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Abstract: Currently, the nutraceutical approach to treat dyslipidaemia is increasing in use, and in 
many cases is used by physicians as the first choice in the treatment of patients with borderline 
values. Nutraceuticals represent an excellent opportunity to treat the preliminary conditions not yet 
showing the pathological signs of dyslipidaemia. Their general safety, the patient’s confidence, the 
convincing proof of efficacy and the reasonable costs prompted the market of new preparations. 
Despite this premise, many nutraceutical products are poorly formulated and do not meet the 
minimum requirements to ensure efficacy in normalizing blood lipid profiles, promoting 
cardiovascular protection, and normalizing disorders of glycemic metabolism. In this context, 
bioaccessibility and bioavailability of the active compounds is a crucial issue. Little attention is paid 
to the proper formulations needed to improve the overall bioavailability of the active molecules. 
According to these data, many products prove to be insufficient to ensure full enteric absorption. 
The present review analysed the literature in the field of nutraceuticals for the treatment of 
dyslipidemia, focusing on resveratrol, red yeast rice, berberine, and plant sterols, which are among 
the nutraceuticals with the greatest formulation problems, highlighting bioavailability and the most 
suitable formulations. 
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1. Introduction 
The nutraceuticals market has grown a lot over the last decade, with a global market 

of approximately USD 117 billion [1]. Nutraceuticals represent a milestone in the health 
maintaining strategy of people in the western world: from a medical point of view, these 
supplements are an interesting and reliable tool to improve bone and cartilage health, 
restore gut physiology and maintain the overall biochemical efficiency of the cells [2]. At 
the same time, in the last years, several randomized controlled trials (RCTs) and meta-
analysis of RCTs highlighted the potential role of some of these supplements in the 
prevention of several conditions such as cardiovascular diseases (CVDs) and 
neurodegenerative diseases as well [3–5]. In particular, in the landscape of the large 
number of nutraceutical products available that essentially cover all the medical fields, 
not always with proven and ascertained clinical benefits, those dedicated to 
hyperlipidaemia control and overall reduction of cardiovascular risk (CVR) are the most 
prescribed from clinicians and the most investigated from a clinical and pharmacological 
point of view [6]. Despite this huge bibliography regarding clinical effects and the 
pharmacological mode of action, the association with drugs and meta-analyses appeared 
in the most authoritative biomedical databases such as Pubmed, Scopus, Embase, Google 
Scholar, Index Copernicus and others, there is still a question mark and an opaque layer 
beside the real, unquestionable efficacy of nutraceutical products dedicated to blood 
lipids reduction and CVR prevention [6,7]. The major part of clinical investigations are 
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indeed poorly conducted, with inadequate cohorts of patients and enrolling criteria, or 
they simply do not conform to the recognized international clinical trial requirements. 
Even in the cases of well-designed and well-conducted clinical trials, very often the 
formulations tested are not fully and correctly analyzed under the aspect of the 
bioaccessibility and bioavailability of the active compounds delivered. The issue of the 
poor bioaccessibility and bioavailability of nutraceutical products is still infrequently 
debated and poorly considered in the perspective of assessing the real efficacy of the 
formulations tested under clinical trials. Very often the bioavailability profile of notorious 
molecules used to reduce blood lipids or counteract cardio-metabolic risk such as 
berberine chloride, resveratrol, monacolins and phytosterols is poorly evaluated and 
taken for granted [8]. 

The aim of this review was to analyze the pharmacological and clinical profile of the 
abovementioned compounds and to highlight the main bioavailability issues related to 
their oral intake. Although these molecules are widely known and marketed in Europe, 
they are known to have several formulation issues that may significantly reduce treatment 
efficacy. The authors investigated, where available, the most reliable and best 
technological and formulative approaches to ensure the most favourable bioavailability 
in humans. 

2. Materials and Methods 
A systematic search strategy was conducted for this review in order to identify trials 

in both the Cochrane Register of Controlled Trials (The Cochrane Collaboration, Oxford, 
UK) and MEDLINE (National Library of Medicine, Bethesda, Maryland, MD, USA; 
January 1970 to September 2022). The terms ‘Berberine’, ‘Resveratrol’, ‘Phytosterols’, 
‘Plant sterols’, ‘dietary supplement’, ‘Red yeast rice’, ‘Monacolin K’, ‘clinical trial’, and 
‘human’ were incorporated into an electronic search strategy. The selected references 
were further screened for application on dyslipidaemia risk factor. After a general 
introduction with the description of the main formulative problems regarding the lipid-
lowering nutraceuticals, the pharmacodynamic profiles, bioavailability and 
bionutraceutical strategies to improve bioavailability, clinical proven effects and safety 
profiles were described for each nutraceutical (red yeast rice, berberine, resveratrol and 
plant sterols and stanols). The authors of the writing and reviewing panels completed 
Declaration of Interest forms where real or potential sources of conflicts of interest might 
be perceived. 

3. Results 
3.1. Trans-Resveratrol 

t-Resveratrol (t-Res) (Figure 1) is a stilbenic derived phytoalexin extracted from the 
peel and seeds of Vitis Vinifera and from the roots of Poligonum Cuspidatum. It can also be 
isolated from other vegetal species such as rhubarb (Rheum rhabarbarum), apples (Malus 
domestica), blackberries (Morus nigra), peanuts (Arachys hypogea), pistachio (Pistacia vera), 
cocoa (Theobroma cacao), hop plant (Humulus lupulus) and jabuticabas or Brazilian grapes 
(Myrciaria culifolia) [9]. 

This molecule, widely investigated over the last 30 years for its ascertained health 
boosting properties and famous for playing a pivotal role in explaining the “French 
Paradox”, represents one of the more effective and potentially promising nutraceutical 
active compounds. In addition to its well-known properties in CV prevention, due to its 
anti-inflammatory [10], antidiabetic, [11] antioxidant [12] and lipid-lowering effects [13], 
there is increasing evidence that t-Res reduces vascular symptoms and bone mass loss 
during menopause [14–17]. There is some published evidence that t-Res and its 
metabolites are capable of inhibiting the growth of colon cancer and preventing its 
progression in vitro [18], even if data coming from clinical trials in humans is still 
inconsistent [19,20]. 
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Figure 1. Stilbenic structure of t-Resveratrol. 

3.1.1. Bioavailability 
Despite the numerous and overall well-documented health promoting and 

pharmacological properties, t-Res shows a poor bioavailability after oral administration 
in humans. The reasons include the massive biotransformation phenomena occurring in 
the liver microsomes and intestine (CYP3A, CYPB1 and CYPA2), and the relative 
metabolites are much less active or completely inactive [21–23]. In particular, when 
administered “per os”, it suffers a rapid transformation via phase II and some metabolites 
such as resveratrol 3-O-glucuronide, resveratrol 4-O-glucoronide, and resveratrol 3-O-
sulphate can be found in human plasma and urine. For this reason, following oral 
administration in humans, even the 75% of resveratrol is absorbed (possibly by 
transepithelial diffusion), the oral bioavailability is low (<1%) through the intestine and 
liver CYP450 metabolism and probably also by colonic bacteria as well [23,24]. In addition, 
t-Res has poor solubility in water (MW 228.247, pKa 8.99 and LogP 3.4), being about 3 
mg/100 mL and it is classified as a class II molecule in the Biopharmaceutical Classification 
System (BCS). 

In a study on 15 healthy volunteers, after a single administration of 500 mg of 
resveratrol, maximum plasma concentrations (Cmax) for resveratrol, glucuronated 
resveratrol and sulphated resveratrol were 71.2 ± 42.4 ng/mL, 4083.9 ± 1704.4 ng/mL and 
1516.0 ± 639.0 ng/mL, respectively, while the area under the concentration-time curves from 
zero to infinity (AUC0–∞) values were 179.1 ± 79.1 ng/mL, 39,732.4 ± 16,145.6 ng/mL and 
14,441.7 ± 7593.2 ng/mL, respectively [25]. This result was similar to that obtained by 
Boocock et al. [26]. 

In addition, t-Res pharmacokinetics have shown circadian variation, with higher 
bioavailability after morning administration [27]. 

3.1.2. Bionutraceutical Strategies to Improve Bioavailability of t-Res 
According to this well-defined biochemical evidence, t-Res still represents a 

challenging tool to approach the abovementioned clinical conditions and the 
contradictory data coming from the published clinical investigations together with the 
high variability in terms of dosage tested [25], confirming the need to develop new drug 
delivery systems (DDS) intended to enhance t-Res bioavailability [28]. 

In particular, a reliable delivery strategy consists of promoting t-Res absorption 
through nano-structured delivery systems to improve enteric bioaccessibility [29,30]. The 
low MW of the molecule, together with the high lipophilicity, makes t-Res comply with 
the fitting rules of sublingual drug absorption, and for this reason, this strategy could 
potentially change its bioavailability destiny [31]. In this regard, new technological 
systems, such as liquid spray nanoemulsion, have already shown to be capable of 
promoting an effective sublingual absorption of lipophilic molecules such as Vitamin D3 
[32] and Astaxanthin [33], and could likely represent a further new shining insight 
dedicated to t-Res delivery. 

Another promising technological approach described is the association of t-Res with 
UDP-Glucuronyl Transferase (UDPGT) inhibitors (Figure 2). This enzyme expressed both 
in the enterocyte and hepatocyte is responsible for a massive t-Res glucuronidation that 
strongly limits its bioavailability. Some nano-formulations showed to be able to enhance 

OH

OH

OH
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the overall bioavailability of t-RES by inhibiting this enzyme and with specific reference 
to excipients like PEG-derived middle chain triglycerides (PEG-8-Caprylic/Capric 
triglycerides, Labrasol, Gattefossè) [34]. These nano-structured delivery systems appear 
particularly interesting and promising to improve the therapeutic potential of t-Res 
because they enhance both the bioaccessibility and bioavailability of the molecule by re-
spectively promoting their enteric hydro-dispersion and inhibiting UDPGT [35]. 

The widespread nutraceutical use of alkaloid piperine derived from black pepper, a 
natural inhibitor of UDPGT, in combination with t-Res, seems to be, on the contrary, 
poorly founded: piperine does not reduce the glucuronides concentration in the plasma 
of treated patients even though it enhances the overall brain blood flow and cognitive 
performances with respect to resveratrol alone [36]. This apparent discrepancy is resolved 
by considering the direct role of piperine in improving blood flow, and as consequence, 
mild cognitive impairment, as reported [37]. A significant reduction in t-Res glucuronida-
tion by piperine has been proven in the animal model (mice) at a dosage of 10 mg/kg of 
piperine and 100 mg/kg of t-Res. Shifting these dosages to a healthy human being of 75 
kg/weight, they should be respectively 7.5 g of t-Res and 750 mg of piperine. Considering 
the toxicological falls of repeated assumption of piperine in terms of pharmacokinetics of 
drugs and its own toxicity, it seems not viable to consider such dosages of this alkaloid. It 
can even be considered much less as a practicable bioavailability improvement strategy 
for t-Res, especially in the absence of clear proof of evidence in humans. 

Interestingly, the assumption of a grape-wine shoot extract containing t-Res in hu-
man volunteers from a micellar dispersion system has led to a significantly higher bioa-
vailability in comparison with extract alone after oral assumption [38]. A possible expla-
nation of this interesting data is that the micellar dispersion could have boosted the overall 
enteric bioaccessibility of t-Res and the phyto-complex of Vitis vinifera composed of poly-
phenols and flavonoids could have reduced the UDPGT and/or cytochromes enzymes ac-
tivity [39]. 

Another possible strategy regards the use of the cubosomes, which are colloids in a 
stable dispersion of liquid crystalline nanoparticles which improve the bioavailability and 
stability of drugs that are poorly soluble in water [40]. In particular, the formulation of t-
Res and piperine-loaded cubosomes have been tested in volunteers with good results [41]. 

Finally, even the association of t-Res with cyclodextrins could represent an important 
formulative strategy to enhance the solubility of this nutraceutical and thereby improve 
its bioavailability [42,43]. 
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Figure 2. Scheme describing different metabolic pathways of t-Res in the presence of UDPGT inhib-
itors through the enteric (left) and sublingual (right: with colour pink is represented the tongue) 
route. 

3.1.3. Pharmacodynamics 
t-Res is well known for acting through multiple molecular targets. It shows a molec-

ular structure close to that of physiologic and synthetic estrogens and effectively acts as 
an estrogen-receptor modulating agent [44,45]. It mainly works as a protecting molecule 
for the cardiovascular system, reducing the aggregation of low-density lipoproteins 
[46,47]. As reported by Cho et al., t-Res could potentiate the lipid-lowering action of 
pravastatin by down-regulating the 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) re-
ductase [48]. This nutraceutical could also increase the expression of the low density lip-
oprotein (LDL) receptors in hepatocytes in vitro [49] and decrease LDL oxidation involved 
in the atherosclerosis process [50]. Another anti-atherogenic action of t-Res regards the 
inhibition of the migration and proliferation of vascular smooth muscle cells [51] 

In addition, this molecule appears to activate Sirtuin-1, endothelial nitric oxide syn-
thase (eNOS), nuclear erythroid 2–related factor 2 (Nrf2) and decreases tumor necrosis 
factor (TNF)-α production, reducing the endothelial apoptosis and vascular inflammation 
[52]. Finally, t-Res has been shown to decrease the expression of adhesion molecules (such 
as intercellular adhesion molecule-1, ICAM-1, and vascular cell adhesion molecule-1, 
VCAM-1) via the inhibition of the nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) pathway activation [53]. 

3.1.4. Clinically Proven Effects 
The result of RCTs on the lipid-lowering effects of t-Res are still contradictory. In a 

meta-analysis of 21 RCTs, the results indicated that t-Res cannot significantly change total 
cholesterol (TC) (WMD = −0.08 mmol/L, 95% CI: −0.23, 0.08; p = 0.349), low density lipo-
protein-cholesterol (LDL-C) (WMD: −0.04 mmol/L, 95% CI: −0.21, 0.12; p = 0.620), or high 
density lipoprotein-cholesterol (HDL-C) (WMD: 0.01 mmol/L, 95% CI: 0.04, 0.02; p = 0.269) 
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even if the effect on triglycerides (TG) was significant (WMD: 0.58 mmol/L, 95% CI: 0.34, 
0.82; p < 0.0001) [54]. However, in the recent RCT of Hoseini et al., t-Res demonstrated 
efficacy in patients affected by type-2 diabetes mellitus and coronary heart disease (CHD) 
in promoting glycaemic control (reduction of fasting glucose (−10.04 mg/dL; 95%CI, 
−18.23, −1.86; p= 0.01), insulin (p = 0.01) and insulin resistance (p = 0.001) and improvement 
of insulin sensitivity (p = 0.02) compared to placebo), HDL-C levels (3.38 mg/dL; 95%CI, 
1.72, 5.05; p < 0.001) and total/HDL-C ratio (−0.36; 95% CI, −0.59, −0.13; p = 0.002) as well. 
In addition, t-Res also ameliorates oxidative stress parameters such as the total antioxi-
dant capacity (TAC) (p = 0.006) and blood concentration of malondialdehyde (MDA) (p = 
0.04) [55]. However, the dosage of t-Res administered was 500 mg daily and patients as-
sumed this dosage for 4 weeks. This dosage is largely higher than the average one gener-
ally found in the nutritional supplements available, which ranges from 20 to 100 mg/unit. 
This data confirms that obtained by the meta-analysis of Hausenblas et al. regarding 196 
diabetic patients, even if it emphasized the limitation of the small size of the patient co-
horts, duration and variability in dosages [56]. 

Finally, in addition to red yeast rice (10 mg of monacolins) and a pool of antioxidants 
(green tea dry extract, coenzyme Q10, astaxanthin and quercetin), t-Res has been tested in 
a RCT on 25 moderately hypercholesterolemic patients in primary prevention for CVDs. 
The results showed an improvement of cholesterol levels (LDL-C, −22.36%; non-HDL-C, 
−22.83%), high sensible C reactive protein (hsCRP) (−2.33%), and endothelial function 
(Pulse Volume displacement after monacolin treatment, 18.59%) [57]. 

3.1.5. Safety Profile 
RCTs in humans reveal that t-Res is well-tolerated and the adverse events, if any, are 

mild in severity [24,27]. In general, up to 2.5 g/day, t-Res has an excellent safety profile 
and only high dosages >2.5–5 g/day are associated with mild to moderate gastrointestinal 
symptoms [58]. 

3.2. Berberine 
Berberine (BBR) is a quaternary benzylisoquinolinic alkaloid (Figure 3) present in 

various plant species such as Coptis, Hydrastis and Berberis. BBR is only one of the alkaloids 
present in the rhizome, stem, root, fruit and bark of these plants [59] but it is the most 
studied because it is known to possesses a variety of pharmacological properties in clinical 
practice [60,61]. In particular, several RCTs have underlined the potential role of BBR in 
cardiovascular prevention for its anti-hyperglycemic, anti-hyperlipidemic, anti-inflam-
matory and antioxidant effects [62]. 

 
Figure 3. Chemical structure of Berberine. 

3.2.1. Bioavailability 
The most important limitation of BBR in clinical practice regards its absolute bioavail-

ability, which in rats is below 1% (0.36% [63] and 0.68% [64] (BCS class III)). Relatively few 
studies on humans on the pharmacokinetics of BBR have been conducted: in one of these, 
regarding 20 volunteers treated with 400 mg of BBR per os, the mean Cmax and AUC0–∞ were 
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about 0.4 ng/mL and 9.2 h·ng/mL, respectively [65]. Similar results have been obtained 
after administration of 500 mg of BBR in 10 volunteers (Cmax values of BBR and the two 
metabolites thalifendine and jatrorrhizine: 0.07 ± 0.01, 0.14 ± 0.01, and 0.13 ± 0.02 nM re-
spectively) [66]. The low oral bioavailability of BBR may be due first of all to its poor ab-
sorption (56% loss of absorption) and in particular to its self-aggregation, poor permeabil-
ity, P-glycoprotein (P-gp)-mediated efflux, and hepatobiliary re-excretion (Figure 4) [67]. 
Self-aggregation is a characteristic of many molecules in the ionized form as BBR; in this 
form, it easily self-aggregates in the acidic environment of the stomach and upper small 
intestine with reduction of the solubility (BBR aqueous solubility is about 2 mg/mL), lim-
iting its oral absorption [66]. In addition, BBR has a pH-dependent solubility with an op-
timal range around pH 7.0 (20-fold higher compared to pH 1.0) [68], and low permeability 
(effective permeability coefficient (Peff): 0.178 × 10−4 cm/s) [63]. Lastly, this molecule has 
been confirmed to be a P-gp substrate expressed in the apical membrane of the epithelial 
layer of the gut wall: this is an ATP-dependent protein, better known as a multi drug 
resistance glycoprotein (MDRG), capable of expelling the substrate from the enterocyte 
towards the enteric lumen (pumping off) [69,70]. 

At the same time, BBR undergoes a marked first pass metabolism in the small intes-
tine (43.5% loss of absorption) and in the liver as well. The mechanisms of intestinal first 
pass metabolism are still unclear, even if it is supposed that it may mainly be affected by 
the enzymes CYP2D6, CYP1A2 and CYP3A4 [71,72], and also by the intestinal microbiota 
[73]. Regarding liver metabolism, BBR is metabolized through phase I oxidative demeth-
ylation (with the formation of numerous metabolites such as berberrubine, thalifendine, 
demethyleneberberine, and jatrorrhizine) followed by phase II glucuronidation (with the 
formation of BBR glucuronide conjugates). Some of these metabolites remained active on 
BBR’s targets in the liver but with a reduced potency [74,75]. 

For these reasons, only about 0.5% of the dose of BBR passes to the portal circulation 
and arrives into the liver. Of this, another 0.14% is lost with the hepatoenteral circulation 
process [76]. 

 
Figure 4. Berberine route after oral supplementation. After ingestion, the tablet disintegrates and 
releases the BBR particles (1). However, about 56% of BBR is not absorbed in the GI tract due to self-
aggregation (2). In addition, intestinal metabolism (operated by both gut microbiota and CYP450) 
is responsible for the 43.5% of total BBR-particles (3). Finally, the poor permeability (4), P-gp-medi-
ated efflux (5) and hepatobiliary re-excretion (7) also contribute to the reduction of bioavailability. 
Only 0.5% of BBR enter the portal circulation (6) and 0.36% arrive in the systemic circulation (9). 
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3.2.2. Biopharmaceutical Strategies to Improve Bioavailability of BBR 
In recent years, alternative approaches have been studied to increase the bioavaila-

bility of BBR, using (1) permeability enhancers, (2) P-gp inhibitors, and (3) lipid micropar-
ticle delivery systems [76]. 

Regarding permeability enhancers, sodium caprate is an anionic surfactant approved 
by the FDA as an excipient in medical preparations [77]. Its mechanism of action regards 
first of all the ability to enlarge the intestinal tight junctions [78], in addition to contrib-
uting to the formation of BBR–caprate salts, increasing the lipophilicity of BBR [79]. Sev-
eral preclinical studies have shown that co-administration of sodium caprate increases the 
bioavailability of BBR, increasing its pharmacological effects [78,80]. Even if sodium 
caprate can be considered a safe molecule [79], some cases of transient and reversible in-
testinal damage are reported in the literature [77]. For this reason, in recent years the re-
search has shifted to another interesting molecule: chitosan (CH) (Figure 5). This is a cati-
onic polysaccharide from the shells of shrimps and crabs that displays a dose-dependent 
enhancement of BBR intestinal permeation (CH is present in formulations at 0.5%, 1.5%, 
and 3.0%) [81]. CH acts through the inhibition of P-gp (Figure 3), the regulation of tight 
junctions with the enhancement of paracellular permeability, and its mucoadhesive prop-
erties [82]. In particular, the interactions between positive charges expressed by quater-
nized derivatives of CH (such as trimethyl CH), and the negative charges of the carboxylic 
groups of tight junction proteins determine the change of the steric tertiary structure of 
tight junctions, thus increasing permeability [83]. As reported by Fratter et al., CH is a 
poly-amino sugar soluble in acidic water solution (pH < 5). For this reason, the use of 
acidic molecules as N-Acetylcysteine (NAC) in the formulations determines the formation 
of a poly-cationic ammonic structure through the interaction between the carboxylic 
group pf NAC and the aminic group of glucosamine. In addition, NAC also presents a 
mucolytic activity, reducing the viscosity of the enteric covering mucous layer which rep-
resents a limiting factor in the absorption of active ingredients [84]. 

Biopharmaceutical strategies to implement BBR bioavailability can also involve the 
use of P-gp inhibitors: in this sense, natural compounds like silymarin from Silybum mari-
anum [85] or some excipients as vitamin E derivatives, cyclodextrins and polyethylene 
glycols have been tested with some success [76]. Finally, one of the most fascinating and 
promising techniques consists of the use of lipid microparticle drug delivery systems 
(LMDDSs) such as liposomes, solid lipid nanoparticles, micelles and nanoemulsions [86]. 
The mechanisms behind these strategies are multiple and include the reduction of particle 
size and/or the interfacial surface tension, the improvement of solubility and/or permea-
bility in the intestinal tract and/or endocytosis of encapsulated BBR across the intestinal 
epithelia, and the enhancement of BBR transportation to the lymphatic system or the re-
duction of self-aggregation. In the last case, the use of a self-microemulsifying drug deliv-
ery system that consists in a mixture of oils and surfactants with BBR have been demon-
strated to improve BBR bioavailability in pre-clinical models [87]. 
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Figure 5. Chitosan cationized by NAC. The carboxylic group of NAC protonates the aminic group 
of Glucosamine, producing a polycation. 

3.2.3. Pharmacodynamics 
One of the most studied actions of BBR is linked to its lipid-lowering activity. The 

two essential mechanisms by which BBR regulates plasma cholesterol levels seem to be as 
follows: firstly, it inhibits the proprotein convertase subtilisin/kexin type 9 (PCSK9) 
through the ubiquitination and degradation of hepatocyte nuclear factor 1 alpha (HNF-1 
alpha), which translated means an increase of the hepatic LDL receptor (LDL-R). Sec-
ondly, BBR regulates the expression of hepatic LDL-R [88,89] with a post-transcriptional 
mechanism. In addition, BBR reduces the intestinal absorption of cholesterol, promoting 
the replacement and formation of new bile acids, and it is also an activator of AMPK, a 
kinase that is responsible for the increase of fatty acids oxidation and the reduction of the 
expression of lipogenic genes [90]. 

3.2.4. Clinically Proven Effects 
The lipid-lowering efficacy of berberine at doses between 500 and 1500 mg has been 

confirmed by several meta-analyses of RCTs: one of the most recent included 27 RCTs and 
2569 subjects. BBR intake showed a reduction of the levels of TC (−25.4 mg/dL, p = 0.0002), 
LDL-C (−25.1 mg/dL, p < 0.00001) and TG (−34.5 mg/dL, p = 0.0001) and an improvement 
of HDL-C values (+2.7 mg/dL, p < 0.00001), with an excellent safety profile [91,92]. Similar 
efficacy and safety data were also confirmed in another meta-analysis of 14 RCTs that 
included more than 3000 subjects where BBR was associated with other lipid-lowering 
nutraceuticals (BBR in combination with red yeast rice, policosanol, astaxanthin, coen-
zyme Q10 and folic acid) [93]. Compared with red yeast rice or other compounds with a 
statin-similar mechanism of action, BBR has a greater effect in the reduction of triglycer-
idemia and glycemia, confirming its specific role in statin-intolerant subjects, patients 
with metabolic syndrome and/or hypertriglyceridemia [62]. In patients undergoing coro-
nary angioplasty, berberine has been shown to decrease the levels of interleukin 6 (IL-6) 
(p < 0.05) and the monocyte chemoattractant protein-1 (MCP-1) (p < 0.05), as well as hs-
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CRP (p < 0.001), ICAM-1(p < 0.001), VCAM-1 (p < 0.001), and matrix metallopeptidase-9 
(MMP-9) (p < 0.001) compared to baseline [94]. Finally, BBR has shown a promising pro-
spect in patients with polycystic ovary syndrome (PCOS) with insulin resistance (IR): a 
meta-analysis of nine RCTs showed no significant difference between BBR and metformin 
on the alleviation of insulin resistance, on the improvement of glycolipidic metabolism, 
or on the reproductive endocrine condition [95]. 

3.2.5. Safety Profile 
Based on the studies conducted to date, BBR administration at dosages between 500 

mg and 1 g/day could be considered safe and well tolerated. The reported side effects have 
been mild, mostly of a gastrointestinal nature (diarrhoea, abdominal distension and con-
stipation), and comparable with those in the control group [62]. No significant difference 
was found in the levels of creatinine, aspartate transaminase (AST) and alanine transam-
inase (ALT) in comparison to the control group [96], which on the contrary tends to de-
crease in patients with non-alcoholic liver steatosis [97]. The main contraindications con-
cern pregnancy and breastfeeding (BBR can be transmitted to the new-born through the 
breastfeeding). In addition, BBR could cross the placenta and might cause harm to the 
foetus. Finally, kernicterus, or bilirubin encephalopathy, has been found in some infants 
exposed to BBR: this molecule seems to reduce the hepatic clearance of bilirubin [98,99]. 
Regarding the risk of drug interactions, this is very low in clinical practice, especially for 
the low systemic bioavailability of BBR. However, at higher doses than those commonly 
used as a supplement, it can increase the plasma concentration of cyclosporine [100], and 
consequently the toxic effects, as well as interacting with the drugs metabolised by 
CYP450 (3A4) (competitive inhibition). Patients treated with drugs with a narrow thera-
peutic range and high risk of interaction, such as HIV positive antiretroviral treatment, 
could be pay attention to co-administration of BBR [101]. No drug interaction has been 
demonstrated with simvastatin and fenofibrate [102]. The International Lipid Expert 
Panel (ILEP) recommends the use of BBR in particular in statin-intolerant dyslipidemic 
patients, precisely because of its high tolerability profile [7,103]. In conclusion, BBR sup-
plementation, in the short-medium term, at dosages between 500 mg and 1000 mg/day, 
has proven to be safe and well tolerated, even in fragile patients. Further RCTs are needed 
to confirm the long-term safety profile of this molecule. 

3.3. Plant Sterols and Stanols 
Plant sterols and stanols (PS) are molecules similar to cholesterol that are naturally 

present as fatty acid esters, hydroxycinnamic acid esters, and glycosides in several plant 
sources such as cereals, nuts, legumes, seeds, fruits and vegetable oils and fat spreads 
[104]. In particular, the most abundant PS in western diets are sitosterol (66%), campes-
terol (22%), stigmasterol (8%), and sitostanol plus campestanol (4%) which are present in 
the above-mentioned sources [105]. Compared with cholesterol, PS differ structurally in 
the presence of a methyl (campesterol) or ethyl (B-sitosterol) group in the side chain at 
C24, or an extra double bond in C22 (stigmasterol), while stanols as beta-sitostanol, stig-
mastanol and campestanol, are the saturated derivatives of sterols (Figure 6) [106]. West-
ern diets are characterized by a relatively low daily intake of PS (on average 300 mg plant 
sterols and 17–24 mg plant stanols per day). However, some populations like vegetarians 
or the Japanese consume up to 600 mg of PS/day [107]. PS are not synthesized endoge-
nously. For this reason, each PS found in the circulation is derived from the diet. 
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Figure 6. Chemical structure of plant sterols and stanols. 

3.3.1. Pharmacodynamics 
Once taken with the diet or as supplements, all ester bonds of PS are cleaved by spe-

cific enzymes within the gastro-intestinal tract, releasing free PS. The main lipid-lowering 
mechanism of action of free PS regards the reduction of intestinal cholesterol absorption 
through the competition in the formation of solubilized micelles [108]. Like cholesterol, 
PS are taken up from the mixed micelles into enterocytes via the Niemann-pick C1-like 1 
(NPC1L1) transporter presents on the brush border membrane [109]. NPC1L1 is well 
known to be the pharmacological target of ezetimibe, which efficiently reduces the ab-
sorption of intestinal cholesterol [110]. After uptake into the enterocytes, while the choles-
terol is a substrate for intestinal acyl-CoA cholesterol acyltransferase (ACAT), PS are not 
easily esterified and thus not efficiently incorporated into chylomicrons. In fact, as a con-
sequence of the reduced esterification, PS are excreted back into the intestinal lumen 
through the ATP-binding cassette protein family (ABCG5 and ABCG8) shuttles [111]. Re-
cently, another lipid-lowering mechanism of PS proposed regards the “TICE” (trans-in-
testinal cholesterol excretion) pathway. In particular, PS seem to be able to stimulate the 
efflux of cholesterol from the brush border membrane into the intestinal lumen [112]. Fi-
nally, PS intensify the expression of the ABCA1 transporter and inhibit the ACAT enzyme, 
reducing the amount of cholesterol absorbed from 50% to 30% [113]. 

3.3.2. Bioavailability 
Being excreted back into the intestinal lumen through the ABC protein family, the 

bioavailability of PS is very low (from 0.5% for sitosterol to 1.9% for campesterol 
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compared to 55–60% of exogenus cholesterol). In general, sterols are better absorbed than 
stanols and campesterol is better absorbed than sitosterol. The reason is that sterols with 
longer side chains and no double bond have an increased hydrophobicity and thus de-
creased micellar solubility [114]. Concentrations of PS are 15 to 30 times higher than those 
of stanols, but 200 times lower than those of cholesterol. After an ingestion of 1.6 g of PS, 
serum concentrations of sitosterol and campesterol increase on average by 2.2–5.0 μmol/L: 
however, as highlighted by the meta-analysis of Ras et al., plasma levels of PS showed a 
dose-dependent trend [111]. The 0.5–2% of PS that enter into circulation are rapidly ex-
creted by the liver and secreted into bile via hepatic ABCG5/G8 (classic paradigm) [115]. 
In the last years, the researchers have focused on a new paradigm concerning the hypoth-
esis that PS, upon reaching the circulation, are partly distributed to the peripheral tissues 
(such as lungs, brain and breast) and are also incorporated into red and white blood cells 
and platelets (Figure 7) [106]. In any case, it is important to emphasize that PS should be 
administered with a “fat vehicle” such as spreadable fats or emulsification agents like lec-
ithin to improve their dispersion, solubility and incorporation into micelles, and thus to 
achieve a better lipid-lowering effect [7]. A meta-analysis of RCTs showed that the best 
fat carriers for PS are rapeseed and canola for their high content of monounsaturated fatty 
acids, which enhances the functionality of PS [108]. 

In people with sitosterolemia, a rare recessive disease characterized by mutations of 
the ABCG5 or ABCG8 transporter genes, the levels of PS can increase excessively from 30 
to 100 times higher compared to normal values, especially in heterozygous subjects [114]. 
Elevated plasma PS levels are also observed in people with the Apolipoprotein E isoform 
E4 [116]. Conditions such as obesity, insulin resistance and diabetes type 2, metabolic syn-
drome and familial combined hyperlipidemia (FCH) are associated with a decreased ab-
sorption of PS, probably for the increased expression of the ABCB4 (MDR2) transporter 
gene involved in the biliary excretion of sterols, while the pharmacological treatment with 
statins induces a compensatory increase in cholesterol absorption but also PS levels as 
well [114]. 

 
Figure 7. Plant sterol and stanol physiology. (1) PS arrive into intestinal lumen with exogenous cho-
lesterol after a meal. (2) PS are taken up from the mixed micelles together with meal fats and bile 
and pancreatic secretions, which facilitate the entrance into enterocytes via the NPC1L1 transporter 
present on the brush border membrane of the enterocyte (3) Into enterocytes, while the cholesterol 
is a substrate for intestinal ACAT, PS are not easily esterified and thus not efficiently incorporated 
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into chylomicrons (<1%). (4) PS are excreted back in the intestinal lumen through the ATP-binding 
cassette protein family ABCG5, and ABCG8 shuttles and is eliminated through the faeces with un-
absorbed cholesterol. (5) A small percentage of PS is incorporated into chylomicrons and subse-
quently (6) reaches the bloodstream through the lymphatic system. (7) PS reach the liver, but most 
of the PS absorbed are re-excreted with the bile and thus eliminated through the faeces. Although 
circulating concentrations of PS are very low (6), they are probably taken up by several peripheral 
tissues in the brain, lungs and breasts (8). 

3.3.3. Clinically Proven Effects 
The lipid-lowering effects of PS have been demonstrated in several RCTs (>120) [117]. 

In the meta-analysis of Ras et al. regarding 41 RCTs and 2084 subjects, PS at dosages be-
tween 300 mg and 3.2 g/day (mean dose: 1.6 g/day), showed a mean reduction of LDL-C 
of 8.5% (−0.33 mmol/L). PS have been administered through different sources such as yo-
gurt, dressing, bread or mayonnaise for a duration between 21 and 315 days (median du-
ration of the studies: 28 days) [111]. Both the consensus paper of the European Athero-
sclerosis Society (EAS) and the International Lipid Expert Panel (ILEP) recommends the 
use of PS, with a daily intake of 2–3 g and an expected average LDL-C reduction of 10–
15% [7,106]. The lipid-lowering effect of PS is dose-dependent and proportional up to 3 
g/day (above 3 g/day, there is the saturation of the uptake and transport process of cho-
lesterol) with a mean reduction of LDL-C of 12% and no differences in efficacy between 
sterols and stanols. In patients with hypertriglyceridemia, PS have some impact on TG 
reduction [118]. Furthermore, PS supplementation seems to be effective in reducing the 
high-sensitivity C-reactive protein levels [119]. 

A meta-analysis of eight RCTs showed that the addition of PS to statin therapy in-
duce reductions in LDL-C equivalent to doubling the dose of statins administered (addi-
tional reduction of LDL-C of −0.34 mmol/L), suggesting a role of PS in minimizing the side 
effects of high doses of pharmacological treatment [120]. 

In an RCT of 21 mildly hypercholesterolemic subjects, the association of PS with 
Ezetimibe (EZE) 10 mg resulted in significantly lower intestinal cholesterol absorption 
(598 mg/day, 95% CI 368 to 828) compared to control (2161 mg/day, 1112 to 3209) and 
ezetimibe alone (1054 mg/day, 546 to 1561, both p < 0.0001) [121]. However, the LDL-cho-
lesterol-lowering effect of the PS/EZE seems to not differ from ezetimibe mono-therapy 
[122], even if Lin et al. reported a possible additive effect PS + EZE compared to ezetimibe 
alone [121]. These contradictory clinical data introduce the issue of interference between 
the mechanism of action of EZE and that of PS. EZE works in reducing enteric cholesterol 
absorption by inhibiting the NPC1L1 protein [123] which is the main carrier of cholesterol 
internalization placed in the brush border of the enterocyte [112]. This same protein is 
involved in the internalization of PS into the enterocyte and for this reason EZE theoreti-
cally inhibits PS internalization, preventing their ability to compete for Cholesterol ab-
sorption. This fact has been clinically proven in patients with sitosterolemia [124,124,125]. 
More and wider clinical investigations should be carried out to ascertain if and how this 
pharmacologic issue can interfere with the additive hypo-cholesterolemic effect of the as-
sociation of EZE + PS. Nerveless pharmacologic investigations should be addressed to 
understand in depth the mechanistic phenomena governing this interference and whether 
up-regulation mechanisms take place. 

3.3.4. Safety Profile 
The use of PS as lipid-lowering nutraceutical has been approved by various regula-

tory agencies such as the European Food and Safety Authority (EFSA), the U.S. Food and 
Drug Administration (USFDA), and Food Standards Australia New Zealand (FSANZ). PS 
have shown a good safety profile in the middle term even if data for treatment longer than 
two years are still not available [126]. The meta-analysis of Baumgartner et al. (41 RCTs 
and 3306 subjects) showed that the intake of PS (a mean of 2.5 g/day) reduced the total 
cholesterol-standardized concentrations of β-carotene (−10.1%, 95% CI: −12.3; −8.0), α-
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carotene (−7.8%, 95% CI: −11.3; −4.3), and lycopene (−6.3%, 95% CI: −8.6; −4.0) [127]. Plasma 
retinol (vitamin A) and vitamins D and K are not significantly affected [104,128]. Finally, 
PS administration is contraindicated for individuals diagnosed with sitosterolemia; these 
patients usually exhibit tendon xanthomas and premature atherosclerosis [129]. 

3.4. Monacolins from Red Yeast Rice (RYR) 
RYR is the product of the fermentation of the fungus Monascus spp. on rice (Oryza 

sativa L.) and it is widespread, with some variations throughout Asia where it has been 
used for over a thousand years as a food and as a medicinal remedy [130–132] and more 
recently as a food coloring agent [133,134]. It is also known for and used as a medicine 
belonging to TCM (Traditional Chinese Medicine) to promote blood circulation and prob-
lems related to gastric disorders [134,135]. 

RYR has been and still is the subject of numerous studies aimed at investigating and 
explaining its activities starting from its millenary uses in traditional medicine. In partic-
ular, the attention towards this compound started after the isolation among its compo-
nents of mevinoline, better known today as monacolin K (Figure 8), or Lovastatin, previ-
ously isolated from a matrix fermented by Aspergillus terreus [136]. 

 
Figure 8. Molecular structure of Monacolin K, also known as Mevinolin or Lovastatin. 

From a phytochemical point of view, RYR includes several classes of compounds in-
cluding monacolins, pigments, organic amino acids, sterols, decalin derivatives, flavo-
noids, lignans, coumarins, and terpenes [135]. Referring to the monacolins family, a total 
of 23 monacolins have been isolated and identified in RYR, including Monacolin K, J, L, 
M, X [130], and Q, R, S, in addition to their methyl esters and hydroxyacid forms (Table 1) 
[130,137]. On the other hand, 25 different pigments have been isolated, and many of them, 
beyond their coloring capacity, have shown health-related activities including the lipid-
lowering and anti-inflammatory ones [138,139]. 

The sterolic portion of the phytocomplex, consisting of nine sterols including beta-
sitosterol and stigmasterol, also showed a lipid-lowering activity [140,141]. It is possible 
that non-statin components of RYR exert pleiotropic actions as lipid-lowering agents, thus 
reaching the same values as the groups treated with single component statins [142,143]. 

Table 1. Chemical Structures of main monacolins from Red Yeast Rice. 

Structures Molecules R 

 

Monacolin K (MK) 
 

Monacolin J (MJ) -OH 
Monacolin L (ML) -H 

Monacolin X (MX) 
 

Monacolin M (MM) 
 

MK Hydroxy acid 
 

MJ Hydroxy acid -OH 

R 
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ML Hydroxy acid -H 

MX Hydroxy acid 
 

MM Hydroxy acid 
 

3.4.1. Bioavailability 
Monacolin K is a lipophilic drug that presents problems of solubility and permeabil-

ity (class II BCS). The lipophilic nature of the molecule (solubility equal to 1.3 μg/mL in 
water [135,144]) makes it poorly bioavailable after oral administration without a corre-
spondence between the absorbed dose and the available one. In fact, it is absorbed for 60–
80%, but only 5% is really available due to extensive metabolism in the gut and in the 
liver, and transmembrane efflux via P-gp pump [135,144,145]. The main cytochrome re-
sponsible for the metabolism of monacolin is the CYP450 3A [146]. However, it is noted 
that the pharmacokinetics of lovastatin are different when administered individually 
compared to administration as a component of RYR [147]. Indeed, some studies, per-
formed on Caco-2 models, have highlighted that RYR extract had a greater dissolution 
rate and therefore bioavailability, compared to monacolin K alone. Chen et al. have spec-
ulated that this was due to an ability of the RYR extract to inhibit the activity of CYP450 
and the P-pg pump [148,149]. In particular, in two human studies, Chen et al. showed that 
in the volunteers who received RYR, AUC and a Cmax was higher for both Monacolin K 
and its active acid form, and Tmax was lower compared to the group that received Lovas-
tatin alone, thus concluding that the oral bioavailability of Lovastatin is enhanced when 
administrated as part of the RYR due to a higher dissolution rate. These data, which show 
a higher bioavailability of monacolin K from RYR compared to the monacolin drug, have 
been confirmed by several clinical studies which show that the intake of 5–6 mg/day of 
Monacolin K from RYR are equivalent for efficacy to 20–40 mg/day of monacolin K alone 
[149–151]. 

The main hypothetical causes for these differences in pharmacokinetics between the 
two forms of Monacolin are: 
- The presence of other monacolins within the phytocomplex that may work synergis-

tically with lovastatin 
- The higher dissolution rate of monacolin K within the phytocomplex compared to 

the pure molecule 
- An inhibitory interaction by some components of the phytocomplex with cyto-

chromes and P-gp pumps [149–151]. 

3.4.2. Biopharmaceutical Strategies to Improve the Bioavailability of Monacolin K 
Based on the data described above, the bioavailability of monacolin K can be im-

proved with different strategies. One of these may be the formulation of monacolin K in 
association with components that inhibit the action of the P-gp pump and cytochrome 
[146]. In some studies, an improved bioavailability of monacolin K has been demonstrated 
in conjunction with grapefruit juice, whose flavonoids are known to have an inhibitory 
activity against CYP450 3A. In particular, in an open, randomized, two-phase crossover 
study, Kantola et al. found that the Cmax and the AUC of monacolin K with grapefruit 
juice was increased 12-fold (range, 5.2-fold to 19.7-fold; p < 0.001), and 15-fold (range, 5.7-
fold to 26.3-fold; p < 0.001), respectively [152]. 

A second strategy aimed at improving the bioavailability of monacolin is to increase 
its dissolution rate [152,153]. For this purpose, lipid formulations consisting of an active 
principle solubilized in triglycerides, partial glycerides, surfactants or co-surfactants can 
be used [154]. Chen et al. have highlighted that the release of lovastatin from tablets was 

R 



Nutrients 2022, 14, 4769 16 of 28 
 

 

highly dependent on the dissolution condition (in particular on the dissolution medium) 
and, in the presence of Sodium Lauryl Sulphate (SLS) it was 180-fold higher than in an 
acetate buffer. It is likely that lovastatin's release was also increased using simulated in-
testinal fluid containing taurocholate and lecithin [149]. 

These kind of formulation have the advantage of being versatile, as they can come in 
the form of solutions, suspensions, emulsions, self-emulsifying systems and microemul-
sions and of being able to exploit the lipid metabolism and the lymphatic pathway for 
their absorption into the intestine [155]. The intestinal lymphatic pathway has a funda-
mental role in the absorption of lipid substances (e.g., long chain fatty acids, fat soluble 
vitamins) and therefore can also be important for lipophilic drugs. In fact, while hydro-
philic active ingredients, administered orally, have access to the systemic circulation via 
the portal pathway, the highly lipophilic ones can reach the circulation directly using the 
lymphatic pathway [155]. The main advantage of drug absorption through the intestinal 
lymphatic system is the bypassing of the hepatic first pass mechanism which, as regards 
monacolin, is the main obstacle to its absorption. The disadvantage, on the other hand, 
can be identified in the fact that these formulations, being in liquid form, can present sta-
bility problems [154]. A solution to these problems is represented by the possibility of 
supporting these formulations on solid carriers in order to produce solid pharmaceutical 
forms for oral use. Regarding solid forms, the strategy of using hydrophilic carriers has 
also given good results in terms of the improved bioavailability of lovastatin. Wu et al. 
have shown that with in vitro and in vivo studies that loading of monacolin on a biode-
gradable porous starch foam with a nanoparticle structure can effectively improve the 
bioavailability of the molecule [153]. 

3.4.3. Pharmacodynamics 
From the physical-chemical point of view, in their active form all HMGRIs (HMG-

CoA Reductase Inhibitors) have a carboxyl group, which is a necessary functional group 
for inhibitory activity. It has a pKa between 2.5 and 3.5 and at physiological pH it is mainly 
ionized. It’s considered as a neutral lactonic prodrug. Once ingested it is hydrolized to its 
acid form, which is responsible for the pharmacological activity of the drug [135,156]. The 
results of subsequent metabolic reactions show no pharmacological activity. The mecha-
nism of action behind RYR cholesterol-lowering action is due, as is now known, to the 
presence of monacolins, so-called real “natural statins”. These compounds, which natu-
rally constitute about 0.4% of red yeast rice, and up to 1.9% in nutraceutical extracts, com-
petitively inhibit HMG-CoA reductase, reducing cholesterol biosynthesis [150]. As shown 
in Figure 9, HMG-CoA reductase is the enzyme which mediates the reaction from HMG-
CoA to mevalonate. The inhibition of the activity of this enzyme results in a decrease of 
the production of endogenous cholesterol. 
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Figure 9. Hypolipidemic mechanism of action of monacolins. 

The RYR phytocomplex also contains sterols, including beta-sitosterol, campesterol, 
stigmasterol, and sapogenin, isoflavones and isoflavone glycosides, and mono- and poly-
unsaturated fatty acids [130,150]. These phytosterol compounds, isoflavones, and fatty 
acids may inhibit cholesterol absorption or increase the clearance of cholesterol from the 
circulation [157]. Although it has been proven that the main responsible molecules for the 
cholesterol lowering action of RYR are the monacolins, it has been observed that even the 
fraction of yellow, orange and red pigments is able to positively and significantly influ-
ence the metabolism of lipids. This improves blood levels and also suppresses the hepatic 
accumulation of lipids with a consequent decrease in steatosis, with the promotion of the 
faecal elimination of cholesterol, triacylglycerol, and bile acids. The mechanism of action 
for these molecules consists of an up-regulation of farnesoid X receptor and peroxisome-
proliferator-activated receptor-gamma levels, the main receptors for the metabolism of 
cholesterol and the homeostasis of bile acids [135,158]. 

3.4.4. Clinically Proven Effects 
In the last thirty years, many clinical studies have been performed with the aim of 

demonstrating the effectiveness of RYR and in particular of its monacolin constituents, in 
the control and contrast of hyperlipidaemias and more generally of dyslipidaemias, and 
still today scientific research is focused on the determination of the correct dosage of the 
substance and its long-term safety [135]. 

The hypolipidemic potential of RYR has been consistently investigated and proved 
in several meta-analysis of RCTs: in one of the most recent, including 20 RCTs, the sup-
plementation with RYR (1200 mg–4800 mg/day containing from 4.8 mg to 24 mg of mon-
acolin K), for 2–24 months, has been associated with a reduction of LDL-C (−1.02 mmol/L, 
range −1.20 to −0.83) compared to placebo, which was not different from moderate-inten-
sity statins (40 mg of pravastatin, 10 mg of simvastatin, 20 mg of lovastatin; 0.003 mmol/L; 
range, −0.36 to 0.41). It is possible that non-statin components of RYR (such as polyunsatu-
rated fatty acids and beta-sitosterol) exert pleiotropic actions in reducing cholesterol, thus 
reaching the same values as the patients treated with moderate-intensity statins [159]. In 
addition, the results showed an increase of HDL-C (0.007 mmol/L; range, 0.03– 0.11) and 
a decrease of TG (−0.26 mmol/L; range, −0.35 to −0.17) compared to placebo. Concerning 
the safety profile, no significant differences have been observed between active and 
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placebo groups [159]. These data confirmed the results obtained in the Chinese meta-anal-
ysis by Liu et al. that included 93 RCTs and a total of 9625 participants [160]. 

In another RCT that included 4.870 Chinese subjects, the administration of 2.5–3.2 mg 
of Monacolin K, after a four-week initial period with controlled diet and suspension of 
lipid-lowering agents assumption, in patients which had a myocardial infarction (MI) 
within 60 months before enrollment, showed a significant decrease in frequency of major 
coronary events such as nonfatal MI and death from coronary or cardiac causes when 
compared to the placebo group (–10.4% and –5.7%, respectively; p < 0.001). In addition, 
another effect highlighted in this study was the decrease in the need for coronary revas-
cularization compared to placebo recipients, which in this case was 33% lower (p = 0.004) 
[161]. Similar results were obtained in a large trial including 1445 patients in secondary 
prevention with a history of MI (aged 65–75 years). In particular, the supplementation 
with RYR was associated with a reduction in the risk of coronary heart disease (CHD) 
(−31.0%; p = 0.04), all-cause mortality (−31.9%; p = 0.01), stroke (−44.1%; p = 0.04), the need 
for a coronary artery bypass graft, or a percutaneous coronary intervention (PCI) (−48.6%; 
p = 0.07), and malignancies (−51.4%; p = 0.03) [162]. 

Finally, RYR also improves endothelial function and arterial stiffness in patients with 
dyslipidaemias, measured as flow-mediated dilatation (FMD) and pulse-wave velocity 
(PWV) [163], in addition to reduction of the serum levels of apolipoprotein B, matrix met-
alloproteinases 2 and 9, and high-sensitivity C-reactive protein [147]. 

3.4.5. Safety Profile 
The safety profile of RYR is similar to that of low-dose statins [134]. RYR might cause 

some adverse effects, since monacolin K administration is linked to an increased risk of 
myopathy [164], symptomatic hepatitis [165], peripheral neuropathy [166], and erectile 
dysfunction [167]. Among these, the most frequent are myopathy and hepatitis [135]. 
Mazzanti et al., analysed the adverse reactions of food supplements containing RYR using  
Italy’s WHI-UMC system and CIOMS/RUCAM score. In particular, they found that 52 out 
1261 studies reported adverse reactions to RYR supplementation from April 2002 to Sep-
tember 2015, and myopathy and hepatitis represented the 52.73% of the total adverse re-
actions [134]. However, although the chronic administration of monacolins could be re-
sponsible for mild to moderately severe side effects, it is usually well tolerated, at least at 
dosages up to 10 mg/day of monacolin K, as highlighted by a recent meta-analysis of 53 
RCTs and a total of 8535 patients [168]. RYR seems thus to be an overall tolerable and safe 
lipid-lowering dietary supplement, especially in patients previously intolerant to statin 
treatment and at a dosage of 3 mg/day [103]. 

Due to the statins metabolism by CYP450 3A4, the coadministration of inhibitors or 
inducers of CYP450 may cause alterations of plasma concentrations of drugs (niacin, cy-
closporine, antifungals, fibrates, macrolides, coumarin, verapamil, nefazodone, human 
immunodeficiency virus protease inhibitors) and nutraceuticals (e.g., grapefruit juice). 
This increased exposure to the drug may increase the risk of myotoxic side effects and in 
some rare cases can potentially lead to a statin-induced rhabdomyolysis [135,135]. 

Companies providing RYR products on the market should be aware of these adverse 
reactions in order to give consumers proper indication of use and warnings before the 
assumption of RYR-based food supplements. 

Related to RYR safety, particular attention must be paid to the presence of citrinin. 
Citrinin is a polyketide, secondary metabolite found in several fungi, including M. pur-
pureus [130]. This molecule has been found, when ingested chronically, to exert a ne-
phrotoxic activity in different animal models, gradually leading to hyperplasia of the renal 
tubular epithelium, renal adenomas, and in some cases to renal tumors (at a dose of 50 
mg/kg body weight [b.w.] causing tumors in 100% of the animals tested) as well as a dis-
ruptive action on metabolic processes in the liver [169]. 

Citrinin may be contained in the 80% of products with RYR [170]. For this reason, 
Citrin, as a component, has been involved in several controversies related to the safety of 
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products containing RYR [135]. The EFSA has established 0.2 mg/kg b.w. per day as the 
highest quantity of citrinin that can be taken by humans with no nephrotoxic effects. How-
ever, at these doses, genotoxic and carcinogenic effects are not excluded. In the market, 
RYR supplements with levels of citrinin exceeding 114 mg/capsule were detected, and at 
four capsules/day (the recommended dosage) the mean was 456 mg/day of citrinin, which 
is well above the level of 20 mg/kg b.w. per day suggested by the EFSA [171]. 

In summary, based on the available clinical data about the lipid-lowering effect of 
RYR, this nutraceutical can be recommended in patients with moderately high hematic 
levels of cholesterol. 

For evidence of this, the EFSA expressed a positive scientific opinion on the substan-
tiation of health claims about the relationship between assuming RYR and the mainte-
nance of normal plasma LDL-C levels, linked to a dose of 10 mg/die (maximum allowed 
in Europe) of Monacolin K. However, due to safety reasons, recently some National Reg-
ulatory Agencies in Europe have suggested that a lower dosage of Monacolin K is recom-
mended. 

4. Discussion 
CVDs are the leading cause of mortality and disability worldwide, being responsible 

for up to 31% of deaths (taking an estimated 17.9 million lives each year) in 2012 [172]. In 
particular, ischemic heart disease and atherosclerosis are the main causes of premature 
death in Europe and are responsible for 42% of deaths in women and 38% of deaths in 
men under 75 years old [173]. The global economic impact of CVD is estimated to have 
been US $906 billion in 2015 and is expected to rise some 22% by 2030 [174]. Among the 
CVR factors, elevated TC (>5 mmol/L) and LDL-C (<3 mmol/L for patients at low and 
moderate risk for CHD, <2.6 mmol/L for patients at high risk and <1.8 mmol/L for patients 
at very high risk [175]) are the major modifiable risk factors for CHD, whereas high con-
centrations of HDL-C in certain conditions are considered protective [176]. However, 
LDL-C is considered a fundamental CVR and one of the main targets of both nutraceutical 
and drug therapies [177]. Many RCTs and meta-analysis of RCTs have shown a relation-
ship between a decrease in the levels of LDL-C and a reduction in the relative risk of CVD 
[178]. In particular, in a report from the Cholesterol Treatment Trialists’ (CTT) Collabora-
tion regarding >170 000 participants, it was stated that, with lipid-lowering therapy, each 
further reduction of LDL-C by 1 mmol/L (≈40 mg/dL) decreased the risk of revasculariza-
tion, coronary artery disease, and ischemic stroke [179] by approximately one-fifth. A re-
duction of 1 mmol/L is achievable through lifestyle improvements associated with lipid-
lowering nutraceuticals. In fact, based on current knowledge, nutraceuticals (mostly BBR, 
RYR and PS) could exert significant lipid-lowering activity especially in primary preven-
tion, and/or in patients with statin-associated muscle symptoms, or persons already 
treated with statins and/or ezetimibe but who have not reached the targeted LDL-C level 
although they are not too far from it [7]. Even the European guidelines for dyslipidemia 
management consider the possibility of using some lipid-lowering nutraceuticals in clin-
ical practice [175]. In fact, the lipid-lowering nutraceuticals can act through different 
mechanisms of action, contributing to the reduction of lipid-induced vascular damage, 
making them potential candidates for improving the lipid-lowering effects when used in 
combination with diet, drugs, or other nutraceuticals [180]. Nevertheless, the whole 
nutraceutical sector and in particular nutraceuticals with lipid-lowering action has still 
strong limits. In fact, while pharmaceutical products are strictly regulated (pre-clinical 
and clinical research with both in vitro and in vivo studies) and have a governmental 
sanction [181], nutraceuticals are considered as “foods” and consequently do not require 
clinical trials, but exclusively a “significant consumption history” on the territory. 

For this reason, several products on the market do not possess the minimum require-
ments with regard to quality, safety and. The most common errors include the combina-
tions of underdosed substances or active ingredients with poor bioaccessibility and bioa-
vailability on which bionutraceutical research has not been carried out. In fact, the success 
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of a pharmacological or nutraceutical treatment does not depend exclusively on the cor-
rect choice of the active ingredient and the dosage of administration, but also on the cor-
rect bionutraceutical formulation. In the future, in relation to the extensive use of these 
products, nutraceuticals should be regulated in a defined class. In the USA, due to the lack 
of a definition, nutraceuticals are regulated as “drugs, food ingredients and dietary sup-
plements” and according to FDA, the label of any products should state that “This state-
ment has not been evaluated by the FDA. This product is not intended to prevent, cure or treat any 
disease” [182]. In Europe, the European Food Safety Authority (EFSA) acknowledged the 
nutraceutical terminology and is responsible for evaluating the health claims of the sub-
stances [183]. 

5. Conclusions 
In summary, lipid-lowering dietary supplements have been shown to significantly 

improve the lipid profiles both alone and in combination with standard pharmacological 
treatments. However, it must be clearly emphasised that there are still no studies demon-
strating that nutraceuticals can prevent CVD morbidity or mortality. In addition, new 
studies on the bioaccesibility and bioavailability of these supplements, as well as new 
longer and larger RCTs, are urgently needed both to evaluate efficacy on outcomes and to 
improve pharmacokinetic parameters. 
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