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A calibration study of local ice and optical sensor properties in IceCube

1. Introduction

The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector installed in the ice
at the geographic South Pole [1] instrumenting depths between 1450m and 2450m. It detects
Cherenkov radiation emitted by secondary particles produced in neutrino interactions in the sur-
rounding ice or the nearby bedrock. The optical properties of ice surrounding the detector have
been studied in detail, and the latest results are presented at this conference [2]. This paper focuses
on the properties of ice in the immediate vicinity of the optical sensors (digital optical module, or
DOM), and on the relative position and orientation of the DOMs within this local ice.

Each of the 5160 DOMs deployed in ice is equipped with 12 light emitting diodes (LEDs) that
are positioned on a daughter "flasher" board and can emit light one at a time or in simultaneous
combinations. The LEDs are placed in pairs (1 and 7, 2 and 8, and so on) at 60-degree increments
in azimuth. LEDs 1-6 emit light at an angle of 48 degrees up, and LEDs 7-12 point straight out
horizontally. Most of the instrumented LEDs emit light centered at 405 nm wavelength in a cone
of about 9.7 degree width (RMS).

Initial all-purpose calibration sets (taken mainly to study the optical properties of ice) used
configuration in which all 6 horizontal LEDs were emitting light simultaneously, creating an
approximately azimuthally-symmetric pattern of light. This light was observed by the DOMs
on the surrounding strings and the resulting data sets were used to fit the properties of inter-
string ice. Because of the abundance of data (high number of emitter-receiver pairs) the simple
hypothesis of cylindrically-symmetric angular profile of the emitted light was sufficient to achieve
good description of flasher data and to extract the ice parameters.

To improve precision of the fits we experimented with an unfolding procedure that fitted the
azimuthal profile of the emitted light for each of the emitting DOMs individually. An array of 72
directions spaced by 5 degrees in azimuth (covering the entire 360 degree range), together with one
up and one down components (motivated by simulation of possible unintended up/down scattering
of light at the point where it entered the ice), was simulated and the best linear combination was
found for each tested hypothesis during fitting of the ice properties. Unsurprisingly, this did lead to
an improvement in the quality of flasher data description with the fit. When we used this unfolding
procedure on data with only one LED flashing at a time, it did in fact produce a shape in the unfolded
components that peaked around a single azimuthal direction. Such directions were spaced out by
approximately 60 degrees on a circle, corresponding to pointing directions of individual LEDs.
However, this method was ultimately abandoned once we noticed that the combined histogram of
all components of all horizontal LEDs on all DOMs in the detector did not form a rectangular
distribution but rather an oscillating shape, which aligned with the direction of the ice flow. This
problem was eventually solved with the new birefringence-based description of ice anisotropy
(described in [2]), but by then we switched to a richer single-LED flasher data set.

2. Fits to DOM azimuthal orientation and cable position

The single-LED data set had LEDs 1-12 (i.e. all of tilted and horizontal) flashing one at a time
on all working in-ice DOMs. Since we could no longer approximate such data with a cylindrically-
symmetric pattern, a simulation campaign was carried out in which azimuthal orientations of all
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Figure 1: Left: minus log likelihood (llh - see the last section for details) curves vs. azimuth for LEDs 1-6
(top) and LEDs 7-12 (bottom). Curves shifted by multiples of 60 degrees as appropriate to align with each
other. Right: same is shown with color scale (from blue - worst llh to red/black - best llh), LED circles
placed in their reconstructed azimuthal positions. Best llh values are shown with black in each circle and
correspond to reconstructed directions of LED "beams". The span of the color scale is the same in all circles.
LEDs 5 and 11 stand out with a very flat llh landscape.

DOMs in the detector were determined. For each LED,we simulated precise (lab-measured) angular
profile of the LED in ten-degree increments of azimuth angle, with the nominal tilt (of 48 degrees
up for tilted and 0 for horizontal LEDs). An example of the resulting likelihood curves is shown
in figure 1. With usually no more than two exceptions per DOM, all curves align with their peaks
and valleys, when shifted by multiples of 60 degrees (as required to match the nominal positions
of LEDs on the flasher board). We have therefore combined all 12 such curves (per DOM) and
found that the combined curve can be very well fitted with a function of sin(0=6;4). The direction
of the minimum of this fit then was used to determine the best orientation that describes all 12
LEDs, and thus, the DOM that contains them, with on average around 1 degree (RMS) uncertainty.
The orientations of the DOM and LEDs within, so found, were then used in all of the following
simulations of the single LED flasher data set. Because the supporting (weight-bearing and data)
cable was always (nominally during the deployment) routed between LEDs 11 and 12, this fit is
also used to simulate the cable position with this same 1 degree uncertainty, plus some unknown
(but thought to be better than 15 degrees) uncertainty in cable routing during the deployment.

We had also fitted the cable positions for all DOMs earlier with the all-purpose flasher data
set by simulating the cable shadow on the receiving DOMs. The cable shadow was simulated in
1 degree increments (so, 360 possible locations for each DOM) and the best direction was chosen
as the reconstructed cable position (determined by the best running average of llh values over the
span of +-15 degrees). Since the cable is pressed against the DOM’s surface, the distance between
the cable and DOM is known and fixed, leaving azimuthal orientation the only fitted variable for
each DOM. We have since correlated the cable position so determined with that from the single-
LED orientation study described above and found that the shadow method is accurate to around
60 degrees RMS (assuming that the cable kept to within 15 degrees of its nominally specified
position after deployment). This is shown in figure 2. The figure also shows the variation in llh
sum over the entire detector for the single-LED set, as the cable position determined with that set
is shifted by uniform amount across all DOMs. The best description is achieved at zero shift from
the reconstructed cable positions, as witnessed in the figure.
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Figure 2: Left: histogram of differences (in degrees) between nominal cable position (with DOM orientation
from single-LED orientation study) and reconstructed cable position from cable shadow study. Right:
variation of llh sum over the entire detector as the cable position is shifted from nominal orientation.

3. Hole ice description and fits

A set of two camera modules was installed at the bottom of the last string deployed in IceCube.
The cameras are able to point at each other (up/down the hole) and captured a fascinating sequence
of events that was the hole freezing over [3]. At the end of the freezing process they captured
images that are now the basis of a model of the hole ice that is used in the discussion below. What
the images showed is that most of the refrozen ice is extremely clear, possibly more clear than the
original (warmed) ice just outside the drilled hole. All of the bubbles and other impurities were
pushed in towards the center of the hole and frozen into a "bubbly column" that appears to be highly
scattering column of ice that lights up when hit by the laser light not unlike the long fluorescent
bulb when hit by light from a laser pointer. The rough geometrical layout observed is as follows:
the central bubbly column of the hole ice has a diameter of about 1/2 of the diameter of a DOM.
The refrozen hole has a diameter that is 1.5 that of a DOM. The DOM may lie anywhere within
the refrozen hole, but what was observed was that both camera modules (same size as DOMs) were
touching the wall of the refrozen ice on one side, with the bubbly central column covering a quarter
of the DOM on the opposite side. This is the model that we accept in the following discussion, main
parameters to be fit being the scattering coefficient of the bubbly central column, and the position
of the DOM within the refrozen hole.

As mentioned above and seen in Figure 1, in most DOMs all but a couple of the azimuthal
single-LED llh curves look similar and have a pronounced peak and valley. The two curves that don’t
look like the rest are flatter and usually come in a matching pair (or two) of horizontal/tilted LEDs.
Assuming the hole ice model described above, we can hypothesize that the two LEDs happen to fall
inside the bubbly column of the hole ice, which scatters and randomizes the directions of outgoing
photons. Because of that, no matter what azimuthal direction these two LEDs are simulated with,
the resulting pattern will not match that in data, yielding a uniformly poor description across all
azimuthal choices. We can usually identify such a "problem" region in most of the azimuthal
orientation scans (and it is clearly seen in figure 1).

We have since developed a method that relies on the direct simulation of the bubbly column
of the hole ice. Before proceeding any further we need to know a rough estimate of the effective
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Figure 5: Fit to the best regular-
ization parameter 02.

Figure 3: llh scan over effective
scattering length in the bubbly
column of the hole ice.

Figure 4: Deficit/excess of observed number of photons due to cable
shadow (cable simulated as straight cylinder and as a more realistic curve
that bends around the DOM) and bubbly column of the hole ice.

scattering length (distance at which the photon direction changes by an average of around one radian
due to scattering) in the bubbly column. We centered the column (with a diameter of half the DOM
diameter) on the centers of the DOMs for each string and simulated a range of scattering lengths.
This is what we call a receiver-side fit in the following, as the simulated light from the LEDs misses
the column of the bubbly ice (as they are just outside the column in this simulated configuration),
and it mainly just affects acceptance of the receiving DOM. We enforce that the bubbly column
affects the photons only in the vicinity of the receiving DOMby only simulating its effect on photons
with age greater than 20 ns. The column blocks and reflects photons, randomizing their directions
where they are able to escape it. Figure 3 shows that the best description was achieved with an
effective scattering length of 3 cm.

As shown in [4] there is a significant correlation between the fitted width of the bubbly column
and the effective scattering length of ice within (such that it roughly preserves the total amount of
scattering centers in the bubbly column). We therefore fixed the diameter of the bubbly column to
half the diameter of a DOM, as described above, and only fitted the effective scattering length to
the data. The fitted effective scattering length varies only slightly with depth, and the average value
of 3 cm describes the entire depth range well.

We have performed a fit to the relative position of all DOMs wrt. the bubbly column of the
hole ice. The fit is performed in two stages: on the receiver-side, and on the emitter-side, where
simulation of the bubbly column of the hole ice was only performed for photons younger than 20 ns
from the emission time. In both cases we varied the relative position of the DOM wrt. the column
on a grid of roughly uniformly spaced 61 points on a circle, either on the receiver or emitter side.
Contributions from all receiving DOMs were combined into an llh sum for each of the emitter-side
grid points, whereas all LEDs from all DOMs that contributed light to a receiving DOM were
combined into an llh sum for each of the receiver-side grid points. Two examples of these scans are
shown in figure 6, where all points are sorted according to their llh value and the order is shown
with color (from red/worst llh to blue/best llh). The two scans were then added together and a
cluster/smoothing algorithm was applied as follows. The llh value at each point was averaged over
the entire grid with weights equal to 1/(A2 + 02), where A is the distance to the weighted point and
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Figure 6: Hole ice scan for DOM 34,5 (DOM 5 on string 34, top) and DOM 74,33 (bottom). From left to
right: emitter-side scan, receiver-side scan, combined scan (sum of previous two), regularized (smoothed)
scan. Points are shown in color sorted by their llh values, from blue (best) to red (worst). x and y axes show
relative coordinates from DOM center to hole ice column center.

02 is a regularization parameter, which was optimized to produce the set of relative DOM to hole
ice column positions which resulted in the best description of the entire single-LED data set. A
value of 02 = 0.02 m2 was so found (shown in figure 5). The smoothing procedure described here
improved most of the scans that looked ambiguous due to statistical fluctuations to the point where
the choice of the best point was visually compelling and thus deemed robust (as is evident from the
second example in figure 6).

IceCube preliminary

Figure 7: Fine-grid hole ice scan for DOM 34,5: tilted LEDs 1-6 (top) and horizontal LEDs 7-12 (bottom).
From left to right: 6 individual LEDs followed by their sum. Color scale is from blue (best) to red (worst).
x and y axes show relative coordinates from DOM center to hole ice column center.

We have also performed high-resolution scans on a fine grid of 101x101 points for the two
examples discussed above, with one of them shown in figure 7. Only emitter-side scans are shown
because they are much more visually appealing and contain interesting sharp features unlike the
receiver-side scans. Both the scans for each individual LED and the sum totals for tilted and
horizontal LEDs are shown. In this example, a matched pair of the LEDs (5 and 11) appear to shine
directly into the bubbly column of the hole ice. Only for these two LEDs the description of data
with simulation improves when the bubbly column is placed in front of them. For all other LEDs
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the llh value is best and roughly the same when the bubbly column is anywhere but in front of them,
and degrades significantly when it is in front and blocking the emitted LED light.

In order to visualize the effect of the hole ice column we simulated positioning it at different
angles around a DOM with the distance between the DOM center and the bubbly column center
of 1/2 of DOM radius (this is the scenario where the DOM touched the wall of the refrozen hole).
This, together with a somewhat similar effect from the cable shadow, is shown in figure 4. Both the
bubbly column and cable block photons coming from the side of the DOM that they are covering,
but the bubbly column also enhances the number of detected photons when the column is on the
opposite side. This we attribute to a reflection effect, where the photons enter the column and are
redirected towards the DOM.

4. Effective description of local ice, DOM tilt, and relative in-ice sensitivities

As discussed in [5], in order to accelerate the photon propagation simulation we oversize the
DOM bymaking it larger in the directions perpendicular to the incoming photon (usually by a factor
of 5, making it into a sort of a "pancake"). This increases the cross section by a factor of 25, thus
reducing the number of photons that need to be propagated by this same factor, resulting in very
substantial computational savings. Such a procedure, however, results in an inability to simulate the
local DOM effects, such as hole ice, precisely. We also usually switch to an effective angular DOM
sensitivity description, where the DOM acceptance is modeled as a function of incoming photon
direction (a plane wave treatment), instead of a more accurate approach where the acceptance
depends on photon landing coordinates on the DOM surface (so that the photon is accepted only
when it enters the DOM sphere near the PMT cathode). The effective plane wave approach allows
one to modify the angular sensitivity curve measured in the lab to account for the local (mainly
hole ice) effects as accurately as possible (when oversizing). This lowers acceptance somewhat
for photons arriving with the direction into the PMT and raises acceptance for photons arriving
from the opposite direction. This approach allows us to continue using the oversized DOMs in the
simulation while taking into account some of the effect of the bubbly column of the hole ice.

We can improve this further by converting the relative positioning of the bubbly column wrt.
the DOM into a DOM tilt. Tilting a DOM to one side is implemented by applying the chosen
DOM acceptance model as a function of the photon direction wrt. the tilted DOM axis rather than
the nominally vertical direction. It results in an effect similar to that shown in figure 4: DOM
acceptance increases on one side and drops on the other. Because the cable shadow may also
look like a similar effect, the cable was placed and fixed at the nominal position as found from the
azimuthal orientation study. We have fitted the DOM tilts for all DOMs in the detector by simulating
the DOM directions on a icosahedron-generated grid of 642 points. The best 10 directions were
averaged to produce the reconstructed tilt direction. While we started the tilt study as an attempt
to improve the effective description of local ice when simulating oversized DOMs, we had also
repeated the fit with the nominal-size DOMs and with the full simulation of the bubbly column of
the hole ice with effective scattering and relative wrt. DOM positioning reconstructed as described
above. We found a distribution of DOM tilts that is very similar, which is puzzling and is a subject
of an on-going study. Curiously, we compared the tilts found here to the measurement with the
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built-in inclinometer that is installed in 48 of the in-ice DOMs, and found a correlation between the
two outliers in the inclinometer data with the tilts found with the method discussed here.

Finally we also fitted the overall relative in-ice DOM sensitivities (wrt. their nominal average
baseline value) to the single-LED data set. The resulting values form a distribution with a width of
around 8.6% (RMS). We have also split the fit using only subsets of LEDs, e.g., only tilted or only
horizontal LEDs. The resulting shifts from the fit using all LEDs are within 1% of each other, which
demonstrates good stability of the result. We note here that the relative in-ice DOM sensitivity may
not necessarily match the relative DOM efficiency as measured in the lab due to local effects such
as positioning of the DOM within the hole and relative to the cable and bubbly column, as well as
due to possible deposits of dust and other debris on the DOM surface as observed in the pictures
taken by the two in-ice cameras. In fact, the correlation between relative in-ice sensitivities fitted
here and lab-measured relative DOM efficiencies is virtually non-existent.

5. Discussion of fit results

All of the fits described here had employed the same likelihood construction [6] as in most
other recent ice work, e.g., in [2, 5]. The minus log likelihood, denoted in this report as llh, is akin
to the saturated Poisson likelihood, and can similarly be used as a measure of the goodness-of-fit.
Here the llh value is a sum over around 60000 LEDs (12 per DOM, around 5000 DOMs), and has a
statistical and numerical uncertainty estimated at around 12. Built into this likelihood construction
is an assumption that the data and simulation at the best fit point (in the limit of infinite statistics)
disagree at a configurable level of around 10%. We call this disagreementmodel error and can gauge
it after the fit by estimating the width of the distribution of ratios of charges in data and simulation.
The effects fitted and described in this report improve both the llh andmodel error in our description
of the LED calibration data. Although the estimated llh and model error values depend strongly
on the specific simulation setup used in data/simulation comparison (such as amount of statistics
simulated, and range of received charge used in the comparison, we can fix these and only vary the
underlying ice/detector model. We start with llh=28472, model error=14.1% (for the ice model
described in [2]). Adding the full hole ice description as calibrated here these values are reduced
to 28307 and 13.6%. Further changing to the in-ice DOM sensitivities fitted here reduces these
values to 27892 and 10.0%. Finally adding tilt we get 27644 and 9.9%. The numbers are given
with oversized DOMs (factor of 5). Simulation with nominal-size DOMs results in llh=27542 and
an estimated model error of 9.8%. We have tested the effects fitted here on real-life IceCube events
(similar to figure 7 in [2]) and witnessed an improvement in the description of those events.
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Naumann58, J. Necker59, L. V. Nguyễn24, H. Niederhausen27, M. U. Nisa24, S. C. Nowicki24, D. R. Nygren9, A. Obertacke Pollmann58,
M. Oehler31, A. Olivas19, E. O’Sullivan57, H. Pandya42, D. V. Pankova56, N. Park33, G. K. Parker4, E. N. Paudel42, L. Paul40, C.
Pérez de los Heros57, L. Peters1, J. Peterson38, S. Philippen1, D. Pieloth23, S. Pieper58, M. Pittermann32, A. Pizzuto38, M. Plum40, Y.
Popovych39, A. Porcelli29, M. Prado Rodriguez38, P. B. Price8, B. Pries24, G. T. Przybylski9, C. Raab12, A. Raissi18, M. Rameez22, K.
Rawlins3, I. C. Rea27, A. Rehman42, P. Reichherzer11, R. Reimann1, G. Renzi12, E. Resconi27, S. Reusch59, W. Rhode23, M. Richman45,
B. Riedel38, E. J. Roberts2, S. Robertson8, 9, G. Roellinghoff52, M. Rongen39, C. Rott49, 52, T. Ruhe23, D. Ryckbosch29, D. Rysewyk
Cantu24, I. Safa14, 38, J. Saffer32, S. E. Sanchez Herrera24, A. Sandrock23, J. Sandroos39, M. Santander54, S. Sarkar44, S. Sarkar25, K.
Satalecka59, M. Scharf1, M. Schaufel1, H. Schieler31, S. Schindler26, P. Schlunder23, T. Schmidt19, A. Schneider38, J. Schneider26, F.
G. Schröder31, 42, L. Schumacher27, G. Schwefer1, S. Sclafani45, D. Seckel42, S. Seunarine47, A. Sharma57, S. Shefali32, M. Silva38,
B. Skrzypek14, B. Smithers4, R. Snihur38, J. Soedingrekso23, D. Soldin42, C. Spannfellner27, G. M. Spiczak47, C. Spiering59, 61, J.
Stachurska59, M. Stamatikos21, T. Stanev42, R. Stein59, J. Stettner1, A. Steuer39, T. Stezelberger9, T. Stürwald58, T. Stuttard22, G. W.
Sullivan19, I. Taboada6, F. Tenholt11, S. Ter-Antonyan7, S. Tilav42, F. Tischbein1, K. Tollefson24, L. Tomankova11, C. Tönnis53, S.
Toscano12, D. Tosi38, A. Trettin59, M. Tselengidou26, C. F. Tung6, A. Turcati27, R. Turcotte31, C. F. Turley56, J. P. Twagirayezu24, B.
Ty38, M. A. Unland Elorrieta41, N. Valtonen-Mattila57, J. Vandenbroucke38, N. van Eĳndhoven13, D. Vannerom15, J. van Santen59, S.
Verpoest29, M. Vraeghe29, C. Walck50, T. B. Watson4, C. Weaver24, P. Weigel15, A. Weindl31, M. J. Weiss56, J. Weldert39, C. Wendt38,
J. Werthebach23, M. Weyrauch32, N. Whitehorn24, 35, C. H. Wiebusch1, D. R. Williams54, M. Wolf27, K. Woschnagg8, G. Wrede26, J.
Wulff11, X. W. Xu7, Y. Xu51, J. P. Yanez25, S. Yoshida16, S. Yu24, T. Yuan38, Z. Zhang51

1 III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
2 Department of Physics, University of Adelaide, Adelaide, 5005, Australia
3 Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
4 Dept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA
5 CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
6 School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
7 Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA
8 Dept. of Physics, University of California, Berkeley, CA 94720, USA
9 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
10 Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
11 Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
12 Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
13 Vrĳe Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
14 Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA
15 Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

9



P
o
S
(
I
C
R
C
2
0
2
1
)
1
0
2
3

A calibration study of local ice and optical sensor properties in IceCube

16 Dept. of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
17 Department of Physics, Loyola University Chicago, Chicago, IL 60660, USA
18 Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
19 Dept. of Physics, University of Maryland, College Park, MD 20742, USA
20 Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA
21 Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
22 Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
23 Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany
24 Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
25 Dept. of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
26 Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
27 Physik-department, Technische Universität München, D-85748 Garching, Germany
28 Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
29 Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
30 Dept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA
31 Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany
32 Karlsruhe Institute of Technology, Institute of Experimental Particle Physics, D-76021 Karlsruhe, Germany
33 Dept. of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada
34 Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
35 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095, USA
36 Department of Physics, Mercer University, Macon, GA 31207-0001, USA
37 Dept. of Astronomy, University of Wisconsin–Madison, Madison, WI 53706, USA
38 Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin–Madison, Madison, WI 53706, USA
39 Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
40 Department of Physics, Marquette University, Milwaukee, WI, 53201, USA
41 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
42 Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
43 Dept. of Physics, Yale University, New Haven, CT 06520, USA
44 Dept. of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
45 Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
46 Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
47 Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA
48 Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
49 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
50 Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden
51 Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
52 Dept. of Physics, Sungkyunkwan University, Suwon 16419, Korea
53 Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Korea
54 Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
55 Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
56 Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA
57 Dept. of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
58 Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
59 DESY, D-15738 Zeuthen, Germany
60 Università di Padova, I-35131 Padova, Italy
61 National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow 115409, Russia
62 Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan

∗E-mail: analysis@icecube.wisc.edu

Acknowledgements
USA – U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, U.S. Na-
tional Science Foundation-EPSCoR, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the
University of Wisconsin–Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE),
Frontera computing project at the Texas Advanced Computing Center, U.S. Department of Energy-National Energy Research Scientific
Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research
at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium – Funds for Scientific
Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo);
Germany – Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for
Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY),

10



P
o
S
(
I
C
R
C
2
0
2
1
)
1
0
2
3

A calibration study of local ice and optical sensor properties in IceCube

and High Performance Computing cluster of the RWTH Aachen; Sweden – Swedish Research Council, Swedish Polar Research Sec-
retariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia – Australian
Research Council; Canada – Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada
Foundation for Innovation, WestGrid, and Compute Canada; Denmark – Villum Fonden and Carlsberg Foundation; New Zealand –
Marsden Fund; Japan – Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba
University; Korea – National Research Foundation of Korea (NRF); Switzerland – Swiss National Science Foundation (SNSF); United
Kingdom – Department of Physics, University of Oxford.

11


	Introduction
	Fits to DOM azimuthal orientation and cable position
	Hole ice description and fits
	Effective description of local ice, DOM tilt, and relative in-ice sensitivities
	Discussion of fit results

