega-
tive relationship and perfect positive relationship2. Since the correlation coefficient

2Correlation indicates a relationship between variables but does not imply causation. We do
not discuss this relevant aspect here but we refer the interested reader to (Rohrer, 2018)
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is a dimensionless number, it is a signal to noise ratio where the signal is given
by the covariance between the two variables (cov(x, y)) and the noise is expressed
by the product between the standard deviations of the two variables (SxSy; see
Formula 3.1). In this contribution, following the conventional standards, we will
use the symbol ρ to indicate the correlation in the population and the symbol r to
indicate the value measured in a sample.

r =
cov(x, y)

Sx Sy

. (3.1)

Magnitude and sign are two important features characterizing Pearson corre-
lation coefficient and effect size measures in general. And, when estimating effect
sizes, errors could be committed exactly regarding these two aspects. Gelman and
Carlin (2014) introduced two indexes to quantify these risks:

• Type M error, where M stands for magnitude, is also called Exaggeration
Ratio - the factor by which a statistically significant effect is on average ex-
aggerated.

• Type S error, sign - the probability to find a statistically significant result in
the opposite direction to the plausible one.

Note that, differently from the other inferential errors, Type M error is not a prob-
ability but rather a ratio indicating the average percentage of inflation.

How are these errors computed? In the next paragraphs, we approach this
question preferring an intuitive perspective. For a formal definition of these errors,
we refer the reader to Altoè et al. (2020), Gelman and Carlin (2014), and Lu et
al. (2018). Take as an example the previous fictitious study on the relationship
between anxiety and depression and imagine we decide to sample 50 individuals
(sample size, n = 50) and to set the α level to 5% and to perform a two-tailed
test. Based on theoretical considerations, we expect the plausibly true correlation
in the population to be quite strong and positive which we formalize as ρ = .50. To
evaluate the Type M and Type S errors in this research design, imagine repeating
the same study many times with new samples drawn from the same population and,
for each study, register the observed correlation (r) and the corresponding p-value.

The first step to compute Type M error is to select only the observed correlation
coefficients that are statistically significant in absolute value (for the moment, we do
not care about the sign) and to calculate their mean. Type M error is given by the
ratio between this mean (i.e., mean of statistically significant correlation coefficients
in absolute value) and the plausible effect hypothesized at the beginning, which in
this example is ρ = .50. Thus, given a study design, Type M error tells us what is
the average overestimation of an effect that is statistically significant.
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Type S error is computed as the proportion of statistically significant results
that have the opposite sign compared to the plausible effect size. In the present
example we hypothesized a positive relationship, specifically ρ = .50. Then, Type S
error is the ratio between the number of times we observed a negative statistically
significant result and the total number of statistically significant results. In other
words, Type S error indicates the probability to obtain a statistically significant
result in the opposite direction to the one hypothesized.

The central and possibly most difficult point in this process is reasoning on
what could be the plausible magnitude and direction of the effect of interest. This
critical process, which is central also in traditional power analysis, is an opportu-
nity for researchers to aggregate, formalize and incorporate prior information on
the phenomenon under investigation (Gelman & Carlin, 2014). What is plausi-
ble can be determined on theoretical grounds, using expert knowledge elicitation
techniques (see for example O’Hagan, 2019) and consulting literature reviews and
meta-analysis, always taking into account the presence of effect sizes inflation in
the published literature (Anderson, 2019). Given these premises, it is important
to stress that a plausible effect size should not be determined by considering the
results of a single study, given the high-level of uncertainty associated with his ef-
fect size estimate. The idea is that the plausible effect size should approximate
the true effect, which - although never known - can be thought of as “that which
would be observed in a hypothetical infinitely large sample” (Gelman & Carlin,
2014, p. 642). For a more exhaustive description of plausible effect size, we refer
the interested reader to Altoè et al. (2020) and Gelman and Carlin (2014).

Before we proceed, it is worth noting that there are other recent valuable tools
that start from different premises for designing and evaluating studies. Among
others, we refer the interested reader to methods which start from the definition of
the smallest effect size of interest (SESOI; for a tutorial, see Lakens, Scheel, et al.,
2018).

3.3 Design Analysis

Researchers can consider Type M and Type S errors in their practice by performing
a design analysis (Altoè et al., 2020; Gelman & Carlin, 2014). Ideally, a design
analysis should be performed when designing a study. In this phase, it is specifi-
cally called prospective design analysis and it can be used as a sample size planning
strategy where statistical power is considered together with Type M and Type S
errors. However, design analysis can also be beneficial to evaluate the inferential
risks in studies that have already been conducted and where the study design is
known. In these cases, Type M and Type S errors can support results interpreta-
tion by communicating the inferential risks in that research design. When design
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analysis happens at this later stage, it takes the name of retrospective design anal-
ysis. Note that retrospective design analysis should not be confused with post-hoc
power analysis. A retrospective design analysis defines the plausible effect size ac-
cording to previous results in the literature or other information external to the
study, whereas the post-hoc power analysis defines the plausible effect size based on
the observed results in the study and it is a widely-deprecated practice (Gelman,
2019a; S. Goodman & Berlin, 1994).

In the following sections, we illustrate how to perform prospective and retrospec-
tive design analysis using some examples. We developed two R functions3 to per-
form design analysis for Pearson correlation, which are available at the page https:
//osf.io/9q5fr/. The function to perform a prospective design analysis is pro r().
It requires as input the plausible effect size (rho), the statistical power (power),
the directionality of the test (alternative) which can be set as: “two.sided”,
“less” or “greater”. Type I error rate (sig level) is set as default at 5% and
can be changed by the user. The pro r() function returns the necessary sample
size to achieve the desired statistical power, Type M error rate, the Type S error
probability, and the critical value(s) above which a statistically significant result
can be found. The function to perform retrospective design analysis is retro r().
It requires as input the plausible effect size, the sample size used in the study,
and the directionality of the test that was performed. Also in this case, Type I
error rate is set as default at 5% and can be changed by the user. The function
retro r() returns the Type M error rate, the Type S error probability, and the
critical value(s)4.

3.3.1 Case Study

To familiarize the reader with Type M and Type S errors, we start our discussion
with a retrospective design analysis of a published study. However, the ideal tem-
poral sequence in the research process would be to perform a prospective design
analysis in the planning stage of a research project. This is the time when the
design is being laid out and useful improvements can be made to obtain more ro-
bust results. In this contribution, the order of presentation aims first, to provide
an understanding of how to interpret Type M and Type S errors, and then discuss
how they could be taken into account. The following case study was chosen for

3An R-package was subsequently developed and now is available on CRAN, PRDA: Conduct
a Prospective or Retrospective Design Analysis https://cran.r-project.org/web/packages/PRDA/
index.html. PRDA contains other features on Design Analysis, that are beyond the aim of the
present paper.

4Critical value is the name usually employed in hypotheses testing within the Neyman-Pearson
framework. In the research practice, this is also known as the Minimal Statistically Detectable
Effect (Cook et al., 2014; Phillips et al., 2001)
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illustrative purposes only and, by no means our objective is to judge the study
beyond illustrating an application of how to calculate Type M and Type S errors
on a published study.

We consider the study published in Science by Eisenberger et al. (2003) enti-
tled: “Does Rejection Hurt? An fMRI Study of Social Exclusion”. The research
question originated from the observation that the Anterior Cingulate Cortex (ACC)
is a region of the brain known to be involved in the experience of physical pain.
Could pain from social stimuli, such as social exclusion, share similar neural under-
pinnings? To test this hypothesis, 13 participants were recruited and each one had
to play a virtual game with other two players while undergoing functional Magnetic
Resonance Imaging (fMRI). The other two players were fictitious, and participants
were actually playing against a computer program. Players had to toss a virtual
ball among each other in three conditions: social inclusion, explicit social exclusion
and implicit social exclusion. In the social inclusion condition, the participant regu-
larly received the ball. In the explicit social exclusion condition the participant was
told that, due to technical problems, he was not going to play that round. In the
implicit social exclusion condition, the participant experienced being intentionally
left out from the game by the other two players. At the end of the experiment,
each participant completed a self-report measure regarding their perceived distress
when they were intentionally left out by the other players. Considering only the
implicit social exclusion condition, a correlation coefficient was estimated between
the measure of distress and neural activity in the Anterior Cingulate Cortex. As
suggested by the large and statistically significant correlation coefficient between
perceived distress and activity in the ACC, r = .88, p ¡ .005 (Eisenberger et al.,
2003, p. 291), authors concluded that social and physical pain seem to share similar
neural underpinnings.

Before proceeding to the retrospective design analysis, we refer the interested
reader to some background history regarding this study. This was one of the many
studies included in the famous paper “Puzzlingly High Correlations in fMRI Stud-
ies of Emotion, Personality, and Social Cognition” (Vul et al., 2009) which raised
important issues regarding the analysis of neuroscientific data. In particular, this
paper noted that the magnitude of correlation coefficients between fMRI measures
and behavioural measures were beyond what could be considered plausible. We
refer the interested reader also to the commentary by Yarkoni (2009), who noted
that the implausibly high correlations in fMRI studies could be largely explained
by the low statistical power of experiments.

A retrospective design analysis should start with thorough reasoning on the
plausible size and direction of the effect under study. To produce valid inferences, a
lot of attention should be devoted to this point by integrating external information.
For the sake of this example, we turn to the considerations made by Vul and Pashler
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(2017) who suggested correlations between personality measures and neural activity
to be likely around ρ = .25. A correlation of ρ = .50 was deemed plausible but
optimistic and a correlation of ρ = .75 was considered theoretically plausible but
unrealistic.

3.3.2 Retrospective Design Analysis

To perform a retrospective design analysis on the case study, we need information
on the research design and the plausible effect size. Based on the previous consider-
ations, we set the plausible effect size to be ρ = .25. Information on the sample size
was not available in the original study (Eisenberger et al., 2003) and was retrieved
from Vul et al. (2009) to be n = 13. The α level and the directionality of the
test were not reported in the original study, so for the purpose of this example, we
will consider α = .05 and a two-tailed test. Given this study design, what are the
inferential risks in terms of effect size estimation?

We can use the R function retro r(), whose inputs and outputs are displayed
below5. In this study, the statistical power is .13, that is to say, there is a 13% prob-
ability to reject the null hypothesis, if an effect of at least ρ = |.25| exists. Consider
this point together with the results obtained in the experiment: r = .88, p < .005
(Eisenberger et al., 2003, p. 291). It is clear that, even though the probability
to reject the null hypothesis is low (power of 13%), this event could happen. And
when it does happen, it is tempting to believe that results are even more remarkable
(Gelman & Loken, 2014). However, this design comes with serious inferential risks
for the estimation of effect sizes, which could be grasped by presenting Type M and
Type S errors. A glance at their value communicates that it is not impossible to
find a statistically significant result, but when it does happen, the effect sizes could
be largely overestimated - Type M = 2.58 - and maybe even in the wrong direction
- Type S = .03. The Type M error rate of 2.58 indicates that a statistically signif-
icant correlation is on average about two and a half times the plausible value. In
other words, statistically significant results emerging in such a research design will
on average overestimate the plausible correlation coefficient by 160%. The Type S
error of .03 suggests that there is a three percent probability to find a statistically
significant result in the opposite direction, in this example, a negative relationship.

retro_r(rho = .25, n = 13, alternative = "two.sided",

sig_level = .05, seed = 2020)

##

## Design Analysis

5The option seed allows setting the random number generator to obtain reproducible results.
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##

## Hypothesized effect: rho = 0.25

##

## Study characteristics:

## n alternative sig_level

## 13 two.sided 0.05

##

## Inferential risks:

## power typeM typeS

## 0.127 2.583 0.028

##

## Critical value(s): r = ±0.553

In this research design, the critical values above which a statistically significant
result is declared correspond to r = ±.55. These values are highlighted in Figure 3.1
as the vertical lines in the sampling distribution of correlation coefficients under the
null hypothesis. Notice that the plausible effect size lies in the region of acceptance
of the null hypothesis6. Therefore, it is impossible to simultaneously find a statis-
tically significant result and estimate an effect close to the plausible one (ρ = .25).
The figure represents the so-called Winner’s curse: “the ‘lucky’ scientist who makes
a discovery is cursed by finding an inflated estimate of that effect” (Button et al.,
2013).

3.3.3 Prospective Design Analysis

Ideally, Type M and Type S errors should be considered in the design phase of
a study during the decision-making process regarding the experimental protocol.
At this stage, prospective design analysis can be used as a sample size planning
strategy which aims to minimize Type M and Type S errors in the upcoming study.

Imagine that we were part of the research team in the previous case study
exploring the relationship between activity in the Anterior Cerebral Cortex and
perceived distress. When drafting the research protocol, we face the inevitable
discussion on how many participants we are going to recruit. This choice depends
on available resources, type of study design, constraints of various nature and,
importantly, the plausible magnitude and direction of the phenomenon that we
are going to study. As previously mentioned, deciding on a plausible effect size is
a fundamental step which requires great effort and should not be done by trying
different values only to obtain a more desirable sample size. Instead, proposing a

6Note that accepting the null hypothesis is possible only in the Neyman-Pearson approach and
not in the NHST
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Figure 3.1: Winner’s course. H0 = Null Hypothesis, H1 = Alternative Hypothesis.
When sample size, directionality of the test and Type I error probability are set,
also the smallest effect size above which is possible to find a statistically significant
result is set. In this case, the plausible effect size, ρ = .25, lies in the region where
it is not possible to reject H0 (the region delimited by the two vertical lines). Thus,
it is impossible to simultaneously find a statistically significant result and an effect
close to the plausible one. In other words, a statistically significant effect must
exaggerate the plausible effect size.

plausible effect size is where the expert knowledge of the researcher can be formalized
and can greatly contribute to the informativeness of the study that is being planned.
For the sake of these examples, we adopt the previous consideration and we suppose
that common agreement is reached on a plausible correlation coefficient to be around
ρ = .25. Finally, we would like to leave open the possibility to explore whether the
relationship goes in the opposite direction to the one hypothesized, so we decide to
perform a two-tailed test.

We can implement the prospective design analysis using the function pro r()

which inputs and outputs are displayed below. About 125 participants are necessary
to have 80% probability to detect an effect of at least ρ = ±.25 if it actually exists.
With this sample size, the Type S error is minimized and approximates zero. In this
study design, the Type M error is 1.11 indicating that statistically significant results
are on average exaggerated by 11%. It is possible to notice that the critical values
are r = ±.18, further highlighting that our plausible effect size is actually included
among those values that lead to the acceptance of the alternative hypothesis.
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pro_r(rho = .25, power = .8, alternative = "two.sided",

sig_level = .05, seed = 2020)

##

## Design Analysis

##

## Hypothesized effect: rho = 0.25

##

## Study characteristics:

## n alternative sig_level

## 125 two.sided 0.05

##

## Inferential risks:

## power typeM typeS

## 0.806 1.111 0

##

## Critical value(s): r = ±0.176

In a design analysis, it is advisable to investigate how the inferential risks would
change according to different scenarios in terms of statistical power and plausible
effect size. Changes in both these factors impact Type M and Type S errors. For
example, maintaining the plausible correlation of ρ = .25, if we decrease statistical
power from .80 to .60 only 76 participants are required (see Table 3.1). However,
this is associated with an increased Type M error rate from 1.11 to 1.28. That is
to say, with 76 subjects the plausible effect size will be on average overestimated
by 28%. Alternatively, imagine that we would like to maintain a statistical power
of 80%, what happens if the plausible effect size is slightly larger or smaller? The
necessary sample size would spike to 344 for a ρ = .15 and decrease to 60 for
ρ = .35. In both scenarios, the Type M error remains about 1.12, which reflects the
more general point that for 80% power, Type M error is around 1.10. In all these
scenarios, Type S error is close to zero, hence not worrisome.

For completeness, Figure 3.2 summarizes the relationship between statistical
power, Type M and Type S errors as a function of sample size in three scenarios of
plausible correlation coefficients. We display the three values that Vul and Pashler
(2017) considered for correlations between fMRI measures and behavioural measures
with different degrees of plausibility. An effect of ρ = .75 was deemed theoretically
plausible but unrealistic, ρ = .50 was more plausible but optimistic, and ρ = .25
was more likely. The curves illustrate a general point: Type M and Type S error
increase with smaller sample sizes, smaller plausible effect sizes and lower statistical
power. Also, the figure shows that statistical power, Type M and Type S errors are
related to each other: as power increases, Type M and Type S errors decrease.
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Table 3.1: Prospective design analysis in different scenarios of plausible effect size
and statistical power.

ρ Power Sample Size Type M Type S Critical r value

0.25 0.6 76 1.280 0 ±0.226
0.15 0.8 344 1.116 0 ±0.106
0.35 0.8 60 1.115 0 ±0.254

Note: In all cases, alternative = "two.sided" and sig level = .05.
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Figure 3.2: How Type M, Type S and Statistical power vary as a function of
sample size in three different scenarios of plausible effect size (ρ = .25, ρ = .50,
ρ = .75). Note that, for the sake of interpretability, we decided to use different
scales for both the x-axis and y-axis in the three scenarios of plausible effect size.
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At first, it might seem that Type M and Type S errors are redundant with
the information provided by statistical power. Even though they are related, we
believe that Type M and Type S errors bring added value during the design phase
of a research protocol because they facilitate a connection between how a study is
planned and how results will actually be evaluated. That is to say, final results will
comprise of a test statistics with an associated p-value and effect size measure. If
the interest is maximizing the accuracy with which effects will be estimated, then
Type M and Type S errors directly communicate the consequences of design choices
on effect size estimation.

3.4 Varying α levels and Hypotheses

Directionality

So far, we did not discuss two other important decisions that researchers have
to take when designing a study: statistical significance threshold or α level, and
directionality of the statistical test, one-tailed or two-tailed. In this section, we
illustrate how different choices regarding these aspects impact Type M and Type S
errors.

A lot has been written regarding the automatic adoption of a conventional α
level of 5% (e.g., Gigerenzer et al., 2004; Lakens, Adolfi, et al., 2018). This practice
is increasingly discouraged, and researchers are invited to think about the best
trade-off between α level and statistical power, considering the aim of the study
and available resources. The α level impacts Type M and Type S errors as much
as it impacts statistical power. Everything else equal, Type M error increases with
decreasing α level (i.e., negative relationship), whereas Type S error decreases with
decreasing α level (i.e., positive relationship). To further illustrate the relation
between Type M error and α level, let us take as an example the previous case
study with a sample of 13 participants, plausible effect size ρ = .25 and two-tailed
test. Table 3.2 shows that by lowering the α level from 10% to .10%, the critical
values move from r = ±.48 to r = ±.80. This suggests that, with these new
higher thresholds, the exaggeration of effects will be even more pronounced because
effects have to be even larger to pass such higher critical values (i.e., higher Type M
error). Instead, the relationship between Type S error and α level can be clarified
thinking that by lowering the statistical significance threshold, we are being more
conservative to falsely reject the null hypothesis in general which implies that we
are also being more conservative to falsely reject the null hypothesis in the wrong
direction.

Another important choice in study design is the directionality of the test (i.e.,
one-tailed or two-tailed). Design analysis invites reasoning on the plausible effect
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Table 3.2: How changes in α level impact Power, Type M error, Type S error and
critical values.

α-level Power Type M Type S Critical r value

0.100 0.212 2.369 0.040 ±0.476
0.050 0.127 2.583 0.028 ±0.553
0.010 0.035 2.977 0.011 ±0.684
0.005 0.021 3.088 0.014 ±0.726
0.001 0.005 3.340 0.000 ±0.801

Note: In all cases, ρ = .25, n = 13, and alternative = "two.sided".

size and hypothesizing the direction of the effect, not only its magnitude. So why
should a researcher perform non-directional statistical tests when there is a hy-
pothesized direction? Performing a two-tailed test leaves open the possibility to
find an unexpected result in the opposite direction (Cohen, 1988), a possibility
which may be of special interest for preliminary exploratory studies. However, in
more advanced stages of a research program (i.e., confirmatory study), directional
hypotheses benefit from higher statistical power and lower Type M error rates (Fig-
ure 3.3). As an example, let us consider the differences between a two-tailed test
and a one-tailed test in the previous case study. We can perform a new prospective
design analysis (see code below) with a plausible correlation of ρ = .25, 80% statis-
tical power, but this time setting the argument alternative in the R function to
\greater". A comparison with the previous prospective design analyses, suggests
that the same Type M error rate of about 10% is guaranteed with 94 participants,
instead of the 125 subjects necessary with a two-tailed test. Note that Type S error
is not possible in directional statistical tests. Indeed, all the statistically significant
results are obtainable only in the hypothesized direction, not the opposite one.

pro_r(rho = .25, power = .8, alternative = "greater",

sig_level = .05, seed = 2020)

##

## Design Analysis

##

## Hypothesized effect: rho = 0.25

##

## Study characteristics:

## n alternative sig_level

## 94 greater 0.05

##
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## Inferential risks:

## power typeM typeS

## 0.793 1.14 0

##

## Critical value(s): r = 0.171
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Figure 3.3: Comparison of Type M error rate and Power level between one-tailed
and two-tailed test with ρ = .25, α = .05. n = sample size.

Valid conclusions require decisions on test directionality and α level to be taken
a priori, not while data are being analyzed (Cohen, 1988). These decisions can
take place during a prospective design analysis, which aligns with the increasing
interest in psychological science to transparently communicate and justify design
choices through studies’ preregistration in public repositories (e.g., Open Science
Framework; Aspredicted.com). Preregistration of studies’ protocol is particularly
valuable for researchers endorsing an error statistics philosophy of science, where
the evaluation of research results takes into account the severity with which claims
are tested (Lakens, 2019; Mayo, 2018). Severity depends on the degree to which
a research protocol tries to falsify a claim. For example, a one-tailed statistical
test provides greater severity than a two-tailed statistical test. As noted by Lakens
(2019), preregistration is important to openly share a priori decisions, such as test-
directionality, providing valuable information for researchers interested in evaluating
the severity of research claims.

48



CHAPTER 3. DESIGN ANALYSIS FOR PEARSON CORRELATION COEFFICIENT

3.5 Publication Bias and Significance Filter

On a concluding note, we would like to clarify the relationship of Design Analysis
with publication bias and the statistical significance filter.

While publication bias and Type M and Type S errors are related, they operate
at two different levels. Publication bias refers to a publication system that favours
statistically significant results over non-statistically significant findings. This phe-
nomenon alone cannot explain the presence of exaggerated effects. Imagine if all
studies in the literature were conducted with high statistical power, then statistically
significant findings would probably not be so extreme. The problem of exaggerated
effect sizes in the literature can be explained only by a combination of publication
bias with studies that have low statistical power. As previously shown, statistical
power and Type M and Type S errors are related to each other: low statistical
power corresponds to higher Type M and Type S errors.

The critical element is the application of the statistical significance filter with-
out taking into account statistical power. Design Analysis per se does not solve
this issue but, instead, it allows us to recognize its problematic consequences. In
the same way as statistical power is a characteristic of a study design, so are Type
M and Type S errors, however, the two are qualitatively different in terms of the
kind of reasoning they favour. Statistical power is defined in terms of probability
of rejecting the Null hypothesis and, even though this is based on an effect size of
interest, the relationship “low power - high possibility of exaggeration” may not be
straightforward for everyone. Instead, Type M and Type S errors directly quantify
the possible exaggeration. Furthermore, their consideration protects against an-
other possible pitfall. When in a study a statistically significant result is found and
the associated effect size estimate is large, the finding could be interpreted as robust
and impressive. However, this interpretation is not always appropriate. Here, the
missing piece of information is statistical power. If power is considered, researchers
would realize that a large effect was found in a context where there was a low
probability to find it. But this interpretation is not explicitly stating an important
aspect: in these conditions, the only way to find a statistically significant result
is by overestimating the true effect. On the contrary, this consequence becomes
immediately clear once Type M and Type S errors are considered retrospectively.
Similarly, considering Type M and Type S prospectively favours reasoning in terms
of effect size rather than the probability of rejecting the null hypothesis when setting
the sample size in a design analysis.
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3.6 Discussion and Conclusion

In the scientific community, it is quite widespread the idea that the literature is
affected by a problem with effect size exaggeration. This issue is usually explained
in terms of studies’ low statistical power combined with the use of thresholds of
statistical significance (Button et al., 2013; Ioannidis, 2008; Ioannidis et al., 2013;
Lane & Dunlap, 1978; Yarkoni, 2009; Young et al., 2008). Statistically significant
results can be obtained even in underpowered studies and it is precisely in these
cases that we should worry the most about issues of overestimation. Type M and
Type S errors quantify and highlight the inferential risks directly in terms of effect
size estimation, which are implied by the concept of statistical power but might
not be recognizable outright. So far, only a handful of papers explicitly mentioned
Type M and Type S errors (Altoè et al., 2020; Gelman, 2018; Gelman & Carlin,
2013, 2014; Gelman et al., 2017; Gelman & Tuerlinckx, 2000; Lu et al., 2018;
Vasishth et al., 2018). With the broader goal of facilitating their consideration in
psychological science, in the present contribution we illustrated how Type M and
Type S errors are considered in a design analysis using one of the most common
effect size measures in psychology, Pearson correlation coefficient.

Peculiar to design analysis is the focus on the implications of design choices
on effect sizes estimation rather than statistical significance only. We illustrated
how Type M and Type S errors can be taken into account with a prospective de-
sign analysis. In the planning stage of a research project, design analysis has the
potential to increase researchers’ awareness of the consequences that their sample
size choices have on uncertainty about final estimates of the effects. This favours
reasoning in similar terms to those in which results will be evaluated, that is to say,
effect size estimation. But understanding the inferential risks in a study design is
also beneficial once results are obtained. We presented retrospective design analysis
on a published study, and the same process can be useful for studies in general,
especially those ending without the necessary sample size to maximize statistical
power and minimize Type M and Type S errors. In all cases, presenting their val-
ues effectively communicates the uncertainty of the results. In particular, Type M
and Type S errors put a red flag when results are statistically significant, but the
effect size could be largely overestimated and in the wrong direction. Finally, both
prospective and retrospective design analysis favours cumulative science encourag-
ing the incorporation of expert knowledge in the definition of the plausible effect
sizes.

It is important to remark that even if Design Analysis is based on the definition
of a plausible effect size, a best practice should be to conduct multiple Design
Analyses by considering different scenarios which include different plausible effect
sizes and levels of power to maximize the informativeness of both a prospective and
a retrospective analysis.
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To make design analysis accessible to the research community, we provide the R
functions to perform prospective design analysis and retrospective design analysis
for Pearson correlation coefficient https://osf.io/9q5fr/.

Finally, prospective design analysis could contribute to better research design,
however many other important factors were not considered in this contribution. For
example, the validity and reliability of measurements should be at the forefront in
research design, and careful planning of the entire research protocol is of utmost
importance. Future works could tackle some of these shortcomings for example,
including an analysis of the quality of measurement on the estimates of Type M
and Type S errors. Also, we believe that it would be valuable to provide extension
of design analysis for other common effect size measures with the development of
statistical software packages that could be directly used by researchers. Moreover,
design analysis on Pearson correlation can be easily extended to the multivariate
case where multiple predictors are considered. Lastly, design analysis is not limited
to the Neyman-Pearson framework but can be considered also within other statis-
tical approaches such as Bayesian approach. Future works could implement design
analysis to evaluate the inferential risks related to the use of Bayes Factors and
Bayesian Credibility Intervals.

Summarizing, choices regarding studies’ design impact effect size estimation
and Type M (magnitude) error and Type S (sign) error allow to directly quantify
these inferential risks. Their consideration in a prospective design analysis increases
awareness of what are the consequences of sample size choice reasoning in similar
terms to those used in results evaluation. Instead, retrospective design analysis
provides further guidance on interpreting research results. More broadly, design
analysis reminds researchers that statistical inference should start before data col-
lection and does not end when results are obtained.
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3.6. Discussion and Conclusion
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4
PRDA: An R package for Prospective and

Retrospective Design Analysis1

Road Map

In the previous chapters, we introduced the design analysis framework. In this chapter,
we present the PRDA R-package. This package allows performing prospective and retro-
spective design analysis in the case of Pearson’s correlation between two variables or mean
comparisons.

4.1 Introduction

Design Analysis was introduced by Gelman and Carlin (2014) as an extension of
Power Analysis. Traditional power analysis has a narrow focus on statistical sig-
nificance. Design analysis, instead, evaluates together with power levels also other
inferential risks (i.e., Type M error and Type S error), to assess estimates uncer-
tainty under hypothetical replications of a study.

1This chapter is adapted from Zandonella Callegher et al. (2021), in which I contributed to
the development of the original idea, writing of the manuscript, development of the R functions,
statistical analysis and the graphical representations. GitHub repository https://github.com/
ClaudioZandonella/PRDA. Full reference:
Zandonella Callegher, C., Bertoldo, G., Toffalini, E., Vesely, A., Andreella, A., Pastore, M.,
& Altoè, G. (2021). PRDA: An R package for Prospective and Retrospective Design Analysis.
Journal of Open Source Software, 6(58), 2810. https://doi.org/10.21105/joss.02810
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4.2. Statement of Need

Given an hypothetical value of effect size and study characteristics (i.e., sample
size, statistical test directionality, significance level), Type M error (Magnitude,
also known as Exaggeration Ratio) indicates the factor by which a statistically
significant effect is on average exaggerated. Type S error (Sign), instead, indicates
the probability of finding a statistically significant result in the opposite direction
to the hypothetical effect.

Although Type M error and Type S error depend directly on power level, they
underline valuable information regarding estimates uncertainty that would other-
wise be overlooked. This enhances researchers awareness about the inferential risks
related to their studies and helps them in the interpretation of their results. How-
ever, design analysis is rarely applied in real research settings also for the lack of
dedicated software.

To know more about design analysis consider Gelman and Carlin (2014) and
Lu et al. (2018). While, for an introduction to design analysis with examples in
psychology see Altoè et al. (2020) and Bertoldo et al. (in press).

4.2 Statement of Need

PRDA is an R package performing prospective or retrospective design analysis to
evaluate inferential risks (i.e., power, Type M error, and Type S error) in a study
considering Pearson’s correlation between two variables or mean comparisons (one-
sample, paired, two-sample, and Welch’s t-test). Prospective Design Analysis is
performed in the planning stage of a study to define the required sample size to
obtain a given level of power. Retrospective Design Analysis, instead, is performed
when the data have already been collected to evaluate the inferential risks associated
with the study.

Another recent R package, retrodesign (Timm, 2019), allows conducting ret-
rospective design analysis considering estimate of the unstandardized effect size
(i.e., regression coefficient or mean difference) and standard error of the estimate.
PRDA package, instead, considers standardized effect size (i.e., Pearson correlation
coefficient or Cohen’s d) and study sample size. These are more commonly used in
research fields such as Psychology or Social Science, and therefore are implemented
in PRDA to facilitate researchers’ reasoning about design analysis. PRDA, additionally,
offers the possibility to conduct a prospective design analysis and to account for the
uncertainty about the hypothetical value of effect size. In fact, hypothetical effect
size can be defined as a single value according to previous results in the literature
or experts indications, or by specifying a distribution of plausible values.

The package is available from GitHub (https://github.com/ClaudioZandonella/
PRDA) and CRAN (https://CRAN.R-project.org/package=PRDA). Documentation
about the package is available at https://claudiozandonella.github.io/PRDA/.
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4.3 Examples

Imagine a study evaluating the relation a given personality trait (e.g., introversion)
and math performance. Suppose that 20 participants were included in the study
and results indicated a statistically significant correlation (e.g, r = .55, p = .012).
The magnitude of the estimated correlation, however, is beyond what could be
considered plausible in this field.

4.3.1 Retrospective Design Analysis

Suppose previous results in the literature indicate correlations in this area are more
likely to be around ρ = .25. To evaluate the inferential risks associated with the
study design, we can use the function retrospective().

library(PRDA)

set.seed(2020) # set seed to make results reproducible

retrospective(effect_size = .25, sample_n1 = 20,

test_method = "pearson")

##

## Design Analysis

##

## Hypothesized effect: rho = 0.25

##

## Study characteristics:

## test_method sample_n1 sample_n2 alternative sig_level df

## pearson 20 NULL two_sided 0.05 18

##

## Inferential risks:

## power typeM typeS

## 0.185 2.161 0.008

##

## Critical value(s): rho = ± 0.444

In the output, we have the summary information about the hypothesized pop-
ulation effect, the study characteristics, and the inferential risks. We obtained a
statistical power of almost 20% that is associated with a Type M error of around
2.2 and a Type S error of 0.01. That means, statistical significant results are on
average an overestimation of 120% of the hypothesized population effect and there
is a 1% probability of obtaining a statistically significant result in the opposite di-
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rection. To know more about function arguments and examples see the function
documentation and vignette.

Effect Size Distribution

Alternatively, if no precise information about hypothetical effect size is available,
researchers could specify a distribution of values to account for their uncertainty.
For example, they might define a normal distribution with mean of .25 and standard
deviation of .1, truncated between .10 and 40.

retrospective(effect_size = function(n) rnorm(n, .25, .1),

sample_n1 = 20, test_method = "pearson",

tl = .1, tu = .4, B = 1e3,

display_message = FALSE)

## Truncation could require long computational time

##

## Design Analysis

##

## Hypothesized effect: rho ~ rnorm(n, 0.25, 0.1) [tl = 0.1 ; tu = 0.4 ]

## n_effect Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1000 0.101 0.197 0.25 0.252 0.308 0.4

##

## Study characteristics:

## test_method sample_n1 sample_n2 alternative sig_level df

## pearson 20 NULL two_sided 0.05 18

##

## Inferential risks:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## power 0.055 0.133 0.1880 0.203727 0.26600 0.449

## typeM 1.407 1.785 2.1645 2.347745 2.70075 5.263

## typeS 0.000 0.000 0.0060 0.017573 0.02300 0.246

##

## Critical value(s): rho = ± 0.444

Consequently this time we obtained a distribution of values for power, Type
M error, and Type S error. Summary information are provided in the output and
sampled effects and corresponding error values are available in the returned object.

In PRDA there are no implemented functions to obtain graphical representations
of the results. However, it is easy to access all the results and use them to create
the plots according to your own needs and preferences. Plotting the distribution
of sampled effects, researchers can evaluate whether they accurately represent the
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intended distribution (see Figure 4.1). If not, the number of sampled effects should
be increased (B effect).
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Figure 4.1: Distribution of the sampled effects according to N (.25, .1) truncated
between .10 and .40.

Also the values of Power, Type M error, and Type S error can be plotted to
evaluate their distributions (see Figure 4.2).
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Figure 4.2: Distribution of Power, Type M error, and Type S error.
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4.3.2 Prospective Design Analysis

Given the previous results, researchers might consider planning a replication study
to obtain more reliable results. The function prospective() can be used to com-
pute the sample size needed to obtain a given level of power (e.g., power = 80%).

prospective(effect_size = .25, power = .8,

test_method = "pearson", display_message = FALSE)

##

## Design Analysis

##

## Hypothesized effect: rho = 0.25

##

## Study characteristics:

## test_method sample_n1 sample_n2 alternative sig_level df

## pearson 122 NULL two_sided 0.05 120

##

## Inferential risks:

## power typeM typeS

## 0.796 1.12 0

##

## Critical value(s): rho = ± 0.178

In the output, we have again the summary information about the hypothesized
population effect, the study characteristics, and the inferential risks. To obtain a
power of around 80% the required sample size is n = 122, the associated Type M
error is around 1.10 and the Type S error is approximately 0. To know more about
function arguments and examples see the function documentation and vignette.

4.4 Conclusions

The design analysis framework is a useful conceptual tool to enhance researchers’
awareness about the consequence of conducting underpowered studies. In particu-
lar, what could pass unnoticed is that, in case of underpowered studies, there is not
only a higher probability of not rejecting the Null Hypothesis if this is false, but,
even more importantly, there is also a higher risk of obtaining misleading estimates
in case of significant results. Type M error (and Type S error) allows us to directly
highlight this important issue. PRDA allows users to get familiar with the concepts of
design analysis considering common cases as the evaluation of Pearson’s correlation
between two variables or mean comparisons.

58



Part II
Model Comparison





5
Model Comparison via Information
Criteria: A Different Approach to

Hypothesis Testing1

Road Map

In the previous chapters, we introduced the Design Analysis to enhance researchers’ aware-
ness about the inferential process in the NHST and the consequence on effect size estimation
when conducting underpowered studies. In this chapter, we further discuss the limits of
the NHST approach in the evaluation of research hypotheses. To overcome these issues,
we introduce the model comparison approach using the information criteria that allows to
properly evaluate the research hypotheses. As a case study, we consider the stereotype
threat effects on Italian girls’ mathematics performance.

1This chapter is adapted from of Agnoli et al. (2021) and its supplemental material available
at https://osf.io/3u2jd/, in which I contributed to the writing of the supplemental material, the
statistical analyses and the graphical representations. In particular, a special emphasis is dedi-
cated to the statistical approach used. Full reference:
Agnoli, F., Melchiorre, F., Zandonella Callegher, C., & Altoè, G. (2021). Stereotype threat
effects on Italian girls’ mathematics performance: A failure to replicate. Developmental Psychol-
ogy, 57(6), 940–950. https://doi.org/10.1037/dev0001186
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5.1. Introduction

5.1 Introduction

The Null Hypothesis Significance Testing (NHST) is the dominant statistical ap-
proach in Social and Psychological sciences (Chavalarias et al., 2016). In the lit-
erature, however, many problematic aspects of the NHST have been highlighted
(Szucs & Ioannidis, 2017; Wasserstein et al., 2019). In particular, the misunder-
standing and abuse of the NHST, in what Gigerenzer defined “the null ritual” 2004,
is considered to be one of the main causes behind the replication crisis in social and
psychological sciences.

The NHST places a narrow focus on statistical testing leading to dichotomous
thinking significant/non-significant. Most of the researchers, however, do not in-
terpret correctly the meaning of the p-values and the implications of statistically
significant results more in general (Gigerenzer et al., 2004). The p-value does not
quantify the probability of one hypothesis given the data, i.e. P (H|D), but the
probability of the data given one hypothesis, i.e. P (H|D). This often leads to
misleading interpretations and false beliefs about the validity of the results. In fact,
researchers are usually interested in evaluating their hypotheses of interest but the
p-value does not quantify the evidence in favour of one hypothesis but only against
it. Thus, given a statistically significant result, they usually interpret it as evidence
in favour of their hypotheses. In reality, however, nothing can be said about the
plausibility of their hypotheses. This is one of the main limits of the NHST as it
does not allow to answer the question the researchers are more interested in, that
is the evaluation of research or theoretical hypotheses.

Moreover, researchers might easily underestimate the occurrence of false-positive
results. Statistically significant results may occur even just by chances for many
different factors other than the presence of a real effect. The researcher degrees of
freedom, Questionable Research Practices (QRPs; John et al., 2012), questionable
measurement practices (Flake & Fried, 2020; Schimmack, 2021), and misuse of
statistical techniques, all can contribute to statistically significant results without
an actual effect being present.

Even in the case of a true effect, filtering for statistical significance may lead to
unreliable results. In fact, in the case of underpowered studies, statistically signifi-
cant results are almost surely an overestimation of the actual effect. This aspect is
usually neglected in the NHST approach and also in the traditional power analysis,
given their narrow focus statistical significance. To highlight this problem, Gelman
and Carlin (2014) introduced the Design Analysis. The design analysis enhances
researchers’ awareness about the consequence of conducting underpowered studies
evaluating the inferential risks related to effect size estimation (Altoè et al., 2020;
Bertoldo et al., in press). The Design Analysis per se, however, does not solve the
issues related to the NHST, but it only helps to highlight its consequences. To
overcome NHST limits, therefore, we need to move away from significance test-
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ing towards the evaluation of informative hypotheses using the model comparison
approach.

5.1.1 Model Comparison Approach

In the model comparison approach, first, the research hypotheses must be formal-
ized as statistical models. According to the predictors included in the model, re-
searchers define the variables expected to have an important role in the phenomenon
of interest. This is an important step as it forces researchers to define appropriate
statistical models that reflect the data generative process specifying and clarifying
all the underlying assumptions of the hypotheses of interest.

Subsequently, the obtained models are compared in terms of the statistical ev-
idence (i.e., support by the data) using for example the information criteria (Wa-
genmakers & Farrell, 2004). Information criteria provide an estimate of the average
deviance (i.e., error) of a model’s ability to predict new data, and thus lower values
are interpreted as evidence of a better model (McElreath, 2020b). This allows us
to consider the trade-off between parsimony and goodness-of-fit (Vandekerckhove
et al., 2015) when evaluating models; as the complexity of a model increases (i.e.,
more parameters), its fit to the data increases, but generalizability (i.e., ability to
predict new data) decreases. In statistics, this issue is often referred to as the trade-
off between bias and variaince, where bias is related to underfitting and variance is
related to overfitting the data (Azzalini et al., 2012; McElreath, 2020b). The re-
searchers aim to find the right balance between fit and generalizability to describe,
with a statistical model, the important features of the studied phenomenon, but
not the random noise of the observed data. Model comparison favours models with
effects that offer an appropriate description of the data generating process, penaliz-
ing the inclusion of further, unnecessary effects that only introduce an unnecessary
level of complexity.

Commonly used information criteria are, for example, the Akaike information
criterion (AIC; Akaike, 1973) and the Bayesian information criterion (BIC; Schwarz,
1978). These criteria can be used to select the most plausible models among the
considered models, given the data. AIC and BIC are based on different theoreti-
cal approaches to model comparison and have different assumptions and objectives.
Consequently, there are different interpretations of the two criteria and also different
possible results (Burnham & Anderson, 2004; Kuha, 2004). For the sake of inter-
pretability, the BIC penalizes complex models (i.e., those with many parameters)
to a greater extent than does the AIC (Wagenmakers & Farrell, 2004). However,
as pointed by Kuha (2004), using the two criteria together is always advocated as
agreement provides reassurance on the robustness of the results and disagreement
still provides useful information for the discussion.
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5.2. The Stereotype Threat Effects

The aim of this paper is to introduce the model comparison approach consid-
ering an applied example. In this way, we can compare and discuss the different
results obtained using the traditional NHST approach and the model comparison
approach. The remainder of this paper is structured as follows. First, we introduce
the case study regarding the evaluation of stereotype threat effects on Italian girls’
mathematics performance. Subsequently, we present the analysis results considering
separately the traditional NHST approach and the model comparison approach.

5.2 The Stereotype Threat Effects

As a case study, we evaluate the stereotype threat effects on Italian girls’ math-
ematics performance. Many studies have found that males, on average, perform
better than females in mathematics, although the size of this gender gap is small
and varies considerably across countries (Fryer & Levitt, 2010). This difference
may be due to the stereotype threat effect. Stereotype threat theory postulates a
situational decrement in a person’s performance owing to the awareness that his or
her own ingroup is considered to be less skilful in the domain in which he or she
is going to be tested (Spencer et al., 2016; Steele et al., 2002). Considering boys
being better than girls in mathematics is a diffuse cultural stereotype since the ele-
mentary school (Nosek et al., 2009). Thus, stereotype threat has been proposed as
an explanation for this gender gap in mathematics tests (Spencer et al., 1999).

In the literature, however, studies indicate contrasting results about the role of
the gender stereotype threat effect. Thus, further analyses are required to evaluate
whether and how a negative stereotype about women in mathematics impairs their
performance.

5.2.1 The Study

To assess the presence or absence of the gender stereotype threat effect on boys’ and
girls’ performance on mathematical problems, we evaluate participants’ responses
to mathematical problems before and after an experimental manipulation. This
experimental manipulation aimed to elicit the gender stereotype that males are
better than females in mathematics. Only half of the participants were assigned
to the stereotype threat manipulation, whereas the other half were assigned to a
control condition.

The study sample included 328 Italian students participants (155 females and
173 males) equally distributed according to school grade (ninth graders and eleventh
graders). The first group (ninth graders) included 164 students (75 females and 89
males) with a mean age of 14.2 years. The second group (eleventh graders) included
164 students (80 females and 84 males) with a mean age of 16.2 years (see Table 5.1).

64



CHAPTER 5. MODEL COMPARISON VIA INFORMATION CRITERIA

In the pre-test, participants responded to 18 mathematical problems. After the
experimental manipulation, participants responded to another 18 different problems
in the post-test. Mathematical problems for ninth graders and eleventh graders were
different, thus the total number of unique problems was 72.

Table 5.1: Participants age according to gender, grade and condition (nsubjects =
328).

Males Females

Condition Grade n Age Mean (SD) n Age Mean (SD)

NoST 44 14.2 (0.4) 36 14.2 (0.3)9th
ST 45 14.1 (0.4) 39 14.2 (0.4)

NoST 43 16.2 (0.5) 38 16.2 (0.5)11th
ST 41 16.1 (0.3) 42 16.2 (0.4)

5.3 Statistical Analyses

First, we present the descriptive statistics. Subsequently, we conduct separate anal-
yses following the traditional NHST approach and the model comparison approach,
respectively. Note that in all statistical analyses the missing responses are con-
sidered to be wrong answers. All statistical analyses are conducted using the R
statistical software (v4.1.0; R Core Team, 2021)

5.3.1 Descriptive Statistics

To compute mean accuracy and standard deviation, we first calculate the accuracy
of each participant in the pre-test and post-test. Then we compute mean accuracy
and standard deviations according to gender, grade and experimental condition
(i.e., ST = stereotype threat condition; NoST = no stereotype threat condition).
The values are reported in Table 5.2.

In Figure 5.1 the boxplots and violin plots of mean accuracy in the pre-test and
post-test are presented as a function of gender, grade and experimental condition.

5.3.2 NHST Approach

To evaluate the presence of gender stereotype threat effect, we analyze participants’
accuracy in the mathematical test in the different experimental conditions. Thus,
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Table 5.2: Mean accuracy and standard deviations in the pre-test and post-test
according to gender, grade and condition (nsubjects = 328; nitems = 72; nobservations =
11808).

Males Females

Pre-test Post-test Pre-test Post-test

Condition Grade n Mean SD Mean SD n Mean SD Mean SD

9th 44 0.72 0.18 0.62 0.14 36 0.71 0.15 0.58 0.14NoST
11th 43 0.62 0.21 0.67 0.16 38 0.49 0.18 0.61 0.15

9th 45 0.73 0.19 0.59 0.12 39 0.61 0.17 0.54 0.14ST
11th 41 0.59 0.20 0.67 0.17 42 0.56 0.18 0.65 0.15

the dependent variable is the participants’ responses to mathematical problems (y,
0 = wrong answer or missing response; 1 = correct answer).

Following the traditional NHST approach, we consider the full model that in-
cludes all the conditions present in our experimental design. Thus, the full model
takes into account the four-way-interaction between:

• condition: ST = stereotype threat condition; NoST = no stereotype threat
condition)

• time: pre = pre-test; post = post-test)

• gender: M = males; F = females

• grade: 9th = ninth graders; 11th for eleventh graders

We also include the random effects of the different participants (ID, nsubjects = 328)
and problems used in the pre-test and post-test (item, nitems = 72) to take into
account the individual variability of participants and mathematical problems. Thus,
the resulting full model is a mixed-effects model and, using the R formula syntax,
we have

y ~ condition * time * gender * grade + (1|ID) + (1|item)

Moreover, to take into account the characteristics of the dependent variable
(binary outcome), we consider a generalized linear model (GLM), in particular
a logistic regression model. This allows us to properly model the probability of
correctly answering a mathematical problem.

Note that at this point we have already taken several decisions to properly model
the data, instead of relying on a mindless application of statistical techniques. In
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Figure 5.1: Boxplots and violin plots of mean accuracy in the pre-test and post-
test as a function of gender, grade and experimental condition (nsubjects = 328;
nitems = 72; nobservations = 11808).
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this case linear models, as those assumed in both ANOVA and ANCOVA, are
inappropriate statistical methods for analyzing stereotype threat effects. One fun-
damental problem is that the data are categorical (correct, incorrect, or missing
responses to mathematics problems), and ANOVA and ANCOVA methods are not
appropriate for categorical data analysis (Agresti, 2002) despite their widespread
use in psychological research. Moreover, in the case of ANCOVA, a fundamental as-
sumption is that the covariate is independent of the experimental effect, but group
differences, such as a difference in the mathematical ability of boys and girls, vio-
late that assumption. The variance explained by gender and the variance explained
by mathematics ability cannot be separated, and spurious effects can arise. As
Wicherts (2005) observed, “stereotype threat theory explicitly predicts violations
of practically all assumptions underlying ANCOVA”. These considerations should
warn us against the mindless application of statistical techniques as black boxes,
because they may lead to unreliable results.

After fitting the model using the R package lme4 (Bates et al., 2014), we can
run an analysis of Deviance using the Anova() function from the R-package car

(Fox & Weisberg, 2019) to evaluate which are the important predictors in our full
model. Results of the analysis of deviance are reported in Table 5.3. Note that, in
the case of generalized linear models (GLM), the deviance is the corresponding of
the residual variance used in the traditional ANOVA in the case of linear models.

Results indicate that the four-way interaction is statistically significant (χ2(1) =
4.93, p-value = 0.026). So, at this point, we would be rather happy because we have
found a statistically significant result. Our experimental manipulation did actually
work, but does this mean that we have found evidence for the stereotype effect?
Actually to properly evaluate the stereotype effect we have to dig a little bit deeper
into the model.

Evaluating the Stereotype Threat Effect

To evaluate the stereotype threat effect, we need to consider whether females in
the stereotype condition performed worse in the post-test compared to females in
the no stereotype condition. More precisely, we compare the difference between
post-test and pre-test accuracy in the stereotype condition (ST ) with the difference
between post-test and pre-test accuracy in the no stereotype condition (NoST ).
Even more precisely, we are actually considering not the accuracy but its logit
transformation. In fact, in logistic regression, accuracy (i.e., probability of correct
response) is modelled after the logistic transformation is applied. Therefore, we
have that:

STeffect = (logit AST ;post − logit AST ;pre)− (logit ANoST ;post − logit ANoST ;pre),

where STeffect is the stereotype threat effect, logit A indicates the logit transformed
accuracy, ST and NoST indicate respectively the “Stereotype” and the “No Stereo-
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Table 5.3: Analysis of Deviance of the full model (nsubjects = 328; nitems = 72;
nobservations = 11808).

Effect Chisq Df Pr(>Chisq)

Main Effects
Condition 0.24 1 0.6246

Time 0.00 1 0.9574
Gender 12.40 1 0.0004
Grade 0.07 1 0.7901

Two-way Interactions
Condition x Time 0.11 1 0.7417

Condition x Gender 0.21 1 0.6462
Time x Gender 3.15 1 0.0757

Condition x Grade 2.90 1 0.0885
Time x Grade 4.03 1 0.0446

Gender x Grade 0.06 1 0.8054

Three-way Interactions
Condition x Time x Gender 0.25 1 0.6158
Condition x Time x Grade 0.00 1 0.9791

Condition x Gender x Grade 3.88 1 0.0488
Time x Gender x Grade 0.35 1 0.5564

Four-way Interaction
Condition x Time x Gender x Grade 4.93 1 0.0265

Note:
Result from function car::Anova() with option type = "II" to re-
spect the “principle of Marginality” (see help page ?car::Anova()

or Fox, 2016)

type” experimental conditions, and post and pre indicate the pre-test and post-test
conditions. Note that the stereotype threat effect has to be evaluated considering
the participants’ performance in the different conditions within the same gender
group. It would make no sense to consider the performance differences between
gender groups (i.e., females and males). It could be possible that the stereotype
threat also affects males, for example leading to an improvement in performance,
however, this is not the focus of the analysis. Therefore, we consider only the
comparisons within females, ignoring males.

To properly evaluate these planned comparisons, we need to define the appro-
priate contrasts. First, we generate the required model matrix with all the experi-
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mental conditions of interest. As an example, consider the following code:

# Define possible experimental conditions

my_cond <- expand.grid(gender = c("M","F"),

grade = c("9th","11th"),

condition = c("NoST","ST"),

time = c("pre", "post"))

# Obtain Model Matrix

mm <- model.matrix(~ condition * time * gender * grade, data= my_cond)

# Create labels of type "F_9th_ST_post"

rownames(mm) <- apply(my_cond, MARGIN = 1, paste, collapse = "_")

# Define contrasts of interest

my_contrast <- rbind(

"diff_9th" = (mm["F_9th_ST_post",] - mm["F_9th_ST_pre",]) -

(mm["F_9th_NoST_post",] - mm["F_9th_NoST_pre",]),

"diff_11th" = (mm["F_11th_ST_post",] - mm["F_11th_ST_pre",]) -

(mm["F_11th_NoST_post",] - mm["F_11th_NoST_pre",])

)

Subsequently, we define and test the contrasts using the R-package multcomp

(Hothorn et al., 2008). Results are reported in Table 5.4.

Table 5.4: Planned comparisons to evaluate stereotype threat effect in 9th grade
and 11th grade females (nsubjects = 328; nitems = 72; nobservations = 11808).

Hypotheses Estimates S.E. Z value p-value

diff 9th diff 9th == 0 0.273 0.179 1.529 0.252
diff 11th diff 11th == 0 -0.124 0.179 -0.696 0.973

Note: Adjusted p-values reported using Bonferroni correction.

We can observe that there is no statistically significant difference for either 9th-
grade or 11th-grade females. Broadly speaking, these results suggest that there is
no statistical evidence of the presence of the stereotype threat effect (note that,
strictly speaking, we can actually only state the there was no evidence against the
null hypothesis). Note that in both cases, a two-tailed test was conducted and
the p-value was adjusted according to Bonferroni correction to account for multiple
comparisons.
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Given that there is no stereotype threat effect, how should we interpret the four-
way interaction? Probably it is not immediately clear, but a model with a four-way
interaction is a kind of monster model with a very large number of parameters. All
the parameters of the full model are reported in Table 5.5.

Table 5.5: Estimated parameters of the full model (nsubjects = 328; nitems = 72;
nobservations = 11808).

Parameter 95% CI

Name Estimate S.E. lower upper Z value p-value

Main Effects
Intercept 1.13 0.30 0.54 1.71 3.80 0.0001

Condition (Stereotype) 0.02 0.20 -0.36 0.41 0.13 0.8998
Time (Post) -0.50 0.39 -1.26 0.26 -1.29 0.1984

Gender (Female) -0.09 0.21 -0.49 0.32 -0.41 0.6797
Grade (11th) -0.45 0.42 -1.27 0.37 -1.08 0.2796

Two-way Interactions
Condition x Time -0.19 0.17 -0.52 0.14 -1.16 0.2476

Condition x Gender -0.51 0.29 -1.08 0.05 -1.77 0.0764
Time x Gender -0.14 0.18 -0.49 0.21 -0.78 0.4381

Condition x Grade -0.22 0.28 -0.77 0.33 -0.77 0.4398
Time x Grade 0.82 0.55 -0.26 1.90 1.49 0.1355

Gender x Grade -0.66 0.29 -1.23 -0.09 -2.27 0.0231

Three-way Interactions
Condition x Time x Gender 0.47 0.25 -0.01 0.95 1.91 0.0566
Condition x Time x Grade 0.38 0.25 -0.10 0.87 1.57 0.1174

Condition x Gender x Grade 1.10 0.41 0.31 1.90 2.71 0.0067
Time x Gender x Grade 0.51 0.25 0.01 1.00 2.00 0.0455

Four-way Interaction
Condition x Time x Gender x Grade -0.78 0.35 -1.47 -0.09 -2.22 0.0265

Random Effects
ID (Intercept) 0.73

Item (Intercept) 1.11

Note: Baseline category for condition is “No Stereotype”. Baseline category for time is “Pre”.
Baseline category for gender is “Male”. Baseline category for grade is “9th”. Confidence intervals
computed using the Wald method (not availble for the random effects as the likelihood function
is not symmetrical).

To interpret the four-way interaction, the predicted mean accuracy and con-
fidence intervals in the pre-test and post-test as a function of gender, grade and
experimental condition are presented in Figure 5.2.

From a descriptive point of view, we can observe that 9th-grade males and fe-
males had lower accuracy in the post-test than in the pre-test in both experimental
conditions (i.e., “No Stereotype” and “Stereotype”). On the contrary, 11th-grade

71



5.3. Statistical Analyses

No Stereotype Stereotype
9th

G
rad

e
11th

grad
e

Pre-test Post-test Pre-test Post-test

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Time

E
st
im

at
ed

ac
cu
ra
cy

Gender Males Females

Figure 5.2: Predicted accuracy in the pre-test and post-test as a function of gen-
der, grade and experimental condition (nsubjects = 328; nitems = 72; nobservations =
11808).

males and females had higher accuracy in the post-test than in the pre-test in both
experimental conditions (i.e., “No Stereotype” and “Stereotype”). These patterns
are likely due to differences in the difficulty of the four tests rather than the exper-
imental manipulation.

Surely, there are some statistically significant differences between the experi-
mental conditions, but to find them we should test all the possible comparisons.
This, however, leads to a broader consideration: are we evaluating some important
and theoretically supported phenomena or are we just modelling the random noise?
Without some clear hypotheses, testing all possible comparisons may lead to un-
reliable results. Therefore, we do not proceed any further in the analysis but we
rather move to the model comparison approach.

5.3.3 Model Comparison Approach

As previously introduced in Section 5.1.1, in the model comparison approach, first
we need to define the different models according to our research hypothesis. Sub-
sequently, we can compare the obtained models using the information criteria.
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Model Definitions

To evaluate the presence of gender stereotype threat effect, we compare 7 different
mixed-effects logistic regression models for the same reasons as described in Sec-
tion 5.3.2. In all models, the dependent variable y is accuracy (0 = wrong answer
or missing response; 1 = correct answer), and ID and item are included as random
effects to account for the variability of participants and mathematical problems.

In model m0 we only consider the random effect of participants (nsubjects = 328)
and the random effect of items (nitems = 72). This model is used as a reference
model to evaluate the possible contribution of the other variables.

Next, we evaluate the possible contribution of gender and grade, defining differ-
ent combinations of the two variables in models m1, m2, and m3. In model m1 we add
only the effect of gender to model m0. This model evaluates whether gender is the
only important variable that explains accuracy in both the pre-test and post-test.
Model m2 includes the additive effect of gender and grade. This model evaluates
whether there is also a role of grade in addition to the gender effect. Any effect
of grade on accuracy could be related to differences in children’s age, differences in
the difficulty of the test problems used for the two grades, or both. Model m3 adds
the interaction between gender and grade to evaluate whether the effect of grade
plays a different influence on mathematical accuracy depending on gender.

Next, we evaluate possible effects of the experimental manipulation. Model
m4 adds the interaction between time and condition to the effects of gender

and grade. This model evaluates whether the experimental manipulation had an
overall effect that remained constant independently of gender and grade. Model
m5 includes the three-way interaction between time, condition and gender. This
model is consistent with the hypothesis that the stereotype threat effect (i.e., the
experimental manipulation) should differently affect boys and girls. Finally, Model
m6 includes the four-way interaction between test time, condition, gender, and
grade to evaluate whether the experimental manipulation could have differently
influenced subjects according to gender and grade.

The models are summarized below using the R formula syntax:

m0 : y ∼ 1 + (1|ID) + (1|item)

m1 : y ∼ gender + (1|ID) + (1|item)

m2 : y ∼ gender + grade + (1|ID) + (1|item)

m3 : y ∼ gender * grade + (1|ID) + (1|item)

m4 : y ∼ condition * time + gender + grade + (1|ID) + (1|item)

m5 : y ∼ condition * time * gender + grade + (1|ID) + (1|item)

m6 : y ∼ condition * time * gender * grade + (1|ID) + (1|item)
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Considering the research hypotheses, m1 and m5 are of particular interest as they
support, respectively, the absence or the presence of the stereotype threat effect. If
the stereotype threat effect is present, and differently affected boys and girls, we
expect m5 to be selected as the best model; whereas if only the gender difference in
mathematical abilities is supported by the data, then we expect m1 to be the best
model. The other models allow us to consider the possible effects of other variables
and their interactions.

Model Comparison Results

After estimating the models, the AIC and BIC values together with their relative
weights are computed2. Results are reported in Table 5.6.

Table 5.6: Model comparison using AIC and BIC (nsubjects = 328; nItems = 72;
nobservations = 11808).

Model Df AIC AICweights BIC BICweights

m0 3 13099.85 0.00 13121.98 0.21

m1 4 13089.84 0.63 13119.34 0.78

m2 5 13091.78 0.24 13128.66 0.01

m3 6 13093.71 0.09 13137.97 0.00

m4 8 13097.42 0.01 13156.44 0.00

m5 11 13099.78 0.00 13180.92 0.00

m6 18 13097.89 0.01 13230.67 0.00

Model m1 is the most likely model given the data and the set of models consid-
ered. It is interesting, however, to observe the second-best model according to the
AIC and BIC. According to the AIC, m1 is the best model with 63% probability
and m2 is second best with 24% probability. According to the BIC, m1 is the best
model with 78% probability and m0 is second best with 21% probability. In both
cases the probability of m5 is infinitesimal.

2Relative weights represent the relative likelihood of each model. This can be interpreted as
how likely each model is to be the best model among the set considered models
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AIC tends to select more complex models that can better explain the data, and
in this case, it does not completely exclude model m2 that includes the role of grade.
On the contrary, BIC penalizes complex models to a greater extent than AIC, and
in this case, the probability of m2 is only 1% and the probability of the null model
m0 increases to 21%. Overall, given that both AIC and BIC select m1 and give
infinitesimal probability to m5, the results support the hypothesis that there is only
a gender effect and no evidence for a stereotype threat effect. We can now take a
deeper look into the selected model.

Description of Model m1

Model m1 includes only the effect of gender and the random effects of ID and item.

m1 : y ∼ gender + (1|ID) + (1|item)

The estimated parameters of the model m1 are reported in Table 5.7.

Table 5.7: Estimated parameters of the selected model (nsubjects = 328; nitems =
72; nobservations = 11808).

Parameter 95% CI

Name Estimate S.E. lower upper Z value p-value

Main Effects
Intercept 0.82 0.15 0.52 1.11 5.46 0.0000

Gender (Female) -0.33 0.09 -0.51 -0.14 -3.50 0.0005

Random Effects
ID (Intercept) 0.74 0.67 0.83

Item (Intercept) 1.14 0.97 1.37

Note: Baseline category for gender is “Male”. Confidence intervals com-
puted using the profile likelihood.

Predicted mean accuracy and confidence intervals according to gender are pre-
sented in Figure 5.3 and Odds Ratios (OR) for accuracy are reported in Table 5.8.
Overall, results indicate that males perform better than females on mathematical
problems. However, the difference is small (males predicted accuracy = .70; females
predicted accuracy = .62).

Model fit

Note that information criteria do not provide an absolute measure of the quality of
a model, but only a relative measure used to compare the different models. Thus,
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Figure 5.3: Predicted accuracy according to gender (nsubjects = 328; nitems = 72;
nobservations = 11808).

Table 5.8: Odds Ratios of the selcted model (nsubjects = 328; nitems = 72;
nobservations = 11808).

95% CI

Parameter OR lower upper

Intercept 2.26 1.68 3.04
Gender (Female) 0.72 0.60 0.87

Note: Baseline category for gender is “Male”.

the model comparison indicates to us which are the most likely models relative to
the set of models considered, but it does not allow us to evaluate whether these
models properly fits the data.

To evaluate the fit of model m1 to the data, we consider the R2, which, unlike
the information criteria, evaluates the absolute value of the goodness-of-fit of a
model. In the case of generalized mixed-effects models, however, there are several
definitions of R2. We compute theMarginal R2 and the Conditional R2 as suggested
by Nakagawa and Schielzeth (2013). They explain that Marginal R2 is concerned
with the variance explained by fixed factors of the model, and Conditional R2 is
concerned with the variance explained by both fixed and random factors of the
model. Marginal R2 and the Conditional R2 are computed using the R package
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MuMIn (Bartoń, 2019). Values are reported in Table 5.9.

Table 5.9: Selected model Marginal R2 and Conditional R2 (nsubjects = 328;
nitems = 72; nobservations = 11808).

Marginal R2 Conditional R2

0.005 0.364

Overall, the model presents a good fit to the data. However, this result is
mainly given by the inclusion of the random effects, whereas the fixed effect related
to gender differences contributes in a really limited way.

5.4 Conclusions

In this paper, we compared two different statistical approaches: the Null Hypothesis
Significance Testing (NHST) approach and the model comparison approach using
information criteria.

The NHST has developed into a mechanical application of statistical testing by
always considering the catch-all null hypothesis that “nothing is going on”, rather
than properly formalize and evaluate the hypotheses of interest. This mindless
application of the NHST can easily lead to unreliable results as statistically signif-
icant results may occur even just by chance for many different factors other than
the presence of a real effect. The researcher degrees of freedom, large measurement
errors, and small sample sizes all contribute to the creation of noise in the data and
the subsequent misleading results. Moreover, when conducting a study, researchers
usually want to quantify the evidence in favour of their hypotheses. Despite its
popularity, however, the NHST does not allow us to do that, but it only allows
us to quantify the evidence against the null hypothesis. Unfortunately, this subtle
but important difference is often neglected by researchers favouring an erroneous
interpretation of the results.

On the contrary, the model comparison approach allows to directly compare
different hypotheses and evaluate the relative evidence in favour of one hypothesis
according to the data. Moreover, the model comparison approach favours the for-
malization of research hypotheses into appropriate statistical models that reflect the
data generative process and allows the selection of models with effects that offer an
appropriate description of the data, penalizing the inclusion of further, unnecessary
effects that only introduce an unnecessary level of complexity.

Considering the Stereotype Threat effect example, the results are very indicative.
Following the NHST approach, we would have ended up interpreting some strange,
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unexpected differences within a four-way interaction without realizing that, prob-
ably, we were just modelling the random noise in the data. Following the model
comparison approach, instead, we could directly evaluate our hypotheses of interest
obtaining a straightforward interpretation of results: there is no evidence for the
stereotype threat effect but only for gender differences.

Of course, the differences in the results obtained with the two approaches in the
stereotype threat effect example are very remarkable. In other cases, however, we
could easily expect the two approaches to lead to similar conclusions. This would
not be a surprise and, actually, we are not trying to suggest that one approach
is better than the other. Both are just statistical approaches that when properly
applied to answer the right question will provide reliable results. Issues arise when
a mindless application of statistical techniques occurs. Hopefully, at this point, it
should be clear that statistical inference is a complex process that involves several
decisions (i.e., the famous researcher degrees of freedom). It is important, therefore,
to be aware of all pros and cons of the different statistical methods to consciously
use them in different situations, avoiding the application of statistical techniques as
black boxes. In this regard, however, we think that the model comparison approach
enhances researchers’ reasoning about statistical inference more than the mechanical
application of the NHST approach. For this reason, we hope that in the future there
will be less speaking about testing and more about modeling.

Round Table

1. Chapter 5 makes the general point that model comparison can somehow solve some
of the issues of NHST. However, one can also argue that the model comparison
approach offers a larger number of researchers’ degrees of freedom than an NHST
approach.

Answer : We use this point as an opportunity to further discuss the differ-
ences between model comparison and NHST. To do that, let’s consider two different
aspects of statistical inference: model definition and hypothesis testing (this is
not a complete discussion on the topic, for more details see Fox, 2016; McElreath,
2020b):

(a) Model Definition: Everything starts from the definition of a statistical
model. The model definition could be fully explicit (as in the model com-
parison approach) or less explicit (as in the NHST), however, we always need
to define a statistical model. Thus, only apparently there are a larger num-
ber of researchers’ degrees of freedom in the model comparison approach
than in the NHST approach. Actually, we have the same degrees of free-
dom because the definition of a statistical model is always required. Even
in the case of ad-hoc test procedures (e.g., t-tests, ANOVA, ANCOVA,
MANOVA), we are still assuming a specific statistical model, see blog post:
https://lindeloev.github.io/tests-as-linear/ “Common statistical tests are lin-
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ear models (or: how to teach stats)”. Thus, one of the advantages of model
comparison is that the models’ definition is explicit. This forces researchers to
reason about the model definition thinking about the data generative process
(is the selected distribution adequate? Do you expect relations other than
linear?). In doing that, the researchers have many degrees of freedom (degrees
of freedom that the researchers would have in any case), but now researchers
have to properly justify their choices as everything becomes explicit instead
of remaining implicit in some mechanical application of statistical techniques.
Of course, it is possible to argue about specific choices but this is a positive
aspect as discussion about relevant issues could lead to model improvements.

(b) Hypothesis Testing: In the NHST approach, hypotheses are defined as
constraints on a parameter of interest (or a subset of parameters usually set
at 0) of the full model. Next, given an appropriate test statistic (e.g., t-
test, F-test, or Likelihood-ratio test), we consider the probability of obtaining
more extreme results under the Null-hypothesis than the observed ones (i.e.,
p-value). In the model comparison approach, instead, different models are
formalized according to different hypotheses. Next, using information criteria,
these models are compared according to their ability to predict new data (i.e.,
out-of-sample deviance).

Strictly speaking, in model comparison with information criteria there is no
statistical test (no p-value is computed) but rather we are assessing a characteristic
of the model as a whole. Thus, rather than hypothesis testing, it would be
more correct to discuss model comparison within the more general framework
of model selection. Model selection is a process that selects a statistical model
from a set of candidate models, given the data. This sounds the same as model
comparison and, in fact, it is. More precisely model comparison is a specific
type of model selection. The difference between model comparison and model
selection is how the set of candidate models is defined. In model comparison,
the idea is that the different models formalize relevant theoretical perspectives
that the researchers are interested to compare, thus models should be defined
according to relevant scientific hypotheses and principles and they should have a
meaningful interpretation. In model selection, instead, models can be defined in
any way, for example, an automatic procedure of variable selection as in the case of
stepwise analysis. In this case, however, we could end up with models that have no
clear interpretation. Thus, in the model comparison approach, we have a limited
number of relevant models, whereas in model selection we have a larger set of models.

Note that model selection (as well as model comparison) can be done ac-
cording to different criteria. We can even use statistical hypothesis tests for model
selection. The NHST approach, however, has several limitations: we can only reject
the null hypothesis and not evaluate the evidence in favour of a model; given a
sufficiently large sample, even trivial effects will be statistically significant; we can
only test nested models. On the contrary, information criteria allow us to assess
evidence in favour of a model, penalize for model complexity (remove trivial effects),
and compare non-nested models. Thus, as long as models are defined according to
hypotheses of interest, we can use information criteria to test our hypotheses. One
of the limits of information criteria, however, is that we can not define inequality
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constraints on the model parameters. In the NHST approach, we can conduct
directional tests but no analogous exists with the information criteria. To overcome
this issue, we need to move on to the Bayes factor, presented in Chapter 6.

2. I have the feeling that sometimes the difference between Model Comparison and
NHST (and testing in general) is overemphasized. In fact, to some extent, NHST
can be seen as a form of simplified model comparison, for instance, when you
compare a model to its null version (e.g., you test for the interaction by comparing
a model lm(y a + b + a*b) with lm(y a + b)). In light of this consideration, the
Candidate should make very clear since the beginning (pages 5-6) that the model
comparison approach, taken as a whole, can provide a more nuanced picture and
provides a more versatile tool for testing hypotheses that may not be tested under
an NHST approach. Otherwise, the distinction between the two approaches cannot
be appreciated enough.

Answer : In the chapter, we introduced the model comparison as an alter-
native approach to the NHST emphasizing their differences. As pointed out by the
reviewer, however, this is a simplified (and to some extend incorrect) simplification.
We discussed in the previous point how model comparison is just as a particular
type of model selection. To select the preferred model among a set of candidate
models, we need to compare them according to some criteria. One of the most
common criteria is actually the statistical hypothesis tests, considering for example
the likelihood ratio test. The NHST approach, however, has several limitations:
we can only reject the null hypothesis and not evaluate the evidence in favour of
a model; given a sufficiently large sample, even trivial effects will be statistically
significant; we can only test nested models. On the contrary, information criteria
(or the Bayes factor) allow us to assess evidence in favour of a model, to penalize for
model complexity (remove trivial effects), and to compare non-nested models. Thus,
rather than considering NHST and model comparison as two different approaches,
it is more correct to consider statistical significance, information criteria, and the
Bayes factor as different criteria for model selection.

3. “For this reason, we hope that in the future there will be less speaking about
testing and more about modeling” (p.78). OK, but the two terms are not mutually
exclusive. Bayesian hypothesis testing approaches such as Bayes Factor rely on the
model comparison, as the Candidate nicely shows in the very next Chapter.

Answer : We agree with the reviewer that modeling and testing are not
mutually exclusive. Actually, as we discussed in a previous point, these are two
different stages of statistical inference. Usually, there is a narrow focus on testing
overlooking the modeling part. However, the definition of appropriate statistical
models is required to obtain reliable results when testing research hypotheses. Thus,
we hope for increasing awareness about the importance of appropriate modeling
before testing.

4. The dissertation uses very often the word “mindless” to refer to the mechanical
application of NHST. But it is quite obvious that doing anything “mindlessly” in
research does not lead to anything good, and referring that mostly to the NHST
might contribute to creating a strawman. For example, in Section 5.3.2, “Note
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that at this point ...”. The paragraph seems to suggest that someone out there
is (mindlessly) analyzing dichotomous outcomes, without even computing average
accuracy scores, with simple linear models. Fortunately, I do not think this is the
case (at least, I never met anybody doing that!). Perhaps, the use of “mindless”
might be reduced, or clearer examples of such practices (e.g., in the stereotype
threat literature) should be mentioned.

Answer : We agree with the reviewer that repeatedly referring to the me-
chanical application of the NHST as a “mindless” procedure could create a
straw-man. However, we wanted to emphasize that the mechanical application of
any statistical procedures is never appropriate. Researchers should always question
whether a given statistical approach is appropriate and what are its limits. For
example, analysing dichotomous outcomes computing average accuracy scores
we lose information about the total number of trials (50% of accuracy could be
obtained as 1 out of 2 or 5 out of 10); using simple linear models instead of logistic
regression cold lead to predictions out of the 0-1 range. Of course, these are stupid
examples that never happen in reality (hopefully). However, we want to highlight
the importance of carefully thinking about statistical analyses. Statistical reasoning
is not a mechanical application of statistical procedures and the best thing to do
may not be what we were used to doing.

5. “Monster model” (p.71) does not sound very scientific to me. How would you define
a “monster model”?

Answer : It is true “monster model” does not sound very scientific [it is,
actually, an implicit reference to the famous Golem of Prague described by
McElreath (2020b). In psychology, it is common to consider 3-way, 4-way, or even
higher-order interactions. By doing this, however, researchers may not be aware
that the number of parameters in the model increases extremely rapidly and they
could end up creating a “monster model”.

6. “Results indicate that the four-way interaction is statistically significant
(χ2(1) = 4.93, p-value = .026). So, at this point, we would be rather happy because
we have found a statistically significant result. Our experimental manipulation did
actually work, but does this mean that we have found evidence for the stereotype
effect? Actually to properly evaluate the stereotype effect we have to dig a little
bit deeper into the model” (p.68). I think this is a misrepresentation of what a
decently trained scholar would infer from these results. It is a four-way interaction,
and it should be interpreted as a different three-way interaction conditional on the
levels of one of the independent variables. This does not automatically lead to
concluding that the stereotype threat works. In fact, this finding only leads to the
observation that stereotype threat interacts with gender groups and time differently
across grade groups.

Answer : In the chapter, we oversimplified the interpretation of the results
to emphasize the feeling of “I found a statistically significant result”. But as
pointed out by the reviewer, this is a misrepresentation of the results. We thank
the reviewer for clarifying this point.
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7. “Therefore, we consider only the comparisons within females, ignoring males”
(p.69). But is this justified, since the experiment was set up to test a 4-way
interaction? Shouldn’t one consider a (quite complex) contrast including also
males?

Answer : This is indeed a simplification of the problem but the rationale
behind this is the following. The stereotype threat effect assumes a decrement
in a person’s performance due to the activation of the stereotype that his or
her own ingroup is considered to be less skilful. In our case, girls’ performance
in mathematics is expected to decrease due to the activation of the stereotype
“boys are better than girls in mathematics”. Thus, to properly evaluate females’
decrement in performance, we have to compare the difference between pre-post
females’ performance in the stereotype condition and in the control condition. This
gives us a measure of the stereotype effect in females. As the reviewer pointed
out, in this case we are ignoring males. However, this is justified as we do not
need to consider males’ performance to assess the stereotype effect in females.
In both cases, males’ and females’ performance differences are computed within
gender, thus, males’ performance is not required to evaluate females’ decrement.
Considering males’ performance, we could find no differences, an increment in
performance or a decrement (as expected in the females’ group), but this would
not affect the evaluation of females’ decrement. Evaluating together females’ and
males’ performance is important to properly interpret the results from a theoretical
perspective (in case of a decrement in both groups how would you interpret the
stereotype threat effect?). To evaluate the stereotype threat effect in females’,
however, we only need to consider females’ contrasts. Note that this was the main
focus of the study and also what we would expect according to the theoretical
definition of the stereotype threat effect. Of course, evaluating the differences with
males is important to have a general comprehension of the phenomenon but it is
not necessary for our aims.

8. I don’t understand why the discussion focuses on model 5 rather than on model 6,
which was the one that was preferred by the NHST approach.

Answer : Model 5 is consistent with the hypothesis that the stereotype
threat effect affects boys and girls differently. Model 6, instead, is consistent with
the hypothesis that the stereotype threat effect affects subjects differently according
to gender and grade (i.e., stereotype threat could be present only in older subjects).
In the NHST approach, we focused on model 6 because it is the maximal model
according to the experimental design. However, the main interest was to evaluate
the presence of the stereotype threat effect (age differences were explored only as a
possibility). Thus, in the discussion, we focused on model 5.

9. It would be useful to understand whether the problems presented pre and post-
intervention can be considered parallel tests from a psychometric standpoint.

Answer : Items were carefully selected to obtain equal test difficulties for
the two grade groups. However, this could not be guaranteed a priori. Thus, the
grade was included to control for possible differences in test difficulties and, in
model 6, to evaluate whether stereotype threat effect could differ according to age.
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10. “These patterns...” (p.72). This interpretation shows the fact that not ensuring
that test difficulties were the same across grades and time points may potentially
threaten the validity of your conclusions.

Answer : We agree with the reviewer that, ideally, test difficulties should
have been the same across grades and time points. Items were carefully selected for
this aim but, unfortunately, we could observe some differences in the difficulty of
the four tests. However, we think that validity of the results is still solid as there is
no floor or ceiling effect in any of the four tests, and the inclusion of control groups
in the study design (both for females and males) guarantee to control for differences
in the difficulty of the four tests.

11. I think that, on top of random intercepts, random slopes for the within-subjects
effects (namely times) should have been modeled to follow the maximal structure
recommendation from Barr et al. (2013).

Answer : As pointed out by the reviewer, random slopes could have been
included in the model. However, we defined a more parsimonious random structure,
considering only subjects and items variability, for the following reason. When
including random effects, model comparison is very likely to choose as the preferred
model one with the most complex random structure (in psychology, there is
always some individual variability in the effects). Thus, if we are only interested
in evaluating the role of fixed effects, it is desirable to keep the same random
structure for all models. In our case, we should have included random slopes
in all models, also in those without the fixed effect of time. This appeared not
reasonable to us, therefore we decided to include only random intercepts for ID

and item in all models. Moreover, considering the debate regarding maximal vs.
parsimonious structure, we point out Bates et al. (2018) response to Barr et al.
(2013) recommendation, in which issues related to overparameterization of random
structure are discussed (e.g., failure to converge and uninterpretable models).
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6
Evaluating Informative Hypotheses

with Equality and Inequality Constraint:
The Bayes Factor via

Encompassing Prior Approach1

Road Map

In the previous chapters, we introduced the model comparison approach using the informa-
tion criteria to evaluate research hypotheses. Information criteria, however, do not allow to
compare informative hypothesis with inequality constraints. In this chapter, we introduce
the model comparison approach using the Bayes Factor with encompassing prior approach
that allows us to properly evaluate informative hypotheses with equality and inequality
constraints. As a case study, we consider the evaluation of attachment theories regarding
the role of mother and father attachment on children’s social-emotional development.

1This chapter is an original work in collaboration with Marci, T., De Carli, P., and Altoè, G. I
contributed to conceiving the original idea, writing of the manuscript, statistical analysis and the
graphical representations. Supplemental Materials available at https://claudiozandonella.github.
io/Attachment/. GitHub repository https://github.com/ClaudioZandonella/Attachment.
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6.1. Introduction

6.1 Introduction

When conducting a study, researchers usually have expectations based on hypothe-
ses or theoretical perspectives they want to evaluate according to the observed data.
In fact, the evaluation of research and theoretical hypotheses is one of the principal
goals of empirical research.

In psychology, the dominant statistical approach to evaluate research hypotheses
is the Null Hypothesis Significance Testing (NHST). In the literature, however, the
utility and validity of NHST are largely debated (Wasserstein et al., 2019). This
approach presents indeed several limitations. First, the NHST places a narrow
focus on statistical testing rather than on the formalization of hypotheses. This
has usually led researchers to evaluate data against the catch-all null-hypothesis
that nothing is going on rather than testing their specific expectation (and the
alternative hypothesis is rarely formalized). Second, the p-value does not quantify
the evidence in favour of one hypothesis, thus, it is not possible to “accept” a
hypothesis but only to “reject” it. This is inconvenient as, in case of not significant
results, the researchers are left in a state of indecision. Third, NHST does not
allow testing multiple hypotheses at the same time. Using the NHST the null
hypothesis is tested only against a single alternative. Fourth, NHST is unsuitable
for testing broad classes of hypotheses with equality and inequality constraints
(Mulder & Olsson-Collentine, 2019). Expectations can be evaluated using one-side
tests, however, when more groups or more variables are involved, it is not possible to
evaluate complex parameter constraints that reflect researchers’ expectations (van
de Schoot et al., 2011).

Model comparison is a different approach that allows researchers to compare
multiple hypotheses and identify which is the most supported by the data (McEl-
reath, 2020b). Hypotheses are first formalized as statistical models according to
researchers expectations or theoretical perspectives. Subsequently, it is possible to
evaluate which is the most supported model among those considered according to
the data. To do that a popular approach is to use information criteria such as
the AIC or BIC criteria that estimate models ability to predict new data (Akaike,
1973; Schwarz, 1978; Wagenmakers & Farrell, 2004). Model comparison has several
advantages and, in particular, it allows to directly compute the relative plausibility
of each model given the data and the set of models considered. Model comparison
using the information criteria, however, is not appropriate to evaluate hypotheses
that include complex parameter constraints reflecting researchers’ expectations. In
fact, information criteria evaluate models complexity according to the number of
parameters, but they do not take into account possible order constraints on the
parameters.

An alternative criterium to evaluate research hypotheses in a model comparison
is the Bayes Factor. In the last 25 years, there has been an increasing interest in the
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Bayes Factor and its use has been proposed as the solution to the critical issues of the
NHST (Heck et al., 2020; Mulder & Wagenmakers, 2016). Although it has its own
limitations and it does not solve the fundamental issues of the misuse of statistical
techniques (Gelman et al., 2013; Schad et al., 2021), the Bayes Factor offers some
clear advantages. In particular, the Bayes Factor allows us to compare hypotheses
obtaining a relative index of evidence, like the information criteria, but it also allows
us to easily compare complex research hypotheses. In fact, so-called “informative
hypotheses” (i.e., hypotheses containing information about the ordering of the model
parameters) can be formalized according to researchers’ expectations or theoretical
perspectives using equality and inequality constraints (van de Schoot et al., 2011).
Subsequently, these hypotheses can be compared against each other using the Bayes
Factor.

The evaluation of informative hypotheses is of particular interest to the re-
searchers as it allows them to directly assess specific complex expectations and
theoretical perspectives. In the literature, a particular approach allowing to easily
compute the Bayes Factor with complex informative hypotheses has received in-
creasing attention: “the Bayes Factor with encompassing prior”. van de Schoot et
al. (2011) presented a general introduction to informative hypotheses testing using
the Bayes Factor with the encompassing prior approach, whereas Hoijtink (2012) of-
fered a more detailed description of the development of this method. Other studies,
instead, considered the application of this approach with specific statistical models;
for example: mixed effect models (Kato & Hoijtink, 2006), evaluation of correlation
coefficients (Mulder, 2016) and multinomial models (Heck & Davis-Stober, 2019).
In addition, Gu et al. (2014) proposed a general approximate procedure to evaluate
inequality constraints in a wide range of statistical models.

All studies mentioned above, however, considered only informative hypotheses
with inequality constraints. Evaluating in the same hypothesis equality and in-
equality constraints, instead, it was no possible and equality constraints had to
be approximate to “about equality constraints” (i.e., a equality constraints of type
θi = θj is approximated to |θi − θj| < ξ for a value of ξ small enough).

Only recently, Gu et al. (2018) introduced an approximate procedure to evaluate
both equality and inequality constraints using the Bayes Factor with the encom-
passing prior approach in a wide range of statistical models (i.e., generalized linear
mixed models and structural equation models). Subsequently, this approach was
extended by Mulder and Gelissen (2019) to generalized multivariate probit models
and, finally, Mulder and Olsson-Collentine (2019) proposed an accurate procedure
(i.e., not based on an approximation) that allows testing informative hypotheses
with equality and inequality constraints in linear regression models.

The development and implementation of this approach are of particular interest
because, although with its limits, it allows researchers to directly evaluate their
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expectations and hypotheses. The available literature, however, is rather technical.
The complexity of these articles makes it difficult for researchers not familiar with
this approach to clearly understand all the steps involved. On the other hand,
articles offering a general introduction to the Bayes Factor do not provide enough
details to allow readers to autonomously apply this method to their problems, but
they usually rely on ad-hoc solutions implemented in some statistical software.

The aim of this paper, therefore, is to offer a clear and detailed description of
the Bayes Factor with the encompassing prior approach to allow other researchers
to apply this approach in their studies. In particular, we refer to the approximated
method proposed by Gu et al. (2018) as it applies to a wider range of conditions than
the more accurate approach proposed by Mulder and Olsson-Collentine (2019). The
paper is organized as follows. First, the method is introduced providing a detailed
description of all steps and elements involved in the formalization of informative
hypotheses and Bayes Factor computation. Subsequently, an application of the
method to real data is presented to offer the opportunity to discuss the typical
issues encountered in real complex scenarios.

6.2 Bayes Factor for Informative Hypothesis

Testing

The evaluation of informative hypotheses with equality and/or inequality con-
straints involves several steps and elements. In this section, first, we describe how
to formulate informative hypotheses. Subsequently, we introduce the Bayes Factor
considering the encompassing prior approach based on the approximated method
proposed by Gu et al. (2018).

6.2.1 Formulation of Informative Hypothesis

Informative hypotheses can be defined according to researchers’ expectation, evi-
dence from the literature or theoretical perspectives and they are formed by equality
and/or inequality constraints on certain model parameters. These constraints are
obtained as a linear combination of certain parameters and eventual constant val-
ues. For example, it is possible to state that two parameters are equal (θi = θj), one
parameter is greater than another (θi > θj), or express other complex conditions
as the difference between two parameter is less than a given value (θi − θj < .5;
2× θi − θj < .1× σ).

Thus, an informative hypothesis Hi with equality and inequality constraints can
be expressed in the form

Hi : REθ = rE & RIθ > rI , (6.1)
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where RE is a matrix expressing the equality constraints and rE is a vector con-
taining the constant values of the equality constraints. Whereas, RI is a matrix
expressing the inequality constraints and rE is a vector containing the constant val-
ues of the inequality constraints. Finally, θ is a vector with the model parameters
involved in the constraints.

As an example, consider a study evaluating the efficacy of a new psychological
treatment that is supposed to improve a given cognitive ability. In the study, a
control group receiving no treatment and another group receiving the traditional
treatment were included as a comparison. Moreover, imagine that the new psycho-
logical treatment was administered in three different modalities to different groups:
individually, in-group, and online. Researchers expect no differences between the
three modalities but they hypothesize that the new treatment will perform better
than the traditional one and this, in turn, will be better than the no-treatment
control condition. We can express this hypothesis as

Hi : θcontrol < θtraditional < θindividual = θgroup = θonline,

were θcontrol is the parameter estimating the average score of the no-treatment con-
trol group, θtraditional is the parameter estimating the average score of the group
receiving the traditional treatment, and θindividual, θgroup, and θonline are the pa-
rameters estimating the average scores of the groups receiving the new treatment
individually, in group, and on-line, respectively. The corresponding formulation of
the hypothesis using the matrix notation introduced before is

Hi :

REθ =

[︃
0 0 1 −1 0
0 0 0 1 −1

]︃⎡⎢⎢⎢⎢⎣
θcontrol

θtraditional
θindividual
θgroup
θonline

⎤⎥⎥⎥⎥⎦ =

[︃
0
0

]︃
= rE,

RIθ =

[︃
−1 1 0 0 0
0 −1 1 0 0

]︃⎡⎢⎢⎢⎢⎣
θcontrol

θtraditional
θindividual
θgroup
θonline

⎤⎥⎥⎥⎥⎦ >

[︃
0
0

]︃
= rI .

Note how each row of RE and RI matrices expresses an equality or an inequality
constraint, respectively. For example, in the first row of RE we have θindividual −
θgroup = 0 (i.e., θindividual = θgroup) and in the first row of RI we have θtraditional −
θcontrol > 0 (i.e., θtraditional > θcontrol).
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Now that we have understood how to define an informative hypothesis with
equality and inequality constraints introducing an appropriate notation, let’s see
how to evaluate an informative hypothesis using the Bayes Factor with the encom-
passing prior approach.

6.2.2 Bayes Factor

The Bayes Factor of hypothesis H1 against a competing hypothesis H2 is defined
as the ratio between the marginal likelihoods of the two hypotheses:

BF12 =
Pr(Y |H1)

Pr(Y |H2)
=

∫︁
l(Y |θ1, H1)π(θ1|H1) dθ1∫︁
l(Y |θ2, H2)π(θ2|H2) dθ2

, (6.2)

where Y indicates the data, θi is the vector of parameters under the hypothesis Hi,
l(Y |θi, , Hi) is the likelihood function under the hypothesis Hi, and π(θi|Hi) is the
prior of the parameters under the hypothesis Hi. The marginal likelihood Pr(Y |Hi)
can be interpreted as a measure of the plausibility of the data under Hi.

Therefore, the Bayes Factor BF12 quantifies the relative support of the data for
the two competing hypotheses (and not the ratio between the probability of the
two hypotheses). For values close to 1, the Bayes Factor indicates that H1 and H2

have similar support from the data. Larger values indicate evidence in favour of
H1, whereas values close to 0 indicate evidence in favour of H2. The ratio between
the posterior probabilities of the two hypotheses can be computed as

Pr(H1|Y )

Pr(H2|Y )
=

BF12⏟ ⏞⏞ ⏟
Pr(Y |H1)

Pr(Y |H2)
×Pr(H1)

Pr(H2)
, (6.3)

where Pr(Hi) is the prior probability of Hi and Pr(Hi|Y ) is the posterior prob-
ability of Hi. For a detailed description of the Bayes Factor considering also its
interpretation and application in different contexts see Heck et al. (2020), Mulder
and Wagenmakers (2016), and Wagenmakers et al. (2010).

Note that to compute the marginal likelihood Pr(Y |Hi) of a hypothesis Hi it
is necessary to integrate the product between the likelihood and the prior. These
integrals, however, are usually difficult to compute [in particular when hypotheses
include order constraints]. In the case of hypotheses with equality and inequality
constraints, however, it is possible to simplify the computation of the Bayes Factor
using the encompassing prior approach.

Encompassing Prior Approach

The basic idea of the encompassing prior approach is to consider an informative
hypothesis as a subset of the parameter space of an unconstrained model. Thus, to
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evaluate the plausibility of a hypothesis we can consider the proportion of parameter
space of the unconstrained model that satisfies the constraints. More specifically,
given an informative hypothesis Hi and an unconstrained model Hu (or encompass-
ing model) that does not contain any constraints on the parameters, if the prior
under Hi is defined as a truncation of the proper prior under Hu (encompassing
prior) according to the constraints, then the Bayes Factor between Hi and Hu can
be written as

BFiu = Pr(Inequality Const|Equality Const, Data, Hu)
π(Inequality Const|Equality Const, Hu)

× Pr(Equality Const|Data, Hu)
π(Equality Const|Hu)

=
Pr(RIθ > rI |REθ = rE, Y,Hu)

π(RIθ > rI |REθ = rE, Hu)
× Pr(REθ = rE|Y,Hu)

π(REθ = rE|Hu)
.

(6.4)

The first term is the ratio between the conditional posterior probability and
the conditional prior probability that the inequality constraints hold under the
unconstrained modelHu given the equality constraints. The second term is the ratio
between marginal posterior density and the marginal prior density of the equality
constraints under Hu (the well-known Savage–Dickey density ratio; Dickey, 1971;
Wetzels et al., 2010). In particular, the four elements can be interpreted as:

• The conditional posterior probability Pr(RIθ > rI |REθ = rE, Y,Hu) is a
measure of the fit of the inequality constraints of Hi under Hu.

• The conditional prior probability π(RIθ > rI |REθ = rE, Hu) is a measure
of the complexity of the inequality constraints of Hi under Hu.

• The marginal posterior density Pr(REθ = rE|Y,Hu) is a measure of the
fit of the equality constraints of Hi under Hu.

• Themarginal prior density π(REθ = rE|Hu) is a measure of the complexity
of the equality constraints of Hi under Hu.

Summarizing at the denominators we have measures of the complexity of the
inequality and equality constraints of the informative hypothesis Hi; at the nu-
merators, instead, we have measures of the fit of the data to the inequality and
equality constraints of the informative hypothesis Hi. Thus, if the hypothesis Hi,
although applying constraints to the parametric space (less complexity), is still
able to provide a good description of the data, the Bayes Factor will favour Hi. On
the contrary, if the support of the data is poor, the Bayes Factor will favour the
unconstrained model Hu.

The proof of the formulation of the Bayes Factor with the encompassing prior
approach and the evaluation of its consistency (i.e., the probability of selecting the
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correct hypothesis goes to 1 for the sample size going to infinity) is provided in Gu
et al. (2018) and Mulder and Gelissen (2019). Note that slightly different notation
is used here to enhance comprehension and underline that at the numerators we
have values computed from the posterior of Hu, whereas at the denominators we
have values computed from the prior of Hu.

To compute the Bayes Factor with the encompassing prior approach, only the
prior and the posterior of the unconstrained model are required. To obtain them,
first, we need to define the encompassing prior of the unconstrained model.

Definition of the Encompassing Prior

Prior specification is an important element as the resulting Bayes Factor value is
affected by the prior choice. This aspect is particularly relevant in the case of
equality constraints (Bartlett, 1957; Lindley, 1957), whereas inequality constraints
are not affected as long as the prior is symmetric and centred to the focal point of
interest (this aspect will be further discussed in Section 6.2.2).

To avoid arbitrary prior specification, different methods have been proposed in
the literature. For example: Jeffreys-Zellner-Siow (JZS) objective priors do not
require subjective specification (Bayarri & Garćıa-Donato, 2007; Jeffreys, 1961;
Zellner & Siow, 1980); partial Bayes Factor (de Santis & Spezzaferri, 1999) defines
the prior according to part of the data, whereas the remaining part is used to
compute the Bayes Factor; intrinsic Bayes Factor (Berger & Pericchi, 1996) and
fractional Bayes Factor (O’Hagan, 1995) are a variation of the partial Bayes Factor
where priors are defined according to the average of all possible minimal subsets of
the data or to a given small fraction of the data, respectively.

Both, Gu et al. (2018) and Mulder and Olsson-Collentine (2019) based their
approach on the fractional Bayes Factor. Starting from a non-informative prior, a
minimal fraction of the data is used to obtain a posterior that is subsequently used
as proper prior, we refer to it as fractional prior (have you ever heard Lindley’s
1972 famous quote “Today’s posterior is tomorrow’s prior”?). The remaining part
of the data is used to compute the Bayes Factor. The two approaches, however,
have an important difference. Gu et al. (2018) approximated the obtained frac-
tional prior (as well as the posterior, see Section 6.2.2) to a (multivariate) normal
distribution. In fact, due to large-sample theory (Gelman et al., 2013), parameter
posterior distribution can be approximated to a (multivariate) normal distribution.
On the contrary, Mulder and Olsson-Collentine (2019) provided an analytic solution
in the case of linear regression models, obtaining an accurate quantification of the
distribution.

All methods discussed above suggest objective procedures to avoid arbitrary
prior specification. Nevertheless, using subjective (reasonable) priors according
to previous information or experts’ indications is still a possible approach. Keep

92



CHAPTER 6. THE BAYES FACTOR WITH ENCOMPASSING PRIOR APPROACH

in mind, however, that prior specification (even if obtained through an objective
procedure) affects the Bayes Factor results. Thus, it is fundamental to conduct
a prior sensitivity analysis to evaluate the influence of prior specification on the
results (Du et al., 2019; Schad et al., 2021).

Going back to our psychological treatment example, we could use independent
normal distributions to specify the prior of each parameter of interest (i.e. θcontrol,
θtraditional, θindividual, θgroup, and θonline) obtaining as resulting prior a multivariate
normal distribution with mean vector µθ and covariance matrix Σθ. In this way,
we can still follow the approach proposed by Gu et al. (2018), based on normal
approximation, that will simplify the computation of the Bayes Factor. For exam-
ple, suppose that, according to experts’ indications, a reasonable prior choice for
all parameters of interest is a normal distribution with mean zero and standard
deviation 2: N (0, 2). The resulting prior is a multivariate normal distribution with
mean vector µθ and covariance matrix Σθ:

π(θ) ∼ N (µθ,Σθ)

where θ =

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦ and Σθ =

⎡⎢⎢⎢⎢⎣
4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 4

⎤⎥⎥⎥⎥⎦ .

At this point, several authors underline the importance of centring the prior
distribution on the constraints points of interest. Let’s further discuss this issue in
the next section.

Adjusting Prior Mean

When evaluating informative hypotheses with equality and inequality constraints
using the Bayes Factor, the priors have to be centred on the focal points of interests
(Jeffreys, 1961; Mulder, 2014; Zellner & Siow, 1980). In the case of equality con-
straints, centring the prior allows one to consider values close to the point of interest
more likely a priori than distant values. This should be in line with researchers’
expectations, otherwise one could question why testing that value.

In the case of inequality constraints, instead, this adjustment is done to guar-
antee that no constraint is favoured a priori. Consider the example represented in
Figure 6.1 where the hypothesis θi > k is evaluated against θi < k. Remember
that, when computing the Bayes Factor, the prior probability that the constraint
holds is used as a measure of the complexity of the hypothesis. Thus, if the prior is
not centred on the focal point of interest (i.e., k), the less complex hypothesis (i.e.,
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θi > k ) will be erroneously preferred a priori over the other (i.e., θi < k ). Only by
centring the prior on the focal point, the hypotheses will be equally likely a priori.

k

θi

Figure 6.1: Example of non centered prior considering the constraints θi > k vs.
θi < k.

Centering the prior to the focal point, however, can be difficult in the case
of complex hypotheses where constraints are defined as a linear combination of
several parameters. To overcome this issue, Gu et al. (2018) proposed the following
transformation of the parameters of interest:

β =Rθ − r

with β =

[︃
βE

βI

]︃
, R =

[︃
RE

RI

]︃
and r =

[︃
rE
rI

]︃
,

(6.5)

where θ is the vector of original parameters, R is the matrix expressing equality
and inequality constraints, and r is the vector with the constants of the equality
and inequality constraints. Doing this, the informative hypothesis under evaluation
becomes:

Hi : βE = 0 & βI > 0. (6.6)

This parameter transformation has the advantage of simplifying the hypothesis
expression without changing the original expectations. In fact, for example, evalu-
ating θi > θj is equivalent to evaluating βi = θi − θj > 0. Thus, given the original
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prior π(θ) ∼ N (µθ,Σθ), the prior of the new parameter vector β is given by

π(β) ∼ N (µβ,Σβ) = N (Rθ − r, RΣθR
T ). (6.7)

Note that this operation is nothing more than applying a linear transforma-
tion to the original multivariate normal distribution.2 In order to do that, how-
ever, the matrix R must be full-row-rank (i.e., all rows are linearly independent).
If this is not the case, the obtained matrix Σβ will not be a proper covariance
matrix. A possible solution is to follow the approach proposed by Mulder and
Olsson-Collentine (2019) and Mulder (2016): a new matrix is defined selecting
the maximum number of linearly independent rows and the remaining constraints
are obtained as linear combinations (see Supplemental Material for more details
https://claudiozandonella.github.io/Attachment/).

Now, to center the prior of β to the focal points, we can simply set the mean
vector to zero. Thus, the adjusted prior of β is

πadj(β) ∼ N (0,Σβ) = N (0, RΣθR
T ). (6.8)

Considering the psychological treatment example, the obtained adjusted prior
is N (0,Σβ) where:

0 =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ and Σβ = RΣθR
T =

⎡⎢⎢⎣
8 −4 0 4
−4 8 0 0
0 0 8 −4
4 0 −4 8

⎤⎥⎥⎦ .

So far we have defined the prior for the parameter vector θ of the encompassing
model. Moreover, we have obtained the adjusted prior for the new transformed pa-
rameter vector β that will allow us to properly evaluate the equality and inequality
constraints. At this point, we need to compute the posterior of the encompassing
model parameters.

Posterior Encompassing Model

Posterior distribution of the encompassing model parameters can be obtained through
numerical approximation using Markov Chain Monte Carlo (MCMC) sampling algo-
rithms, such as Metropolis–Hastings algorithm (Hastings, 1970) or Gibbs sampling
(Geman & Geman, 1984). Bayesian statistical inference methods are implemented
in all major statistical software. In R statistical software (R Core Team, 2021), for

2Given a multivariate normal distribution Y ∼ N (µ,Σ), the result of a linear transformation
AY + b is still a multivariate normal distribution with vector mean µt = AY + b and covariance
matrix Σt = AΣAT .
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example, the popular brms package (Bürkner, 2017, 2018), which is based on STAN
(Stan Development Team, 2020), allows to easily conduct Bayesian inference.

Following Gu et al. (2018) approach, once we obtain the model posterior, we
can approximate it to a (multivariate) normal distribution. Thus, the resulting
posterior distribution is

Pr(θ|Y ) ∼ N (θ̂, Σ̂θ) (6.9)

where posterior mean θ̂ and posterior covariance Σ̂θ can be computed directly from
the posterior draws. Next, we can obtain the posterior with respect to the vector
parameters β applying the same transformation used for the prior distribution,

Pr(β|Y ) ∼ N (β̂, Σ̂β) = N (Rθ̂ − r, RΣ̂θR
T ). (6.10)

At this point, we have both the prior and the posterior distributions of the
parameters of interests of the encompassing model. Before proceeding, however,
let’s underline some important aspects.

When defining the prior, we adjusted the prior mean by centring it over the
constraint focal points. This change would slightly influence the resulting posterior
as well. However, as underlined by Gu et al. (2018), small prior changes will result
in negligible changes on the posterior for large samples due to large-sample theory.
For this reason, the authors do not adjust the posterior in their approach, but only
the prior. Therefore, when computing the posterior we can simply consider the
prior π(θ) ∼ N (µθ,Σθ) defined at the beginning, without worrying about adjusting
it.

In addition, note that, in Gu et al. (2018) original approach, the posterior mean
θ̂ and the posterior covariance Σθ̂ are not obtained from the posterior draws but
they are computed directly from the sample data using the maximum likelihood
estimate and the inverse of the Fisher information matrix, respectively. This has
the advantage of being faster (posterior draws are not required) but it may be not
possible for some complex models.

6.2.3 Computing the Bayes Factor

In the previous section we obtained the adjusted prior and the posterior of the
vector of transformed parameters β, respectively

πadj(β) ∼ N (0,Σβ) and Pr(β|Y ) ∼ N (β̂, Σ̂β).

Given the parameter transformation from θ to β, we can rewrite the Formula 6.4
of the Bayes Factor between Hi and Hu as follow,

BFiu =
Pr(βI > 0|βE = 0, Y,Hu)

πadj(βI > 0|βE = 0, Hu)
× Pr(βE = 0|Y,Hu)

πadj(βE = 0|Hu)
, (6.11)
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where βI and βE are defined in Formula 6.5 and represent the inequality and equality
constraints, respectively.

Now, thanks to (multivariate) normal distribution approximation, we can easily
compute the required conditional probabilities and marginal densities required to
calculate the Bayes Factor.

Marginal Density

The marginal distribution of a subset of variables of a multivariate normal distri-
bution is obtained simply discarding the variables to marginalize out. For example,
given the adjusted prior of the psychological treatment example, πadj(β) ∼ N (0,Σβ)
where

0 =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ and Σβ =

⎡⎢⎢⎣
8 −4 0 4
−4 8 0 0
0 0 8 −4
4 0 −4 8

⎤⎥⎥⎦ ,

the marginal distribution of the equality constraints βE is

πadj(βE) ∼ N (µβE
,ΣβE

),

where µβE
=

[︃
0
0

]︃
and ΣβE

=

[︃
8 −4
−4 8

]︃
.

At this point computing the density at βE = 0 is elementary. In R, this can be
done using the dmvnorm() function from the mvtnorm package (Genz et al., 2021).
To compute the marginal prior density πadj(βE = 0|Hu) of the psychological
treatment example, we can use the following code:

# Prior info

mu_prior <- c(0, 0, 0, 0)

Sigma_prior <- matrix(c( 8,-4, 0, 4,

-4, 8, 0, 0,

0, 0, 8,-4,

4, 0,-4, 8), ncol = 4, byrow = TRUE)

# Marginal prior density at beta_1 = 0 and beta_2 = 0

mvtnorm::dmvnorm(x = c(0, 0),

mean = mu_prior[1:2],

sigma = Sigma_prior[1:2, 1:2])

## [1] 0.02297204
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Analogously, it is possible to compute themarginal posterior density πadj(βE =

0|Y,Hu) considering this time the estimated posterior mean vector β̂ and the esti-
mated posterior covariance matrix Σ̂β.

Conditional Probability

To compute the conditional probability of the inequality constraints given the equal-
ity constraints in a multivariate normal distribution, we can use the pcmvnorm()

function from the condMVNorm R-package (Varadhan, 2020). Considering the psy-
chological treatment example, to calculate the conditional prior probability
πadj(βI > 0|βE = 0, Hu) we can run the following code:

# Conditional prior probability that beta_3 > 0 and beta_4 > 0

# given beta_1 = 0 and beta_2 = 0

condMVNorm::pcmvnorm(

lower = c(0, 0), upper = c(Inf, Inf), # inequality constraints

mean = mu_prior, sigma = Sigma_prior,

dependent.ind = 3:4, # inequality variables

given.ind = 1:2, X.given = c(0, 0)) # equality vars and consts

## [1] 0.1451077

## attr(,"error")

## [1] 1e-15

## attr(,"msg")

## [1] "Normal Completion"

Analogously, it is possible to compute the conditional posterior probability
πadj(βI > 0|βE = 0, Y,Hu) considering this time the estimated posterior mean vector

β̂ and the estimated posterior covariance matrix Σ̂β.
At this point, we have all the elements required and we can easily compute the

Bayes Factor BFiu.

6.3 A Case Study: Hypotheses Testing in the

Attachment Theory

In this section, we propose a real case study evaluating different informative hy-
potheses within the attachment theory. This will allow us to face the common issues
found in real research applications. First, we provide the required background in-
formation regarding the attachment theory and the study aims and characteristics.
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Subsequently, all the steps involved in the evaluation of informative hypotheses us-
ing the Bayes Factor with the encompassing prior approach are described. Finally,
the results are briefly discussed considering the prior sensitivity analysis and limits
of this approach.

All analyses were conducted using the R statistical software (v4.1.0; R Core
Team, 2021). All materials, data, and analysis code are available at https://github.
com/ClaudioZandonella/Attachment. The Supplemental Material with further de-
tails is also available online at https://claudiozandonella.github.io/Attachment/.

6.3.1 Background Information

The Attachment Theory

The attachment theory originates from the pioneering work of Bowlby (1969) and
Ainsworth (1970). They postulates that children in stressful situations actively seek
proximity of the caregiver through some attachment behaviors (e.g., crying; moving
towards the caregiver) in order to fulfil the evolutionary goal of protection from dan-
gers. The main tenet of attachment theory is that the relationships with the care-
givers that children develop in the early stages of their life (i.e., attachment bond)
will affect children social and emotional future development (Cassidy & Shaver,
2016). Besides behavior, people construct mental representations, or working mod-
els, of the self and significant others based on their interpersonal experiences. Four
main attachment styles have been recognized in the literature according to different
internal representations:

• Secure Attachment - children who are securely attached display optimal
emotional regulation and they consider the caregiver as a secure base.

• Anxious Attachment - anxious children manifest high levels of anxiety in
stressful situations and their relationships with the caregivers is ambivalent
displaying anger or helplessness.

• Avoidant Attachment - avoidant children mask distress in stressful situa-
tions displaying little emotions and their relationships with the caregivers is
characterized by little involvement.

• Fearful Attachment - fearful children lack adequate emotional regulation
in stressful situations with the risk of displaying non organized behaviors.

Attachment theory is one of the main and most supported theories in psychol-
ogy (Cassidy & Shaver, 2016). In the literature, however, there is still an open
debate on the relative role of mother and father attachment on children’s social-
emotional development. Four different main theoretical perspectives have been
identified (Bretherton, 2010):
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• Monotropy Theory - only the principal attachment figure (usually the
mother) has an impact on children’s development.

• Hierarchy Theory - the principal attachment figure (usually the mother)
has a greater impact on children development than the subsidiary attachment
figure (usually the father).

• Independence Theory - all attachment figures are equally important but
they affect the children’s development differently.

• Integration Theory - to understand the impact on children’s development
it is necessary to consider all attachment relationships taken together.

Contrasting results have been reported by studies investigating which is the “cor-
rect” theory. No study, however, has tried to properly evaluate the different theo-
retical perspectives by directly comparing the different hypotheses.

Present Study

The present study aims to directly compare the four different theoretical perspec-
tives regarding the role of father and mother attachment, using the Bayes Factor
with the encompassing prior approach.

In the analysis, n = 847 Italian children (50.65% Females) between 8 and 12
years old (middle childhood, third to sixth school grade) were included. Attachment
towards the mother and the father was measured separately using the italian version
of the Experiences in Close Relationships Scale - Revised Child version (ECR-RC;
Brenning et al., 2014; Marci et al., 2019) completed by the children. Subsequently,
two separate cluster analyses (i.e., one for mother scores, one for father scores) were
performed. Both analyses supported the existence of the four attachment profiles
(see above). The results of the classification are reported in Table 6.1.

Table 6.1: Attachment styles frequencies (nsubj = 847).

Father Attachment

Mother Attachment Secure Anxious Avoidant Fearful Total

Secure 125 49 49 8 231
Anxious 51 100 98 37 286
Avoidant 25 67 126 12 230
Fearful 5 14 38 43 100
Total 206 230 311 100 847
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Children’s social-emotional development was measured using the Strength &
Difficulties Questionnaire (SDQ; A. Goodman et al., 2010; R. Goodman, 1999)
completed by the teachers. Separate scores for externalizing and internalizing prob-
lems were obtained as sum of the questionnaire items. In the analysis, however,
only externalizing problems are considered as teachers are expected to be better at
reporting externalizing problems than internalizing problems. The distribution of
externalizing problems (Mean = 3.35; SD = 3.91; Median = 2.0) is presented in
Figure 6.2.
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Figure 6.2: Distribution of externalizing problems (nsubj = 847).

Externalizing problems according to attachment styles are reported in Table 6.2.
More information about the sample, descriptive statistics, cluster analysis, and anal-
ysis of internalizing problems can be found in the Supplemental Material available
online https://claudiozandonella.github.io/Attachment/.

Table 6.2: Externalizing problems according to attachment styles (nsubj = 847).

Father Attachment

Secure Anxious Avoidant Fearful

Mother Attachment Mean (SD) Median Mean (SD) Median Mean (SD) Median Mean (SD) Median

Secure 2.63 (3.57) 1.0 3.45 (4.48) 2.0 1.61 (2.13) 1.0 2.88 (3.44) 2.0
Anxious 3.69 (4.07) 2.0 3.01 (3.61) 2.0 3.32 (4.12) 2.0 4.05 (3.61) 3.0
Avoidant 2.84 (3.34) 1.0 3.31 (3.65) 2.0 3.71 (4.19) 2.0 3.75 (4.81) 1.0
Fearful 7.60 (4.04) 8.0 4.64 (3.84) 4.5 4.76 (4.67) 3.0 4.26 (4.07) 4.0
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6.3.2 Evaluating Hypotheses with Bayes Factor

Formalization of Informative Hypotheses

Each theoretical perspective was formalized into a different informative hypothesis
taking into account its own theoretical tenets, main evidence in the literature, and
authors’ clinical experience in the field.

The following notation is used to formalize the hypothesis. M and F are used
to indicate the attachment towards the mother and the father, respectively. The
specific attachment style is specified in the subscript where S indicates secure at-
tachment, Ax anxious attachment, Av avoidant attachment, and F fearful attach-
ment. For example, FAv represents children with avoidant attachment towards the
father.

Note that when we do not expect interaction between mother and father at-
tachment, we can consider the role of the two parents separately. Whereas, if an
interaction is expected, it is necessary to take into account the unique combination
of mother and father attachment. Thus, for example, we use MSFAx to indicate
children with secure attachment towards the mother and anxious attachment to-
wards the father. Moreover, ∗ subscript is used to indicate any attachment style and
a set of subscripts is used to indicate “one among”. For example, MSFAx;Av repre-
sents children with secure attachment towards the mother and anxious or avoidant
attachment towards the father.

To correctly interpret the following Figures, note that the order is important,
whereas the actual values are only indicative.

Null Hypothesis. This is a reference hypothesis where mother attachment and
father attachment are expected to have no effect and only gender differences are
taken into account (see Section 6.3.2 for the actual model definition). The hypoth-
esis is represented in Figure 6.3:

M∗ = 0,

F∗ = 0.

Monotropy Hypothesis. Father attachment is expected to have no effect, whereas
considering mother attachment we expect the following order: secure children with
the lowest level of problems, anxious and avoidant children with similar levels of
problems, fearful children with the highest levels of problems. The hypothesis is
represented in Figure 6.4:

MS < MAx = MAv < MF ,

F∗ = 0.
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Figure 6.3: Null Hypothesis. Expected externalizing problems according to
mother and father attachment.
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Figure 6.4: Monotropy Hypothesis. Expected externalizing problems accord-
ing to mother and father attachment.

Hierarchy Hypothesis. Father attachment is expected to follow the same pat-
tern as the mother attachment, but its influence is expected to be smaller. The
hypothesis is represented in Figure 6.5:

MS < MAx = MAv < MF ,

FS < FAx = FAv < FF ,

FAx < MAx; FAv < MAv; FF < MF .
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Figure 6.5: Hierarchy Hypothesis. Expected externalizing problems according
to mother and father attachment.

Independence Hypothesis. Mother and father attachment are expected to af-
fect children outcomes differently. In this case, we considered avoidant attachment
towards the father as a condition of higher risk. The hypothesis is represented in
Figure 6.6:

MS < MAx = MAv < MF ,

FS < FAx < FAv < FF .
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Figure 6.6: Independence Hypothesis. Expected externalizing problems ac-
cording to mother and father attachment.
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Integration Hypothesis. Mother and father attachment are expected to inter-
act. In this case, we consider secure attachment as a protective factor and fearful
attachment as a risk condition. We do not specify the conditions MSFF and MFFS

as their frequency is very low (1.5% of the sample). The hypothesis is represented
in Figure 6.7:

MSFS < {MSFAx;Av = MAx;AvFS} < MAx;AvFAx;Av < {MFFAx;Av = MAx;AvFF} < MFFF ,

with

MAxFAx = MAxFAv = MAvFAx = MAvFAv.
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Figure 6.7: Integration Hypothesis. Expected externalizing problems accord-
ing to mother and father attachment.

Definition of the Encompassing Model

A Zero-Inflated Negative Binomial (ZINB) mixed effect model is defined to take
into account the characteristics of the dependent variable and its distribution (see
Figure 6.2 and see Supplemental Material for more details regarding the analysis of
zero inflation https://claudiozandonella.github.io/Attachment/):

yij ∼ ZINB(pij, µij, ϕ), (6.12)

where pij is the probability of an observation yij being an extra zero (i.e., a zero not
coming from the Negative Binomial distribution) and 1−pij indicates the probability
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of a given observation yij being generated form a Negative Binomial distribution

with mean µij and variance σ2
ij = µij +

µ2
ij

ϕ
. Moreover, we define

pij = logit−1(XT
i βp + ZT

j up),

µij = exp(XT
i βµ + ZT

j uµ).
(6.13)

That is, both p and µ are modelled separately according to fixed and random
effects. In particular, we consider the children’s classroom ID as a random effect in
both cases to account for teachers’ different ability to evaluate children’s problems.
While, regarding fixed effects, only the role of gender is considered for p, whereas
for µ the interaction between mother and father attachment are included together
with gender. In the R formula syntax, we have

# Regression on p

p ~ gender + (1|ID_class)

# Regression on mu

mu ~ gender + mother * father + (1|ID_class)

The parameters of interest (i.e., those related to mother and father attach-
ment interaction) and the parameter related to gender differences are unbounded.
Thus, we can simply specify a normal distribution with mean 0 and standard
deviation of 3, N (0, 3), as reasonable prior. This prior is intended to be non-
informative but without being excessively diffuse3. The influence of prior spec-
ification is subsequently evaluated in a prior sensitivity analysis. Regarding the
other nuisance parameters (i.e., intercepts, random effects and shapes parameters)
brms default priors are maintained (see Supplemental Material for further details
https://claudiozandonella.github.io/Attachment/). The encompassing model was
estimated using 6 independent chains with 10,000 iterations (warm-up 2,000).

Hypothesis Matrices

Before computing the hypothesis matrix for each informative hypothesis, it is im-
portant to consider the contrasts coding and the resulting parametrization of the
encompassing model. For mother and father attachment, default treatment con-
trasts are used (Schad et al., 2020) considering secure attachment as the reference

3Considering 1 as intercept (note that exp(1) is approximately the sample mean value), values
included within one standard deviation, exp(1 ± 1 × SD), range between 0 and 55. Although
externalizing problems are bounded between 0 and 20, prior predicted values are still reasonable as
they cover all possible values without including excessively large values. More diffuse priors would
result in values with a higher order of magnitude and tighter priors would exclude plausible values
(see Supplemental Material for further details https://claudiozandonella.github.io/Attachment/)
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category. Therefore, model intercept represents children with secure attachment
towards both parents (MSFS) and we have parameters indicating the main effects
of mother and father attachment and other parameters for the interaction effect.

Now, given the informative hypotheses and the parametrization of the encom-
passing model, we can obtain the respective hypotheses matrices. To do that, first,
we need the model matrix with all the conditions of interest. Note that we have to
consider only conditions relevant to the constraints (i.e., those related to mother and
father attachment) ignoring other nuisance conditions (i.e., gender and classroom
ID).

Subsequently, we can derive the required equality and inequality constraints.
In particular, with hypotheses that do not expect interaction between mother and
father attachment (i.e., monotropy, hierarchy, and independence hypotheses), all
interaction terms are set equal to zero and main effects are obtain considered the
reference level of the other parent (i.e., MAxFS is the main effect of anxious attach-
ment towards the mother). As an example, consider the following code:

# Define relevant conditions

attachment <- c("S", "Ax", "Av", "F")

new_data <- expand.grid(

mother = factor(attachment, levels = attachment),

father = factor(attachment, levels = attachment)

)

# Get model matrix (removing intercept)

mm <- model.matrix(~ mother * father, data = new_data)[,-1]

rownames(mm) <- paste0("M_",new_data$mother, "_F_", new_data$father)

# Get constraints main effect

# M_Ax = M_Av ---> M_Ax_F_S - M_Av_F_S = 0

# F_F > F_Av ---> M_S_F_F - M_S_F_Av > 0

rbind(mm["M_Ax_F_S", ] - mm["M_Av_F_S", ],

mm["M_S_F_F", ] - mm["M_S_F_Av", ])

# Get constraints interaction

# M_F_F_Ax = M_Ax_F_F ---> M_F_F_Ax - M_Ax_F_F = 0

# M_Ax_F_Av > M_S_F_Ax ---> M_Ax_F_Av - M_S_F_Ax > 0

rbind(mm["M_F_F_Ax", ] - mm["M_Ax_F_F", ],

mm["M_Ax_F_Av", ] - mm["M_S_F_Ax", ])

In this way, we can easily specify all the constraints obtaining the respective
hypothesis matrix (R) and the vector with the constraints constant values (r) for
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each hypothesis. In all our hypotheses, however, no constraints include constant
values. Thus, r is always a vector of zeros and it can be ignored. Moreover, also
the intercept is ignored because there are no constraints that include MSFS alone
(e.g., MSFS > k) but is always compared with other groups (e.g., MSFS < MAxFS).
Thus, the inclusion of the intercept is redundant and we can ignore it.

Full hypothesis matrix specification for each hypothesis is available in the Sup-
plemental Material https://claudiozandonella.github.io/Attachment/.

Computing the Bayes Factor

So far we defined the hypotheses matrices, specified the encompassing prior, and
obtained the model posterior distribution. To compute the Bayes Factor, we now
need the adjusted prior and the posterior of the transformed parameters vector β
(i.e., the parameters that identify the constraints) for each hypothesis.

• Adjusted Prior β. As reported in Section 6.2.2, adjusted prior is required
to properly evaluate the constraints. Applying the Equation 6.7, we obtain
the prior for the transformed parameter and then we set the mean vector to
zero.

• Posterior β. The same transformation used for the prior can be applied,
this time considering the estimated posterior mean θ̂ and the estimated pos-
terior covariance Σ̂θ, to obtain the posterior distribution of the transformed
parameters vector β.

Note that equation 6.7 requires the hypothesis matrix R to be full-row-rank
(i.e., all constraints are linearly independent). However, this is not the case of the
hierarchy hypothesis. To overcome this limit, we can use the solution proposed by
Mulder and Olsson-Collentine (2019) and Mulder (2016): a new matrix is defined
selecting the maximum number of linearly independent rows and the remaining
constraints are obtained as linear combinations. Detailed information is available
in the Supplemental Material https://claudiozandonella.github.io/Attachment/.

Now, we have all the elements required to compute the Bayes Factor for each
hypothesis as described in Section 6.2.3. Moreover, assuming that each hypothesis is
equally likely a priori, we can calculate the posterior probability of each hypothesis
as (Gu et al., 2014; Hoijtink, 2012),

Posterior ProbabilityHi =
BFiu∑︁
iBFiu

. (6.14)
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6.3.3 Results and Prior Sensitivity Analysis

Bayes Factor and posterior probability of each hypothesis are reported in Table 6.3.
Results clearly indicate that, among the considered hypotheses, the Monotropy
Hypothesis is the most supported by the data.

Table 6.3: Bayes Factor encompassing model and hypothesis posterior probabili-
ties (nsubj = 847).

Hypothesis Bayes Factor Posterior Probability

Null 2.9e+11 0.01

Monotropy 2.6e+13 0.98

Hierarchy 2.7e+11 0.01

Independence 3.9e+09 0.00

Integration 3.2e+09 0.00

Remember, however, that prior specification affects the Bayes Factor results.
It is recommended, therefore, to evaluate also the results obtained using different
prior settings. In particular, we considered as possible priors for the parameters of
interest:

• N (0, .5) - unreasonable tight prior

• N (0, 1) - tighter prior

• N (0, 3) - original prior

• N (0, 5) - more diffuse prior

• N (0, 10) - unreasonably diffuse prior

The results of the prior sensitivity analysis are reported in Table 6.4.
Overall results consistently indicate the Monotropy Hypothesis as the most sup-

ported by the data. However, we can observe two distinct patterns. As the prior
gets more diffuse, the order of magnitude of the Bayes Factor comparing each hy-
pothesis with the encompassing model increases. Moreover, the probability of the
Null Hypothesis increases with more diffuse prior, whereas the probabilities of the
Hierarchy, Independence and Integration Hypothesis increases with tighter priors.
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Table 6.4: Bayes Factor encompassing model v and hypothesis posterior proba-
bilities (PP) under different prior settings (nsubj = 847).

N (0, .5) N (0,1) N (0,3) N (0,5) N (0,10)

Hypothesis BF PP BF PP BF PP BF PP BF PP

Null 8.2e+01 0.00 9.4e+04 0.00 2.9e+11 0.01 4.7e+14 0.03 1.5e+19 0.11
Monotropy 1.2e+05 0.67 6.3e+07 0.90 2.6e+13 0.98 1.6e+16 0.97 1.2e+20 0.89
Hierarchy 4.9e+04 0.28 6.1e+06 0.09 2.7e+11 0.01 6.7e+13 0.00 1.2e+17 0.00

Independence 4.4e+03 0.02 2.6e+05 0.00 3.9e+09 0.00 5.8e+11 0.00 5.1e+14 0.00
Integration 4.6e+03 0.03 3.3e+05 0.00 3.2e+09 0.00 3.3e+11 0.00 1.5e+14 0.00

To interpret these patterns, remember that order constraints are insensitive to
the distribution specification as long as the distribution is symmetric and centred
on the constraint focal point. On the contrary, equality constraints are highly
affected by the prior definition. As the prior gets more diffuse, the density value
at zero decreases as well and, even for posterior distributions centred far from
zero, the densities ratio at zero will favour the posterior. Thus, as the prior gets
more diffuse, the Bayes Factor will favour more and more the hypotheses with
equality constraints, whereas for tighter prior the Bayes Factor will strongly penalize
hypotheses with equality constraints if these are not correct (see Figure 6.8).

All the defined hypotheses include equality constraints. Thus, for more diffuse
prior we observe that the order of magnitude of the Bayes Factor comparing each
hypothesis with the encompassing model increases. Moreover, the hypothesis with
a higher number of equality constraints (e.g., Null Hypothesis) will be favoured over
hypotheses with a smaller number of equality constraints (e.g., Hierarchy, Indepen-
dence and Integration Hypothesis).

Limits

When interpreting the results, it is important to take into account the limits of
the Bayes Factor. First of all, the selected hypothesis is relative to the data and
the set of hypotheses considered. That means that we should not interpret the
selected hypothesis as the only “correct” one. Maybe we did not consider some
important aspects and new hypotheses may reveal themselves to be actually much
better than the previous ones. For example, regarding the attachment results,
taking into account the interaction between children’s gender and attachment may
be fundamental (do you expect that attachment towards the father plays a different
role between girls and boys?). This limit, however, becomes an advantage as it forces
the researchers to focus on the definition of the hypotheses: to obtain good answers
first we need to ask the right questions.

Moreover, considering a unique single winning hypothesis may be limiting as
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Figure 6.8: Evaluating densities at 0 for different prior settings and a selection of
parameters posteriors.

different hypotheses could help to explain different aspects of the process under
investigation. For example, mother and father attachment may play a different role
at different ages. Thus, the selected hypothesis may vary according to children’s
age or other conditions. This should warn against interpreting the result in terms
of winning/losing focusing uniquely on the selected hypothesis and discarding other
hypotheses from further investigations.

Another important limit we observed is the sensitivity of the results to the
prior specification. Gelman et al. (2013) do not recommend the use of the Bayes
Factor given its sensitivity to model definition arbitrary choices. Evaluating the
results under different conditions and transparently discussing the reasons behind
arbitrary choices would help to interpret results more consciously (Schad et al.,
2021).

Finally, another limit related to the use of the Bayes Factor with the encompass-
ing prior approach is that we do not obtain the actual estimates of the parameters
posterior. The only information we get is the selected hypothesis, but we have no
other information regarding the actual parameters values. Therefore, for example,
we are not able to assess the actual effect sizes. To overcome this limit we should
obtain via Bayesian inference the actual posterior of the model parameters given
the prior, formalized according to parameter constraints, and the observed data
(for an introduction to Bayesian estimation see J. K. Kruschke & Liddell, 2018b).
However, posterior estimation under inequality constraints requires the use of ap-
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propriate advanced computational algorithms (see Ghosal, 2022; Kato & Hoijtink,
2006).

6.4 Conclusion

In this paper, we presented a detailed description and an applied example of the
Bayes Factor with the encompassing prior approach. As discussed in the intro-
duction, this approach has several advantages over the traditional Null Hypothesis
Significance Testing (NHST): it is possible to evaluate complex hypotheses with
equality and inequality constraints; multiple hypotheses can be tested simultane-
ously; Bayes Factor and Posterior Probabilities allow to quantify the relative evi-
dence form the data in favour of the hypotheses.

This approach is of particular interest to the researchers, because informative
hypotheses allow them to formalize expectation with great flexibility. In this paper
we considered only the presence/absence of an effect (i.e., θ = 0) or the expected
effects order (i.e., θi > θj). However, in case of clear indications about the actual
effects, researchers can specify the expected range of values for the effects of interest
(i.e., a < θi < b). This allows even a greater level of precision in the formalization
of informative hypotheses.

As underlined by Gu et al. (2018, p.229), “this class of informative hypotheses
covers a much broader range of scientific expectations than the class of standard
null hypotheses. In addition, by testing competing informative hypotheses directly
against each other a researcher obtains a direct answer as to which scientific theory
is most supported by the data”.

The available literature, however, is often technical and difficult to follow for
non-experts in this approach. This paper filled this gap by providing a detailed
description of all steps and elements involved in the computation of the Bayes Factor
with the encompassing prior approach. This will enhance researchers’ awareness
regarding all pros and cons of this method, avoiding applying statistical techniques
as black boxes.

Round Table

1. I would have liked to see the application of the Design Analysis covered in the first
part also to the studies presented in the second part.

Answer : Actually, we conducted a retrospective design analysis for the
study regarding the stereotype threat (Chapter 5). However, we did not include
it in the thesis to avoid the chapter being too lengthy. The retrospective design
analysis can be found in the Supplemental Material of the original main article
(https://osf.io/3u2jd/; see Section 7.2 Power analysis). Considering the attachment
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study (Chapter 6), instead, no retrospective design analysis was conducted for two
main reasons. First, defining appropriate plausible effect sizes for each effect of
interest is difficult as the number of parameters and model complexity increase.
This is one of the limits of design analysis and power analysis. Second, design
analysis (as well as power analysis) is developed within the frequentist statistical
approach. The definition of power in the Bayesian approach and the evaluation
of frequentist properties of the Bayesian methods are currently discussed in the
literature. Thus, the extension of the design analysis to the Bayesian approach is
surely an interesting future step.
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7
Discussion

We did it! Finally, we are at the end of this thesis. It was a really long journey into
statistical inference that leads us to reconsider how we apply statistical methods to
answer our research questions.

We started from the Null Hypothesis Significance Testing (NHST), the dominant
statistical approach in Psychology and Social Sciences. The NHST approach is not
inherently wrong per se, but its misuse and misinterpretation, in what Gigerenzer
et al. (2004) defined as the “Null Ritual”, is considered as one of the causes of the
ongoing replicability crisis. In fact, when selecting for significance in underpowered
studies evaluating complex multivariate phenomena with noisy data (all very com-
mon conditions in psychology), it is really easy to obtain misleading and unreliable
results.

To evaluate the inferential risks related to effect size estimation when selecting
for significance, we presented, in the first part of the thesis, the Design Analysis
framework. In particular, in Chapter 2 we introduced the elements of the design
analysis illustrating its advantages over traditional power analysis considering Co-
hen’s d as a measure of effect size. In Chapter 3, we extended design analysis to the
case of Pearson’s correlation coefficients. Finally, in Chapter 4, we presented the
PRDA R-package that allows researchers to perform prospective and retrospective
design analysis in the case of Pearson’s correlation between two variables or mean
comparisons.

Even though the design analysis framework allowed us to evaluate the inferential
risks related to effect size estimation, the main drawback of the NHST approach still
remains: the NHST does not answer the question researchers are usually interested
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in. Using the NHST approach, researchers can not evaluate the plausibility of their
hypotheses, but only the evidence against the null hypothesis. To properly evaluate
research hypotheses, in the second part of the thesis, we moved away from the
NHST towards the model comparison approach.

Model comparison allows us to evaluate the relative evidence in favour of one hy-
pothesis according to the data. In Chapter 5, we introduced the model comparison
approach using the information criteria to select the preferred models. Information
criteria assess models predictive ability penalizing for model complexity. However,
they are not suitable for comparing informative hypotheses with inequality con-
straints. Thus, in Chapter 6, we introduced a different approach based on the
Bayes Factor with encompassing prior. This approach allows researchers to eas-
ily evaluate informative hypotheses with equality and inequality constraints on the
model parameters.

The aim of this thesis, however, was not only to present different approaches
for testing research hypotheses but also to enhance researchers’ statistical reason-
ing, one of the main ingredients for correct inference. During this journey into
statistical inference, we stressed the importance of choosing appropriate statistical
techniques, rather than applying statistical methods as black boxes. As pointed out
by Gigerenzer and Marewski (2015, p. 422), “if statisticians agree on one thing,
it is that scientific inference should not be made mechanically.” In this regard, we
think that focusing on modeling rather than testing enhances researchers’ statisti-
cal reasoning. In fact, modeling forces researchers to consider the data generative
process of the phenomena of interest and formalize their research hypotheses.

We could consider the mechanical application of the NHST approach just as
an inappropriate tradition inherited from the early stages of research in Psychology
when researchers were simply evaluating if “there is something going on”. However,
once the possible elements involved in the phenomena under study are identified,
the NHST approach does not allow us to understand “what actually is going on”.
To do that, we introduce the model comparison approach using the information
criteria or the Bayes Factor to evaluate informative hypotheses.

So, are these the solution to all our problems? Well, of course not. These are
just the first steps towards a more conscious way to conduct statistical inference in
research. However, many other steps can be done to improve statistical inference.
For example, considering “Causal Inference”. If you like feeling lost and questioning
everything we have learned so far, please see McElreath (2021a). In a series of
three posts1, McElreath made me doubt if everything I did in three years was just a
“Causal Salad” and I fell disappointed that I have never heard before about “Causal
Inference”. But, to go into this, another PhD would be required.

1On YouTube, there is also one of McElreath’s (2021b) wonderful lectures about “Causal
Inference”: https://www.youtube.com/watch?v=KNPYUVmY3NM
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CHAPTER 7. DISCUSSION

7.1 Collaborating for Better Research

Finally, I want to underline how the replicability crisis has been also a great oppor-
tunity to improve research in psychology and social sciences. The replicability crisis
created lots of concern in the literature. At the same time, however, it allowed re-
thinking traditional practices moving towards new approaches to improve research
quality. In particular, the Open Science Movement spread across all disciplines fos-
tering transparency and accessibility of scientific results and enhancing awareness
about the social role of scientific research. The strong impact of this movement is
changing the rules, these are exciting times.

Nowadays, transparency and reproducibility have become fundamental require-
ments for high-quality research. In this regard, domain knowledge, expertise in
statistics, and programming skills2, all are indispensable elements of modern re-
search. This often requires the collaboration between researchers with different
backgrounds, working together to reach the same goal: doing better research. Col-
laboration, however, might be difficult to achieve given the different competencies
and skills. To facilitate this, we introduce in Appendix A trackdown, an R pack-
age offering a simple solution for collaborative writing and editing of reproducible
documents (i.e. R-Markdown documents). Our small contribution to a gReat com-
munity!

” If all you have is a hammer,
everything looks like a nail

— Maslow (1966)

” What makes science so powerful is that
it’s self-correcting

— Anonymous

2Are you looking for another amazing McElreath’s (2020a) talk? Science as Amateur Software
Development https://www.youtube.com/watch?v=zwRdO9 GGhY
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A
trackdown: An R Package for

Enhancing Collaborative Writing1

A.1 Introduction

Literate programming allows combining narrative text and computer code to pro-
duce elegant, high quality, and reproducible documents. These are fundamental
requirements of modern open science workflows fostering transparency and repro-
ducibility of scientific results.

A major downside of literate programming, however, is the lack of tools for col-
laborative writing and editing. Producing a document following a literate program-
ming approach requires programming skills which can complicate the collaboration
with colleagues who lack those skills. Furthermore, while commonly used version
control systems (e.g., Git) are extremely powerful for collaborating on the writing
of computer code, they are less efficient and lack the interactivity needed for col-
laborating on the writing of the narrative part of a document. On the contrary,
common word processors (e.g., Microsoft Word or Google Docs) offer a smoother
experience in terms of real-time editing and reviewing.

1This chapter is adapted from the trackdown package documentation (Kothe et al., 2021), in
which I contributed to conceiving the original idea, developing the package, and writing the docu-
mentation. GitHub repository https://github.com/ClaudioZandonella/trackdown. Full reference:
Kothe, E., Zandonella Callegher, C., Gambarota, F., Linkersdörfer, J., & Ling, M. (2021).
trackdown: Collaborative writing and editing of r markdown (or sweave) documents in google
drive [Manual]. https://doi.org/10.5281/zenodo.5167320
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trackdown overcomes these issues by combining the strengths of literate pro-
gramming in R with the collaborative features offered by the popular word processor
Google Docs.

A.2 Statement of Need

trackdown is an R package offering a simple solution for collaborative writing and
editing of R Markdown (or Sweave) documents. During the collaborative writ-
ing/editing of an .Rmd (or .Rnw) document, it is important to employ different
workflows for computer code and narrative text:

• Code - Collaborative code writing is done most efficiently by following a
traditional Git-based workflow using an online repository (e.g., GitHub or
GitLab).

• Narrative Text - Collaborative writing of narrative text is done most ef-
ficiently using Google Docs which provides a familiar and simple online
interface that allows multiple users to simultaneously write/edit the same
document.

Thus, the workflow’s main idea is simple: Upload the .Rmd (or .Rnw) document
to Google Drive to collaboratively write/edit the narrative text in Google Docs;
download the document locally to continue working on the code while harnessing
the power of Git for version control and collaboration. This iterative process of
uploading to and downloading from Google Drive continues until the desired results
are obtained (See Figure A.1). The workflow can be summarized as:

Collaborative code writing using Git & collaborative writing of narrative
text using Google Docs

Other R packages aiming to improve the user experience during the collaborative
editing of R Markdown (or Sweave) documents are available: redoc (Ross, 2021)
offers a two-way R Markdown-Microsoft Word workflow; reviewer (Stringer et al.,
2021) allows to evaluate differences between two rmarkdown files and add notes us-
ing the Hypothes.is service; trackmd (Tyner & Foster, 2021) is an RStudio add-in
for tracking changes in Markdown format; latexdiffr (Hugh-Jones, 2021) creates
a diff of two R Markdown, .Rnw or LaTeX files. However, these packages implement
a less efficient writing/editing workflow and all of them, but latexdiffr, are no
longer under active development. In particular, the trackdown workflow has the
advantage of being based on Google Docs which offers users a familiar, intuitive,
and free web-based interface that allows multiple users to simultaneously write/edit
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Figure A.1: trackdown workflow, collaborative code writing is done locally using
Git whereas collaborative writing of the narrative text is done online using Google
Docs.

the same document. Moreover, trackdown allows anyone to contribute to the writ-
ing/editing of the document. No programming experience is required, users can
just focus on writing/editing the narrative text in Google Docs.

The package is available on CRAN https://CRAN.R-project.org/package=trackdown
and GitHub https://github.com/claudiozandonella/trackdown. All the documen-
tation is available at https://claudiozandonella.github.io/trackdown/.

A.3 Workflow Example

Suppose you want to collaborate with your colleagues on the writing of an R Mark-
down document, e.g., to prepare a submission to a scientific journal. If you are
the most experienced among your colleagues in the usage of R and programming in
general, you should take responsibility for managing and organizing the workflow.

A.3.1 Upload File

You create the initial document, for example My-Report.Rmd, and upload the file
to Google Drive using the function upload file():
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A.3. Workflow Example

library(trackdown)

upload_file(file = "path-to-file/My-Report.Rmd",

hide_code = TRUE)

By executing this command, the My-Report.Rmd file is uploaded from your local
computer to your Google Drive. Note that trackdown adds some simple instructions
and reminders on top of the document and, by specifying the argument hide code

= TRUE (default is FALSE), the header code (YAML) and code chunks are removed
from the document displaying instead placeholders of type “[[document-header]]”
and “[[chunk-<name>]]” (See Figure A.2). This allows collaborators to focus on
the narrative text.

Figure A.2: When uploading a document from your local computer to your Google
Drive, trackdown adds some simple instructions and reminders on top of the doc-
ument and, by specifying the argument hide code = TRUE (default is FALSE), the
header code (YAML) and code chunks are removed and substituted by placeholders.

A.3.2 Collaborate

After uploading your document to Google Drive, you can now share a link to the
document with your colleagues and invite them to collaborate on the writing of the
narrative text. Google Docs offers a familiar, intuitive, and free web-based interface
that allows multiple users to simultaneously write/edit the same document. In
Google Docs it is possible to: track changes (incl. accepting/rejecting suggestions);
add comments to suggest and discuss changes; check spelling and grammar errors
(See Figure A.3).
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Figure A.3: Example of collaboration in Google Docs using suggestions and com-
ments.

A.3.3 Download File

At some point, you will want to add some code to the document to include figures,
tables, and/or analysis results. This should not be done in Google Docs, instead,
you should first download the document. Accept/reject all changes made to the
document in Google Docs, then download the edited version of the document from
Google Drive using the function download file():

download_file(file = "path-to-file/My-Report.Rmd")

Note that downloading the file from Google Drive will overwrite the local file.

A.3.4 Update File

Once you added the required code chunks, further editing of the narrative text may
be necessary. In this case, you first update the file in Google Drive with your local
version of the document using the function update file():

update_file(file = "path-to-file/My-Report.Rmd",

hide_code = TRUE)
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By executing this command, the document in Google Drive is updated with
your latest local changes. Now you and your colleagues can continue to collaborate
on the writing of the document. Note that updating the file in Google Drive will
overwrite its current content.

This iterative process of updating the file in Google Drive and downloading it
locally continues until the desired results are obtained.
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controllo - Power is nothing without control. Giornale italiano di psicologia,
46 (1-2), 359–378. https://doi.org/10.1421/93796

Pearson, J., & Neyman, E. (1928). On the use and interpretation of certain test
criteria for purposes of statistical inference: Part I. Biometrika. A, 20A(1/2),
175–240. https://doi.org/10.2307/2331945

Perezgonzalez, J. D. (2015). Fisher, Neyman-Pearson or NHST? a tutorial for teach-
ing data testing. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.
2015.00223

Phillips, B. M., Hunt, J. W., Anderson, B. S., Puckett, H. M., Fairey, R., Wilson,
C. J., & Tjeerdema, R. (2001). Statistical significance of sediment toxicity
test results: Threshold values derived by the detectable significance approach.
Environmental Toxicology and Chemistry, 20 (2), 371–373. https://doi.org/
10.1002/etc.5620200218

R Core Team. (2021). R: A language and environment for statistical computing.
manual. R Foundation for Statistical Computing. Vienna, Austria. https :
//www.R-project.org/

Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graph-
ical causal models for observational data. Advances in Methods and Prac-
tices in Psychological Science, 1 (1), 27–42. https : / / doi . org / 10 . 1177 /
2515245917745629

Ross, N. (2021). Redoc: Reversible reproducible documents. manual. https://github.
com/noamross/redoc

Schad, D. J., Nicenboim, B., Bürkner, P.-C., Betancourt, M., & Vasishth, S. (2021,
March 18).Workflow Techniques for the Robust Use of Bayes Factors. arXiv:
2103.08744 [stat]. Retrieved August 18, 2021, from http://arxiv.org/abs/
2103.08744

Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R. (2020). How to capitalize on
a priori contrasts in linear (mixed) models: A tutorial. Journal of Memory
and Language, 110, 104038. https://doi.org/10.1016/j.jml.2019.104038

135

https://doi.org/10.1080/00031305.2018.1518265
https://doi.org/10.1080/00031305.2018.1518265
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1177/1745691612465253
https://doi.org/10.1177/1745691612465253
https://doi.org/10.1421/93796
https://doi.org/10.2307/2331945
https://doi.org/10.3389/fpsyg.2015.00223
https://doi.org/10.3389/fpsyg.2015.00223
https://doi.org/10.1002/etc.5620200218
https://doi.org/10.1002/etc.5620200218
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1177/2515245917745629
https://github.com/noamross/redoc
https://github.com/noamross/redoc
https://arxiv.org/abs/2103.08744
http://arxiv.org/abs/2103.08744
http://arxiv.org/abs/2103.08744
https://doi.org/10.1016/j.jml.2019.104038


Schimmack, U. (2021). The Validation Crisis in Psychology. Meta-Psychology, 5.
https://doi.org/10.15626/MP.2019.1645

Schooler, J. (2014). Turning the Lens of Science on Itself: Verbal Overshadowing,
Replication, and Metascience. Perspectives on Psychological Science, 9 (5),
579–584. https://doi.org/10.1177/1745691614547878

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics,
6 (2), 461–464.

Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an
effect on the power of studies? Psychological Bulletin, 105 (2), 309–316. https:
//doi.org/10.1037/0033-2909.105.2.309

Spencer, S. J., Logel, C., & Davies, P. G. (2016). Stereotype Threat. Annual Review
of Psychology, 67 (1), 415–437. https://doi.org/10.1146/annurev-psych-
073115-103235

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype Threat and
Women’s Math Performance. Journal of Experimental Social Psychology,
35 (1), 4–28. https://doi.org/10.1006/jesp.1998.1373

Stan Development Team. (2020). RStan: The R interface to Stan. http : / /mc -
stan.org/

Stangor, C., & Lemay, E. P. (2016). Introduction to the Special Issue on Method-
ological Rigor and Replicability. Journal of Experimental Social Psychology,
66, 1–3. https://doi.org/10.1016/j.jesp.2016.02.006

Stanley, T. D., Carter, E. C., & Doucouliagos, H. (2018). What meta-analyses re-
veal about the replicability of psychological research. Psychological Bulletin,
144 (12), 1325–1346. https://doi.org/10.1037/bul0000169

Steele, C. M., Spencer, S. J., & Aronson, J. (2002, January 1). Contending with
group image: The psychology of stereotype and social identity threat. Ad-
vances in Experimental Social Psychology (pp. 379–440). Academic Press.
https://doi.org/10.1016/S0065-2601(02)80009-0

Stringer, A., Raymond, B., Dulhunty, M., & de Jong, L. (2021). Reviewer: Improving
the track changes and reviewing experience in r markdown. manual. https:
//github.com/ropensci-archive/reviewer

Szucs, D., & Ioannidis, J. P. A. (2017). When Null Hypothesis Significance Testing Is
Unsuitable for Research: A Reassessment. Frontiers in Human Neuroscience,
11, 390. https://doi.org/10.3389/fnhum.2017.00390

Timm, A. (2019). Retrodesign: Tools for type s (sign) and type m (magnitude) errors.
manual. https://github.com/andytimm/retrodesign

Tyner, S., & Foster, Z. (2021). Trackmd: RStudio addin for tracking document
changes. manual. https://github.com/ropensci-archive/trackmd

van de Schoot, R. (2019). Private communication.

136

https://doi.org/10.15626/MP.2019.1645
https://doi.org/10.1177/1745691614547878
https://doi.org/10.1037/0033-2909.105.2.309
https://doi.org/10.1037/0033-2909.105.2.309
https://doi.org/10.1146/annurev-psych-073115-103235
https://doi.org/10.1146/annurev-psych-073115-103235
https://doi.org/10.1006/jesp.1998.1373
http://mc-stan.org/
http://mc-stan.org/
https://doi.org/10.1016/j.jesp.2016.02.006
https://doi.org/10.1037/bul0000169
https://doi.org/10.1016/S0065-2601(02)80009-0
https://github.com/ropensci-archive/reviewer
https://github.com/ropensci-archive/reviewer
https://doi.org/10.3389/fnhum.2017.00390
https://github.com/andytimm/retrodesign
https://github.com/ropensci-archive/trackmd


van de Schoot, R., Mulder, J., Hoijtink, H., Van Aken, M. A. G., Semon Dubas, J.,
Orobio de Castro, B., Meeus, W., & Romeijn, J.-W. (2011). An introduction
to Bayesian model selection for evaluating informative hypotheses. European
Journal of Developmental Psychology, 8 (6), 713–729. https://doi.org/10.
1080/17405629.2011.621799

Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). Model comparison
and the principle of parsimony. In J. Busemeyer, Z. Wang, J. Townsend,
& A. Eidels (Eds.). Oxford University Press. https : //doi . org/10 . 1093/
oxfordhb/9780199957996.013.14

Varadhan, R. (2020). condMVNorm: Conditional multivariate normal distribution.
manual. https://CRAN.R-project.org/package=condMVNorm
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