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a b s t r a c t

This paper reconsiders common benchmarking approaches to nearest neighbor search. It is shown that
the concepts of local intrinsic dimensionality (LID), local relative contrast (RC), and query expansion
allow to choose query sets of a wide range of difficulty for real-world datasets. Moreover, the
effect of the distribution of these dimensionality measures on the running time performance of
implementations is empirically studied. To this end, different visualization concepts are introduced
that allow to get a more fine-grained overview of the inner workings of nearest neighbor search
principles. Interactive visualizations are available on the companion website.1 The paper closes with
remarks about the diversity of datasets commonly used for nearest neighbor search benchmarking. It
is shown that such real-world datasets are not diverse: results on a single dataset predict results on
all other datasets well.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nearest neighbor (NN) search is a key primitive in many com-
uter science applications, such as data mining, machine learning
nd image processing. For example, Spring and Shrivastava very
ecently showed in [1] how nearest neighbor search methods can
ield large speed-ups when training neural network models. In
his paper, we study the classical k-NN problem in a metric space
M,D). Given a dataset S ⊆ M, the task is to build an index on S
o support the following type of query: For a query point x ∈ M,
eturn the k closest points in S under the metric D.

In many practical settings, a dataset consists of points rep-
esented as high-dimensional vectors in a vector space Rd. For
example, word representations generated by the glove algo-
rithm [2] associate with each word in a corpus a d-dimensional
real-valued vector. Common choices for d are between 50 and
300 dimensions. Finding the true nearest neighbors in such a
high-dimensional space is difficult, a phenomenon often referred
to as the ‘‘curse of dimensionality’’ [3]. In practice, it means
that finding the true nearest neighbors, in general, cannot be
solved much more efficiently than by a linear scan through the
dataset (requiring time O(n) for n data points) or in space that is
exponential in the dimensionality d, which is impractical for large
values of d.

∗ Corresponding author.
E-mail addresses: maau@itu.dk (M. Aumüller), matteo.ceccarello@unibz.it

M. Ceccarello).
1 https://cecca.github.io/role-of-dimensionality/.
ttps://doi.org/10.1016/j.is.2021.101807
306-4379/© 2021 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
While we cannot avoid these general hardness results [4],
most datasets that are used in applications are not truly high-
dimensional. This means that the dataset can be embedded onto
a lower-dimensional space without too much distortion. Intu-
itively, the intrinsic dimensionality (ID) of the dataset is the
minimum number of dimensions that allows for such a represen-
tation [5]. There exist many explicit ways of finding good embed-
dings for a given dataset. For example, the Johnson–Lindenstrauss
transformation [6] allows us to embed n data points in Rd into
Θ((log n)/ε2) dimensions such that all pairwise distances are pre-
erved up to a (1 + ε) factor with high probability. Another clas-
sical embedding often employed in practice is given by principal
component analysis (PCA), see [7].

In this paper, we put our focus on local measures of dimension-
ality. In particular, we consider ‘‘local intrinsic dimensionality’’
(LID), a measure introduced by Houle in [5], an adapted version
of ‘‘query expansion’’, a measure introduced by Ahle et al. in [8],
and a local version of the ‘‘relative contrast’’ of the dataset in-
troduced by He et al. in [9]. We defer a detailed discussion of
these measures to Section 2. Intuitively, the LID of a data point
x at a distance threshold r > 0 measures how difficult it is to
distinguish between points at distance r and distance (1 + ε)r in
dataset. The Expansion of a data point x and a parameter k > 0

s the ratio of the distance of its 2k-th nearest neighbor and its
th nearest neighbor. The relative contrast (RC) of a data point
is the ratio between the mean distance of x to the points in

he dataset and the distance to its nearest neighbor. The relative
ontrast of a dataset is then the average RC over all data points.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ost importantly, all three measures are local measures that can
e associated with a single query. It was stated in [10] that the LID
ight serve as a characterization of the difficulty of k-NN queries.
ne purpose of this paper is to shed light on this statement, as
ell as to compare it with the other measures.
A focus of this paper is an empirical study of how these local

easures influence the performance of NN algorithms. To be
recise, we will benchmark five different implementations [11]
hich employ different approaches to NN search. Four of them
HNSW [12], IVF [13], Annoy [14]), and ONNG [15] stood out as
ost performant in the empirical study conducted by Aumüller
t al. in [16]. Finally, we included the very recent LSH-based
pproach (PUFFINN) from Aumüller et al. [17] that promises to
ive recall guarantees with an adaptive query algorithm.
Our experiments are based on the ann-benchmarks sys-

em from [16]. We describe their benchmarking approach and
he changes we made to their system in Section 3. We analyze
he distribution of local dimensionality measures of real-world
atasets in Section 4. For all measures, we will see that there
s a substantial difference between these distributions among
atasets. We will then conduct two sets of experiments: First, we
ix a dataset and choose as query set the set of points with small-
st, medium, and largest estimated dimensionality measure, for
ach one of LID, RC, and query expansion. In addition, we choose a
et of ‘‘diverse’’ query points w.r.t. their estimated dimensionality
easure. As we will see, there is a clear tendency such that

he larger the LID (resp. the smaller the RC and Expansion),
he more difficult the query for all implementations. Among the
hree measures, the LID is the one for which this effect is most
ronounced. Next, we will study how the different dimension-
lity distributions between datasets influence the running time
istribution. In a nutshell, it cannot be concluded that any of the
hree dimensionality measures by itself is a good indicator for the
elative performance of a fixed implementation over datasets.

In the first part of our evaluation, we work in the ‘‘classical
valuation setting of nearest neighbor search’’. This means that
e relate a performance measure (such as the achieved through-
ut measured in queries per second) to a quality measure (such
s the average fraction of true nearest neighbors found over all
ueries). While this is the most commonly employed evalua-
ion method, we reason that this way of representing results
n fact hides interesting details about the inner workings of an
mplementation. Using non-traditional visualization techniques
rovide new insights into their query behavior on real-world
atasets. As one example, we see that reporting average recall on
he graph-based approaches from [12,15] hides an important de-
ail: For a given query, they either find all true nearest neighbors
r not a single one. This behavior is not shared by the three other
pproaches that we consider; all yield a continuous transition
rom ‘‘finding no nearest neighbors’’ to ‘‘finding all of them’’.

As a final point, we want, ideally, to benchmark on a collection
f ‘‘interesting’’ datasets that show the strengths and weaknesses
f individual approaches [18]. We will conclude that there is
ittle diversity among the considered real-world datasets: While
he individual performance observations change from dataset to
ataset, the relative performance between implementations stays
he same.

Our contributions The main contributions of this paper are

• a detailed evaluation of the distribution of local dimension-
ality measures of many real-world datasets used in bench-
marking frameworks,

• an evaluation of the influence of these different dimension-
ality measures on the performance of NN,

• a systematic way to create query workloads of a wide range
of difficulty for nearest neighbor search, search implemen-
tations,
2

• considerations about the result diversity, and
• an exploration of different visualization techniques that

shed light on individual properties of certain implementa-
tion principles.

We hope that our approach and the tools developed will
ind use in future benchmarking studies. In particular, the way
o choose query workloads with varying difficulties results in
nteresting testbeds to benchmark implementations.

Related work on benchmarking frameworks for NN. We ex-
tend the benchmarking system described in [16] as the starting
point for our study. Different approaches to benchmarking near-
est neighbor search are described in [19–21]. We refer to [16] for
a detailed comparison between the frameworks.

Related work on the meaningfulness of nearest neighbor
search. Beyer et al. [22] and Francois et al. [23] showed that
under certain randomness assumptions and in the limit d → ∞,
earest neighbor search queries become ‘‘meaningless’’, an effect
sually referred to as the ‘‘concentration of distances’’. This means
hat the nearest and furthest neighbor of a data point become
early indistinguishable. As mentioned in [9], these observations
old only asymptotically and usually do not occur in real-world
atasets.

Related work on application-specific dataset annotations. In
many fields such as multimedia image- or video-retrieval sys-
tems, both queries and their ground truth are chosen by human
annotators. In addition, labels might be involved in judging the
quality of a retrieval system. The paper [24] provides an excel-
lent discussion of the challenges of providing good annotations
and picking queries of varying difficulty in such a domain. The
present work only considers the quality achieved by nearest
neighbor search implementations, where the quality is judged by
comparing the result to a query to the result of an exhaustive
search. It would be interesting if the methods described here
could be applied to guide the query selection process or in further
automation of the semi-automated steps in [24].

Relation to conference version. This paper is an extended
version of the SISAP 2019 paper [25], which focused mainly
on LID as a measure of local dimensionality. To have a better
understanding of how much our observations generalized, this
version includes two other measures (query expansion and rel-
ative contrast) and features a new NN implementation based on
LSH (PUFFINN).

2. Local dimensionality measures

2.1. Local intrinsic dimensionality

We consider a metric space (M,D) with D:M × M → R. As
described in [26], we consider the distribution of distances within
this space with respect to a reference point x. Such a distribution
is induced by sampling n points from the space M under a certain
probability distribution. We let F :R → [0, 1] be the cumulative
distribution function of distances to the reference point x.

Definition 1 ([5]). The local continuous intrinsic dimension of F
at distance r is given by

IDF (r) = lim
ε→0

ln(F ((1 + ε)r)/F (r))
ln((1 + ε)r/r)

,

whenever this limit exists.

The measure relates the increase in distance to the increase in
probability mass (the fraction of points that are within the ball
of radius r and (1 + ε)r around the query point). Intuitively, the
larger the LID, the more difficult it is to distinguish true nearest
neighbors at distance r from the rest of the dataset. As described
in [10], in the context of k-NN search we set r as the distance of
the kth nearest neighbor to the reference point x.
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Estimating LID We use the Maximum-Likelihood estimator
(MLE) described in [27,28] to estimate the LID of x at distance r .
et r1 ≤ · · · ≤ rk be the sequence of distances of the k-NN of x.
he MLE ˆIDx is then

D̂x = −

(
1
k

k∑
i=1

ln
ri
rk

)−1

. (1)

Amsaleg et al. showed in [26] (full version [28]) that MLE esti-
mates the LID well. We remark that in very recent work, Amsaleg
et al. proposed in [29] a new MLE-based estimator that provides
more accurate LID estimates for smaller values of k compared
to (1).

In the following, we denote with LIDk the LID estimate ob-
tained with parameter k. If the parameter is omitted, we refer
to LID100.

Local ID representation theorem The Local ID Representation
Theorem by Houle [30, Theorem 2] shows that Definition 1 of
IDF (r) is equivalent to the relation F (x)/F (w) = (x/w)IDF (r) in an
asymptotic sense, see [30] for the details. Here, the local intrinsic
dimensionality relates the ratio of the CDF of two distances,
which intuitively means the number of neighbors within the ball
at these two distances, to the ‘‘possible’’ growth (x/w)IDF (r) if the
intrinsic dimensionality were IDF (r).

The representation theorem gives precise conditions under
which the expansion dimension (ED) introduced by Karger and
Ruhl in [31] and the generalized expansion dimension (GED) by
Houle et al. in [32] are an accurate estimate of the intrinsic
dimensionality. In these works, two distance thresholds r1 and
r2 are fixed, and – with the same reasoning as above – the
dimensionality of x is estimated as log(Br2/Br1 )/log(r2/r1), where
Bri means the number of points within distance ri for i ∈ {1, 2}.2

For our application to k-NN search, it is natural to fix the
distances based on the distance of the kth nearest neighbor,
relating it to another, further away neighbor. We introduce two
specific concepts of setting these distances below.

2.2. Query expansion

The concept of the Expansion around a query point at a dis-
tance threshold r > 0 was introduced by Ahle et al. in [8]. In their
work, the query expansion c∗

x is the largest c∗
x > 0 such that the

number of points within distance c∗
x r is at most twice the number

of points at distance r . They use this concept to show that an LSH
approach can adapt to the query expansion. More precisely, the
larger the query expansion, the less work is conducted by their
adaptive query algorithm in expectation.

For our use case in k-NN search, we adapt the notion of query
expansion as follows.

Definition 2. Given a data set S, an integer k > 0, and a
data point x, the Expansion of x at k with respect to k′ > k is
dist(x, xk′ )/dist(x, xk), where xi is the ith nearest neighbor of x in
S for 1 ≤ i ≤ |S|.

Of course, this is a cardinality-based interpretation of the
(generalized) expansion dimension in [31,32]. We refer to the
value log (k′/k)

log(dist(x,xk′ )/dist(x,xk))
as the expansion dimension of x at k

w.r.t. k′.
In the following, we denote with Expansionk′|k the expansion

dimension of x at k with respect to k′. If the parameters are
omitted, we refer to Expansion20|10.

2 We remark that the Amsaleg et al. showed in [28] that (G)ED can be seen as
special case of regularly varying functions, which for certain parameter choices
ther than (G)ED converge to the MLE estimator in (1).
 r

3

2.3. Relative contrast

The concept of relative contrast (RC) was introduced by He
et al. in [9]. Here, we concentrate on the following local variant.

Definition 3. Given a data set S, an integer k > 0, and a data
point x, let dmean be the average distance of x to the points in S.
he local relative contrast (LRC) of x in S is then dmean/dist(x, x∗

k),
where x∗

k is the kth nearest neighbor of x in S.

The relative contrast of the dataset S is the average local
elative contrast over all points in a query set. It was shown in [9]
hat – if the relative contrast of the dataset is known – there
s a way to choose LSH parameters to adapt to the RC. In the
ame way as query expansion, higher contrast means faster query
imes.

LRC has a much more global view on the dataset while Expan-
ion considers distances between close points. As with the Expan-
ion above, the relative contrast can be considered as a special
ardinality-based variant of GED. Assuming that the distance dis-
ribution is such that the average and median distance are close
o other, we refer to the value log(|S|/(2k))/log(dmean/dist(x, x∗

k))
as the local relative contrast dimension of x at k, which we denote
with RCk. If k is not specified, we implicitly refer to RC100.

3. Overview over the benchmarking framework

We extend the ann-benchmarks system described in [16] to
conduct our experimental study. Ann-benchmarks is a framework
for benchmarking NN search algorithms. It covers dataset cre-
ation, performing the actual experiment, and storing the results
of these experiments in a transparent and easy-to-share way.
Moreover, results can be explored through various plotting func-
tionalities, e.g., by creating a website containing interactive plots
for all experimental runs.

Ann-benchmarks interfaces with a NN search implementation
by calling its preprocess (index building) and search (query)
methods with certain parameter choices. Implementations are
tested on a large set of parameters usually provided by the
original authors of an implementation. The answers to queries are
recorded as the indices of the points returned. Ann-benchmarks
stores these parameters together with further statistics such as
individual query times, index size, and auxiliary information pro-
vided by the implementation. See [16] for more details.

Compared to the system described in [16], we added tools
to estimate the LID based on Eq. (1), to estimate the query
Expansion based on Definition 2, to estimate the RC based on
Definition 3, pick ‘‘challenging query sets’’ according to the LID,
query expansion, and RC of individual points, added new datasets
and implementations, and extended the website to interactively
explore the results. Moreover, we implemented a mechanism that
allows an implementation to provide further query statistics after
answering a query. To showcase this feature, all implementa-
tions in this study report the number of distance computations
performed to answer a query.3

4. Algorithms and datasets

4.1. Algorithms

Nearest neighbor search algorithms for high dimensions are
usually graph-, tree-, or hashing-based. We refer the reader

3 We thank the authors of the implementations for their help and
esponsiveness in adding this feature to their library.
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o [16] for an overview over these principles and available imple-
entations. In this study, we concentrate on the three implemen-

ations considered most performant in [16], namely HNSW [12],
Annoy [14] and FAISS-IVF [13] (IVF from now on). We consider
the very recent graph-based approach ONNG [15], and the recent
LSH-based approach PUFFINN [17] in this study as well.

HNSW and ONNG are graph-based approaches. This means that
they build a k-NN graph during the preprocessing step. In this
graph, each vertex is a data point and a directed edge (u, v)
means that the data point associated with v is ‘‘close’’ to the
data point associated with u in the dataset. At query time, the
graph is traversed to generate candidate points. Algorithms differ
in details of the graph construction, how they build a navigation
structure on top of the graph, and how the graph is traversed.

Annoy is an implementation of a random projection forest,
which is a collection of random projection trees. Each node in a
tree is associated with a set of data points. It splits these points
into two subsets according to a chosen hyperplane. If the dataset
in a node is small enough, it is stored directly and the node is
a leaf. Annoy employs a data-dependent splitting mechanism in
which a splitting hyperplane is chosen as the one splitting two
‘‘average points’’ by repeatedly sampling dataset points. In the
query phase, trees are traversed using a priority queue until a
predefined number of points is found.

IVF builds an inverted file based on clustering the dataset
around a predefined number of centroids. It splits the dataset
based on these centroids by associating each point with its closest
centroid. During query it finds the closest centroids and checks
points in the dataset associated with those.

PUFFINN uses an adaptive trie-like multi-layer LSH data struc-
ture to guide the search. Using the probabilistic nature of LSH,
it exploits adaptive termination criteria to give guaranteed re-
call [17] without the need of parameter tuning as in the other
approaches. We note that PUFFINN does not support Euclidean
distance and is thus missing in some plots.

We remark that we used both IVF and HNSW implementations
from FAISS.4

4.2. Datasets

Table 1 presents an overview over the datasets that we con-
sider in this study. We restrict our attention to datasets that
are usually employed in connection with Euclidean distance and
Angular/Cosine distance: SIFT, MNIST, and GLOVE are among the
most-widely used datasets for benchmarking nearest neighbor
search algorithms. Fashion-MNIST is considered as a replacement
for MNIST, which is usually considered too easy for machine
learning tasks [33].

For each dataset, we compute the LID distribution with respect
to the 100-NN as discussed in Section 2, in order to get a stable es-
timate. Furthermore, we compute the Expansion20|10 as discussed
in Section 2. The RC100 is estimated by computing the distance
of each point to a sample of 3000 points. In order to investigate
the impact of the choice of parameters on the estimates and the
ranking, which will be discussed below, we also estimate LID10,
RC10, and Expansion100|5.

Fig. 1 provides a visual representation of the estimated distri-
butions of LID, RC, and Expansion of each dataset. The gray curve
reports the distribution of LID100, RC100, and Expansion20|10. The
overlayed red curve reports the distribution of LID10, RC10, and
Expansion5|100. While the datasets differ widely in their original
dimensionality, the median LID ranges from around 13 for MNIST
o about 26 for GLOVE-2M. All distributions are asymmetric and
how a long tail behavior, differing in their shape and the length

4 https://github.com/facebookresearch/faiss
 c

4

of the tail. We observe that changing parameterization of the es-
timators yields similar distributions. Remarkably, the distribution
of Expansion and LID are very similar under both parameteriza-
tions of the estimator. This is in line with the observation in [28]
that variants of the Expansion can be viewed as an estimator of
LID.

Fig. 2 reports the change in ranking of vectors of the datasets
when we define the ranking using different parameterizations of
the LID estimator, to further investigate the behavior of individual
vectors. In particular, we partition the rankings obtained with
LID100 into 30 groups, arranged from the highest ranked to the
lowest ranked from top to bottom on the y axis. For each group,
we estimate the probability distribution of the ranking assigned
to the vectors in the group according to LID10. We observe that for
vectors with extremal LID values the ranking is rather unlikely to
change, whereas for other vectors the displacement is much more
pronounced. The behavior for RC and Expansion is similar.

These two observations combined suggest that, while the
overall distribution of estimates remains similar under different
parameterizations, many vectors are likely to trade ranks under
LID10. Given the central role that ranking according to these
dimensionality measures plays in this work, in the following we
use the more accurate LID100, RC100, and Expansion20|10 estimates.
In Appendix A.3 we compare how the different parameterizations
of the estimators influence the difficulty of the workloads. In a
nutshell, using a small value of k for estimation results in query
workloads that are not meaningful.

5. Evaluation

This section reports on the results of our experiments. Due to
space constraints, we only present some selected results. More
results can be explored via interactive plots at https://cecca.
github.io/role-of-dimensionality/, which also contains a link to
the source code repository. For a fixed implementation, the plots
presented here consider the Pareto frontier over all parameter
choices [16]. Tested parameter choices and the associated plots
are available on the website.

Experimental setup Experiments were run on 2x 14-core
Intel Xeon E5-2690v4 (2.60 GHz) with 512GB RAM using Ubuntu
16.10 (kernel 4.4.0). Index building was multi-threaded, queries
where answered in a single thread.

Quality and performance metrics As quality metric we mea-
sure the individual recall of each query, i.e., the fraction of points
reported by the implementation that are among the true k-NN,
and the relative error, defined as the ratio between the sum of
distances from the query of the returned k-NN and the true k-NN.
sually, we report on the average recall and average relative error
y averaging the individual recall/error values over all queries in
he query workload, as specified below. We perform all queries
s 10-NN queries.5 As performance metric, we record individ-
al query times and the total number of distance computations
eeded to answer all queries. We usually report on the through-
ut, i.e. the average number of queries that can be answered in
ne second, in the plots denoted as QPS for queries per second.

Objectives of the experiments Our experiments are tailored
to answer the following questions:

(Q1) How do LID, Expansion, and RC correlate with each other?
(Section 5.1)

(Q2) How do the LID, Expansion, and RC of a query set influence
performance of an implementation? (Sections 5.2 and 5.3)

5 We report on results with 100-NN in Appendix A.2. While queries take
onger to answer, the general observations also hold true for larger neighbor
ounts.

https://github.com/facebookresearch/faiss
https://cecca.github.io/role-of-dimensionality/
https://cecca.github.io/role-of-dimensionality/
https://cecca.github.io/role-of-dimensionality/
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Table 1
Datasets under consideration with their average and median LID100 , their Expansion20|10 , and their RC100 . .

Dataset Data points dim. LID RC Expansion Metric

Avg Median Avg Median Avg Median

Fashion-MNIST 65000 784 15.40 13.75 7.39 6.90 16.86 14.28 Euclidean
GLOVE 1183514 100 17.91 17.62 14.27 14.59 17.57 15.87 Cosine
GLOVE-2M 2196018 300 25.83 23.21 22.25 23.92 25.04 20.37 Cosine
GNEWS 3000000 300 21.02 19.95 15.39 15.23 21.42 18.93 Cosine
MNIST 65000 784 13.87 13.05 11.68 11.54 14.05 12.56 Euclidean
SIFT 1000000 128 19.41 18.98 11.35 11.32 20.20 18.36 Euclidean
Fig. 1. Dimensionality measures for each dataset. Lines within each distribution curve correspond to the 25, 50 and 75 percentiles. For each dataset, we report
two distributions: the gray curve represents the distribution of LID100 , RC100 , and Expansion20|10; the red curve reports estimates for LID10 , RC10 , and Expansion100|5 ,
espectively. The blue line marks the 10000 most difficult queries according to each score. Datasets are sorted by the median value of the measure. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Change in LID-based ranking as a consequence of different parameterizations. The plot depicts, as a heatmap, the probability distribution of the rank with
he LID estimated with k = 10 conditioned on the rank estimated with k = 100 falling in one of the 30 buckets in which the x axis is split.
(Q3) How well does the number of distance computations re-
flect the relative running time performance of the tested
implementations? (Section 5.4)

(Q4) How diverse are measurements obtained on datasets? Do
relative differences between the performance of different
implementations stay the same over multiple datasets?
(Section 5.4)
 f

5

(Q5) How concentrated are quality and performance measures
around their mean for the tested implementations? (Sec-
tion 5.5)

Choosing query sets For each dataset, we select eight dif-
erent query sets:
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Fig. 3. Scatterplots relating LID100 , Expansion20|10 , and RC100 for the GLOVE dataset for a sample of 10000 data points. All the scales are linear.
f
m

able 2
earson correlation of between the three different measures for each dataset.
he correlations, although mild, are all statistically significant.
Dataset LID100/RC100 Expansion20|10/ RC100 LID100 / Expansion20|10

GLOVE 0.691 0.452 0.729
GLOVE-2M 0.518 0.344 0.814
GNEWS 0.372 0.174 0.732
MNIST 0.666 0.377 0.637
Fashion-MNIST 0.575 0.389 0.753
SIFT 0.533 0.320 0.623

easy the 10000 points with the lowest estimated LID/expansion/
RC

medium the 10000 points around the data point with median
estimated LID/expansion/RC

hard the 10000 points with the highest estimated LID/expan-
sion/RC

diverse 5000 points chosen so to span the entire range of LID
values (resp. Expansion/RC values). For the LID, we split
all data points up into buckets, according to their rank by
LID. For each query, we pick a non-empty bucket uniformly
at random, and inside the bucket we pick a random point
(with repetition). For Expansion and RC, we pick the 1500
points with smallest and largest values, and add 2000
points picked uniformly at random from the remaining
points (with repetition).

Fig. 1 marks with a red line the LID used as a threshold to build
the hard queryset.

Main takeaways The following experimental evaluation
presents a lot of results, giving the following main insights. First,
we can use local dimensionality measures to build benchmark
query sets of varying difficulty. Second, among these measures,
the Local Intrinsic Dimensionality is the single most effective one
at selecting queries of the desired accuracy. Then, the diverse
query set is a good general benchmark, in that it includes queries
of a wide range of difficulties. Finally, average performance mea-
sures are convenient but often hide interesting behavior, which
is best studied by looking at their distribution.

5.1. How well do the local dimensionality measures correlate?

Fig. 3 visualizes the correlation between the three different lo-
cal dimensionality measures. As our working hypothesis, a higher
LID score is associated with a higher difficulty for a query, as is a
higher expansion or RC score. The plot shows some correlation
between the scores: points with a high LID also have a high

expansion and RC dimension, and vice versa. If we compute the

6

Pearson correlation between the different measures (reported in
Table 2) we can see that they are mildly correlated. We ob-
serve that both the RC and expansion dimensions correlate more
strongly with LID than they do with each other.

5.2. Influence of dimensionality measures on performance

Fig. 4 reports the performance of different configurations of all
the algorithms we consider on the GLOVE, GLOVE-2M, and SIFT
datasets, drawing queries according to the LID. In these plots, the
best performance is attained in the upper right corner: high recall
and high throughput.

We observe a clear influence of the LID of the query set on
the performance: the more difficult the query set, i.e., the larger
the LID, the more down and to the left the graphs move, for all
algorithms. This means that for higher LID it is more expensive,
in terms of time, to answer queries with good recall.

For all datasets except GLOVE-2M (and GNEWS with the dif-
ficult query set), almost all implementations were still able to
achieve close to perfect recall with the parameters set. This means
that even for queries with large LID there are points in the dataset
that can be efficiently separated from the others.

We now turn our focus on the relationship of the three dimen-
sionality measures with the performance of the algorithm. Fig. 5
considers the same setup as before showing the results for Annoy
or LID, Expansion, and RC. First of all, we observe that easy,
iddle, and hard query sets show the same behavior we observed

in Fig. 4: selecting queries with higher LID/expansion/RC makes
them more difficult to solve for the algorithm. The three dimen-
sionality measures yield query sets of comparable difficulty.

We consider an additional quality metric, namely the relative
error, in order to investigate whether false positives reported in
the k-NN are very far away from the query compared to the
true positives. This metric has a similar behavior to the recall:
high quality solutions (thus with small relative error) entail a
lower throughput. Therefore, instead of reporting a plot directly
comparing the queries per second to the relative error (which
can be nonetheless found in the online interactive supplemental
material), in Fig. 6 we compare the relative error with the recall,
distinguishing runs by the difficulty of their workload. Unsurpris-
ingly, we find that a high recall corresponds to a low relative
error, and vice-versa. Interestingly, the difficulty of the workload
influences the relationship between the two metrics: for the
same recall easy workloads have a worse relative error than
difficult ones. This means that when algorithms are including
false positives in the reported k-NN, in terms of distance from
the query these false positives are far more off for easy than
for hard workloads. This is to be expected: intuitively a query is
hard precisely for the reason that it is very hard to distinguish its

k-NN from the immediately following ones. Therefore, when an
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m

Fig. 4. Recall-QPS (1/s) tradeoff – up and to the right is better – for queries selected according to LID, solved using different algorithms. Three datasets are considered
here: GLOVE, GLOVE-2M and SIFT. The scale is logarithmic on the y axis and exponential on the x axis, to take into account the scale of the data.
Fig. 5. Recall-QPS (1/s) tradeoff – up and to the right is better – for algorithm Annoy solving queries selected according to LID, RC, and Expansion. Three datasets
are considered here: GLOVE, GLOVE-2M and SIFT. The scale is logarithmic on the y axis and exponential on the x axis, to take into account the scale of the data.
Fig. 6. Comparison of recall and relative error, for all the algorithms considered, with difficulty estimated according to LID. Each dot represents the average score
obtained by a configuration of the given algorithm on a dataset. Dots are colored according to the difficulty of the workload.
algorithm misreports a point as being in the k nearest neighbors,
ost likely it is not much farther away from the query compared
7

to the true k nearest neighbors. Conversely, for easy queries
points that are not in the k nearest neighbors are much farther
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way. Therefore, for similar recall values, easy queries will be
ffected by worse relative error than difficult queries.
These general observations can be further investigated on a

er-implementation-basis. Fig. 6 shows that for a fixed average
ecall value, implementations differ widely in the relative error
hey attain. In fact, PUFFINN can be seen as the most robust
mplementation, achieving considerable smaller relative errors
han the other four implementations. In particular, graph-based
pproaches such as ONNG and HNSW have large relative error,

which means that the false positives are far away from the true
nearest neighbors. This phenomenon will be further explored in
Section 5.4.

To better investigate the influence that dimensionality mea-
sures have for all datasets and implementations, consider Fig. 7,
which reports the change in performance of the fastest config-
uration attaining recall at least 0.9, for each algorithm. Clearly,
all measures allow to select query sets which are progressively
more difficulty to solve accurately for all algorithms. However, as
shown by the labels in each plot, the LID allows to select easy
and hard querysets that have a wider performance gap than the
ones selected by Expansion or RC, also for the datasets in which
all implementations achieve high recall on the hard query set.

5.3. Predictive quality of dimensionality measures

In the previous two subsections, we found evidence that all
dimensionality measures allow to pick query sets of various dif-
ficulties. Fixing the implementation and considering all datasets,
how well does a dimensionality measure work between two
different datasets? Fig. 8 reports the queries per second of Annoy
for a certain choice of datasets, with queries chosen from the
middle, hard, and diverse query set.

Comparing results to the dimensionality measurements de-
picted in Fig. 1, we first observe that the estimated median
LID, RC and Expansion all give a good estimate on the relative
performance of the algorithms on the data sets: recall that in
Fig. 1 the datasets are sorted by median score. (The plot is missing
lines for GNEWS and GLOVE-2M, which are considerably more
challenging according to Fig. 7.) As an exception, SIFT (middle) is
much easier than predicted by its LID and Expansion distribution,
but the RC measure predicts this, ranking SIFT lower than GLOVE.
In particular, the hard SIFT instance (orange solid line) is as
challenging as the medium GLOVE version (green dotted line). On
the other hand, RC classifies MNIST as rather difficult to index, in
particular compared to Fashion-MNIST. The plot on the right in
Fig. 8 clearly indicates that this is not true, and instead the two
datasets are basically equivalent. From this, we cannot conclude
that the considered local dimensionality measures as a single
indicator explain performance differences of an implementation
across different datasets.

It can also be seen from the plot that the diverse query set
is more difficult than the medium query set. In particular, at
high recall it generally becomes nearly as difficult as the difficult
dataset. For many implementations, the reason for this behavior
is that they cannot adapt to the difficulty of a query. They only
achieve high average recall when they can solve sufficiently many
queries with high LID or Expansion. The parameter settings that
allow for such guarantees slow down answering the easy queries
by a lot. This manifests in running times that are indistinguishable
from those on the hard dataset, while only roughly 30% of the
queries are characterized as difficult ones. As we shall see in
Section 5.5, some algorithms are indeed able to adapt to the
difficulty of the query. We believe that the ‘‘diverse’’ query sets
thus allow for challenging benchmarking datasets for adaptive
query algorithms.

As a side note, we remark that Fashion-MNIST is as difficult
to solve as MNIST for all implementations, and is by far the
 p
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easiest dataset for all implementations. Thus, while there is a big
difference in the difficulty of solving the classification task [33],
there is no measurable difference between these two datasets in
the context of NN search.

5.4. Diversity of results

Fig. 9 gives an overview over how algorithms compare to each
other among all ‘‘medium difficulty’’ querysets, selected accord-
ing to the LID. Results for Expansion- and RC-based querysets are
similar. We consider two metrics, namely the number of queries
per second (top plot), and the number of distance computations
(bottom plot). For two different average recall thresholds (0.75
and 0.9) we then select, for each algorithm, the best performing
parameter configuration that attains at least that recall. For each
dataset, the plots report the ratio with the best performing algo-
rithm on that dataset, therefore the best performer is reported
with ratio 1. Considering different dataset, we see that there is
little variation in the ranking of the algorithms. Only the two
graph-based approaches trade ranks, all other rankings are stable.
Annoy makes fewer distance computations (hence ranks higher
in the figure) but is consistently outperformed by IVF.6

Comparing the number of distance computations to running
time performance, we see that an increase in the number of dis-
tance computations is not reflected in a proportional decrease in
the number of queries per second. This means that the candidate
set generation is in general more expensive for graph-based ap-
proaches, but the resulting candidate set is of much higher quality
and fewer distance computations have to be carried out. Gener-
ally, both graph-based algorithms are within a factor 2 from each
other, whereas the other two need much larger candidate lists
to achieve a certain recall. The relative difference usually ranges
from 5x to 30x more distance computations for the non-graph
based approaches, in particular at high recall. This translates well
into the performance differences we see in this setting: consider
for instance Fig. 4, where the lines corresponding to HNSW and
ONNG upper bound the lines relative to the other algorithms.

5.5. Reporting the distribution of performance

In the previous sections, we made extensive use of recall/
queries per second plots, where each configuration of each al-
gorithm results in a single point, namely the average recall and
the inverse of the average query time. As we shall see in this
section, concentrating on averages can hide interesting informa-
tion in the context of k-NN queries. In fact, not all queries are
equally difficult to answer. Consider the plots in Fig. 10, which
report the performance of the five algorithms on the GLOVE-
2M dataset, with medium and diverse difficulty queries selected
according to LID. The top 2 × 5 plots report the recall versus
the number of queries per second for middle (top) and diverse
(bottom) query sets, and black dots correspond to the averages.
Additionally, for each configuration, we report the distribution of
the recall scores: the baseline of each recall curve is positioned
at the corresponding queries per second performance. Similarly,
the bottom plots report on the inverse of the individual query
times (the average of these is the QPS in the left plot) against
the average recall. In both plots, the best performance is achieved
towards the top-right corner.

Plotting the distributions, instead of just reporting the aver-
ages, uncovers some interesting behavior that might otherwise
go unnoticed, in particular with respect to the recall. The average

6 We note that IVF counts the initial comparisons to find the closest
entroids as distance computations, whereas Annoy did not count the inner
roduct computations during tree traversal.
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Fig. 7. Change of performance of the fastest configuration achieving at least 0.9 recall as the difficulty of the dataset changes. The colored labels report the slowdown
factor of the hard queryset compared with the easy one.

Fig. 8. Recall-QPS (1/s) tradeoff – up and to the right is better – for Annoy on GLOVE, SIFT, Fashion-MNIST, and MNIST with queries selected according to LID.
Dashed lines are hard query sets, solid lines are diverse query sets, dotted lines are middle query sets.

Fig. 9. Ranking of algorithm on five different datasets, according to recall ≥ 0.75 and ≥ 0.9, and according to two different performance measures: number of
queries per second (top) and number of distance computations (bottom). Both plots report the ratio with the best performing algorithm on each dataset, higher is
better. Note that the scale is logarithmic.

9
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Fig. 10. Distribution of performance for queries on the GLOVE-2M (medium difficulty) dataset. Looking just at the average performance can hide interesting behavior.
Fig. 11. Distribution of Recall vs. LID, RC dimension, and Expansion dimension plot on the GLOVE-2M dataset, using Annoy. Intensity reflects number of queries that
achieve a combination of recall vs. LID (or RC or Expansion).
recall gradually shifts towards the right as the effect of more
and more queries achieving good recalls. Perhaps surprisingly, for
graph-based algorithms this shift is very sudden: most queries go
from having recall 0 to having recall 1, taking no intermediate
values, even for the query set that have very similar LID values.
Taking the average recall as a performance metric is convenient
in that it is a single number to compare algorithms with. How-
ever, the same average recall can be attained with very different
distributions: looking at such distributions can provide more
insight.
10
For the bottom plots and the middle query set, we observe that
individual query times of all the algorithms are well concentrated
around their mean. For the diverse dataset, algorithms might be
able to adapt to the query difficulty. We observe that this is not
true for Annoy and IVF. Both of them have a single peak in their
query time, which means that they spend about the same time
per query. On the other hand, PUFFINN, HNSW, and ONNG have
two peaks in their performance distribution when they approach
high recall. This means that they adapt to the presence of easy
queries (where both ONNG and PUFFINN report with the same
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Fig. 12. Correlation between recall and dimensionality measure for dataset/algorithm pairs, for each type of dimensionality measure on workloads of diverse difficulty.
or each combination of algorithm and dataset, we select the parameter configuration yielding recall at least 0.9 with the highest queries per second. If no parameter
onfiguration is accurate enough, we report on the one achieving the highest recall. Note that some algorithms (Annoy, IVF) are more sensitive than others to the
dimensionality of the queries.
Table 3
Number of algorithm/dataset pairs in which a dimensionality measure correlates
best with the recall, grouped according to the difficulty of the workload. The top
half of the table reports the cases in which the difference between the strongest
and second strongest correlation is statistically significant [34], with Bonferroni
correction for an overall significance level of 0.01. The bottom half of the table
reports the cases in which the difference was not statistically significant.

easy middle diverse hard

LID 9 13 7 14
RC dim. 15 11 6 5
Expansion dim. 0 0 1 0

LID/RC dim. 3 3 11 7
LID/Exp. dim. 0 0 1 0
RC dim./Exp. dim. 0 0 1 1

performance, and HNSW becomes slower for higher recall). It is
surprising to see that all adaptive algorithms have two peaks,
while the diverse query set is a mix of three different difficulties.7

Fig. 11 gives another distributional view on the achieved result
quality. The plots show a run of Annoy on the GLOVE-2M dataset
ith diverse queries. On the top margin we see the distribution
f estimated LID values (left plot), RC values (middle plot), and
xpansion values (right plot) for the diverse query set, on the
ight margin we see the distribution of recall values achieved by
he implementation. Each of the queries corresponds to a single
ata point in the recall/LID plot and data points are summarized
hrough squares, where the color intensity of a square indicates
he number of data points falling into this region. The plots show
hat the higher the LID of a query, there is a clear tendency for the
uery to achieve lower recall. Expansion and RC, instead, are less
redictive in this setting: we can still observe that high Expansion
i.e. difficult) queries have low recall, but the relationship is less
arked.

7 We remark that different nearest neighbor search approaches allow
or different approaches to adapt to the difficulty of the query. LSH-
ased PUFFINN [17] uses a probabilistic stopping criteria that makes sure that

the top-k candidates found so far are in fact the true nearest neighbors with
a user-specified success probability. For the graph-based approach ONNG [15],
one round in the algorithm consists of inspecting the neighbors of a node and
adding them to a list of candidates. The algorithm returns that current top-k as
oon as all candidates are at distance at least (1 + ε)r from the query, where r
s the distance of the current kth nearest neighbor and ε is a user parameter.
While this lacks a theoretical guarantee, it is easy to imagine that the search
procedure adapts to the local structure.
11
To further investigate the relationship between the dimen-
sionality measures and the recall, we compute the correlation
between each measure and the recall, reporting it in Fig. 12.
We observe that, as expected, all three measures are negatively
correlated with the recall (i.e. the higher the measure, the harder
it is to answer the query accurately).

In Table 3 we report a more comprehensive overview of the
correlation between each dimensionality measure and the recall.
For each dimensionality measure, we report in the top half of
the table the number of combinations of algorithm and dataset
in which its correlation with the recall was the strongest, with
statistical significance. In the bottom half, we report the other
cases, where the difference in correlation of the first two mea-
sures with the recall was not statistically significant. We observe
the following: for easy workloads the RC dimension is the most
correlated to the recall in the majority of cases, whereas for
hard workloads the LID correlates better. For diverse workloads
there is no clear winner: about half of the times there is no
significant difference between LID and RC dimension, and the rest
are almost equally divided between LID and RC dimension. As for
the Expansion measure, we note that it correlates with the recall
significantly better than the other two measures only in one case.

Therefore, if we have to pick queries according to a single local
dimensionality measure, the LID is the best predictor for the dif-
ficulty in most workloads, with the exception of easy workloads,
for which the RC dimension is a better predictor. Obviously, our
observation that no single dimensionality measure is a perfect
predictor for the difficulty of queries still holds.

6. Summary

In this paper we studied the influence of LID, RC, and Expan-
sion to the performance of nearest neighbor search algorithms.
We showed that all three measures allow to choose query sets of
a wide range of difficulty from a given dataset. We also showed
how different LID, RC, and Expansion distributions influence the
running time performance of the algorithms. In this respect, we
found that LID is a good overall predictor of performance only
outperformed by RC dimension on easy workloads. In any case,
we could not conclude that any of the three scores alone can
predict running time differences well. In particular, SIFT is usually
easier than GLOVE for the algorithms: while GLOVE’s LID distri-
bution would predict the opposite, the RC distribution correctly
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Fig. 13. Recall-Distance computations tradeoff – down and to the right is better – for queries selected according to their LID. Three datasets are considered here:
GLOVE, GLOVE-2M and SIFT. The scale is logarithmic on the y axis and exponential on the x axis, to take into account the scale of the data.

Fig. 14. Recall-Distance computations tradeoff – down and to the right is better – for queries solved with Annoy. Three datasets are considered here: GLOVE,
GLOVE-2M and SIFT. The scale is logarithmic on the y axis and exponential on the x axis, to take into account the scale of the data.

Fig. 15. Recall-QPS tradeoff for queries on three datasets, with queries of difficulty selected according to the LID measure, querying for the k = 10 and k = 100
nearest neighbors.

12
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Fig. 16. Recall-QPS tradeoff for queries drawn according to LID100 (red curves) and LID5 (blue curves) on GNEWS with IVF. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
redicts this relationship between the datasets. However, the RC
istribution does not predict differences correctly, either.
With regard to challenging query workloads, we described a

ay to choose diverse query sets. They have the property that
or most implementations it is easy to perform well for most of
he query points, but they contain many more easy and difficult
ueries than query workloads chosen randomly from the dataset.
e believe this is a very interesting benchmarking workload for

pproaches that try to adapt to the difficulty of an individual
uery.
We introduced novel visualization techniques to show the

ncertainty within the answer to a set of queries, which made
t possible to show a clear difference between the graph-based
lgorithms and the other approaches. Furthermore, these visu-
lizations allow to see whether a particular algorithm is able to
dapt to the difficulty of the queries.
We hope that this study initiates the search for more diverse

atasets, or for theoretical reasoning why certain algorithmic
rinciples are generally better suited for nearest neighbor search.
n a more practical side, Casanova et al. showed in [35] how
imensionality testing can be used to speed up reverse k-NN
ueries. We would be interested in seeing whether the LID can
e used at other places in the design of NN algorithms to guide
he search process or the parameter selection.
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Appendix A. Additional experiments

A.1. How well is running time reflected in distance computations

Figs. 13 and 14 present the same setup as in Section 5.2, but
this time relating recall to the number of distance computations
required to achieve that recall. This cost measure is more robust
to implementation details and gives a more general view on how
well an approach is able to efficiently index the data set.

Let us consider Fig. 13. For the recall vs. distance computa-
tions trade-off, we aim for all curves to be down and to the
right, which reflects high recall with a small number of distance
computations. In general, the trend observed in the running time
study continues for distance computations: the easy, middle,
and hard query sets are progressively more difficult to answer.
Graph-based approaches compute considerably fewer distances,
and there is little difference in these two approaches. With regard
to the other approaches, Annoy computes fewest distances, but
turns out to be the slowest implementation on most of the data
and query sets combinations.

Fig. 14 shows the influence of the three different dimensional-
ity measures for Annoy. First, we notice that there is remarkably
little difference between the three different dimensionality mea-
sures in terms of distance computations, in particular for SIFT. For
the difficult query set, we see that Expansion provides the easier-
to-index queries, whereas RC provides considerably more difficult
queries than the two others considering the easy queryset. LID
provides the best of both worlds.

A.2. Experiments with k = 100

Fig. 15 reports the performance, in terms of recall and queries
per second, of the IVF algorithm on three datasets for workloads
of different difficulty, selected according to the LID measure. In all
cases, we can see that the relationship between the performance
attained by the algorithm on workloads of varying difficulty is the
same for both choices of k: easy workloads are indeed the easiest
ones while hard workloads are the most difficult, the diverse
workload is more difficult than the middle workload. As expected,
we can observe that answering 100-NN queries takes more time
than answering 10-NN queries for any given recall level.
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.3. Experiments with queries drawn according to LID100 and LID5

In Fig. 16 we report the performance tradeoff curves for IVF
n GNEWS for queries drawn according to LID estimated with
ifferent parameterizations, in particular LID100 and LID5. Note
ow workloads defined in terms of LID100 are very well separated
n the Recall-QPS plane, whereas LID5 induces query workloads
hose performance profile is very similar. Even more, with LID5
he easy workload is more difficult than the middle workload.

ppendix B. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.is.2021.101807.
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