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ABSTRACT

The pioneering detection of gravitational waves has opened a new era of astronomy. Since
the first detection in 2015, interferometric gravitational wave detectors have undergone several
upgrades aimed at improving sensitivity and expanding event detection capabilities. These
e�orts yielded significant results during the lastest scientific observation (O3) conducted by
the LIGO-Virgo collaboration, culminating in the detection of approximately one gravitational
wave event per week, with a total of 74 potential candidates in less than a year [1][2]. For the
following scientific observation (O4), a planned two-year break has been scheduled with the
objective of significantly enhancing the sensitivity of gravitational wave interferometers across
their entire frequency spectrum.

This thesis discusses two noises that limit the sensitivity of gravitational wave interferometers,
specifically Quantum noise and Thermal noise. The former is due to the quantum nature of light
and a�ects the interferometers sensitivity over the entire frequency band. Mitigate this noise is
a crucial aspect of advancing the field of gravitational wave detection and in this thesis work
is shown the method adopted in Virgo to overcome the Standard Quantum Limit. Thermal
noise instead is dominating in the low and medium frequency range. In particular, this noise
arises from the intrinsic fluctuations within the materials constituting the components of the
interferometer, such as suspension fibers and mirrors. In this work, it is described an on-bench
experiment dedicated to the study and characterization of the thermal noise in and out of the
thermodynamic equilibrium.

Addressing quantum noise remains a crucial aspect of the e�ort during the O4 commissioning.
During O3, quantum noise was partially mitigated in both the two Advanced LIGO and in
Advanced Virgo by employing Frequency Independent Squeezing (FIS), targeted at reducing
noise in the high-frequency range. However, addressing broadband quantum noise necessitates
the adoption of Frequency-Dependent Squeezing (FDS). FDS involves the utilization of a detuned
cavity, enabling the rotation of the squeezing ellipse to simultaneously suppress quantum noise
at both low and high frequencies.

The first part of this thesis delves into the technical aspects of the FDS technique and its
integration into the Virgo interferometer. Following a theoretical introduction to elucidate the
potential enhancements that squeezed states can o�er in terms of interferometer sensitivity, an
overview of the Quantum Noise Reduction system (QNR) in Virgo is provided. The primary
focus of our work is directed towards the methods that we used for establishing an e�cient and
stable stand-alone FDS. We give special attention to characterizing the system, particularly
addressing potential losses that may impact the squeezing injection. A key part of our work is
the implementation of a method to measure the FSR of the filter cavity after each unlock. This
enable the first long-term measurements of the stand-alone FDS. Concluding this first part is a
detailed account of the e�orts invested in the initial application of FIS injection. At this stage
we are able to reestablish alignment between the QNR system and the interferometer, close all
control loops, and measure the first e�ects of injecting squeezed vacuum states on interferometer
sensitivity. This serves as a preliminary step during the commissioning of the interferometer in
preparation for the scientific run O4.



viii abstract

The second part of this thesis focuses on the implications of deviating from the conventional
assumption of thermodynamic equilibrium for components contributing to thermal noise. The
experiment presented focuses on quantifying the thermal noise of a mechanical oscillator through
its longitudinal resonance mode, both in and out of equilibrium due to thermal di�erences
between the extremes. The oscillator motion is recorded using an interferometric readout. After
we restored and improved the readout optical line, our e�orts are focused to to enhance the
experiment performance and its calibration. In particular we worked to reduce di�erent noise
sources, optical and mechanical, and to characterize the calibration problems that can arise from
the optics imperfections. Finally, we acquired thermal noise measurements under thermodynamic
equilibrium conditions to verify the correspondence between the e�ective temperature obtained
by longitudinal resonance mode and the room thermodynamic temperature. All the data
acquired has been analyzed with a Python code developed during this thesis work.
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The purpose of this chapter is to introduce the field of gravitational waves (GW) and GW
interferometric detectors. This provides context for the studies presented in this thesis. In the
subsequent chapters, we delve into essential noise contributions that impact gravitational wave
sensitivity, specifically quantum noise (§ III.1) and thermal noise (§ V.2).



2 gravitational wave detection

I.1. Introduction to gravitational waves
Gravitational waves (GW) are a fundamental prediction of Albert Einstein’s general theory of
relativity, which is the most accepted theory of gravity. These waves are, essentially, ripples in
the structure of space-time, generated by bodies and events that animate the Universe. From
an observational point of view, the most energetic of these astrophysical occurrences produce
the most intense signals and are potentially easily detectable. Traveling at the speed of light,
these GWs carry unique and valuable information about their origin and the nature of gravity,
which cannot be obtained solely through the observation of the Cosmos using electromagnetic
radiation. This section aims to briefly describe this phenomenon and its origin.

I.1.1. Overview of General Relativity
The theory of General Relativity revolutionized the way gravity is conceived and studied. That
is, gravity is not considered an attractive force of massive bodies anymore, as in the Newtonian
depiction, but became a description of how mass and energy can curve the space-time in
which the masses themselves exist and move. In other words, the gravitational field can alter
the geometry of space-time, changing the way the distance between two events is measured.
Therefore, by describing space-time as a four-dimensional manifold, the separation between
events is defined as an invariant quantity in the four-vector formalism of the following form [3]:

ds2 = gµ‹dxµdx‹ (I.1)
where gµ‹ represents a mathematical quantity referred to as the metric tensor that outlines each
coordinate’s reciprocal behavior when the others undergo a transformation.

The Einstein field equations, which represent the core of the whole theory, describe how the
curvature of space-time is determined by mass and energy density. Curvature is described by the
Einstein tensor Gµ‹ , which includes combinations of the metric gµ‹ and its derivatives. Mass
and energy are represented by the energy-momentum tensor Tµ‹ that describes the energetic
properties of the source of the gravitational field. The equations are written as follows:

Gµ‹ = 8fiG

c4
Tµ‹ (I.2)

where c is the speed of light and G is the Newtonian gravitational constant. I.2 consists of ten
coupled partial di�erential equations. A key characteristic of these equations is their non-linear
nature with respect to the metric, indicating that the gravitational field interacts with itself [4].
The complexity arising from this non-linearity makes finding solutions challenging. Nonetheless,
certain approximations, like considering scenarios of weak gravitational fields, can be used to
simplify and solve these equations [5].

I.1.2. Gravitational waves in linearized theory
GWs arise as wave solutions to Einstein field equations. This kind of solution manifests clearly
in the case of the weak field approximation as discussed below.
In Einstein’s theory of special relativity, where the e�ect of gravity is not taken into account,
space-time is described as flat. In this special case of null gravity, there is at least one choice of
coordinates xµ for which, the invariant interval can be written as:

ds2 = ÷µ‹dxµdx‹ (I.3)

where ÷µ‹ is called Minkowski metric that, in Cartesian coordinates is given by:

÷µ‹ =

Q

cca

≠1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

R

ddb (I.4)
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In the small gravity regime, the metric can be described as the sum of the flat Minkowski metric
tensor ÷µ‹ and a small perturbation hµ‹ π 1 due to the weak gravitational field [5]:

gµ‹ = ÷µ‹ + hµ‹ (I.5)

In this approximation, the Einstein equations take on a linear form and are more easily solvable.
By selecting a suitable set of coordinates (Lorentz gauge) and taking into account symmetry
properties [5], they can be represented in this simplified form:

⇤h̄µ‹ = ≠
16fiG

c4
Tµ‹ (I.6)

where ⇤ is the flat space d’Alambertian ⇤ = ÷µ‹ˆµˆ‹ and h̄µ‹ = hµ‹ ≠
1

2
÷µ‹h, with h = Tr(hµ‹).

At this point, the solutions for the propagation of the waves in vacuum are obtained by moving
to a space with no sources, i.e. by placing Tµ‹ = 0, where:

⇤h̄µ‹ = 0 (I.7)

The equation (I.7) is a wave equation for the space-time perturbation h̄µ‹ and its solution is a
complete set of plane waves, where the real ones represent physical gravitational waves [5]:

h̄µ‹ = Re(‘µ‹eik–x–) (I.8)

In this context, ‘µ‹ denotes the polarization matrix, which is a symmetric and complex matrix
that characterizes the various potential polarization states of the gravitational wave. k– is the
wave vector k– = (Ê

c , k̨), which implies that these metric perturbations travel at the speed of
light through space-time, with Ê the gravitational wave’s angular frequency. Using the residual
gauge freedom, the coordinates can be chosen (TT-gauge) such that, for a wave propagating in
the z-direction, the metric is as follows:

hµ‹ = (h+‘+

µ‹ + h◊‘◊
µ‹)ei(Êt+kz) (I.9)

The tensors ‘+

µ‹ and ‘◊
µ‹ form a basis for the polarization tensor ‘µ‹ :

‘+ =

Q

cca

0 0 0 0
0 1 0 0
0 0 ≠1 0
0 0 0 0

R

ddb ‘◊ =

Q

cca

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

R

ddb (I.10)

The two independent modes of polarization are called "plus" + and "cross" ◊. A way of visualizing
the e�ect of GWs on matter is to consider a set of test masses arranged along a circumference
on a plane. The passage of a GW in a direction perpendicular to that plane causes a tidal
deformation in the distance between the masses at the wave’s frequency, as shown in figure
I.1. In both the polarization cases, the deformation occurs along two perpendicular axes and
is inherently di�erential. This means that if one axis is stretched, the other is shrunk. This
relative deformation, identified as strain amplitude, is a representation of the amplitude of the
gravitational wave, typically denoted by h.

I.1.3. Gravitational waves: sources and detection

To solve the linearized Einstein’s equation in the presence of a source, Eq. I.6, it is used
the retarded potential solution which can be expanded in terms of multipole [5]. Unlike
electromagnetic radiation, where the dipole term dominates under specific conditions, in GW
production, particularly when the source dimensions are negligible compared to its distance, the
leading order is the quadrupole. In practice, this means that to produce GWs, it is needed a
system that, moving in a gravitational field, shows an asymmetry with non-zero time derivative
on a di�erent axis with respect to one of its central motion. The most intense and non-negligible
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Figure I.1: Impact of a gravitational wave on a ring of free falling test masses throughout an entire
period T . The propagation direction is orthogonal to the page, displaying the two inde-
pendent modes of polarization, referred to as "plus" (top row) and "cross" (bottom row).
Additionally, the image includes a Michelson interferometer, exhibiting the e�ect of the
passing wave on its two interferometer arms.

space-time perturbations are produced by massive astrophysical objects undergoing extreme
events.

The detection of the first GW was possible with the LIGO detector. Currently, there is
a network of ground-based GWs detectors made of di�erent five main interferometers: the
two European, Virgo (V1) in Italy and GEO600 (G1) in Germany; the two American, LIGO
Hanford (H1) and LIGO Livingston (L1); one in Japan, KAGRA (K1). These facilities work in
synergy to increase the chances of detecting the signals and to give better constraints on their
measurements and their parameter estimations. From an experimental point of view, important
characteristics of a GW source are the frequency content of its signal, the expected amplitude
at Earth, and their rate. Typically, GW sources are classified by their duration in continuous
and transients. A list of the primary sources of interest for current-generation ground-based
detectors is briefly reported and discussed in the following paragraphs.

Compact binary coalescences

The only sources of GWs that have been detected so far are those produced by compact binary
coalescences made of neutron stars and black holes, which belong to the "transient" category.
Compact binaries are astrophysical systems made of two massive and dense objects bound
together by their gravitational field. The two bodies rotate around the system’s center of mass:
in doing so, the system loses energy by emission of gravitational waves, and consequently their
orbits shrink and the bodies inspiral, getting closer and closer, until they merge into one single
more massive object. The final body has a mass that is smaller than the sum of the two initial
masses mainly due to the energy loss by gravitational wave emission [3].
The coalescence’s signal is known to have three distinct phases: the inspiral, the merger, and
the ringdown. The inspiral is the phase when the two objects orbit one around each other. The
merger is the signal’s peak when the two objects merge. The ringdown is a damped final phase
due to the settling of the newborn final object reaching equilibrium. The last two are the most
di�cult phases to study analytically since gravity is in a strong regime of interaction, and some
approximations can not be taken anymore into account [5]. Figure I.2 presents an example
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of the signal. As the two starting objects draw nearer and nearer in the inspiral phase, their
angular velocity increases, and consequently, the frequency and amplitude of the signal emitted.
In fact, their typical signature is the frequency evolution in time as they approach one other in
the inspiral phase, which under an assumption of circular orbit can be written as follows [3]:

‹(·c) = 1
fi

1GM

c3

2≠5/81 5
256 ·c

23/8

(I.11)

where ·c represents the time left for the two objects to merge, ‹ is the gravitational wave
frequency, M is the chirp mass defined as:

M = µ2/3M2/5 (I.12)

Considering m1 and m2 the masses of the two bodies, µ = m1m2
m1+m2

is the reduced mass and
M = m1 +m2 is the total mass of the system. At the same time, the signal’s amplitude increases
along with the frequency. In fact, the strain amplitude of gravitational waves observed at a
distance r from the source and considering aligned spins is:

h ƒ 10≠21

3
M

M§

45/6 1 ‹

100 Hz

25/6
3

15 Mpc
r

4
(I.13)

For the current detector infrastructure, binaries that produce detectable gravitational waves
are those made of the most dense compact objects: neutron stars and astrophysical black holes.
Both of them are the leftover core of the death of massive stars. The mass range of Neutron
star roughly runs between 1 and 3 M§, while black holes of stellar origin can go up to around
100 M§. The measure of the precise value of the threshold mass that separates neutron stars
and black holes is an open scientific question, mainly because the exact internal equation of
the state of neutron stars still needs to be established. The signals observed can be classified
according to the nature of the bodies in the merging binary:

• Binary Neutron Star (BNS): a binary system of two neutron stars;

• Binary Black Hole (BBH): a binary system of two black holes;

• Neutron Star-Black Hole Binary (NSBH): a binary system of a neutron star and a black
hole.

Each distinct binary pair generates a unique GW signal determined by all the various factors
describing the system, including the masses of the objects, the position of the source, their
orbital orientations with respect to Earth, the spins, the tidal deformability for neutron stars,
and the distance of the source. For example, consider a system of two neutron stars with a chirp
mass of M = 1.21M§ at a distance of 100 Mpc. At a time of 2 s before the merger, the signal
reaches a frequency of ≥ 100 Hz and a strain amplitude of h ≥ 4 · 10≠23.

Continuous Gravitational Waves
Continuous GWs are expected to be produced by a single spinning massive object like a neutron
star when it exhibits some degree of asymmetry on an axis di�erent from the rotational one,
meaning that they have a distortion from the perfect spherical shape on another axis. In other
words, when they have a non-zero quadrupole moment variation in the gravitational potential.
In addition, these sources experience a weak spindown in their rotation. Given this, these
sources are expected to produce a continuous and quasi-monochromatic gravitational signal
with a frequency directly connected to their rotational period. It can be written as [6]:

h ƒ 3 · 10≠25

1 ‘

106

2 3
I

10≠38 kg · m2

4 1 ‹

1 kHz

22
3

10 kpc
r

4
(I.14)

where I is the moment of inertia, and ‘ the equatorial non-axisymmetry ellipticity accounts
for the asymmetry of the system, and r is the source distance. From an observational point of
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view, the so-called targeted search is one of the most common ways to try to measure this signal.
In fact, sometimes, can be observed neutron stars that emit regular beams of electromagnetic
radiation from their magnetic poles, which gives them the name of Pulsars. This emission
occurs when the magnetic axis of the staris misaligned with respect to its rotational axis [7].
Suppose one can resolve the neutron star as a pulsar and consequently know its rotational
period and other source parameters (such as position and spindown). At this point, one can
look for the corresponding gravitational signal. Other types of searches, like directed and all-sky,
can be conducted, but are computationally more expensive [8]. Even if the expected strain is
relatively weak, the continuous nature of the signal allows it to be integrated over a long period,
consequently increasing the signal-to-noise ratio (SNR) and the probability of detection [9].

Core Collapse Supernovae

Current generation detectors are expected to be sensitive to events of core-collapse supernova
distant up to a few kpc, that belong to the "transient" signals category. Unfortunately, within a
volume of this radius, the rate of supernova events is low, so next-generation detectors will be
potentially needed to increase the chance of measuring a supernova event [10]. An upper-bound
for their occurrence frequency in our Galaxy is fcollapse < 0.13yr≠1 with 90% confidence level
[11].
Core collapse supernovae are energetic events that occur when a massive star reaches the end
of its nuclear-burning potential. When such stars (approximately Ø 8M§) reach a state in
which they have an iron core, there are no more reactions that are energetically favorable to be
accomplished. Without any energetic fuel, the core then starts to shrink, subsequently causing
the collapse of the star. When the core overpasses nuclear densities, the shrinking is interrupted
abruptly, the envelope matter rebounds over it, and a powerful shock wave propagates outward.
The dynamical details of such events are still not completely understood, so it is di�cult to
reconstruct their gravitational waveform. Two primary explosion mechanisms seem to be favored:
the neutrino and magnetorotational. The first one is based on a strong neutrino emission
driving the explosion. The particles are strongly supposed to contain almost 99% of the released
energy, and the associated gravitational wave arising contains components generated by matter’s
turbulence. The signal is expected to last for ≥ 0.3 ≠ 2 s with an amplitude of ≥ 10≠22 at a
distance of 10 kpc [12]. The second mechanism considers an explosion driven by the rotation
and magnetic field of the star. The collapse will imprint a deformation on the rapidly rotating
core, leading to a significant change in the derivative of the quadrupole moment. This main
feature of the signal is the spike at the core rebound, and typically are expected to last less than
those neutrino driven and have an amplitude of ≥ 10≠21 at 10 kpc [12].

The proposed list is not exhaustive of the wide variety of gravitational wave sources that
have been hypothesized and will be of interest to future-generation gravitational wave detectors.
A key example is that of the various species of stochastic backgrounds. Stochastic Backgrounds
are stochastic signals due to the incoherent superposition of signals produced by unresolved
astrophysical sources and cosmological events [5].

I.1.4. Gravitational wave events catalogue

The large number of detected events during the observing runs, made it necessary to establish a
catalog. The LIGO-Virgo collaboration has facilitated access to data related to these detection
events through the Gravitational Waves Open Science Center (GWOSC) [13]. These events
are documented in the Gravitational Wave Transient Catalog (GWTC), which is periodically
updated following subsequent observing runs:

• GWTC-1 documents the events from the first (O1) and second (O2) Observing Runs.
Specifically, O1 contains 3 binary black hole mergers, while O2 recorded 7 BBH events
and the first-ever observed binary neutron star event, GW170817 [14].
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• GWTC-2 corresponds to the initial segment of the third Observing Run (O3a), during
which 39 gravitational wave events were identified. This catalog includes BBH mergers
and events with components that could not be definitively classified as either neutron
stars or black holes. Notably, this is the first appearance of systems with significantly
unequal mass ratios in the catalog [2].

• GWTC-2.1 expands GWTC-2, where a reanalysis of the O3a data revealed eight new
high-significance BBH events [15].

• GWTC-3 is associated with the latter part of the third Observing Run (O3b) and contains
records of 35 compact binary coalescences. Each event has been confirmed as either a
BBH or a neutron star-black hole (NSBH) merger, with none classified as a BNS [16].

A summary of the detections that occurred up to the end of O3 is given in Figure I.3, where
the masses of each measured coalescence’s initial and final objects are shown. In the following
part, a list of some of the most noticeable events from both a historical and scientific point of
view will be presented.

GW150914
On the 14th of September 2015, the Advanced LIGO interferometers detected a signal from
the merger of two black holes, then named GW150914. This event marked the first-ever direct
observation of a GW. Analysis of the signal indicated that the masses of the two coalescing
bodies were M1 = 36+5

≠4
M§ and M2 = 29+4

≠4
M§, that made it clear to be in front of a pair of

black holes. The system is at a distance of 410+160

≠180
Mpc [17]. Figure I.2 shows the plots relative

to the signal detection.

GW170814
In 2017 Advanced Virgo joined the two American interferometers in the observations. The 14th
of August of the same year was the time for the first event observed by three interferometers at a
time. The GW event, then called GW170814, was produced by a binary black hole system with
M1 = 30.5+5.7

≠3.0 M§ and M2 = 25.3+2.8
≠4.2 M§, at a distance of 540+130

≠210
Mpc [18]. This event showed

the importance of observing GW signals with at least three detectors. In fact, the localization
of GW sources in the sky is done by triangulation, that is, by measuring the mutual delay with
which the signal arrives at the di�erent detectors. This means that at least three interferometers
are needed to detect a unique area in the sky, and the accuracy with which this area is detected
increases as the number of observatories involved increases [19].

GW170817
After three days, on the 17th of August, the network of Advanced LIGO-Virgo triggered another
signal. Subsequent analysis revealed that this signal originated from two bodies with masses of
M1 = 1.46+0.12

≠0.10
M§ and M2 = 1.27+0.09

≠0.09
M§ at a distance of 40+7

≠15
Mpc [20], indicative of a binary

neutron star system, the first one to be ever detected. This event marked a crucial transitional
moment in the history of astronomy. This was not only the first binary neutron star to be
seen but also the first multi-messenger observation with both electromagnetic and gravitational
waves. For the first time in history, information from these two di�erent "messengers" of the
same event was combined, involving an extensive worldwide network of astronomical facilities.
Combining multiple messengers is of high scientific significance, as it provides access to more
information about the sources and their environment, cosmology, and fundamental physics [21].

I.2. Interferometric detectors
The initial gravitational radiation detectors, pioneered by Weber at the University of Maryland
in the 1960s, were made up of massive (order of a ton) cylinders, hence the name of bar detectors.
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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-2

Figure I.2: The image shows some plots relative to the event GW150914. (top) A display of the strain
signal at the time of the event. On the left the signal detected by Hanford (H1) and on the
right the signal at Livingston (L1). (center) The solid red line represents a reconstructed
numerical relativity signal with the same parameters as those of the events, and the two
shaded grey areas represent two di�erent reconstructions of the 90% credible intervals, one
with an astrophysical template of the signal (dark grey), the other with an unmodeled
superposition of sine-Gaussian wavelets (light grey). (bottom) The two images present the
leftover signal after subtracting the numerical relativity template from the data. Fourth
row: time-frequency map of the signal, highlighting the rise in frequency over time. [17]

These cylinders were designed to resonate in their first quadrupolar mode at about 900 Hz
where signals from supernova explosions were expected: the bar would absorb energy from the
incoming signal and this is read as an excitation of the resonant mode via a (typically capacitive)
transducer. However, these early instruments exhibited low sensitivity and bandwidth, prompting
the need for more advanced methods to detect the faint signals carried by GWs. In parallel,
the construction of interferometric detectors began. These highly sensitive devices use laser
beams to measure the di�erence in the length of two perpendicular, long arms, each terminated
with mirrors. The transit of a GW triggers the displacement of two mirrors, resulting in a
change in the interference of the beams that have propagated along the arms and which are
then recombined. By analyzing the data from this signal, it is feasible to trace the presence of
the GW.

I.2.1. Working principle of simple Michelson interferometer

The di�erential deformations due to the passage of a GW are ideally captured by a Michelson
interferometer (see Figure I.1), an optical device made to translate the length di�erence between
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Figure I.3: Summary of all the compact binary coalescences detected up to the end of O3. The plot
shows the masses of the initial and final objects in solar mass units. Credit: LIGO-Virgo /
Aaron Geller / Northwestern University

two perpendicular paths into an optical signal. Here, the detailed derivation of all the expressions
of the laser into the interferometer is not delved into. (see [5] for details). The discussion starts
directly with the the total electric field amplitude at the detection photodiode:

EP D = i

2Ein

1
ei2kLx(t)

≠ eik2Ly(t)

2
(I.15)

where Ein is the field amplitude of the laser input, Lx(t) and Ly(t) are the lengths of the two
interferometer arms defined as a function of the strain h(t):

Lx(t) = L

3
1 + 1

2h(t)
4

(I.16)

Ly(t) = L

3
1 ≠

1
2h(t)

4
(I.17)

Here L is the length of the two arms in the absence of the GW. The magnitude of the GW is
embedded within the phase di�erence accumulated between the two arms. This is most explicitly
represented by defining two quantities:

L ©
Lx + Ly

2 (I.18)

”L ©
Lx ≠ Ly

2 (I.19)

The first one represents the interferometer size while the second unperturbed arm length
di�erence. Rewriting these equations while taking into account the e�ect of a GW yields:

L(t) = L (I.20)

”L(t) = ”L + 1
2h(t)L (I.21)

The Eq. (I.15) becomes:

EP D = Einei2kL sin (2k · ”L + kL · h(t)) (I.22)
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The detected power by the PD is given by PP D = |EP D|
2:

PP D ≥
Pin

2 [1 ≠ cos (2k · ”L + kL · h(t))] (I.23)

The approximation is done in the limit h(t)L/⁄ π 1. In the last equation, there are two
contributions, the first term depends on the interferometer configuration while the second one
depends also on the GW signal. The general approach aims to reduce the impact of the constant
signal generated by the detector configuration. This is achieved by minimizing the o�set on the
di�erential arm length ”L, and focusing exclusively on the signal itself. The figure of merit used
in GW interferometers is the amplitude spectral density of the signal with the GW information:

S̃h(t) Ã Pin
2fi

⁄
Lh(t) (I.24)

This basic model highlights that the GW signal is directly linked to the input power of the
laser Pin, and the length of the interferometer arms L. These parameters play a critical role in
enhancing the GW signal and are optimized to reach high performance. The Advanced Virgo
Plus is significantly more complex than a standard Michelson interferometer. In fact, as detailed
in §III.1, several techniques are employed to elevate the detector’s performance, including the
integration of resonant cavities along its arms. These techniques make it possible to overcome
the structural limitations of having two 3-km arms by also increasing the power of the laser
circulating inside the interferometer.

I.2.2. Dual-recycled cavity Michelson interferometer
The optical configuration, illustrated in Figure I.4, shows how a real GW interferometer is
designed. The shown layout, in contrast to a classical Michelson setup, integrates several optical
cavities (§III.2) such as the Input Mode Cleaner (IMC), the Output Mode Cleaner (OMC), and
the arm cavities (NI-NE and WI-WE). The IMC is located at the input of the ITF and cleans
and enhances the laser beam before it enters the ITF arms; the OMC is positioned at the output
of the ITF and helps in extracting the fundamental mode from the returning light, improving
the spatial and frequency characteristics of the signal. The arm cavities instead are specifically
designed to extend the e�ective length of the arms, maximizing the collection of signals from
the passing GW.

The GW detectors for the O4 run operate in the Dual Recycled Michelson configuration,
a setup that enhances sensitivity and overall performance when compared to the Michelson
configuration with only the FP cavities in the arms. One significant addition that characterizes
this configuration is the power-recycling mirror (PR), as illustrated in Figure I.4. The PR mirror
reflects the input power from the symmetric port back into the interferometer, amplifying the
circulating power in the arms. This increase in optical power reduces shot noise, particularly
at high frequencies, approaching the optimal power for reaching the standard quantum limit
(§III.1.3).

In addition to the PR mirror, the second generation of GW detectors includes a signal
recycling mirror (SR). The SR mirror reflects the signal emerging from the dark port back into
the arm cavities, e�ectively recycling the signal. The SR mirror allows the detector to operate
in broadband or narrow-band configurations. This flexibility enhances detection capabilities for
specific astrophysical sources of GWs [22].

Managing such an intricate system necessitates employing a range of diagnostics and feedback
loops, ultimately adding to the overall complexity of the detector.
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Figure I.4: Optical layout of Advanced Virgo Plus as an example of a dual recycled Michelson
interferometer. A detailed explanation of the role of the readout photodiodes (B1, B1p,
and B1s) in the context of the Quantum Noise Reduction (QNR) system is provided in
Section IV.4. The relevant acronyms are as follows: EOMs: Electro-Optical Modulators;
IMC: Input Mode Cleaner RFC: Reference Cavity; PR: Power Recycling Mirror; BS: Beam
Splitter; NI, NE: North Input, North End Mirrors WI, WE: West Input, West End Mirrors
SR: Signal Recycling Mirror; SQZ source: Vacuum Squeezed Source; OMC: Output Mode
Cleaner.
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I.2.3. Sensitivity limit
To detect GWs, it is crucial to minimize the impact of noise sources and maximize the signal-
to-noise ratio. These fluctuations are due to the di�erent sources of noise that a�ect the
interferometers. Some of these sources, namely the most relevant for Virgo, and the di�erent
approaches to reduce the noise are briefly described. Some of these, which are relevant to this
thesis, are discussed in depth in the following chapters.

Shot Noise: this noise refers to random fluctuations in the detected signal caused by the
quantized nature of light. Shot noise is particularly relevant in optical systems, leading to
variations in the signal intensity, and its impact becomes more pronounced in low-light
conditions. It is discussed in detail in §III.1.

Radiation Pressure Noise: the uneven arrival of photons over time, coupled with their non-zero
momentum, leads to a varying radiation pressure force on the reflecting test masses. This
e�ect contributes to a fluctuation in the positions of the test masses, thereby constraining
the interferometer’s sensitivity. It is discussed in detail in §III.1.

Seismic Noise: the surface of the Earth experiences continuous vibrations, known as seismic
noise, arising from various sources. Lower frequencies, typically below 1 Hz, primarily
result from natural phenomena. These ground vibrations are several orders of magnitude
higher than the displacement induced by a GW. Above 1 Hz, seismic noise is mainly
produced by human activities. A typical vibration spectrum above 1 Hz is given by [23]:

S̃sism
x (‹) = 10≠7

3
1 Hz

‹

42 m
Ô

Hz
(I.25)

To achieve a sensitivity of 10≠23 at 100 Hz, such noise must be reduced by more than 10
orders of magnitude. Interferometers use the pendulum’s filtering properties to isolate test
masses from seismic noise (see Figure V.3).

Newtonian Noise: the fluctuations in the local gravitational field near the interferometer gen-
erate displacement noise for the test masses, which can not be shielded. This change is
a result of variations in mass distribution caused by seismic waves in the ground and
fluctuations in atmospheric density [6]. As it is impossible to shield test masses from this
type of disturbance, one of the strategies is to measure this noise source independently and
then subtract it from the measurements made by the interferometer. Because it has been
observed that this type of noise can be reduced by placing the interferometer underground,
detectors such as Kagra and the future Einstein Telescope are designed this way.

Thermal noise: this noise in GW detectors is a crucial factor that imposes a fundamental limit
on their sensitivity. The nature of this noise is discussed in detail in the second part of this
thesis (see §V.1.2). Thermal noise can manifest in various components of GW detectors,
a�ecting di�erent parts of the instruments and influencing their overall performance. In
particular, it is present in the mirrors’ coating and in the pendulums that suspend the
mirrors (see §V.2).

Two di�erent sources of noise are treated separately in the two parts of this thesis. The first
one is the quantum noise (see §III), caused by shot and radiation pressure noises, which, unlike
the other noise sources, dominates over the entire sensitivity spectrum of the interferometer.
The second one concerns the study of thermal noise (see §V). In particular, the study focuses
on the behavior of this noise outside thermodynamic equilibrium. The sensitivity curves for
the configuration illustrated in Figure I.4, incorporating all noise contributions to the Virgo
sensitivity, are depicted in Figure I.5. Specifically, the presented sensitivity is the one projected
for O4, utilizing the parameters listed in Table I.1.
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Parameter Symbol Value
Injection

Laser power P 40 W
IMC LIMC 143 m
IMC Finesse FIMC 1000

Interferometer optical configuration
Arm cavities length L 3 km
Arm cavities Finesse Farm 450
Input mirrors mass ME 42 kg
End mirrors mass ME 42 kg

Detection
OMC Finesse FOMC 1000
PDs Quantum e�ciency ÷ 99%

Quantum noise reduction
Squeezed vacuum source FDS 12 dB
Filter Cavity length LF C 285 m
FC Finesse FF C 117
Phase noise „ 40 mrad
Parameter Type

Suspension
Mirror suspension Monolithic fused silica fibers
Vibration isolation Super-attenuators

Table I.1: Main parameters of AdV+ taken from [24]
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Figure I.5: Predicted sensitivity of AdV+ during the Observation run 4 (O4) (black curve) [24]. The
other curves represent the di�erent noise contributions.
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This chapter aims to elucidate the fundamental concepts of quantum optics, setting the stage
for understanding the production of squeezed states and their role in reducing quantum noise in
GW interferometers. Starting with the quantization of the electromagnetic field, the chapter
describes di�erent quantum states and their graphical representation.
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II.1. Second quantization
This section explores the principles of the second quantization of the electric field, its mathemat-
ical formulation, and its applications in quantum optics. The second quantization serves as a
foundational concept in both quantum optics and quantum field theory. It provides a framework
for understanding the quantum characteristics of electromagnetic radiation and its interaction
with matter. Through the second quantization formalism, the electromagnetic field is described
using creation and annihilation operators, responsible for generating and eliminating photons,
respectively. These operators allow for the quantization of the electromagnetic field, enabling the
characterization of its behavior in discrete, quantized units of energy. Such an understanding is
important for unraveling various phenomena in quantum optics, including coherent and squeezed
states, and quantum entanglement.

II.1.1. Quantization of the electromagnetic field
The classical electromagnetic field is described by the Maxwell’s equations:

Ǫ̀ · Ę = fl (II.1)
Ǫ̀ · B̨ = 0 (II.2)

Ǫ̀ ◊ B̨ ≠
1
c

ˆĘ

ˆt
= J̨

c
(II.3)

Ǫ̀ ◊ Ę + 1
c

ˆB̨

ˆt
= 0 (II.4)

where Ę and B̨ are the electric and the magnetic fields, c is the speed of light in vacuum,
fl = fl(r̨, t) is the charge density and J̨ = J̨(r̨, t) is the current density. Introducing the
antisymmetric tensor F µ‹ defined as:

F i0 = Ei, F jk = ÁijkBi (II.5)

The two homogeneous Maxwell’s equations become:

ˆµF ‹“ + ˆ‹F “µ + ˆ“F µ‹ = 0 (II.6)

with “ ”= ‹ ”= µ. The two nonhomogeneous equations can be written as:

ˆµF µ‹ = J‹ (II.7)

where J‹ = (fl, 1

c j̨) is the four-current, and the (II.7) are satisfy by the relation:

F µ‹ = ˆ‹Aµ
≠ ˆµA‹ (II.8)

in which a vector potential Aµ is defined. Using this new field the equations (II.7) can be written
as:

ˆµF µ‹ = ⇤A‹
≠ ˆ‹(ˆµAµ) = J‹ (II.9)

that become:

⇤Ą = 0 (II.10)

where ⇤ = Ò
2

≠
1

c2
ˆ2

ˆt2 is the d’Alambertian operator and its role in expressing wave equations.
If Aµ satisfies the Lorentz gauge condition ˆµAµ = 0 and there is no charge nor current. A
solution of the equation (II.10) is:

Ą(r̨, t) =
ÿ

k̨

ÿ

⁄=0,1

[–k̨⁄ųk̨⁄(r̨, t) + –ú
k̨⁄

ųú
k̨⁄

(r̨, t)] (II.11)
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where:

ųk̨⁄(r̨, t) = 1
Ô

V
‘̨k̨⁄eik̨r̨≠iÊk̨t (II.12)

are wave plane solutions in which ‘̨k̨⁄ is the polarization vector, ⁄ is the polarization label, k̨
and Êk̨ are respectively the wave vector and the frequency. The entire formulation is within
the volume V where the vector potential is defined. The transition to the quantum regime is
realized by associating the annihilation operator of the quantum harmonic oscillator âk̨⁄ to the
amplitude –k̨⁄ and the creation operators â†

k̨⁄
to the amplitude –ú

k̨⁄
[25]. Now it is possible to

write the equation (II.11) as a quantum operator:

Â(r̨, t) =
ÿ

k̨

ÿ

⁄=0,1

“k[âk̨⁄ųk̨⁄(r̨, t) + â†
k̨⁄

ųú
k̨⁄

(r̨, t)] (II.13)

where “k is the normalization factor to the operators âk̨⁄ and â†
k̨⁄

. Given that each mode of the
vector potential is identified by a quantum harmonic oscillator with wave vector k̨, frequency Êk̨,
and polarization ⁄, then the Hamiltonian of the single mode is the same one of the harmonic
quantum oscillator:

Ĥk̨⁄ = ~Êk̨

3
â†

k̨⁄
âk̨⁄ + 1

2

4
(II.14)

The terms "creation" and "annihilation" operators are aptly named for their roles in generating
and eliminating a quantum of energy on the mode k̨ with polarization ⁄ equivalent to an energy
of ~Êk̨. The operators â†

k̨⁄
and âk̨⁄ satisfy the following equation:

â†
k̨⁄

|nk̨⁄Í =
Ò

(nk̨⁄ + 1) |nk̨⁄ + 1Í (II.15)

âk̨⁄ |nk̨⁄Í = Ô
nk̨⁄ |nk̨⁄ ≠ 1Í (II.16)

where |nk̨⁄Í represents the eigenstate of the Number Operator n̂k̨⁄ © â†
k̨⁄

âk̨⁄ providing the
number of quanta of energy in the electromagnetic field, referred as photons. The annihilation
operator’s e�ect on the vacuum state is expressed as:

âk̨⁄ |0Í = 0 (II.17)

Distinct modes of the electromagnetic field operate independently, and this mathematical
independence is expressed through the commutation of creation and annihilation operators:

#
âk̨⁄, â†

k̨Õ⁄Õ

$
= ”k̨k̨Õ”⁄̨⁄̨Õ (II.18)

This implies that when the labels k̨ and ⁄ di�er from k̨Õ and ⁄Õ, the commutator is zero. This
relationship is analogous to the one valid for the quantum harmonic oscillator:

#
âk̨⁄, âk̨⁄

$
=

#
â†

k̨⁄
, â†

k̨⁄

$
= 0 (II.19)

The results for the transverse electric operator are derived from operator versions of the
expression:

ĘT = ≠ˆĄ/ˆt (II.20)

Consequently, the complete electric-field operator is given by:

ÊT (‰) =
ÿ

k̨

ÿ

⁄=0,1

“kÊk

1
âk̨⁄e≠i‰ + â†

k̨⁄
ei‰

2
(II.21)

Here, ‰ = Êkt≠k̨·r̨≠
fi
2

. Going forward, the notation is simplified by considering a monochromatic
plane wave with a defined polarization and, consequently, the subscripts of the operators â and
â† are omitted.
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II.1.2. Quadrature operators

From (II.19), it follows that the creation and annihilation operators are not Hermitian, mean-
ing that they do not represent physical observables for measurement. To address this issue,
quadrature operators are introduced, which are utilized later in the discussion of squeezed light
(§II.2.3). The operators â and â† can be reformulated as:

â = X̂ + iŶ (II.22)
â† = X̂ ≠ iŶ (II.23)

where X̂ is the amplitude quadrature, and Ŷ is the phase quadrature. With the inverse relations,
it is obtained:

X̂ = 1
2

!
â ≠ â†"

(II.24)

Ŷ = i

2
!
â + â†"

(II.25)

The electric field expressed in the relation (II.21) can be redefined as:

Ê(‰) = X̂ cos ‰ + Ŷ sin ‰ (II.26)

II.1.3. Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle, rooted in the statistical interpretation of quantum
mechanics, holds a crucial role in the understanding of the microscopic world. It reveals
the intrinsic uncertainty that emerges when attempting to simultaneously determine precise
information about two non-commuting observables [26]. This principle fundamentally limits
our ability to precisely measure certain pairs of observables, underscoring the inherent nature
of uncertainty in quantum systems. By examining the commutation relation between these
observables, the profound implications of the Heisenberg Uncertainty Principle and its significance
for our understanding of quantum phenomena are explored. The uncertainty relation between
two observables can be described by:

�Oi�Oj > 1
2

---
eË

Ôi, Ôj

Èf--- (II.27)

where �O is the standard deviation of the respective operator. The variance V (Ô) of the
operator Ô is defined as.

V (Ô) = ÈÔ2
Í ≠ ÈÔÍ

2 (II.28)

Considering the amplitude and phase quadrature operators (II.24) and (II.25), the commutation
relation is:

#
X̂, Ŷ

$
= i

2 (II.29)

This relation leads to the uncertainty equation:

�X�Y > 1
4 (II.30)

As a result, it is not possible to precisely measure the amplitude and phase quadratures
simultaneously. This intrinsic uncertainty is commonly known as the quantum noise of the
electromagnetic field. If the fluctuations of a state satisfy the lower bound of the Uncertainty
Principle, �X�Y = 1, the state is referred to as a minimum uncertainty state.



ii.2 quantum states of light 21

II.2. Quantum states of light
Exploring various states of light is a crucial focus in quantum optics research. Among the
well-established and extensively studied quantum states of light, number states, coherent states,
and squeezed states hold significant prominence. Number states represent the foundational states
in the quantum theory of light, characterized by a definite number of photons. Coherent states,
resembling classical states of light, exhibit minimal uncertainty in both amplitude and phase
quadratures. On the contrary, squeezed states are characterized by a reduction in uncertainty in
one quadrature at the cost of increased uncertainty in the other quadrature. Given their crucial
role in reducing quantum noise in gravitational wave interferometers, the focus is on vacuum
squeezed states (§III).

II.2.1. Number states
The foundational states in the quantum theory of light are the photon number states. Several
properties of these states are derived in § II.1.1. As mentioned, the single-mode states are
represented by the notation |nÍ and are eigenstates of the number operator n̂:

â |nÍ = n |nÍ (II.31)

and constitute a complete set of the states of a single mode. This last equation implies that
the expectation value of the photon number is ÈnÍ = n indicating no uncertainty in the number
of photons, with a vanishing variance

!
�n2

"
= 0 [25]. The eigenvalue relation (II.14) can be

reformulated in terms of the quadrature operators:

Ĥ |nÍ = ~Ê
1

X̂2 + Ŷ 2

2
|nÍ (II.32)

resulting in the expectation values:

Èn| X̂ |nÍ = Èn| Ŷ |nÍ = 0 (II.33)

and
(�X)2 = (�Y )2 = 1

2

3
n + 1

2

4
(II.34)

The properties of the number states are identical for both the quadrature operators. Their
variances achieve the lowest values only when the state has n = 0, representing the vacuum
state. Thus, the state |0Í serves as a quadrature minimum-uncertainty state.

II.2.2. Coherent states
Coherent states are an essential concept in quantum optics due to their classical-like properties.
In fact, laser light, for example, can be approximately described by a coherent state. These
states exhibit minimal uncertainty in both amplitude and phase quadratures, making them
useful for describing the behavior of optical systems. Represented by the notation |–Í, they are
theoretical superpositions of number states:

|–Í = e≠ |–|2
2

Œÿ

n=0

–n

Ô
n!

|nÍ (II.35)

Here, – is the complex coherent amplitude and |nÍ is the nth number state. Coherent states
possess two key properties, normalization:

È–|–Í = e≠|–|2
Œÿ

n=0

–ún–n

Ô
n!

= 1 (II.36)

and non-orthogonality:
È–|—Í = e≠ 1

2 |–|2≠ 1
2 |—|2

+–ú— (II.37)
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They are eigenstates of the annihilation operator â and â†:

â |–Í = – |–Í (II.38)
È–| â† = È–| –ú (II.39)

These relations facilitate obtaining the coherent-state expectation values of quadrature operators
(II.24) and (II.25):

È–| X̂ |–Í = Re– = |–| cos „ (II.40)
È–| Ŷ |–Í = Im– = |–| sin „ (II.41)

where the complex number – is written as – = |–|ei„. The expectation values of the squares of
the quadrature operators are determined as:

X̂2 = 1
4

!
â†â† + 2â†â + ââ + 1

"
(II.42)

Ŷ 2 = 1
4

!
≠â†â† + 2â†â ≠ ââ + 1

"
(II.43)

and it follows that the quadrature variances are:

(�X)2 = (�Y )2 = 1
4 (II.44)

Thus, in contrast to the variances for the number-state given by (II.34), the coherent state is a
quadrature minimum-uncertainty state for all mean photon numbers |–|

2.

II.2.3. Squeezed states
Squeezed states, a distinct category of minimum uncertainty states, maintain the lower bound
of Eq. (II.30). However, unlike an even distribution of uncertainty between the two quadratures,
one quadrature experiences reduced uncertainty at the expense of the other. The squeezed
vacuum state is defined as:

|’Í = Ŝ(’) |0Í (II.45)

where Ŝ is the squeeze operator defined as:

Ŝ(’) = exp
3

1
2’úâ2

≠
1
2’(â†)2

4
(II.46)

and ’ is the complex squeeze parameter with squeezing amplitude s and squeezing phase ◊
defined by:

’ = sei◊ (II.47)

The exponential form in Eq. (II.46), specifically its dependence on â and â†, indicates that
the squeezed vacuum state consists entirely of a superposition of number states with values of
n. Similar to the coherent-state superposition of number states presented in Eq. (II.35), the
squeezed vacuum state can be expressed through its expansion in terms of number states as:

|’Í = (sechs)1/2

Œÿ

n=0

[(2n)!]1/2

n!

5
≠

1
2exp(i◊)tanhs

6n

|2nÍ (II.48)

The expectation value of the number operator n̂ is:

ÈnÍ = sinh2s (II.49)

This implies that for a squeezed vacuum state, the number of photons is non-zero, indicating
some optical power in the squeezed beam.
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The significance of the squeezed vacuum state lies not in its photon number distribution, but
rather in its quadrature operator properties. Using the Baker Hausdorf lemma [27] it is possible
to obtain the variances of the quadrature operators:

V (X̂) = 1
4

;
e2s sin2

3
1
2◊

4
+ e≠2s cos2

3
1
2◊

4<
(II.50)

V (Ŷ ) = 1
4

;
e2s cos2

3
1
2◊

4
+ e≠2s sin2

3
1
2◊

4<
(II.51)

substituting ◊ = 0 it is derived:

V (X̂) = V≠ = 1
4e≠2s (II.52)

V (Ŷ ) = V+ + 1
4e+2s (II.53)

A squeezed state with ◊ = 0 represents a minimum uncertainty state, in which the fluctuations
of the amplitude quadrature operator are suppressed (squeezed (SQZ)) by a factor of e≠2s

compared to the fluctuations of a coherent state. Conversely, the fluctuations of the phase
quadrature operator are increased (anti-squeezed (ASQZ)) by a factor of e+2s. In contrast, a
bright squeezed beam takes the form:

|–, ’Í = D̂(–)Ŝ(’) |0Í (II.54)

where D̂(–) = e–â†≠–úâ is the displacement operator. The mean photon number in this case is
given by:

ÈnÍ = |–|
2 + sinh2s (II.55)

The photon number of a squeezed state is slightly higher than that of a coherent state. If – = 0,
the state returns to a squeezed vacuum state. This optical power represents the energy required
to modify the statistical properties of the vacuum state’s noise. In the absence of squeezing,
when s = 0, the mean photon number becomes zero, reducing the squeezed vacuum state to the
standard vacuum state. The squeezing or anti-squeezing level is commonly denoted in decibels
(dB), typically represented in terms of the variances V± (+ for ASQZ and - for SQZ) with
respect to the variance of a vacuum state Vvac. The level is expressed by the following equations:

R±[dB] = 10 log
10

3
V±

Vvac

4
= 20 log

10
(R±) (II.56)

where the squeezing ratios are introduced:

R± =

Û3
V±

Vvac

4
= e±s (II.57)

II.2.4. Quantum phasor diagram
In the study of waves and oscillations, the phasor diagram is a powerful graphical tool for
visualizing and analyzing complex amplitudes and phase relationships of harmonic signals.
It provides a concise representation of the magnitude and phase of a sinusoidal waveform,
simplifying the analysis of wave properties such as superposition, interference, and resonance.
Considering the classical electric field:

E(t) = E0eiÊ0t+i„ (II.58)

In the complex plane rotating at angular frequency Ê0, the field E(t) is represented by a vector
with amplitude E0 and phase „ (the phasor). According to the Heisenberg Uncertainty Principle
(II.29), the field amplitude and phase do not have well-defined values. Therefore, for the
definition of a quantum state, the phasor diagram needs to be adapted. Using a coherent state
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Figure II.1: (left) Multiple phasors are depicted representing di�erent possible amplitudes and phases.
(center) To simplify the representation, an equivalent single phasor is used, with a time-
varying non-deterministic uncertainty vector. (right) The phasor is represented as a
narrow with a distribution of the quadrature uncertainty.

as an example, a multitude of phasors with di�erent amplitudes and phases becomes possible, as
depicted in the left-side of Figure II.1. These multiple phasors can be equivalently represented
by a single phasor accompanied by a non-deterministic, time-varying uncertainty vector in
amplitude and phase, as illustrated in the central part of Figure II.1. In a coherent state, where
the uncertainty on both quadratures is equal (�X = �Y = 1/4), the time-varying vectors are
expected to be isotropically distributed, with a probability in magnitude that diminishes as
the distance from the mean value increases. This representation enables the visualization of
the quantum phasor diagram, illustrated on right-side of Figure II.1. This diagram provides a
hybrid representation in the quadrature space (X, Y ), o�ering insights into both classical and
quantum properties of the considered state. In Figure II.2, various quantum phasor diagrams
are shown for di�erent states. Notably, states with squeezed quadratures exhibit a distinctive
elliptical distribution, highlighting their unique quantum characteristics.

Figure II.2: Quantum phasor representation of di�erent quantum states. (left) Vacuum state. (center)
Coherent state. (right) Bright squeezed state. When the amplitude – = 0 the state
collapses to a squeezed vacuum state with the ellipse centered at the origin of the axes.

II.3. Quantum detection

This section elucidates the detection and quantification of quantum states. Specifically, it
explores how the electronic signal registered by a photodetector (PD) depends with the presence
of photons and outlines the utilization of multiple PDs for the measurement of squeezed beams.
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II.3.1. Operator linearization

Quantum operator linearization is a technique used in quantum optics to simplify mathematical
expressions and facilitate intuitive interpretations. A generic operator Ô is expressed as:

Ô(t) = ÈÔÍ + ”Ô(t) (II.59)
Ô†(t) = ÈÔ†

Í + ”Ô†(t) (II.60)

Here, it is assumed that the fluctuating component ”Ô (”Ô† ) has a zero average and, in general,
is significantly smaller than the average counterparts ÈÔÍ (ÈÔ†

Í):

È”Ô(t)Í = È”Ô†(t)Í = 0 (II.61)
|”Ô(t)| π 1 |”Ô†(t)| π 1 (II.62)

This ensures that the steady state solution ÈÔÍ (ÈÔ†
Í) is time-independent, allowing the previous

expansions (II.59) and (II.60) to be limited to the first order. Applying this decomposition to
both the annihilation and creation operators yields:

â = – + ”â (II.63)
â† = –ú + ”â† (II.64)

Considering Eq.(II.24) and (II.25), the fluctuations of the quadrature operators are then expressed
as:

”X̂ = ”â† + ”â (II.65)
”Ŷ = i(”â†

≠ ”â) (II.66)

Applying this operation to the number operator n̂ gives:

n̂ = ââ†

= (– + ”â)(–ú + ”â†)
¥ –2 + –”X̂ (II.67)

In the last step, non-linear terms (”â†”â) are neglected, indicating that the number of photons
is proportional to the square of the amplitude –. Additionally, the quantum fluctuations are
proportional to the fluctuations in the amplitude quadrature of the field â.

II.3.2. Beam-Splitter

A Beam-Splitter (BS) is an optical device designed to divide a single input light beam into two
output beams. This is achieved by directing the incident light onto a partially reflective surface,
which separates the light into distinct paths based on the properties of the device’s material or
coating. A typical BS comprises a surface that reflects a portion of the incoming light, allowing
the remaining portion to be transmitted. When used to combine two light beams represented
by the operators â and b̂ (see Figure II.3), the resulting output fields are represented by the
operators ĉ and d̂. The relationship between the inputs and the output is expressed as follows:

5
ĉ
d̂

6
=

5
r t
t ≠r

6 5
â
b̂

6
(II.68)

Here, r and t represent the reflectance and the transmittance of the BS, respectively. The
proportion of light transmitted versus reflected, known as the splitting ratio, can be adjusted by
manipulating characteristics like the angle of incidence or the properties of the optical coating
that directly a�ect r and t.
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Figure II.3: Optical scheme of a BS. The two fields â and b̂ are combined generating the two output
fields ĉ e d̂.

II.3.3. Photodetection
Photodetection is a fundamental technique used to detect and measure light intensity, finding
applications in various fields, including telecommunications, imaging, spectroscopy, and optical
sensing.

This technique relies on the conversion of photons into an electrical signal through interaction
with a photosensitive material, typically realized with a photodiode (PD).

The PD, composed of a semiconductor material or a combination of materials exhibiting
the photoelectric e�ect, generates charge carriers (electrons or holes) upon absorbing incident
photons. The most straightforward photodetection method involves a photodiode (illustrated on
the left-side of Figure II.4). In this scheme, photons are converted into electrons within the PD
with a quantum e�ciency represented by ÷P D. The conversion process results in the generation
of a current operator î, which corresponds to the amount of detected light:

î = flPopt = e÷P D

~Ê
Popt = e÷P D

��~Ê
��~Ên̂ (II.69)

In this equation, fl is the photodetector responsivity (in units of A/W), ~Ê is the energy of a
single photon and e is the electron charge. The photocurrent is directly proportional to the
number of photons present in the optical field. To analyze this relationship, the linearized
number operator (II.67) can be employed:

î = e÷P Dn̂ = e÷P D(–2 + –”X̂) (II.70)

The photocurrent comprises two components: the DC term, ÈiÍ Ã –2, directly proportional
to light intensity, and the AC term, ”i Ã –”X, scaling the amplitude of the DC field. A
measurement device that solely captures the DC term is commonly known as a power meter.
Such a device measures the average value of the photocurrent, providing information about the
overall intensity of the light.

II.3.4. Homodyne detection
Homodyne detection (HD) is a powerful technique used in quantum optics to detect and
characterize quantum states of light [28], particularly those involving squeezing. In HD, a BS
is employed to combine a signal beam, which contains the field to be measured, with a local
oscillator beam (LO) that serves as a reference beam with a known phase and amplitude. The
two fields, as shown in Figure II.4, are represented by the two operators â and b̂ respectively.
The two fields are linearized according to the theory illustrated in §II.3.1:

â = – + ”â (II.71)
b̂ = (— + ”b̂)ei„ (II.72)
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Figure II.4: The image shows two di�erent schemes of detection. (left) The direct measurement of the
field â. (right) Homodyne detection is performed on the incident fields â and b̂, which are
combined on the beam splitter. Subsequently, the resultant fields ĉ and d̂ are captured by
two photodiodes, and the sum and di�erence of the photocurrents are analyzed.

where „ is an arbitrary phase between the LO and the other field. The two outputs of the BS
are detected by two distinct PDs. Recalling that the photocurrent is expressed as in Eq. (II.69),
the photocurrent generated by the transmitted field ĉ can be expressed as:

îc = ÷qe(râ† + tb̂†)(râ + tb̂)

¥ ÷qe
Ë
r2–2 + 2rt–— cos „ + t2—2 + 2r–

1
r”X̂a + t”X̂b,≠„

2
+ 2t—

1
t”X̂b + r”X̂a,„

2È
(II.73)

Similarly, the photocurrent generated by the the reflected field d̂ is equal to:

îd = ÷qe(tâ†
≠ rb̂†)(tâ ≠ rb̂)

¥ ÷qe
Ë
r2–2

≠ 2rt–— cos „ + t2—2 + 2r–
1

r”X̂a ≠ t”X̂b,≠„

2
+ 2t—

1
t”X̂b ≠ r”X̂a,„

2È
(II.74)

Higher-order terms are neglected in both expressions, allowing for a simplified representation.
Additionally, the following notation is introduced:

X̂a,„ = 1
2

!
âe≠i„ + â†ei„

"
= X̂a cos „ + Ŷa sin „ (II.75)

If the sum and the di�erence between the two photocurrents is calculated, it is obtained:

î+ = îc + îd ¥ 2÷qe
Ë
r2–2 + t2—2 + 2r–”X̂a + 2t—”X̂b

È
(II.76)

î≠ = îc ≠ îd ¥ 4rt÷qe
Ë
–— cos „ + –”X̂b,≠„ + —”X̂a,„

È
(II.77)

Suppose the intensity of the signal field, represented by –, is significantly smaller than the
intensity of the LO field, denoted by —. In this case, the last two expressions can be further
simplified as follows:

î+ ¥ 2÷qe
Ë
t2—2 + 2t2—”X̂b

È
(II.78)

î≠ ¥ 4rt÷qe
Ë
–— cos „ + —”X̂a,„

È
(II.79)

In these simplified expressions, the sum signal î+ predominantly carries information about the
LO and the fluctuations of its quadrature X̂b. On the other hand, the di�erence signals î≠
consists of two terms: the first term describes the interference between the two fields, while the
second term contains the fluctuations of a quadrature of the signal beam rotated by an angle „
with respect to the X̂, Ŷ plane. By utilizing the expression provided in Equation (II.75), the
di�erence signal can be further refined:

î≠ ¥ 4rt÷qe
Ë
–— cos „ + —

1
”X̂a cos „ + ”Ŷa sin „

2È
(II.80)
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Thus, the di�erence signal consists of a DC component and its fluctuations. To obtain information
about the rotated quadrature, the power spectral density of the di�erence signal is measured.
The Wiener-Khinchin theorem states that the power spectrum of a stationary process is equal
to the Fourier transform of its autocorrelation function. Therefore, by computing the PSD of
the di�erence signal, information about the fluctuations of the quadrature can be extracted. In
HD, if the signal field is a squeezed vacuum state, the level of squeezing can be measured using
this technique. Specifically, the fluctuations of the amplitude quadrature X̂ are measured by
setting the relative phase between the LO and the signal field to 0. On the other hand, the
fluctuations of the phase quadrature are measured by setting the relative phase to fi/2. The
relative phase between the two beams can be adjusted by manipulating the optical beam paths.
In this thesis, the HD is designed with a self-subtracting scheme, directly subtracting the two
photocurrents before applying electronic conditioning to the signals from the two photodiodes.
This design aims to minimize gain di�erences between the two signals, which could otherwise
introduce discrepancies between the generated and measured squeezing level [29].

II.4. Squeezing degradation
Squeezed states are primarily a�ected by two mechanisms of degradation of degradation: one
related to the optical losses sensed by the squeezing beam and the second from the angular
jitter of the squeezing ellipse. These two contributions are discussed below, and the models
presented are utilized in the §IV for measuring losses within the Virgo squeezing system.

II.4.1. Losses

In the context of quantum state propagation, optical losses are commonly represented as a BS
with a power reflectivity equal to the power loss l. From the unused port of the beam splitter, a
coherent vacuum field â enters the system and is combined with the transmitted fraction of the
squeezed field b̂ producing at the BS output the filed âl:

âl =
Ô

1 ≠ lâ +
Ô

lb̂ (II.81)

The variance of the quadrature of the resulting output state is given by:

V (X̂ l
a,„) = (1 ≠ l)V (X̂a,„) + lV (X̂b,„) (II.82)

where it is assumed that the fluctuations of b̂ and those of â are uncorrelated. For a squeezed
state with initial variances V±:

V l
± = (1 ≠ l)V± + lVvac (II.83)

where Vvac is the variance of the coherent vacuum field. The last equation can be reformulated
in terms of the squeezing ratios:

Rl
± = (1 ≠ l)R± + l (II.84)

This relation is shown in Figure II.5. Optical losses arise from several mechanisms, including
optical absorption, scattering, clipping, non-unitary quantum e�ciency of photodiodes, and
issues such as mode mismatch or misalignment when squeezing is coupled with optical resonators.

II.4.2. Phase noise

Variations in the relative angle between the squeezed and measured quadratures adversely impact
squeezing performance, as they facilitate the transfer of noise from the anti-squeezed quadrature
into the measurement quadrature. This phenomenon can be represented by introducing a
time-varying phase o�set „(t):

V „
± (t) = V± cos2 „(t) + Vû sin2 „(t) (II.85)
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Figure II.5: Squeezing ratio with di�erent input levels degraded by the optical losses. The initial level
of squeezing is assumed 15 dB. Note how the SQZ quadrature (cold palette) degrades
faster than the ASQZ (warm palette) quadrature. For 100% loss, the state collapses into
a vacuum state.

resulting in a combination of the two variances. While the squeezing phase is actively controlled
(§ IV.2.3), it is easy to control the mean value of the phase However, even in the most precise
controls, a minimum of random fluctuation remains present. Assuming these fluctuations follow
a normal distribution centered around È„Í=0 with a small root-mean-square (RMS) deviation
„RMS , the average variance of the resulting measurement can be expressed as follows [30]:

V „RMS
± =

⁄
+Œ

≠Œ
dx

ex2/2„RMS

Ô
2fi„RMS

!
V± cos2 x + Vû sin2 x

"

¥ V± cos2 „RMS + Vû sin2 „RMS (II.86)

For minor fluctuations („RMS Æ 100 mrad), an RMS phase error e�ectively behaves like a
constant o�set of similar magnitude. The various mechanisms contributing to fluctuations in
the squeezing angle are thoroughly examined in detail in [31]. The adverse impact of RMS
phase noise becomes more noticeable for heavily squeezed states, where the variance of the
anti-squeezed quadrature is greatly amplified (see Figure II.6). With a fixed degree of phase
error, there exists a threshold beyond which increasing the input squeezing parameter s results
in diminishing measurement performance. This establishes a maximum level of squeezing that
can be e�ectively employed in the presence of phase noise.

II.5. Graphic representation
II.5.1. Classical sideband picture
Modulation in optics refers to the deliberate manipulation of the properties of light, such as
intensity, phase, polarization, or frequency for various applications. It plays a crucial role in
modern optics and photonics technologies, enabling the control, manipulation, and transmission
of light signals with precision and versatility. Various modulation schemes exist, each tailored
to the specific needs of the application.
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Figure II.6: Squeezing ratio with di�erent input levels degraded by the phase noise obtained by plotting
the small angle approximation (II.86). The fluctuation of the phase generates a mixing of
the quadrature variances that leads to squeezing level degradation. The e�ect is more
relevant when a large amount of SQZ is generated. The upper limit is in correspondace of
the value „RMS = fi/4 where V+ and V≠ assume the same value.

Amplitude modulation (AM) involves varying the intensity of the light wave to encode
information. Phase modulation (PM) alters the phase of the wave, while frequency modulation
(FM) modifies the frequency. Each modulation scheme o�ers distinct advantages and is chosen
based on factors such as data rate, signal-to-noise ratio, bandwidth, and compatibility with the
system [32].

Amplitude modulation

Consider a field undergoing amplitude modulation with a modulation frequency � and a
modulation depth M , as expressed by the following equations [33]:

EAM (t) = E0eiÊ0t(1 + M cos(�t)) (II.87a)

= E0eiÊ0t(1 + M

2 ei�t + M

2 e≠i�t) (II.87b)

In this context, EAM (t) represents the amplitude-modulated field, that can be decomposed into
a carrier field with amplitude E0 and frequency Ê0 along with two sidebands at frequencies
Ê0 ± � and amplitude E0

M
2

.
This decomposition is visually represented in Figure II.7, with the chosen reference frame

being the rotating frame of the carrier. The sidebands at Ê0 + � and Ê0 ≠ � rotate clockwise
and anti-clockwise with frequency �. In Figure II.7, the amplitude-modulated field evolves over
time.

On the left-hand side, a sideband representation corresponds to the right-hand side of Eq.
(II.87b). The two light blue sidebands rotate in opposite directions around the frequency axis at
a frequency � while the carrier field, represented in green, remains temporally invariant.

On the right-hand side, the summation of the individual fields (light blue and green) at the
sideband frequency �, is depicted as a red phasor. This representation aligns more closely with
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the right-hand side of Eq. (II.87a). Notably, the combined phasor exhibits periodic variations in
its length due to the di�erent orientations of the sidebands, while the phase remains constant.

Figure II.7: The amplitude-modulated field can be visualized in the sideband picture for di�erent
discrete times within one modulation period. (left) The two light blue sidebands rotate
at frequency � in opposite directions around the frequency axis, while the carrier field
in green remains constant over time. This visualization corresponds to the Equation
(II.87b). (right) The sum of the three individual fields (green and light blue) for the
sideband frequency � is represented as a red phasor. The sum phasor undergoes periodic
variations in length due to the di�erent orientations of the sidebands, while its phase
remains constant.

Phase modulation
A similar analysis can be applied to phase modulation [33]:

EP M (t) = E0ei(Ê0t+M cos(�t)) (II.88a)
¥ E0eiÊ0t(1 + iM cos(�t)) (II.88b)

= E0eiÊ0t(1 + i
M

2 ei�t + i
M

2 e≠i�t) (II.88c)

In (II.87b), the approximation is made that the modulation index M is significantly smaller
than unity (M π 1). This approximation is crucial to avoid encountering a comb of sidebands
at frequencies n�, n œ N introducing excessive spectral complexity.

The outcome of Equation (II.88c) reveals that the phase-modulated field can be decomposed
into three distinct components. Firstly, there is a stationary carrier field at frequency Ê0,
characterized by an amplitude E0. Secondly, there are two sidebands at frequencies Ê0 ± �,
each with an amplitude of iE0

M
2

, directed along the complex axis.
In Figure II.8, the time evolution of this phase-modulated field is observed through the

sideband picture representation, as well as the combined fields depicted in a phasor diagram.
This figure serves as the phase modulation counterpart to Figure II.7, which is explained in the
preceding paragraph.

II.5.2. Quantum sideband picture
The quantum sideband picture is obtained from the classical sideband picture by calculating
the time average of each sideband. As each sideband displays entirely random behavior, the
result is a two-dimensional Gaussian distribution, particularly in the case of coherent states.
This quantum noise distribution replaces the previous quantum noise phasors at frequencies
±�.Extending this process to all frequencies ±n� yields a quantum sideband picture that
characterizes quantum noise or vacuum noise (Figure II.9).
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Figure II.8: (left) The phase-modulated field can be visualized in the sideband picture for di�erent
discrete times within one modulation period. The two light blue sidebands rotate at
frequency � in opposite directions around the frequency axis, while the carrier field in
green remains unchanged over time. This sideband picture representation corresponds to
the Equation (II.88c). (right) The summation of the individual fields (green and blue) at
the sideband frequency � is depicted as a red phasor. This phasor undergoes periodic
variations in phase due to the di�erent orientations of the sidebands, but the amplitude
stays constant for small modulation indices.

Vacuum noise

Figure II.10 illustrates the representation of vacuum noise in the quantum sideband picture. On
the left side, a quantum noise distribution is showcased at each sideband frequency ±n�, where
there is no coherent amplitude at frequency Ê0. The time evolution within one modulation
period remains constant, indicating that the quantum noise distribution inherently represents
an average of quantum noise phasors over time.

In the central part of the figure, the time evolution of combined vacuum noise distributions
at frequency � is evident, and it remains constant. This essentially captures a high-resolution
measurement of a vacuum state, achieved by isolating the sideband frequency � through spectral
filtering. Consequently, the axes’ labels shift from quadratures to measured photocurrents,
with i„=0¶ and i„=90¶denoting the measured photocurrents corresponding to the respective
quadrature.

On the right side, the quantum phasor picture for the vacuum state at frequency � unfolds,
derived by averaging the measurement shown in the middle section of Figure II.10.

Coherent state

Figure II.11 displays the time evolution of a coherent state. It features a coherent amplitude at
frequency Ê0 and vacuum noise distributions at all sideband frequencies. In the center of the
figure, the time evolution of the measured photocurrent at frequency � for the quadratures of
the coherent state can be observed. On the right, the corresponding quantum phasor picture is
depicted, derived by averaging the measurement shown in the middle.

Quantum amplitude modulation

Figure II.12 showcases the combination of amplitude modulation, as depicted in Figure II.7,
with vacuum noise. The phasors in both figures are identical, but in this case a quantum
noise distribution is added. For clarity, the vacuum noise distributions are only displayed at
the modulation frequencies ±� and not shown at other frequencies. In the middle of II.12,
the time evolution of the measured quadratures of the photocurrent at frequency � for the
amplitude-modulated state is observed. Throughout one modulation period, the length of the
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Figure II.9: Quantum noise representation in the sideband picture and its transformation into the
quantum sideband picture. In the sideband picture, small phasors (red arrows) in
quadrature space are used to visualize quantum noise at di�erent frequencies. These
quantum noise phasors exhibit a time-varying behavior, with their length following a
Gaussian distribution and their phase changing indeterministically over time. To switch
into the quantum sideband picture, the two quantum noise phasors at frequencies Ê0 ± �,
where � is a positive real number, are combined by beating them together and then
averaging over time. This process results in a two-dimensional Gaussian distribution with
unity variance, represented by a red dashed circle.

resulting red phasor undergoes periodic variations. Additionally, the quantum phasor picture
is included on the right-hand side of Figure II.12, derived from averaging the measurement
depicted in the middle. Comparing it to the vacuum noise distribution, the resulting amplitude
noise distribution in the amplitude quadrature is significantly larger due to the presence of
coherent sidebands. However, in the phase quadrature, the variance of the amplitude noise
distribution remains identical to that of the quantum noise distribution. Consequently, the
amplitude-modulated field exhibits pronounced amplitude noise but minimal phase noise at
frequency �. This representation corresponds to amplitude squeezing

Quantum phase modulation
Similarly, combining the phase-modulated field illustrated in Figure II.8 with vacuum noise
yields Figure II.13. In this case, the resulting quantum phasor picture on the right-hand side
of the figure also displays an elliptical noise distribution. Notably, the variance in the phase
quadrature is significantly larger compared to the vacuum noise distribution, while the variance
along the amplitude quadrature remains the same. Consequently, this phase-modulated field
exhibits substantial phase noise but minimal amplitude noise at frequency �. This representation
corresponds to phase squeezing.
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Figure II.10: Representation of the vacuum state in di�erent pictures. (left) Time evolution of vacuum
noise in the quantum sideband picture. At each sideband frequency ±�, a red quantum
noise distribution represents the vacuum noise. The average of the time evolution remains
constant over time. (center) Time evolution of the sum of two vacuum noise distributions
at frequency �. This representation corresponds to a measurement of the vacuum state
with high time resolution, spectrally filtered to retain only the sideband frequency �.
The labels of the axes change from the quadratures to the measured photocurrents i◊=0¶

and i◊=90¶ of the corresponding quadratures. (right) Quantum phasor picture for the
vacuum state at frequency �. It is derived by averaging the measurement shown in the
central figure, resulting in a two-dimensional Gaussian distribution with unity variance.
This quantum phasor picture provides a convenient way to represent the vacuum state
in the quantum sideband picture at a specific frequency � as shown previously in Figure
II.2.

Figure II.11: Coherent states representation in di�erent pictures. (left) Time evolution of vacuum
noise in the quantum sideband picture. At frequency Ê0, a green arrow represents the
coherent amplitude of the carrier field, while at each sideband frequency ±�, a red
quantum noise distribution represents the vacuum noise. (center) Time evolution of
the measured quadratures of the photocurrent at frequency �. (right) Quantum phasor
picture of the coherent state at frequency �. It is derived by averaging the measurement
shown in the central figure, resulting in a two-dimensional Gaussian distribution with
unity variance. This quantum phasor picture provides a convenient way to represent
the coherent state at a specific frequency � in the quantum sideband picture as shown
previously in Figure II.2.
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Figure II.12: The amplitude-modulated field at di�erent times within one modulation period, using
three physical pictures. (left) Quantum sideband picture representation. The two light
blue sidebands rotate with frequency � in opposite directions around the frequency axis,
while the carrier field in green remains constant over time. Vacuum noise distributions
are located on top of the sideband phasors. (center) Results of measurements taken with
an arbitrary high time resolution of the photocurrent at frequency � for the di�erent
quadratures. This can be represented by the sum of the three (light blue and green)
individual fields as a red phasor, which includes the vacuum noise distribution. The
sum phasor alters its length periodically in time due to the di�erent orientations of
the sidebands, but its phase remains constant. (right) Quantum phasor picture of the
amplitude modulation. The green phasor represents the constant coherent amplitude of
the amplitude-modulated field, and in red, the amplitude noise distribution is displayed.
Compared to the vacuum noise distribution, the amplitude noise distribution is enlarged
along the amplitude quadrature due to the beat and averaging process of the two
amplitude modulation sidebands and their corresponding vacuum noise distribution.

Figure II.13: Phase-modulated field at di�erent times within one modulation period, using three
physical pictures. (left) Quantum sideband picture representation. The two light blue
sidebands rotate with frequency � in opposite directions around the frequency axis, while
the carrier field in green remains constant over time. The sum phasor alters its length
periodically in time due to the di�erent orientations of the sidebands, but its phase
remains constant. (center) Results of measurements taken with an arbitrary high time
resolution of the photocurrent at frequency � for the di�erent quadratures. This can
be represented by the sum of the three (light blue and green) individual fields as a red
phasor, which includes the vacuum noise distribution. The sum phasor alters its phase
periodically in time due to the di�erent orientations of the sidebands, but its amplitude
remains constant for small modulation indices. (right) Quantum phasor picture of the
amplitude modulation. The green phasor represents the constant coherent amplitude of
the amplitude-modulated field, and in red, the amplitude noise distribution is displayed.
Compared to the vacuum noise distribution, the phase noise distribution is enlarged
along the phase quadrature due to the beat and averaging process of the two phase
modulation sidebands and their corresponding quantum noise distribution.





III SQUEEZED STATES GENERATION IN GW
DETECTORS

III.1 Quantum noise in Michelson interferometer 38
III.1.1 Radiation pressure noise 38
III.1.2 Shot noise 38
III.1.3 Standard Quantum Limit 38
III.1.4 Squeezing contribution 40

III.2 Optical Resonator 41
III.2.1 Longitudinal modes 41
III.2.2 Transversal modes 43

III.3 Squeezing in the sideband picture 44
III.3.1 Amplitude squeezed state 45
III.3.2 Phase squeezed state 46
III.3.3 Frequency-dependent squeezing 48

This chapter explores the application of squeezed vacuum states to mitigate the impact of
quantum noise on the GW detector. Initially, the standard quantum limit in gravitational wave
detectors is derived. Subsequently, the chapter demonstrates how this limit can be surpassed
by injecting squeezed vacuum states into the antisymmetric port of the detector. Additionally,
the chapter briefly discusses the fundamentals of optical cavities, both as widely used elements
within the interferometer and as a key component in generating frequency-dependent squeezing.
Finally, the generation of the latter is explored from the sideband picture perspective.
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III.1. Quantum noise in Michelson interferometer
In the quantum domain, particles and light exhibit inherent uncertainty, defying classical notions
of determinism. As discussed in Chapter §II, this uncertainty manifests as fluctuations in diverse
physical observables, even in the absence of external disturbances. In the context of GWs, these
fluctuations assume significance, shaping and constraining the sensitivity of detectors. Within
GW detectors, quantum noise introduces two primary contributions: radiation pressure and
noise shot noise. Both originate from vacuum fluctuations entering the interferometer through
the interferometer’s dark port.

III.1.1. Radiation pressure noise
Radiation pressure refers to the force exerted by electromagnetic waves on objects or surfaces,
arising from the transfer of momentum from the radiation to the body [32]. The uncertainty
in the amplitude quadrature (�X) introduces fluctuations in the photon number at a specific
position over time, giving rise to radiation pressure noise. The strain amplitude spectral density
(ASD) of a simple Michelson interferometer, influenced by radiation pressure noise, is expressed
as [34]:

hrad(‹) = 1
fiML‹2

Ú
~P

2fic⁄
(III.1)

Here, P is the laser optical power, ⁄ is the wavelength of the laser, m is the mass of the test
mass, c is the speed of light, and ‹ the frequency. Although radiation pressure noise is a
common feature in optical experiments, it is frequently overshadowed by other sources of noise,
particularly thermal noise (see §V). However, in second-generation and future gravitational-wave
detectors, radiation pressure noise is expected to become a significant limiting factor in sensitivity.
Addressing and mitigating the e�ects of radiation pressure noise is therefore crucial for achieving
higher precision measurements in these advanced detectors.

III.1.2. Shot noise
Shot noise is an intrinsic noise source that a�ects the measurement precision of various systems,
including gravitational wave detectors. It arises from the fundamental discrete nature of light,
where the detection of photons introduces statistical fluctuations in the measured signal. In
particular, it arises from the inherent uncertainty associated with the phase quadrature (�Y ).
Mathematically, shot noise contribution in a simple Michelson interferometer is proportional to
the inverse of the optical power [34]:

hshot(‹) = 1
L

Ú
~c⁄

2fiP
(III.2)

Here, L is the length of the interferometer arm. Shot noise becomes particularly significant
in situations where the available optical power is limited or in experiments with low photon
counts. Understanding and managing shot noise is crucial for optimizing the sensitivity of GW
detectors.

III.1.3. Standard Quantum Limit
Radiation pressure noise and shot noise arise from the inherent uncertainty imposed by the
Heisenberg uncertainty principle. Interestingly, these noise sources exhibit opposite power
dependencies. When combined, they give rise to a total quantum noise:

hQN (‹) = 1
L
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Mfi‹2
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Due to the 1/‹2 dependence of the radiation-pressure noise, this component becomes predominant
at lower frequencies, while shot noise prevails at higher frequencies.



iii.1 quantum noise in michelson interferometer 39

These two contributions depend on the optical power. This parameter serves as a means to
regulate the coupling of quantum noise to the interferometer signal. Nevertheless, the power’s
impact on the coupling mechanism is complementary, preventing arbitrary reduction of quantum
noise. Attenuating one noise source automatically amplifies the other. The quantum noise can
be minimized at each frequency by balancing the two contributions (hrad = hshot) in relation to
laser power:

PSQL = fic⁄M‹2 (III.4)
The envelope comprising all power values that minimize the equation (III.3) is defined as
Standard Quantum Limit (SQL):

hSQL(‹) = 1
fi‹ L
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This term represents the fundamental limit imposed by quantum mechanics on the precision of
repeated measurements. The determined value is applicable to Virgo, given a M = 42 kg and
L = 3 km.

In Figure III.2, the strain sensitivity of a simple Michelson interferometer is depicted (blue
curve). The graph includes traces representing the contributions of radiation pressure noise and
shot noise, as well as the SQL and the total quantum noise. By adjusting the input laser power,
the overall quantum noise curve can be mapped to the SQL at di�erent sideband frequencies.
The SQL means the ultimate boundary for measurement sensitivity in the presence of radiation
pressure noise and shot noise. Surpassing the SQL requires the implementation of advanced
techniques and strategies, such as squeezed states, to reduce or manipulate these noise sources
and achieve higher precision measurements.

The Michelson interferometer serves as the fundamental configuration for GW detectors, as
discussed in §I.2. In the simple Michelson setup, two end mirrors are isolated and suspended on
a pendulum, functioning as quasi-free test masses to detect the influence of passing gravitational
waves [34]. GW interferometers operate in the dark fringe condition. This implies that all the
laser power is back reflected to the symmetric interferometer port (the port where the laser
enters) along with the classical and quantum source noises. Simultaneously, the near-dark
anti-symmetric port of the Michelson interferometer (where the PD reads the signal), known
as the AS port, is subject to quantum noise. In this port, quantum noise arises from the
fluctuations in the incident vacuum state, which enters the AS port, undergoes reflection by the
interferometer, and is subsequently detected by the readout PD. The optical layout of a simple
Michelson interferometer a�ected by quantum noise is shown in Figure III.1.

Figure III.1: Optical layout of a simple Michelson interferometer. (left) Quantum phasor diagrams
(§II.5) illustrate that the bright beam is reflected to the symmetric port, while quantum
noise enters and returns to the anti-symmetric ports. (right) The diagram depicts the
injection of the vacuum squeezed state into the ITF to reduce quantum noise.
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III.1.4. Squeezing contribution

Quantum noise can be mitigated by replacing the vacuum state entering the AS port with
a squeezed vacuum state (Figure III.1). By carefully selecting the squeezing angle ◊ (see Eq.
(II.47)), a squeezed state has the potential to reduce the quantum noise below the SQL, resulting
in improved sensitivity [35]. In this case, the single-sided spectral density is:

hSQZ = hSQL
Ô

2

3
1
K

+ K

41/2

· [cosh 2s ≠ cos (2(◊ + �)) sinh 2s]1/2 (III.6)

Here, the (III.3) is redefined therms of the quantity K = P
Mc⁄fi‹2 , and s is the squeezing factor,

as mentioned in (II.47), and � = arccot K [36]. The strain sensitivity of a simple Michelson
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Figure III.2: Strain sensitivity of a simple Michelson interferometer with 10 dB injected squeezing at
various squeezing angles. The purple curve refers to the optimal frequency dependent
squeezing injection. The calculation is done by using Virgo’s parameters [24].

interferometer with injected squeezing is illustrated in Figure III.2 for di�erent squeezing angles.
When an injected phase squeezed state (◊ = ≠

fi
2

) is used, the reduction in shot noise contribution
to the total quantum noise comes at the expense of an increase in radiation pressure noise.
This is analogous to having a quantum noise-limited interferometer with a higher input power.
Conversely, an amplitude-squeezed state (◊ = 0) leads to the opposite e�ect. Choosing a
squeezing angle of ◊ = ≠

fi
4

enhances sensitivity below the SQL within a restricted frequency
range. However, this improvement comes at the cost of increased noise at all other frequencies,
accompanied by reduced sensitivity in both the shot-noise and radiation-pressure-limited regimes.
To maximize the benefits of injected squeezing across all sideband frequencies, it is necessary
to employ a frequency-dependent squeezed (FDS) state. This involves utilizing an amplitude
squeezed state (◊ = 0) in the low-frequency regime dominated by radiation pressure noise,
rotating it to ◊ = ≠

fi
4

around the SQL frequency, and further rotating it to a phase squeezed
state (◊ = ≠

fi
2

) in the high-frequency regime dominated by shot noise. The optimal squeezing
angle can be determined by considering the specific characteristics of the system [36]:

◊optm(�) = ≠ arccot K (III.7)
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Substituting this relationship into the previous one yields:

hSQZ = hSQL
Ô

2

3
1
K

+ K

41/2

e≠2s (III.8)

The curve related to this relation is shown as purple line in Figure III.2.

III.2. Optical Resonator
In gravitational wave detectors, optical resonators, named also optical cavities, are employed
principally in the arms of the interferometer to extend the e�ective path length. In fact, when
the FP cavities are in resonance, light reflects back and forth inside, e�ectively extending the
optical path traveled by the laser beam. In addition to the FP, PR, and SR cavities (§I.2.2),
various other cavities exist (e.g. OMC, RFC, etc), including the one designed for quantum noise
reduction. The implementation of the FDS technique involves the use of a detuned filter cavity,
allowing for the rotation of the squeezing ellipse.

Optical resonators, in their simplest form, consist of two mirrors with reflectances r1 and
r2, facing each other and separated by a distance of L. When laser light is injected into the
cavity through the input mirror, a portion is immediately reflected back, while the remaining
light is transmitted into the cavity. Inside the cavity, the light undergoes multiple reflections
between the mirrors, eventually reaching a steady-state regime. Under specific conditions, the
optical field undergoes constructive interference, resulting in resonance within the cavity. This
resonance amplifies the intracavity optical power. The properties of an optical cavity, including
resonance, are influenced by mirror properties, cavity geometry, and optical beam characteristics.
Two distinct types of modes can be identified in an optical cavity: longitudinal modes and
transverse modes. These modes describe the resonance conditions within the cavity.

III.2.1. Longitudinal modes

Longitudinal modes are associated with the phase accumulation along the longitudinal propaga-
tion direction, determining the relationship between the wavelength of light and the length of the
cavity. Describing these modes involves considering the optical field as a complex amplitude in
the plane wave approximation, neglecting evolution in the transverse plane (xy). The amplitude
only evolves along the z direction and can be described as shown in Equation (II.58):

E(z) = E0eikz (III.9)

The field before entering the cavity is considered as E(0) = E0. The Input Mirror (IM) has a
reflectance r1 and a transmittance t1 and it is separated from the End Mirror (EM) by a distance
L (Figure III.3). The EM has reflectance r2 and transmittance t2. After the interaction with the
IM, the incident beam splits into two components (the losses due to scattering and absorption
are not considered). The first component is the reflected beam, denoted as E0,r = r1E0, and the
second one is the transmitted beam, denoted as E0,t = it1E0. The transmitted beam propagates
within the cavity until it reaches the second mirror, taking the value EL = E0,teikL. The EM
back-reflects the beam into the cavity until it reaches again the IM, accumulating another phase
term EL,r = E0,tr2eik2L. By repeating this process n times, the field En is obtained, reaching
the IM after n round trips:

En = it1E0

!
eik2Lr1r2

"n (III.10)

Each time incoming the light is transmitted from the IM, it interferes with the field from the
previous round trip., giving rise to an intracavity field:

Ecav =
+Œÿ

n=0

En = E0,t

+Œÿ

n=0

!
eik2Lr1r2

"n = it1E0

1 ≠ r1r2eik2L
(III.11)
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Figure III.3: Conceptual layout of a linear optical cavity. This configuration comprises a pair of
mirrors positioned at distance L. The incident optical beam within the cavity undergoes
a continuous cycle, maintaining a steady-state trajectory. The portion of light that
exits through the End Mirror constitutes the transmitted beam Et, while the portion
transmitted through the Input Mirror merges with the promptly reflected component
producing the reflected beam Er.

This last equation represents the steady-state solution of the light inside the cavity. The fields
which are transmitted and reflected by the cavity are respectively: :

Et = E0

t2t1eikL

1 ≠ r1r2eik2L
(III.12)

Er = E0

r1 ≠ (r2

1
+ t2

1
)r2eik2L

1 ≠ r1r2ei2kL
(III.13)

These expressions represent the fields at the IM and the EM, respectively. The intracavity field
Ecav plays a crucial role in describing the behavior of light within the optical cavity.

Resonance condition
With the elements discussed, the spectral properties of the cavity, such as the resonance condition,
can be studied. This condition is defined as the one that maximizes the beam power into the
cavity relative to L:

Pcav = |Ecav|
2 = T1

(1 ≠ r1r2)2 + 4r1r2 sin2 kL
P0 (III.14)

where P0 is the power of the input beam and the transmissivity of the IM is defined as T1 = t2

1
.

The condition that maximizes (III.14) is kL = nfik with n œ N, from which it is obtained:

kL = arcsin (0) ∆ L = n
⁄

2 (III.15)

where n is an integer. The same condition in terms of the laser frequency can be expressed as:

‹cav = n
c

2L
(III.16)

From this relation, the Free Spectral Range (FSR) can be defined, which is the frequency spacing
between two consecutive transmitted optical intensity maxima:

�‹F SR = c

2L
(III.17)

Another crucial parameter providing information about the frequency response is the resonance
linewidth, defined as the Full-Width Half Maximum (FWHM) of the internal cavity power [32].
The linewidth is related to the free spectral range as follows:

�‹F W HM = �‹F SR
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1
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46
(III.18)
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The proportionality with FSR is significant because it allows the derivation of an important
quantity known as Finesse, expressed as:

F = �‹F SR

�‹F W HM
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This approximation considers high-reflectivity mirrors with |ri|
2

ƒ 1. The optical response of
the cavity can be characterized by three distinct fields: the reflected field, the transmitted field,
and the internal field. From this perspective, the cavity can be e�ectively represented as an
equivalent mirror, with its properties fully described by the reflectance, transmittance, and
internal gain:

rcav = Er

E0

= r1 ≠ (r2

1
+ t2

1
)r2ei2fi‹/�‹F SR

1 ≠ r1r2ei2fi‹/�‹F SR
(III.20)

tcav = Et

E0

= t2t1ei2fi‹/�‹F SR

1 ≠ r1r2ei2fi‹/�‹F SR
(III.21)

Gcav = |Ecav|
2

|E0|2
= |t1|

2

(1 ≠ r1r2)2 + 4r1r2 sin2
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Notably, these parameters are frequency-dependent. The cavity can be distinguished into two
regimes:
Resonance: in this condition, where ‹ = n�‹F SR, the cavity parameters become:

Gcav = |t1|
2

(1 ≠ r1r2)2
(III.23)

rcav = r1 ≠ (r2
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1
)r2

1 ≠ r1r2

(III.24)

tcav = t2t1

1 ≠ r1r2

=


Gcavt2 (III.25)

From Equation (III.25) it can be observed that the transmittance of the cavity increases
due to the cavity gain. The reflectance instead has three di�erent behaviors depending on
the sign: Y

_]

_[

rcav > 0 if r1 > (1 ≠ fl1)r2

rcav = 0 if r1 = (1 ≠ fl1)r2

rcav < 0 if r1 < (1 ≠ fl1)r2

(III.26)

where fl1 = 1 ≠ (r2

1
+ t2

1
) is the IM optical loss.

Anti-resonance: in this case, where ‹ = (n + 1

2
)�‹F SR and the power inside the cavity reaches

the minimum. the cavity behaves as a single mirror:

rcav = r1 + r2

t2

1

1 + r1r2

(III.27)

tcav = i
t2t1

1 + r1r2

(III.28)

The reflectance of the cavity is primarily determined by the input mirror, with a small
contribution from the second mirror. On the other hand, the transmittance of the cavity
is lower than that of the individual mirrors, and there is a 90¶ phase shift.

III.2.2. Transversal modes
The transverse modes of a cavity describe the spatial distribution of the optical field in the
transverse plane perpendicular to the direction of propagation. In this context, the amplitude of
an optical beam can be represented as:

E(x, y, z) = U(x, y, z)e≠ikz (III.29)
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where U(x, y, z) is the beam shape, and x and y are the transverse coordinates, while z denotes
the propagation distance along the beam axis. Applying the paraxial approximation simplifies
the analysis of the beam propagation inside the cavity. This approximation is valid when
the beam divergence is small, allowing to neglect of higher-order spatial derivatives and the
treatment of the beam evolution as a linear process. The Paraxial Helmholtz Equation [37]
governs the beam shape under this approximation::

Ò
2

‹U(x, y, z) + 2ik
ˆU(x, y, z)

ˆz
= 0 (III.30)

where Ò
2

‹ = ˆ2

ˆx2 + ˆ2

ˆy2 .
To solve this equation, the amplitude along the xz and xy planes needs to be decoupled,

resulting in two di�erential equations. Solving the equation for the xz plane yields:
3

ˆ2

ˆx2
+ i2k

ˆ

ˆz

4
u(x, z) = 0 (III.31)

The solutions of this equation, denoted as un(x, z), represent the transverse modes of the electric
field. These modes represent a complete set of functions describing the two-dimensional amplitude
of the beam. In general, the selection of these solutions is guided by the symmetry inherent
in the system. When the beam profile exhibits circular symmetry, it is aptly described using
Laguerre-Gaussian modes. Conversely, when the amplitude can be described using Cartesian
coordinates x and y, Hermite-Gaussian modes are employed:

un(x, z) = Hn

3
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w(z)
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(x ≠ x0)2

w(z)2

4
exp(≠ikz)

Û
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n!w(z)fi (III.32)

Here, Hn is the Hermite-Polynomial of order n, w(z) is the beam radius and x0 is the waist
beam position.

The di�erent transverse modes are distinguished by the Hermite polynomials, Hn(x), which
shape the beam profile. These polynomials play a crucial role as they enforce orthogonality
among the modes. The orthogonality among these modes is expressed by the integral:

Èun(x, z)|um(x, z)Í =
⁄ Œ

≠Œ
um(x, z)uú

n(x, z)dx = ”mn (III.33)

Solving the same equation in the XY plane allows combining the solutions in three-dimensional
space:

Unm(x, y, z) = un(x, z) ◊ um(y, z) (III.34)

These modes, known as Transversal Electrical TEMnm or Hermite-Gauss HGnm, are shown in
Figure III.4. These modes provide insight into misalignment (first-order modes) and mismatch
(second-order modes) between the main beam in the mode TEM00 and a cavity.

III.3. Squeezing in the sideband picture
Building on the concepts discussed in the preceding paragraphs, the role of squeezing in reducing
quantum noise can be explored, using the graphical representation introduced in Section II.5.

Equation (II.55) reveals an important distinction between a vacuum state and a squeezed
vacuum state: the latter has a non-zero expectation value of the number operator. Squeezed
vacuum states are associated with fields represented by sideband phasors, typically spread along
the frequency spectrum. However, the distribution can be limited to a specific bandwidth
determined by the experimental setup, such as the linewidth of the optical parametric oscillator
(OPO) cavity where the squeezed state is generated. The length of these sideband phasors is
directly related to the degree of squeezing, and the sidebands at ±� exhibit correlations that
depend on the type of squeezing generated.
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HG00 HG01

HG10 HG11

Figure III.4: Amplitude profile of the Hermite Gauss Modes classified by their mode order N = n + m.
The figure illustrates some of the modes up to N = 2

III.3.1. Amplitude squeezed state

Figure III.5 provides a sideband picture representation of an amplitude-squeezed state. In this
case, the sidebands are aligned in the phase quadrature and counter-aligned in the amplitude
quadrature. Unlike amplitude and phase modulations (as shown in Figures II.7 and II.8),
squeezing sidebands evolve over time and do not rotate continuously. The orientation between
them maintains a fixed correlation while the orientation of the correlated pairs of sidebands
remains random over time. Consequently, the correlated sideband phasors at frequencies ±�
represent the squeezed state at frequency �. In Figure III.5, these phasors are depicted in light
blue.

Conversely, the uncorrelated portion of a squeezed state is characterized by a quantum noise
distribution with a smaller standard deviation compared to vacuum noise. This uncorrelated
noise is represented by the yellow distributions associated with the correlated sidebands. Figure
III.5 showcases both the correlated and uncorrelated components of an amplitude-squeezed state.
The left-hand side of the figure illustrates the time evolution, with no carrier field. Only the
correlated and uncorrelated portions of the squeezed state are shown at the sideband frequencies
±�, while other frequencies are omitted for simplicity. A notable distinction between amplitude
and phase modulation is the evident random orientation of the sidebands over time.

In the central part of Figure III.5, a photocurrent measurement is shown with high time
resolution and a frequency filter isolating the sideband frequency �. The resulting phasor is
the sum of the correlated components of the amplitude squeezing (light blue phasors) and the
superimposed uncorrelated distribution.

The right side shows the quantum phasor representation of the amplitude squeezed state,
obtained from the averaged measurement. The average coherent amplitude is zero, and the
fluctuations are illustrated by the large yellow distribution, resulting from the combined correlated
and uncorrelated fractions of the squeezed state.

The elliptical shape of the amplitude-squeezed state is evident, with the variance of the
amplitude of the photocurrent quadrature i◊=0¶ matching the variance of the squeezed vacuum
noise distribution. However, the distribution along the phase quadrature is enlarged compared
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to the vacuum noise distribution, representing the anti-squeezed quadrature of the squeezed
state.

Figure III.5: Amplitude squeezing field at di�erent times within one modulation period, using three
physical pictures. (left) Quantum sideband picture representation. The correlated portion
of the amplitude-squeezed state is depicted by the light blue phasors at frequencies ±�,
while the uncorrelated portion is depicted by the yellow vacuum noise distribution. The
sidebands are co-aligned in the phase quadrature and counter-aligned in the amplitude
one. However, the overall orientation of the sideband pair varies randomly over time.
(center) Results of measurements of the photocurrent at frequency �. The outcome
is showcased through a yellow phasor, achieved by combining the correlated sideband
phasors with their respective uncorrelated components. (right) Mean of the detected
photocurrent: the correlated and uncorrelated segments constitute the squeezing ellipse,
illustrating reduced variance along the amplitude quadrature and enhanced variance
along the phase quadrature of the photocurrent. This is distinct from the vacuum states
hown in Figure II.10.

III.3.2. Phase squeezed state
Figure III.6 shows the analogous diagram for a phase-squeezed state. The properties observed in
the amplitude-squeezed states remain applicable, with the only distinction being the orientation
of the correlated fractions in the quadratures: they are co-aligned in the amplitude quadrature
and counter-aligned in the phase quadrature. This is evident in the right-hand side of the figure
where the phasor representation is shown. Here, the variance of the phase of the photocurrent
quadrature i◊=90¶ matches the variance of the squeezed vacuum noise distribution, indicating the
reduction of noise in this quadrature due to squeezing. However, for the amplitude quadrature
of the photocurrent, the distribution is enlarged compared to the vacuum state, indicating an
increase in noise or anti-squeezing in this quadrature.
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Figure III.6: Phase squeezing field at di�erent times within one modulation period, using three physical
pictures. (left) Quantum sideband picture representation. The correlated portion of the
phase-squeezed state is depicted by the light blue phasors at frequencies ±�, while the
uncorrelated portion is depicted by the yellow vacuum noise distribution. In this case,
the sidebands are co-aligned in the amplitude quadrature and counter-aligned in phase
one. However, the overall orientation of the sideband pair varies entirely in a random
manner over time. (center) Results of measurements of the photocurrent at frequency �.
The outcome is showcased through a yellow phasor, achieved by combining the correlated
sideband phasors with their respective uncorrelated components. (right) The mean of
the detected photocurrent is showcased. In this scenario, the correlated and uncorrelated
segments constitute the squeezing ellipse. This ellipse illustrates a reduced variance along
the phase quadrature and an enhanced variance along the amplitude quadrature of the
photocurrent, distinct from the vacuum state illustrated in Figure II.10.
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III.3.3. Frequency-dependent squeezing
As mentioned in §III.1.4, to overcome the SQL and gain with the squeezing injection both at
high and low frequencies, it is necessary to inject a squeezing state with an optimally rotated
ellipse, as a function of the frequency. In the Virgo interferometer, this Frequency-Dependent
Squeezing (FDS) is obtained by the dispersion in reflection of a frequency-independent vacuum
field through a detuned optical cavity. The latter refers to an optical cavity where the resonant
frequency of the cavity Êcav (see Eq. (III.16)) is intentionally shifted or "detuned" from the
frequency laser. This detuning can be achieved by adjusting the lengths of the cavity mirrors or
using other techniques like changing the laser frequency. Squeezed states, as explained earlier,
exhibit correlations between ±� sidebands, and the angle of the squeezing ellipse is determined
by the relative phase between these correlated sidebands. By adjusting the relative phase
between the two sidebands, the angle of the squeezing ellipse can be modified.

For a detuned cavity, the reflectivity can be written as:

rcav(�) = r1 ≠ (r2

1
+ t2

1
)r2ei(�≠�d)L/c

1 ≠ r1r2ei(�≠�d)L/c
(III.35)

where �d = Êcav ≠ Ê0 is the detuning frequency. When a squeezed vacuum state is directed into
the cavity at frequency Ê0, the reflected vacuum state exhibits a frequency-dependent squeezing
angle ◊(�) (see Eq. (II.47)) as:
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where �‹F W HM is the FWHM of the cavity (III.18), F is the finesse (III.19), and �rt represents
the round trip losses of the cavity. The round-trip losses in a cavity are defined via energy
conservation as [38]:

�rt = P0 ≠ Pr ≠ Pt

Pcav
(III.37)

where P0 is the power entering into the cavity, Pr is the reflected, Pt is transmitted and Pcav is
the power of the beam inside the cavity. This angle proves to be optimal for interferometers
operating in the tuned configuration [39], including Virgo and LIGO. As with the previous
cases, a faster and more intuitive graphical representation of the FDS can be produced using
the sideband picture. The initial reference point to understand the FDS is Figure III.7, where
the depiction of coherent quantum noise and a phase vacuum squeezed state is compared. Both
examples are detailed in Figures II.10 and III.6, respectively. The essential distinction lies in

Figure III.7: Comparison between coherent quantum vacuum noise and vacuum phase squeezed state.
(left) Quantum noise phasors exhibit a time-varying behavior, with their phase changing
indeterministically over time: there is no correlation between the sifdebands at ±�.
(right) The vacuum phase squeezed shows the correlations between the +� and ≠�
sidebands.

the fact that, unlike in coherent quantum noise where each sideband at ±� is associated with a
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phasor featuring a completely random phase, the phase-squeezed state exhibits a well-defined
phase relationship. When a squeezed state is reflected by a detuned cavity, each sideband’s
phase is altered based on the frequency. Figure III.8 shows the e�ect of reflection from a cavity
detuned by �d with respect to the reference frequency in the sideband picture. The figure
displays both the frequency-dependent amplitude reflectivity of the detuned cavity (red line)
and the dispersion of the reflected sidebands (blue lines). The frequency-dependence of the
phase dispersion causes a phase shift of ±180¶ for the phasors at high frequencies ±�. At these
frequencies, the beating of the phasors still results in perfect phase squeezing. Near the resonance
frequency Êcav, the phase shift of the phasors at frequency � is rotated 180¶ with respect to the
one at -�, resulting in a phase squeezing. Far from Êcav, both the phasors at frequency ±� are
equally rotated, maintaining the squeezing state for those frequencies. Around the resonance
frequency, the phase shift slowly varies with increasing frequency, ranging from 0¶ to ±180¶.
Consequently, the squeezed quadrature transitions gradually from the phase quadrature to the
amplitude quadrature and then back to the phase quadrature.

Figure III.8: Frequency-dependent squeezing in the sideband picture. The red curve illustrates the
reflectivity of the filter cavity, while the blue curve depicts the phase dispersion. The
sidebands represented by the phasors at di�erent frequencies, due to reflection within a
slightly detuned cavity, undergo frequency-dependent phase shifting. For � much greater
than Êcav they undergo a phase shift of ±180¶. Around Êcav the phase shift decreases
until it becomes 0 at the resonant frequency. At this point, the state transitions from
being phase squeezed to amplitude squeezed, as only the negative sideband undergoes a
phase shift of 180¶

.
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This chapter explores the Quantum Noise Reduction (QNR) system implemented in Virgo.
It presents an overview of the system’s general scheme and the control methods used to inject
SQZ states into the interferometer. This thesis focuses on the Filter Cavity, as part of the work
detailed in § IV.2. The challenges related to controlling this optical resonator are specifically
addressed. The Filter Cavity plays a crucial role in rotating the squeezing ellipse, thereby
enabling the generation of Frequency-Dependent Squeezing (FDS).
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IV.1. General design of the squeezing system
In modern GW interferometric detectors, squeezed vacuum states are injected through the
asymmetric port of the BS [35]. Hence, to make injection easier, the optical benches for the
squeezing generation are positioned near the interferometer’s Detection (DET) benches. Figure
IV.1 presents a simplified scheme of the QNR system in relation to the Virgo interferometer
(ITF).

IV.1.1. Optical layout

The Squeezing system is based on the same core system used for FIS injection during the O3
science run. The new setup for O4 includes the addition of other optical benches, both in air
and suspended, each of which has a di�erent purpose. Some of these are entirely modified, or
added, to generate FDS for the O4 science run. The system is divided into four main parts:
EQB1, SQB1, EQB2 and the FC. Each of these are discussed in the next paragraphs explaining
both the role of the individual parts and describing the elements housed in them.

Figure IV.1: Experimental setup (not in scale) of the Quantum Noise Reduction system installed in the
Virgo experiment at the European Gravitational Observatory (EGO). Figure reproduced
from [40]. The system is located in the north-est area with respect to the interferometer
(dark yellow area). The core of the experiment (EQB1 and SQB1) is connected to the
detection DET bench and it extends along the north arm of the interferometer with
the SQB2, EQB2 and the FC generating the FDS. On the right, is a zoomed scheme
of the optical layout. The main elements are: AOM, acoustic-optic modulator; HWP,
half-wave plate; M, mirror; DM, dichroic mirror; SHG, second harmonic generator; OPO,
optical parametric oscillator; HD, homodyne detector; QPD, rf quadrant photodiode;
PD, photodiode; PLL, phase locked loop; SH, beam shutter; PS, polarizing beam splitter;
FCIM and FCEM, filter cavity input and end mirror, respectively: DL, Delay line

EQB1

The External Quantum Bench 1 (EQB1) is completely in the air and can be considered the
system’s core since the squeezing source is housed on this bench. The squeezing source was
employed during the last Observing Run O3 to inject FIS [41]. By using an Optical Parametric
Oscillator (OPO), this system is capable of generating a squeezed vacuum up to 13 dB of
squeezing [42]. This bench hosts all the main beams that are used within the system:
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SQZ main beam: it is the squeezed vacuum state generated by the OPO [43]. Its wavelength
is at 1064 nm. During O3 this beam was directly injected inside the interferometer. As
the main focus of this thesis is on other aspects, the detailed discussion related to the
squeezer is not reported. For more comprehensive and detailed information on this topic,
refer to [42].

Grean beam (GR): it is the pump beam used to generate the squeezed vacuum field. It is
generated via the SHG technique [44] and its wavelength is 532 nm, corresponding to half
of the SQZ main laser wavelength. It has a crucial role in the first phase of the Filter
Cavity control and is responsible for generating error signals for the cavity alignment.

Local Oscillator (LO): it is a pick-o� of the SQZ main beam before the vacuum SQZ generation.
It is used as the local oscillator of the diagnostic homodyne detector, to measure the
quadrature components of the SQZ with the QNR system stand-alone both in FIS and in
FDS configuration.

Sub Carrier (SC): it is an additional laser source that has a wavelength of 1064 nm with a
small o�set concerning the IR beam. It is a bright reference of the vacuum SQZ beam
and it is used to couple finely the SQZ beam with the FC and the ITF. Due to its specific
function, the beam has a frequency o�set of �SC = 1.26 GHz with respect to the main
beam. After being prepared, the beam enters inside a Faraday Isolator (FI1 in figure IV.1)
and is directed to the OPO. Here because of the frequency o�set, it is entirely reflected.
Mirrors in the optical path of the SC allow the beam is overlapped with the squeezed beam.
To ensure proper overlap with the SQZ beam, careful alignment, and mode matching are
performed between the SC and OPO.

Coherent Control beam (CC): this additional beam is generated by an additional laser source
frequency locked with o�set 4 MHz to the squeezer main laser. Its role is to generate error
signals to stabilize the angle of the squeezing ellipse with respect to the selected LO. This
method is proposed in [45].

Bright Alignment Beam (BAB): this is a bright auxiliary beam that is injected in the OPO
for alignment and mode matching purposes. It is generated from the SQZ main laser and
used as an alternative to the squeezed light generation.

The bench also hosts several beam control elements (not all shown in Figure IV.1) such as:

• The matching telescope between SC and OPO, the mirrors with PZT Tip Tilt actuators
for self-alignment of SC in OPO.

• The pre-matching telescope between GR and filter cavity. The purpose is to have the
size of GR and IR identical (apart from a

Ô
2 factor which compensates for the di�erent

wavelength) when they overlap at the dichroic mirror (DM1) on SQB1.

• EOM on the GR and on the SC to generate the PDH signals to lock the filter cavity
longitudinally, and to generate the signals of the filter cavity self-alignment via the
di�erential wavefront sensing technique. PZT tip-tilt actuators are also present for the
AA of IR on FLT and for pointing the green on FLT. The QPDs are present and used for
AA of the filter cavity on the green and the PD for extracting the PDH signal in reflection
from the filter cavity.

• An acousto-optic modulator (AOM) on the GR is employed to introduce a frequency o�set
to the GR beam. This o�set is crucial for managing the detuning between the IR and the
FC components, especially when the FC is controlled using green light.

• The HD detector allows making some diagnostic measurements on the squeezed vacuum
fields without injecting it into the ITF; the telescope for the matching between LO and
SQZ on the homodyne, actuators for self-alignment between SQZ and LO, and phase
shifters for implementing the squeezing ellipse angular control.
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• A Delay Line (DL) is composed of two motorized mirrors that reflect the IR beams (SQZ
and SC) and prevent them from leaving the bench: this is useful to characterize the FIS
performance accounting only for the losses occurring on the EQB1.

• Shutters to block all the GR, SC, IR, LO beams, preventing them from exiting this bench.

• Beam monitor cameras and PDs.

SQB1
The Suspended Quantum Bench 1 (SQB1) is hosted in a vacuum chamber and it is suspended
using a multistage seismic attenuation system [46] identical to that already in use in Advance
Virgo for other auxiliary optical benches. In the current setup, SQB1 supports the optics used
to send the beams coming from EQB1 to the FC and those coming from the filter cavity either
to the interferometer for enhancing the sensitivity or to EQB1 for diagnostic purposes. Two
Faraday Isolators (FIs) are used to isolate the squeezing source from backscattering coming
from the interferometer. The double FI is designed in such a way that it allows sending the SQZ
toward ITF or HD. The selection of the two configurations is possible using a motorized HWP
that rotates by 90¶ the linear polarization between the two stages so that the beam can get
reflected (hence directed towards the HD), or transmitted (hence directed towards the ITF) by
the input polarizer of the second stage. Relevant elements within SQB1 are (see Figure IV.1):

• Mirrors equipped with pico motors for both IR and GR alignment.

• Adichroic mirror (DM1) is used to superimpose the green and IR beams and send them
together toward the filter cavity.

• The first mirror of the matching telescope for SQZ and GR toward the filter cavity.

• Mirrors with pico motors to remotely align all beams towards the ITF. This is very
important since the bench is in vacuum and the alignments need to be tuned remotely;

• Two PZT tip-tilt actuated mirrors (MIRROR 1 and MIRROR2) are used for the alignment
of the SQZ toward the output mode cleaner of the ITF (see §IV.4.1). Unlike the mirrors
with the pico motors, these two are used for the auto-alignment loop.

• A system of cameras (near-field and far-field) placed in reflection to a polarizer of the
second FI that serves to monitor the spurious beam coming from ITF and pre-align SQZ
and ITF.

• A telescope that is used to match the FDS system and the interferometer.

• A moving mirror (called Retro Reflector (RR)) is used to bypass the filter cavity. When
this mirror is used, the FIS is directly injected into the ITF instead to be used for FDS
production. This mirror is also a backup solution if the FDS fails.

• Amoving shutter is placed as the last optic that serves to protect the interferometer both
from unintended squeezing injections and especially from e�ects due to scattered light
from both beams coming from SDB1, EQB1, and SQB2.

SQB2
The Suspended Quantum Bench 2 (SQB2) is a vacuum-suspended bench essential for directing
beams from SQB1 towards the FC. This bench is linked to the SQB1 bench (10 meters away)
through a 25 cm diameter vacuum pipe and to the filter cavity (40 meters away). In addition to
the steering optics, the bench hosts the second curved mirrors of the filter cavity mode-matching
telescope. It also houses the IR optical line, directing 1 ‰of the power IR picko� towards
an external bench named EQB2. The EQB2 bench operates in the air and houses both the
longitudinal and RF quadrant photodiodes necessary for the longitudinal and angular control of
the filter cavity with IR.



iv.2 control strategy 55

Filter cavity

The filter cavity (FC) is used to provide the FIS rotation for the optimal FDS generation [24].
The FC has been designed to achieve a linewidth of about 25 Hz, that matches the optimal
detuning frequency of the Virgo interferometer (§III.1), taking into account the interferometer
parameters for the next observing run (O4) [40]. Once the detuning is known, the cavity length
is based on a trade-o� between two factors. Some squeezing degradation mechanisms, such as
cavity round-trip losses, are inversely proportional to the cavity length [47]. In fact, with a
shorter cavity, and consequently higher finesse, the squeezed vacuum would bounce more times
inside the cavity increasing the total losses. Hence, increasing the cavity length can reduce
the impact of these degradation e�ects on the squeezing performance. From the infrastructure
viewpoint, a shorter cavity is preferable. Hence, the choice of cavity extension involves a
meticulous balance between these contrasting requirements. Selecting a FC length of 285 m,
while aiming for a linewidth of 25 Hz, results in a finesse of approximately FIR ≥ O(104). The
FC is situated within the Virgo detector’s north tunnel, parallel to the interferometer north-arm
(refer to Figure IV.1). The cavity consists of two concave mirrors with a diameter of about
150 mm. The radius of curvature (558 m) has been selected to minimize the round-trip losses
of the cavity, avoiding degeneracy with higher order modes [48]. The mirrors are seismically
isolated using a scaled-down version of the Virgo super-attenuator inverted pendulum [46], and
are controlled using the Virgo marionette concept [49]. Table IV.1 details some construction
parameters of the FC. In addition, as reported in [50], ring heaters are installed in vacuum close
to the mirrors in case there is a need to change the radius of curvature. The parameters useful
for quantifying the performance of the FC in the context of the FDS for Advanced Virgo are
defined in [24]. Here, §IV.3, the measurements of some of them are reported.

At the FC end, an additional in-air bench named Dilter Cavity End Bench (FCEB) is installed,
hosting a dichroic mirror to separate IR and GR light in the transmission of the FC. For both
beams, a camera and a photodiode are incorporated for monitoring purposes. The photodiodes
serve the dual purpose of monitoring the power of the beams transmitted by the cavity and
acting as a trigger to engage the lock of the filter cavity. The IR photodiode is also used to
study the co-resonance between the bright alignment beam of the SQZ (BAB) and the SC. The
cameras are used instead to monitor the shape and the position of the transmitted beam by the
filter cavity over time.

IV.2. Control strategy

This section shows the di�erent strategies used within the QNR system to maintain the stability
of the various laser beams in terms of alignment, frequency, and relative phase and thus have a
robust generation of FDS states.

IV.2.1. Optical phase locked loops

As presented in the previous section, the FDS source for AdV+ relies on three laser sources: the
SQZ main laser, the CC laser, and the SC laser source. Each laser has a function that must meet
specific requirements and operate with its specific frequency o�set. To maintain these o�sets,
three Phase Locked Loops (PLLs) are implemented. The PLL boards, designed and developed
at INFN Padova for the Virgo Squeezing system, incorporate two distinct servo loops that can
be engaged independently and act directly on the actuators that are present on the laser sources.
The initial one is termed the FAST servo loop which operates on the piezoelectric element of the
laser head. The second one, referred to as the SLOW loop, operates on the laser’s Peltier. The
fast loop has a high bandwidth (40 kHz) and is used to achieve a low residual phase error, while
the slow loop is used to maintain high dynamics and thus long-term stability of the system.
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Parameter Symbol Value
Length L 284.9 m
Mirror diameter D 149.9 mm
Input mirror radius of curvature R1 556.0 m
End mirror radius of curvature R2 557.1 m
Input mirror flatness �50mm R1 0.58 nm
End mirror flatness �50mm R2 0.67 nm

Parameters for infrared
Input mirror transmissivity T1 562 ppm
End mirror transmissivity T2 3.16 ppm
Finesse F 9582 - 10204
Linewidth �‹F W HM 51.6 - 54.9 Hz

Parameters for green
Input mirror transmissivity T1 2.6 %
End mirror transmissivity T2 2.7 %
Finesse F 117
Linewidth �‹F W HM 4502 Hz

Table IV.1: Summary of the filter cavity parameters. The table is divided into three parts, one for the
parameters regarding the IR, one for the GR beam, and another one for the parameters in
common. For the finesse F and linewidth with the IR beam, the extremes of variations of
the measured values are reported, obtained in several estimations made at di�erent times.

SQZ MAIN PLL

The first PLL is employed to achieve frequency locking between the Virgo main laser and the
SQZ main laser. The Virgo main laser is brought to the DET laboratory, hosting the vacuum
chamber where the SQZ beam is injected into the ITF, by a 50 m long optical fiber. The beam
emerging from the fiber is at an o�set of 80 MHz from the main laser, therefore the PLL o�set
frequency must also be set at 80 MHz to ensure proper synchronization and coherent operation
between the two lasers. An important aspect of this PLL lies in the fact that the Virgo main
laser is pre-stabilized in frequency and amplitude in order to lock the interferometer. This means
that with good PLL precision, the frequency noise of the SQZ laser is significantly reduced
because it is locked to an already pre-stabilized laser (i.e. the Virgo main laser). Otherwise, the
frequency noise of the SQZ laser would be too high to lock the filter cavity.

CC PLL

The second PLL is used to lock the CC laser to the SQZ main laser with a frequency o�set of 4
MHz. The choice of this value is determined by the following considerations:

• The o�set is chosen to be su�ciently large to prevent any technical noise from the CC
that could degrade the degree of squeezing produced in the OPO.

• The frequency o�set has to ensure that the CC is reflected by the ITF to enhance the
e�ciency of the injection process.

• The frequency o�set is designed so that the CC beam back-reflected by the ITF is partially
transmitted by the Output Mode Cleaner (OMC). This has a free spectral range �‹OMC

F SR
= 834 MHz and a F= 1000 which corresponds to �‹F W HM = 800 kHz.

SC PLL

The third PLL is used to shift the SC frequency with respect to the SQZ main laser. Again, the
choice of frequency o�set ‹SC is dictated by several requirements:
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• The frequency o�set is chosen to prevent any interference between the Sub Carrier and
the main laser of the interferometer.

• The SC must not resonate within the OPO but it must be totally reflected (free spectral
range �‹OP O

F SR = 3 GHz).

• The SC must be totally reflected by the OMC (�‹OMC
F SR = 834 MHz).

• The SC has to be resonant into the FC. In fact, it plays a significant role in the precise
stabilization of the FC length and the frequency detuning between the generated SQZ
and the frequency at which it is measured. This detuning ensures that the rotation of
the squeezing angle takes place at the crossover frequency, where the interferometer’s
Radiation Pressure Noise is equal to the Shot Noise. This condition is given by:

‹SC = ‹SQZ + �‹d + N · �F C
F SR (IV.1)

where ‹SQZ is the SQZ beam frequency, �‹d= 25 Hz is the required frequency detuning
for the squeezing angle rotation, �‹F SR= 526 kHz is the FC FSR, and N an integer
equal to N = 2395. N · �‹F C

F SR has been chosen so that not overlap with the �‹OP O
F SR and

�‹OMC
F SR . This leads to a value, mentioned earlier, equal to ‹SC =1.26 GHz.

The first two PLLs were developed and installed during the O3 science run for FIS injection
(at that time the CC had an o�set of 7 MHz). For technical details of these elements, please
refer to [24]. In order to work during FDS generation and injection, the locking routine must
be performed hierarchically i.e., by first locking the SQZ laser to Virgo’s main laser and then
locking the other two lasers. In case of Virgo laser instability, the system can work stand-alone
with the SQZ laser unlocked and free-running. The only limitation is not being able to lock the
FC due to the high-frequency noise of the SQZ main laser not locked to the Virgo main laser
(as explained in §IV.2.1).

IV.2.2. Filter cavity controls

The successful injection of FDS into the interferometer requires precise control over FC length,
optical path length, and alignment of the squeezed vacuum field. This meticulous control
is essential to minimize squeezing ellipse angle errors and noise, as well as to reduce optical
losses on both the FC and the Interferometer. The control logic relies on a combination of two
references. The green beam serves as a reference for FC length and angular control, whereas the
SC field is utilized for second-stage longitudinal control of the FC. The reasons for using two
optical references are:

GR beam: it provides a simpler signal for longitudinal lock acquisition, particularly due to the
low finesse of the FC at the green wavelength (see Table IV.1). It is suitable for providing
longitudinal and angular control signals for the FC in scenarios where a bright IR beam
might not be available. For instance when the system is in SQZ measurement mode into
the HD.

SC beam: it o�ers a more precise reference for longitudinal control, as it is less dependent
on cavity dispersion compared to the green field. Additionally, the SC field provides an
accurate alignment reference for the squeezed vacuum field, as it is carefully matched at
the OPO.

Longitudinal control

The mirrors of the FC are precisely maintained around their working position through a Local
Control system. This system consists of three optical levers installed on each marionette that
suspend the mirrors, which sense their angular and longitudinal motions and generate error
signals. These error signals are then utilized by the actuators installed on the payload to
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maintain the mirrors in the desired positions. To simplify the locking procedure, the FC is
initially locked with the GR beam. In this configuration, the finesse is lower, contributing to
simplifying the overall lock. Then, the control is switched to the SC beam to optimize the cavity
length and fine-tune the cavity detuning. Both control methods employ the Pound-Drever-Hall
technique based on phase modulation with an Electro-Optical Modulator (EOM). The phase
modulation frequency for the GR beam was determined using the software Finesse [24]. This
value is set at 5.5 MHz. The RF photodiode used to produce the GR error signal for the loop is
hosted in the EQB1 bench (see Figure IV.1) and a PD is located in the transmission of the FC
to trigger the loop. When the transmitted power overcomes a threshold the length control is
engaged. The correction signals below 100 Hz are sent to the actuator on the FC end mirror,
while the higher-frequency corrections are sent to the laser frequency control. Figure IV.2 shows
the typical output of the cameras used to check the beams’ position and shape during the
locking procedure. The cameras are positioned in proximity to the photodiodes employed for
locking purposes, both in transmission and reflection from the FC. For what concerns the SC,

Figure IV.2: (top left) Field of View (FoV) of the GR camera in transmission from the FC into the
FCEB. (top right) Fov of the EQB1_GR camera in reflection from the FC. (bottom
left) FoV of the FCEB_IR camera in transmission from the FC. (bottom right) FoV of
the EQB2_IR camera in reflection from the FC. All the cameras show the fundamental
mode TM00 of the GR and the SC beams when the FC is locked.

given the o�set in frequency with respect to the SQZ beam, the choice of modulation frequency
was chosen using Finesse. In this case, constraints regarding the interaction of this beam with
the interferometer cavities were also considered (i.e. OMC and SR), leading to a modulation
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frequency of 11 MHz. The sensing process involves a combination of signals for the stabilization
of the system. A DC signal from PD in the transmission of the FC is used as a trigger (GR PD
in Figure IV.1). The PDH signal is obtained by demodulating the reflected signal from the FC
using the PD located in EQB2. At this step, the signal used for FC mirror coil is now used for
GR AOM frequency. The frequency of the AOM is scanned until IR PD on FCEB reaches a
specific threshold. Once this threshold is met, the PDH signal is enabled to drive the AOM
frequency to have the GR and the IR co-resonant, ensuring proper stabilization of the system.

GR alignment

When the cavity is locked to the GR beam, the angular position of the two cavity mirrors must
be stabilized with respect to the GR beam orientation. Due to the limited linear range of the
quadrant photodiodes on EQB1, a preliminary alignment of the mirrors on the laser beam might
be necessary before engaging the loop based on the Ward sensing method[51]. After engaging the
galvo loop to maintain the beam centered on the quadrant photodiodes QD1 and QD2 on EQB1
(the loop acts on galvo mirrors), the automatic alignment (AA) loop is turned on. The AA uses
the same modulation sidebands used for the longitudinal control and acts on the angular degrees
of freedom (DOFs) of the mirrors. The error signals are generated by digitally demodulating
the RF outputs of EQB1_GR_QD1 and EQB1_GR_QD2 with the 5 MHz signal that drives
the GR EOM. Once the optical axis of the cavity is kept fixed through the AA, a loop based
on dither lines is engaged to get the GR beam centered as much as possible on the mirrors.
This loop uses actuators mounted on two steering mirrors placed on EQB1 (EQB1_GM5 and
EQB1_GM7).

IR alignment

To make the IR beam enter co-aligned with the GR on the FCIM, AA loops are engaged: the
error signals derive from the demodulation of the signals of the quadrant photodetectors in
reflection from the FC (specifically on EQB2). The actuators for these AA loops are on two
mirrors M3 and M5 located on EQB1

IV.2.3. CC Loop

The e�cacy of the quantum noise suppression explained in §III has as a prerequisite to maintain
a constant phase for the squeezed field in relation to the phase of the main field circulating
within the ITF. Variations in the squeezed ellipse, along with optical losses, lead to a reduction in
the e�ective squeezing level. These variations arise due to mechanical and acoustic disturbances
inducing random alterations in the optical path of the radiation field. Deriving a signal that
encodes the phase di�erence between the two fields is imperative for acting on the squeezing
ellipse angle. Because the squeezed beam does not have enough power to extract an error
signal, an auxiliary bright beam, called Coherent Control (CC) (§IV.2.1), which has the same
information as the squeezed beam and is used for phase stabilization [45]. The CC beam
is injected into the OPO, where it overlaps with the main SQZ beam. In this way, the CC
experiences the same nonlinear interaction with GR, the parametric amplification, as it does
with the infrared vacuum field at frequency Ê0. Consequently, the phase of the GR (SQZ phase)
is encoded in the phase of the generated sidebands. Additionally, the beating of these sidebands
with the local oscillator (LO) enables the estimation of the phase relative to the LO. From this
information, it is possible to generate two error signals to control the relative phase between the
CC and the OPO pump and between the CC and the local oscillator used for the squeezing
measurements. The latter (IV.1) in the case of HD detector and the ITF main beam in the case
of SQZ injection into the ITF. The following paragraph shows a brief mathematical discussion
of the CC to derive how it carries information related to the squeezing phase and how the loop
to keep the phase fixed is implemented. First, the loop is shown in the general case, and then
the case is implemented in the QNR system in Virgo.
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CC field

As described in §IV.1, the CC has a frequency o�set of 4MHz with respect to the SQZ main
beam. The expectation values of the annihilation operators of the upper and lower sideband
fields at frequencies Ê ± � are:

Èâ+ÍCC = Èâ(Ê + �)ÍCC = –� (IV.2)
Èâ≠ÍCC = Èâ(Ê ≠ �)ÍCC = 0 (IV.3)

so the single sideband field can be described by the real-valued amplitude –�. As in §II.1.2 two
quadrature operators are introduced:

â1(�)CC =
â+ + â†

≠
Ô

2
(IV.4)

â2(�)CC =
â+ ≠ â†

≠

i
Ô

2
(IV.5)

When the CC enters the OPO, it interacts with the nonlinear medium: because of the parametric
amplification process induced by the pump at 2Ê, a portion of the pump photons undergoes
conversion into photon pairs at frequencies Ê + � and Ê ≠ � through the process of parametric
amplification [44]. This can be described by applying the squeezing operator (II.46) to the
two quadratures (IV.4) and (IV.5). After some calculation, the new quadrature operator b̂1,2

expectation is obtained:

Èb̂1(�)ÍCC = –�
Ô

2
[(cosh s + sinh s cos ◊) ≠ i sinh s sin ◊] (IV.6)

Èb̂2(�)ÍCC = –�
Ô

2
[sinh s sin ◊ ≠ i(cosh s ≠ sinh s cos ◊)] (IV.7)

Performing the Fourier transforms of b̂1(�) and b̂2(�):

b̂1,2(t) = b̂1,2(�)e≠i�t + b̂†
1,2(�)ei�t (IV.8)

From this point, the electrical field of the CC that exits the OPO can be determined as follows:

ECC(t) Ã Èb̂(+)(t) + b̂(≠)(t)Í (IV.9)

with:
b̂(±)(t) ©

1
Ô

2

1
b̂1(t) ± ib̂2(t)

2
eûi�t (IV.10)

Finally, it is obtained:

ÈE(t)ÍCC Ã
1 ≠ g
Ô

2
–� cos((Ê + �)t) ≠

1 ≠ g
Ô

2
–� cos((Ê ≠ �)t ≠ ◊) (IV.11)

where Ô
g = exp (2s) is used. The last equation shows how the parametric amplification or

de-amplification process within the OPO a�ects the coherent control field. The resulting electric
field emerges from the squeezed light source, characterized by two sidebands symmetrically
spaced apart by � relative to the central carrier frequency Ê. In particular, the sideband at
≠� contain the phase di�erence between the CC and the GR pump used in the parametric
amplification process.

Phase control of the GR pump field

To generate the error signal utilized in the feedback loop for adjusting the phase of the pump
field relative to that of the CC, a signal in reflection concerning the injection of the CC field is
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employed. The photocurrent generated by the PD is directly proportional to the square of the
incoming field:

ICC Ã ÈÊ(t)Í2

CC (IV.12)

By performing demodulation of this signal at a 2� the error signal is derived:

SGRerr Ã
(≠1 + g2)–2

�
sin 2◊

4g
(IV.13)

This dependency is contingent on the squeezing angle (◊), more precisely, the phase di�erence
between the squeezed vacuum and the GR pump. With this error signal, a feedback loop is
implemented to stabilize the angle ◊ to a fixed value. The actuator of this loop is a longitudinal
piezoelectric actuator (PZT) glued on a mirror in the GR path. Its objective is to modify the
optical path of the pump field to lock its phase, thereby locking the quadrature of the SQZ field
with the phase of the CC. The optical and electrical scheme of the loop to control the phase of
GR pump is shown in Figure IV.3.

Figure IV.3: Optical and electrical layout of the CC loop to lock the GR pump phase

Phase control of the homodyne LO

The CC is transmitted by the OPO and, along with the SQZ beam, reaches the HD, which
interferes with the LO. The latter can be described within the HD as follows:

ELO(t) Ã –LOe≠i(Êt+Ï) (IV.14)

with –LO is the classical field’s amplitude. The signals detected at the two photodetectors of
the HD (§II.3.4) are determined by using the BS matrix described in (II.68). By subtracting
and subsequently applying lowpass filtering to both homodyne photocurrents, the following is
determined:

i≠(t) Ã |EP D1(t)|2 ≠ |EP D2(t)|2

Ã
2
Ô

2–LO–�(≠1 + g)
Ô

g
cos(�t + 2◊ + Ï) (IV.15)

Then, within the HD electronics, this signal is demodulated by multiplying it with cos(�t). The
result of this operation is low-pass filtered. In this way, the error signal is:

SLOerr Ã
2
Ô

2–LO–�(≠1 + g)
Ô

g
sin(2◊ + Ï) (IV.16)
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This error signal depends on both the relative phase Ï between the GR pump and the LO, and
the SQZ angle ◊. However, as shown in the previous section, the SQZ angle can be stabilized
independently by acting directly on the pump. Consequently, ◊ can be considered as a constant.
The phase Ï that remains to be controlled is the phase of the LO field with respect to the CC
field, which represents the squeezing quadrature read with the HD. Figure IV.4 shows the basic
scheme of the loop. In the QNR system, the fluctuations of the phase Ï need to be corrected in
a wide frequency range, i.e. up to 5-10kHz, which is generally greater than the bandwidth of a
PTZ actuator. The following section describes how this problem is addressed.

Figure IV.4: Optical and electrical layout of the CC loop to lock the LO phase

Phase control in Virgo QNR

In the QNR system, the GR pump control remains the same as the one just shown. However,
the current approach divides the phase correction into three parts. The first two are on the LO
path and use two di�erent actuators: one acting on the mirror LO_M2 which is a PZT with
small displacement (3 µm) and high bandwidth, and the other one on LO_M4, a slow PZT
with a larger range 30 um (see FigureIV.1). The loop on M2 corrects fast fluctuations. However,
due to its limited range, it would saturate immediately. Therefore, its correction is kept around
zero by acting on the long-range piezo that corrects slower fluctuations. This solution is not
su�cient to maintain a squeezing measurement for more than 20 minutes. Given the size of the
system, the distance between EQB1 and the input mirror of the filter cavity moves about 1 mm
day-night. To overcome this problem when measuring FDS, a third actuator is added at the
longitudinal position of the inverted pendulum (along z) of the filter cavity input mirror. This
loop tends to vanish the correction signal to M4 so it stays within the M4 actuator range.

CC during SQZ injection

What has been said in this section is valid in the case where the QNR system is in stand-alone
mode. In the case of injecting squeezing into the dark port of the interferometer, the LO is
represented by the interferometer carrier. In this scenario, changing the LO phase, i.e. the ITF
phase, is not possible. Therefore, it is needed to act on the squeezed vacuum field. In this case,
the error signal utilized for phase control is extracted from the detected light passing transmitted
by the OMC (§IV.4.2). In this process, the CC beats with Virgo main laser on the PD B1 (see
Figure I.4) and the beat note is demodulated at the same frequency of the CC (4 MHz). The
resulting error signal is used to implement a control loop that acts directly on the SQZ main
laser PLL. By acting on the 80MHz frequency o�set of the main PLL, there is an indirect impact
on the CC PLL, which introduces a frequency o�set of 4MHz. Since the phase is the derivative
of time with respect to frequency, maintaining a constant phase relationship between two signals
implies that both signals (ITF and SQZ) are maintained at the same frequency. This method,
implemented for the scientific run O3, is slightly di�erent from what was shown in the previous
section in which the squeezing phase is changed by moving a mirror across the optical path of
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the pump beam. One of the advantages of this method is that the squeezed vacuum remains
una�ected by scattering on the moving mirror, leading to a reduction in concerns related to
stray light.

IV.2.4. Active FSR measurement
During the first long-term measurements of the FDS, as discussed in §IV.3.3, a limitation for
measurement and optimal FDS preparation arose. The issue stems from the fact that between
two FC unlocks, the two mirrors are free to move. The locking length of the cavity is determined
by the initial positions of the mirrors, resulting in a typical variation of ”L between successive
lock points. This variation has a consequential impact on the relative detuning between the GR
and IR beams, as detailed in [52]:

�d = c · ”AOM

2L⁄GR(⁄GR + ”AOM )”L ¥ 1.3 · 105
Hz
m · ”L (IV.17)

Here, ”AOM represents the change in the GR wavelength ⁄GR induced by AOM. The detuning
�d arises because the GR beam utilized for controlling the FC length di�ers from the one
employed for squeezing generation. This discrepancy results from an additional frequency o�set
introduced using an AOM of 80 MHz. More precisely, the frequency o�set is twice as much, i.e.
160 MHz, because of the double passing in the AOM.

The second e�ect of the change in the cavity length is the detuning between the IR beam and
the SC.

This e�ect can be justified by considering the relationship between the two beams, particularly
the shift in frequency of ≥1260 MHz (2395 FSR, as discussed in §IV.2.1) with respect to the IR.
This relationship is expressed in (IV.1).

When the FC unlocks and relocks, the change in length results in a FSR alteration. The
frequency of the SC may not be an integer multiple of the new FSR, leading to a modification
in the SQZ detuning.

To keep a constant squeezing detuning frequency and decouple the two e�ects, a method
named FMODERR is implemented. This method measures the cavity length after each unlock.
This approach is based on the determination of the FSR of the cavity from the frequency
di�erence between the SC and phase-modulation sidebands added of the SC, when both of which
resonate in the cavity [53]. It is worth noticing that these sidebands are additional, distinct
from the 11 MHz sidebands used for PDH signals to lock the cavity (§IV.2.2). The frequencies
of the new sidebands are selected to be an integer multiple, specifically n = 150, of the FSR)
(≥ 78 MHz). To achieve resonance conditions for the sidebands after an unlock, a frequency
dither line is introduced to the FMODERR sidebands. This is achieved by applying a 13 Hz AC
voltage to the FM input of the radiofrequency (RF) generator responsible for producing the
sidebands. As a result, the power transmitted by the FC acquires a component at the same
frequency, which diminishes when the sidebands become resonant in the FC. This condition is
accomplished through a loop that introduces a DC signal to the FM channel until the 13 Hz
component in the FC transmitted light is canceled out. Ultimately, the FSR of the cavity is
estimated as the sum of the central frequency of the generator and the DC frequency applied to
the FM input, divided by 150. After a lock/unlock cycle. the steps to measure FSR and set the
correct detuning are as follows:

• Set the SC beam in resonance with the FC using the IR PDH error signal.

• Set the SC sidebands in resonance with the FC using the described procedure, estimating
the FC FSR.

• Once the FSR is determined, the frequency o�set of the SC beam is set to the 2395th
FSR, and overlapped with the SQZ beam. At this stage, both the SC and the SQZ fields
are out of resonance.

• Utilize the PDH signal of the SC to act on the GR AOM to bring GR, SC, and SQZ in
resonance.
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• Achieve the desired SQZ detuning �‹d by adding �‹d to the SC PLL o�set.

Implementation

Before implementing the described method, the detuning produced by the equation (IV.17) was
verified experimentally. For this test, the SQZ system is changed to the BAB mode. The test is
performed manually with the following steps:

1. With the FC locked on the GR and the SC, the latter is shuttered, and acting on the GR
AOM, the IR in BAB mode is put in resonance.

2. The SC is unshuttered and acting on SC PLL reference it is also put in resonance.

3. With the two beams in resonance, the FC is unlocked by opening the control loop. The
FCIM is moved manually changing the FC length by -220 µm.

4. The cavity is then relocked. For the BAB to be in resonance, a shift of 60 Hz in its o�set
is required, while the SC o�set has to change by 900 Hz for resonance.

The last point confirms the two e�ects that need to be compensated: both the detuning between
the BAB (and so the SQZ) and the GR and the SC o�set. The SC frequency o�set relative to
the BAB frequency is FSR · 2935. Consequently, when the length of the FC changes, the SC
experiences an amplified change by a factor of 2395. Two sidebands are added to the SC EOM, in
addition to the PDH sidebands. This addition is achieved using a commercial generator (Agilent
33250A) that allows frequency modulation, with central frequency set to: fgen = 78.920364
MHz. This value corresponds to N

fgen

F SR = 150 FSR of the filter cavity 1. The generator settings
are shown in Table IV.2 As described in the previous section, the FSR estimation is measured

Sidebands settings
Amplitude 0.9 V
Frequency 78.920759 Hz
FM range 200 Hz

FM settings
Amplitude 0.25 V
Frequency 13 Hz

Table IV.2: Settings of the Agilent 33250A. The value set on the generator is slightly di�erent from
that used in the loop because the generator output was measured with a frequency meter.
The FM settings are used to generate a dither line on the sidebands.

as :
FSR = (fgen + fcorr · cal)

N
fgen

F SR

(IV.18)

where fcorr represents the DC voltage applied to the FM generator to counteract the e�ects of
the dither signal at 13 Hz in the FC transmission. The constant "cal" signifies the voltage-to-
frequency conversion of the FM channel. This conversion is determined through measurements
conducted by applying various DC voltages to the FM channel, which operates akin to a
Voltage-Controlled Oscillator (VCO). The corresponding frequency of the generated signal is
then measured using a frequency meter. From the fit shown in Figure IV.5 cal = 39.4 Hz/V is
obtained.

The entire procedure for testing the ability to restore the detuning condition after FC unlock
is summarized in the following points:

1. The cavity is locked on the GR.
1The procedure used to measure manually the FSR of FC is described in [54]
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Figure IV.5: Calibration of the FM input of the signal generator. The zero of the vertical axis is when
the signal frequency equals that set on the signal generator Fgen

2. With the SC shuttered, the BAB is put in resonance acting on the GR AOM modulation
frequency.

3. The SC beam is unshuttered and put in resonance acting on the frequency o�set of SC
PLL.

4. With an IR detuning at 0 Hz the FC is unlocked.

5. Acting on the z DoF of FCEM suspension (along the beam propagation), the length of
the FC is reduced by 300 µm.

6. The FC is relocked on the GR. Once the cavity is locked, the BAB transmission is reduced,
while the SC transmission vanishes. This observation confirms that both beams have gone
out of resonance.

7. The BAB is left with its initial detuning and the SC is put in resonance acting only on
the SC PLL frequency. The IR_AA loop is switched on.

8. The FMODERR loop is closed to measure the cavity FSR, as described above.

9. The IR_AA loop is opened and SC is set at the frequency deduced by the measurement
of the cavity FSR expressed by (IV.18).

10. Neither the IR beam nor the SC is perfectly in resonance with the cavity. To address this,
adjustments are made to the GR AOM modulation frequency, and the SC is brought in
resonance using the SC PDH error signal.

11. By shuttering the SC, it is observed that the IR is in resonance. Therefore, the initial
detuning (zero-detuning) is restored as required.

Figure IV.6 shows a ≥15 hours measurement of FSR without actuation (up to point 8 of the
above procedure). The SC is maintained in resonance acting on the SC PLL reference frequency.
As can be seen from the bottom right figure, this method uncovers a frequency drift once the
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system is stabilized and FSR jump is corrected. This e�ect is the additional detuning of GR
with respect to IR due to the di�erent behavior of the coatings depending on the temperature
of the mirrors. Prior to implementing this method, automated FDS measurements (as discussed
in §IV.3.3) faced challenges in maintaining the stability of the FC detuning frequency for an
extended duration, mainly due to the occurrence of FC unlock/lock cycles. However, upon
integrating this procedure into the Virgo automation, the setting of the detuning frequency no
longer caused problems with the measurements.
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Figure IV.6: Data collected in a 15h long period of the signals for the FMODERR method, to mea-
sure the FSR without actuation. Both SC and BAB are injected in the FC. (top left)
The transmission of the SC drops from 14 to 12.3 V, this means that the BAB went
out of resonance (detuning more than 50 Hz). (top right) The FMODERR sensing
SQZ_FMODERR_CORR_1kHz channel jumps at every unlock (change of FSR length)
but it is stable during a lock. (center left) FSR variation is measured using FMOD-
ERR. (center right) Upon recomputing the SC PLL frequency from the SC, a drift of
approximately 120 Hz is observed. This value represents the cumulative e�ect of all the
unlocks. (bottom left) To keep the SC beam in resonance, the SC PLL is moved by 180
Hz. (bottom right) The di�erence between the measured frequency of the PLL SC and
the one computed with FMODERR drifts continuously up to 60 Hz after 15 hours.
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IV.3. Squeezing characterization
The e�cacy of frequency-dependent squeezed vacuum is significantly impacted by any optical
losses that might occur along the pathway between the generation of the quantum state within
the OPO and its ultimate measurement at the HD or the ITF. As mentioned above, the QNR
system can generate and measure both FIS and FDS in stand-alone mode, that is, without the
interferometer. This mode is useful to characterize and optimize. In fact, the system is modular,
allowing losses to be isolated and measured only on EQB1, EQB1+SQB1, and FDS produced in
reflection of the FC. The measurements shown below led to the article [40]. Finally, in addition
to the loss estimation, the long-term operation has been characterized.

IV.3.1. System alignment

To be able to measure the degree of squeezing or anti-squeezing, it is necessary to align the
optical path up to the HD, where the SQZ beam and the LO overlap. To minimize the detection
losses, it is required that the LO and the SQZ beams have the same beam waist, perfect spatial
overlap, and polarization overlap. Moreover, to reduce the e�ect of technical noise from the LO,
it is necessary to maintain the splitting ratio of the HD BS as close as possible to 50%. After
selecting the LO position, the next step is to align and match the SQZ beam. However, since it
is a vacuum beam, this process requires to switch to BAB mode. The first coarse alignment is
achieved using two cameras on EQB1. Using a mirror mounted on a slider before one of the two
HD PDs, the beams are directed towards two CCD cameras separated by an appropriate Guoy
phase (Near Field camera (NF) and Far Field camera (FF)). Here, the beams are overlapped
manually by visually checking the cameras and performing beam steering. The fine alignment is
achieved by removing the flip mirror and maximizing the visibility of the interference fringes
between BAB and LO using the HD PDs. To maximize matching, action is taken on the di�erent
telescopes in the system, on the length of the delay line, and on the length of the optical return
path between SQB1 and EQB1. After achieving well-aligned LO and BAB with minimized
losses, the transition to SQZ mode occurs. The magnitude of the 4 MHz beat note between LO
and CC, which propagates with the SQZ beam at the HD, serves as the figure of merit. The best
alignment between SQZ and LO is obtained when the CC beat note amplitude is maximized.
The final alignment is kept by maintaining the signal detected through the 4 MHz magnitude
at its maximum. This is achieved through an Auto Alignment system acting on the x and y
DoF of two mirrors on the SQZ optical path (HD_M4 and HD_M6). It can be demonstrated
that the ratio of the maximum to minimum magnitude of the 4 MHz signal, expressed in dB,
as a function of the CC phase, indicates the achieved level of squeezing. By experimentally
estimating this value and comparing it with the measured squeezing level along the SQZ path,
it becomes possible to infer information about optical losses and phase noise. The following
measurements are made by assessing the amount of SQZ and ASQZ at di�erent pumping powers
of the source, resulting in di�erent values of generated SQZ.

IV.3.2. Loss budget

In practical scenarios involving squeezing, the amount of observable squeezing (or anti-squeezing)
is a�ected by several factors including optical losses, classical noise contributions, phase noise,
and backscatter noise. The contributions of these factors can be evaluated by measuring the
squeezing performance. A common approach involves modifying the parametric gain and
measuring the resulting levels of observed squeezing and anti-squeezing. At lower parametric
gains, the impact of losses is dominant. As the gains increase, the relevance of phase noise
becomes more pronounced2. The analysis that follows is carried out using a joint model of
contributions. Combining the equations (II.84) and (II.86), the expression for the observed
squeezing ratio R„̃RMS ,l

± in the presence of phase noise „̃RMS and total losses l can be reformulated

2E�ects due to dark noise and backscatter noise were not considered in this discussion. To explore these aspects
further, refer to [55]
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as follows:
R„̃RMS ,l

± = (1 ≠ l)
!
R± cos2 „̃RMS + Rû sin2 „̃RMS

"
+ l (IV.19)

where the SQZ ratio R± is the quantity defined in (II.57). The initial characterization involves
the same mode used during O3, which is the generation of FIS. Two scenarios are analyzed in
this configuration:

1. The laser circulates only within EQB1 by folding the beam using a DL which intercepts
the light before the injection to SQB1.

2. The squeezed beam enters SQB1 and before proceeding to the FC is reflected by the Retro
Reflector (RR) (see Figure IV.1). This mirror reflects the laser either toward EQB1 or
by turning the HWP2 in the middle of the double stage FI, toward the interferometer to
inject FIS.

SQZ beam on EQB1 using the Delay Line

These measurements aim to characterize the FIS only on EQB1 by using the DL. The DL
consists of a series of mirrors, two of which are mounted on a motorized slider to intercept IR
beams before they leave EQB1 to arrive at SQB1 (see the red area in Figure IV.1). Subsequently,
the beams are reflected inside EQB1 to reach the HD. This setup allows for an estimation of
losses and phase noise specifically on EQB1, facilitating a comparison with other parts of the
system. As mentioned above, the measurements conducted in this and other configurations are
conducted for di�erent pump power values, thereby resulting in di�erent parametric gains. For
each gain value, data spanning a time stretch of approximately 3 minutes are acquired for SQZ
(and ASQZ). The power spectral densities, expressed in dB relative to the shot noise, of the
acquired signal at di�erent pump levels (and hence di�erent gains) are shown in Figure IV.7.
The corresponding values are reported in Table IV.3 Analyzing the data with the theoretical
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FIS measurements (DL)
Generated SQZ [dB] SQZ level [dB] ASQZ level [dB]
7.7 ± 0.1 5.8 ± 0.1 7.3 ± 0.1
8.1 ± 0.1 5.8 ± 0.1 7.5 ± 0.1
9.4 ± 0.1 6.7 ± 0.1 8.9 ± 0.1
10.3 ± 0.1 7.1 ± 0.1 9.9 ± 0.1
11.5 ± 0.1 7.5 ± 0.1 10.9 ± 0.1

Table IV.3: The table shows the values of SQZ and ASQZ levels for each pump power value.

model of equation (IV.19) (see Figure IV.8), (11 ± 1) % of losses and (53 ± 6) mrad of phase
noise are obtained.
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Figure IV.8: Outcomes fitting the theoretical model IV.19 to the data collected during variations in
OPO pump power with the DL. The plot displays the estimated parameters with the
indicated uncertainty representing the statistical error.

SQZ beam on EQB1 and SQB1, using the Retro Reflector

In this case, the DL is removed and the beams go to SQB1 in the direction of FC. The RR is a
mirror inside SQB1, mounted on a vertical slide that is raised when FIS is to be injected into
the interferometer. By turning HWP2 on SQB1, it is possible to direct the beam toward EQB1
and thus toward the HD. Through the x and y DoFs of the RR, the magnitude of the 4 MHz
demodulated signal is maximized. These adjustments are used to keep the RR parallel to FCIM
so that the alignment of the SQZ beam is the same for both FIS and FDS injections into the
interferometer. The measurements are shown in Figure IV.9 and the values of SQZ-ASQZ levels
obtained are reported in Table IV.4. Unlike the previous case, at low frequencies (below 20-25
Hz) there is a large bump that degrades the measurements. This e�ect is due to a non-stationary
noise generated by the scattered light produced in the LO path, which then recombined with
the squeezed field [56]. From the analysis of the data (see Figure IV.8), results indicate (14.9
± 0.4) % of losses and (20 ± 11) mrad of phase noise. The phase noise level is compatible with
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Figure IV.9: Characterization of FIS from RR at di�erent GR pump power (i.e. at di�erent parametric
gain). The figure shows di�erent spectra of EQB1_HD_DIFF_AUDIO channel in SQZ
and ASQZ mode. The level of noise on the HD (in dB) is normalized to the shot noise
(black curve).

FIS measurements (RR)
Generated SQZ [dB] SQZ level [dB] ASQZ level [dB]
8.1 ± 0.1 5.4 ± 0.1 7.4 ± 0.1
8.5 ± 0.1 5.6 ± 0.1 7.9 ± 0.1
8.9 ± 0.1 5.9 ± 0.1 8.4 ± 0.1
10.1 ± 0.1 6.2 ± 0.1 9.3 ± 0.1
10.7 ± 0.1 6.5 ± 0.1 10.0 ± 0.1

Table IV.4: The table shows the values of SQZ and ASQZ levels for each pump power value.

the one measured with the DL line, whereas 4% more additional losses due to the double pass
in SQB2 FI is measured.

SQZ in reflection from the Filter Cavity

The remaining focus is on the segment of SQZ path that extends to the FC, specifically involving
measurements in FDS mode. As mentioned earlier in this chapter, the design of AdV+ utilizes
the SC to be reflected by the OMC and for FC alignment without disturbing the detection
sensitivity. However, this configuration is unsuitable for system diagnostics and performing
FDS measurements with the HD. The challenge arises from the significantly higher power of
the SC compared to the SQZ beam, resulting in photodiode saturation in the HD. For this
reason, the system is controlled through the procedures described in §IV.2.2 but with the SC
shuttered. For the measurement, spectra are again acquired at di�erent pump powers. The
results are illustrated in Figure IV.11, and the corresponding data is presented in Table IV.5.
Observing the figure reveals an anomaly where the ASQZ never descends below the shot noise.
This discrepancy is likely attributed to inaccuracies in the alignment of the FC, suggesting that
the lock precision of the FC was insu�cient. Analyzing the data (see Figure IV.12), (17 ± 3)
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Figure IV.10: Outcomes fitting the theoretical model IV.19 to the data collected during variations in
OPO pump power with the RR. The plot displays the estimated parameters with the
indicated uncertainty representing the statistical error.
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Figure IV.11: Characterization of FDS at di�erent GR pump power (i.e. at di�erent parametric gain).
The figure shows di�erent spectra of EQB1_HD_DIFF_AUDIO channel in SQZ and
ASQZ mode. The level of noise on the HD (in dB) is normalized to the shot noise (black
curve).

% of losses and (31 ± 21) mrad of phase noise are obtained. Some additional terms contributing
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FDS measurements
Generated SQZ [dB] SQZ level [dB] ASQZ level [dB]
7.9 ± 0.1 5.0 ± 0.1 7.3 ± 0.1
9.3 ± 0.1 5.6 ± 0.1 8.7 ± 0.1
10.5 ± 0.1 5.8 ± 0.1 9.6 ± 0.1
10.6 ± 0.1 5.8 ± 0.1 9.7 ± 0.1
11.3 ± 0.1 6.3 ± 0.1 10.5 ± 0.1
11.8 ± 0.1 6.5 ± 0.1 11.2 ± 0.1

Table IV.5: The table shows the values of SQZ and ASQZ levels for each pump power value.

to FC losses are measured individually by di�erent methodologies, and the results are included
in Table IV.6.
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Figure IV.12: Outcomes fitting the theoretical model IV.19 to the data collected during variations in
OPO pump power with the FC. The plot displays the estimated parameters with the
indicated uncertainty representing the statistical error.

Given that the SC beam achieves a mode matching of 99.8% with the OPO cavity, it is
used as a valuable indicator for assessing the mode matching between the SQZ and the FC.
This assessment reveals a mode matching of approximately 98.5% for the FC, characterized
by long-term fluctuations below 1%. The FC round-trip losses are determined with three
di�erent methods [48][57]. The resulting values vary within the range of (50-90) ppm, exceeding
the predicted value based solely on mirror roughness (≥ 30 ppm). Although the reason for
this discrepancy remains unresolved, its impact translates into a minimal deterioration of the
calculated BNS merger horizon for O4, amounting to less than 1%. For the estimation of
readout losses, it was considered HD contrast (98 ± 1)%, dark noise clearance (1%), and
photodiodes quantum e�ciency (99%) [42]. Table IV.6 compiles a comparative overview of the
measured parameters compared to the maximum target values set for O4. With the exception
of the previously discussed FC RTL, the intended target values have been successfully attained.
However, it is important to acknowledge that as FDS injection has not been incorporated into
the interferometer, some additional sources of losses are expected.
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Degradation Parameter Measured Value O4 Design
Injection losses [%] 10 ± 1 13
FC Round-trip losses [ppm] 50 - 90 60
Mode mismatch SQZ-FC [%] 1.5 ± 1 2
Phase noise - rms [mrad] 31 ± 21 40
FC length fluctuation - rms [Hz] ≥ 1 1

Table IV.6: Measurements and O4 target parameters. The measured injection losses and phase noise
parameters do not include the interferometer contribution, which is instead included in
the target parameter column.

IV.3.3. Frequency-dependent squeezing measurement
Throughout the commissioning period, various types of FDS measurements are conducted. In
the subsequent pages, the characterization of squeezing measurements involving changes in the
squeezing ellipse angle and long-term measurements to assess the stability of the system are
detailed.

Homodyne angle scan
Figure IV.13 shows the results of a systematic campaign of FDS measurements with di�erent
ellipse angles ◊HD. The measurements are conducted with the detuning frequency kept above
the designed 25 Hz to avoid the stray light bump [40], as shown in Figure IV.11. It is noteworthy
that this issue is expected to be less relevant for SQZ injections into the interferometer. In
such cases, the LO of the HD are shuttered, and the interference of the interferometer LO is
anticipated to be constrained by the Faraday isolators incorporated into the squeezed path (refer
to Figure IV.1 on the left) [24].

Before starting the measurements, the FC detuning is set at 45 Hz. The adjustment of the
squeezing ellipse ◊HD seen by the HD is achieved by modifying the path length of the LO
beam. Employing the theoretical model outlined in [47], the detuning frequency and HD angle
are fitted. During this process, the parameters for the loss budget are set according to those
reported in Table IV.6, considering the ranges of experimental uncertainties. Over time, the
detunings perceived by the SQZ state exhibit a drift of approximately 10 Hz (refers to Figure
IV.13 label). The underlying cause of this phenomenon is examined in the following paragraph.
At frequencies close to �Êcav, the squeezing level is degraded by the FC round-trip losses.
However, even within this frequency range, an observed shot-noise suppression of at least 2 dB
has been recorded. At higher frequencies, squeezing levels as high as 5.6 dB are obtained with
about 8.5 dB of produced squeezing.

These outcomes substantially surpass the reference values documented in earlier publications
[58][59], establishing the current leading edge for frequency-dependent squeezing sources designed
for integration into GW interferometric detectors.

Long run stability
The long-term operation of the FDS system requires meticulous system controls to counteract
the daily motion occurring among all the suspended benches. All these processes, along with the
management of the squeezing source controls, are seamlessly automated within a hierarchical
locking procedure overseen by a finite state machine [60]. In this way, the complete engagement
of the FDS measurement after any system failure (i.e. a filter cavity unlock) is automatically
achieved in less than 4 minutes [40]. Figure IV.14 shows the time-frequency plot of the FDS level
for an HD angle of 90¶ over approximately 24 h. During this period, squeezing is continuously
produced. The stability of detuning can be influenced by various factors when the cavity is
operated using bichromatic control (the locking process first with the GR beam and then with IR)
[52]. One such influence is the temperature drift of the cavity mirrors. The phase accumulated
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Figure IV.13: Measured squeezed level acquired for di�erent HD angles and for (44-55) Hz detuning
of the FC resonance. The experimental data (solid lines) are fitted using an analytic
model of squeezing degradation (dashed lines). The squeezing source generates (8.0-8.5)
dB of squeezing.

after a reflection from the FC mirrors exhibits distinct temperature dependencies for GR and
IR light. This discrepancy leads to drifts in IR detuning due to temperature fluctuations when
the cavity is locked using the GR. This e�ect is evident in Figure IV.14, where, starting from a
detuning frequency of 185 Hz, a drift of approximately 40 Hz is observed. This drift follows
the day-night thermal e�ect of the temperature recorded by the thermometers installed on the
ring heaters (RH) mounted on the FC mirrors. As can be seen, there is a strong correlation
between the trend of the detuning drift and the temperature of the end mirror of the FC. During
the 24 hours of acquisition, the FC unlocks are removed. However, after relocking, the FSR
correction, which would have returned the detuning to the correct value, was not yet present.
The correlation between these two quantities is analyzed and reported in Figure IV.15, where
the detuning frequency is plotted versus the value of the FCEM_RH temperature. The detuning
frequency and the temperature of the end mirror, approximated by the temperature detected
by a thermometer placed on the mirror ring heater and time-delayed by 60 minutes, appear
linearly correlated with a scaling factor of (114 ± 1) Hz/K. This result is in accordance with
the prediction of the theoretical model [61]. The observed time delays are probably originated
by the thermal resistance of the mirror’s suspension, which introduces a time lag in its response
to alterations in the temperature of the ring heater.

After this observation, the mirror temperatures are meticulously regulated to maintain an rms
deviation of less than 30 mK. The result is shown in Figure IV.16. While the attained degree
of detuning stability would influence the best theoretical estimate of the O4 Binary Neutron
Star (BNS) horizon by less than 1.5%, a reduced detuning drift is expected when employing
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Figure IV.14: (top) Power spectral density (PSD) of the diagnostic HD output normalized to the shot-
noise level versus the time of data acquisition. Every 3 minutes a power spectral density
similar to that of Figure IV.13 with a homodyne angle of 90¶ is estimated. Aligned with
the acquisition duration, the PSD is graphically depicted, showing frequency on the
vertical axis and amplitude represented with a color gradient. The calibration (in dB) is
indicated by the vertical bar on the right side of the plot. The selection of the HD angle
was performed to optimize the contrast that highlights the observation of the detuning
frequency. The detuning frequency �Êcav, initially configured at 180 Hz to maximize
quantum noise suppression, is depicted as the dark blue curve. This curve exhibits
fluctuations over time, oscillating by approximately 40 Hz peak-to-peak. (bottom) This
curve represents the time trend of the temperature recorded by the ring heater mounted
behind the FC end mirror.

the SC-IR beam for control of the filter cavity. To check this, the OPO is locked on the bright
beam of the SQZ main laser. Subsequently, the output from the OPO and the SC beams
directed towards the FC, along with the transmitted IR field, is monitored while varying the
FC resonance frequency by acting on the GR AOM. The relative detuning of the two infrared
beams, initially set around 1 kHz, is upheld to within 4 Hz over a 24-hour acquisition period.
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Figure IV.15: Filter cavity detuning frequency versus the FCEM ring heater temperature. Each point
corresponds to a pair of values measured every 3 minutes within 24 h. The values
corresponding to each �Êcav are obtained by fitting the 3 minutes PSD reported in
Figure IV.14. The maximum correlation is obtained assuming that the temperature of
the mirror lags behind that of the ring heater by about 60 minutes.



78 quantum noise reduction system in virgo

Figure IV.16: PSD of the diagnostic HD output normalized to the shot-noise level versus the time of
data acquisition. Every 3 minutes corresponds to a PSD with a HD angle of 90¶. Aligned
with the acquisition duration, the PSD is graphically depicted, showing frequency on the
vertical axis and amplitude represented with a color gradient. The detuning frequency
�Êcav, initially configured at 80 Hz to maximize quantum noise suppression, is depicted
as the dark blue curve. Contrary to the fluctuations depicted in Figure IV.14, the
control of FC mirror temperature has significantly reduced the fluctuations over time,
oscillating by approximately 10 Hz peak-to-peak
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IV.4. Alignment to the ITF
After the characterization of the stand-alone QNR system, the next step, prior to the SQZ
injection, involves the mutual alignment of the SQZ beam with Virgo detector. This process
unfolds step by step during the commissioning of the interferometer. To activate the AA loops
and ensure stability of the ITF+SQZ system for estimating the impact of SQZ on sensitivity,
both subsystems must individually exhibit stability over time. The following steps outline the
progression leading to the initial injection of FIS into the interferometer after the conclusion of
O3. This encompasses aligning the SQZ beam with the interferometer beam through the SC
and closing the loops for AA and CC in various ITF configurations.

IV.4.1. SC on the OMC

In the initial step, the process begins with the simplest and most stable configuration—aligning
the SC beam reflected from the RR within the OMC with the ITF in Single Bounce. This
configuration of the ITF involves one of the end mirrors of the ITF being misaligned while the
other correctly aligned. During these operations with the RR, the IR beam does not arrive at
the FC, which is kept in resonance only with the GR. The RR is inserted in the beam path
only after maximizing the signal mag at 4 MHz on the HD with the FC locked. After putting
the RR in place, the 4 MHz beat is again maximized with the DoFs of the RR. In this way,
the operations performed in this configuration are also valid in the case of FDS injection. To
control the SQZ beam, after rotating the HWP2 on SQB1 to send the SC beam toward the
interferometer, two mirrors MIRROR1 and MIRROR2 on SQB1 are used. The position of the
interferometer beam on the B1p and B1s cameras is taken: these cameras are placed on the
Suspended Detection Bench (SDB2) and are used to monitor the ITF beam that goes toward
the OMC and its first reflection. By moving the degrees of freedom of the mirrors MIRROR1
and MIRROR2, the SC is superimposed on the interferometer beam at the cameras.

For fine alignment, adjustments are made to the transmitted beam by the OMC. To allow
the SC to be transmitted, the OMC is kept locked. By applying a ramp signal to the SC PLL
frequency slow control, the frequency of the SC is altered, allowing the modes to be transmitted
(see Figure IV.17). The transmitted beam is sent to a third camera, referred to as B1. Optimal
alignment and mismatch between the SC beam and the OMC are achieved by observing the
amplitude of the transmitted peaks over time. Specifically, by moving the mirrors, the amplitude
of the TM00 peak is maximized at the expense of the higher-orders modes. The mode matching
of the SC to the ITF can be achieved by changing the waist of the beam that reaches the
OMC, by acting on the length of the telescope placed on SQB1 (§IV.1.1). The minimum waist
mismatch value achieved is < 4.8% and it is given by the ratio between the TEM20 and the
TEM00. The alignment mismatch is given by the ratio between the TEM10 and the fundamental
mode, and the minimum level reached is less than 1%.

IV.4.2. Phase control of the SQZ field and Auto Alignment loop

Closing CC loop in single bounce

As mentioned in §IV.2.3, to control the squeezing phase during injection into the interferometer
in the O3 run, a CC control loop is used. The loop uses the beat note between the ITF beam
and the CC beam demodulated at 4 MHz as the error signal. For the O4 commissioning, the
loop is first restored with the ITF in single bounce and then switched to DC readout. As in the
case with HD on EQB1, the first step is to optimize the alignment between the SQZ beam and
ITF, by maximizing the signal SQZ_B1_PD_4MHz_mag that represents the magnitude of the
beat note demodulated at 4 MHz. Figure IV.18 shows the CC loop channels in the time domain
when the loop is closed. Figure IV.19 shows the spectra of the error signal when the SQZ laser
is shuttered, enabling the measurement of the sensing noise that limits the performance of
the loop. In the single bounce configuration, with the achieved alignment and matching, the
loop is limited by the sensing noise above 1 kHz. Since only a single actuator is available, the
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Figure IV.17: (top) 10 seconds of the SC PLL slow frequency scan. (bottom) Power read by the B1
PD1 with three modes transmitted by the OMC. Around 10 and 12.5 s the TEM00
mode is present twice (due to the inversion of the ramp). The two small sidebands near
the peaks are due to the FMODERR loop. The TEM10 peaks are not visible because
their amplitude is 1% of the fundamental mode. The two peaks at 3.5 and 18 s are the
TEM20.

main PLL frequency o�set for both the CC and the FC high-frequency longitudinal lock is not
engaged during the SQZ injection on the ITF. Instead, the main PLL frequency set is used for
implementing the CC loop.

Closing CC loop in DC readout

After achieving stability in DC readout configuration (where one arm is intentionally longer
than the other to allow a small portion of the ITF carrier field to reach the sensing photodiode
[62]), the aforementioned operations are repeated. In this case, the signal-to-noise ratio on the 4
MHz demodulated photodiode is about 400, almost a factor of 20 greater than in single bounce.
The CC loop is closed and the characterization of the loop is reported in Figure IV.21.

In the final configuration, the sensing noise improves by a factor of 6 compared to the single
bounce configuration, with the final UGF≥6 kHz, meeting the design requirements for the
lock precision of 1Hz. The impact of the loop can be observed in Figure IV.20. The upper
figure displays the residual squeezing ellipse phase noise (not calibrated), while the lower figure
illustrates the filter cavity lock accuracy, achieved by locking the SQZ main laser frequency to
the interferometer carrier.

Engaging dither Auto Alignment loop in DC readout

To keep the beat signal maximized at 4 MHz on the B1_PD1 photodiode, and thus maximize
the SQZ beam transmitted from the OMC to the ITF, an auto-alignment loop is used. This loop
is based on the identical architecture used for the HD_AA loop, SC_AA loop, and GR_pointing
loop based on dither lines. To engage the loop, it is necessary to have a maximum signal on the
B1_PD1 photodiode and then set the phase that injects ASQZ into the interferometer. The
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the FC is locked on GR and with the RR turned up the IR does not reach the FC.



82 quantum noise reduction system in virgo

10�7

10�5

A
S
D

[V
/�

H
z]

SQZ B1 PD1 4MHz I

Open loop

Closed loop

100 101 102 103

Frequency [Hz]

10�3

10�1

101

A
S
D

[V
/�

H
z]

LFC GR PD RF 5MHz I

Open loop

Open loop rms

Closed loop

Closed loop rms
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the loop with the loop open (orange curves) and the loop closed (green curve). Spectra
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actuators on which the loop acts are the MIRROR1 and MIRROR2, on which the frequency of
the dither lines must be set for each degree of freedom:

• MIRROR1_X = 20 Hz

• MIRROR1_Y = 25 Hz

• MIRROR2_X = 30 Hz

• MIRROR2_Y = 35 Hz

For each line, an amplitude of 0.05V is configured, and the gain of the correction filter is set
at gain = 3000. It is worth noting that the loop could only be activated in the DC readout
configuration, as the demodulated single bounce signal has insu�cient SNR.

IV.4.3. FIS injection into the ITF
With the CC and AA loops working, providing 25 Mpc of ITF sensitivity, an injection of FIS is
performed to assess potential improvements at high frequencies. The QNR system is configured
as in previous operations, with the RR inserted. The first objective is to find the values of the
CC phases that return the beam in SQZ or ASQZ. The SQZ level generated by the OPO is
10.8 dB, with a maximum and minimum magnitude on the HD of EQB1 equal to 9.51 mV and
2.33 mV, respectively. After directing the SQZ beam toward the interferometer and verifying a
satisfactory signal-to-noise ratio of ≥200 for the 4 MHz demodulated magnitude of photodiode
B, the previously discussed loops are closed to maximize the signal magnitude at 4 MHz. To
assess the result of a phase scan, the interval (1370-1440) Hz is chosen, as in this range, the
ITF sensitivity curve is free of peaks and relatively flat. By doing the phase scan, the rms
sensitivity trend is monitored over time within this interval to identify phase values that optimize
or minimize the average strain noise. After individually setting the phases, three sensitivity
spectra are acquired: one with the shuttered laser SQZ as a reference, one by injecting SQZ, and
the last one by injecting ASQZ. Figure IV.22 shows the strain sensitivity of the interferometer
during the injection. With 10.5 dB of generated SQZ by the OPO, injecting ASQZ results in a
4 dB increase in strain sensitivity, while injecting SQZ leads to a 1 dB improvement.

Given the interferometer’s condition during the measurements, a minimal e�ect of injecting
squeezing is still observable: the SQZ curve slightly lies below the curve without the injection.
However, for more precise measurements, a stable shot noise-limited interferometer would be
necessary.

The SQZ measurements reported during the commissioning stage are constrained by several
factors. Firstly, the ITF is not shot noise-limited, leading to degraded SQZ performance at high
frequencies. Additionally, the OMC used di�ers from the one employed during the scientific run
O3, featuring higher losses. The photodiodes used also have low quantum e�ciency. Moreover,
there are propagation losses within the interferometer, particularly when passing through various
cavities like the SR, which still require characterization.



84 quantum noise reduction system in virgo

103

Frequency [Hz]

10�22

10�21

S
tr

ai
n

[h
/�

H
z]

Shot

SQZ

ASQZ
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This chapter focuses on examining the characteristics of thermal noise, tracing its initial
description to its contemporary understanding. The notion of thermal fluctuations in an observ-
able quantity and their connection to system dissipation is presented through the employment
of the Fluctuation Dissipation Theorem (FDT). Subsequently, the extension of this concept to
systems operating outside of equilibrium is demonstrated, formally introducing the notions of
fluctuating temperature.
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V.1. Thermal fluctuations
In experimental settings, thermal noise is observable as minor fluctuations around the mean
value of a physical property. For instance, it induces constant and random variations in the
positions and velocities of particles. While often negligible, its significance becomes prominent
when conducting highly accurate measurements on the studied physical system, especially as
the system’s dimensions decrease to the microscopic scale. These fluctuations are at the heart
of statistical mechanics, shedding light on how systems evolve and eventually reach equilibrium.

V.1.1. Brownian motion
The initial investigations into thermal fluctuations originate from the 1800s, marked by R.
Brown’s observations of pollen suspended in water [63]. During this study, Brown noted the
persistent erratic movement of organelles expelled by pollen grains. This motion lacked a defined
path and instead seemed to be governed by randomness. Approximately eight decades passed
before A. Einstein would formulate a representation of particles subject to frequent collisions
with the molecules of the surrounding fluid, o�ering an initial theoretical explanation for what
is now referred to as Brownian motion [64]. The initial step in Einstein’s argument was to
calculate the distance traveled by a Brownian particle in a given amount of time. Classical
mechanics can not determine this distance because of the enormous number of collisions a
Brownian particle undergoes, on the order of 1014 collisions per second. For this reason, the
treatment is purely statistical, considering that each particle moves according to a random
force that is the result of a very large number of mutually independent events. Assuming that
the variance of the probability distribution of each of these events is finite, the central limit
theorem can be applied. In turn, this theorem allows the assumption that the force is Gaussian
distributed. Einstein considered a scenario where certain particles are situated at a specific
position ›0 within a fluid at a temperature T , exerting a force F on them. Assuming that the
system’s sole significant direction is along the x-axis, the second law of thermodynamics says
that for any displacement dx of the fluid, the change in free energy must be zero to maintain
fluid equilibrium. This requirement leads to an equilibrium where the force F is balanced by
the fluid pressure, facilitating the determination of the fluid’s di�usion coe�cient as D = µkBT ,
where µ represents fluid mobility and kB is the Boltzmann constant. The normal distribution of
particle density is obtained by extending this behavior to the displacements of the particle ›(t)
from its initial position ›0. The variance of this distribution is equal to 2Dt, where t stands for
the time of observation. This implies that, on average, a particle travels a distance corresponding
to the square root of this value. Consequently, the average squared displacement of a particle
immersed in a fluid is directly proportional to the fluid’s temperature:

È›2
Í = 2Dt = 2µkBTt (V.1)

The techniques established in the paper are subsequently employed to deduce the Avogadro
number and atomic dimensions. Einstein’s theory was verified experimentally by J. Perrin.
Among his diverse achievements, the determination of the Avogadro number stands out as a
significant advancement in thermodynamics, concurrently contributing to the solidification of
atomistic theory. Just like pollen grains, macroscopic objects experience Brownian motion, which
emerges as the combination of fluctuations from all constituent particles. As demonstrated by H.
Nyquist [65], an example of this phenomenon is the electron motion within an electrical circuit.
Here, the thermal fluctuations of charge carriers within a resistance R lead to a consistent power
exchange among circuit components. The thermal noise can be represented by a voltage source
that accounts for the noise generated by a non-ideal resistor, connected in series with an ideal
noise-free resistor. The power spectral density, which measures the voltage variance per Hertz
of bandwidth, is expressed as:

v2
n = 4kBTR (V.2)

The equation just establishes a connection between the average squared voltage across the circuit,
the temperature, and the resistance value, which serves as the circuit’s dissipative element.
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Nyquist also suggested that his analysis can be associated with the mean squared displacement
of molecules within a gas. This suggests the possibility that both this theory and Einstein’s may
represent two versions of a unified explanation for thermal fluctuations. The connection is the
famous Fluctuation-Dissipation Theorem proven by Callen and Welton in 1951 [66] that is shown
in the next paragraph. This brings together insights from previous studies and reveals that, in
general, fluctuations of an observable › in equilibrium with the surrounding thermal environment
at temperature T possess an amplitude proportional to T and inversely proportional to the
imaginary part of the response function of the system to an applied perturbation F .

V.1.2. Fluctuation-Dissipation theorem
The theorem about to be introduced asserts that in the presence of an energy-dissipating process,
there exists a corresponding process associated with thermal fluctuations.

The classical formulation [67] is obtained by considering a system defined by a Hamiltonian
H = H0 + Hint, separable into two components. H0 remains isolated from the external
environment and Hint accounts for interactions with the thermal reservoir and is expressed by:

Hint = F (t)› (V.3)

Consider the specific case where the perturbation F (t) has been active for an infinite duration
and is switched o� at time t = 0. This behavior is represented by writing F (t) = F0H(≠t) where
H(t) is the Heaviside function. Using the Boltzmann distribution fl(›, 0) for the Hamiltonian H:

fl(›, 0) = exp(≠—H(x))s
d›Õ exp(≠—H(›Õ))

(V.4)

where — = 1/(kbT ) and the transition probability P (›Õ, t|›, 0). The expectation value of the
observable › can be calculated as:

È›(t)Í =
⁄ ⁄

d›Õd› ›ÕP (›Õ, t|›, 0)fl(›, 0) (V.5)

If —›F0 π 1 the equation (V.4) can be expanded as:

fl(›, 0) ¥ fl0(›)[1 + —F0(›(0) ≠ È›Í0)] (V.6)

where fl0(›) is the distribution without the perturbation. Substituting the last formula into the
Equation (V.5) it is obtained:

È›(t)Í = È›Í0 + —F0C››(t) (V.7)
Here, C››(t) is the auto-correlation function of › in the absence of perturbation:

C››(t) = È[›(t) ≠ È›Í0][›(0) ≠ È›Í0]Í0 (V.8)

Considering È›(t)Í ≠ È›Í0, the (V.7) can be rewritten using the susceptibility of the system ‰:

F0

⁄ Œ

0

d· ‰(·)H(· ≠ t) = —F0C››(t) (V.9)

and thus:
≠‰(t) = —

dC››(t)
dt

H(t) (V.10)

Performing a Fourier transform and integrating by parts yields the frequency dependence:

≠‰̂(Ê) = iÊ—

⁄ Œ

0

e≠iÊtC››(t)dt ≠ —C››(0) (V.11)

Because C››(t) is both real and symmetric, this leads to:

2 Im[‰̂(Ê)] = Ê—Ĉ››(Ê) (V.12)
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According to the Wiener–Khinchin theorem, the power spectral density (PSD) is equivalent to
the Fourier transform of the auto-correlation function:

S›(Ê) = Ĉ››(Ê) (V.13)

Finally, it is obtained:
S›(Ê) = 2kBT

Ê
Im[‰̂(Ê)] (V.14)

Here, the left-hand side describes fluctuations in ›, and the right-hand side is closely related to
the energy the system dissipates through the imaginary part of ‰. This theorem establishes
a connection between Brownian motion and Johnson-Nyquist noise within a unified theory,
illustrating how thermal fluctuations of a physical variable can predict the system’s response, and
vice versa. In the discussion, equation (V.14) is approached from an experimental perspective.
The goal is to use Callen and Welton’s general formula [66] to examine the characteristics of
thermal noise in gravitational wave detectors, in particular, this applies to the mechanisms
involving the test masses [68]. However, determining the mechanical impedance of the system, a
parameter directly linked to susceptibility (‰) and encompassing both the mirror and suspension
fibers, proves challenging due to the complex involvement of numerous degrees of freedom To
address this challenge, one approach for applying the fluctuation-dissipation theorem to such a
system is presented (see §V.2) [69]. Since the set of normal vibrations associated with the mirror
and suspension are orthogonal, it can be decomposed into separate one-dimensional harmonic
oscillators characterized by their respective frequencies and e�ective masses [70]. Applying the
theorem to a single oscillator is a straightforward process, as demonstrated in the next section.

V.1.3. Single damped harmonic oscillator
Beginning with the examination of thermal noise in the simple scenario of a damped harmonic
oscillator, this model proves crucial as a theoretical representation of the system under investiga-
tion in the experiment detailed in this thesis. The system is composed of a mass m attached to
a spring with an elastic constant k and a damping constant — that can move only in the x-axis
(see Figure V.2). In addition, the system is immersed in a thermal bath at temperature T and
driven by a stochastic thermal force F (t). The equation of motion can be written as:

mẍ + —ẋ + kx = F (t) (V.15)

Following the Zeroth Law of Thermodynamics, a state of equilibrium with the environment
is achieved by the oscillator when it maintains the temperature T on average. As per the
Equipartition Theorem [71], in thermal equilibrium, the oscillator exhibits an average energy
equal to:

kÈx2
Í = kBT (V.16)

Hence, for the system to maintain the equilibrium, it must oscillate with this variance around
its average value of x = 0. Oscillating, the mass gradually releases energy to the surrounding
thermal environment, and at the same time, the thermal bath pumps the oscillator maintaining
the equilibrium. To address equation (V.15), a transition to the frequency domain is performed
by applying a Fourier transform:

(≠Ê2 + i�Ê + Ê2

0
)x(Ê) = F (Ê)

m
(V.17)

where � = —/m and k = mÊ2

0
. Solving the equation for x(Ê) results in:

x(Ê) = F (Ê)/m

(≠Ê2 + i�Ê + Ê2

0
) © ‰(Ê)F (Ê) (V.18)

The imaginary part of the susceptibility ‰ is given by:

Im[‰(Ê)] = 1
m

�
(Ê2

0
≠ Ê2)2 + Ê2�2

(V.19)
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Applying the FDT (V.14) to this mechanical system yields:

Sx(Ê) = 4kBT

mÊ

�#
(Ê2

0
≠ Ê2)2 + Ê2�2

$ (V.20)

The FDT allows the prediction of the oscillations of an observable by starting with the mechanical
model of the system. The spectrum of this model is illustrated in V.1, with parameters chosen to
replicate the experiment’s model presented in §VII.1. Integrating the last formula over positive
frequencies yields the Equipartition Theorem:

Èx2
Í =

⁄ Œ

0

dÊSx(Ê) = kBT

k
(V.21)

In this example, the spectrum of fluctuations due to thermal noise for the basic one-dimensional
damped oscillator was expressed. The complete noise spectrum for a complex mechanical
system can be derived by summing the contributions from each normal mode, treating them as
individual resonators, each with its corresponding equivalent mass.
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Figure V.1: The spectrum of a single damped oscillator around the resonance frequency, with pa-
rameters chosen to match the characteristics of the oscillator studied in the experiment
presented in this thesis.

V.1.4. Double damped harmonic oscillator

Having examined the simplest model, the focus now shifts to a more complex system involving
two coupled damped harmonic oscillators (refer to Figure V.2). The motivation for exploring a
more intricate model is rooted in the limitation of the single oscillator to explain the experimental
results obtained in the studied experiment. For this discussion, references [72] and [73] are taken
into consideration. The equations of motion for this model are as follows:

m1ẍ1 + —1ẋ1 + —2(ẋ1 ≠ ẋ2) + k1x1 + k2(x1 ≠ x2) = F1 ≠ F2 (V.22)
m2ẍ2 + —2(ẋ2 ≠ ẋ1) + k2(x2 ≠ x1) = F2 (V.23)
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that can be rewritten in the frequency domain as:

ẍ1 + �2

1
ẋ1 + µ�2(ẋ1 ≠ ẋ2) + Ê1x1 + µÊ2

2
(x1 ≠ x2) = (F1 ≠ F2)/m1 (V.24)

ẍ2 + �2(ẋ2 ≠ ẋ1) + Ê2

2
(x2 ≠ x1) = F2/m2 (V.25)

where µ = m2/m1, ki = miÊ2

i . By performing a Fourier transform on the two equations and
expressing the algebraic relation among the amplitudes, the following system of equations is
derived:

D

3
x1

x2

4
=

3
(F1 ≠ F2)/m1

F2/m2

4
(V.26)

with:

D =
3

≠Ê2 + Ê2

1
+ µÊ2

2
+ iÊ(�1 + µ�2) ≠µÊ2

2
≠ iµÊ�2

≠Ê2

2
≠ iÊ�2 ≠Ê2 + Ê2

2
+ iÊ�2

4
(V.27)

In terms of the impedance matrix Z, the (V.26) become:

Zẋ = F =
3

F1 ≠ F2

F2

4
(V.28)

where the mechanical impedance is expressed as 1:

Z =
3

m1D11/iÊ m1D12/iÊ
m2D21/iÊ m2D22/iÊ

4
(V.29)

The thermal force correlation terms are given by:

ÈF 2

ijÍ = ÈFiFjÍ = 4kBTRe{Zij} (V.30)

In this context:

F
2 =

3
ÈF 2

11
Í ÈF 2

12
Í

ÈF 2

21
Í ÈF 2

22
Í

4
= 4kBT

3
Re{m1D11/iÊ} Re{m1D12/iÊ}

Re{m2D21/iÊ} Re{m2D22/iÊ}

4
(V.31)

The spectrum of motion of oscillator 2 in terms of the force is given by:

Sx2(Ê) = 1
| det D|2

3
ÈF 2

22
Í

m2

2

|D11|
2 + ÈF 2

11
Í

m2

1

|D21|
2

≠
ÈF 2

12
Í

m1m2

(Dú
11

D21 + D11Dú
21

)
4

(V.32)

This solution is used in §VII.4.1 to attempt to replicate the behavior of the mechanical oscillator
under study.

11The impedance Z is defined as Z = R + iX, where R is the resistance and X the reactance. This last term is
related to the susceptibility ‰ by the relationship ‰ = 1

iÊX
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Figure V.2: (left) Scheme of the single-damped oscillator. (right) Scheme of the double-dumped
oscillator.
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V.2. Thermal noise in gravitational wave detector
The FDT discussed above can be applied to various fields of physics, from Brownian motion to
electrical circuits. In this context, examples are presented to illustrate its application within GW
interferometers. Thermal noise significantly impacts these detectors across various frequency
ranges, a�ecting suspensions at low frequencies and influencing the coatings of test masses in
the region of highest sensitivity.

The test masses in GW interferometers are mirrors with dimensions of 35 cm in diameter, 20
cm in thickness, and a mass of 42 kg, as utilized in Virgo for the observing run O4 [24]. They
are suspended by a system known as the Super Attenuator (SA), designed to minimize the
transmission of seismic noise at frequencies above a few hertz. The SA comprises a series of
suspended filters utilizing 1.15 m long steel wires with a few millimeters in diameter. This entire
system is housed within a 10 m high tower, maintained in a high vacuum environment (see Figure
V.3). However, despite the implementation of this system, residual displacement noises persist,
stemming from factors such as seismic vibrations or suspension thermal noise. The thermal
fluctuations cause variations in the positions of the masses along the trajectory of the laser
beam, thereby a�ecting the sensitivity of GW measurements [74]. These fluctuations represent
a form of noise that constrains the sensitivity of the detector. In Virgo, a detailed analysis of
thermal noise has been conducted for various stages. Using the normal-mode decomposition
method enables the separate evaluation of the thermal noise spectrum for suspension wires,
taking into account the pendulum mode [75] [76], the violin modes arising from transverse mode
fluctuations [77], and the bouncing modes. As the focus of this thesis does not extensively
explore the details of phenomena within Virgo suspensions, they will be introduced here merely
as examples.

Figure V.3: Graphic representation of the Virgo Super Attenuator. Image taken by [24]
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V.2.1. Pendulum mode

A mass M suspended from an ideal, weightless wire of length L oscillates with an angular
frequency Êpend =


g/L. For Virgo suspensions, ‹pend = Êpend/2fi is confined in the low-

frequency region below 2 Hz [78]. As this pendulum motion can be modeled as a harmonic
oscillator, the PSD can be calculated using the model presented in §V.1.3:

Spend(Ê) = 4kBT

M

�pend#
(Ê2

pend ≠ Ê2)2 + Ê2�2

pend

$ (V.33)

Here, �pend represents the dissipation term, considering the geometry of the wires, material
characteristics, and the presence of the gravitational field. During the pendulum motion, the
wires experience bending from the top to the bottom, resulting in energy dissipation through
elastic strain [79]. The bending of the pendulum mode is influenced by both the tension ·
applied by the suspended mass and the elastic properties of the wire material (top left of Figure
V.5). Assuming the internal structure of the wire is negligible, there are no frictional losses
associated with this oscillation. All the energy is conserved within the frictionless gravitational
field, and there is no thermal noise. In addition to this motion, an extended body suspended by
a wire also undergoes a rocking swing (top right of Figure V.5). In Virgo, the impact of the
rocking swing is minimized by employing four silica wires to support the mirrors (0.640 mm in
diameter), thereby avoiding excessive swinging (see Figure V.4).

Figure V.4: Scheme of the mirror suspended with 4 silica wires.

V.2.2. Bouncing modes

In addition to the pendulum mode induced by gravity, an actual wire exhibits a series of
inherent vertical vibration modes due to its elastic properties (bottom left of Figure V.5). The
characteristics and frequencies of bouncing modes are directly influenced by the tension · in
the wire. The oscillatory motion, resembling that of a spring in a wire supporting a mass
M , is referred to as the bouncing mode. In these modes, the equivalent spring constant is
kboun = ‡�/L, where ‡ is Young’s modulus, � is the cross-section of the wire, and L is its
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length. Given the spring constant, the angular frequency given by:

Êbounc =
Ú

‡�
ML

(V.34)

The frequency is in the range between 1-10 Hz [78]. As mentioned, the bouncing mode would
not constitute noise in the readout of the mirror position along the (horizontal) direction of the
propagation of the laser. However, in a GW interferometer, such coupling is present due to the
curvature of the Earth and imperfections in the suspension system mechanics. Because the two
mirrors are positioned at a separation distance D = 3 km (in Virgo), the vertical directions are
not perfectly parallel, but they form an angle ◊ = D/R ¥ 0.6 mrad with R representing the
Earth’s radius (6378 km). Consequently, the vertical bouncing mode leads to a thermal noise
spectrum that is scaled by this angle:

Sbounc(Ê) = ◊
4kBT

M

�wires#
(Ê2

bounc,N ≠ Ê2)2 + Ê2�2

wires

$ (V.35)

Here, Êbounc,N =
Ô

NÊbounc where N represents the number of wires. �wires is the dissipation
given by the internal loss of the wires.

V.2.3. Violin modes
The transverse modes of the wire with respect to its longitudinal axis are called violin modes
(botom right of Figure V.5). The harmonics of these modes are given by:

Ên = nfi

L

Ú
·

�fl

5
1 + 2⁄

L
+ 1

2

3
nfi⁄

L

46
(V.36)

where n = 1, 2, ... is the index of the harmonics and fl is the mass density. In the violin mode,
the wires bend near both ends in a similar way dissipating energy [80]. The bending occurs over
the characteristic distance ⁄ =

Ò
Y I
· . Here, Y is Young’s modulus, I the momentum of inertia

of the wires and · the tension on the wires. Because ⁄ π L the modes can be approximated as
an ideal string, resulting in:

Ên ƒ
nfi

L

Ú
·

�fl
(V.37)

Each of the violin modes is an individual resonator with an e�ective mass µn:

µn ƒ
fi2M2

2�flL
n2 (V.38)

Hence, the thermal noise spectrum is influenced by the contribution of the violin modes, and
this contribution can be described as the sum of all the harmonics:

Sviolin(Ê) =
Œÿ

n=1

4kBT

µn

�n#
(Ê2

n ≠ Ê2)2 + Ê2
n�2

n

$ (V.39)

where �n is the dissipation due to n-th mode. Each mode has a di�erent dissipation factor as
bending occurs di�erently [80].

V.3. Non-equilibrium thermal fluctuation
In this section, the central focus of the experiment conducted within this thesis is introduced:
thermal noise in a non-equilibrium state. To achieve this, a brief presentation of the theoretical
model is provided, extending the equipartition theorem to investigate thermal fluctuations in
situations where an object is in a steady state of non-equilibrium. Subsequently, the RareNoise
experiment is introduced, representing an initial attempt to explore the behavior of a macroscopic
oscillator when subjected to induced thermal non-equilibrium conditions.
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Figure V.5: Scheme of possible motions of a mass suspended by a wire. (top left) Pendulum motion.
In the fixing extremes, the bending ⁄ of the wire is highlighted. (top right) The rocking
motion is solved using 4 wires to suspend the mass. (bottom left) Bouncing mode along
the vertical direction. (bottom right) The first violin mode of the wire. In the fixing
extremes, the bending ⁄ of the wire is highlighted.

V.3.1. Fluctuations out thermodynamic equilibrium
When a system cannot be regarded as being in thermodynamic equilibrium, the validity of the
discussions in the preceding sections is not assured. As detailed in the next chapter, the interest
lies in studying a system that exhibits a temperature profile T (x) along the entire extent of the
oscillator. Due to the geometry of the system, a temperature gradient is induced by heating one
of the edges of the oscillator. Consequently, it is not possible to consider a single temperature T
to characterize the system. The examination involves two modes of a metal object (consisting
of a bar and mass): longitudinal and transverse. Each of these modes can be represented as a
harmonic oscillator. Under equilibrium conditions, the modes are in equilibrium with the same
thermal bath at temperature T which implies, by energy equipartition:

T = klÈ”2

l ÍEQ

kB
= ktÈ”2

t ÍEQ

kB
(V.40)

where È”2

t ÍEQ and È”2

l ÍEQ are the thermal fluctuations for the two modes at the equilibrium
(EQ) while kl and kt are the elastic constants of the two modes of resonance. Departing from
thermodynamic equilibrium implies the absence of a single temperature T extending to the
entire body. Nevertheless, out of equilibrium, relations similar to (V.40) can be utilized to define
an e�ective temperature for each mode:

T l
eff := klÈ”2

l ÍNE

kB
(V.41)

T t
eff := ktÈ”2

t ÍNE

kB
(V.42)

Considering T l,t
eff as the e�ective temperature the system would exhibit if its oscillations were

measured as if in equilibrium at a temperature Teff . In simpler terms, the measured non-
equilibrium fluctuations È”2

l ÍNE and È”2

t ÍNE are regarded as if they were taken under equilibrium,
and a temperature is computed using the equilibrium Equipartition theorem. In this scenario, it
is important to note that not every mode is expected to yield the same temperature.
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V.3.2. The RareNoise experiment
The RareNoise experiment was devised to address the inquiry concerning non-equilibrium thermal
noise in GW detectors [81]. This experiment examines the noise-induced vibrations in low-loss
mechanical oscillators operating under non-equilibrium steady-state conditions, realized by a
stable temperature gradient. The object under investigation is an aluminum sample, machined
as a rod (kept in the vertical position, square cross-section 0.25 cm2, length 10 cm) with one end
fixed (attached to a larger and rigid mass machined from the same piece; this is the top end)
and the other loaded by a cuboid mass (mass 0.25 kg) (as illustrated in Figure V.6). The chosen
material for this piece is the aluminum alloy Al5056, the same material utilized in most GW bar
detectors like AURIGA. This experiment was hosted at the Legnaro National Laboratories (LNL)
where the experiment in this thesis is also conducted. The material was chosen as a compromise
between cost, low losses, machinability, and availability in large pieces. The oscillations studied
include the first longitudinal mode, resonating at a frequency of approximately 1420 Hz, as well
as the first transverse mode, resonating at approximately 320 Hz. The oscillator displacement,

Figure V.6: A schematic representation of the oscillator. (left) Illustration of the infrared radiation
heater and the thermopile located in front of the cubic mass. (center and right) The
longitudinal and transverse acoustic modes of vibration are shown, respectively. In the
lower part of the oscillator, the aluminum plate constituting the capacitor is present [81].

influenced by thermal noise, is measured through a capacitive readout system: an aluminum
plate is positioned beneath the load mass, maintaining a distance of 60 to 80 µm, e�ectively
creating a planar capacitor with the surface of the load mass. The motion of the oscillator results
in alterations in the separation between the two capacitor surfaces, a�ecting its capacitance. By
maintaining the capacitor at a fixed charge and amplifying and measuring the resulting voltage,
variations in capacitance are estimated, providing measurements of the position of the oscillator.
A low-noise amplifier connected to the capacitor achieves sensitivity in the range of a few 10≠15

m/
Ô

Hz for the displacement of the longitudinal mode [82].
To minimize external mechanical vibrations within the experimental setup, the oscillator is

suspended using a series of three mechanical filters (§VII.1.3). Furthermore, to avoid acoustic
and residual gas noise, both the oscillator and the passive mechanical filters are enclosed in
a vacuum chamber connected to a vibration-free pump (namely an ion pump). This vacuum
system maintains pressure levels below 10≠5 mbar [83].

To regulate the temperature and create a temperature gradient, the fixed end of the rod can
be cooled and regulated using a Peltier cell, while the load mass can be heated through infrared
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thermal radiation (left side of Figure V.6). Radiative heating is employed as a contactless means
to avoid introducing external losses to the oscillator. Similarly, the temperature of the load
mass is monitored via a contactless sensor, namely a thermopile. Using the knowledge of the
capacitor gap and the bias voltage, the amplifier output was converted in the displacement of
the mass along the vertical direction (i.e. along the longitudinal axis of the rod).

In the PSD of the displacement, peaks corresponding to the first transverse and longitudinal
acoustic modes of vibration are present. While the transverse peak is analyzed by doing the
ratio of the areas out of equilibrium and at equilibrium, the longitudinal peak is fitted using
the damped oscillator model (V.20) to obtain the e�ective temperature (V.41). In simplifying
(V.20) for frequencies near resonance (Ê = Ê0 + ”) and neglecting high order terms, the PSD is
approximated as:

x2(Ê) ƒ
4kBT

mÊ2

0

�Ê

4”2
Ê + �Ê2

(V.43)

Substituting Ê0 = 2fi‹0, the expression becomes:

x2(‹) ƒ
2
fi

kBT

m(2fi‹0)2

�‹

4”2
‹ + �‹2

(V.44)

The spectrum is then fitted with the sum of a constant term accounting for the readout white
noise and a Lorentzian peak:

y(x) = a + 2
fi

b · c

4(x ≠ d)2 + c2
(V.45)

Here, a is the noise level out of resonance, c = �‹ is the FWHM of the peak, d = ‹0 is the
resonance frequency, b = kBT

mÊ2
0

is the area under the peak. This last term allows the calculation
of the square mean displacement of the oscillator and estimation of the e�ective temperature
Teff .

In the article [82], the ratio RNEQ/EQ=Èx2
1ÍNEQ/Èx2

1ÍEQ
as a function of �T/Tavg is plotted

to study the e�ect of the induced thermal gradient on the oscillator. Èx2

1
Í is the mean square

displacement of the oscillator in equilibrium (EQ) and out of the thermodynamic equilibrium
(NEQ).

The results, shown in Figure V.7, indicate that RNEQ/EQ > 1, with the maximum thermal
gradient causing RNEQ/EQ > 1 by more than 4 standard deviations.

A relative temperature di�erence of 4% is su�cient to raise the nonequilibrium Teff by 20%
for the longitudinal mode, surpassing the highest physical temperature within the system. For
the transverse mode, this e�ect is even greater, with the non-equilibrium Teff increasing by
a factor of 3-4. This challenges the validity of the equipartition theorem, as the longitudinal
and transverse modes of vibration exhibit distinct Teff , resulting in an uneven distribution of
energy among the modes.
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Figure V.7: Figure reproduced from [82]. (top) Ratio RNEQ/EQ of the average e�ective temperature
of the transverse (blue triangles) and longitudinal (red circles) acoustic modes in NESS
over their average e�ective temperature in equilibrium. The horizontal axis represents
the normalized thermal di�erence (T2 ≠ T1)/Tavg. The error bars denote the statistical
uncertainty, which is smaller than the size of the points along the horizontal axis. The
black stars show the results of the numerical experiment with their respective error
bars. The gray line represents the best fit of the numerical data. (bottom) Results for the
longitudinal mode, and the line fitting the numerical result.
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In the context of this doctoral research, the experimental work to measure the thermal
noise of mechanical oscillators out of equilibrium is restarted. The study focused on the same
oscillators used in the RareNoise experiment to enable a more comprehensive comparison with
its results. The primary modification in comparison to that experiment involves the adoption of
an interferometric readout instead of a capacitive one. This change is implemented to address
certain limitations identified in the previous setup. Despite its sensitivity, the capacitive readout
faced challenges, including systematic errors (approximately 5%) arising from the thermal
expansion of aluminum. These errors impacted the calibration of the sensor in out-of-equilibrium
states. Additionally, the requirement not to short the capacitor plates imposed stringent
constraints on the achievable thermal di�erences and, consequently, the size of the measured
e�ect. Ultimately, calibration of the capacitor was not possible during the thermal transient,
preventing measurements before reaching a steady state. The revised readout addresses this
limitation by eliminating the fixed plate of the capacitor and employing the cuboid mass as a
mirror in an interferometric measurement. This modification, in principle, enables displacement
measurements during the transient and removes restrictions on the maximum tolerable thermal
di�erence. This chapter details the new interferometric readout, while the following chapter
covers the experimental apparatus and the conducted measurements.
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VI.1. Quadrature Phase Differential Interferometer
Assuming a simple Michelson interferometer is employed to investigate the motion of a mass
exceeding ⁄/2, it is known that the measured signal does not provide direct information about
the displacement. The measured quantity is, in fact, the cosine of the relative displacement �L
between the two interferometer arms (cos(2k�L)). Furthermore, it is essential to select the
working point of the interferometer (the position of the reference mirror) to maximize sensitivity.
In the context of the experiment, aimed at studying Non-Equilibrium Thermal Noise (NETN)
in aluminum oscillators, the goal is to establish thermal di�erences on the order of several or
tens of degrees, leading to thermal expansions larger than a single fringe. Consequently, it
becomes evident that the simple Michelson interferometer is not a suitable choice for a readout
in this scenario. To tackle this challenge, a Quadrature Phase Di�erential Interferometer (QPDI)
[84][85] is implemented. This approach employs two interferometers, each exploiting orthogonal
linear polarizations of light. A quarter-wave plate (QWP) is used to create a phase shift of fi/2
between the outputs of these two interferometers, establishing the quadrature characteristic
inherent to this method.

VI.1.1. Optical layout

The optical configuration of the QPDI used in the experiment is illustrated in Figure VI.1.
The laser beam emitted from the laser head is initially linearly polarized. The beam passes a
combination of Half-Wave Plate (HWP1) and Polarizing Beam Splitter (PBS1) enabling the
control of the power of the transmitted beam, which is p̂-polarized. The first 50% BS (BS1) at
this stage serves no specific purpose, as its role becomes relevant later in directing the beam to
the detection zone.

Before entering into the interferometer, a second HWP is employed to rotate the linear
polarization by 45 degrees. Then, the beam is directed to a second PBS (PBS2): the reflected
component with ŝ-polarization is directed towards the reference mirror of the interferometer,
while the transmitted portion with p̂-polarization reflects o� the moving mirror.

Subsequently, the returning beam is reflected by BS1 towards the detection area. Here, a
second 50% Beam Splitter (BS2) separates the light, directing it toward two pairs of photodiodes
labeled as A-B and C-D. The second pair, C-D, captures light that has undergone an additional
phase shift of fi/2, introduced through the use of a Quarter-Wave Plate (QWP) with the fast
axis rotated at 45 degrees. This plate enables the phase unwrapping characteristic of the QPDI.

VI.1.2. Jones calculus

In this section, the Jones calculus is employed to calculate the signal obtained by combining two
interferometers (A-B and C-D) with a fi/2 phase shift. The Jones matrix formalism is utilized to
describe the polarization of light in free space and homogeneous isotropic non-attenuating media,
such as optical elements (e.g., wave plates, mirrors, and beam splitters) [86]. The discussion
assumes the ideal nature of all optical components (as listed in Table VI.1), implying no losses
and no potential mixture between polarizations.

Input area

In the transmission through the system consisting of HWP1 and PBS1, the beam is initially
described as:

E0 = Ein

3
1
0

4
(VI.1)

where Ein is the input beam amplitude. The first element it encounters is BS1, which redirects
half of the intensity toward the interferometer. After the BS, the HWP2 set at 22.5¶, rotates
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Figure VI.1: Optical layout of the Quadrature Phase Di�erential Interferometer. The power of the
laser beam is controlled by using a HWP1+PBS1 system. The linear polarization p̂ is
rotated into a 45-degree linear polarization using the HWP2. Inside the interferometer,
the light is split into two paths depending on the polarization. The p̂-polarization is
transmitted toward the moving mirror while the ŝ-polarization goes toward the reference
mirror. The recombined beam is reflected into the detection area where the two pairs of
PDs read the beam intensities.

Optical component List
Optical component Symbol Jones Matrix

HWP( fi
8

) J⁄
2

1Ô
2

3
1 1
1 ≠1

4

HWP(≠ fi
8

) J≠ ⁄
2

1Ô
2

3
1 ≠1

≠1 ≠1

4

QWP( fi
4

) J⁄
4

1Ô
2

3
1 i
i 1

4

PBSp JP BSp

3
1 0
0 0

4

PBSs JP BSs

3
0 0
0 1

4

Beam Splitter JBS
1Ô
2

3
1 0
0 1

4

Mirror JM

3
1 0
0 ≠1

4

Table VI.1: Optical components and the corresponding Jones matrices. The brackets of the wave
plates indicate the rotation angle of the plate’s axis.

the beam polarization to equally divide it in both the directions p̂ and ŝ.

EIT F = J⁄
2
JBSE0 = Ein

2

3
1
1

4
(VI.2)
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Interferometer area
The linearly polarized beam enters PBS2, where the two polarizations are separated: the
polarization parallel to the p-axis is transmitted to the moving mirror, while the other one
(parallel to the s-axis) is reflected toward the reference mirror of the interferometer. The beam,
transmitted by the PBS and reflected by the oscillator, is described as:

EO = JMJP BSpEIT F = Ein

2 ei2k(lO+”z)

3
1
0

4
(VI.3)

where lO is the distance covered by the light to reach the oscillating mirror and ”z is vibration
around the mean value lO. The beam reflected by PSB2 and then reflected by the reference
mirror is:

EM = JMJP BSsEIT F = Ein

2 ei2klM

3
0

≠1

4
(VI.4)

where the distance covered by the light to reach the reference mirror is lM . The beam that exits
the chamber after the recombination in the PBS is:

Ereflected = EO + EM = Ein

2

3
1

≠eiÂ

4
(VI.5)

where Â = 2k(lM ≠ lO ≠ ”z) = 2k(�l ≠ ”z).

Detection area
Before entering the detection area the light passes a second time through the HWP2 that, in this
case, is equivalent to an HWP set at ≠22.5¶. The resulting beam entering the detection area is:

Edet = JBSJ≠ ⁄
2
Ereflected = Ein

4

3
1 + eiÂ

≠1 + eiÂ

4
(VI.6)

The beam is divided into the two analysis arms of the QPDI by a BS2. In the AB arm, the
beam is expressed as:

EAB = JBSEdet = Ein

4
Ô

2

3
1 + eiÂ

≠1 + eiÂ

4
(VI.7)

The two photodiodes A and B are illuminated by two di�erent polarization split by PBS3:

EA = JP BSpEAB = Ein

4
Ô

2

3
1 + eiÂ

0

4
(VI.8)

EB = JP BSsEAB = Ein

4
Ô

2

3
0

≠1 + eiÂ

4
(VI.9)

In the CD arm, the light passes through a QWP rotated at 45¶:

ECD = J⁄
4
JBSEdet = Ein

4
Ô

2

3
i + eiÂ

≠i + eiÂ

4
(VI.10)

After the PBS, the light that illuminates the photodiodes D and C is:

ED = JP BSsECD = Ein

4
Ô

2

3
i + eiÂ

0

4
(VI.11)

EC = JP BSpECD = Ein

4
Ô

2

3
0

≠i + eiÂ

4
(VI.12)
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The intensities read by the photodiodes (denoted by I = |EEú
|) are given by:

IA = Iin

16 (1 + cos Â) IB = Iin

16 (1 ≠ cos Â) (VI.13)

IC = Iin

16 (1 ≠ sin Â) ID = Iin

16 (1 + sin Â) (VI.14)

From the last equations, two quantities strictly related to the interferometer phase are obtained:

Cx = cos Â = IA ≠ IB

IA + IB
(VI.15)

Cy = sin Â = ID ≠ IC

ID + IC
(VI.16)

It is worth noting that the total power reaching the detector area is 1/4 of the power after PBS1,
with the remaining 3/4 being lost during the two passages through BS1.

VI.1.3. Interferometer displacement
Once obtained the cos Â and sin Â, the optical phase can be calculated by rewriting:

Cx = cos Â (VI.17)
Cy = sin Â (VI.18)

In this way, a complex contrast C can be defined as follows:

C = Cx + iCy = eiÂ (VI.19)

Due to the quadrature, the phase uniquely determines the optical phase (within a 2fi range).
The contrast C can be represented in the complex plane, forming a point on the unitary circle.
Consequently, a single measurement of the optical phase Â corresponds to a polar angle in this
plane. From the Jones calculus, it was determined that the optical phase is defined as:

Â = 2k(�l ≠ ”z) = 4fi

⁄
(�l ≠ ”z) (VI.20)

Two factors contribute to this equation. Firstly, there is the optical path di�erence �l between
the two arms of the interferometer, which might change gradually due to thermal drifts. Secondly,
there is the oscillator’s displacement ”z, representing fluctuations around the mean value �l.
The advantage of using this type of read-out lies in the fact that calculating the derivative of
the contrast concerning the variation ”z yields:

----
dC

d(”z)

---- = 4fi

⁄
(VI.21)

As a result, there is no requirement to fine-tune the interference fringe (or working point of
the interferometer) because it has no impact on sensitivity. Additionally, even if the working
point undergoes some shifts during the measurement, like those due to temperature variations,
the measured displacement is not a�ected. In a classical interferometer, such a scenario would
not be possible, as a thermal drift would change the operating point and, consequently, the
sensitivity of the instrument. Now that the optical phase is determined, the oscillating mirror’s
displacement fluctuations can be calculated. Considering �l = 0:

”z = ⁄

4fi
Â (VI.22)

In real experimental setups, the scenario discussed as ideal, where misalignments and imperfec-
tions in optical elements are not considered, is less likely to occur. In practice, encountering
an ellipse instead of a perfect circle, as described in Equation (VI.19), is more common. To
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describe the real case, considerations from [87] are taken into account, leading to the following
expressions:

In practical experimental configurations, the idealized scenario, which assumes the absence of
misalignments and imperfections in optical elements, is seldom realized. In reality, encountering
deviations from perfection, such as an ellipse rather than a perfect circle as stipulated in Equation
(VI.19), is a more frequent occurrence. Describing this real-case condition involves incorporating
considerations from [87], resulting in the following expressions:

IA = ÷A + flA cos Â IB = ÷B ≠ flB cos Â (VI.23)
IC = ÷C ≠ flC sin(Â + „) ID = ÷D + flD sin(Â + „) (VI.24)

Here, ÷i (i = A, B, C, D) represents the DC component detected by each photodiode, fli is
the oscillation amplitude, and „ denotes the additional phase of the second interferometer
(photodiodes C-D) that in an ideal case should be 0. This phase determines whether quadrature
is achieved or not. The ideal case is achieved when ÷A = ÷B and flA = flB (same for C and D),
indicating that the power read by each couple of photodiodes is the same. When „ ”= 0, an
ellipse is observed, while with „ = 0, a circle is obtained with an o�set. Considering the new
intensities (VI.23) and (VI.24), the contrast becomes:

Cx = x0 + X cos Â (VI.25)
Cy = y0 + Y sin(Â + „) (VI.26)

where x0 and y0 are the coordinates of the ellipse center, X and Y represent the projection
of the semi-axes and the „ is the precession. With these last equations, it becomes feasible
to determine the optical phase Â and consequently the displacement ”z, as long as the five
parameters characterizing the ellipse are known. From a practical point of view, the approach to
obtain the phase involves establishing a relationship between the signal read by the photodiodes
and the parameters just described. The two equations VI.25 and VI.26 become:

cos Â = Cx ≠ x0

X
(VI.27)

sin(Â + „) = Cy ≠ y0

Y
(VI.28)

using the properties of the trigonometric formulas on (VI.28) combined with (VI.27), the sin
function of Â is obtained as a function of the phase „:

sin Â = 1
cos „

3
Cy ≠ y0

Y
≠

Cx ≠ x0

X
sin „

4
(VI.29)

The phase Â is determined using a four-quadrant arctangent function on the two normalized
signals cos Â and sin Â. Unlike the standard arctangent function, this computation yields a value
within the range of [≠fi, fi] that must undergo unwrapping to restore its continuous motion.
Figure VI.2 shows an example of the complex contrast in the ideal case (blue curve) and real
case (orange curve). The parameters used to plot this contrast are x0 = 0.02, X = 0.98, y0 = 0,
Y = 0.96, and „ = 0.1 rad. To calibrate the system, the ellipse parameters are obtained by
fitting the data before each measurement, as detailed in the next section.

VI.1.4. Calibration
The parameters of the ellipse (VI.25) and (VI.26) are estimated through a calibration procedure
that is performed before each set of measurements. As mentioned above, the optical phase is
located at a specific point on the ellipse, depending on the position within the interferometric
fringe. By displacing one of the arms of the QPDI readout by at least one full fringe, i.e.
by moving the working point of the readout around the ellipse by at least a complete turn,
the readout is calibrated in terms of displacement. Subsequently, from the combination of
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Figure VI.2: Two cases of ellipse. The blue curve represents the ideal case with a perfect circle and
100% contrast. The orange curve shows a real case where the two interferometers are
unbalanced.

the intensities read by the 4 photodiodes, the corresponding optical phase and hence the
interferometer displacement can be inferred. As observed, the optical phase consists of two
quantities: the oscillation of the moving mirror, denoted as ”z, and the di�erence length of the
interferometer arms, represented by �l. Theoretically, adjusting either of these variables results
in a shift in the working point should yield the same calibration.

VI.2. Ideal cases

In this section, the derivation of the optical phase Â is demonstrated using di�erent numbers
of photodiodes. As discussed in §VII.3 during the NETN experiment’s characterization, one
photodiode had to be omitted while still utilizing the interferometer. All possible cases are
illustrated, ranging from the four photodiodes in the QPDI described in the previous section to
the simple Michelson interferometer, which utilizes only one photodiode.

VI.2.1. Three photodiodes

In the ideal case discussed in §VI.1.1 before Equation (VI.23), it is possible to retrieve the
optical phase by using only three of the four photodiodes. The motivation for removing one
of the photodiodes is explained in the section §VII.3.1, where measurements of the transfer
function are presented. For this discussion, the considerations made with Jones matrices apply
up to the Eq. (VI.13) and (VI.14). However, the way these intensities are combined to obtain
the sine and cosine of the optical phase changes. Consider, for example, removing the PD D,
meaning not using its reading. Nothing changes for the A-B couple, from which (VI.15) is still
obtained:

cos Â = IA ≠ IB

IA + IB
(VI.30)
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Di�erently from the previous scenario, only the PD C is used to infer the phase sine:

IC = Iin

16 (1 ≠ sin Â) (VI.31)

In the 4-photodiode case, there is no need to measure the initial laser power separately for
normalization since each photodiode measures 1/16 of the initial power. To normalize the signal,
either photodiodes A or B can be used. Suppose photodiode A is chosen, it is known that:

IA = Iin

16 (1 + cos Â) (VI.32)

combining the latter relationship with (VI.31) it is obtained:

sin Â = 1 ≠
IC

IA
(1 + cosÂ) (VI.33)

As evident from the last formula, the normalization of the sine is determined by the cosine,
which is derived from the combination of the signals from photodiodes A and B. The phase Â is
then obtained by calculating the arctangent, similar to the 4-photodiode case.

VI.2.2. Two photodiodes
In theory, tracing the Â phase is feasible with just two photodiodes, one per pair. As in
the previous case, the challenge arises when normalizing the signals by the circulating power.
Considering photodiode A, equation (VI.32) can be rearranged to obtain:

cos Â = IA ≠ Iin/16
Iin/16 (VI.34)

In this case, the quantity Iin/16 can be obtained from the maximum value that IA can attain
within a fringe. Considering Â = 0:

max (IA) = Iin

8 (VI.35)

Thus, the (VI.34) becomes:

cos Â = IA ≠ 1/2 max (IA)
1/2 max (IA) (VI.36)

Similarly, considering the C photodiode and starting from (VI.31):

sin Â = ≠
IC ≠ max (IC)

max (IC) (VI.37)

This approach is e�ective only when it is possible to measure the maximum values of both IA

and IC , meaning that the operating point of the interferometer can span an entire quadrant
of space from Â = 0 to Â = fi/2. Similarly to the 4-photodiode case, the phase Â is then
determined by computing the arctangent, utilizing both sine and cosine components.

VI.2.3. One photodiode
The system can function as a simple interferometer with only one photodiode. The same
principles discussed for the two photodiode scenario apply here, where either (VI.36) or (VI.37)
is considered depending on the chosen photodiode. The phase is determined straightforwardly
by calculating the arccosine or arcsine, depending on the selected photodiode. However, when
using only one photodiode, it is no longer possible to unwrap the phase. This results in the
loss of information about the number of fringe crossings. Additionally, it becomes crucial to
carefully select the operating point.
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VI.3. Real case with optical imperfections
In this section, a reassessment of the Jones calculus is conducted to analyze the impact of various
optical imperfections. Specifically, three distinct scenarios are considered:

• mixing between the two polarizations in the PBS2

• BS ratio di�erent from 50%

• mixing in the PBSs (PBS3 and PBS4) before the photodiodes

In the following, the three cases are discussed separately to understand the e�ect of individual
elements.

VI.3.1. Interferometer PBS mixing

Consider the central PBS (PBS2 in Figure VI.1) of the interferometer that splits the beam
between the reference mirror and the oscillating mirror. In this context, polarization mixing
refers to the phenomenon where part of the field in the p̂-polarization is reflected instead of
being completely transmitted, and vice versa for the ŝ-polarization field. The expressions for
the PBS under these conditions are as follows:

PBSp =
3

Tp 0
0 Ts

4
(VI.38)

PBSs =
3

Rp 0
0 Rs

4
(VI.39)

where Tp, Ts, Rp and Rs are respectively the fraction of the powers that enter the PBS in the
polarization indicated by the subscript that gets transmitted (T ) or reflected (R) according
to polarization. The parameters are related by T 2

p + R2

p = 1 (similarly for the s polarization).
These relationships are typically outlined in the PBS specifications and are quantified through
the extinction ratio Ts/Tp which, especially in research-grade components, is often of the order
of 10≠3 or better.

For this analysis, the choice of these parameters is based on their frequent availability in
optics datasheets and their ease of measurement. With this new expression, Equation (VI.5)
can be rewritten as:

Ereflected = EO + EM =
3 Tp

2
+ 1

2
RpeiÂ

≠
Ts
2

≠
1

2
RseiÂ

4
(VI.40)

Propagating this expression over all other optical elements yields the two expressions of Cx and
Cy:

Cx = 2(cos Â(RpTs + RsTp) + RpRs + TpTs)
R2

p + 2 cos Â(RpTp + RsTs) + R2
s + T 2

p + T 2
s

(VI.41)

Cy = 2 sin Â(RsTp ≠ RpTs)
R2

p + 2 cos Â(RpTp + RsTs) + R2
s + T 2

p + T 2
s

(VI.42)

The impact of mixing is illustrated in Figure VI.3, where the contrast is calculated for various
values of the extinction ratio. Specifically, the figure illustrates how the contrast diminishes with
an increase in the percentage of polarization p that is reflected instead of being transmitted.

The ideal scenario corresponds to Ts = 0, Tp = 1, Rp = 0, and Rs = 1. Under these conditions,
the expressions simplify to (VI.17) and (VI.18). It is important to note that this scenario is not
problematic for calibration or measurements. Achieving a 5% contrast variation would require
an extinction ratio change by a factor of 100, which is unrealistic.



110 interferometric readout

�1.0 �0.5 0.0 0.5 1.0

Cx

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

C
y

Figure VI.3: E�ect of the mixing inside the interferometer PBS. As the degree of mixing increases, the
contrast decreases, resulting in a smaller radius of the circle. This observation is evident
in the figure derived from the parametric equations (VI.41) and (VI.42). Specifically, the
extinction ratio Ts/Tp was varied, ranging from a minimum of 10≠3 to a maximum of
10≠1, with Tp set at 0.95, accounting for the optical absorption of the polarizing beam
splitter (PBS). Similar behavior is observed when altering the extinction ratio Rp/Rs.

VI.3.2. Unbalanced BS
Consider the scenario of an unbalanced BS2 (as shown in Figure VI.1), where the beam is split
in the detection area between the two pairs of photodiodes. The analysis excludes BS1, as any
imperfections in this element are compensated by manually optimizing the contrast through the
rotation of HWP2. In the case of BS2, its designation as unbalanced stems from the fact that
its reflectivity/transmittance is not precisely 50% for the two orthogonal polarizations. The
reflectivity and transmittance matrices for BS2 are denoted as follows:

BStrans =
3

“ 0
0 ”

4
(VI.43)

BSrefl =
3

– 0
0 —

4
(VI.44)

where –, —, “, and ” represent the di�erent ratios of transmission and reflection power for
various polarizations. The parameters are related by –2 + “2 = 1/2 (same for the — and ”). This
last statement is for simplicity: the eventual power unbalancing (e.g 40:60) does not represent
a problem because the two couples of photodiodes renormalize the signal. Thus, in this case,
BS2 can be considered akin to a PBS, described by the coe�cients in (VI.43) and (VI.44).
Starting from Equation (VI.5), one can apply the two expressions for the BS. The resulting
fields illuminating the photodiodes A and B are:

EA = Ein
Ô

16

3
i– sin Â + – cos Â + 1

0

4
(VI.45)

EB = Ein
Ô

16

3
0

i— sin Â + — cos Â ≠ —

4
(VI.46)
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while for the couple C-D the fields are:

EC = Ein
Ô

16

Q

a
0

i
!

1

2
“ sin Â ≠

1

2
“ cos Â ≠

“
2

+ 1

2
” sin Â + 1

2
” cos Â ≠

”
2

"

+ 1

2
“ sin Â + 1

2
“ cos Â + “

2
≠

1

2
” sin Â + 1

2
” cos Â ≠

”
2

R

b (VI.47)

ED = Ein
Ô

16

Q

a
i
!

1
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By combining the intensities read by the photodiodes, the contrasts are obtained as follows:

Cx =
!
–2 + —2

"
cos Â + –2

≠ —2

(–2 ≠ —2) cos Â + –2 + —2
(VI.49)

Cy = 2“” sin Â

(“2 ≠ ”2) cos Â + “2 + ”2
(VI.50)

The e�ect on the interferometer contrast is illustrated in Figure VI.4. As observed, the contrast
undergoes deformation compared to the expected circle. This deformation presents a challenge
during calibration, as it becomes impractical to fit the ellipse for retracing back to the parameters
in (VI.25) and (VI.26). As discussed in Section VI.4, two correction methods can be adopted
in such conditions—one based on the measurement of optical parameters and another through
post-processing correction.
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Figure VI.4: E�ect of an unbalanced BS2 (see Figure VI.1). The figure is obtained from the parametric
equations (VI.49) and (VI.50). The – parameter is changed from 50%, where the BS is
balanced (yellow circle), to 66% (dark blue line). At this value of –, the shape of the
contrast is noticeably deformed. The parameters — and ” change accordingly to maintain
the total power equal to 100%
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VI.3.3. Detection PBSs mixing
Finally, consider the scenario where the PBSs (PBS3 and PBS4 in Figure VI.1) dividing the
polarization directed to di�erent photodiodes exhibit mixing, similar to the first example
analyzed. The same notation introduced for PBS2 is used, distinguishing between the A-B and
C-D pairs.

PBS3T =
3

TA 0
0 TB

4
PBS3R =

3
RA 0
0 RB

4
(VI.51)

PBS4T =
3

TD 0
0 TC

4
PBS4R =

3
RD 0
0 RC

4
(VI.52)

By applying these matrices to the equations (VI.7) and (VI.14) and subsequently combining
the intensities from the two pairs of PDs, the contrasts are derived as follows:
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cos Â

!
≠R2

A + R2

B + T 2

A ≠ T 2

B

"
≠ R2

A ≠ R2

B + T 2

A + T 2

B

cos Â (R2

A ≠ R2

B + T 2

A ≠ T 2

B) + R2

A + R2

B + T 2

A + T 2

B

(VI.53)

Cy =
sin Â
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(VI.54)

The e�ect of the two PBSs on the contrast is shown in Figure VI.5. The ideal case is obtained
considering the PBS matrices shown in Table VI.1.
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Figure VI.5: E�ect of the polarization mixing in PBS3 and PBS4 (see Figure VI.1). The figure was
obtained from the parametric equations (VI.53) and (VI.54). (left) Here, the extinction
ratio TB/TA is changed from a minimum value of 10≠3 to a maximum value of 10≠1. TA

is assumed to be 0.95, a value consistent with the values measured in the laboratory. The
contrast primarily deforms along the x axis because photodiodes A and B contribute to
generating the contrast Cx. (right) In this plot, TC/TD is varied from a minimum value
of 10≠3 to a maximum value of 10≠1. Here, the opposite e�ect can be observed, with the
contrast changing its shape along the y axis.
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VI.4. Losses correction
By employing a QPDI interferometer, as discussed in the previous section, the imperfections
of the optical elements used must be considered. Two possible methods are presented here
for evaluating and correcting the examined optical imperfections. The first approach involves
characterizing each optical element individually and incorporating the variables into the final
formulas of the contrast (Cx and Cy shown in §VI.3 for each case). The second method involves
post-processing correction of the signals recorded by the photodiodes.

VI.4.1. Optical parameter estimation

Measuring the parameters of individual optical components o�ers the advantage of providing
the most accurate representation of the optical system. However, this method is susceptible to
misalignment issues. Misalignments can cause the beam to enter the optical elements at angles
di�erent from the ideal, leading to deviations from the expected behavior. In such cases, the
beams may be reflected or transmitted at slightly di�erent angles than anticipated, partially
invalidating the detailed characterization of the elements. While it is possible to perform
characterizations at di�erent angles, this would significantly complicate the measurements, as
each realignment would require a new set of angle-specific measurements. In an attempt to
characterize the system, both the BS and the two PBSs in the detection path are evaluated in a
particular alignment configuration, aiming to ensure that the beam is as perpendicular to the
optical elements as practically achievable.

The characterizations revealed that both PBSs exhibit an extinction ratio on the transmission
of Ts/Tp = 1 · 10≠3 and Rp/Rs = 2 · 10≠2 on reflection. Concerning the BS, the measured
parameters are “=46%, ”=42%, – = 54% and —=58%. In the interferometer calibration process,
as further elucidated later in this discussion, the reference mirror of the interferometer is moved
using a piezoelectric actuator. During this movement, the optical phase, primarily dependent
on �l, traverses the entire interference fringe, allowing fitting of the entire ellipse to calculate
the parameters (VI.25) and (VI.26). In Figure VI.6 (left), the interferometer calibration is
shown, illustrating a noticeable e�ect resulting from the unbalanced BS in the detection area,
as discussed in §VI.3.2. The calibration includes a correction that incorporates the measured
optical parameters. The final formulas for Cx and Cy, accounting for all the e�ects outlined in
§VI.3, are not provided due to their length.

VI.4.2. Post processing correction

As an alternative to the previously described method, the decision is made to correct the signals
when combining them to extract quantities VI.17 and VI.18. This approach eliminates the
need for measuring optical component parameters. The starting point is the consideration of
Equations (VI.23) and (VI.24). As mentioned, the ideal scenario is when ÷ and fl are equal for
each pair of photodiodes. By computing the sum signal between the two pairs from the signals
recorded by the four photodiodes, an ideal case should result in a constant signal. Figure VI.7
illustrates the output of the photodiodes recorded during a full fringe elongation of the reference
arm, achieved by manipulating the piezoelectric actuator on the mirror’s back (see §VII.1.7)
The green curve in the figure illustrates the sum of the two signals, which is not constant. To
address this, the analysis involves comparing the reading of one photodiode with respect to the
other within the same pair. The oscillations reveal that the intensities read by photodiodes B
and C are lower compared to the other photodiodes in each pair. This discrepancy is calculated
by plotting one photodiode’s intensity against the other one (IA vs IB and ID vs IC), as shown
in Figure VI.8. The slope of the linear fit provides the value by which we must multiply or
divide the intensity of either photodiode to maintain a constant sum. Figure VI.9 shows the
comparison of the data corrected with the described procedure. The acquired data are the same
as those used in the previous example, but in this case, the calibration contrast reproduces a
circle (X = Y = 0.923 and 5 mrad of precession). This procedure for calibrating the readout
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Figure VI.6: (left) The calibration is presented using raw data obtained from the photodiodes (blue
dots). The orange circle represents the best-fitting ellipse based on these data. It is
evident that the fitting line poorly reproduces the data. The ellipse parameters are also
displayed. (right) Plot of the data corrected according to the procedure described in
§VI.4.1. The agreement between the fitting line and the corrected data is significantly
improved, although some residual discrepancies persist as the data do not perfectly align
with a standard ellipse.

is used in the following chapter §VII to infer the vibration fluctuations of the oscillator under
study.
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Figure VI.7: (top) Signals read by the photodiodes A and B, and their sum during the piezo motion
at 3 Hz. (bottom) Same representation for PDs C and D.
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In this chapter, the experiment designed to replicate the results of RareNoise and expand
upon them by inducing more consistent thermal gradients is described. This experiment focuses
on the thermal vibrations of the same acoustic modes of the same aluminum body as RareNoise.
With respect to the latter, the main di�erence is the readout, which is discussed in detail in
the previous chapter (§VI). The experiment is housed in a vacuum chamber equipped with a
mechanical suspension that was developed as a prototype for RareNoise and shares same the
data acquisition system; the data analysis has been rewritten and extended firstly in Matlab
and then in Python. This chapter provides a detailed account of the experimental apparatus,
the methodology employed for data analysis, and the performed measurements.
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VII.1. Experimental setup
The NETN experiment is meant to reproduce the results of the RareNoise experiment [81] with
the integration of a new QPDI readout system (§VI.1). Figure VII.1 illustrates the removal of
the fixed capacitor plate, distinguishing it from the configuration of RareNoise. Utilizing the
mirror-like finish on the lower surface of the cuboid mass, the capacitive readout is modified
using light fields, with the polished surface serving as the moving mirror for the interferometric
readout.

Ref. 
Mirror

Absorber

Figure VII.1: Picture of the core part of the NETN experiment: attached at the 2 lateral protrusions,
the plate can be seen with the optics necessary for the QPDI: at the center sits the PBS
(PBS2 in Figure VII.7), at its left the reference mirror (light blue arrow) attached to
a piezoelectric actuator, at the right an absorber plate (green arrow), at the top the
oscillating cuboid mass (highlighted in yellow). This is faced by the heater, shown with
a green circle.

VII.1.1. The oscillator

The vibrational analysis involves examining the resonant mode of a monolithic aluminum piece
(Alloy Al5056). This piece comprises a rod aligned parallel to the vertical axis, with one end
bearing a cuboid mass and the other end linked to a thick plate featuring lateral protrusions
(see Figure VII.2). This body is then fixed with screws to a heavier, rigid mass. The focus of the
study is on the first longitudinal resonant mode of the aluminum piece, wherein both the rod
and the cuboid mass at its base oscillate along the axis of the rod. Specific details regarding the
characteristics of the oscillator are provided in Table VII.1. The two lateral protrusions support
the optics necessary for the QDPI readout at its bottom (see Figure VII.1): in particular, the
PBS, the reference mirror actuated with a piezoelectric and an optical absorber on the other port
of the PBS. Furthermore, the protrusions support a thermal radiation source (named heater)
facing the cuboid mass to heat it and an IR thermometer (a thermopile) facing the cuboid
mass at the opposite side of the heater. This assembly (the aluminum piece with optics, heater,
and thermopile) is supported on top of a 3-stage mechanical suspension (described in more
detail in §VII.1.3, see also [88]). At its top and coaxial with the rod, a piezoelectric actuator is
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Oscillator characteristics
Rod

Length 10 cm
Width 0.55 cm
Cross section area 0.25 cm2

Cuboid mass
Length 4.35 cm
Width 5.15 cm
Thickness 4.00 cm
Volume 90 cm3

Mass 0.25 kg
Studied resonant modes

Longitudinal ≥ 1400 Hz
Transversal ≥ 320 Hz

Table VII.1: In the table are reported the main characteristics of the aluminum oscillator.

placed. All this is housed in a vacuum chamber. Vacuum chamber and mechanical suspensions
are reused from prototype setups of RareNoise. The chamber consists of an aluminum hollow
cylinder with an internal diameter of 300 mm. The upper part is closed with a 400 mm-diameter
x 40 mm high aluminum disk, while the base, is composed of a 70 mm high aluminum plate,
and has holes that allow connection to the vacuum system. At the center of the base disk, a
2-inch optical window is housed: this allows the laser light to arrive at the PBS2 and then back
towards the detection area (see Figure VII.7). The entire chamber is raised from the optical
bench through three 150 mm-long pillars arranged around the circumference and spaced every
120 degrees.

VII.1.2. Heating
To investigate thermal noise outside thermodynamic equilibrium, the cuboid mass is heated to
induce a thermal di�erence �T between its upper and lower parts (refer to Figure VII.2). The
heater consists of a 3.6 � resistor that has a maximum power output of 5 W. Through the Joule
e�ect, it emits radiation as a black body at a temperature determined by the circulating current.
Approximately 80% of the radiated power is e�ectively transferred to the heating target [89].
The resistor is positioned at the focal point of a parabolic mirror, which redirects all the emitted
radiation toward the cuboid mass of the oscillator. When the heater is on, the aluminum mass
takes 20 hours to reach a steady state [90]. The temperatures of both the cuboid mass (Tmax)
and the upper end of the rod (Tmin) are monitored using thermometers (a thermopile for the
cuboid mass and an NTC thermistor for the top of the rod). The thermopile, by making a
di�erential measurement, measures the temperature of the thermopile case itself, which for
monitoring purposes is named Tamb, and that of the mass. When the oscillator reaches the
non-equilibrium steady state, it results in a gradient �T of no more than 50 K along the rod.
The average temperature between the rod and the extremes can be considered as:

Tavg = Tmax + Tmin

2 (VII.1)

VII.1.3. Passive mechanical filters
While operating in a vacuum environment can e�ectively eliminate acoustic noise, the mitigation
of ground vibrations necessitates the implementation of mechanical filters. In addition, the
optical bench is supported by pneumatic legs, which function as filters. In the vertical plane,
the filter is active, while in the horizontal plane, it acts as a passive pendulum-based filter.
A mechanical filter is a mechanical oscillator that resonates at a significantly lower frequency
than the frequency of the phenomenon under consideration. In the context of the specified
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objectives, the main constraint for the suspension system is to enable the detection of thermal
vibrations from the 0.2 kg oscillator. It is important to note that, throughout the subsequent
discussion, the combined system of the rod and cuboid mass is denoted as the ’oscillator.’ This
nomenclature is adopted due to a predominant focus on the first longitudinal mode of this
mechanical structure. The lowest relevant frequency corresponds to the first transverse mode of
the oscillator ‹0 ≥ 320 Hz. An input vibration of the mechanical filter is depressed by a factor
[88]:

H(‹, ‹0) = ‹2

0

‹2

0
≠ ‹2

(VII.2)

where H(‹, ‹0) is the transfer function of the filter. The suspension used in the NETN experiment
was built as a prototype for the RareNoise experiment and its design is fully described in [88].
It consists of a cascade of 3 stages of filtering (see Figure VII.2. Each stage is formed by a set
of 3, c-shaped aluminum springs (AI7075) connected in parallel to a stainless steel (AISI 304)
annular mass; the 3 stages are mounted on top of each other; the oscillator assembly is fixed on
top of them, and mounted in such a way that the rod is coaxial with the annular masses and
inside them and the cuboid mass is at the bottom, at a level between the first set of springs and
the first annual mass. The last stage allows for attaching an aluminum flange that supports
the oscillator assembly. Table VII.2 lists the characteristics of the main elements composing
the suspension system. To avoid interfering with the thermal noise measurements, the internal
modes of the suspension must have frequencies exceeding 2 kHz. These parameters are used
in §VII.4.1 to simulate the behavior observed during the measurement of the system transfer
function. The suspension design is also done with the aid of Finite Element Analysis (FEM)

Suspension characteristics
Element Mass [kg] 1th internal mode [Hz]
C-shape spring 0.0017 5306
Annular mass (stage 1, 2) 17.4 2185
Annular mass (stage 3) 13.8 1544
Al flange 2.4 2215
Osc. assembly 3.6 3016

Table VII.2: Main elements forming the suspension and the payload (Al flange + Oscillator + Osc.
assembly).

to optimize the dimension in relation to the filtering performance and the mechanical stress.
The result is shown in Figure VII.3 where there are few resonances due to acoustic modes up
to 70 Hz followed by a smooth roll-o� at ‹≠6 as expected from the cascade of the three stages.
The expectation values are compared with the experimental measurements where the system
was mechanically excited. The measurements were performed using an accelerometer positioned
above the last stage and the system was excited by using a vibration exciter.

As previously mentioned, the oscillator resonates at a longitudinal frequency of around 1.4
kHz under room temperature conditions, and it demonstrates a mechanical quality factor Q
ranging from 103 to 104.

VII.1.4. Vacuum system

The entire system, comprising the oscillator assembly and suspension, is kept in vacuum. This
measure is implemented to isolate the system from acoustic vibrations, residual gas noise, which
might interfere with thermal noise measurements, and to achieve thermal isolation. Due to the
mechanical vibrations produced by vacuum pumps, including scroll and turbomolecular pumps,
which need to be avoided, thermal noise measurements are conducted exclusively using an ion
pump. Conversely, ion pumps operate e�ectively only in high-vacuum conditions. Therefore, a
series of pumping steps is necessary to transition from atmospheric pressure to the low-mechanical
noise state achievable with the ion pump. A schematic of the vacuum system is shown in Figure
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Figure VII.2: From [88]. (left) Schematic cross-section of the system oscillator assembly + suspension.
The oscillator assembly is shown in light grey while the rod and cuboid mass are colored
from red to blue to show the thermal di�erence present when the non-equilibrium steady
state is present (hotter parts in red, colder parts in blue). Here, the oscillator assembly
refers to the capacitive readout used in the RareNoise experiment: in the work reported
in this thesis the capacitor plate at the bottom part of the oscillator assembly is replaced
by the optical assembly shown in Figure VII.1. The figure shows the three stages of
the passive mechanical filter connected by the C-shape springs. At the top of the last
stage, above the Al flange, the piezo actuator used to measure the transfer function
is depicted. (right) Picture of the three stages with the system mounted. Outside are
visible the measuring instrument cables anchored to the suspension and soft enough
not to bypass the mechanical filter. For the work reported in this thesis, the cabling is
slightly di�erent but substantially equivalent.

VII.4. The system is divided into three main parts separated by valves: the first one includes
the scroll and the turbo pump, the second one the ion pump, and the volume that connects
the first part to the third part. Three vacuum gauges (Oerlikon Leybold Vacuum D-50968) are
used to monitor pressure in each of these three parts. The first is positioned at the head of the
turbo molecular pump, the second in the connecting volume between the various pumps and
the vacuum chamber, and the last at the chamber exit port.

Pre-vacuum

The first pumping step is carried out with a scroll pump. This belongs to the pre-vacuum
distribution line and is connected to the optical bench on which the experiment is placed through
a flexible vacuum pipe. Initially, the entire volume of the chamber and the volume of the vacuum
system go from atmospheric pressure down to a pressure of 10≠1 mbar in a few minutes.

Turbo pump

The second step is to turn on the turbo molecular pump (Varian 969-8902). Typically the
pressure reaches the 10≠6 mbar level in about 24 hours. The pressure level achieved would
be su�ciently low for thermal noise measurements. However, as previously mentioned, the
concurrent mechanical vibrations arising from the combination of turbo and scroll pumps are
intolerable.
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Figure VII.3: Plot taken by [88]. The vertical transfer function of the full suspension, consisting of a
cascade of three stages each resonating at ‹0=38 Hz. The prediction curve is obtained
from the coupling in a cascade of three oscillators of masses, respectively, 17.4, 17.4,
and 19.8 kg.

Ion pump
The indication that the ion pump can be turned on is given by the pressure inside the chamber,
as it consistently maintains a level approximately three times higher than that observed in the
remainder of the system. Upon achieving a stable pressure of approximately 7 ◊ 10≠6 mbar
within the chamber, as monitored by gauge 3 in Figure VII.4, the ion pump (initially an Agilent
Vaclon Plus 20, later replaced with an Agilent Plus 75) is activated. Subsequently, Valve 2,
positioned adjacent to the ion pump, is opened to allow simultaneous pumping by both the ion
and turbo pumps. In this configuration, the reading on gauge 2 swiftly decreases to below 10≠7

mbar. Once pressure stability is attained, the valve that connects the turbomolecular pump
to the system can be closed (Valve 1), so that the chamber is pumped with the ion only. At
this stage, a gradual pressure increase is observed due to the reduced total pumping speed,
reaching a stabilized state after approximately 8 hours at an average pressure of 5 ◊ 10≠6 mbar.
Subsequently, the pressure undergoes a decline, ultimately stabilizing around 8 ◊ 10≠6 mbar,
as indicated by gauge 3. Once the chamber is pumped by the ion pump, achieved by closing
Valve 1, both the turbo pump and the scroll pump are switched o�. Then, the vacuum pipe
connecting the turbo pump and the scroll is disconnected, e�ectively isolating the optical table
from external vibrations. The entire procedure in terms of pressure, read by the vacuum gauge
3, is summarized in Figure VII.5.

Troubleshooting
Throughout the duration of this experiment, achieving a stable state where the vacuum chamber
is solely pumped by the ion pump has consistently posed a non-trivial challenge [90][89] In certain
periods preceding the commencement of this study, this state remained elusive. To address this
issue, a series of tests were conducted to identify potential causes, starting with degassing tests
for various system volumes in the absence of a leak detector. Over the course of this thesis,
the system underwent multiple cleaning procedures, with the replacement of malfunctioning
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Figure VII.4: Scheme of the vacuum system. The vacuum level to switch on the ion pump is achieved
with the turbomolecular pump with a scroll pump for the pre-vacuum in cascade. The
pressure level is measured by three vacuum gauges at three di�erent points of the system.

components such as flanges and valves. Additionally, both the ion pump and segments of the
vacuum chamber underwent several baking processes. This involved the installation of a heater
around the ion pump body and heating pads on the entire system to expedite the degassing of
elements deposited on internal surfaces.

Despite all these operations, it was not always possible to reach the state where the system
is pumped stably by the ion pump only. Ultimately, the ion pump was replaced with a model
featuring a larger pumping speed. This intervention proved highly e�ective, resulting in an
upgrade from a pump with a pumping rate of 20 l/s to one with an increased pumping rate of 75
l/s. Even after this replacement, baking remains a necessary and e�ective procedure, whenever
the chamber is opened and exposed to atmospheric pressure for extended periods. The baking
procedure, based on the datasheet of the pump, is summarized below:

1. Heat the ion pump with a custom-shaped resistor that surrounds the pump body. The
resistor has no power adjustments but connects directly to the electrical plug. The vacuum
system is heated with three resistive pads (12 W) connected to a power supply set at 30 V
- 1 A.

2. Bake ion pump and vacuum parts at the same time. The ion pump is switched o� while
the system is pumped with the turbo for at least 12 hours.

3. Switch on the ion pump while everything is hot with the turbo valve still open to continue
pumping with the turbo pump. The pressure should increase because of ion pump
outgassing.

4. Continue heating and pumping with both the ion pump and turbo pump until the vacuum
improves to the same level as the end of the initial 12-hour period.

5. Close the turbo valve and continue pumping with the ion pump, while still heating both
the ion pump and the chamber.

6. Pump for at least 6 hours, or longer, until the pressure stops decreasing.

7. Switch o� the heater of the ion pump body, while continue heating the chamber. Let the
ion pump cool while pumping the hot chamber for at least 6 hours.
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Figure VII.5: The temporal evolution of the pressure within the chamber, as monitored by gauge 3,
follows a typical trend, commencing from atmospheric pressure and gradually decreasing
to below 1 ◊ 10≠5 mbar, exclusively through the ion pump. The di�erent colored
areas represent di�erent steps of the procedure. The orange area corresponds to the
pre-vacuum step. In the light blue, the turbo pump is switched on to reach the vacuum
level to turn on the ionic (red area). In the green region, the ion pump managed the
vacuum in the chamber alone.

8. Switch o� the heaters in the chamber and let the whole system cool down.

VII.1.5. Optical layout

The working principle of the interferometric readout, based on a QPDI technique, is discussed
in detail in chapter §VI.1. Here, details are provided regarding the laser source and its coupling
with the optical readout. The experiment employs a Nd:YAG CW laser source (model Mephisto
by Coherent). Before the work reported in this thesis, the laser source was shared with another
experiment: the head was located on a di�erent optical table and a pick-o� of approx 10 mW
was brought onto the NETN experiment via a polarizing maintaining optical. During the work
for this thesis, the laser source is relocated to the NETN bench, eliminating the need for an
optical fiber. A new telescope is designed to align the beam size with the setup. Subsequently,
the exiting beam from the laser source is characterized, with the corresponding data presented
in Figure VII.7. As can be seen from the Figure VII.6, the measurements are performed only
outside the Rayleigh range, where the beam width scales linearly with the propagation distance.
Hence a linear fit is done to infer the laser waist and its distance from the laser head. Next,
using the JamMt software, the lens system is designed to collimate the beam. In the initial
phase of this thesis work, the configuration of the two-lens telescope was adjusted to yield a
waist of approximately 0.75 mm, situated at the lower surface of the oscillator, which is placed
about halfway between the laser head and the detection area. This choice ensured that the
beam did not diverge too much for the entire optical path (1.5 mm radius on average) and
that the laser spot was not too large at the photodiodes, which have a sensible area of 4 mm
in diameter. Subsequently, for the reasons discussed in §VII.3.3, the telescope is modified by
adding a lens. The final waist position is moved close to BS1 after oscillator reflection and has a
size of about 1 mm.

VII.1.6. Acquisition system

The data acquisition system is based on the National Instruments PXI platform. The signals
from the four photodiodes (named ’fast’ channels ) are read using a 24-bit resolution ADC NI
PXI-4462 DAQ board, which operates at a sampling rate of 8000 samples per second within
a range of ±10 V. Temperature sensor data, like thermistors and thermopile readings, as well
as vacuum gauge readings, are acquired at a sample rate of 1 sample per second (named ’slow’
channels). This data acquisition is performed through NI 9219 24-bit analog inputs. VIs
(Virtual Instrument) have been developed for both types of data within PXI. These are scripts
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Figure VII.6: Beam Laser Characterization. The scatter plot displays the beam radius values recorded
by the beam profiler in the transverse plane (xy, respectively horizontal and vertical
axis), along the propagation axis z. The z-axis origin point z = 0 mm is the laser head’s
exit port. Data fitting was accomplished using the Gaussian beam propagation formula.

in the Labview programming language that allow both real-time visualization of the data (e.g.,
graph of temperature over time) and saving of the data. The programs of the data acquisition
are inherited from the RareNoise experiment which used the same PXI hardware. Significant
modifications have been implemented in the online data visualization, primarily to align with
the interferometric readout instead of the capacitive method. These adjustments enhance the
utility of the online system, particularly during the preparatory phase of alignment (refer to
§VII.2). Four custom photodiodes powered at ±15 V are used to measure the laser intensity.
These are calibrated by first measuring the input power with a power meter and then reading
the output voltage with a multimeter. Subsequently, the input power is increased so that the
whole dynamic range could be explored (0 V - -11 V). The data are then fitted to obtain a
conversion factor. The conversion factors are reported in the Table VII.3

Photodiodes characterization
Photodiode Conversion factor [mW/V]
PDA -0.214
PDB -0.214
PDC -0.216
PDD -0.217

Table VII.3: Table of the conversion factors of each photodiode obtained by a linear fit.

VII.1.7. Piezoelectric actuators

During the work of this thesis, and in response to needs that emerged from past work, two
piezoelectric actuators are installed in the setup: one to allow moving the working point of the
ITF by a full fringe by acting on the reference mirror and hence calibrating the QDPI and one
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Figure VII.7: Optical layout of the NETN experiment. The beam exiting the laser head is initially
collimated with a telescope. The light power sent to the experiment can be controlled
via the combination of HWP2 and PBS1. The beam is then sent inside the vacuum
chamber where the readout interferometer is located. The light beam coming back from
PBS2 is reflected by BS1 and directed toward the detection area where the readout PDs
are located. Note that the mirror M3 sends the beam vertically toward the oscillator.

to mechanically excite the oscillator along the vertical axis to measure its transfer function.

Mirror actuator
As already anticipated in §VII.1.1, one piezoelectric actuator is mounted on the reference mirror,
shown in Figure VII.1. The purpose of this actuator is to move the working point so as to allow
spanning a full interference fringe and hence calibrate the readout according to the procedure
described in §VI.1.4. Before mounting the piezo on the setup, its characterization is conducted.
Upon attaching the mirror to the actuator and mounting the assembly on a standard mirror
mount, a simple Michelson interferometer is established. In this configuration, the displacement
of the mirror is calibrated as a function of the voltage sent to the piezo actuator. This procedure
is done near the frequencies of the two transverse and longitudinal modes of the oscillator, see
[91]. The calibration is focused mainly on the response of the piezo to the resonance frequencies
of the two longitudinal and transverse modes of oscillation. This results in two conversion factors
of C1400Hz = (1.96 ± 0.04) nm/V and C320Hz = (1.74 ± 0.03) nm/V.

Piezoelectric on the suspensions
The second piezoelectric actuator is installed centrally and on top of the mechanical system,
i.e. on top of the 3rd mechanical filter and along the vertical axis (see Figure VII.2). The PZT
serves the dual purpose of exciting the mechanical system and measuring the corresponding
transfer function, both around the resonance of the longitudinal mode and in a broader frequency
range. To enhance the applied force, a mass of 21.52 g is a�xed to the top of the PZT. The
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initial characterization of the piezo involved its assessment on the optical bench, utilizing
an accelerometer (PBC-353B33) as the mass undergoing acceleration due to the actuator.
Before incorporating the actuator into the experiment, its calibration is conducted using an
accelerometer (PBC-353B33) with a sensitivity of S = 10.398 · 10≠3 V

m/s
2 . Instead of the mass

m, the accelerometer is placed atop the PZT, which is then secured to the bench. Utilizing the
mass of the accelerometer (24.20 g, so very similar to m) and the measured acceleration, the
calibration of the PZT is achieved through the following relationship:

|x| = Vs

S · Ê2
(VII.3)

where Vs is the amplitude of the sinusoidal signal of frequency Ê fed to the PZT; VII.8 shows
the calibration coe�cients measured at di�erent signal frequencies. Due to the limited actuation
coe�cient of this PZT, it is not feasible to achieve a complete fringe elongation for the cuboid
mass, preventing the calibration of the QDPI. Both the utilization of a high-voltage signal
generator and the addition of a higher mass m on top of the PZT are impractical. The latter
option is constrained by the limited space available between the PZT and the top of the vacuum
chamber.
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Figure VII.8: Di�erent responses of the piezo in terms of displacement of the mass. The actuator
e�ciency changes by about 0.4 nm/V.

VII.2. Calibration and measurements
This section outlines the experimental procedures for aligning the interferometric readout,
conducting its calibration (also detailed in §VI.1), and executing thermal noise measurements.
The objective is to establish a fully calibrated system, enabling the inference of noise temperature
without relying on assumptions about unknown parameters. This approach contrasts with
common practices in measurements such as AFM. This calibration e�ort constituted a significant
portion of this thesis work, and consequently, most of the reported measurements pertain to the
equilibrium state.
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VII.2.1. Alignment

The calibration of the interferometer must be performed before each measurement. Before
proceeding with these two operations, it is necessary to prepare the system and do some checks.
The initial step involves verifying that the beam is transmitted in the chamber and back-reflected
by the oscillator. Because the oscillator does not have a degree of freedom that can be adjusted
there are only two optical components to play with: the steering mirrors M2 and M3 (see Figure
VII.7). To allow the beam to arrive at the bottom surface of the oscillator with a 0¶ incident
angle, the HWP3 is rotated so that all the polarization is p̂ and all the beam is transmitted by
PBS2. Then, the two steering mirrors are moved so that the forward and return beams from
the chamber overlap at BS1. Subsequently, the HWP3 is rotated to project the polarization
onto ŝ so that the beam is completely reflected to the reference mirror. During the initial coarse
alignment, a check is conducted to ensure that the forward and reverse beams overlap. This
assessment is carried out by manipulating the degrees of freedom of the reference mirror. It
is important to note that this initial alignment phase is performed with the vacuum chamber
open, specifically with the top part and the tube removed. By rotating the HWP3 again to have
linear polarization at 45¶, the quality of interference at the photodiodes can be checked. The
overlapped beams are centered on the photodiodes by first using the BS2 degrees of freedom
and then moving the PBSs (3 and 4) of the two pairs of photodiodes. Fine alignment of the
interferometer can now be performed using the reference mirror and visualizing the live signals
on the PXI screen. The data acquisition system combines the readings from the 4 photodiodes,
computes online the contrast Cx and Cy (see also §VI.1), and displays in real-time a plot similar
to Figure VI.2. Furthermore, a fit, as discussed in §VI.1.3, is executed, and the parameters
of the ellipse are then displayed on the screen. The contrast level (given by the parameters
X and Y of the equations (VI.25) and (VI.26)) is an excellent indicator of alignment because
maximizing them optimizes both the alignment between the two interferometer paths and the
centering of the photodiodes. Figure VII.9 shows what the PXI-base data acquisition system
displays during this phase. The parameters in the red rectangle of the figure are used by the
script to produce a real-time power spectral density of the interferometer displacement (Figure
VII.10) to see if there are any anomalies (spurious peaks, high levels of high-frequency noise,
etc.) before the measurements.

VII.2.2. Calibration and data acquisition

Before the actuator was installed on the mirror (§VII.1.7), the alignment and the calibration
were performed by two di�erent methods: by hitting manually the vacuum chamber and by
feeding some power to the oscillator heater (§VII.1.2), both meant to induce a movement of the
oscillator by at least half wavelength (so as to span an entire interference fringe).

Manual excitation and heat flux

The very first method to calibrate the readout was based on a mechanical excitation performed
by hand: it was used in the initial part of this thesis’s work and has been already reported
in [90]. This method has the disadvantage of not being reproducible. Furthermore, it may
well happen that too large a force is applied in the hit causing nonlinear e�ects that make the
working point deviate from a circle/ellipse producing a spiral.

The second method to calibrate the readout is based on the thermal expansion of the oscillator
and was used for almost half of the work of this thesi, which is up to the point when the
piezoelectric actuator on the reference mirror was mounted. By turning on the heater, the
oscillator starts to heat and elongate via thermal expansion. In this phase the working point
of the interferometer begins to move, allowing data to be acquired for reconstruction of the
calibration ellipse. However, this discrepancy is considered negligible from the calibration
perspective. Additionally, as the oscillator cools primarily through heat conduction in the high
vacuum environment, this method has the drawback of a lengthy duration. It necessitates
waiting until the oscillator returns to equilibrium before starting thermal noise measurements.
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Figure VII.9: Screenshot of what the PXI-base data acquisition system displays typically during the
alignment procedure with the piezo. The red rectangle highlights the ellipse parameters
obtained by fitting the real-time data. The blue rectangle highlights the slopes of the
linear fit done by plotting the intensities of the two couples of PDs: AvsB and CvsD
(like Figure VI.8). These two quantities indicate if a post-processing correction of the
signals is needed and in case activate them live by pressing the "Correction" button.

Reference mirror modulation

A much faster calibration procedure is possible after the installation of the PZT on the reference
mirror (§VII.1.7). The PZT actuator is fed with a sinusoidal signal up to 3 Vpp (with an o�set
of 1.5 V), amplified by about a factor of 100 so that the mirror can move by at least a fringe of
interference.

Two di�erent strategies for inducing mirror movements are tested before settling on the final
procedure. In the first one, the signal sent to the PZT is a sin wave at 1 Hz. This choice aims
to encompass the entire interference fringe within a single period. Since the oscillation is slow,
it is also possible to visually check the interference behavior of the beam spot so that there
is no misalignment between the two wavefronts upon arrival at the photodiodes (vertical or
horizontal fringes). In the second way, the signal sent to the PZT is a sin wave at a frequency
about that of the longitudinal mode (1400 Hz). However, at medium and high frequencies, the
piezo is incapable of covering an entire interference fringe with a single period, as detailed in
§VII.1.7. To traverse the complete ellipse under these conditions, incremental adjustments were
made to the DC o�set of the sinusoid, maintaining a constant frequency and amplitude. These
adjustments occurred in small steps, ranging from 3 V to 5 V. Ultimately, both calibration
methods proved to be compatible with each other. Consequently, for the sake of simplicity, the
decision is made to exclusively adopt the first method—calibration with a large signal at low
frequency. Powering the piezo is very useful during the alignment phase as it is immediate to
see the contrast increasing or decreasing depending on how the beam centers the PDs.

For calibration purposes, the readings from the PDs are recorded and saved for approximately
10 seconds, corresponding to about 10 fringes. A typical calibration acquisition appears online
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Figure VII.10: Screenshot of what the PXI-base data acquisition system displays typically during an
acquisition. Following the calibration, the real-time amplitude spectral density of the
interferometer displacement is examined. In particular, the ASD level near the two
modes of interest (320Hz and 1402Hz as shown in the panel at the right-top - green
and red vertical lines) and the level of the broadband noise above 1000Hz (horizontal
green line) are monitored. The red circle is the fit obtained by the real-time calibration
explained above (§VI.1.4).

as shown in VII.9. Once the system has been aligned and calibration is obtained, it is possible
to continue with thermal noise measurements. In general, calibration can also be done after data
taking as an additional check that the system has not become misaligned during measurement.
To start the acquisition and data saving for thermal noise measurements, the same ADC
configuration utilized during calibration is employed. Only the number and time lengths of the
files to be acquired are modified. During the measurement, the generator to feed the piezo is
disconnected from the system and the connectors of both piezo actuators are plugged with 50 �
resistors to avoid electrical noise.

VII.2.3. Data analysis and results

A Python-based analysis program is developed to process the data output from the four
photodiodes. With the signals of the PDs, the program computes the PSD of the oscillator
displacement. Using a Lorentzian fit to the longitudinal mode peak, the e�ective temperature
according to the Equipartition theorem is obtained. The steps of the analysis can be summarized
as follows:

• Calculation of the calibration parameters.

• Inspection of the first minutes of the acquisition.

• Calculation of the displacement PSD for all data sets.
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• First selection of data based on noise background.

• Fit of the longitudinal mode.

• Second filtering based on the fit ‰2.

• Calculation of the Teff .

The first step of the analysis has the function of fitting the data acquired during calibration and
deriving the ellipse parameters. These parameters are saved on disk and are used to analyze the
data taken for thermal noise measurements. Batches of data obtained during the same period
or related to the same calibration are collectively analyzed. This usually involves examining
data collected continuously over a span of several days.

Before running the data analysis code on the full set of acquired data, a PSD using the first
data (about 6 minutes) is computed to check that no unexpected feature appear, and the system
behaves roughly as expected (top plot of Figure VII.11). The PSD of the oscillator displacement
is obtained by following the steps described in §VI.1.3. In addition to the broadband spectrum
covering 0 to 4 kHz, providing an overall perspective of the acquired data, there is a focused
inspection (middle plot of Figure VII.11) around the resonance of the longitudinal mode. This
examination assists in determining the frequency range for subsequent fitting procedures. As
shown in §VII.4.1 the longitudinal mode can undergo frequency shifts based on the mechanical
configurations of the system. The bottom plot of Figure VII.11 displays a zoomed-in view of
a frequency range immediately before the resonance. The focus on this interval is due to the
spectrum exhibiting no distinct features and being nearly flat. The PSD level in this frequency
range serves as an out-of-band veto, enabling the exclusion of periods with an unusually high
level of background noise from the analysis.

The analysis proceeds with the entire dataset. For each 20-second-long spectrum, noise
within the specified range (typically 1365-1395 Hz) is averaged. Subsequently, a histogram is
constructed, illustrating all such averages computed throughout the entire data-taking period
(refer to Figure VII.12). The noise must allow the thermal noise to be measured so, looking at
the expected spectrum from the simulation with the single oscillator model (Figure V.1) the
threshold was chosen at 10≠30 m2/Hz to have an SNR of at least 20. Also, the threshold is
a good compromise to keep the bulk of the distribution but cut the noise tails. The spectra
that passed the selection are subsequently averaged in groups of 20, resulting in an average
spectrum that represents approximately 6:30 minutes of acquisition time (even if not necessarily
consecutive). These are the PSDs on which the fitting procedure described in §V.3.2 applies. By
visual inspection of the spectrum around the longitudinal peak (center plot in Figure VII.11),
a range of about ±2 Hz from the peak maximum is chosen to fix the fit contains. Equation
(VII.4) is reformulated in terms of the parameters relevant to the study:

y(‹) = Noise + 2
fi

Area · �‹

4(‹ ≠ ‹0)2 + �‹2
(VII.4)

where Area is defined as the Lorentian integral. The Area is connected to Teff of the oscillator
by the following relation:

Teff = AreamÊ2

0

kB
(VII.5)

The parameters obtained from the fit of each spectrum for a typical acquisition run are shown
in Figure VII.13. The trend of the noise level (first graph at the top of the figure) is useful as a
further check that the system behaves as expected. The peak area (second plot from the top)
is the parameter from which the e�ective temperature of the oscillator will then be estimated.
The parameter �‹ represents the FWHM of the peak and is the parameter that represents the
dissipation of the oscillator. Past experience [82] suggests the expected quality factor Q = ‹o/�‹
for this oscillator to be of the order of 103. For what concerns the resonant frequency ‹0, it is
plotted over time to see if there is any trend (fourth graph starting from the top) indicating
that the system is not behaving appropriately. As shown in [92], the resonance frequency has
a temperature dependence of ≠0.6 Hz/K. So if there is a drift in ambient temperature during
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data taking this is made evident by this plot. The last parameter shown in the figure is the
reduced ‰2 of the fit. This parameter serves as an additional filter: in the subsequent steps
of the analysis, only average PSDs with a well-performing fit, i.e., ‰2

R < ‰2

R5%
, are considered.

Here ‰2

R5%
represents the threshold such that the probability of having a ‰2 > ‰2

R5%
is equal to

5%. After this final selection, the areas of the spectra that have passed filtering undergo analysis
to calculate the e�ective temperature according to (VII.5). At equilibrium, the expectation is
for this temperature to align with the ambient temperature.
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Figure VII.11: PSD of the calibrated interferometer readout, computed for testing purposes using
the first file (spanning 20 min) of a typical run of data acquisition for thermal noise
measurements. The readout is calibrated using the ellipse parameters obtained from
the calibration procedure at the beginning of the run. The shown spectrum is an
average of about the first 30 spectra of 20 seconds of the first file with a frequency
resolution of 0.05 Hz. (top) Broadband spectrum from 0 to 4 kHz. (center) Zoom on
the frequency region around resonance of the longitudinal mode. (bottom) Zoom on
the frequency region where the noise floor is usually flat.

Subsequently, the entire set of temperatures is represented in a histogram, which is fitted
with a Gaussian curve. The statistical properties of all the quantities extracted from the fit
(particularly the peak area) are treated in detail in [90]. Figure VII.14 shows the histograms
of temperatures before and after the chi-square selection for a 24-hour acquisition under
thermodynamic equilibrium conditions.

As can be seen from the result of the histogram, the temperature is far from that of the
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Figure VII.12: Histogram of the average PSD level in the frequency region 1365-1395 Hz. The threshold
value of 1 · 10≠30 is marked with a solid vertical line. Periods with PSD average values
in the range 1365-1395 Hz larger than this threshold are vetoed and not considered
further in the data analysis.

laboratory environment (296 K) and more importantly has a lower temperature. The unexpected
result arises from the measurements taken in thermodynamic equilibrium, where the FDT holds
true. Determining the e�ective temperature without any free parameters necessitated extensive
investigative e�orts on the system, and these e�orts are detailed in the following sections.
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VII.3. System characterization

The system, shown in Figure VII.15, undergoes comprehensive characterization, including the
mechanics, the readout, and the analysis, with the ultimate aim of enhancement. The goal is
to enable thermal noise measurements without relying on free parameters. A central challenge
addressed within this thesis pertains to the observed discrepancy in e�ective temperature in
equilibrium compared to the ambient temperature. This section focuses on the characterization
of primary structures evident in the interferometer output PSD, with a particular emphasis on
the low-frequency mechanical peaks.

Figure VII.15: Picture of the experimental optical bench. The vacuum system, comprising pumps
and gauges, extends from the left side of the chamber. On the right side, electronic
connections for di�erent sensors and PDs are present. The optical line for interferometric
readout is visible at the bottom. The chamber is wrapped with a heating cable that
allows the system’s ambient temperature to be changed.

VII.3.1. Transfer function

The main method of investigation of the mechanical response of the system is the measurement of
the transfer function between the aluminum flange and the oscillator mass. In this configuration,
the transfer function between the motion of the suspension point and the motion of the oscillator
is measured by utilizing the piezo, described in §VII.1.7, to mechanically excite the top flange.
The displacement of the cuboid mass is then measured. Apart from diagnostic checks, this
measurement can aid non-equilibrium results, as the expectation is for the transfer function
not to vary significantly in such states, except for the resonance frequency, which has a known
temperature dependence.
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Resonant peaks

First, the longitudinal and transverse resonance peaks of the oscillator are identified, respectively
at about 1400 Hz and 320 Hz. To perform the frequency scan automatically, the data acquisition
software is modified to control the signal generator (Agilent 33521A) connected to the PZT
actuator. The list of setting parameters for the data acquisition is shown in Table VII.4. The
script captures about 5 seconds for each signal frequency and then moves on to the next one,
according to the increment selected. O�ine, the QDPI output is calibrated into displacement

Acquisition settings
Waveform Function Sine
Starting Frequency [Hz] 1400
Amplitude [Vpp] 3
DC o�set [V] 1.5
Phase [rad] 0
Increment [Hz] 0.1
Number of samples 50

Table VII.4: Setting parameters to measure the transfer function of the oscillator by sending a signal
of such characteristics to the PZT mounted on the aluminum flange. In this case, was
shown an example in which was performed the transfer function from 1398 to 1403 Hz
with a resolution of 0.1 Hz.

and filtered by a digital lockin while reference is a digital signal at the same frequency as the
signal sent to the PZT actuator.

Initially, the QPDI readout system with only 3 photodiodes (refer to §VI.2.1) was employed
for this analysis. The ADC has only 4 input channels, typically assigned to the 4 PDs. Due
to this limitation, one PD reading had to be foregone to acquire the signal sent to the PZT
actuator, which serves as the reference for the digital lock-in amplifier.

Once digitized, the calibrated QPDI output is multiplied by the signal sent to the PZT and
also by the same signal but phase-shifted by a quarter of a period. The results of these two
multiplications are low pass filtered to obtain the I, Q output of the lock-in. The signals I and
Q are combined with the phase and amplitude of the response at each frequency. Combining the
amplitudes obtained at each frequency yields the transfer function. Figure VII.16 and VII.17
show a typical transfer function (amplitude and phase) of the system. For this data set, the
longitudinal peak is at 1400.5 Hz while the transverse peak is at 321.2 Hz. It can be seen
that the amplitude of the transverse peak is more than a factor of 10 smaller than that of the
longitudinal mode, despite its larger Q factor (about 30000 vs 7000). This is because the PZT
force is better aligned along the vertical axis, i.e. parallel to the motion of the long oscillator. As
expected from a harmonic oscillator, there is a fi change in the phase of the response across the
frequency of resonance, appreciated in both figures. This investigation with the transfer function,
as elaborated in the next paragraphs, is very useful in finding the resonance frequencies when
changes are made to the system. In fact, frequencies can undergo notable changes following
hardware interventions or in response to variations in temperature conditions, such as shift in
ambient temperature or inducted thermal gradient.

Low-frequency region

The procedure outlined in the previous paragraphs is also used to study the di�erent structures
that the output PSD shows. An example is given in Figure VII.18. The spectrum represents
the mean PSD computed using a data set spanning 1 hour and is representative of the typical
noise observed at the beginning of this thesis work, immediately after mounting the laser head
on the optical bench. The spectrum reveals numerous peaks, each of which has been thoroughly
investigated and e�orts have been dedicated to eliminating or, at the very least, minimizing
their impact. In the same way that the oscillator resonance peaks are obtained, a low-frequency



138 non-equilibrium thermal noise experiment

2

4

6

A
m

p
li
tu

d
e

[m
]

�10�9

1398 1399 1400 1401 1402 1403

Frequency [Hz]

�2

�1

0

P
h
as

e
[r

ad
]

Figure VII.16: Mechanical response of the system at the longitudinal peak frequency acquired with
the parameters listed in Table VII.4.
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Figure VII.17: Mechanical response of the system at the longitudinal peak frequency with a resolution
of 0.05 Hz and with a di�erent range of frequencies. The scan is a zoom with a higher
resolution (0.01 Hz) than the longitudinal peak, to account for the smaller FWHM.

scan with the PZT actuator is performed to characterize these peaks and to compare them with
the suspension resonance modes. Figure VII.19 shows the mechanical response for frequencies
up to 300 Hz. The figure shows also a zoom into the region between 1 Hz and 50 Hz, where the
acoustic modes of the suspension are concentrated. The modes are listed in Table VII.5 [88].
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Figure VII.18: PSD acquired with the interferometer readout described in [89]. Note the peak structure
propagating from 30 to about 300 Hz, where there is the transverse mode. It also
features a big bump that occurs during measurements between 300 and 900 Hz.

Suspension acoustic modes
Mode number ‹ [Hz]

1 8.3
2 16.1
3 24.1
4 45.4
5 47.1
6 49.1

Table VII.5: Values of the resonant frequency of the first acoustic modes of the full suspension which
have vertical component [88].

VII.3.2. Suppression of mechanical vibration

The low-frequency segment of the PSD exhibits a recurring pattern at multiple frequencies,
corresponding to the three main modes of the suspension, as illustrated in Figure VII.2. These
patterns represent the harmonics of the suspension resonance. In fact, the vacuum chamber
is supported by three pillars arranged at 120 degrees on its circular base. The pillars are
constructed with a composition of half aluminum and half rigid plastic material. The plastic
portion has an M10 threaded hole that allows it to be screwed into the chamber. In this
configuration, vibrations from the optical bench are transmitted directly to the camera. An
additional filter between the optical table and the chamber is introduced to diminish the noise
energy at the input of the suspension. The material used is the same (Sylodamp - SP1000)
that was used in the AURIGA experiment to absorb most of the low-frequency vibrations. To
e�ectively attenuate frequencies of interest (approximately above 10 Hz), the Sylodamp pieces
must be appropriately sized, considering the mass to be supported and the static load of the
material. Each of the three pillars must support a weight of approximately 33 kg, given that
the entire system, including the chamber, suspension, and vacuum components, has a total



140 non-equilibrium thermal noise experiment

50 100 150 200 250 300 350

10�11

10�9

A
m

p
li
tu

d
e

[m
]

10 15 20 25 30 35 40 45 50

Frequency [Hz]

10�8

2 � 10�8

A
m

p
li
tu

d
e

[m
]

Figure VII.19: (top) Response of the QDPI to a signal fed to the PZT actuator on top of the aluminum
flange, in the low-frequency region. (bottom) Zoom-in at a higher resolution (0.1Hz)
of the response The vertical lines are at the predicted resonant frequencies of the first
acoustic modes of the full suspension as reported in [88].

weight of around 100 kg. The static material load is 5 N/mm2 and the maximum size that each
Sylodamp cube is limited by the diameter of the plastic part of the pillars (50 mm). The interior
of the plastic cylinders is thus hollowed out to have a parallelepiped with a square base with
a maximum diagonal of 40 mm. Considering the material deflection (≥ 1 mm) and crossing
all possible parameter combinations (dimensions and damping frequency), it is chosen to cut
Sylodamp pieces with a square base of diagonal parts at 39.9 mm. Figure VII.20 shows how the
dampers are installed in the supporting pillars. With these characteristics, the combination of
the three Sylodamp pieces should attenuate frequencies above 14 Hz. Furthermore, because of
the specific design of the vacuum chamber, the balance of the chamber itself is compromised
by the vacuum parts (gauges, valves, etc). Indeed, as evident from Figure VII.15, the vacuum
system extends to the left over the optical bench, causing an imbalance in the weight distribution
and resulting in the tilt of the chamber. For these reasons, an adjustable vertical support with
a piece of Sylodamp is installed below the vacuum system to prevent vibrations from bypassing
the dampers. The e�ect of the installation can be seen in Figure VII.21. The amplitude of
resonances at 30 Hz has been reduced by an order of magnitude. As a consequence, most of the
upper harmonics are no longer visible.

VII.3.3. Stray-light bump

The installation of the Sylodamp is e�ective in reducing the low-frequency noise. However, the
system is also plagued by a noise bump, covering the frequency range from about 100 Hz to
1000 Hz that occurred randomly during measurements. The excitation of this shoulder seems
unrelated to the mechanics of the suspension + oscillator system. In fact, attempts to excite this
bump with the mechanical excitation provided by the PZT actuator proved unsuccessful. During
the investigation of this e�ect, it can be seen that this depended greatly on the alignment of the
system. Notably, the amplitude of this distinctive feature diminishes as the forward and return
beams become more misaligned in their reflection from the vacuum chamber. This suggests
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Figure VII.20: (left) Exterior of the plastic part of one of the pillars supporting the chamber. (right)
Inside view of the plastic section with the Sylodamp parallelepiped installed.

that the e�ect is optical in nature, particularly from the shape of the bump in the spectrum it
appears that the e�ect can be traced to stray light [62]. According to the definition, stray light
is light that is produced within the optical layout that follows a di�erent path from the intended
one. This additional light, which can have di�erent types of sources, goes out from the main
path and can be reflected by mechanical components that are not suspended or mechanically
isolated. After the reflection, the scattered light can re-couple with the main beam and add
extra noise to the measurements. Stray light predominantly occupies the low-frequency part of
the spectrum, where mechanical components, responsible for light back-reflection, experience
the most significant vibrations induced by acoustic or seismic noise. As demonstrated in [93],
special attention must be paid to the positioning of the mechanical parts that reflect scattered
light and the optics that produce it. In addition, one must avoid placing the beam waist near
mechanical parts that are not mechanically isolated because the fraction of re-coupled light is
inversely proportional to the beam size:

fsc ≥
⁄2

fi2w2
(VII.6)

where w is the beam radius. The emergence of this e�ect subsequent to the installation of the
laser head on the NETN optical bench, where adjustments were made to the beam parameters,
indicates that the size and position of the waist are likely the primary reasons for this occurrence.
Notably, this distinctive bump is absent in measurements conducted in [89] and [90], further
underscoring its connection to alterations in beam characteristics.

As mentioned in §VII.1.5, initially the waist is placed at approximately the oscillator’s bottom
surface with a radius dimension of 750 µm. With the addition of a third telescope lens, the
position and size of the waist are changed. Specifically, the waist is moved away from the
oscillator surface and closer to the detection zone. As can be seen from Figure VII.21, this
modification significantly reduces the percentage of scattered light re-coupled into the main
beam, suggesting that the scattered light is reflected from some surface of the vacuum chamber
not filtered by the mechanical suspensions.
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beam waist away from the area of the vacuum chamber. The resonant peaks in the
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the third telescope lens (orange curve), the stray light bump is no longer present in
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VII.4. Longitudinal mode investigation
After the installation of the piezoelectric actuator behind the reference mirror, a transfer function
measurement is conducted as a check. Unexpectedly, it is discovered that the resonance frequency
of the longitudinal mode has shifted by approximately -15 Hz, transitioning from 1400.5 to 1386
Hz [91]. In light of this observation, the working hypothesis to account for this frequency change
is that the mechanical characteristics of the system underwent alterations during the installation
process. Subsequent tests are designed to elucidate the root cause of this phenomenon and
explore whether it is correlated with the outcomes of thermal noise measurements.

VII.4.1. Investigations on the resonance frequency
During the reassembly of the system after the piezo actuator installation (§VII.1.7), the alterations
made included the redistribution of weight on the support holding the interferometer in the
chamber (due to the piezo support) and the adjustment of the tightening torque for the 8 steel
screws securing the aluminum flange to the third stage of the mechanical filters.

Figure VII.22 shows the last stage of the suspension along with the aluminum flange and the
8 steel screws. Before this thesis work began, these screws were tightened to a torque of 10 Nm
and remained unchanged until the installation of the piezo. In this last intervention, the system
is reassembled by tightening the screws without using a torque wrench. However, according to
tabulated values, these 8 M8 steel screws could be tightened with a torque of up to 15 Nm (the
precise value depends on the strength class of the screw and thread). This observation suggests

Figure VII.22: Top view of the open vacuum chamber. The 8 steel screws (circled in red) attach the
aluminum flange (light blue circle) to the last stage of the suspension. The 8 center
screws, on the other hand, are made of Al7075. They are softer screws as they attach
the oscillator assembly to the monolithic oscillator block. In the center of the flange,
the mass mounted on the piezoelectric actuator, used to achieve the transfer function,
can be seen.

that the observed shift in resonance frequency could be attributed to non-ideal tightening of
the two components: the aluminum flange (enclosed in the blue light circle in Figure VII.22)
that supports the block with the oscillator, and the suspension system. Moreover, this non-ideal
tightening could potentially impact the low e�ective temperatures obtained in equilibrium, given
that those measurements are conducted with a looser torque setting (10 Nm instead of 15 Nm).
Hence, a systematic investigation is initiated by measuring the transfer function around the
longitudinal mode as a function of the torque · applied to the screws. Figure VII.23 summarizes
the results.
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As can be seen from the graph, the resonance tends to shift from 1388 Hz with a tightening
torque of 3 Nm, gradually approaching an asymptotic value near 1401 Hz as the tightening
torque increases toward the maximum value allowed by the screws. The legend shows also the
FWHM (indicated by �‹): a progressive trend towards lower values is evident with increasing
torque. This behavior is detailed in Figure VII.24. The findings confirm that higher torques
result in a more rigid connection between the flange and, consequently, the oscillator with the
annular mass of the suspension, e�ectively representing a single body. It is important to note
that the transfer functions are acquired at atmospheric pressure. For each measurement, the
chamber lid is simply leaned up to speed up the measurements. This may have a�ected the
di�erent weight distribution of the chamber and consequently the alignment of the system. In
fact, with the installation of the Sylodamp, the tilt of the chamber is sensitive to how the
weight is distributed and connected to it. This aspect could explain the non-monotonic growth
of the peak height, as the measurements do not have exactly the same conditions due to the
repositioning of the chamber lid between two di�erent measurements.

As seen in the image from the top of the chamber, there are also aluminum screws on the
flange that attach the oscillator to the assembly system where the instrumentation is mounted.
The same test is performed on these aluminum screws, starting from · =1 Nm to the maximum
allowed 6 Nm. During this test, the tightening torque of the steel screws is kept fixed at 10 Nm.
The e�ect of these screws is much less influential as the resonance frequency shifts a maximum
of 4 Hz from minimum to maximum torque. This is probably due to the di�erent weight of the
elements that the screws connect. The steel screws have to fasten the whole oscillator assembly
which weighs almost 4 kg while the aluminum screws have to fasten the monolithic aluminum
block weighing 0.6 kg.

Double oscillator simulation
To replicate the observed behavior in Figure VII.23, a more detailed model for the longitudinal
mode is explored for the analysis of thermal noise measurements. Instead of treating the
oscillator as connected to an infinitely massive object, a damped double oscillator system is
considered (§V.1.4). The double oscillator is used to reproduce the coupling that exists between
the aluminum flange and the last stage of the suspension as the torque of the screws changes.
This e�ect is simulated by sti�ening the elastic constant between the first and the second
oscillator. In this model, the primary mass is represented by the Al flange combined with the
third stage of the suspension, as illustrated in Figure V.2. The formula used to reproduce the
behavior of the peak is the equation (VII.7), rewritten in its extended version:

Sx2(Ê) = 4kBT
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D
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and the denominator D has the form:
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To replicate the situation depicted in the transfer function measurements, two di�erent approaches
are employed.

The first approach involves considering the oscillating mass m1 as the combination of all
suspension stages (approximately 50 kg), with an oscillation frequency around Ê1 = 30 Hz,
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as shown in Figure VII.3. Mass m2 (0.25 kg), on the other hand, represents the aluminum
oscillator with a resonant frequency of Ê2 =1400 Hz. By varying Ê1 in the low-frequency range
(10-100 Hz), as expected, the longitudinal mode resonance frequency of the second oscillator is
una�ected, remaining fixed around 1400 Hz. Frequencies exceeding 100 Hz are excluded from
the analysis, as the low-frequency peak harmonics are mitigated using Sylodamp (see Section
§VII.3.2). In this condition, the first oscillator can be considered completely decoupled from the
second one. This leads to the conclusion that the massive, low-frequency oscillator does not
a�ect the frequency of the lighter second oscillator. As a result, this scheme can be ruled out as
an explanation for the frequency shift of the longitudinal mode resonance with torque.

In the second approach, the oscillating mass m1 is considered to be one of several elements in
the last stage of the suspension (e.g. Al flange and 3rd annular mass) that can be a�ected by the
tightening of the screws. The mass and the internal resonant frequency of these elements (see
Table VII.2) are varied to simulate the behavior in the range (1500-2500 Hz). Tightening the
screws indeed leads to increased sti�ness in the elastic constant representing the first oscillator,
m1. Consequently, this tightening results in an increase in the internal resonance frequency of
the simulated element. The result is shown in Figure VII.25. The behavior shown is di�erent
from that observed in the single oscillator reference in red. By increasing the frequency of
oscillator m1 (from light green to blue), the curves move to higher frequencies by decreasing
their amplitude. The frequency behavior aligns with expectations: as the resonance frequency
Ê1 increases and surpasses Ê2, the two oscillators decouple. This is confirmed by the curves in
blue, which approach asymptotically toward 1400 Hz. This value is reached when Ê1 or m1

tends to infinity. In contrast, the peak amplitude behaves di�erently from what is observed: it
decreases as the frequency increases.

It should be noted that, experimentally, the m2 oscillator attached to an infinite mass is never
measured, so the observed 1400 Hz is already the resonant frequency of a complex system. In
other words, it could be that the m2 oscillator itself is even higher, and the combined system
shows behavior in which 1400 Hz is already the convergence of all the resonances (the blue
curves in the figure). Taking this aspect into consideration, simulations are carried out to vary
the resonance frequency Ê2. These simulations consistently exhibit behavior similar to that
shown in Figure VII.25 but with di�erent frequency o�sets due to the choice of parameters.

The conclusions drawn from these simulations indicate that the behavior of the system is too
complex to be addressed adequately with an analytical model. Consequently, a finite element
simulation would be necessary.
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Figure VII.23: Plot of the di�erent transfer functions around the resonance peak for di�erent tightening
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the data are shown.
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represents the reference of the single oscillator oscillating at 1400.5 Hz as observed in
the test.
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VII.4.2. Long-term investigations on effective temperature
Following the tests described in the previous section, the screws were tightened to the maximum
allowable value (15 Nm), and the experiment was returned to operative conditions. The
investigation starts by examining the e�ects of this higher tightening in comparison to the 10 Nm
case. Subsequently, for a more comprehensive understanding of e�ective temperature behavior, a
data-taking campaign is initiated to cover an extended period in an (almost) continuous manner.
The results of these two investigations are presented in the following section.
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Figure VII.26: Plot of temperature trend in di�erent configurations. The horizontal line in red is placed
at the temperature measured by the thermometer inside the chamber that monitors the
ambient temperature. The colored areas correspond to di�erent configurations. The
area a blue shows the measurements after the first tightening of the screws, the area in
orange the second tightening, and the area in green corresponds to the measurements
taken with the installation of the new screws.

Figure VII.26 shows the thermal noise measurements results in the equilibrium condition
after the screws have been tightened to the maximum torque. Measurements are acquired over
about 3 months at di�erent times of the day (morning, afternoon, and night) and the system
is optimized before each measurement through alignment and calibration. As illustrated in
the light blue area, the average temperature data during an acquisition in the first 15 days
after the screws are tightened appear to align with the laboratory temperature at 296 K (red
horizontal line). However, after about 20 days, the temperature began to decrease until it
reached a subthermal temperature of about 240 K. Given this trend, the chamber is reopened
and the tightness of the screws is checked. All of them are found with a torque of about 12
Nm, below the 15 Nm set before closing the chamber. Clearly, the torque tightening of the
screws relaxed in time compared to the torque previously applied. Subsequently, the screws are
tightened again, and new measurements are taken (orange area). As can be seen, this second
intervention produces no changes in e�ective temperature. Upon re-opening the chamber, it is
observed that the cause of the relaxation of the screws is due to the threads being damaged.
The screws are then replaced, and new thermal noise measurements are performed. The green
area in the measurements indicates that the temperatures, within their margin of error, initially
align with the ambient temperature of the laboratory for a brief period before decreasing. This
decreasing trend is observed systematically after the chamber is closed again. This observation,
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along with the increase in Teff after tightening the screws, led to the hypothesis that the screw
system used does not ensure proper sti�ening of the mechanical parts involved. To address
this issue, potential solutions include either redesigning the oscillator assembly to minimize the
involvement of mechanical parts, which is a time-consuming process, or modifying the existing
system by incorporating more screws with larger sizes. The latter approach would theoretically
enhance the torque and, consequently, increase the sti�ness of the suspension-aluminum flange
system.

Mechanical changes and long-term measurements

The mechanical setup is modified increasing both the number of screws, from 8 to 16, and
increasing their diameter (from M8 to M10) to allow the application of larger torque. With
the M10 screws, the tightening torque has a working range from 18 to 24 Nm. For the initial
measurements, the tightening is set at its lower recommended value (18 Nm), considering the
possibility of tightening them further if needed, as a higher value is used when measuring an
e�ective temperature equal to the ambient temperature.

In this new configuration, the vacuum has been re-established to measure again the thermal
noise. For this new set of measurements, the system is set to acquire data automatically for
multiple days while avoiding any possible factors that might introduce unknown variables (e.g.,
system realignment, laser power change) to the results. Approximately every 3 days, a calibration
is acquired to check the status of the system and its alignment. Additionally, all measurements
acquired automatically during extraordinary events in the laboratory (e.g., great crowding,
technical interventions, etc.) are excluded.

The primary goals of these long-run measurements are to investigate if the e�ective temperature
has changed again, potentially approaching the ambient temperature, and to study the stability
and repeatability of the system. The trend of Teff obtained with this new set of measurements

Figure VII.27: Top view of the open vacuum chamber after upgrading to the new screws layout
(compare with Figure VII.22). The number of steel screws was doubled from 8 to 16.
In addition, the screw size has been increased from M8 to M10.

is shown in the first plot from the top of Figure VII.28. As soon as the vacuum chamber is
closed, and measurements start, the measured temperature begins rising again to above 280 K,
remaining below the ambient temperature. After an initial increase, the temperature begins to
decline, reaching around 220 K for a duration of approximately 10 days before subsequently
increasing and stabilizing at around 250 K. To analyze this behavior and identify its cause,
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various parameters related to the resonance peak, including high-frequency noise (i.e. noise
between 1365-1395 Hz), resonant frequency ‹0, the optical phase Â, and the FWHM of the peak
�‹ are plotted. A notable observation is the increase in the resonant frequency, shifting from
1400 to 1408 Hz following the system modification. As can be seen from Figure VII.28, there
is a direct correlation between the trend of Teff and high-frequency noise. This result seems
counterintuitive since a lower wide band noise points to a more sensitive readout decrease in
Teff is unexpected and unjustified. In principle, Teff should remain una�ected by changes in
the noise level.

Another evident correlation is between the phase Â and the resonance frequency ‹0. However,
this correlation is expected, as the resonant frequency of the oscillator is directly linked to the
thermodynamic temperature of the room. Variations in the latter cause thermal expansion of
the whole system, leading to a relative change between the interferometer’s arms. During the
entire acquisition, there is a clear increase in the resonance frequency by approximately 0.6 Hz.
As detailed in § VII.2.3, this change is associated with a temperature decrease of about 1 K
of the ambient temperature. Due to the limited sensitivity in measuring Teff , the observed
temperature change is not easily noticeable in its overall trend.

On the other hand, the FWHM of the peak does not seem to change. This is not surprising,
as this quantity is related to the mechanical characteristics of the system, particularly the
dissipation of the oscillator.

In correspondence to the green vertical line in Figure VII.28, the data display abnormal
behavior. This is evident from the discontinuity in the trends of Teff , noise, and phase Â.
Notably, such a discontinuity is absent in the trends of the resonance frequency ‹0 and �‹,
suggesting that the anomaly is attributed to factors associated with the readout rather than the
mechanics of the system.

The interdependencies among these variables are presented in the correlation matrix shown in
Figure VII.29, employing Spearman’s rank correlation coe�cient [94]. Indeed, the correlation
between Teff and the noise is quantified at 0.70, while the strong anticorrelation between the
phase Â and the resonant frequency ‹0 has a value of -0.91. Additionally, a correlation exists
between the phase Â and the noise level, suggesting that the sensitivity of the instrument varies
depending on the interferometer working point. This last aspect is the first point that will be
investigated to understand whether or not there is an error in the interferometric readout.

Since the mechanical modification, the vacuum chamber has not been reopened to verify that
the tightening torques used have remained the same. A counter-test is scheduled to ensure that
the measurements have not been a�ected by screw relaxation. This will be conducted promptly
once the chamber is reopened. If achieving an absolute measurement of Teff without any free
parameters proved challenging, the vacuum chamber has been equipped with heating cables
(see FigureVII.15). These cables have been designed to heat the chamber, thereby increasing
the ambient temperature. This method can be used as another verification that, aside from the
lower value, Teff is proportional to the thermodynamic temperature as expected.
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Figure VII.28: Plots of di�erent parameters after the mechanical changes. From the top: (first)
E�ective temperature trend. The horizontal line in red is placed at the temperature
measured by the thermometer inside the chamber that monitors the ambient tempera-
ture. (second) Noise level background before the peak obtained by the longitudinal
peak fit. (third) Resonance frequency. (fourth) Optical phase. (fifth) FWHM. The
vertical green line marks the point of acquisition where the readout system exhibited
unusual behaviors.
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CONCLUSIONS

The commissioning of Virgo for the O4 science run began in April 2020. Over the past two years,
extensive upgrades have been executed on the interferometer to meet the new sensitivity target.

The primary objective centers around reducing the interferometer sensing noise, achieved
through the implementation of three key enhancements: the installation of the signal recycling
cavity, an increase in interferometer laser power, and the introduction of frequency-dependent
squeezing. The first part of this thesis focuses on the implementation and characterization of
this last aspect. The main change from O3 has been the installation of the filter cavity (FC) into
the squeezing system. This addition allows for the frequency-dependent rotation of the squeezed
ellipse, e�ectively surpassing quantum noise across a spectrum from low to high frequencies.
However, this modification complicates the existing experimental setup, requiring extensive
e�orts to control various aspects of the system for the stable injection of squeezed vacuum states
into the interferometer.

This thesis primarily focuses on characterizing and stabilizing the stand-alone Quantum
Noise Reduction (QNR) system, starting with the measurement of optical losses in various
components through squeezing measurements in both frequency-independent squeezing (FIS)
and frequency-dependent squeezing (FDS).

These measurements confirm the predicted loss values from the design phase with the system
stand-alone, highlighting FC injection losses 10 ± 1 %, mode mismatch between the FC and the
squeezed beam 1.5 ± 1 %, FC fluctuations ≥1 Hz, and squeezing phase noise 31 ± 21 mrad.

An additional key task involves implementing a method to measure the free spectral range of
the FC. This aspect is crucial for accurately selecting the detuning frequency after a FC unlock,
in preparation for FDS injection. This study enables fully automated FDS measurements over
several consecutive days, showcasing system stability with a detuning frequency drift of at most
4 Hz within 24 hours. Significantly, the outcomes presented in this thesis form the core findings
reported in a paper published in Physical Review Letters (PRL) [40]. These results stand out
as the foremost in terms of squeezing performance and long-term stability documented in the
existing literature.

These e�orts have led to the integration of the QNR system with the interferometer by
superimposing the squeezing beams with main laser of Virgo. Following the setup of control
loops, an initial injection of FIS was carried out. Despite the sensitivity of Virgo is not quantum-
limited in the high-frequency region, a noticeable improvement in strain sensitivity, attributed
to squeezing e�ects, has been observed in the frequency range of 1000-3500 Hz.

Generating 10.5 dB of squeezing, the strain sensitivity ratio exhibits a significant 4 dB increase
with the injection of an anti-squeezed state. Conversely, a slight decrease of approximately 1 dB
is observed with the injection of a squeezed state. This result holds promise for the sensitivity
of Virgo in O4. Despite significant modifications to the system, the injection of FIS into the
interferometer can be ensured in a manner similar to O3: this is the current configuration being
considered for Virgo entering O4. Subsequently, FDS injection is planned during the six-month
commissioning break within the scientific run.

The second part of this thesis delves into an experiment aimed at exploring the properties of
thermal noise out of thermodynamic equilibrium. The primary goal is the absolute calibration
of thermal noise, eliminating dependence on free parameters.

The central focus is on optimizing the Quadrature Phase Di�erential Interferometer readout
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and the overall setup, including mechanics, vacuum, and optics. While this configuration
introduces novel challenges compared to the older readout system utilized in the RareNoise
experiment [81], it prompted a detailed system characterization. The system transfer function
played a crucial role in this characterization, serving as an essential tool to investigate di�erent
phenomena. This utility facilitated a significant reduction of low-frequency noise by an order
of magnitude, aided in identifying and addressing anomalies in the power spectral density
attributed to stray light, and supported the exploration of the longitudinal mode of the oscillator.
The latter study resulted in a mechanical modification of the system, the consequences of which
are still under investigation.

Despite considerable e�orts, the issue of the e�ective temperature at equilibrium being lower
than the thermodynamic one remains unresolved. Additionally, the non-stationary nature of the
e�ective temperature has been outlined and quantified, assuming values in the range between
220 K and 280 K. Substantial progress has been achieved in comprehending this facet of the
experiment, fostering confidence that the resolution to this intricate matter is imminent. There
is optimistic anticipation for the successful execution of non-equilibrium measurements in the
near future.

In the upcoming stages of this research, a thorough examination of the issues identified in the
last measurements conducted during this thesis will be undertaken. To address these challenges,
the vacuum chamber has been upgraded with heating wires. The primary objective is to increase
the ambient temperature, allowing us to investigate whether the measured e�ective temperature
correlates appropriately and to validate any observed o�set.

By incorporating heating wires, we also aim to explore the system’s behavior at higher
temperatures. There is a specific focus on the potential impact of thermal expansion on the
alignment of materials within the readout interferometer. If this hypothesis holds true, an active
approach involves installing motorized screws on the interferometer mirror to optimize alignment
before starting the thermal noise measurements.

Simultaneously, the theoretical model will undergo scrutiny through finite element simulations.
This in-depth analysis will concentrate on various elements of the oscillator assembly, with a
specific emphasis on the connection between the Al flange and the last stage of the suspension.

In the event that absolute calibration proves to be challenging, the experiment will pivot to a
well-established practice in thermal noise limited experiments. This entails calibrating under
the assumption of equilibrium and subsequently performing NETN measurements.

This comprehensive strategy integrates experimental verifications, theoretical model refinement,
and contingency plans for calibration, ensuring a systematic and robust approach to address
potential challenges encountered in this thesis work.
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