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a b s t r a c t 

Despite shared procedures with adults, electroencephalography (EEG) in early development presents many specificities that need to be considered for good quality 
data collection. In this paper, we provide an overview of the most representative early cognitive developmental EEG studies focusing on the specificities of this 
neuroimaging technique in young participants, such as attrition and artifacts. We also summarize the most representative results in developmental EEG research 
obtained in the time and time-frequency domains and use more advanced signal processing methods. Finally, we briefly introduce three recent standardized pipelines 
that will help promote replicability and comparability across experiments and ages. While this paper does not claim to be exhaustive, it aims to give a sufficiently 
large overview of the challenges and solutions available to conduct robust cognitive developmental EEG studies. 
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. Introduction 

From a biological perspective, studying early brain development
nd functioning has substantial theoretical implications because it pro-
ides an appropriate level of analysis to understand human cogni-
ive functions ( Tinbergen, 1963 ; MacDougall-Shackleton, 2011 ; Hladký
nd Havlíček, 2013 ). In particular, electro-encephalographic record-
ngs (EEG) applied to developmental research represent an irreplace-
ble source of knowledge to understand the temporal dynamics of brain
ctivity and, consequently, the timing of cognitive processes in typi-
al and atypical populations. Noteworthy, under specific technical and
ethodological conditions, EEG can provide reliable spatial informa-

ion about the neural generators underlying scalp-level activity in in-
ants ( Reynolds and Richard, 2005 , 2009 ; Reynolds et al., 2010 ) and
hildren ( Bathelt et al., 2014 ; Timeo et al., 2019 ). Further, EEG is an
ssential tool for studying brain activity in newborns (0 to 1 month
ld), infants (2 to 24 months old), and very young children (2 to
 years old) because it presents undeniable advantages compared to
ther neuroimaging techniques. Compared to magnetic resonance imag-
ng (MRI), EEG is more affordable, more tolerant to movement, more
exible (it can be used while sleeping, sitting, standing, or laying),
nd less ethically demanding. Nonetheless, collecting good quality EEG
ata in young participants is conditioned by significant methodological
hallenges that depend on the experimental contexts and the planned
nalyses. 

The first challenge stands in the limited infants’ attentional capabil-
ties that effectively preclude the use of experimental paradigms widely
sed in preschool and school-aged children. Indeed, infants’ visual
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ttention span is limited to a few minutes within the first year of life
 Atkinson and Braddick, 2012 ). A second, not less problematic aspect is
he reduced behavioral repertoire that preverbal children can produce.
hus, experimental tasks requiring verbal responses or deliberate
otor acts (e.g., pressing a key to select a choice) are impossible for

oung infants. These issues inevitably reduce the range of possible
xperimental designs, forcing researchers to select only certain types of
timuli and reduce the number of experimental conditions to maintain
 good signal-to-noise ratio (SNR). These two examples are just a tiny
art of many challenges experimenters have to deal with when working
ith infants and EEG. 

In addition, data processing should be applied accordingly and
dapted to developmental populations. EEG signals can be analyzed us-
ng different approaches, thus providing different insights into the hu-
an brain’s functioning. A first general distinction can be made between

ime-locked and continuous EEG recordings. Event-related brain poten-
ials (ERPs), the “voltage fluctuations in the ongoing EEG that are time-
ocked to an event, such as the onset of a stimulus ” ( Kappenman and
uck, 2011 ), allow researchers to link brain activities to specific events
ith precise temporal resolution. More recently, time-frequency (TF)

ransformations have gained significant interest in the developmental
ommunity allowing the study of brain oscillations during rest periods
r in response to external events. Furthermore, although TF analyses
f continuous EEG recordings were mainly used for clinical purposes
 Connell et al., 1989 ; Hosain et al., 2003 ; Schumacher et al., 2011 ) or
o describe general states of the brain ( de Haan, 2013 ), they can also
e used to study infants brain activity during more ecologically valid
22 
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This article aims to provide an overview of representative EEG stud-
es tapping early cognitive development to help researchers consider
ach processing step before jumping in. Rather than an exhaustive re-
iew of the developmental EEG literature, we report and discuss the
ain challenges and specificities that any researcher may encounter
hen conducting an EEG study with young humans. We also provide

ome practical and methodological guidelines to maximize the success
ate in such studies. 

. Working with young participants: specific issues 

This section focuses on some crucial practical challenges allowing re-
earchers to implement EEG studies in developmental populations suc-
essfully. We do not claim to provide an exhaustive list of practical is-
ues, but help investigators anticipate and get efficiently through the
ost specific steps of developmental EEG study. Indeed, compared to

tudies conducted with adults, developmental studies differ in several
ays and rely on specific challenges due to the characteristics of the

argeted population that must be considered when designing a develop-
ental EEG experiment. 

.1. Artifacts and attrition 

Due to their young age, infants’ behaviors are more challenging to
ontrol or predict, leading to poor data quality. Artifacts are widespread
n infants’ EEG studies, especially movement artifacts. The age of the
hildren (from 12 months of age, infants tend to be more active and
ay try to grab the electrodes), the EEG device (nets tend to move a lit-

le compared to caps), the paradigm (visual paradigms tend to encour-
ge head movements), and the experimental setup (children are more
ikely to move when they are on their parent’s lap) can increase the
isk of movements during data acquisition ( de Haan et al., 2013 ). The
eneral state of the children is also a key element in obtaining a good
NR: depending on the moment of the day, the quality and duration
f sleep during the previous night, the emotional state of the child, the
ime after feeding time, and external events, the infant can be more or
ess fussy thus causing movement artifacts. A particularly relevant as-
ect to consider is the level of vigilance and the sleep stage in which
he EEG recording is performed. This aspect is fundamental when col-
ecting data from newborns who spend considerable time sleeping. In
uman infants, cyclic periods of active and quiet sleep are present after
5 weeks post-conception and can be easily detected by behavioural ob-
ervation and EEG staging ( Mercuri et al., 1995 ; Pressler et al., 2003 ).
or instance, the neonatal brain is functionally more activated during
ctive sleep, similar to wakefulness. Conversely, cortical activation de-
reases during quiet sleep ( Graven, 2006 ), suggesting that the sleep
tage may significantly impact spontaneous EEG and event-related ac-
ivity. However, while some evidence supports this claim ( Tokioka et al.,
995 , Cheour et al., 2002 a, Friederici et al., 2002 , Friedrich et al., 2004 ,
uppiej et al., 2010 ), other studies reported no significant sleep impact
 Alho et al., 1990 a; Cheour-Lutanen et al., 1996 , Martynova et al., 2003 ;
eppänen et al., 1997 ; Cheour et al., 1998 a). Hence, a definitive con-
ensus on the best sleep stage to collect EEG/ERP activity in newborns
nd young infants is still unclear. Nevertheless, as a good lab practice,
e suggest carefully considering this aspect, reporting, when possible,

onsistency across sleep stages in EEG frequency band power and dis-
ribution or ERP amplitude and latencies. 

Overall, the experiment must be well prepared to ensure optimal con-
itions for electrode application and data acquisition that will minimize
rtifacts and optimize data quality ( Lloyd et al., 2015 ). It is also essential
hat the researchers adapt their behavior, tone of voice, and sensitivity
o each child ( Cotter et al. 2002 ). In addition, a pleasant and skilled staff
hould be selected to help the researcher ( Cotter et al., 2002 ). Welcom-
ng young participants to a different room from the experimental booth
an facilitate acclimatization ( de Haan, 2013 , p.19). This room should
e pleasant both for parents and children as it can impact the general
2 
eeling of the families (see Fig. 1 for an example of a babylab welcoming
oom). Importantly, a specific space or room should be available for par-
nts to feed the infants or change their diapers ( Hoel and Wahl, 2012 ). 

However, some artifacts are inevitable: eye movements, blinks, fa-
ial muscle activity, cardiac activity, and respiration are non-cerebral
ctivities that distort the EEG signal. Cardiac activity and respiration are
hythmic and thus have an easily recognizable EEG pattern that can be
etected and removed from the signal ( Hoehl and Wahl, 2012 ). While
ye movements, blinks, and facial muscle activity can be avoided or
trongly decreased in adults under specific instructions as they can con-
rol them, this is not the case with infants. Consequently, these artifacts
re commonly observed in infants’ EEG signals, although more diffi-
ult to separate from background EEG activity than in adults ( Bell and
olfe, 2008 ). 
While sucking a pacifier can sometimes be compatible with be-

avioural experiments, tongue movements can induce rhythmic low-
requency EEG activity that is not easily distinguishable from the back-
round EEG ( Hoehl and Wahl, 2012; Vanhatalo et al., 2003 ). Neverthe-
ess, it is worth considering that the potential drawback due to the ar-
ifactual EEG activity is usually largely overweighted by the advantage
n terms of behavioural compliance, as infants are usually calmed when
sing the pacifier, resulting in data quality improvement. Further, non-
utritive sucking has no significant impact on EEG data in newborns
ompared to nutritive sucking ( Lehtonen et al., 2016 ). Cardiac activ-
ty should be recorded, and external electrodes should be positioned on
he face to detect all these non-cerebral artifacts from the scalp. For ex-
mple, one generally chooses to place one electrode for ocular artifacts
near the eyes) and one or two for facial muscle movements (on a cheek
nd near the mouth; Picton et al., 2000 ). A suitable lab practice is to
void artifacts by using external control of stimuli and experimental ma-
ipulation. Indeed, to minimize data loss, the experimenter can design
he experiment so that it can be paused at any time and that some stimuli
r sequences of stimuli can be repeated ( de Haan, 2013 ). Although tech-
ically challenging, an advanced approach relies on an eye-tracker to al-
ow baby-driven experimental control procedures ( Kulke et al., 2017 ).
ye-tracking systems can be interfaced via software with the EEG ampli-
er to control the timing and type of experimental conditions based on
he child’s eye behavior. Importantly, this approach offers accurate on-
ine monitoring of artifacts and can lead the child to direct visual atten-
ion towards the target stimuli through reinforcement ( Maguire et al.,
014 ). Overall, artifacts affect infants’ EEG signals more than adults’.
mportantly, these artifacts are often removed from the data, automati-
ally leading to data loss and, thus, a decrease in the SNR. A recent study
hows the effects of variability in data editing methods on the quality
f infants’ visual ERPs ( Monroy et al., 2021 ). Based on 19 EEG datasets
ollected in 10 m-o infants during an action-perception paradigm, re-
ults were clear cut in showing differences between expert editors in (i)
he number of participants accepted, (ii) the number of trials accepted,
nd (iii) the channels marked for interpolation. In this sense, the use of
ideo-EEG to monitor the online child’s behavior during the experiment
hould be implemented (see Fig. 2 ). This technique allows video syn-
hronization with the EEG via software, making motion artifacts very
asy to isolate (e.g., blinks and eye movements, head-turning, sucking,
r arm movements) from other environmental artifacts (e.g., electric
oise, bad quality channels). In this way, it is possible to adjust online
ata acquisition quality by providing feedback to the parents or directly
o the baby (i.e., an attention-getter picture or sound). This procedure
ltimately allows preventing the number of artifacts by monitoring the
hild’s behavior in progress. However, when video-EEG is unavailable,
n alternative option is to have a research assistant use a response but-
on to manually insert triggers in the EEG recordings that will help spot
rtefactual EEG sections (see Partanen et al., 2022 ). 

An alternative option is to correct these artifacts offline using specific
ignal processing algorithms such as Independent Component Analysis
ICA). The Independent Component Analysis (ICA) source separation
ethod is particularly efficient in correcting artifacts from continuous
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Fig. 1. Example of a waiting room to welcome young infants and their families. Note the presence of child-friendly furniture, toys, and games to habituate the infant 
before starting the experiment. Courtesy of the Department of Developmental and Social Psychology, University of Padova, Italy. 

Fig. 2. Snapshot of a video-EEG recording collected in a 5-year-old child while executing a cognitive task. The left panel shows the online EEG recording with a 
detailed view of the electrodes around the eyes. The top-right panel displays the online topographical spline map, while the bottom-right shows the EEG-synchronized 
eye behaviour (EGI© system). The EEG recording is taken from a dataset originally published by Timeo, Mento, Fronza, and Farroni, 2018. 
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EG ( Makeig et al., 1996 ). Nevertheless, this method requires “the rapid
nd brief activation of spatially fixed brain regions ” ( Johnson et al.,
001 ) for optimal functioning so that it might be more efficient in
RP studies than in continuous EEG recording. Moreover, while ICA
ay perform best at separating signals after a 1–2 Hz high-pass filter

 Winkler et al., 2015 ), such a filter may also drastically impact several
RP components. Therefore, an alternative two-step procedure might
e to apply such a hard filter before ICA decomposition in one dataset,
elect, save the artifactual ICs, and use them for correcting another
ataset with the appropriate filter settings. Although ICA-based arti-
act correction has traditionally been less used in the infant literature,
everal studies suggest it works well with participants as young as a
ew months old ( de Haan, 2013 , 2002 ; ( Fujioka et al., 2011 ); Miljkovi ć
t al., 2010 ). Fig. 3 illustrates an example of blink-related IC easily rec-
3 
gnized and removed from the epoched EEG trace of a four-month-old
nfant. 

Nonetheless, while component-based artifact rejection methods are
iable options for high-density EEG recordings as often done with adults,
t is still possible that some components may contain activity originat-
ng from the brain. Such a situation is highly likely in the case of low-
ensity EEG recordings where the number of sensors is much smaller
han the number of brain sources, which may result in activity from
ultiple brain sources being mixed into a single component. In such
 case, rejecting the artefactual IC will likely remove data originating
rom brain sources as well. Furthermore, the decision about which and
ow many ICs to reject is not trivial because it is too operator-dependent
nd thus ultimately arbitrary. The rejection decision should be limited
o only those ICs that unambiguously refer to recognizable artifacts such
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Fig. 3. Independent Component Analysis. The picture shows the details of a blink-related IC in a 4-month-old infant (a) and an adult (b) extracted from a High- 
Density EEG dataset (128 channels; EGI system) by using the EEGlab toolbox. The left part of the picture shows the spectral, temporal, and spatial properties of the 
IC. The right part displays the EEG recording with a detailed view of the electrodes around the eyes. The blue and red lines depict the EEG signal with and without 
the IC. Note that the rejection of this IC reliably rules out the eye-blink artifactual noise without losing much EEG signal in both the adult and infant recording. (The 
EEG recordings are taken from a dataset originally published by Mento and Valenza, 2016 ). 
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s blinks, heartbeat, or network noise. Although this appears relatively
traightforward in the case of adults, it is not always possible to easily
etect artifactual ICs in infants’ EEG data. 

Interestingly, the wavelet-ICA (w-ICA) is a two-step ICA imple-
ented in the recent toolboxes developed for infants’ EEG data that may

e particularly relevant as it increases component separation efficiency
nd decreases data loss when removing artifacts ( Azzerboni et al., 2005 ;
ammone et al., 2012 ). Moreover, a common problem of the ICA meth-

ds is that classical algorithms used with adults usually require long
atasets for optimal functioning, whereas infants’ recordings are gener-
lly shorter. Blind Source Separation (BSS) algorithms are very efficient
n separating cerebral from extra-cerebral sources ( Romo-Vázquez et al.,
012 ). However, the final result mainly depends on the type and number
f artifacts and the choice of the BSS algorithm ( Fitzgibbon et al., 2007 ).
 combination of different algorithms seems to be the most powerful so-

ution for artifact separation, as Romo-Vázquez et al. (2012) pointed out.
owever, data loss (and attrition) is inevitable when considering arti-

acts and other uncontrollable events inherent to developmental studies.
Studies involving human beings necessarily imply attrition, espe-

ially when they are very young. Data loss can be due to inter- or
ntra-individual differences, experimental characteristics, technical is-
ues during data acquisition, interruption of data recording upon par-
icipant’s request, or any other measure-related issue. By reducing the
ample size and decreasing statistical power, attrition can “threaten
he internal validity of experimental studies ” ( Ribisl et al., 1996 ). At-
rition rates in infants’ studies are usually higher than in adults and
egatively impact data reliability. Although attrition during EEG acqui-
ition tends to show an inverted u-shaped pattern through development
4 
 Bell and Cuevas, 2012 ), the factors that may increase data loss in devel-
pmental studies are not fully known. In a meta-analysis investigating
ttrition rate in infant ERP studies, Stets et al. (2012) found that the na-
ure of the stimuli was the main influential factor for attrition, but that
ge was not. Remarkably, studies involving visual stimuli showed the
ighest attrition rates. However, the attrition rate may also depend on
he paradigm and the age of participants ( de Haan, 2013 ). These con-
radictory results reflect the lack of knowledge about the attrition rate
n infants’ EEG studies. 

Nevertheless, attrition can be overcome by recruiting larger samples
f participants, choosing adequate experimental settings, implement-
ng recruitment strategies or databases, and piloting before actual data
cquisition ( Hurwitz et al., 2017 ; Ribisl et al., 1996 ). The accelerated
ongitudinal design is an alternative to longitudinal studies, which usu-
lly present high attrition rates ( Galbraith et al., 2017 ). This method
nvolves the recruitment of multiple cohorts at different ages, each cov-
ring a part of the broader targeted age range instead of a single co-
ort spanning all ages. In addition to decreasing attrition rates, its main
dvantage is that all ages are studied longitudinally for a given age
ange but within a shorter period than a classical longitudinal design.
s attrition rates are very variable within the literature, similar studies
hould be compared to estimate the expected amount of data loss. In any
ase, while several EEG artifact management procedures are available
owadays, it remains crucial to remember that the researcher should
repare the experimental task and lab setting in the most appropriate
ay to minimize noisy activity. In other words, the most critical aspect
f developmental EEG research remains that prevention is better than
ure. 
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Fig. 4. Decision tree illustrating the different analyses available for current developmental EEG research. Continuous resting-state EEG data can be analyzed when no 
stimulation is used using advanced methods such as spectral, functional connectivity, or source localization, depending on the electrode layout. Different experimental 
paradigms with continuous or discrete stimulations can be analyzed using various methods depending on the electrode layout. 
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.2. Classical paradigms and time-domain analyses 

When designing an experiment for developmental populations, the
rst challenge is to provide an attractive experiment that captivates the
hild’s attention and avoids boredom. If stimuli are presented, they must
e carefully chosen, and attention-grabbers (pictures, videos, sounds)
an be displayed between trials depending on the task. Because infants
ave limited attentional, cognitive, and behavioral abilities, the sec-
nd challenge is to use specific tasks adapted to the age of the par-
icipants. Indeed, unlike adults, infants can hardly follow instructions
 de Haan, 2013 ), which must be considered when designing the exper-
ment. Consequently, collecting EEG during rest or passive paradigms
an overcome this limitation while allowing the analysis of brain activ-
ty (see Fig. 4 for an illustration of the different options for the analysis
f EEG data during development and Table 1 for an integrative sum-
ary of the main ERP results). Similarly, splitting passive tasks into

hort blocks may help obtain good quality data for restless babies. When
he experimental setting is divided into small blocks, the changes in the
ehavioural state may not negatively impact the entire experiment but
nly a single recording block which may be particularly relevant for ex-
erimental designs interested in observing changes over the recording
ession. 
5 
.2.1. Auditory paradigms 

The auditory oddball paradigm is one of the most common
aradigms in infants’ EEG studies. When presented with auditory stimuli
uch as tone bips or speech sounds, a succession of waves forming the
ortical auditory evoked potentials (CAEPs) can be observed over fron-
ocentral electrodes (see Wunderlich and Cone-Wesson, 2006 for a re-
iew). Wunderlich et al. (2006) showed that the CAEPs elicited by pure
ones or complex speech sounds such as a consonant-vowel-consonant
ord develop from early infancy showing a gradual increase in peak
mplitude. Specifically, they collected CAEPs in newborns ( N = 10),
oddlers ( N = 19), children ( N = 20), and adults ( N = 9) and showed
hat the P1 and N2 peak amplitudes decreased, whereas the N1 and P2
eak amplitudes increased with age. The oddball paradigm is also re-
erred to as the “MMN ” paradigm for “Mismatch Negativity ”, the brain
esponse peaking between 170 and 250 ms after stimulus onset elicited
y the preattentive detection of deviants ( Näätänen et al., 2005 , 2007 ;
ushnerenko et al., 2002 ). It relies on the brain sensitivity to rarely oc-
urring deviant stimuli that are pseudo-randomly presented within a se-
ies of repeated standard stimuli. Deviant stimuli have a lower probabil-
ty compared to standard ones, which generally occur with a probability
omprised between 0.75 and 0.90 ( Sambeth et al., 2006 ; Cheour et al.,
002b ; Kushnerenko et al., 2002 ; Leppänen, Eklund and Heikki, 1997 ;
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Table 1 

Summary table showing the main ERP components obtained in classic EEG paradigms used in developmental research. Note that the adult components are also mentioned but should not be 
considered similar to the infant’s components. Instead, ERPs obtained during early development should be seen as precursors of adult ERPs because they originate from an immature brain. For 
example, although the infant and adult MMNs may reflect a similar change detection process, the neural generators may differ. NI = No information. ISI: Inter-Stimulus-Interval. 

Component Age Polarity Latency (ms) Spatial distribution Cognitive correlate Studies 

CAEPs 
P1 Newborns + 74-86 NI Automatic brain 

responses to tones or 
complex sounds 

Wunderlich & Cone-Wesson, 2006 ; 
Kushnerenko et al., 2002 ; 
Barnet, 1971 

Toddlers + 67-90 Fronto-temporal 
Children + 77-93 Fronto-central 
Adults + 46-58 Fronto-central 

N1 Newborns - 154-186 Fronto-central 
Toddlers - 136-150 Distributed across frontal, central, 

temporal and parietal regions Children - 157-177 
Adults - 107-114 Fronto-central 

P2 Newborns + 214-241 Fronto-central & temporal 
Toddlers + 255-297 Distributed across frontal, central, 

temporal and parietal regions Children + 254-287 
Adults + 175-215 Fronto-central 

N2 Newborns - 373-422 Distributed across the scalp 
Toddlers - 373-450 Distributed across the scalp 
Children - 376-400 Fronto-central 
Adults - 290-312 Fronto-central 

MMN Newborns - / + 350-550 Fronto-parietal Automatic change 
detection (auditory 
stimuli) 

Partanen et al., 2013 ; 
Tanaka et al., 2001 ; 
Nätäänen, 2000 ; 
Cheour et al. 2000 

Toddlers - / + 200-250 Fronto-parietal 
Children - / + 200-400 Fronto-central 
Adults - 100-200 Fronto-central 

N170 Newborns NI NI NI Visual face and face 
inversion processing 

Halit et al., 2003 ; 
de Haan et al., 2002 ; 
Gliga & Dehaene-Lambertz, 2007 ; 
Kadosh & Johnson, 2007 ; 
Taylor et al., 2001 

Toddlers - or + 220-350 or 400 Occipito-temporal 
Children - 170-250 Occipito-temporal 
Adults - 144-200 Occipito-temporal 

Pb Newborns NI NI NI Stimulus expectancy and 
contextual processing 

Karrer et al., 1998 ; 
Webb et al., 2005 ; Jonkman, 2006 ; 
Squires et al., 1976 

Toddlers + 200-400 Occipito-temporal 
Children + 300 Occipital 
Adults + 300 Central 

PSW Newborns NI NI NI Visual working memory 
updating 

de Haan & Nelson, 1997 ; Duarte et al., ; 
2013 ; Pelegrina et al., 2020 Toddlers + 1000 Fronto-central 

Children + 500-700 Parieto-occipital 
Adults + 300-700 Centro-Parietal 

Nc Newborns - 1000-1200 Fronto-central Stimulus familiarity and 
frequency 
Attention allocation 

DeBoer, Scott & Nelson, 2004 ; 
Nelson, 1996 ; De Lorenzo et al., 2020 ; 
Grune et al., 1996 ; Gomarus et al., 2006 

Toddlers - 400-600 Fronto-central 
Children + 300-400 Fronto-central 
Adults + 300 Centro-parietal 

CNV Newborns NI NI NI Stimulus expectancy Mento & Valenza, 2016 ; 
Mento & Vallesi, 2016 ; 
Mento, 2013 

Toddlers - ISI-related Fronto-parietal 
Children - ISI-related Fronto-parietal 
Adults - ISI-related Fronto-parietal 

6
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inkler et al., 2003 ). The oddball paradigm has been consistently used
ith deviants in sound duration ( Ceponiene et al., 2002 ; Clarkson et al.,
989 ), frequency ( Alho et al., 1990 a, b ; Kushnerenko et al., 2002 ;
eppänen et al., 2010 ; Bisiacchi et al., 2009 ; Mento et al., 2010 ), in-
ensity ( Kushnerenko et al., 2002 ; Partanen et al., 2013 ), phonetic
eatures of speech sounds ( Dehaene-Lambertz, 2000 ; Cheour et al.,
998a,b ; Pang et al., 1998 ; François et al., 2021 ), complex musical
r speech sequences ( Háden et al., 2015a , b ; François et al., 2017 ;
ueller et al., 2012 ). Importantly, the term “Mismatch Response ” or
MR is often preferred in developmental studies because of its high in-

ersubject variability. Indeed, this component tends to be positive in
ounger infants and sometimes up to school age, depending on the
evelopmental status of children ( Bisiacchi et al., 2009 ; Mento and
isiacchi, 2012 ; François et al., 2017 ; Moser et al., 2020 ; Kailaheimo-
önnqvist et al., 2020 ; Hoehl and Wahl, 2012 ; Partanen et al., 2013 ;
aurer et al., 2003 ; Putkinen et al., 2014 ; see also Virtala et al., 2002

or a recent discussion on positive vs. negative MMR in a large lon-
itudinal study). Similarly, positive and negative MMRs have been re-
orted in infants between 2 and 6 months of age, suggesting that ex-
eriments with small sample sizes might be more likely to result in er-
oneous results than adult studies ( Trainor et al., 2003 ). Various ver-
ions of this paradigm have been developed depending on the aim of
he study and the infant’s age (see Virtala et al., 2022 for a longitu-
inal study). For instance, the familiarization-test oddball paradigm
s adapted for more complex stimuli such as words, nonwords, or
onger sequences of sounds ( Bosseler et al., 2016 ; François et al., 2017 ;
abdebon et al., 2015 ; Teixidó et al., 2018 ). Importantly, the odd-
all paradigm can include multiple deviant types in one experimen-
al session ( Näätänen et al., 2005 ; Partanen et al., 2013 ). Using mul-
iple deviants inserted in the sequence (also known as Multi-feature

ddball or Optimum 1; Näätänen et al., 2004 ) is a methodologically
ound choice for developmental EEG research. First, it allows to par-
ial out the effect of probability from the nature of the deviance per

e. Using three different deviants (e.g., duration, pitch, and inten-
ity; 10% each) allows to directly compare the processing of differ-
nt deviant stimuli neat of their absolute frequency while keeping the
NR constant. Second, it allows testing of up to four or five differ-
nt deviants in a single session, thus providing a wide-range profile
f brain responses according to stimulus deviance properties. This ex-
erimental paradigm has proven particularly useful for investigating
nfants’ language development ( Lovio et al., 2009 ; Partanen et al.,
013 ). Another modified version of the oddball paradigm, particu-
arly useful to study speech processing in early infancy, involves mul-
iple trains of five stimuli with four standards and a final deviant
hat can differ according to either local or global perceptual fea-
ures ( Dehaene-Lambertz and Dehaene, 1994 ; Dehaene-Lambertz, 2000 ;
ekinschtein et al., 2009 ). Importantly, this modified paradigm disen-
angles the effect of response habituation to repetition (the progressive
eak amplitude reduction across the standards) from deviant-related
rocesses. Finally, a multimodal version of the oddball paradigm that in-
olves the simultaneous presentation of auditory and visual stimuli can
lso be used to evaluate audiovisual integration in 5-month-old infants
 Kushnerenko et al., 2008 ). 

Although extensively used in developmental EEG studies, the odd-
all paradigm is not the only auditory paradigm available. Priming
aradigms are particularly adapted to study lexico-phonological pro-
essing in developmental populations ( Becker, Schild, and Friedrich,
014 ; Friedrich and Friederici, 2005 ). Such paradigms allow analyz-
ng the effect of a “prime ” stimulus on a subsequently presented
arget which can provide relevant information on the interaction
etween phonology and semantic processes early in development.
ecker et al. (2014) investigated the emergence of phonological repre-
entations and predictive processing in young infants. Specifically, they
resented 6-to-24-month-old infants with word onset primes that were
honologically congruent ( “ma ” before “Mama ”) or incongruent with a
arget word ( “so ” before “Mama ”). As expected from adult data, the au-
7 
hors observed an immature N100 in the congruent condition reflecting
bstract phonological processing ( Friedrich et al., 2009 ). However, they
nly reported a P350-like effect in the group of 24 months old infants
uggesting that phonological processing may not interact with lexical
ccess before age two. Multimodal priming paradigms with visual stim-
li are also used to study word recognition and semantic priming during
evelopment ( Friedrich and Friederici, 2004 ; Mani and Plunkett, 2008 ).
or example, Friedrich and Friederici reported that 19-month-old in-
ants show an N400 to incongruent condition, suggesting that seman-
ic processing interacts with word recognition mechanisms early in life.
ther paradigms used in developmental EEG studies have evaluated

peech segmentation ability based on statistical learning using ERP anal-
ses ( Bosseler et al., 2016 ; François et al., 2017 ; Kabdebon et al., 2015 ;
ooijman et al., 2005 ). These experiments rely on the human ability to
etect statistical regularities to segment words contained in continuous
peech ( Saffran et al., 1996 ). For example, Bosseler et al. (2016) showed
hat newborns’ brains are sensitive to prosodic information and sylla-
le position for speech segmentation, indicating that statistical learning
rocesses can already be observed from the first days of life (see also
rançois et al., 2017 ). Overall, various auditory paradigms have been
uccessfully adapted to babies, infants, and children that have provided
rucial information about the early neurophysiological changes that oc-
ur during the maturation of the auditory pathway. 

.2.2. Visual paradigms 

In the visual modality, the priming or repetition suppression
aradigm has mainly been used to study infants’ processing of
aces, movements, or categories ( Gliga and Dehaene-Lambertz, 2007 ;

ebb and Nelson, 2001 ; Geangu et al., 2021 ; Jeschonek et al., 2010 ).
n adults, the N170 is consistently observed in response to faces
 Kappenman and Luck, 2011 ) and is larger for inverted than upright
aces ( de Haan et al., 2002 ). During development, the N290 may consti-
ute a reliable precursor of the N170 as its latency decreases from 350 ms
o 220 ms between 3 and 12 months ( Halit et al., 2003 ; de Haan, 2013 ).
he infants’ N290 may assume the same functional role as in adults
nly after six months before this age; it is not sensitive to face inversion
 de Haan et al., 2002 ). The P400 is another face-sensitive ERP response
bserved over posterior lateral electrodes between 3 and 12 months.
his response has also been proposed as a precursor of the adult N170
ince it shows similar face-dependent amplitude modulation ( Gliga and
ehaene-Lambertz, 2007 ). However, these two ERP components have
ifferent morphology, polarity, and scalp distribution, suggesting that
he underlying neural generators may undergo dramatic changes dur-
ng the first year of life. While the exact functional meaning of the
290 and P400 has not been entirely understood yet, both ERPs have
een successfully used to predict both typical and atypical development
 Leppänen et al., 2007 ; Gredebäck et al., 2015 ; McCleery et al., 2009 ).
he Pb ( “positive before ”) develops beween 200 to 400 ms after stimulus
nset and is associated with stimulus expectancy or contextual process-
ng during visual oddball paradigms ( Karrer et al., 1998 ). Its latency de-
reases, whereas its amplitude and sensitivity to experimental changes
ncrease with age ( Webb et al., 2005 ). The Nc is another ERP component
riginally associated with stimulus familiarity and frequency in visual
aradigms ( Courchesne et al., 1981 ; Karrer and Ackles, 1987 ; de Haan
nd Nelson, 1997 , 1999 Nelson and Collins, 1992 ; Kopp and Linden-
erger, 2011 ). However, most recent studies linked this component to
ttention allocation ( di Lorenzo et al., 2020 ; Webb et al., 2005 ; see
onte et al., 2020 for a recent review). In newborns, the Nc shows a max-

mum amplitude between 1000 and 1200 ms after stimulus onset and
round 500 ms in 12-month-olds ( DeBoer et al., 2004 ; Nelson, 1997 ).
onetheless, recent studies reported an Nc peaking between 400 and
00 ms even in infants younger than 12 months ( di Lorenzo et al., 2020 ,
onte et al., 2020 , Xie et al., 2019 ). Finally, the Positive Slow Wave
PSW, 1000 ms after stimulus onset) can occur when familiar faces are
imilar to unfamiliar ones and may thus represent visual working mem-
ry updating ( de Haan and Nelson, 1997 ). 
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. Working with young participants: advanced methods 

EEG recordings are particularly relevant to understanding the mat-
rational processes that support the emergence and development of
arly brain oscillations ( Schaworonkow and Voytek, 2021 ). A crucial
spect of developmental EEG studies is that the structural and func-
ional changes support the acquisition of increasingly complex behav-
ors ( Johnson, 2001 ). Interestingly, learning may be supported by the
ynchronized activity of long-distance brain regions ( Fries, 2005 ), and
he intrinsic hierarchical organization of brain oscillations may facil-
tate stimulus processing ( Lakatos et al., 2005 ). Besides, phase syn-
hrony between different brain regions has been proposed as a mecha-
ism for long-range communication of information ( Varela et al., 2001 ;
achaux et al., 1999 ) that is required during specific cognitive tasks
 Buzsáki and Dragun, 2004 ). Therefore, TF analyses applied to infants’
ata may be particularly relevant and more informative than ERPs in
tudying the emergence of high-level cognitive functions. 

.1. Spectro-temporal analyses 

Classical TF analyses of EEG data allow estimating the dynamic am-
litude and phase modulations in different frequencies by computing
he absolute power, the relative power, the coherence, or the hemi-
pheric asymmetry in specific frequency bands. Indeed, TF transforms
an be applied to resting-state or task-related data allowing the anal-
sis of evoked and induced oscillatory brain activity ( de Haan, 2013 ;
allon-Baudry and Bertrand, 1999 ). The Fourier transform allows the
ecomposition of the signal in different frequency bands such as delta
aves ( < 3.5 Hz), theta waves (4–7 Hz), alpha waves (8–13 Hz), beta
aves (13–30 Hz), and gamma waves ( > 30 Hz). These different fre-
uency bands described in infants’ EEG research are slightly lower than
hose reported in adults but may support similar cognitive processes
uch as attention, memory, and emotion ( Saby and Marshall, 2012 ). 

Theta, alpha, beta, and gamma activity have been reported dur-
ng different experimental paradigms and across different ages, with
esults showing modulations in power and phase synchrony through-
ut development ( Begus and Bonawitz, 2020 ; Bazhenova et al.,
007 ; Bell and Wolfe, 2007 ; Bosseler et al., 2013 ; Musacchia et al.,
013 ; Orekhova et al., 2006 , 2014 ; Ortiz-Mantilla et al., 2013 ;
troganova et al., 1998 ; Csibra et al., 2000 ; Kaufmann, Csibra and
ohnson, 2003 ). The alpha wave, with a frequency of 6-9 Hz in in-
ants, is related to visual attention, emotional expression, working mem-
ry, and inhibitory control ( Fox et al., 2001 ; Morasch and Bell, 2011 ;
rekhova et al., 2001 ). For example, Bell and Wolfe (2007) performed
F analyses of EEG data collected during a working-memory task in fifty

nfants and at two time points (8-m-o and four y-o). Results revealed that
elative to baseline, working memory process was associated with an
ncreased alpha power (6–9 Hz) over all the electrodes at eight months
ut over medial frontal electrodes only at four years. This more focal ac-
ivity was interpreted as an increased functional specialization through
evelopment. The mu rhythm (8–13 Hz in adults) is observed in the
ensorimotor cortex and associated with understanding others’ actions
sing mirroring properties ( Cuevas et al., 2014 ; Debnath et al., 2019 ). 

TF analyses are particularly relevant to studying infants’ cognitive
epertoire during ecologically valid situations as they may help capture
rain activity not observable using classic ERP analyses ( Debnath et al.,
019 ; Morales and Bowers, 2022 ). In adults, increased alpha activity is
bserved at rest, whereas decreased alpha is triggered during cognitively
emanding tasks. Besides, increased theta rhythm has been associated
ith high attentional and emotional loads ( Klimesch, 1999 ). Interest-

ngly, Orekhova et al. (2006) analyzed TF transforms obtained in 8- to
2-month-old infants during attentionally demanding situations such as
nteracting with an adult or exploring a new toy. Compared to base-
ine, results showed a clear reduction of alpha and an increase in theta
uring the more demanding situations. Because such live paradigms do
ot allow to easily spot brain activity time-locked to specific events re-
8 
uired for ERPs, TF analyses may constitute a more appropriate tool
o decipher the cognitive processes involved during ecologically valid
ituations. In addition, compared to passive studies, more interactive
asks such as conversations or games might allow longer recordings
y enhancing children’s interest. For example, toddlers’ action obser-
ation during conversational turn-taking with caregivers may be asso-
iated with a suppression of mu rhythm ( Liao et al., 2015 ; Meyer et al.,
022 ). Thus, TF analyses during ecologically valid paradigms may of-
er new perspectives into more socially-driven cognitive processes that
RP studies could hardly explore. In addition, different analyses can be
ombined to provide complementary information about the brain re-
ponses underlying specific cognitive processes ( Isler et al., 2012 ). For
nstance, combined TF and ERP analyses have been successfully used
o study brain responses from sleeping newborns during an auditory
MN paradigm ( Isler et al., 2012 ). While TF analysis revealed a theta

ower increase to deviant stimuli at multiple scalp locations and laten-
ies, ERPs failed to detect a difference between standard and deviant
timuli. Similarly, combined TF and functional connectivity analyses
ave been used to show that mu desynchronization during movement
irroring may occur in both motor and occipital areas, thus supporting
 functional coupling between these two brain networks ( Debnath et al.,
019 ). If classical TF analyses of EEG data can be very useful to study
arly brain functioning during realistic situations, new advanced analy-
es have been recently developed and may provide further insight into
arly brain organization. 

.2. Advanced spectro-temporal analyses 

Derived from TF analyses, functional connectivity measures of
esting-state or task-related data have also gained interest in the
evelopmental research community ( Boersma et al., 2011 ; He et al.,
019 ; Tóth et al., 2017 ; Tokariev et al., 2016 ; 2019 ; Tran et al., 2021 ;
uevas et al., 2012 ). For example, Tokariev et al. (2016) studied 38
leeping newborns during active and quiet sleep while recording EEG
rom 19 electrodes at two time points after birth. The results showed
hat vigilance states and postnatal age largely modulated functional
onnectivity measures. Similarly, Mariscal et al. (2021) recently ex-
mined the spectral changes of EEG data collected during resting-state
n 98 children from three months to three years. The analysis of
hase-amplitude-coupling between alpha, beta, and gamma frequencies
howed opposite patterns of preferential coupling over anterior and
osterior electrodes that increased with age, revealing the building
f early regional phase preferential coupling. In another recent study
 Xie et al., 2019 ), fifty-nine infants were evaluated cross-sectionally at 6
 N = 15), 8 ( N = 14), 10 ( N = 17), and 12 months of age ( N = 13) during
 sustained attention paradigm while EEG was recorded. The authors
pplied graph theory analyses to (i) weighted phase lag index measures
wPLI; Vinck et al., 2011 ) computed between scalp electrodes and (ii)
eed-based connectivity measures computed between reconstructed
ources. At the source level, seed-based connectivity analyses showed
hat sustained attention induced a decrease in the alpha band localized
ithin the dorsal attention and default mode networks. Importantly,

he strength of functional connectivity in this alpha band increased
ith age within specific brain networks only (visual, somatosensory,
orsal attention, and ventral attention networks). These results suggest
hat the development of early sustained attention is accompanied by
istinct brain functional connectivity patterns representing different
unctional brain-network topologies that may go through rapid config-
rational changes during early development. In the case of sensor-space
nalyses, the wPLI can be particularly relevant to reducing the effects
f volume conduction since zero-lag synchronization is left out from
he analysis, thus implying that the result is not based on shared neural
ources ( Bastos and Schoffelen, 2016 ). Nonetheless, care must be taken
hen interpreting functional connectivity results in young participants
ecause the number of electrodes constrains the accuracy of the
easures and the duration of the recordings impacts these measures
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 Tokariev et al., 2016 ; Haartsen et al., 2020 ). Moreover, synchrony
nalyses at the scalp level may give ambiguous information about
he underlying brain networks due to the physical changes occurring
uring development. Therefore, translating scalp-level coherence pat-
erns to functional connectivity in the source space requires a certain
egree of cautiousness ( Hu et al., 2010 ; Schiff, 2005 ; see Michel and
urray, 2012 for a review). 

Continuous natural speech, music, or movies can also be used while
ecording EEG in infants ( Begus et al., 2015 ; Carver and Vaccaro, 2007 ;
eong et al., 2017 ; Striano et al., 2006 ; Hoehl et al., 2014a , 2014b ).
urther, dual-EEG recordings during live interactions can allow collect-
ng simultaneous EEG in infants and caregivers ( Piazza et al., 2020 ;
aresign et al., 2022 ; see Noreika et al., 2020 for a review on dual-
EG during development). Most of these studies consist of interactive
essions between infants and caregivers, allowing the analysis of brain
ctivity to objects or complex adult behaviors. These paradigms allow
esearchers to create more ecologically valid conditions but are often
arder to control; consequently, data are harder to analyze. 

Nonetheless, time-resolved analyses exploring the online neural
racking of speech, music, movies, or live interactions can help study
rain development in an ecological context. Such analyses capitalize
n the brain property to adapt its oscillatory activity to the rhythm
f a visual or auditory stimulus presented periodically ( Regan, 1982 ;
icton et al., 2003 ). For example, in adults, scalp or intracranial EEG
ollected during continuous stimuli such as speech or musical pieces
as been successfully used to demonstrate that neural tuning occurs at
he specific frequencies contained in the input ( Nozaradan et al., 2014 ;
iraud and Poeppel, 2012 ; Teng and Poeppel, 2020 ; Lerousseau et al.,
021 ; Henin et al., 2021 ; Elmer et al., 2021 ; Ramos-Escobar et al., 2021 ,
022 ). Typically, adults’ brain activity shows a clear peak at stimula-
ion frequency for auditory, visual, and somatosensory continuous in-
uts ( Galambos et al., 1981 ; Namerow et al., 1974 ; Norcia et al., 2015 ).
his type of analysis has been applied to various paradigms using au-
itory and visual continuous stimulations (see Kabdebon et al., 2022 ,
n this special issue). For instance, previous studies in adults show that
uditory cortical EEG activity can robustly track the speech envelope
hrough neural synchronization to specific rates such as the syllabic and
hrasal rates ( Giraud and and Poeppel, 2012 ; Ding and Simon, 2012 ,
014 ). Such neural tracking can be quantified with different approaches
hat rely on (i) the computation of the coherence between the auditory
nput and the EEG signal, (ii) the analysis of power and phase variabil-
ty across trials, and (iii) the frequency tagging approach that quantifies
he rhythmicity of the neural response in the frequency domain. Co-
erence relies on the linear correlation between the “entrained ” EEG
ignal and specific features of long stimuli such as musical pieces or
atural sentences ( Doelling and Poeppel, 2015 ; Mesgarani et al., 2014 ;
eelle et al., 2013 ). This approach ignores the phase information and
hus provides an overall estimation of neural tracking during the stimu-
ation. In infants, frequency tagging has been recently used to study the
evelopment of high-level cognitive processes such as speech segmen-
ation, grammatical rule-learning, musical beat processing or even face
rocessing ( Fló et al., 2022a ; Choi et al., 2020 ; Kabdebon et al., 2015 ;
irelli et al., 2016 ; Buiatti et al., 2019 ; de Heering and Rossion, 2015 ;
eleu et al., 2020 ; Köster, Langeloh, and Hoel, 2019 ). 

A recent method to study the early development of brain functioning
n response to continuous and ecologically valid stimuli relies on the so-
alled multivariate Temporal Response Function (mTRF, Crosse et al.,
016 ). This method uses linear regression to quantify the relationship
etween a continuous EEG signal and an ongoing stimulus. The mTRFs
ave been successfully applied to infants’ EEG data to unravel the mech-
nisms supporting sensory processing of natural stimuli such as movies
r spoken sentences ( Attaheri et al., 2022 ; Jessen et al., 2019 , 2021 ;
alashnikova et al., 2018 ; Menn et al., 2022 ; see also Ashton et al.,
022 ). Briefly, it allows the mapping between specific features of con-
inuous stimuli and the corresponding neural response in a forward and
ackward manner. The forward or encoding modeling approach predicts
9 
he neural response based on specific input features. It has been used to
ecipher the gradual weighting of speech auditory features during early
evelopment ( Kalashnikova et al., 2018 ). By contrast, backward or de-
oding models allow the opposite estimation in a multivariate manner,
redicting the sensory input based only on the neural EEG data. In the
ontext of developmental EEG studies, decoding models can be particu-
arly relevant to compare the amount of neural tracking depending on
he attentional level or the linguistic environment. 

Another advanced method in EEG research aims to estimate the cor-
ical generators underlying the activity obtained in the sensor space.
ccurate source localization of several ERP components across dif-

erent ages based on distributed or dipole source models has now
een made possible through the use of high-density EEG systems
dapted to infants ( Guy et al., 2016 ; Hämäläinen et al., 2011 ; Mento
nd Valenza, 2016 ; Ortiz-Mantilla et al., 2012 , 2013 , 2019 ; Xie and
ichards, 2017 ; Lunghi et al., 2019 ). For example, Xie et al. (2019) col-

ected cross-sectional EEG data from 5- ( N = 49), 7- ( N = 50), and 12-
onth-old ( N = 51) infants during the presentation of faces. Results

howed successful source reconstruction of the N290 and P400/Nc in
he fusiform gyrus and posterior cingulate cortex. Similarly, Mento and
alenza (2016) reported the source reconstruction of the sustained face
nticipatory contingent negative variation (CNV) in a group of fifteen
-month-old infants. They showed that a distributed fronto-parietal cor-
ical network was engaged about one second before the onset of faces
hen these were temporally predicted through a peek-a-boo play sim-
lation. Remarkably, the presence of reliable stimulus anticipatory ERP
ctivity in young infants highlights the importance of targeting pre-
timulus bran activity as a proxy to study predictive cognition from a
evelopmental perspective. 

Overall, the combined scalp- and source-level investigation suggests
hat EEG may also be an appropriate neuroimaging tool for the develop-
ental community, as proposed for adults ( Michel and Murray, 2012 ).
oteworthy, a direct comparison of brain source reconstruction across
ifferent ages is difficult due to brain structural differences, brain vol-
me conduction, scalp thickness, and dipole orientation ( Reynolds and
ichards, 2009 ). Nevertheless, the use of a high-density electrode ar-
ay (i.e., ≥ 128), together with other age-appropriate adjustments, has
llowed applying this analysis to developmental research successfully
 Bathelt et al., 2014 ). However, considerable caution is still required,
specially for young children. A critical issue is that cortical generators’
econstruction should be performed using individual MRI to locate spe-
ific anatomical landmarks as precisely as possible ( Kabdebon et al.,
015 ). Indeed, a wrong anatomical representation, as in the case of
nappropriate MRI templates, could turn into aberrant source-map so-
utions. Further, age-related anatomical peculiarities, as in the case
f newborns’ fontanels, may considerably bias the inverse modeling
 Lew et al., 2013 ; Gargiulo et al., 2015 ). The ideal solution to limit
hese concerns is to obtain single-subject MRI scans to inform the for-
ard modeling most realistically, considering the individual differences

n the cortical morphology. This issue is crucial, especially when com-
aring different age groups. One of the most challenging methodological
oals of developmental EEG research is to build accurate models of age-
elated diffusion parameters that consider the changes in the physical
roperties of infants’ developing brains. Indeed, because infants’ ERPs
end to be larger than adults due to a better diffusion, fewer trials are
eeded to obtain clear ERPs but with lower SNR. Therefore, such mod-
ls would greatly help in considering SNR variability at different ages.
cquiring anatomical MRI is not always possible; thus, one may use
ge-appropriate MRI age templates that are publicly available instead
 Almli et al., 2007 ; Richards et al., 2016 ). Recently, several groups col-
ected MRI scans of children of different ages cross-sectionally. In partic-
lar, Sanchez et al. (2012) provided age-specific MRI brain templates for
hirteen age groups from birth through 4.3 years of age based on more
han 150 scans. More recently, another research group released pedi-
tric brain surface templates for infants between two weeks and two
ears of age ( O’reilly et al., 2021 ). Importantly, O’Reilly and colleagues
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valuated the validity of the MRI templates by performing source lo-
alization of visual ERP components obtained in 100 high-density EEG
atasets from this age range. Results revealed accurate source recon-
truction with differences in estimated sources increasing with template
ge differences. Similarly, Kabdebon et al. (2014) examined the relation-
hip between the 10–20 sensor placement and the underlying cerebral
tructures in 16 infants (3–17 weeks post-term). The authors quantified
he variability in the brain-electrodes distance and the sensor locations
etween infants based on the anatomical variability of six main corti-
al sulci of an infant template parcelled in 94 regions. Results revealed
ncreased scalp-brain distances from occipital to frontal and inferior to
uperior regions thus highlighting the importance of acquiring individ-
al MRI cortical generators’ for optimal source reconstruction. 

. Standardized processing pipelines 

The infants’ EEG research community is much smaller than the
dult one; thus, it does not rely on a myriad of toolboxes with various
tandardized methods. In adults, EEG data processing can be done us-
ng EEGLAB ( Delorme and Makeig, 2004 ), Fieldtrip ( Oostenveld et al.,
011 ), MNE ( Gramfort et al., 2013 ), Brainstorm ( Tadel et al., 2011 ),
r any compatible EEG data processing software. However, while these
oolboxes have been successfully used to analyze developmental EEG
ata, to our knowledge, only three processing pipelines have been pur-
osely developed for this kind of population so far. Of particular impor-
ance for infants’ EEG research is detecting and correcting either bad
hannels or large artifacts most of the time obtained in short continu-
us time segments, thus hampering classic algorithms that operate well
n adult data. Here, we briefly describe the main characteristics and
dvantages of each standardized pipeline found in the literature. 

First, the “Maryland analysis of developmental EEG pipeline ”
MADE; Debnath et al., 2020 ; https://github.com/ChildDevLab/
ADE- EEG- preprocessing- pipeline ) is a Matlab-based toolbox that com-

ines EEGLAB functions with customizable processing parameters that
re well adapted for infants EEG data such as trial-level channel inter-
olation ( Buzzell et al., 2019 ). The MADE toolbox includes different
reprocessing steps such as filtering, automated identification/rejection
f bad channels, identification, and removal of artifacts based on ICA,
poching, artifact rejection on epoched data using simple thresholding,
ad channel interpolation, and re-referencing of epoched data. In partic-
lar, the bad channel identification is based on a multivariate approach
hat takes into account three different parameters (Hurst exponent, cor-
elation with other channels, and channel variance; for more details,
ee Debnath et al., 2020 ). These three parameters are combined and
ormalized to obtain a Z score. Values higher than 3 allow marking bad
lectrodes. This system may allow a more accurate screening of elec-
rodes with artifactual activity resulting in a more conservative outcome
fewer electrodes to interpolate). Another advantage of this pipeline is
hat it implements a modified version of the adjust tool ( Mognon et al.,
011 ) already implemented in EEGLAB and created explicitly for auto-
atic labeling of artifactual ICs (eye movements, blinks, muscular ac-

ivity, others). In particular, the authors added the possibility of quan-
ifying the alpha activity of each IC using this parameter as a constraint
o keep the components. This specific option further increases the re-
roducibility and the reliability of ICs classification by making the pre-
rocessing procedure more operator-independent. The MADE pipeline
as been validated on resting-state and task-based EEG data from three
roups (infants, children, and late adolescents) and compared to two
ore traditional processing pipelines that included the interpolation of

ad channels or not. The results showed that the MADE toolbox signif-
cantly retained more trials than the other two pipelines for the three
ge ranges. Therefore, the MADE provides an appropriate pipeline for
nfants, children, and adolescents’ EEG data based on automated pro-
essing steps, thus ensuring a higher degree of objectivity and replicabil-
ty than manual operator-dependent processing pipelines. However, the
ADE toolbox may not be recommended for EEG data collected with
10 
ow-density montages (i.e., less than 32 electrodes) as it may require
odifying the optimal default parameters used in most of the process-

ng steps implemented in the MADE toolbox. 
Second, the Harvard Automated Processing Pipeline for EEG

HAPPE; Gabard-Durnam et al., 2018 ; https://github.com/lcnhappe/
appe ) has been proposed to optimize the processing of short-duration
esting-state and task-related recordings obtained with different elec-
rode layouts and systems. Importantly, the HAPPE toolbox implements
 specific preprocessing step involving a w-ICA that improves the de-
omposition of the EEG data ( Castellanos and Makarov, 2006 ). It also
mplements the Multiple Artifact Rejection Algorithm (MARA) to auto-
atically identify artifactual ICs, thus allowing a more objective classi-
cation than a manual one. Interestingly, the toolbox provides individ-
al post-processing reports containing data quality metrics that allow
he objective classification of each dataset for further analyses. The per-
ormance of the HAPPE toolbox has been assessed on ten infants’ EEG
atasets and compared with seven alternative methods that rely on the
ame pre-processing steps except for the w-ICA and MARA. Results re-
ealed that the HAPPE toolbox outperformed the alternative methods by
emoving more artifacts while preserving a similar amount of data com-
ared to the seven alternative methods. Furthermore, the authors pro-
ided the distribution of post-processing data quality metrics obtained in
67 infant datasets from 3 to 36 months of age, thus offering a normative
atabase useful to classify future EEG files objectively. However, most
f the alternatives relied on the same pre-processing steps that started
ith a 1 Hz low-pass filter preventing the analysis of ERPs. Besides, even

hough the implementation of combined w-ICA/MARA identified 42%
f ICs as artifactual, this number increased to 85% when using MARA
nly, thus suggesting that further improvements are needed to optimize
utomatic classification algorithms for infants’ EEG data ( Haresign et al.,
021 ). Interestingly, an adapted version of the HAPPE toolbox has been
ecently proposed for low-density EEG montages ( Lopez et al., 2021 ).
owever, no clear comparison with alternative pipelines is provided in

he current version of the article. 
Third, Fló et al. (2022b) have recently developed the “Automated

ipeline for Infants Continuous EEG ” (APICE toolbox; https://github.
om/neurokidslab/eeg _ preprocessing ), in which automatized artifact
etection is performed on the continuous data before further prepro-
essing. APICE is Matlab-based and builds on the EEGLAB toolbox
for importing the data, filtering, and epoching) and custom func-
ions. Of particular interest is the implementation of different algo-
ithms for artifact detection and correction optimized for infants’ EEG
ata. Specifically, the APICE toolbox performs ICA combined with
he iMARA algorithm, an adapted version of the original MARA algo-
ithm optimized for infants’ EEG data, for automatic component se-
ection ( Haresign et al., 2021 ) and Denoise Source Separation (DSS,
e Cheveigné and Parra, 2014 ; de Cheveigné and Simon, 2008 ). The
PICE pipeline has been validated on high-density task-based ERP data
btained in neonates and infants. Specifically, the authors compared
he number of trials retained and the standardized measurement error
SME; Luck et al., 2021 ) obtained with the APICE toolbox, a standard,
nd a MADE-based processing pipeline. Results revealed that the APICE
oolbox significantly retained more trials and reached lower SME val-
es than the other two pipelines for infant ERP datasets. The standard
ipeline retained significantly more trials than the APICE toolbox for
he neonatal dataset, but this was accompanied by higher SME values
uggesting lower data quality. Overall, the APICE toolbox seems promis-
ng as it may ensure high flexibility, good data recovery, and thus high
eproducibility across populations. 

These three toolboxes offer many customizable outputs for further
nalyses using appropriate software. Importantly, even though they do
ot offer direct visualization of the significant results, they offer cru-
ial individual data quality metrics that allow the objective classifica-
ion of individual datasets and automatic artifacts identification. While
nivariate statistics are still highly used in infant EEG research, future
tudies should prefer cluster-based permutation tests as done in adults

https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline
https://github.com/lcnhappe/happe
https://github.com/neurokidslab/eeg_preprocessing
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B  
 Meyer et al., 2021 ). Indeed, ERP components recorded during early
evelopment may be ambiguous and traditional peak picking methods
ay not be optimal. Cluster-based permutation analyses can overcome

his difficulty by not placing any a priori assumptions on component
atencies. Multivariate analyses such as TRFs may be well adapted for
nalyzing EEG data gathered during continuous sensory stimulations
 Jessen et al., 2019 ; 2021 ; see also Ashton et al., 2022 ). Spatial filters
hat reduce data dimensionality or multiway generalized canonical cor-
elation analyses may also be very useful for analyzing multiple high-
ensity infants’ EEG data ( De Cheveigné and Parra, 2014 ; de Cheveigné
nd Simon, 2008 ; Gloaguen et al., 2020 ). Moreover, the EEG-BIDS for-
at (for Brain Imaging Data Structure; BIDS) has gained interest in

he adult community because it provides harmonized metadata and of-
ers a common baseline for comparisons of results from similar stud-
es ( Gorgolewski et al., 2016 ; Pernet et al., 2019 ; Niso et al., 2018 ),
onetheless, the EEG-BIDS format, with a few exceptions ( Meyer et al.,
021 ; Van Noordt et al., 2020 ) is still under-represented in the devel-
pmental community and not considered in the three previously men-
ioned toolboxes. 

. Conclusion 

The recent methodological advances observed in developmental EEG
nd signal processing are of utmost importance to better understand
rain-mind interaction from a developmental point of view, progres-
ively reducing the gap between adult and developmental neuroimag-
ng studies. In other words, the old Berger’s promise that the EEG would
rovide a “window into the brain ” ( Berger, 1929 ; Michel and Mur-
ay, 2012 ) is also becoming more and more attainable for develop-
ental research. Nonetheless, working with developmental populations

learly constrains most of the choices related to the experimental de-
ign, procedure, and analyses. The classic ERP approach is still essential
o ensure the comparability and reliability of the results and determine
he developmental continuum of specific cognitive processes from early
nfancy to adulthood. However, ERPs may not fully capture some os-
illatory brain patterns that explain specific developmental cognitive
hanges ( Morales and Bowers, 2022 ). In this sense, TF analyses applied
o resting-state or task-related data are particularly relevant for studying
cologically valid paradigms involving long recordings. Until the recent
evelopment of standardized processing pipelines adapted to infants’
EG data, these choices primarily relied on the specific expertise that
evelopmental researchers had acquired, rendering them almost exclu-
ively operator-dependent. Moreover, even though specific designs and
rocedures can be more suitable than others to tackle specific cogni-
ive questions, such choices may inherently vary with the age of the
articipants. For instance, the physical characteristics of different ages
re still a major issue that must be considered. Indeed, one of the most
hallenging methodological goals of developmental EEG research is to
uild accurate models of age-related diffusion parameters that consider
he changes in the physical properties of infants’ developing brains. Be-
ause of their physical characteristics, infants’ ERPs tend to be larger
han adults due to a better diffusion, and fewer trials are needed to ob-
ain clear ERPs but with lower SNR. Such models will significantly help
n considering SNR variability at different ages. Furthermore, longitu-
inal and cross-sectional developmental studies should prefer within-
nstead of between-group comparisons to determine how a given effect
ccurs at different ages, net of obvious anatomical maturational differ-
nces. Additionally, the brain changes reported in developmental stud-
es should be associated with later behavioral standardized outcomes to
ontrol and minimize the effects of the rapid physiological changes that
ccur in these populations. 

Therefore, by offering fine-grained signal processing tools best
dapted to each age range and data, standardized pipelines will help pro-
ote replicability and comparability across experiments and ages. While

he MADE pipeline might be well adapted for standardized processing of
esting-state and task-based EEG data acquired with high-density EEG
11 
ystems, it may not be compatible with data acquired with low-density
EG setups. The HAPPE pipeline appears more flexible because it al-
ows processing of short-duration resting-state and task-related record-
ngs obtained with different electrode layouts and systems. Nonethe-
ess, the mandatory 1 Hz High-pass filter prevents using this toolbox
or developmental studies targeting low-frequency ERP components. Fi-
ally, APICE may be the more flexible pipeline for data compatibility
s it offers an extensive range of denoising tools adapted to develop-
ental data. Although challenging, the acquisition of EEG during early
evelopment offers a unique opportunity to understand better the emer-
ence of complex cognitive functions in humans. The development of
tandardized pipelines, new experimental paradigms, and analysis tools
ave the way to a bright future for cognitive developmental EEG studies,
nevitably bringing new challenges and exciting perspectives. 
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