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conditions on the wave numbers in εΩi and Ω(ε) and on the parameters in-
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volved in the transmission conditions on ε∂Ωi, the transmission problem has
a unique solution (ui(ε, ·), uo(ε, ·)) for small values of ε > 0. Here ui(ε, ·) and
uo(ε, ·) solve the Helmholtz equation in εΩi and Ω(ε), respectively. Then we
prove that if x ∈ Ωo \ {0}, then uo(ε, x) can be expanded into a convergent
power expansion of ε, κnε log ε, δ2,n log−1 ε for ε small enough. Here κn = 1
if n is even and κn = 0 if n is odd and δ2,2 ≡ 1 and δ2,n ≡ 0 if n ≥ 3.

Keywords: Transmission problem, Helmholtz equation, singularly per-
turbed domain, asymptotic behavior, real analytic continuation.
2010 Mathematics Subject Classification: 35J05, 35R30 41A60, 45F15,
47H30, 78A30.

1 Introduction

In this paper we consider a linear transmission problem for the Helmholtz
equation in a domain with a small inclusion. Problems of this type are mo-
tivated by the analysis of time-harmonic Maxwell’s Equations (see Vogelius
and Volkov [32]). For related problems for the Helmholtz equation, we refer
to the papers [2] of Ammari, Vogelius and Volkov, [1] of Ammari, Iakovleva
and Moskow, [3] of Ammari and Volkov, and [16] of Hansen, Poignard and
Vogelius. First we introduce a problem with no hole (and no transmission),
and then we consider the case with the hole. We consider m ∈ N \ {0},
n ∈ N \ {0, 1}, α ∈]0, 1[ and the following assumption.

Let Ω be a bounded open connected subset of Rn of class Cm,α.
Let Rn \ Ω be connected. Let 0 ∈ Ω . (1.1)

Now let Ωo be as in (1.1). Let

ko ∈ C\]−∞, 0] , =ko ≥ 0 . (1.2)

We also assume that k2
o is not a Neumann eigenvalue for −∆ in Ωo. Then if

go ∈ Cm−1,α(∂Ωo) , (1.3)

and if νΩo is the outward unit normal to ∂Ωo, the Neumann problem{
∆uo + k2

ou
o = 0 in Ωo ,

∂
∂νΩo

uo = go on ∂Ωo (1.4)

has a unique solution ũo ∈ Cm,α(Ωo) (see for example Colton and Kress [8,
Thm. 3.20] and classical Schauder regularity theory). Since the Helmholtz
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equation in (1.4) is even in ko, if ko ∈ C \ {0}, possibly replacing ko by −ko,
we can always assume that assumption (1.2) is fulfilled.

We now perturb singularly our problem. To do so, we consider another
subset Ωi of Rn as in (1.1). Then there exists

ε0 ∈]0, 1[ such that εΩi ⊆ Ωo ∀ε ∈ [−ε0, ε0] . (1.5)

A known topological argument shows that Ω(ε) ≡ Ωo \ εΩi is connected, and
that Rn \ Ω(ε) has exactly the two connected components εΩi and Rn \ Ωo,
and that

∂Ω(ε) = (ε∂Ωi) ∪ ∂Ωo ∀ε ∈]− ε0, ε0[\{0} .

Moreover the outward unit normal νε to ∂Ω(ε) satisfies the equality

νε(x) = −νΩi(x/ε) sgn(ε) ∀x ∈ ε∂Ωi , (1.6)

νε(x) = νΩo(x) ∀x ∈ ∂Ωo , (1.7)

for all ε ∈] − ε0, ε0[\{0}, where sgn(ε) = 1 if ε > 0, sgn(ε) = −1 if ε < 0.
Then we introduce the constants

mi,mo ∈]0,+∞[ , a ∈]0,+∞[ , b ∈ R ,

and
ki ∈ C\]−∞, 0] , =ki ≥ 0 , (1.8)

and the datum
gi ∈ Cm−1,α(∂Ωi) . (1.9)

Then we consider the transmission problem

∆ui + k2
i u

i = 0 in εΩi ,
∆uo + k2

ou
o = 0 in Ω(ε) ,

uo(x)− aui(x) = b ∀x ∈ ε∂Ωi ,

− 1
mi

∂
∂νεΩi

ui(x) + 1
mo

∂
∂νεΩi

uo(x) = gi(x/ε) ∀x ∈ ε∂Ωi ,
∂

∂νΩo
uo = go on ∂Ωo ,

(1.10)

in the unknown (ui, uo) ∈ Cm,α(εΩi) × Cm,α(Ω(ε)) for ε ∈]0, ε0[, and we
plan to show that for ε ∈]0, ε0[ small enough, problem (1.10) has a unique
solution (ui(ε, ·), uo(ε, ·)) ∈ Cm,α(εΩi) × Cm,α(Ω(ε)) and to understand the
behavior of (ui(ε, ·), uo(ε, ·)) as ε approaches 0. More precisely, we plan to
answer the following question.

Let x be fixed in Ωo \ {0}. What can be said on the map (1.11)
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ε 7→ uo(ε, x) when ε > 0 is close to 0?

In a sense, question (1.11) concerns the ‘macroscopic’ behavior of uo(ε, ·).
We are also interested in the ‘macroscopic’ behavior of {ui(ε, ·)}ε∈]0,ε′[ as ε
is close to 0. Since the only point which belongs to the domain of all the
functions ui(ε, ·) as ε ∈]0, ε′[ is x = 0, here we mean that we are interested
in the behavior of {ui(ε, 0)}ε∈]0,ε′[ as ε is close to 0. Such a behavior is a
specific case of the ‘microscopic’ behavior of the family {ui(ε, ·)}ε∈]0,ε′[, i.e.,
of the behavior of {ui(ε, εξ)}ε∈]0,ε′[ in case ξ = 0, a case that we plan to
analyze in a forthcoming paper.

Questions of this type have long been investigated for linear problems on
domains with small holes with the methods of asymptotic analysis, which
aim at proving complete asymptotic expansions in terms of the parameter
ε. It is perhaps difficult to provide a complete list of the contributions.
Here we mention the early results in the monographs of Cherepanov [5]
and [6] on the formation of cracks and in the books of Nayfeh [29], Van
Dyke [31], and Cole [7], which present an extensive review of the expansion
methods known at the time. For the rigorous description of the method
of matching outer and inner asymptotic expansions we refer to the book of
Il’in [18], and for the Compound Expansion Method (also known as Multi-
Scale Expansion Method) we mention the two volumes of Mazya, Nazarov
and Plamenewskii [27] where, among other results, the authors introduce
a systematic approach for analyzing general Douglis and Nirenberg elliptic
boundary value problems in domains with perforations and corners.

To analyze the problem and answer the above question, we resort to the
Functional Analytic Approach (see [10]). Accordingly, we first convert the
transmission problem (1.10) into a system of integral equations by exploiting
classical Potential Theory. Then we observe that, by changing the variables
appropriately, we can obtain a functional equation that can be analyzed by
means of the Implicit Function Theorem around the degenerate case where
ε = 0. Then we prove that we can represent the unknown densities of the
integral equations in terms of real analytic functions of ε when n ≥ 3 is odd,
of real analytic functions of ε, ε log ε when n ≥ 3 is even and of ε, ε log ε,
log−1 ε for n = 2. Next we go back to the integral representation of the
solutions of problem (1.10) and we deduce both the existence of ui(ε, ·) and
of uo(ε, ·) and the representation formulas that describe their dependence
upon ε. Thus we prove our main result, i.e., Theorem 5.1 that answers
question (1.11) (see also the following comment).

For related problems for the Laplace equation, we refer to [21] and to the
paper [28] of Molinarolo. For an existence result in the case of the Laplace
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equation and of a big inclusion (that is, for ε > 0 fixed) we refer to the
paper [11] of Dalla Riva and Mishuris and for a local uniqueness result for
the solutions of (1.10) themselves, rather than for the family of solutions,
we mention the paper [12] of Dalla Riva, Molinarolo and Musolino.

2 Preliminaries and notation

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be
normed spaces. We endow the product space X × Y with the norm defined
by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y for all (x, y) ∈ X × Y, while we use the
Euclidean norm for Rn. We denote by I the identity operator. For standard
definitions of Calculus in normed spaces, we refer to Cartan [4] and to Prodi
and Ambrosetti [30]. The symbol N denotes the set of natural numbers
including 0. Throughout the paper,

n ∈ N \ {0, 1} .

The inverse function of an invertible function f is denoted f (−1), as opposed
to the reciprocal of a complex-valued function g, or the inverse of a matrix
A, which are denoted g−1 and A−1, respectively. A dot ‘·’ denotes the inner
product in Rn, or the matrix product between matrices with real entries.
Let D ⊆ Rn. Then D denotes the closure of D and ∂D denotes the boundary
of D. For all R > 0, x ∈ Rn, xj denotes the j-th coordinate of x, |x|
denotes the Euclidean modulus of x in Rn, and Bn(x,R) denotes the ball
{y ∈ Rn : |x − y| < R}. Let Ω be an open subset of Rn. Then we find
convenient to set

Ω+ ≡ Ω, Ω− ≡ Rn \ Ω .

The space of m times continuously differentiable complex-valued functions
on Ω is denoted by Cm(Ω,C), or more simply by Cm(Ω). Let r ∈ N \ {0},
f ∈ (Cm(Ω))r. The s-th component of f is denoted fs and the Jacobian
matrix of f is denoted Df . Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · · + ηn.

Then Dηf denotes ∂|η|f
∂x
η1
1 ...∂xηnn

. The subspace of Cm(Ω) of those functions f

such that f and its derivatives Dηf of order |η| ≤ m can be extended with
continuity to Ω is denoted Cm(Ω). The subspace of Cm(Ω) whose functions
have m-th order derivatives that are Hölder continuous with exponent α ∈
]0, 1] is denoted Cm,α(Ω), (cf. e.g. [10, §2.11].) Let D ⊆ Rn. Then Cm,α(Ω,D)
denotes the set

{
f ∈

(
Cm,α(Ω)

)n
: f(Ω) ⊆ D

}
. We say that a bounded open

subset of Rn is of class Cm or of class Cm,α, if it is a manifold with boundary
imbedded in Rn of class Cm or Cm,α, respectively (cf. e.g., [10, §2.13].) For
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standard properties of the functions of class Cm,α both on a domain of Rn
or on a manifold imbedded in Rn we refer to [10, §2.11, 2.12, 2.14, 2.20] (see
also [19, §2, Lem. 3.1, 4.26, Thm. 4.28], [24, §2].) We retain the standard
notation of Lp spaces and of corresponding norms. We note that throughout
the paper ‘analytic’ means ‘real analytic’.

3 Some basic facts in potential theory.

Next we turn to introduce the fundamental solution of ∆ + k2 when k ∈
C\] −∞, 0]. In the sequel, arg and log denote the principal branch of the
argument and of the logarithm in C\]−∞, 0], respectively. Then we have

arg(z) = = log(z) ∈]− π, π[ ∀z ∈ C\]−∞, 0] .

Then we set

J ]ν(z) ≡
∞∑
j=0

(−1)jzj(1/2)2j(1/2)ν

Γ(j + 1)Γ(j + ν + 1)
∀z ∈ C , (3.1)

for all ν ∈ C \ {−j : j ∈ N \ {0}}. Here (1/2)ν = eν log(1/2). As is well

known, if ν ∈ C \ {−j : j ∈ N \ {0}} then the function J ]ν(·) is entire and

J ]ν(z2) ≡ e−ν log zJν(z) ∀z ∈ C\]−∞, 0] , (3.2)

where Jν(·) is the Bessel function of the first kind of index ν (cf. e.g., Lebe-
dev [26, Ch. 1, §5.3].) One could also consider case ν ∈ −N, but we do not
need such a case in this paper. If ν ∈ N, we set

N ]
ν(z) ≡ −2ν

π

∑
0≤j≤ν−1

(ν − j − 1)!

j!
zj(1/2)2j (3.3)

−z
ν

π

∞∑
j=0

(−1)jzj(1/2)2j(1/2)ν

j!(ν + j)!

2
∑

0<l≤j

1

l
+

∑
j<l≤j+ν

1

l

 ∀z ∈ C .

As one can easily see, the N ]
ν(·) is an entire holomorphic function of the

variable z ∈ C and

Nν(z) =
2

π
(log(z)− log 2+γ)Jν(z)+z−νN ]

ν(z2) ∀z ∈ C\]−∞, 0] , (3.4)

where γ is the Euler-Mascheroni constant, and where Nν(·) is the Neumann
function of index ν, also known as Bessel function of second kind and index
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ν (cf. e.g., Lebedev [26, Ch. 1, §5.5].) Let k ∈ C\] −∞, 0], n ∈ N \ {0, 1},
an ∈ C. Then we set

bn ≡

{
π1−(n/2)2−1−(n/2) if n is even ,

(−1)
n−1

2 π1−(n/2)2−1−(n/2) if n is odd ,
(3.5)

and

S̃k,an(x) =



kn−2

{
an + 2bn

π (log k − log 2 + γ) + 2bn
π log |x|

}
×J ]n−2

2

(k2|x|2) + bn|x|2−nN ]
n−2

2

(k2|x|2)

if n is even,

ank
n−2J ]n−2

2

(k2|x|2) + bn|x|2−nJ ]−n−2
2

(k2|x|2)

if n is odd,
(3.6)

for all x ∈ Rn \ {0}. As it is known and can be easily verified, the family
{S̃k,an}an∈C coincides with the family of all radial fundamental solutions of
∆ + k2.

Now we need to consider two specific fundamental solutions. For the
first, we need to choose an so that the resulting fundamental solution can be
extended to an entire holomorphic function of the variable k ∈ C. For the
second, we need to choose an so as to obtain the fundamental solution which
satisfies the Bohr-Sommerfeld outgoing radiation condition corresponding to
k. We start by introducing the holomorphic family, which we denote by Sh,n.
Here the subscript h stands for ’holomorphic’. For a proof we refer to the
paper [25, Prop. 3.3] with Rossi.

Theorem 3.7 Let n ∈ N\{0, 1}. Let Sh,n(·, ·) be the map from (Rn\{0})×C
to C defined by

Sh,n(x, k) ≡


bn

{
2
πk

n−2J ]n−2
2

(k2|x|2) log |x|

+|x|−(n−2)N ]
n−2

2

(k2|x|2)

}
if n is even ,

bn|x|−(n−2)J ]−n−2
2

(k2|x|2) if n is odd ,

(3.8)
for all (x, k) ∈ (Rn \ {0})× C. Then the following statements hold.

(i) Sh,n(·, k) is a fundamental solution of ∆+k2 for all k ∈ C and Sh,n(·, 0)
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coincides with the classical fundamental solution Sn of ∆, i.e.,

Sh,n(x, 0) = Sn(x) ≡

{
1
sn

log |x| ∀x ∈ Rn \ {0}, if n = 2 ,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,

(3.9)
where sn denotes the (n− 1) dimensional measure of ∂Bn(0, 1).

(ii) Sh,n(·, k) is real analytic in Rn \ {0}. Moreover, if x ∈ Rn \ {0}, then
the map Sh,n(x, ·) is holomorphic in C.

Now let k ∈ C\] − ∞, 0], =k ≥ 0. As well known in scattering theory,
a function u ∈ C1(Rn \ {0}) satisfies the outgoing k-radiation condition
provided that

lim
x→∞

|x|
n−1

2 (Du(x)
x

|x|
− iku(x)) = 0 . (3.10)

Now by writing the fundamental solution of (3.6) in terms of the Hankel
functions, and by exploiting the asymptotic behavior at infinity of the Hankel
functions, one finds classically that the fundamental solution of (3.6) satisfies
the outgoing k-radiation condition if and only if

an ≡

{
−ibn if n is even

−e−i
n−2

2
πbn if n is odd

}
= −iπ1−(n/2)2−1−(n/2) (3.11)

Then we introduce the following definition.

Definition 3.12 Let n ∈ N \ {0, 1}. Let k ∈ C\] − ∞, 0]. We denote by
Sr,n(·, k) the function from Rn \ {0} to C defined by

Sr,n(x, k) ≡ S̃k,an(x) ∀x ∈ Rn \ {0} ,

with an as in (3.11) (cf. (3.6).)

As we have said above, if k ∈ C\]−∞, 0] and =k ≥ 0, then Sr,n(·, k) satisfies
the outgoing k-radiation condition and Sr,n(·, k) is the fundamental solution
that is classically used in scattering theory. In particular, for n = 3 we
have Sr,3(x, k) = − 1

4π|x|e
ik|x| for all x ∈ Rn \ {0}. The subscript r stands

for ‘radiation’. Now we introduce the function γn from C to C defined by
setting

γn(z) ≡

{
[−i+ 2

π (z − log 2 + γ)]bn if n is even ,

−e−i
n−2

2
πbn if n is odd ,

(3.13)
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for all z ∈ C. Then we have

Sr,n(x, k) = Sh,n(x, k) + γn(log k)kn−2J ]n−2
2

(k2|x|2) ∀x ∈ Rn \ {0} ,
(3.14)

for all k ∈ C\]−∞, 0], which is a formula that shows the relation between the
fundamental solution Sr,n that is normally used in scattering theory and the
fundamental solution Sh,n that we need here for technical purposes. Next
we introduce the layer potentials corresponding to a fundamental solution
or to a smooth kernel and the corresponding boundary operators.

Definition 3.15 Let n ∈ N \ {0, 1}, k ∈ C. Let S be either a fundamental
solution of ∆ + k2 or a real analytic function from Rn to C. Let Ω be
a bounded open subset of Rn of class C1,α. Let µ ∈ C0(∂Ω). Then we
introduce the following notation.

(i) We denote by vΩ[µ, S] the function from Rn to C defined by

vΩ[µ, S](x) ≡
∫
∂Ω
S(x− y)µ(y) dσy ∀x ∈ Rn . (3.16)

Then we denote by v+
Ω [µ, S], by v−Ω [µ, S] and by VΩ[µ, S], the restriction

of vΩ[µ, S] to Ω, to Ω− and to ∂Ω, respectively.

(ii) We denote by W t
Ω[µ, S] the function from ∂Ω to C defined by

W t
Ω[µ, S](x) ≡

∫
∂Ω

∂

∂νΩ,x
S(x− y)µ(y) dσy ∀x ∈ ∂Ω , (3.17)

where

∂

∂νΩ,x
S(x− y) ≡ DS(x− y)νΩ(x) ∀(x, y) ∈ ∂Ω× ∂Ω, x 6= y .

If k ∈ C\]−∞, 0], we set

vΩ[µ, k] ≡ vΩ[µ, Sr,n(·, k)] , (3.18)

and we use corresponding abbreviations for VΩ, v±Ω , W t
Ω. If k ∈ C, we set

vΩ,h[µ, k] = vΩ[µ, Sh,n(·, k)] , (3.19)

and we use corresponding abbreviations for VΩ,h, v±Ω,h, W t
Ω,h. If λ ∈ C, we

set

vΩ,J [µ, λ] = vΩ[µ, J ]n−2
2

(λ| · |2)] , (3.20)
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and we use corresponding abbreviations for VΩ,J , v±Ω,J , W t
Ω,J . Next we intro-

duce the following result on acoustic layer potentials, that is a consequence
of [9] (which is a generalization of [25]). For a proof we refer to [22, Thm.
A.3].

Theorem 3.21 Let n ∈ N\{0, 1}, m ∈ N\{0}, α ∈]0, 1[. Let Ω be a bounded
open connected subset of Rn of class Cm,α such that Rn \Ω is connected. Let
r ∈]0,+∞[ be such that Ω ⊆ Bn(0, r). Then the following statements hold.

(i) The map v+
Ω,h from Cm−1,α(∂Ω)×C to Cm,α(Ω) which takes (µ, k) to

the function v+
Ω,h[µ, k] is real analytic.

(ii) The map v−Ω,h[·, ·]|Bn(0,r)\Ω from Cm−1,α(∂Ω)×C to Cm,α(Bn(0, r)\Ω)

which takes (µ, k) to the function v−Ω,h[µ, k]|Bn(0,r)\Ω is real analytic.

(iii) The map W t
Ω,h from Cm−1,α(∂Ω)×C to Cm−1,α(∂Ω) which takes (µ, k)

to the function W t
Ω,h[µ, k] is real analytic.

Then we have the following (cf. [22, Thm. 4]).

Theorem 3.22 Let n ∈ N\{0, 1}, m ∈ N\{0}, α ∈]0, 1[. Let Ω be a bounded
open subset of Rn of class Cm,α. Let r ∈]0,+∞[ be such that Ω ⊆ Bn(0, r).
Then the following statements hold.

(i) The map VΩ,J [·, ·] from Cm−1,α(∂Ω)×C to Cm,α(∂Ω) which takes (µ, λ)
to the function VΩ,J [µ, λ] is real analytic.

(ii) The map v+
Ω,J [·, ·] from Cm−1,α(∂Ω)×C to Cm,α(Ω) which takes (µ, λ)

to the function v+
Ω,J [µ, λ] is real analytic.

(iii) The map v−Ω,J [·, ·]|Bn(0,r)\Ω from Cm−1,α(∂Ω)×C to Cm,α(Bn(0, r)\Ω)

which takes (µ, λ) to the function v−Ω,J [µ, λ]|Bn(0,r)\Ω is real analytic.

(iv) The map W̃ t
Ω,J [·, ·] from Cm−1,α(∂Ω)× C to Cm−1,α(∂Ω) which takes

(µ, λ) to the function W̃ t
Ω,J [µ, λ] from ∂Ω to C defined by

W̃ t
Ω,J [µ, λ](x) (3.23)

≡ 2

∫
∂Ω

(J ]n−2
2

)′(λ(x− y)(x− y))(x− y)νΩ(x)µ(y) dσy

∀x ∈ ∂Ω ,

10



for all (µ, λ) ∈ Cm−1,α(∂Ω)× C is real analytic. Moreover,

W t
Ω,J [µ, λ](x) = λW̃ t

Ω,J [µ, λ](x) ∀x ∈ ∂Ω , (3.24)

for all (µ, λ) ∈ Cm−1,α(∂Ω)× C.

Corollary 3.25 Let n ∈ N \ {0, 1}, m ∈ N \ {0}, α ∈]0, 1[, k ∈ C\]−∞, 0].
Let Ω be an open subset of Rn of class Cm,α. Then the following statements
hold.

(i) vΩ[µ, k] = vΩ,h[µ, k] + γn(log k)kn−2vΩ,J [µ, k2] on Rn for all µ in the
space Cm−1,α(∂Ω).

(ii) v±Ω [µ, k] = v±Ω,h[µ, k] + γn(log k)kn−2v±Ω,J [µ, k2] on Ω± for all µ in

Cm−1,α(∂Ω).

(iii) W t
Ω[µ, k] = W t

Ω,h[µ, k] + γn(log k)knW̃ t
Ω,J [µ, k2] on ∂Ω for all µ in

Cm−1,α(∂Ω).

Proof. Statements (i)–(iii) are immediate consequences of equality (3.14),
of the definition of the layer potentials involved, and of Theorem 3.22. 2

Next we observe that the fundamental solution Sr,n satisfies the following
scaling property, which can be verified by exploiting the definition of Sr,n
and elementary computations.

Lemma 3.26 Let n ∈ N \ {0, 1}, k ∈ C\] − ∞, 0]. Then the following
equalities hold

εn−2Sr,n(εx, k) = Sr,n(x, εk) , (3.27)

εn−1DSr,n(εx, k) = DSr,n(x, εk) , (3.28)

εnD2Sr,n(εx, k) = D2Sr,n(x, εk) (3.29)

for all x ∈ Rn \ {0}, ε ∈]0,+∞[.

Then we note that the following elementary equality holds

γn(log(εk)) =
2bn
π
κn log ε+ γn(log k) , (3.30)

for all k ∈ C\]−∞, 0] and ε ∈]0,+∞[ (cf. (3.13).)
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4 Formulation of the transmission problem in terms
of integral equations

As a first step, we wish to convert the transmission problem (1.10) into a
system of integral equations. By exploiting the representation Theorem A.1
for the solutions of the Helmholtz equation, the solutions ui, uo of (1.10)
can be written as a single layer acoustic potential. Then by exploiting the
classical jump formulas for single layer potentials, we obtain a system of
integral equations on the ε-dependent domain ε∂Ωi ∪ ∂Ωo. In order to get
rid of ε in the domain, we rescale our functional variables on ε∂Ωi and finally
obtain an ε-dependent system of integral equations on the boundaries ∂Ωi

and ∂Ωo, which do not depend on ε. We present such a change of variable
in the following Theorem 4.1.

Theorem 4.1 Let m ∈ N\{0}, n ∈ N\{0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as in
(1.1). Let mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.9). Let
ki, ko be as in (1.2), (1.8). Assume that k2

o is not a Neumann eigenvalue
for −∆ in Ωo.

Then there exists ε∗ ∈]0, ε0[ such that the map from the set of (ψ, θi, θo)
in Cm−1,α(∂Ωi)2×Cm−1,α(∂Ωo), which solve the following system of integral
equations

ε

∫
∂Ωi

Sh,n(ξ − η, εko)θi(η) dση (4.2)

+εn−1kn−2
o

[
2bn
π
κn log ε+ γn(log ko)

]
VΩi,J [θi, ε2k2

o ](ξ)

+

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy = aε

∫
∂Ωi

Sh,n(ξ − η, εki)ψ(η) dση

+aεn−1kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
VΩi,J [ψ, ε2k2

i ](ξ) + b ∀ξ ∈ ∂Ωi ,

− 1

mi

{
− 1

2
ψ(ξ) +

∫
∂Ωi

DSh,n(ξ − η, εki)νΩi(ξ)ψ(η) dση (4.3)

+εnkni

[
2bn
π
κn log ε+ γn(log ki)

]
W̃ t

Ωi,J [ψ, ε2k2
i ](ξ)

}
− 1

mo

{
− 1

2
θi(ξ)−

∫
∂Ωi

DSh,n(ξ − η, εko)νΩi(ξ)θ
i(η) dση

−εnkno
[

2bn
π
κn log ε+ γn(log ko)

]
W̃ t

Ωi,J [θi, ε2k2
o ](ξ)
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−
∫
∂Ωo

DSr,n(εξ − y, ko)νΩi(ξ)θ
o(y) dσy

}
= gi(ξ) ∀ξ ∈ ∂Ωi ,

−1

2
θo(x) +

∫
∂Ωi

DSr,n(x− εη, ko)νΩo(x)θi(η) dσηε
n−1 (4.4)

+

∫
∂Ωo

DSr,n(x− y, ko)νΩo(x)θo(y) dσy = go(x) ∀x ∈ ∂Ωo ,

to the set of pairs (ui, uo) in Cm,α(εΩi)×Cm,α(Ω(ε)), which satisfy problem
(1.10) and that takes (ψ, θi, θo) to the pair

(vεΩi [ω, ki], vΩ(ε)[µ, ko]) (4.5)

where

ω(x) ≡ ψ(x/ε) ∀x ∈ ε∂Ωi , (4.6)

µ(x) ≡ θi(x/ε) ∀x ∈ ε∂Ωi , µ(x) ≡ θo(x) ∀x ∈ ∂Ωo ,

is a bijection for all ε ∈]0, ε∗[.

Proof. By a known result, we can choose ε∗ ∈]0, ε0[ so that k2
i and k2

o are
neither Neumann nor Dirichlet eigenvalues for −∆ in εΩi for all ε ∈]0, ε∗[
(cf. e.g., Colton and Kress [8, Lem. 3.26], [22, Prop. 9]).

Next we assume that (ui, uo) ∈ Cm,α(εΩi) × Cm,α(Ω(ε)) solves prob-
lem (1.10) and we show that there exists (ψ, θi, θo) in Cm−1,α(∂Ωi)2 ×
Cm−1,α(∂Ωo), which solves system (4.2)–(4.4) and such that (ui, uo) equals
the pair in (4.5).

By the representation Theorem A.1, there exists one and only one (ω, µ)
in Cm−1,α(ε∂Ωi)× Cm−1,α(∂Ω(ε)) such that

ui = vεΩi [ω, ki] , uo = vΩ(ε)[µ, ko] .

Then the jump formulas for the acoustic single layer potential and the
boundary conditions of problem (1.10) imply that the pair (ω, µ) satisfies
the following system of integral equations∫

∂Ω(ε)
Sr,n(x− y, ko)µ(y) dσy (4.7)

= a

∫
ε∂Ωi

Sr,n(x− y, ki)ω(y) dσy + b ∀x ∈ ε∂Ωi ,

− 1

mi

{
−1

2
ω(x) +

∫
ε∂Ωi

∂

∂νεΩi,x
Sr,n(x− y, ki)ω(y) dσy

}
(4.8)
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− 1

mo

{
−1

2
µ(x) +

∫
∂Ω(ε)

∂

∂νΩ(ε),x
Sr,n(x− y, ko)µ(y) dσy

}
= gi(x/ε) ∀x ∈ ε∂Ωi ,

−1

2
µ(x) +

∫
ε∂Ωi

∂

∂νΩo,x
Sr,n(x− y, ko)µ(y) dσy (4.9)

+

∫
∂Ωo

∂

∂νΩo,x
Sr,n(x− y, ko)µ(y) dσy = go(x) ∀x ∈ ∂Ωo .

Next we define (ψ, θi, θo) by means of (4.6). By the definition of norm in
Schauder spaces, (ψ, θi, θo) belongs to Cm−1,α(∂Ωi)2 × Cm−1,α(∂Ωo). Then
we can rewrite system (4.7)–(4.9) as follows.∫

∂Ωi
Sr,n(εξ − εη, ko)θi(η) dσyε

n−1 +

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy

= a

∫
∂Ωi

Sr,n(εξ − εη, ki)ψ(η) dσηε
n−1 + b ∀ξ ∈ ∂Ωi ,

− 1

mi

{
−1

2
ψ(ξ) +

∫
∂Ωi

DSr,n(εξ − εη, ki)νΩi(ξ)ψ(η) dσηε
n−1

}
− 1

mo

{
−1

2
θi(ξ)−

∫
∂Ωi

DSr,n(εξ − εη, ko)νΩi(ξ) θ
i(η) dσηε

n−1

−
∫
∂Ωo

DSr,n(εξ − y, ko)νΩi(ξ)θ
o(y) dσy

}
= gi(ξ) ∀ξ ∈ ∂Ωi ,

−1

2
θo(x) +

∫
∂Ωi

DSr,n(x− εη, ko)νΩo(x)θi(η) dσηε
n−1

+

∫
∂Ωo

DSr,n(x− y, ko)νΩo(x)θo(y) dσy = go(x) ∀x ∈ ∂Ωo .

By the homogeneity properties of the fundamental solution Sr,n of Lemma
3.26, such a system is equal to the following.∫

∂Ωi
Sr,n(ξ − η, εko)θi(η) dσyε

n−1+2−n +

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy

= a

∫
∂Ωi

Sr,n(ξ − η, εki)ψ(η) dσηε
n−1+2−n + b ∀ξ ∈ ∂Ωi ,

− 1

mi

{
−1

2
ψ(ξ) +

∫
∂Ωi

DSr,n(ξ − η, εki)νΩi(ξ)ψ(η) dση

}
− 1

mo

{
−1

2
θi(ξ)−

∫
∂Ωi

DSr,n(ξ − η, εko)νΩi(ξ) θ
i(η) dση

−
∫
∂Ωo

DSr,n(εξ − y, ko)νΩi(ξ)θ
o(y) dσy

}
= gi(ξ) ∀ξ ∈ ∂Ωi ,
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−1

2
θo(x) +

∫
∂Ωi

DSr,n(x− εη, ko)νΩo(x)θi(η) dσηε
n−1

+

∫
∂Ωo

DSr,n(x− y, ko)νΩo(x)θo(y) dσy = go(x) ∀x ∈ ∂Ωo .

Next we write the fundamental solution Sr,n in terms of Sh,n and we resort
to Corollary 3.25 and formula (3.30) and obtain the system (4.2)–(4.4).

On the other hand if (ψ, θi, θo) ∈ Cm−1,α(∂Ωi)2 × Cm−1,α(∂Ωo) solves
system (4.2)–(4.4), then by reading backwards the above computations we
realize that the pair (vεΩi [ω, ki], vΩ(ε)[µ, ko]) solves problem (1.10). More-
over, Theorem A.1 ensures that the map of the statement is injective and
the above argument shows that such a map is also surjective. 2

By Theorem 4.1 we have transformed problem (1.10) into a problem for
integral equations on the boundaries ∂Ωi and ∂Ωo, which do not depend on
ε. In order to analyze the solutions of system (4.2)–(4.4) as ε approaches
zero with the methods of the Functional Analytic Approach, we wish to
solve system (4.2)–(4.4) with respect to (ψ, θi, θo) in terms of ε. To do so
one could try by applying the Implicit Function Theorem around a specific
point (0, ψ, θi, θo) that solves system (4.2)–(4.4).

However, system (4.2)–(4.4) makes no sense if ε = 0. Thus we now
look for a suitable change of the functional variable (ε, ψ, θi, θo) so that the
problem we obtain makes sense for ε = 0 and is not singular in the involved
functional variables. In particular, we should be able to take the limit as ε
tends to 0 in the new problem and obtain a problem that we can solve.

Since we can collect a factor ε in all terms of equation (4.2), we may try
to set

ψ =
ζ

ε
, θi =

ς i

ε
(4.10)

with ζ, ς i ∈ Cm−1,α(∂Ωi). If we do so, we realize that we obtain a problem
that has a limit as ε tends to 0 and that the resulting problem does not look
degenerate in case n ≥ 3 (and as we shall see, it is actually well-posed), but
not in case n = 2, because of the presence of the logarithmic term log ε that
diverges as ε tends to zero.

Thus at least in case n = 2, we must figure out something different. We
first note that the term log ε appears as a coefficient of VΩi,J [θi, ε2k2

o ] and of
VΩi,J [ψ, ε2k2

i ]. Since we can write

VΩi,J [θi, ε2k2
o ] log ε

= (VΩi,J [θi, ε2k2
o ]− VΩi,J [θi, 0]) log ε+ VΩi,J [θi, 0] log ε ∀ε ∈]0, ε0[ ,
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and Theorem 3.22 (i) implies that ε−1(VΩi,J [θi, ε2k2
o ] − VΩi,J [θi, 0]) has an

analytic extension around ε = 0, the term VΩi,J [θi, ε2k2
o ] log ε is no longer

divergent as ε tends to 0 provided that VΩi,J [θi, 0] equals zero.
Now we note that if we choose θi with integral equal to zero on ∂Ωi,

then VΩi,J [θi, 0] = 0 and thus also VΩi,J [θi, ε2k2
o ] log ε is no longer divergent

as ε tends to 0.
Unfortunately however, not all elements of Cm−1,α(∂Ωi) have integral

equal to zero. Thus we now try to write the space Cm−1,α(∂Ωi) as a direct
sum of the subspace of functions that do have integral equal to zero and of a
one dimensional subspace of functions that are multiples of a function with
integral equal to 1. So we now choose θ] ∈ Cm−1,α(∂Ωi) such that∫

∂Ωi
θ] dσ = 1 ,

and we set

Cm−1,α(∂Ωi)0 ≡
{
θ ∈ Cm−1,α(∂Ωi) :

∫
∂Ωi

θ dσ = 0

}
. (4.11)

Then we have

Cm−1,α(∂Ωi) = Cm−1,α(∂Ωi)0⊕ < θ] > ,

where the sum is both algebraic and topological. As a consequence, if ε ∈
]0, ε0[, then the map from

Cm−1,α(∂Ωi)0 × R

to Cm−1,α(∂Ωi) that takes (θ, c) to

θ

ε
+
c

ε
θ]

is an isomorphism. Then we can introduce the new functional variables

ψ =
ζ

ε
+
co

ε
θ] , θi =

ς i

ε
+
ci

ε
θ] , (4.12)

for (ζ, co), (ς i, ci) ∈ Cm−1,α(∂Ωi)0 × R. Once we do so, we find convenient
to write co in terms of ci and of another constant c so that the diverging
terms containing log ε in system (4.2)–(4.4) cancel out and it turns out that
a right choice is

co = a−1(kn−2
o /kn−2

i )ci +
c

(log ε)δ2,n
. (4.13)
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So we now turn to show that by exploiting the above new functional vari-
ables, we can desingularize system (4.2)–(4.4) both in case n ≥ 3 and in case
n = 2, while in case n ≥ 3, the change of functional variables of (4.10) would
also serve the purpose. In order to simplify our notation and computations,
we find convenient to set

Ym−1,α ≡ Cm−1,α(∂Ωi)0 × R× Cm−1,α(∂Ωi)0 × R× Cm−1,α(∂Ωo) (4.14)

and to mention that we can choose θ] ∈ Cm−1,α(∂Ωi) such that∫
∂Ωi

θ] dσ = 1 , −1

2
θ] +W t

Ωi,h[θ], 0] = 0 on ∂Ωi , (4.15)

and that accordingly

υ] ≡ VΩi,h[θ], 0] is constant on ∂Ωi (4.16)

(cf. e.g., [10, Prop. 6.18, Thms. 6.24, 6.25], [20, Thm. 5.1]). Then we also
have

VΩi,J [θ], 0] = J ]n−2
2

(0) on ∂Ωi (4.17)

and we are now ready to prove the following statement.

Theorem 4.18 Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as
in (1.1). Let mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.9). Let
ki, ko be as in (1.2), (1.8). Assume that k2

o is not a Neumann eigenvalue
for −∆ in Ωo. Let θ] ∈ Cm−1,α(∂Ωi) be as in (4.15). Let ε∗ ∈]0, ε0[ be as in
Theorem 4.1. Let

(ui[ε, ζ, ci, ς i, c, θo], uo[ε, ζ, ci, ς i, c, θo]) (4.19)

be the pair of functions of Cm,α(εΩi)× Cm,α(Ω(ε)) defined by

ui[ε, ζ, ci, ς i, c, θo](x) =
1

ε
v+
εΩi

[ζ(·/ε), ki](x) (4.20)

+
1

ε

(
a−1
(
kn−2
o /kn−2

i

)
ci +

c

(log ε)δ2,n

)
v+
εΩi

[θ](·/ε), ki](x) ∀x ∈ εΩi ,

uo[ε, ζ, ci, ς i, c, θo](x) = v+
Ωo [θ

o, ko](x) +
1

ε
v−
εΩi

[ς i(·/ε), ko](x)

+
ci

ε
v−
εΩi

[θ](·/ε), ko](x) ∀x ∈ Ω(ε) ,

for all (ε, ζ, ci, ς i, c, θo) ∈]0, ε∗[×Ym−1,α.
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If ε ∈]0, ε∗[, then the map (ui[ε, ·, ·, ·, ·, ·], uo[ε, ·, ·, ·, ·, ·]) is a bijection from
the subset of Ym−1,α consisting of the 5-tuples (ζ, ci, ς i, c, θo) that solve the
following system of integral equations∫
∂Ωi

Sh,n(ξ − η, εko)ς i(η) dση (4.21)

+εnkno

[
2bn
π
κn log ε+ γn(log ko)

] ∫ 1

0

∂

∂λ
VΩi,J [ς i, tε2k2

o ](ξ) dt

+

∫
∂Ωi

Sh,n(ξ − η, εko)ciθ](η) dση

+εnkno

[
2bn
π
κn log ε+ γn(log ko)

]
ci
∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

o ](ξ) dt

+εn−2kn−2
o γn(log ko)c

iVΩi,J [θ], 0](ξ) +

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy

= a

∫
∂Ωi

Sh,n(ξ − η, εki)ζ(η) dση

+aεnkni

[
2bn
π
κn log ε+ γn(log ki)

] ∫ 1

0

∂

∂λ
VΩi,J [ζ, tε2k2

i ](ξ) dt

+(kn−2
o /kn−2

i )ci
∫
∂Ωi

Sh,n(ξ − η, εki)θ](η) dση

+a

∫
∂Ωi

Sh,n(ξ − η, εki)
c

(log ε)δ2,n
θ](η) dση

+εnkn−2
o cik2

i

[
2bn
π
κn log ε+ γn(log ki)

] ∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt

+aεnkni

[
2bn
π
κn log ε+ γn(log ki)

]
c

(log ε)δ2,n

∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt

+εn−2kn−2
o ciγn(log ki)VΩi,J [θ], 0](ξ)

+aεn−2kn−2
i

[
2bn
π
κn

log ε

(log ε)δ2,n
+

1

(log ε)δ2,n
γn(log ki)

]
cVΩi,J [θ], 0](ξ) + b

∀ξ ∈ ∂Ωi ,

− 1

mi

{
− 1

2

(
ζ(ξ) + a−1(kn−2

o /kn−2
i )ciθ](ξ) +

c

(log ε)δ2,n
θ](ξ)

)
(4.22)

+

∫
∂Ωi

DSh,n(ξ − η, εki)νΩi(ξ)

×
(
ζ(η) + a−1(kn−2

o /kn−2
i )ciθ](η) +

c

(log ε)δ2,n
θ](η)

)
dση
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+εnkni

[
2bn
π
κn log ε+ γn(log ki)

]
×W̃ t

Ωi,J [ζ + a−1(kn−2
o /kn−2

i )ciθ] +
c

(log ε)δ2,n
θ], ε2k2

i ](ξ)

}
− 1

mo

{
− 1

2

(
ς i(ξ) + ciθ](ξ)

)
−
∫
∂Ωi

DSh,n(ξ − η, εko)νΩi(ξ)
(
ς i(η) + ciθ](η)

)
dση

−εnkno
[

2bn
π
κn log ε+ γn(log ko)

]
W̃ t

Ωi,J [ς i + ciθ], ε2k2
o ](ξ)

−ε
∫
∂Ωo

DSr,n(εξ − y, ko)νΩi(ξ)θ
o(y) dσy

}
= εgi(ξ) ∀ξ ∈ ∂Ωi ,

−1

2
θo(x) +

∫
∂Ωi

DSr,n(x− εη, ko)νΩo(x)
(
ς i(η) + ciθ](η)

)
dσηε

n−2 (4.23)

+

∫
∂Ωo

DSr,n(x− y, ko)νΩo(x)θo(y) dσy = go(x) ∀x ∈ ∂Ωo .

onto the set of solutions (ui, uo) in Cm,α(εΩi) × Cm,α(Ω(ε)), which satisfy
problem (1.10). Here ∂

∂λVΩi,J denotes the partial differential of VΩi,J with
respect to its second argument.

Proof. The maps from Cm−1,α(∂Ωi)0 × R to Cm−1,α(∂Ωi) defined by
the equalities in (4.12) are isomorphisms. Thus equation (4.2) in the un-
known (ψ, θi, θo) is equivalent to the following equation in the unknown
(ζ, ci, ς i, co, θo)∫

∂Ωi
Sh,n(ξ − η, εko)ς i(η) dση + εn−2kn−2

o

[
2bn
π
κn log ε+ γn(log ko)

]
(4.24)

×
(
VΩi,J [ς i, ε2k2

o ](ξ)− VΩi,J [ς i, 0](ξ)
)

+εn−2kn−2
o

[
2bn
π
κn log ε+ γn(log ko)

]
VΩi,J [ς i, 0](ξ)

+

∫
∂Ωi

Sh,n(ξ − η, εko)ciθ](η) dση + εn−2kn−2
o

[
2bn
π
κn log ε+ γn(log ko)

]
×
(
VΩi,J [ciθ], ε2k2

o ](ξ)− VΩi,J [ciθ], 0](ξ)
)

+εn−2kn−2
o

[
2bn
π
κn log ε+ γn(log ko)

]
VΩi,J [ciθ], 0](ξ)
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+

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy

= a

∫
∂Ωi

Sh,n(ξ − η, εki)ζ(η) dση

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
×
(
VΩi,J [ζ, ε2k2

i ](ξ)− VΩi,J [ζ, 0](ξ)
)

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
VΩi,J [ζ, 0](ξ)

+a

∫
∂Ωi

Sh,n(ξ − η, εki)coθ](η) dση

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
×
(
VΩi,J [coθ], ε2k2

i ](ξ)− VΩi,J [coθ], 0](ξ)
)

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
VΩi,J [coθ], 0](ξ) + b ∀ξ ∈ ∂Ωi .

Equation (4.24) can actually be simplified. Indeed

VΩi,J [θ, 0] =

∫
∂Ωi

J ]n−2
2

(0)θ dσ = 0 ∀θ ∈ Cm−1,α(∂Ωi)0 (4.25)

and

VΩi,J [θ, k2](ξ)− VΩi,J [θ, 0](ξ) (4.26)

= k2

∫ 1

0

∂

∂λ
VΩi,J [θ, tk2](ξ) dt ∀ξ ∈ ∂Ωi ,

for all (θ, k) ∈ Cm−1,α(∂Ωi) × C. Next we want to introduce a further
unknown by replacing co with the sum

co = c1 +
c

(log ε)δ2,n
, (4.27)

where c1 is a real number such that the following equality is satisfied

εn−2kn−2
o

2bn
π
κn log εVΩi,J [ciθ], 0] = aεn−2kn−2

i

2bn
π
κn log εVΩi,J [c1θ

], 0]

(4.28)
and where c is a new unknown that replaces co by means of the change of
variables (4.27). Such a choice is in order to replace the divergent logarithmic
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terms in the left and right hand sides of (4.24) by a single term in the right
hand side containing the factor

εn−2 c

(log ε)δ2,n
κn log ε

that still contains log ε precisely in case n > 2 is even, but with the advantage
that εn−2 c

(log ε)δ2,n
κn log ε does not diverge as ε tends to zero. Since

VΩi,J [θ], 0] = J ]n−2
2

(0)

∫
∂Ωi

θ] dσ = J ]n−2
2

(0) 6= 0 ,

equality (4.28) is satisfied provided that we choose

c1 = a−1(kn−2
o /kn−2

i )ci. (4.29)

Since the map from Ym−1,α to itself that takes (ζ, ci, ς i, c, θo) to

(ζ, ci, ς i, a−1(kn−2
o /kn−2

i )ci +
c

(log ε)δ2,n
, θo) (4.30)

is an isomorphism, the equation (4.24) in the unknown (ζ, ci, ς i, co, θo) is
equivalent to the equation in the unknown (ζ, ci, ς i, c, θo) that we obtain by
replacing (ζ, ci, ς i, co, θo) by (ζ, ci, ς i, a−1(kn−2

o /kn−2
i )ci + c

(log ε)δ2,n
, θo), i.e.,

the following equation (see also (4.25), (4.26))∫
∂Ωi

Sh,n(ξ − η, εko)ς i(η) dση (4.31)

+εn−2kn−2
o

[
2bn
π
κn log ε+ γn(log ko)

]
ε2k2

o

∫ 1

0

∂

∂λ
VΩi,J [ς i, tε2k2

o ](ξ) dt

+

∫
∂Ωi

Sh,n(ξ − η, εko)ciθ](η) dση

+εn−2kn−2
o

[
2bn
π
κn log ε+ γn(log ko)

]
ε2k2

oc
i

∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

o ](ξ) dt

+εn−2kn−2
o

[
2bn
π
κn log ε+ γn(log ko)

]
VΩi,J [ciθ], 0](ξ)

+

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy

= a

∫
∂Ωi

Sh,n(ξ − η, εki)ζ(η) dση

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
ε2k2

i

∫ 1

0

∂

∂λ
VΩi,J [ζ, tε2k2

i ](ξ) dt
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+a

∫
∂Ωi

Sh,n(ξ − η, εki)a−1(kn−2
o /kn−2

i )ciθ](η) dση

+a

∫
∂Ωi

Sh,n(ξ − η, εki)
c

(log ε)δ2,n
θ](η) dση

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
×a−1(kn−2

o /kn−2
i )ciε2k2

i

∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
× cε2k2

i

(log ε)δ2,n

∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
a−1(kn−2

o /kn−2
i )ciVΩi,J [θ], 0](ξ)

+aεn−2kn−2
i

[
2bn
π
κn log ε+ γn(log ki)

]
c

(log ε)δ2,n
VΩi,J [θ], 0](ξ) + b

for all ξ ∈ ∂Ωi, which is equivalent to equation (4.21) of the statement.
Since the maps from Cm−1,α(∂Ωi)0 × R to Cm−1,α(∂Ωi) defined by the

equalities in (4.12) are isomorphisms and the map of (4.30) is an isomor-
phism in Ym−1,α, equations (4.3), (4.4) in the unknown (ψ, θi, θo) are equiv-
alent to the equations (4.22), (4.23) in the unknown (ζ, ci, ς i, c, θo) of the
statement.

Thus we have proved that system (4.21), (4.22), (4.23) in the unknown
(ζ, ci, ς i, c, θo) is equivalent to system (4.2), (4.3), (4.4) in the unknown
(ψ, θi, θo). Then Theorem 4.1 implies that the map of the statement that
takes (ζ, ci, ς i, c, θo) to the pair of functions in (4.5) with ω, µ as in (4.6),
with ψ, θi as in (4.12) and co as in (4.13), i.e. to the pair of functions in
(4.20) is a bijection.

On the other hand if (ζ, ci, ς i, c, θo) ∈ Ym−1,α solves system (4.21)-(4.23),
then by reading backwards the above computations we realize that the pair
of functions in (4.20) solves problem (1.10). Moreover, Theorem A.1 ensures
that the map of the statement is injective and the above argument shows
that such a map is also surjective. 2

Hence, we are now reduced to analyze system (4.21)–(4.23). Our first
step is to note that by letting ε tend to zero, we obtain system (4.33) below,
which we address to as the ‘limiting system’, and we now prove the following
theorem, which shows the unique solvability of the limiting system and its
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link with a boundary value problem which we address to as the ‘limiting
boundary value problem’.

Theorem 4.32 Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as
in (1.1). Let mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.9). Let
ki, ko be as in (1.2), (1.8). Assume that k2

o is not a Neumann eigenvalue
for −∆ in Ωo. Let θ] ∈ Cm−1,α(∂Ωi) be as in (4.15). Then the following
statements hold

(i) The limiting system

VΩi,h[ς i, 0](ξ) + ciVΩi,h[θ], 0](ξ) (4.33)

+δ2,nk
n−2
o γn(log ko)c

iVΩi,J [θ], 0](ξ) + v+
Ωo [θ

o, ko](0) = aVΩi,h[ζ, 0](ξ)

+
(
kn−2
o /kn−2

i

)
ciVΩi,h[θ], 0](ξ) + a(1− δ2,n)cVΩi,h[θ], 0](ξ)

+δ2,nk
n−2
o γn(log ki)c

iVΩi,J [θ], 0](ξ)

+aδ2,nk
n−2
i

2bn
π
cVΩi,J [θ], 0](ξ) + b ∀ξ ∈ ∂Ωi ,

− 1

mi

{
− 1

2

(
ζ(ξ) +

(
a−1

(
kn−2
o /kn−2

i

)
ci + c(1− δ2,n)

)
θ](ξ)

)
+W t

Ωi,h

[
ζ +

(
a−1

(
kn−2
o /kn−2

i

)
ci + c(1− δ2,n)

)
θ], 0

]
(ξ)

}
− 1

mo

{
− 1

2

(
ς i(ξ) + ciθ](ξ)

)
−W t

Ωi,h

[
ς i + ciθ], 0

]
(ξ)

}
= 0 ∀ξ ∈ ∂Ωi ,

−1

2
θo(x) +

∫
∂Ωo

DSr,n(x− y, ko)νΩo(x)θo(y)dσy

+δ2,nDSr,n(x, ko)νΩo(x)ci = go(x) ∀x ∈ ∂Ωo

has one and only one solution (ζ̃, c̃i, ς̃ i, c̃, θ̃o) in Ym−1,α. Moreover,
c̃i = 0.
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(ii) The limiting boundary value problem

∆ui,r1 = 0 in Ωi ,
∆uo,r1 = 0 in Ωi− ,
∆uo + k2

ou
o = 0 in Ωo ,

uo,r1 (x) + uo(0)− aui,r1 (x) = b ∀x ∈ ∂Ωi ,

− 1
mi

∂
∂νΩi

ui,r1 (x) + 1
mo

∂
∂νΩi

uo,r1 (x) = 0 ∀x ∈ ∂Ωi ,
∂

∂νΩo
uo(x) = go on ∂Ωo ,

lim
ξ→∞

uo,r1 (ξ) = 0 ,

(4.34)

has one and only one solution (ũi,r1 , ũo,r1 , ũo) in

Cm,α(Ωi)× Cm,αloc (Ωi−)× Cm,α(Ωo) ,

which is delivered by the following formulas

ũi,r1 = v+
Ωi,h

[ζ̃, 0] + C̃ in Ωi , ũo,r1 = v−
Ωi,h

[ς̃ i, 0] in Ωi− ,

ũo = v+
Ωo [θ̃

o, ko] in Ωo

(4.35)
where (ζ̃, c̃i, ς̃ i, c̃, θ̃o) is the only solution in Ym−1,α of the limiting sys-

tem (4.33) and C̃ =
(
δ2,n
2π + (1− δ2,n) υ]

)
c̃ (see (4.16) for the constant

υ] ≡ VΩi,h[θ], 0]).

Proof. (i) We first assume that the limiting system (4.33) has a solution

(ζ, ci, ς i, c, θo)

and we show that ci = 0. By integrating the second equality in (4.33), we
obtain

− 1

mi

{∫
∂Ωi

(
−1

2
IΩi +W t

Ωi,h[·, 0]

)
[ζ]dσ +

(
a−1

(
kn−2
o /kn−2

i

)
ci (4.36)

+c (1− δ2,n)
) ∫

∂Ωi

(
−1

2
IΩi +W t

Ωi,h[·, 0]

)
[θ]]dσ

}
+

1

mo

{∫
∂Ωi

(
1

2
IΩi +W t

Ωi,h[·, 0]

)[
ς i + ciθ]

]
dσ

}
= 0 .

By equality (B.4) of the Appendix, we have∫
∂Ωi

W t
Ωi,h[ζ, 0]dσ =

1

2

∫
∂Ωi

ζdσ ,

∫
∂Ωi

W t
Ωi,h[θ], 0]dσ =

1

2

∫
∂Ωi

θ] dσ

(4.37)
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and ∫
∂Ωi

(
1

2
IΩi +W t

Ωi,h[·, 0]

)[
ς i + ciθ]

]
dσ =

∫
∂Ωi

ς i + ciθ]dσ . (4.38)

By (4.36), (4.37) and (4.38), we obtain∫
∂Ωi

(
ς i + ciθ]

)
dσ =

∫
∂Ωi

ς idσ + ci
∫
∂Ωi

θ]dσ = 0 .

Then (4.15) implies that
ci = 0 . (4.39)

Since k2
o is not a Neumann eigenvalue for −∆ in Ωo, the Fredholm Alter-

native and classical Schauder regularity theory imply that the last equality
in (4.33) has a unique solution (cf. Colton and Kress [8, Thm. 3.17], [22,
Thm. B.1]). By a simple computation, the coefficient

A] ≡ δ2,nk
n−2
i

2bn
π
VΩi,J [θ], 0] + (1− δ2,n)VΩi,h[θ], 0] = δ2,n

1

2π
+ (1− δ2,n) υ]

(4.40)
of ac in the right hand side of the first equation of (4.33) is not equal to 0.
Indeed, υ] 6= 0 if n ≥ 3 (see [10, Prop. 6.19]). Then by (4.15) and Theorem
B.1, the first two equations of (4.33) with ci as in (4.39) have a unique
solution (ζ, ς i, c) in Cm−1,α(∂Ωi)0 × Cm−1,α(∂Ωi)0 × R.

Hence, we have proved that the limiting system (4.33) has at most one
solution. On the other hand, if we set (ζ, ς i, c) equal to the only solution of
the first two equations of (4.33) with ci is as in (4.39) and if we set θo equal
to the only solution of the last equation of (4.33) with ci is as in (4.39), we
can verify that (ζ, ci, ς i, c, θo) solves the limiting system (4.33) by reading
backward the above argument.

We now consider statement (ii) and we show that the limiting bound-
ary value problem (4.34) has a unique solution. From the third and sixth
equation of (4.34), we obtain that uo satisfies problem (1.4). Since k2

o is not
a Neumann eigenvalue for −∆ in Ωo, we have already pointed out that the
Neumann problem (1.4) has the unique solution ũo ∈ Cm,α(Ωo). By system
(4.34) with uo = ũo, we have

∆ui,r1 = 0 in Ωi ,
∆uo,r1 = 0 in Ωi− ,

uo,r1 (x) + ũo(0)− aui,r1 (x) = b ∀x ∈ ∂Ωi ,

− 1
mi

∂
∂νΩi

ui,r1 (x) + 1
mo

∂
∂νΩi

uo,r1 (x) = 0 ∀x ∈ ∂Ωi ,

lim
ξ→∞

uo,r1 (ξ) = 0 ,
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that is a linear transmission problem in unknown
(
ui,r1 , uo,r1

)
, which is known

to have at most one solution in Cm,α(Ωi) × Cm,αloc (Ωi−) (cf. e.g., [10, Prop.

6.54, Thm. 6.55 and following comment]). Finally, if (ζ̃, c̃i, ς̃ i, c̃, θ̃o) is the
only solution of the limiting system (4.33), then the standard jump proper-
ties of the single layer potential imply that (ũi,r1 , ũo,r1 , ũo) as in (4.35) with
C̃ = A]c̃ solves the first six equations of the limiting boundary value problem
(4.34). Also, condition

∫
∂Ωi ς

i dσ = 0 implies that

lim
ξ→∞

v−
Ωi,h

[ς i, 0](ξ) = 0

both in dimension n = 2 and in dimension n ≥ 3 (cf. e.g., [10, Thm. 4.23]).
2

We now introduce an abstract formulation of system (4.21), (4.22),
(4.23). We note that in case n even system (4.21), (4.22) contains loga-
rithmic terms, which are not analytic around ε = 0. Namely the terms

εnκn log ε , log−δ2,n ε , εn−2 log−δ2,n ε , (4.41)

εn log−δ2,n ε , εnκn
log ε

logδ2,n ε
, εn−2κn

log ε

logδ2,n ε
.

Next we note that

εnκn log ε = εn−1(κnε log ε) , log−δ2,n ε = (1− δ2,n) +
δ2,n

log ε
,

εnκn
log ε

logδ2,n ε
= εn−1(κnε log ε)

[
(1− δ2,n) +

δ2,n

log ε

]
, (4.42)

εn−2κn
log ε

logδ2,n ε
= [(1− δ2,n)εn−3 + δ2,n][(1− δ2,n)(κnε log ε) + κnδ2,n]

and that (1− δ2,n)εn−3 = 0 if n = 2. Then all terms in (4.41) can be written
as sums and products of the following terms

1 , ε , κnε log ε ,
δ2,n

log ε
. (4.43)

Here the idea is to write system (4.21), (4.22), (4.23) by replacing the terms
that contain log ε, i.e., the terms in (4.41) by the corresponding expressions
as sums of products of the terms of (4.43). Then we consider the resulting
system and introduce the new independent variables

ε1 = κnε log ε , ε2 =
δ2,n

log ε
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and we obtain a new system that depends on ε, ε1, ε2 and that contains no
logarithmic terms and that displays no singularities in the variables ε, ε1, ε2
around the degenerate points where ε = ε1 = ε2 = 0 and that is accordingly
easier to analyze. We do so by means of the following theorem. In order
to shorten our notation, we find convenient to introduce the polynomial
function %n from R2 to R defined by

%n(ε, ε1) ≡ [(1− δ2,n)εn−3 + δ2,n][(1− δ2,n)ε1 + κnδ2,n] ∀(ε, ε1) ∈ R2 ,
(4.44)

so that

%n(ε, κnε log ε) = εn−2κn
log ε

logδ2,n ε
∀ε ∈]0, 1[ . (4.45)

Then here and in what follows we find convenient to set

Zm−1,α ≡ Cm,α(∂Ωi)× Cm−1,α(∂Ωi)× Cm−1,α(∂Ωo) . (4.46)

We are now ready to introduce the following, that can be easily verified.

Theorem 4.47 Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as
in (1.1). Let mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.9). Let
ki, ko be as in (1.2), (1.8). Assume that k2

o is not a Neumann eigenvalue
for −∆ in Ωo. Let θ] ∈ Cm−1,α(∂Ωi) be as in (4.15). Let M ≡ (Ml)l=1,2,3

be the map from ]− ε0, ε0[×R2 × Ym−1,α to Zm−1,α defined by

M1[ε, ε1, ε2, ζ, c
i, ς i, c, θo](ξ) ≡

∫
∂Ωi

Sh,n(ξ − η, εko)ς i(η) dση (4.48)

+εn−1kno

[
2bn
π
ε1 + εγn(log ko)

] ∫ 1

0

∂

∂λ
VΩi,J [ς i, tε2k2

o ](ξ) dt

+

∫
∂Ωi

Sh,n(ξ − η, εko)ciθ](η) dση

+εn−1kno

[
2bn
π
ε1 + εγn(log ko)

]
ci
∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

o ](ξ) dt

+εn−2kn−2
o γn(log ko)c

iVΩi,J [θ], 0](ξ) +

∫
∂Ωo

Sr,n(εξ − y, ko)θo(y) dσy

−a
∫
∂Ωi

Sh,n(ξ − η, εki)ζ(η) dση

−aεn−1kni

[
2bn
π
ε1 + εγn(log ki)

] ∫ 1

0

∂

∂λ
VΩi,J [ζ, tε2k2

i ](ξ) dt

−(kn−2
o /kn−2

i )ci
∫
∂Ωi

Sh,n(ξ − η, εki)θ](η) dση
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−a
∫
∂Ωi

Sh,n(ξ − η, εki)c[(1− δ2,n) + ε2]θ](η) dση

−εn−1kn−2
o cik2

i

[
2bn
π
ε1 + εγn(log ki)

] ∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt

−aεn−1kni

[
2bn
π
ε1 + εγn(log ki)

]
c[(1− δ2,n) + ε2]

×
∫ 1

0

∂

∂λ
VΩi,J [θ], tε2k2

i ](ξ) dt− εn−2kn−2
o ciγn(log ki)VΩi,J [θ], 0](ξ)

−akn−2
i

[
2bn
π
%n(ε, ε1) + εn−2[(1− δ2,n) + ε2]γn(log ki)

]
cVΩi,J [θ], 0](ξ)

−b ∀ξ ∈ ∂Ωi ,

M2[ε, ε1, ε2, ζ, c
i, ς i, c, θo](ξ) (4.49)

≡ − 1

mi

{
− 1

2

(
ζ(ξ) + a−1(kn−2

o /kn−2
i )ciθ](ξ) + c[(1− δ2,n) + ε2]θ](ξ)

)
+

∫
∂Ωi

DSh,n(ξ − η, εki)νΩi(ξ)

×
(
ζ(η) + a−1(kn−2

o /kn−2
i )ciθ](η) + c[(1− δ2,n) + ε2]θ](η)

)
dση

+εn−1kni

[
2bn
π
ε1 + εγn(log ki)

]
×W̃ t

Ωi,J [ζ + a−1(kn−2
o /kn−2

i )ciθ] + c[(1− δ2,n) + ε2]θ], ε2k2
i ](ξ)

}
− 1

mo

{
− 1

2

(
ς i(ξ) + ciθ](ξ)

)
−
∫
∂Ωi

DSh,n(ξ − η, εko)νΩi(ξ)
(
ς i(η) + ciθ](η)

)
dση

−εn−1kno

[
2bn
π
ε1 + εγn(log ko)

]
W̃ t

Ωi,J [ς i + ciθ], ε2k2
o ](ξ)

−ε
∫
∂Ωo

DSr,n(εξ − y, ko)νΩi(ξ)θ
o(y) dσy

}
− εgi(ξ) ∀ξ ∈ ∂Ωi ,

M3[ε, ε1, ε2, ζ, c
i, ς i, c, θo](x) (4.50)

≡ −1

2
θo(x) +

∫
∂Ωi

DSr,n(x− εη, ko)νΩo(x)
(
ς i(η) + ciθ](η)

)
dσηε

n−2

+

∫
∂Ωo

DSr,n(x− y, ko)νΩo(x)θo(y) dσy − go(x) ∀x ∈ ∂Ωo ,

for all (ε, ε1, ε2, ζ, c
i, ς i, c, θo) ∈] − ε0, ε0[×R2 × Ym−1,α. Then the following
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statements hold.

(i) If ε = ε1 = ε2 = 0, then equation

M[0, 0, 0, ζ, ci, ς i, c, θo] = 0

is equivalent to the limiting system (4.33) and has one and only one
solution (ζ̃, c̃i, ς̃ i, c̃, θ̃o) in Ym−1,α. Moreover, c̃i = 0.

(ii) If ε ∈]0, ε0[, ε1 = κnε log ε, ε2 =
δ2,n
log ε , then the equation

M[ε, ε1, ε2, ζ, c
i, ς i, c, θo] = 0 (4.51)

is equivalent to the system (4.21)–(4.23).

Proof. If (ε, ε1, ε2, ζ, c
i, ς i, c, θo) belongs to the domain of M, then the

classical Schauder regularity properties of the acoustic potentials of Theo-
rems 3.21 and 3.22 ensure thatM[ε, ε1, ε2, ζ, c

i, ς i, c, θo] belongs to Zm−1,α .
Statements (i) and (ii) hold true by the definition of M. 2

The main advantages of equation (4.51) with respect to system (4.21),
(4.22), (4.23), is that equation (4.51) displays no singularity in the variables
ε, ε1, ε2, and that equation (4.51) makes also sense for ε ∈] − ε0, 0], while
system (4.21), (4.22), (4.23) does not. So we now plan to analyze equation
(4.51) around the degenerate points where ε = ε1 = ε2 = 0. To do so, we
note that the definition (4.44) of %n implies that

%n(0, 0) = δ2,nκnδ2,n = δ2,n (4.52)

and we prove the following theorem.

Theorem 4.53 Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be as
in (1.1). Let mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3), (1.9). Let
ki, ko be as in (1.2), (1.8). Assume that k2

o is not a Neumann eigenvalue
for −∆ in Ωo. Let ε∗ ∈]0, ε0[ be as in Theorem 4.1. Let M ≡ (Ml)l=1,2,3

be the map from ]− ε0, ε0[×R2×Ym−1,α to Zm−1,α defined by (4.48)–(4.50).
Then the following statements hold.

(i) The map M is real analytic and the differential

∂(ζ,ci,ςi,c,θo)M[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o]
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ofM at (0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o) with respect to the variable (ζ, ci, ς i, c, θo)
is a linear homeomorphism from Ym−1,α onto Zm−1,α. Moreover, if
(f̄ i, ḡi, f̄o) ∈ Zm−1,α and (ζ̄, c̄i, ς̄ i, c̄, θ̄o) ∈ Ym−1,α satisfy equality

∂(ζ,ci,ςi,c,θo)M[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o](ζ̄, c̄i, ς̄ i, c̄, θ̄o) = (f̄ i, ḡi, f̄o) , (4.54)

then

c̄i = mo

∫
∂Ωi

ḡidσ . (4.55)

(ii) There exists ε′ ∈]0, ε∗[, an open neighbourhood Ũ of (0, 0) in R2 and an
open neighbourhood Ṽ of (ζ̃, c̃i, ς̃ i, c̃, θ̃o) in Ym−1,α and a real analytic
map (

Z,Ci, Si, C,Θo
)

from ]− ε′, ε′[×Ũ to Ṽ such that(
κnε log ε,

δ2,n

log ε

)
∈ Ũ , ∀ε ∈]0, ε′[,

and such that the set of zeros of M in ]− ε′, ε′[×Ũ × Ṽ coincides with
the graph of the map (Z,Ci, Si, C,Θo). In particular,(
Z[0, 0, 0], Ci[0, 0, 0], Si[0, 0, 0], C[0, 0, 0],Θo[0, 0, 0]

)
= (ζ̃, c̃i, ς̃ i, c̃, θ̃o).

Proof. By Theorem 3.21, VΩi,h and W t
Ωi,h

are real analytic. By Theorem

3.22, VΩi,J and W̃ t
Ωi,J

are real analytic. Since Sr,n(εξ− y, ko) is real analytic

in the variable (ξ, y, ε) in an open neighbourhood of ∂Ωi × ∂Ωo×] − ε0, ε0[,
a result of paper [23, Prop. 4.1] with Musolino on the properties of the
integral operators with real analytic kernel implies that the function from
the set ] − ε0, ε0[×L1(∂Ωi) to Cm,α(∂Ωi) which takes (ε, f) to the function∫
∂Ωo Sr,n(ε · −y, ko)f(y)dσy is analytic.

Since J ]
′
n−2

2

is holomorphic in C, then Proposition 4.1 (ii) of [23] on

integral operators with a real analytic kernel implies that the map from
Cm−1,α(∂Ωi)×]− ε0, ε0[ to Cm,α(∂Ωi) that takes (ς i, ε) to the function∫ 1

0

∂

∂λ
VΩi,J [ς i, tε2k2

o ](ξ) dt

=

∫
(∂Ωi)×]0,1[

J ]
′
n−2

2

(tε2k2
o |ξ − η|2)|ξ − η|2ς i(η) dση ⊗ dt
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of the variable ξ ∈ ∂Ωi is real analytic. Then the second term of the first
component of M is analytic. Similarly, one can prove the analyticity of
the other terms of the first component of M that contain either ∂

∂λVΩi,J or
∂
∂λVΩo,J and thus the first component of M is analytic.

Next we consider the second and third components ofM. Since ∂
∂ξj
Sr,n(εξ−

y, ko) for j = 1, ..., n is a real analytic function in (ξ, y, ε) in an open neigh-
bourhood of ∂Ωi× ∂Ωo×]− ε0, ε0[, then by a result of [23, Prop. 4.1] on the
properties of integral operators with real analytic kernel, the function from
]− ε0, ε0[×L1(∂Ωo) to Cm−1,α(∂Ωi) which takes (ε, f) to the function

n∑
j=1

(νΩi)j(ξ)

∫
∂Ωo

∂

∂ξj
Sr,n(εξ − y, ko)f(y)dσy ∀ξ ∈ ∂Ωi

is real analytic. Similarly, the map from ]− ε0, ε0[×L1(∂Ωi) to Cm−1,α(∂Ωo)
which takes (ε, f) to the function

n∑
j=1

(νΩo)j(x)

∫
∂Ωi

∂

∂xj
Sr,n(x− εη, ko)f(η)dση ∀x ∈ ∂Ωo

is real analytic. Then by the same arguments above one proves that the
second and third components ofM are analytic. In particular, W t

Ωo [·, ko] is
linear and continuous by Corollary 3.25 (iii). Thus, the operator M is real
analytic. Since the differential of a linear and continuous operator is the
operator itself, standard differentiation rules and equality δ2,nVΩi,J [θ], 0] =

δ2,n imply that the differential ofM at (0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o) with respect to
the variable (ζ, ci, ς i, c, θo) is delivered by the following formula

∂(ζ,ci,ςi,c,θo)M1[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o](ζ̄, c̄i, ς̄ i, c̄, θ̄o)(ξ) = VΩi,h[ς̄ i, 0](ξ) (4.56)

+VΩi,h[θ], 0](ξ)c̄i + δ2,nk
n−2
o γn(log ko)c̄

i + v+
Ωo [θ̄

o, ko](0)− aVΩi,h[ζ̄, 0](ξ)

−
(
kn−2
o /kn−2

i

)
VΩi,h[θ], 0](ξ)c̄i − a(1− δ2,n)VΩi,h[θ], 0](ξ)c̄

−δ2,nk
n−2
o γn(log ki)c̄

i − akn−2
i

2bn
π
δ2,nc̄ ∀ξ ∈ ∂Ωi ,

∂(ζ,ci,ςi,c,θo)M2[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o](ζ̄, c̄i, ς̄ i, c̄, θ̄o)(ξ)

= − 1

mi

{
− 1

2

(
ζ̄(ξ) + a−1

(
kn−2
o /kn−2

i

)
θ](ξ)c̄i + (1− δ2,n)θ](ξ)c̄

)
+W t

Ωi,h

[
ζ̄ + a−1

(
kn−2
o /kn−2

i

)
θ]c̄i + (1− δ2,n)θ]c̄, 0

]
(ξ)

}

31



− 1

mo

{
− 1

2

(
ς̄ i(ξ) + c̄iθ](ξ)

)
−W t

Ωi,h

[
ς̄ i + c̄iθ], 0

]
(ξ)

}
∀ξ ∈ ∂Ωi ,

∂(ζ,ci,ςi,c,θo)M3[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o](ζ̄, c̄i, ς̄ i, c̄, θ̄o)(x)

= −1

2
θ̄o(x) + δ2,nDSr,n(x, ko)νΩo(x)c̄i +W t

Ωo [θ̄
o, ko](x) ∀x ∈ ∂Ωo

for all (ζ̄, c̄i, ς̄ i, c̄, θ̄o) ∈ Ym−1,α. We now prove that the linear and continuous
operator

∂(ζ,ci,ςi,c,θo)M[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o]

is a homeomorphism. By the Open Mapping Theorem it suffices to show that
∂(ζ,ci,ςi,c,θo)M[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o] is a bijection from Ym−1,α onto Zm−1,α.

Let (f̄ i, ḡi, f̄o) ∈ Zm−1,α. We must show that there exists a unique

(ζ̄, c̄i, ς̄ i, c̄, θ̄o) ∈ Ym−1,α

such that equation (4.54) is satisfied. In particular, we note that the second
equation of (4.54) can be written as follows

1

mi

{
1

2
ζ̄ −W t

Ωi,h

[
ζ̄, 0
]}

+
1

mo

{
1

2
ς̄ i +W t

Ωi,h

[
ς̄ i, 0

]}
= ḡi− 1

mo
c̄iθ] on ∂Ωi

(4.57)
(cf. (4.15)). We first assume that (4.54) has a solution (ζ̄, c̄i, ς̄ i, c̄, θ̄o) and
we show that c̄i is uniquely determined. By integrating the second equation
of (4.54), i.e., equation (4.57), on ∂Ωi and by exploiting equality (4.37), we
obtain

1

mo

∫
∂Ωi

ς̄ i dσ =

∫
∂Ωi

ḡi − 1

mo
c̄iθ] dσ .

Since
∫
∂Ωi ς̄

i dσ = 0 and
∫
∂Ωi θ

] dσ = 1, equality (4.55) holds true. By (4.16)

and (4.17), υ] = VΩi,h[θ], 0] is constant on ∂Ωi and VΩi,J [θ], 0] = J ]n−2
2

(0)

on ∂Ωi. Since k2
o is not a Neumann eigenvalue for −∆ in Ωo, the Fredholm

Alternative Theorem and classical Schauder regularity theory imply that
the last equation of (4.54) with c̄i as in (4.55) has a unique solution θ̄o in
Cm−1,α(∂Ωo) (cf. Colton and Kress [8, Thm. 3.17], [22, Thm. B.1]). Since
the coefficient A] of −ac̄ in the first equation of (4.54) is different from 0
(cf. (4.40) and following comment), Proposition B.1 implies that the first
two equations of (4.54) with c̄i as in (4.55) have a unique solution (ζ̄, ς̄ i, c̄)
in Cm−1,α(∂Ωi)0 × Cm−1,α(∂Ωi) × R. By equality (4.55) we know that the
integral of right hand side of equation (4.57) on ∂Ωi is equal to 0 and thus
Proposition B.1 ensures that

∫
∂Ωi ς̄

i dσ = 0.
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On the other hand, if we take c̄i as in (4.55) and if we set (ζ̄, ς̄ i, c̄)
equal to the only solution in Cm−1,α(∂Ωi)0 × Cm−1,α(∂Ωi) × R of the first
two equations of (4.54) in which c̄i is as in (4.55) and θ̄o equal to the only
solution of the last equation of (4.55) in which c̄i is as in (4.55), we can
verify that (ζ̄, c̄i, ς̄ i, c̄, θ̄o) solves (4.54) and satisfies equality

∫
∂Ωi ς̄

i dσ = 0
by reading backwards the above argument.

Hence, we have proved that ∂(ζ,ci,ςi,c,θo)M[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o] is bijection
from Ym−1,α to Zm−1,α and statement (i) holds true.

Then the existence of ε′, Ũ , Ṽ , (Z,Ci, Si, C,Θo) as in (ii) and the last
equality of statement (ii) are a consequence of Theorem 4.47 (i), of state-
ment (i) and of the Implicit Function Theorem in Banach Spaces around
the point (0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o). Possibly shrinking ε′, we can assume that(
κnε log ε,

δ2,n
log ε

)
belongs to Ũ for ε in ]0, ε′[. 2

Remark 4.58 Under the assumptions of Theorem 4.53, the known formula
for the differential of an implicitly defined function implies that

d
(
Z,Ci, Si, C,Θo

)
[0, 0, 0](ε̄, ε̄1, ε̄2)

= −
(
∂(ζ,ci,ςi,c,θo)M[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o]

)(−1)

◦∂(ε,ε1,ε2)M[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o](ε̄, ε̄1, ε̄2) ∀(ε̄, ε̄1, ε̄2) ∈ R3 .

Then Theorem 4.53 (i) implies that

dCi[0, 0, 0](ε̄, ε̄1, ε̄2)

= −mo

∫
∂Ωi

∂(ε,ε1,ε2)M2[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o](ε̄, ε̄1, ε̄2) dσ

= −mo

∫
∂Ωi

∂εM2[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o] dσε̄ ∀(ε̄, ε̄1, ε̄2) ∈ R3 .

Indeed, ∂εjM2[0, 0, 0, ζ̃, c̃i, ς̃ i, c̃, θ̃o] = 0 for j ∈ {1, 2}. As a consequence,

∂Ci

∂ε1
[0, 0, 0] = dCi[0, 0, 0](0, 1, 0) = 0,

∂Ci

∂ε2
[0, 0, 0] = dCi[0, 0, 0](0, 0, 1) = 0.

(4.59)

In order to simplify our notation, we set

Ξn[ε] ≡
(
κnε log ε,

δ2,n

log ε

)
, ∀ε ∈]0, 1[. (4.60)

Then we can prove the following existence and uniqueness theorem for prob-
lem (1.10) for ε ∈]0, ε′[.
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Theorem 4.61 Let m ∈ N \ {0}, n ∈ N \ {0, 1}, α ∈]0, 1[. Let Ωi, Ωo be
as in (1.1). Let mi, mo, a ∈]0,+∞[, b ∈ R. Let gi, go be as in (1.3),
(1.9). Let ki, ko be as in (1.2), (1.8). Assume that k2

o is not a Neumann
eigenvalue for −∆ in Ωo. Let ε′ ∈]0, ε0[ be as in Theorem 4.53 (ii). If
ε ∈]0, ε′[, then the transmission problem (1.10) has one and only one solution
(ui(ε, ·), uo(ε, ·)) ∈ Cm,α(εΩi)× Cm,α(Ω(ε)) and the following formula holds

ui(ε, ·) (4.62)

= ui[ε, Z[ε,Ξn[ε]], Ci[ε,Ξn[ε]], Si[ε,Ξn[ε]], C[ε,Ξn[ε]],Θo[ε,Ξn[ε]]](·)
uo(ε, ·)

= uo[ε, Z[ε,Ξn[ε]], Ci[ε,Ξn[ε]], Si[ε,Ξn[ε]], C[ε,Ξn[ε]],Θo[ε,Ξn[ε]]](·)

for all ε ∈]0, ε′[ (cf. (4.20)).

Proof. Theorems 4.1, 4.18 and 4.53 ensure that the pair (ui(ε, ·), uo(ε, ·))
of (4.62) belongs to Cm,α(εΩi) × Cm,α(Ω(ε)) and solves the transmission
problem (1.10). On the other hand (1.10) is a linear problem and thus if
ε ∈]0, ε′[ and (uiε, u

o
ε) ∈ Cm,α(εΩi) × Cm,α(Ω(ε)) is another solution of the

transmission problem (1.10), then Theorems 4.1, 4.18 and 4.53 ensure that
there exists a unique (ζε, c

i
ε, ς

i
ε, cε, θ

o
ε ) ∈ Ym−1,α such that

uiε = ui[ε, ζε, c
i
ε, ς

i
ε, cε, θ

o
ε ] , uoε = uo[ε, ζε, c

i
ε, ς

i
ε, cε, θ

o
ε ]

and M[ε, ζε, c
i
ε, ς

i
ε, cε, θ

o
ε ] = 0. Since M[ε, ·, ·, ·, ·, ·] is affine, we have

M[ε, Z[ε,Ξn[ε]] + t(ζε − Z[ε,Ξn[ε]]), Ci[ε,Ξn[ε]] + t(ciε − Ci[ε,Ξn[ε]]),

Si[ε,Ξn[ε]] + t(ς iε − Si[ε,Ξn[ε]]), C[ε,Ξn[ε]] + t(cε − C[ε,Ξn[ε]]),

Θi[ε,Ξn[ε]] + t(θiε −Θi[ε,Ξn[ε]])] = 0

for all t ∈ R \ {0}. On the other hand, if we choose t sufficiently small, we
have(

Z[ε,Ξn[ε]] + t(ζε − Z[ε,Ξn[ε]]), Ci[ε,Ξn[ε]] + t(ciε − Ci[ε,Ξn[ε]]),

Si[ε,Ξn[ε]] + t(ς iε − Si[ε,Ξn[ε]]), C[ε,Ξn[ε]] + t(cε − C[ε,Ξn[ε]]),

Θi[ε,Ξn[ε]] + t(θiε −Θi[ε,Ξn[ε]])
)
∈ Ṽ

Then Theorem 4.53 (ii) implies that

ζε − Z[ε,Ξn[ε]] = 0 , ciε − Ci[ε,Ξn[ε]] = 0 , ς iε − Si[ε,Ξn[ε]] = 0 ,

cε − C[ε,Ξn[ε]] = 0 , θiε −Θi[ε,Ξn[ε] = 0 .
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Hence,
uiε = ui(ε, ·) , uoε = uo(ε, ·)

and the proof is complete. 2

Remark 4.63 The above Theorem 4.61 provides an existence and unique-
ness theorem for problem (1.10) for ε ∈]0, ε0[ small enough. By following
the arguments of the proof of the existence and uniqueness theorem for the
transmission problem of Kress and Roach [17] one could prove existence
and uniqueness for problem (1.10) for all ε ∈]0, ε0[ under some additional
assumptions on mi, mo, ki and ko.

5 A representation formula for {uo(ε, ·)}ε∈]0,ε′[

We now turn to prove the following theorem, that clarifies the behavior of
the solution uo(ε, ·) as ε tends to 0.

Theorem 5.1 Let the assumptions of Theorem 4.53 hold. Let ΩM be a
bounded open subset of Ωo\{0} such that 0 /∈ ΩM . Then there exist εM ∈]0, ε′[
and a real analytic map UM from ]− εM , εM [×Ũ to Cm,α(ΩM ) such that

ΩM ⊆ Ω(ε) ∀ε ∈]− εM , εM [ (5.2)

uo(ε, ·)|ΩM = UM [ε,Ξn[ε]] ∀ε ∈]0, εM [ (5.3)

Moreover,
UM [0, 0, 0](x) = ũo(x) ∀x ∈ ΩM , (5.4)

where (ũi,r1 , ũo,r1 , ũo) is the only solution of the limiting boundary value prob-
lem (4.34) (see Theorem 4.32 (ii)).

Proof. By the second formulas of (4.20) and (4.62), we have

uo(ε, x)

= uo[ε, Z[ε,Ξn[ε]], Ci[ε,Ξn[ε]], Si[ε,Ξn[ε]], C[ε,Ξn[ε]],Θo[ε,Ξn[ε]](x)

= v+
Ωo [Θ

o[ε,Ξn[ε]], ko](x)

+ε−1v−
εΩi

[
Si[ε,Ξn[ε]](·/ε), ko

]
(x) + ε−1v−

εΩi

[
Ci[ε,Ξn[ε]]θ](·/ε), ko

]
(x)

for all x ∈ Ω(ε) and ε ∈]0, ε′[. Then Corollary 3.25 (ii) implies that

uo(ε, x) (5.5)
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= v+
Ωo,h[Θo[ε,Ξn[ε]], ko](x) + γn(log ko)k

n−2
o v+

Ωo,J [Θo[ε,Ξn[ε]], k2
o ](x)

+εn−2

(∫
∂Ωi

Sr,n(x− εη, ko)Si[ε,Ξn[ε]](η)dση

+Ci[ε,Ξn[ε]]

∫
∂Ωi

Sr,n(x− εη, ko)θ](η)dση

)
∀x ∈ Ω(ε)

for all ε ∈]0, ε′[. Since 0 /∈ ΩM and ΩM is compact, 0 has a positive distance
from ΩM and thus there exists εM ∈]0, ε′[ such that

ΩM ⊆ Ω(ε) ∀ε ∈ [−εM , εM ].

By equality (5.5), we find natural to define a map UM from ]− εM , εM [×Ũ
to Cm,α(ΩM ) by setting

UM [ε, ε1, ε2](x) ≡ v+
Ωo,h [Θo[ε, ε1, ε2], ko] (x) (5.6)

+γn(log ko)k
n−2
o v+

Ωo,J [Θo[ε, ε1, ε2] , k2
o ](x)

+εn−2

(∫
∂Ωi

Sr,n(x− εη, ko)Si[ε, ε1, ε2](η)dση

)
+εn−2

(
Ci[ε, ε1, ε2]

∫
∂Ωi

Sr,n(x− εη, ko)θ](η)dση

)
∀x ∈ ΩM

for all (ε, ε1, ε2) ∈] − εM , εM [×Ũ (see Theorem 4.53 (ii)). It clearly suffices
to show that the right-hand side of (5.6) defines a real analytic map from
] − εM , εM [×Ũ to Cm,α(ΩM ). By Theorem 3.21 (i), v+

Ωo,h[·, ·] defines a real

analytic map from Cm−1,α(∂Ωo)× C to Cm,α(Ωo). Then Theorem 4.53 im-
plies that the map from ]− εM , εM [×Ũ to Cm,α(Ωo) which takes (ε, ε1, ε2) to
v+

Ωo,h [Θo[ε, ε1, ε2], ko] is real analytic. By Theorem 3.22 (ii), v+
Ωo,J [·, ·] defines

a real analytic map from Cm−1,α(∂Ωo)×C to Cm,α(Ωo). Then Theorem 4.53
implies that the map from ]− εM , εM [×Ũ to Cm,α(Ωo) which takes (ε, ε1, ε2)
to v+

Ωo,J [Θo[ε, ε1, ε2], ko] is real analytic.

Since ΩM ⊆ Ωo , the first and second summand in the right side of (5.6)
define real analytic maps from ]− εM , εM [×Ũ to Cm,α(ΩM ).

Since Sr,n(x − εη, ko) is real analytic in the variable (x, η, ε) in an open
neighbourhood of ΩM × ∂Ωi×] − εM , εM [, then by a result of paper [23,
Prop. 4.1 (i)] with Musolino on the properties of integral operators with
real analytic kernel, the map from ]− εM , εM [×L1(∂Ωi) to Cm,α(ΩM ) which
takes (ε, f) to the map

∫
∂Ωi Sr,n(· − εη)f(η)dσ(η) is real analytic. Since Si

is real analytic and Cm−1,α(∂Ωi) is continuously imbedded into L1(∂Ωi),
we conclude that the map from ] − εM , εM [×Ũ to Cm,α(ΩM ) which takes
(ε, ε1, ε2) to the third summand of the right-hand side of (5.6) is real analytic.
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Similarly, the map from ]−εM , εM [×Ũ to Cm,α(ΩM ) which takes (ε, ε1, ε2)
to
∫
∂Ωi Sr,n(·− εη, ko)θ](η)dση is real analytic. Finally, Ci is real analytic by

Theorem 4.53. Hence UM is real analytic. Moreover, Theorems 4.32, 4.47,
4.53 imply that

UM [0, 0, 0](x) = v+
Ωo,h [Θo[0, 0, 0], ko]

+γn(log ko)k
n−2
o v+

Ωo,J

[
Θo[0, 0, 0], k2

o

]
+δ2,nSr,n(x, ko)

(∫
∂Ωi

Si[0, 0, 0](η)dση

)
+δ2,nSr,n(x, ko)C

i[0, 0, 0]

∫
∂Ωi

θ](η)dση = v+
Ωo

[
θ̃o, ko

]
= ũo ∀x ∈ ΩM .

2

We note that Theorem 5.1 shows that if x ∈ Ωo\{0} then for ε > 0 small
enough we can expand uo(ε, x) into a convergent power series expansion of
powers of ε when n ≥ 3 is odd, of powers of ε, ε log ε when n ≥ 3 is even and
of powers of ε, ε log ε, log−1 ε for n = 2.

In this paper, we do not provide the algorithms to compute the coeffi-
cients of the power series expansion of uo(ε, x). For this type of computa-
tions, we mention the work of Dalla Riva, Musolino and Rogosin [13] for the
Laplace operator.

A Appendix A: A representation formula for the
solutions of the Helmholtz equation.

Theorem A.1 Let n ∈ N\{0, 1}, m ∈ N\{0}, α ∈]0, 1[. Let Ω be a bounded
open subset of Rn of class Cm,α. Let {(Ω−)j : j ∈ {0, . . . , κ−}} denote the
(finite) set of connected components of Ω−. Let (Ω−)0 be the only unbounded
one. Let k ∈ C\]−∞, 0], =k ≥ 0. If for each j ∈ N\{0} such that j ≤ κ−, k2

is not a Dirichlet eigenvalue for −∆ on (Ω−)j, and if k2 is not a Neumann
eigenvalue for −∆ in Ω, then the map from Cm−1,α(∂Ω) to the subspace

V m,α ≡
{
u ∈ Cm,α(Ω) : ∆u+ k2u = 0 in Ω

}
(A.2)

of Cm,α(Ω), which takes φ to v+
Ω [φ, k] is a linear homeomorphism.

Proof. By the regularity properties of the single layer potential of Theorems
3.21 (i), 3.22 (ii), v+

Ω [·, k] is linear and continuous. By the Open Mapping
Theorem it suffices to show that v+

Ω [·, k] is a bijection. If u ∈ V m,α, then
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the solvability condition for the Neumann problem under our assumptions
on k and the Fredholm Alternative Theorem imply the existence of φ in
Cm−1,α(∂Ω) such that −1

2φ + W t
Ω[φ, k] = ∂u

∂ν on ∂Ω (cf. e.g., Colton and
Kress [8, Thms. 3.17, 3.20], and the regularity Theorem B.1 (i) in [22]). Then

the jump formula implies that
∂v+

Ω [φ,k]
∂ν = ∂u

∂ν . Since both v+
Ω [φ, k] and u solve

the same Neumann problem for the Helmholtz equation our assumption on k
implies that u = v+

Ω [φ, k] and thus the map of the statement is surjective. To
prove the injectivity, we observe that if φ ∈ Cm−1,α(∂Ω) and v+

Ω [φ, k] = 0,
then our assumptions on k and the uniqueness for the exterior Dirichlet
problem with the radiation condition in (Ω−)0 imply that v−Ω [φ, k] = 0 in

Ω− and that accordingly φ =
∂v−Ω [φ,k]

∂ν − ∂v+
Ω [φ,k]
∂ν = 0. 2

In case k = 0 (the case of the Laplace equation), the following well known
result holds (cf. e.g., [15, Lem. 3.6]).

Theorem A.3 Let n ∈ N \ {0, 1}, m ∈ N \ {0}, α ∈]0, 1[. Let Ω be a
bounded open connected subset of Rn of class Cm,α. Then the map from
Cm−1,α(∂Ω)0 ×R to Cm,α(Ω) which takes (φ, ρ) to v+

Ω,h[φ, 0] + ρ is a linear
homeomorphism (cf. (4.11)).

B Appendix B: existence and uniqueness theorem
for a linear system of integral equations

We now prove a technical statement that we need in the paper.

Theorem B.1 Let n ∈ N\{0, 1}, m ∈ N\{0}, α ∈]0, 1[. Let Ω be a bounded
open connected subset of Rn of class Cm,α such that Ω− is connected. Let
a,A,B ∈]0,+∞[. Let (f, g) belong to Cm,α(∂Ω) × Cm−1,α(∂Ω). Then the
system of integral equationsVΩ,h[θ, 0]− a

(
VΩ,h[ψ, 0] + c1

)
= f on ∂Ω

A
(

1
2θ +W t

Ω,h[θ, 0]
)

+B
(

1
2ψ −W

t
Ω,h[ψ, 0]

)
= g on ∂Ω

(B.2)

has one and only one solution (θ, ψ, c1) ∈ Cm−1,α(∂Ω)×Cm−1,α(∂Ω)0 ×R.
If
∫
∂Ω g dσ = 0, then we also have

∫
∂Ω θ dσ = 0.
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Proof. We first observe that system (B.2) has a unique solution (θ, ψ, c1)
in Cm−1,α(∂Ω)× Cm−1,α(∂Ω)0 × R if and only if the systemVΩ,h[θ, 0]− (aA/B)

(
VΩ,h[ψ2, 0] + c2

)
= f on ∂Ω(

1
2θ +W t

Ω,h[θ, 0]
)

+
(

1
2ψ2 −W t

Ω,h[ψ2, 0]
)

= g/A on ∂Ω
(B.3)

has a unique solution (θ, ψ2, c2) ∈ Cm−1,α(∂Ω)×Cm−1,α(∂Ω)0×R. Indeed,
it suffices to set ψ2 = Bψ/A, c2 = Bc1/A. Now system (B.3) does have a
unique solution (θ, ψ2, c2) in C0,α(∂Ω)×C0,α(∂Ω)0×R by [10, Thm. 11.15].
By exploiting the very same proof of [10, Thm. 11.15] and by replacing
the use of Theorem 6.47 of [10] that concerns case m = 1 with the above
Theorem A.3 that covers case m ≥ 1, the use of Lemma 11.14 of [10] that
concerns case m = 1 with (4.15), (4.16) that cover case m ≥ 1 and Theorem
6.51 of [10] that concerns case m = 1 with [10, Thm. 6.51], [20, Thm. 5.1]
that cover case m ≥ 1 we can prove that system (B.3) has a unique solution
(θ, ψ2, c2) in Cm−1,α(∂Ω)×Cm−1,α(∂Ω)0×R. The last part of the statement
is an immediate consequence of the second equation of system (B.2) and of
equality∫

∂Ω

(
1

2
IΩ +W t

Ω,h[·, 0]

)
[φ]dσ =

∫
∂Ω
φ dσ ∀φ ∈ Cm−1,α(∂Ω) (B.4)

(cf. e.g., [10, Lem. 6.11]). 2
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