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FOCAL LIVER LESIONS IN DOGS 

Primary hepatic tumours are uncommon in dogs, counting for less than 1.5% of all the tumours in 

this species. Metastases are 2.5 times more frequent, especially from splenic, pancreatic, and 

gastroenteric neoplasia, that reach the liver through portal system 1,2. 

Malignant primary hepatic tumours can be divided into 4 categories, based on their cytological origin: 

hepatocellular, biliary, neuroendocrine, and mesenchymal tumours. Furthermore, based on their 

macroscopic growth, we can distinguish: massive (when a single and big mass is present usually in a 

single hepatic lobe), nodular (when multifocal nodules in more than one hepatic lobe are present), 

or diffused (when the entire hepatic parenchyma is involved) tumours 1. 

The prognosis is strictly related to the tumour histotype and morphology. Indeed, when a single lobe 

is interested by a massive tumour, even if malignant and with big dimensions, the prognosis is more 

favourable. Indeed, a complete surgical resection of the entire tumour is more probable and the risk 

of metastasis is lower 1. On the contrary, when the tumour is characterised by having multifocal 

nodules or diffusive pattern, the life expectancy is lower 1. 

 

Hepatocellular tumours include hepatocellular adenoma (or hepatoma) (HCA) and hepatocellular 

carcinoma (HCC). 

HCA is the most common benign neoplasia in elderly dogs, and usually is an incidental finding during 

ultrasonographic, tomographic, or necroscopic examinations. HCA is not characterized by specific 

symptoms, even when the surrounding parenchyma is compression on. Furthermore, HCA does not 

represent a pre-neoplastic form of the hepatocellular carcinoma 3. 

HCC represents the malignant primary hepatic tumour more frequent in dogs, counting for about 

50% of the cases 1,3. In human medicine, viral infection with hepatitis virus B or C, cirrhosis for alcohol 

consumption, and other condition (i.e. obesity) are reported to be the more frequent risk factors for 

HCC 4–6. On the contrary, in veterinary medicine the viral aetiology has never been confirmed, and 

cirrhosis are rare. 

HCC has more frequently (53-83%) a massive presentation, and in most cases is located into the left, 

medial or caudate (papillary process) liver lobe. Less frequently has a nodular (16-25%) or diffused 

(up to 19%) presentation. Regional lymph nodes and distal metastases (usually lungs and 

peritoneum) are less frequent for massive form (0-37%) than for nodular and diffused form (93-

100%) 1,3. 
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Biliary system tumours 

Biliary system tumours include biliary duct adenoma (BDA) and biliary duct carcinoma (BDC). 

BDA is the second primary hepatic malignant tumour for incidence in dogs (22-41%). Usually is not 

associated to specific symptoms, nevertheless, when compression of the surrounding parenchyma 

occurs, some secondary effects could be detectable. 

BDC is the second primary malignant tumours in dogs, with an incidence of 22-41%. In human being, 

a correlation between BDC and cholelithiasis, cholangitis and trematodes infestation are reported. 

The same risk factors have not been demonstrated in veterinary medicine 1,3. 

In most cases (37-46%) BDC is characterised by massive morphology, followed by nodular (up to 54%) 

or diffused (17-54%) morphology. Furthermore, BDC is more frequently an intrahepatic tumour with 

aggressive biological behaviour. Indeed, the 88% of the patients present regional lymph nodes or 

lung metastases at the diagnosis, and carcinomatosis is present in 67-80% of the cases 1,3.   

 

Neuroendocrine tumours 

Primary neuroendocrine tumours (or carcinoids) are very rare in dogs. These tumours derive from 

neuroectoderma and the patient is typically a young patient if compared to HCC. Furthermore, 

primary neuroendocrine tumours are characterized by aggressive biological behaviour: they have 

diffused (67%) or nodular (33%) morphology, involving more than one hepatic lobe, and with local 

and distal metastases 1,3.  

 

Mesenchymal tumours 

Primary mesenchymal benign (haemangioma) and malignant (hemangiosarcoma, leiomyosarcoma, 

rhabdomyosarcoma, liposarcoma, osteosarcoma, malignant mesenchimoma) are rare in dogs. On 

the other hand, hemangiosarcoma metastases are frequent. Primary hepatic sarcomas are more 

frequently (36%) massive tumours or nodular (64%), with splenic and lung metastases reported in 

86-100% of the cases 1. 

 

Diagnostic imaging 

Ultrasound 

Ultrasonographic examination (US) is the first diagnostic step when a hepatic (or abdominal in 

general) pathology is suspected. No specific ultrasonographic features reported to be useful in the 
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distinction among different hepatic pathologies leading to a low specificity of this diagnostic imaging 

technique. Therefore, a pathological investigation of the liver is nowadays paramount to reach a final 

diagnosis 2. A possible criterion to distinguish benign from malignant lesions is the presence of 

abdominal fluid and dimensions of the lesion: indeed, nodules bigger than 3 cm are reported to have 

a high possibility of being malignant 2,7. Similarly, hypoechoic nodules with hyperechoic core (the so 

call target-lesions) are more frequently metastatic nodules. Nevertheless, the same echotexture is 

reported also for nodular hyperplasia 8. During US, is not possible to distinguish between HCA and 

HCC since both could be characterized by big, iso- or hyper-echoic, often cavitate lesions 8. Hepatic 

and biliary cysts are easy to distinguish using US: they are characterized by anechoic, and well defined 

lesions, with distal acoustic enhancement, with normal surrounding parenchyma 2.  

A synthesis of principal differential diagnosis for focal liver lesions, along with their US characteristics, 

is reported in Table 1. 

 

Table 1 Differential diagnosis for more common focal liver lesions, along with their common US characteristics. Table from Penninck D., 
d’Anjou MA, Atlas of Small Animal Ultrasonography, second edition. 

 

 

The contrast-enhanced ultrasonography (CEUS) diagnostic technique has increased the US accuracy. 

In human medicine, CEUS has become part of the procedures suggested by the guide lines for focal 

liver lesions, and for other organs lesions. Furthermore, the typical characteristics of malignant and 

benign FLLs are reported in the human literature 9,10. The CEUS sensitivity for FLLs evaluation is 

reported to be comparable to computed tomography (TC) and magnetic resonance (MRI) 11. For 

example, HCC is clearly identifiable during CEUS examination, being characterized by early wash-in 

hyperenhancement, late wash-out of the lesions, with non-enhancing areas inside the lesions 

representing haemorrhagic or necrotic areas 9.  

During the last decades some papers regarding the application of CEUS in veterinary medicine have 

been published 12–15. Nevertheless, even if some significant echocontrastographic features have been 

Anechoic lesions Hypoechoic lesions Hyperechoic lesions
Lesions with mixed 
echogenicity

Cyst Nodular hyperplasia Nodular hyperplasia Nodular hyperplasia
Cystic tumours Metastasis Primary hepatic neoplasia Primary hepatic neoplasia
Necrosis Lymphoma Metastasis Metastasis
Abscess Primary hepatic neoplasia Mineralization, cholelithiasis Abscess
Haematoma Abscess Abscess Haematoma

Necrosis Myelolipoma
Haematoma Granuloma
Complex cyst Gas
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reported to be useful to distinguish benign and malignant FLLs (i.e. benign lesions are described as 

more frequently isoenhancing during the entire CEUS examination 13), is not possible the distinction 

for HCC and BDC. Their CEUS features are, indeed, superimposable since they can exhibit all the 

possible enhancement 14. 

 

Computed tomography 

A specialty examination of FLLs through TC examination is often required for better investigate organs 

and lesions in a tridimensional way, for evaluation of tissues vascularization and lymph nodes 

reactivity, as well as local and distal metastases. 

Nodular hyperplasia is reported to be more frequently characterised by hypoattenuating or 

hyperattenuating lesions during arterial phase, isodense to the radiologically normal liver 

parenchyma during pre-contrast, portal and delayed phase 16. But HCAs show similar features. BDAs 

are usually characterised by the presence of cystic areas inside the lesions and by low enhancement, 

with peripheral distribution of the contrast medium 16. 

HCC has typically cavitate appearance due to the presence of even big cystic areas that appear as 

hypoattenuating areas 16. Nevertheless, also BDC is reported to show heterogeneous distribution of 

the contrast medium, with the possible presence of big non-enhancing areas 16. Metastatic lesions 

can be both hypo- and hyper-attenuating, depending on their blood supply16.  

In human medicine, the tomographic features of liver masses are well known and described in the 

literature 11,17,18. On the contrary, in veterinary medicine the tomographic features of these lesions 

are only seldom reported 19–25 and often with conflicting results. Indeed, in the studies of Griebie et 

al 2017 and of Burti et al 2021 the enhancement during delayed phase and maximum dimensions of 

the lesions are reported to be statistically significant in the distinction between benign and malignant 

FLLs. On the contrary, Stehlìk et al 2020 demonstrated that none of the tomographic features can be 

useful for the distinction of any type of lesion. 

In Figures 1-9 some examples of focal liver lesions as they appear during US and CT examination are 

reported. 
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Figure 1 US images of two cases of hepatoma. A. mass characterised by irregular and not well-defined margins, moderately 
echogenic and heterogeneous, with small cavitate areas. B. Hyperechoic heterogeneous mass. PV, portal vein; CVC, caudal vena 
cava; Ao, aorta. Figure from Atlas of small animal ultrasonography, Penninck D, d’Anjou MA, Wiley Blackwell, 2015 

Figure 2 CT images of a case of hepatoma. A. Pre-contrast phase, the lesion shows hypoattenuation, well-defined margins and 
hyperattenuating capsule. B. During delayed phase the lesion is hypoattenuating. 
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Figure 3 US images of 4 cases of nodular hyperplasia. A. Small hypoechoic lesions, with ill-defined margins. B. 
Hyperechoic and well defined lesion. C. Heterogeneous, hypoechoic lesion, with ill-defined margins. D. 
Heterogeneous mass. Figure from Atlas of small animal ultrasonography, Penninck D, d’Anjou MA, Wiley Blackwell, 
2015 

Figure 4 CT images of nodular hyperplasia. A. Pre-contrast phase, nodular hyperplasia appear as slightly 
hypoattenuating lesions, with ill-defined margins. B. Delayed phase, nodular hyperplasia appear as hyoattenuating 
lesions, with well-defined margins. 
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Figure 5 US images of four examples of primary malignant liver tumours. A. Hepatocellular carcinoma, heterogeneous massive lesion, 
with irregular and ill-defined margins. B. Hepatic adenocarcinoma, visible as a rounded hyperechoic lesion, with presence of an other 
hypoechoic nodule characterised by distal acoustic enhancement (PE, peritoneal effusion). C. Neuroendocrine carcinoma, characterised 
by hyperechoic nodules with hypoechoic margins (GB, gallbladder). D. Biliary duct carcinoma (in a cat) characterised by a lobulated, 
hyperechoic and heterogeneous mass. The tubular anechoic structures (arrow head) are dilated biliary ducts (GB, gallbladder). Figure 
from Atlas of small animal ultrasonography, Penninck D, d’Anjou MA, Wiley Blackwell, 2015 

 

Figure 6 CT images of a case of massive hepatocarcinoma that appear as: A. hypoattenuating lesion, with ill-defined margins, during 
pre-contrast phase; B. hypoattenuating and heterogeneous lesion, with ill-defined and irregular margins. 
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Figure 7 CT images of a case of neuroendocrine neoplasia of the liver that appears as: A. slightly hypoattenuating lesion during pre-
contrast phase, with ill-defined margins; B. hyperattenuating and heterogeneous lesion during delayed phase, with irregular and 
well defined margins. 

Figure 8 US images of four cases of liver metastases from: A. pancreatic adenocarcinoma, two nodules are visible, the smaller 
is hypoechoic, with thin hyperechoic margins, the biggest is hyperechoic (PE, peritoneal effusion); B. splenic 
haemangiosarcoma, visible as cavitate lesion, with anechoic areas characterised by acoustic enhancement; C. thyroid 
carcinoma, characterised by target lesions; D. pancreatic adenocarinoma, visible as heterogeneous hyperechoic mass. GB, 
gallbladder. Figure from Atlas of small animal ultrasonography, Penninck D, d’Anjou MA, Wiley Blackwell, 2015 
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FOCAL SPLENIC LESIONS IN DOGS 

Focal splenic lesions (FSLs) are a common finding in elderly dogs, and are mostly benign, even if 

complication such as hemoabdomen due to incidental ruptures might occur 3,26,27. Neoplastic 

secondarisms to the spleen are uncommon, counting for about 1-6% of all the splenic neoplasia. 

Usually metastatic process that involved the spleen derived from sarcomas, carcinomas or 

neuroendocrine tumours 3,26,27.  

 

Vascular lesions 

Splenic lesions originating from the vascular components of the spleen are usually malignant, but 

might also be benign, and no specific features morphological and clinical features can be used in the 

distinction between benign and malignant lesions. As a consequence, the distinction among different 

Figure 9 CT images of two cases of metastases. A. pre-contrast phase of neuroendocrine metastastatic tumour, the 
lesions appears hypoattenuating, heterogeneous and with irregular margins; B. the same lesion during dalayed phase 
appears hypoenhancing; C. pre-contrast phase of metastatic melanoma that appear slightly hypoattenuating; D. the 
same lesion during delayed phase appear as hypoenhancing lesion, with irregular margins. 
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types of vascular lesions can be really challenging 3. Hematomas and haemangiomas are the most 

common benign vascular tumours. Hematoma is a rupture of a portion of the splenic parenchyma, 

with consequent intraparenchymal haemorrhage. The cause is often idiopathic or benign as 

amyloidosis, infections, nodular hyperplasia, or trauma. Nevertheless, a hematoma could occur also 

as a consequence of the rupture of a sarcoma, especially if haemangiosarcoma.  

Haemangioma has a low prevalence in dogs (1-5%)3, but the morphological features are very similar 

to those of splenic haemangiosarcoma.  

Haemangiosarcoma is the more commonly diagnosed splenic malignancy in dogs between 6 and 17 

years old, has a high metastatic rate, and an unfavourable prognosis. The life expectancy after the 

diagnosis is less than one year;  if haemoabdomen is present at the time of the diagnosis the life 

expectancy is reduced to four months 3.  

 

Mesenchymal tumours 

Splenic mesenchymal tumours is a heterogeneous group of neoplasia that overall comprehend the 

25-50% of all the splenic neoplasia. This group includes both benign (nodular hyperplasia, fibroma, 

lipoma, mielolipoma, and leiomyosarcoma) and malignant (fibroma, leiomyosarcoma, liposarcoma, 

myosarcoma, rhabdomyosarcoma, chondrosarcoma, and osteosarcoma) neoplasms.  

Nodular hyperplasia (NH) is a common benign splenic proliferation in dogs that might originate from 

different splenic cellular types (haemopoietic, lymphoid or complex component )3,26. NH does not 

cause clinical symptoms and is an occasional finding in US, TC or necroscopic examinations. 

Malignant mesenchymal tumours have an aggressive biological behaviour, with a high metastatic rate 

(70%) and an unfavourable prognosis. The survival rate ranges between 1 month (if metastases are 

present) and 9 months (if a single mass is present). The liver is the most common site of metastasis 

(85% of the cases), but also peritoneum, mesentery and lung might be affected3. 

 

Diagnostic imaging 

Ultrasound 

Focal splenic lesions are a frequent finding in abdominal ultrasonographic examinations. Like for liver 

lesions no US features are reported to be useful in the distinction among different lesion histotypes, 

Table 2. For example, nodular hyperplasia I reported to be hypoechoic, but also hyperechoic. Target 

lesions are likely to be malignant lesions, but also nodular hyperplasia and extramedullary 

hemopoiesis can display this type of echotexture. Honey-comb echotexture of the spleen (diffused 
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submillimetrical hypoechoic nodules) is suggestive of lymphoma. Nevertheless, is also reported for 

other malignancies (i.e. metastases of adenocarcinoma). Myelolipomas are more frequently localized 

on the mesenteric surface of the spleen, are hyperechoic with regular and well defined margins, distal 

acoustic shadow might sometimes be present 29.  

The US features of big cavitary lesions with haemorrhagic/necrotic areas are often similar to those of 

big hematomas. 

 

Table 2 Differential diagnosis for more common focal splenic lesion, along with their common US characteristics. Table from Penninck 
D., d’Anjou MA, Atlas of Small Animal Ultrasonography, second edition 

 

 

The application of CEUS for the evaluation of FSLs is still scarcely evaluated in veterinary medicine. In 

a study by Ohlerth et al 2008 all the enhancement pattern for the benign FSLs during CEUS 

examination are reported. Vice versa, malignant FSLs are described as markedly hyperenhancement 
30. On the contrary, Nakamura et al 2010 described malignant FSLs as being more commonly 

hypoenhancing 31.  

 

Computed tomography 

Computed tomographic features of FSLs are poorly reported in the veterinary medicinal literature, 

and the results are inconsistent. Benign FSLs are reported to mainly have diffused and uniform 

distribution of the contrast medium, with an attenuation pattern similar to those of the radiologically 

normal splenic parenchyma 16. Nevertheless, nodular hyperplasia is reported also to be 

hyperenhancing in post-contrast phase. Extramedullary hemopoiesis is reported as markedly 

hyperenhancing in all the post-contrast phases. Haematoma is reported to have an heterogeneous 

appearance 32–35. 

Hyperechoic lesions Hypoechoic lesions
Lesions with mixed 
echogenicity

Anechoic lesions

Myelolipoma Nodular hyperplasia Nodular hyperplasia Cyst
Haematoma Extramedullary haematopoiesis Extramedullary haematopoiesis Abscess
Nodular hyperplasia Haematoma Haematoma Splenic pseudocyst
Extramedullary haematopoiesis Abscess Abscess
Granuloma Neoplasia Neoplasia 
Abscess Multifocal hypoechoic nodules Target lesions

Neoplasia (honey comb aspect) Metastasis
Lymphoma Extramedullary haematopoiesis
Histiocitic sarcoma Nodular hyperplasia 
Extramedullary haematopoiesis
Cuneifon hypoechoic areas
Infarction
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Among malignant lesions, haemangiosarcoma is mainly characterized by having a complex mass 

appearance, with hypo- or non-attenuating pattern. In some occasions hemangiosarcoma might have 

the same enhancing pattern of the surrounding splenic parenchyma 16.  

In a study of Fife et al 2004 a cut-off of 55 Hounsfield Unit (HU) is reported to be useful in the 

distinction between malignant and benign FSLs. Nevertheless, other studies found different cut-off 

values. 

In Figures 10-17 some examples of focal splenic lesions as they appear during US and CT examination 

are reported. 

 

Figure 10 US images of 3 different examples of lymphoma characterised by: A. small hypoechoic diffused nodules; B. hypoechoic 
nodules diffused, the lesion is slightly bigger compared to previous example; C. a single hypoechoic nodule is visible. Figure from Atlas 
of small animal ultrasonography, Penninck D, d’Anjou MA, Wiley Blackwell, 2015 

Figure 11 US images of four different examples of benign lesions: A. splenic hematoma, that shows hypoechoic appearance; 
B. nodular hyperplasia, characterized by a large mass with irregular echogenicity, and by regular and well-defined margins; 
C. extramedullary haematopoiesis, that appears as a hypoechoic and heterogeneous lesion, with regular and well-defined 
margins; D. myelolipomas (arrow heads), strongly hyperechoic and acoustic shadow in the left nodule. Figures from Atlas 
of small animal ultrasonography, Penninck D, d’Anjou MA, Wiley Blackwell, 2015 
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Figure 12 US images of 2 examples of benign lesions: A. nodular hyperplasia characterized by mixed echogenicity, 
hypoechoic areas, and well-defined margins; B. pyogranulomatous splenitis, characterized by a single hypoechoic mass. 
Figure from Atlas of small animal ultrasonography, Penninck D, d’Anjou MA, Wiley Blackwell, 2015 

Figure 13 CT images of 2 different type of benign lesions. In the left column (figures A, C) pre-contrast images are reported; in 
the right column (figures B, D) delayed phase images are reported. A. and B. nodular hyperplasia, isoattenuating during pre-
contrast phase, hypoattenuating lesion with hyperattenuating and well-defined margins during delayed phase; C. and D. 
myelolipoma, isoattenuating during pre-contrast phase, hyperattenuating during delayed-phase. 
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Figure 14 CT images of 2 different type of benign lesions. In the left column (figures A, C) pre-contrast images 
are reported; in the right column (figures B, D) delayed phase images are reported. A. and B. extramedullary 
haematopoiesis, slightly hypoattenuating in pre-contrast phase, hyperattenuating and heterogeneous, with 
irregular and well-defined margins during delayed-phase; C. and D. haematoma, that appear as a big 
hypoattenuating lesions during pre-contrast phase, hypoattenuating and with hyperattenuating septa during 
delayed phase. 
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Figure 15 US images of 4 cases of haemangiosarcoma: A. mass characterized by mixed echogenicity; B. big mass with 
well-defined margins, heterogeneous aspect, and hypo/anechoic cavitations; C. heterogeneous mass with not defined 
margins; D. mass with mixed echogenicity. Figure from Atlas of small animal ultrasonography, Penninck D, d’Anjou MA, 
Wiley Blackwell, 2015 

Figure 16 US image of a case of metastases 
from anal sac adenocarcinoma. Numerous 
hypoechoic diffused nodules are visible. Figure 
from Atlas of small animal ultrasonography 
Penninck D, d’Anjou MA, Wiley Blackwell, 2015 
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DEEP-LEARNING AND ITS APPLICATIONS 

Deep learning 

In the last decades, artificial intelligence has seen considerable improvements, visible also in various 

aspect of every-days life. Today, deep learning-based technologies are able to solve tasks like objects 

classification, speech recognition, language detection, automatic driving of drones and cars, image 

processing, interaction with home entertainment system, and much more. The first algorithms 

working with simple neural network date back to the ’40s and ’50s, when Warren McCulloch and 

Walter Pitts first and the psychologist Frank Rosenblatt after, pioneered this field 36. During the 

following decades, more and more studies were conducted, but the advances in the development of 

this technology were hindered by the limited computing power available at that time. 

Only in 2006 the application of deep-learning saw a leap forward with the availability of bigger and 

bigger dataset, and with the introduction of high-performance graphic processing units (GPU) that 

can allowed faster training of complex neural network. 

Nowadays, there is still come confusion regarding the differences existing between artificial 

intelligence, machine learning, and deep-learning 37. In Figure 18 a chart that demonstrates the 

relationship among them is reported. 

 

Figure 17 CT images of primary splenic haemangiosarcoma, showing hypoattenuation in both pre-contrast (A) and 
delayed phases (B). Hyperattenuating septa are visible in delayed phase. 
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Artificial intelligence 

Artificial intelligence (AI) is a field of the science were technologies capable to solve tasks that 

typically required the presence of the human being are developed. Choi et al 2020 gave a very 

explanatory example of this, citing a hypothetic AI algorithm programmed for the room temperature 

control. The person who schedules this control-system already knows the temperature ranges that 

subjectively guarantee the optimal room comfort, so he decides a threshold: when the room 

temperature rises the control-system works to cool; vice versa, when the room temperature has 

lowered the control-system works to warm. This kind of AI is not able to recognize people or objects. 

 

Machine learning 

Machine-learning (ML) is a subfield of AI.  The term ML refers to algorithms capable of solving 

complex tasks without being explicitly programmed 38. Furthermore, these algorithms can be used to 

make decisions based unseen data.  Given an initial target, ML systems starts from specific features 

to solve the task. The features are usually manually assigned by an operator 38. 

There are basically four classes of ML 37:  

- Supervised learning (i.e. decision-tree, logistic regression, linear regression), where a labelled 

dataset is used to train an algorithm to solve a specific task. The model is fed with the input 

data and then, though through subsequent adjustments, the model finds a proper way to 

classify the original dataset; 

- Unsupervised learning (i.e. clustering, data analysis, image recognition), works with 

unlabelled dataset. In this case, the algorithms are able to find hidden patterns in the original 

Figure 18 A chart that demonstrates the relationship between AI, ML, and DL. 
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dataset, that the model uses to find similarities and differences, without human intervention. 

These patterns could not exist in the original dataset and are not expressed in the output: 

they are unknown. The interpretation of the outputs of these algorithms might be 

challenging. 

- Semisupervised learning, where the original dataset includes both labelled and unlabelled 

images. This typically happens with dataset of medical images: entering the labels is a time-

consuming process, and, as a consequence, the radiologist assigns the labels only to a part of 

the images. These images are used to train the model, that will be used to classify the 

remaining unlabelled images; 

- Reinforcement learning: these are algorithm that learn not only from data, but also from 

subsequent trials and errors. This type of ML is still unused in medical field. 

 

Convolutional neural networks and deep-learning 

The neural network is a network of neurons communicating with each mimiking human visive and 

auditory cortex. Indeed, a neural network is composed of cellular bodies (the so call nodes) that are 

organized in layers. Data are inputted, analysed by the nodes of the first layer, and then transmitted 

to the following layer and so on. In every layer, features that will be useful for the representation of 

the original image given as initial input are extracted 37,39.  

Deep learning (DL) is a subfield of ML consisting in neural networks with three or more layers: the 

first receives the input data, the last gives the output and, in the middle, there are a variable number 

of hidden layers. Thereafter, the predicted class of the imput data is compared to the actual class. 

The difference between the predicted and the actual class is computed and the weights of each layer 

are iteratively adjusted to minimize the difference until no further improvement is obtained.  

There are different types of neural networks ((artificial neural network (ANN), recurrent neural 

network (RNN), generative adversial neural networks (GANN) among the more used). Nevertheless, 

in the radiology field, convolutional neural networks (CNN) are the more applied. 

CNNs became famous in the ‘90s with a milestone study by LeCun et al 1998. Let’s assume that we 

need to recognize an image. In the CNN, the nodes of one layer identify some areas, of different 

dimensions, inside the image, the so call patches. Every patch is partially superimposed to other 

nearby patches, so that the proper spatial context is preserved: patches that are located in nearby 

positions in the original image share more information that patches located in distant positions. The 

CNN identifies and focuses the features of every patch and create some filters, the so call 
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convolutional filters. The convolutional filter passes over all the image in a succession of 

mathematical multiplications called convolution. The output of every convolution is a feature map, a 

matrix containing the numerical data corresponding to where the convolutional filter has found or 

not found a specific feature. For example, if we want to find every horizontal line inside an image, 

the CNN will be trained for this task and will create a feature map with different values referred to 

where there is or there is not a horizontal line. 

All this complicated process happens in every layer. At the end, all the feature maps will be 

compressed and sent to a classical ANN for the image classification, based on the extracted features 
37,39. It is easy to understand that, the deeper the network (that is, the more layer the network is 

composed of), the more numerous and detailed features would be extracted. In Figure 19 is reported 

a schematic representation of a basic CNN: the input coming from the tomographic image is given to 

the network for the training phase (the training will be composed of various cycles), during what the 

network itself extracts the features that allowed the image recognition; at the end, the network will 

give the optimal classification as output on the basis of the extracted features. 

 

 
Figure 19 Schematic representation of a CNN. Figure from Moawad AW, Fuentes DT, ElBanan MG, Shalaby AS, Guccione J, Kamel S, 
Jensen CT, Elsayes KM. Artificial Intelligence in Diagnostic Radiology: Where Do We Stand, Challenges, and Opportunities. J Comput 
Assist Tomogr. 2022 Jan-Feb 01;46(1):78-90. doi: 10.1097/RCT.0000000000001247. PMID: 35027520. 

 

The success of the DL compared to the traditional ML methods is basically related to 2 factors strictly 

linked each other: the deep and the compositionality of the network. The deeper the architecture, 

the smaller the training set can be, because starting from a smaller number of examples the network 

will be able to learn and to generalize on an unseen dataset. This is more important as more complex 

the task is and the smaller the original dataset is. 

Today, there are different types of CNN based on different architectures, with various number of 

layers. The oldest is LeNet, born in 1998, that represents the skeleton for the following CNNs: 

AlexNet, VGGNet/OxfordNet, GoogleNet, DenseNet e ResNet. 
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Applications of deep-learning in Diagnostic imaging  

The possibilities offered by the application of neural networks in the diagnostic imaging field, is mainly 

related to two factors: 

1) The interpretation of diagnostic images is usually performed by a specialized radiologist but, 

in emergency situations, also less skilled veterinarians might need to interpret those images. 

Nevertheless, interpretative errors occur in both situation; 

2) In case of liver or splenic focal lesions obtaining a final diagnosis is paramount for an adequate 

and prompt treatment for the patient. Nowadays, histological examination is the gold 

standard to achieve a definitive diagnosis, but, unfortunately, is not always possible for the 

patient to undergo a so invasive examination.  

 

Errors in diagnostic imaging 

Since its birth, diagnostic imaging assumed a central role in the clinical practice both in human and 

veterinary medicine. Nevertheless, even if experience, knowledge and technology has progessed 

during the last decades, the incidence of errors in diagnostic imaging is still high, with consequent 

delay in treatments and longer hospitalizations 40. In veterinary medicine the incidence of these 

errors is still unknown. On the contrary, in human medicine several studies reported a frequency of 

diagnostic imaging errors ranging from 10 to 15%41,42 for thoracic radiographic studies, and from 3 

to 16% for abdominal tomographic studies 40,43. 

The aetiology of such errors is still debated, but seems to be multifactorial: mechanical, physiological 

and psychological factors are simultaneously involved in a process still not deeply understand 44. 

There are two fundamental errors in radiology: perception and interpretation errors 40. 

The perceptive errors is when a lesion is missed during the initial evaluation of the images, followed 

by its identification in retrospective images evaluation 40,41. In a study by Yun et al 2017 the causes of 

perception errors are summarized as follow: neglect the presence of other lesions once one 

abnormality is identified; presence of a bigger lesion near to a missed lesion; localization of the 

missed lesion in an anatomical blind region, that is, anatomical sites (more frequently liver, 

peritoneum, body wall, retroperitoneum and mesentery) that are not accurately observed by the 

radiologist maybe for cognitive reasons; use of an inappropriate window of visualization 40,45.  

Interpretation errors is the incorrect diagnosis of an otherwise correctly identified lesion. These 

errors usually arise from a the inexperience of the radiologist (i.e. the classification of a normal tissue 
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as abnormal or the incorrect interpretation of an abnormal presentation of a pathology in absence 

its typical features), but might also derive from an inappropriate collection of patient anamnesis 40. 

In tomographic studies technical factors related to scan protocols, soma of the patient, contrast 

medium, possibilities to perform scans in different phases (arterial, venous, delayed) must also be 

taken in account43. 

Knowledge of the different error types is useful to develop adequate support systems for the 

radiologist.  Some support systems are, for example, the use of structured reports, the reduction of 

multitasking and double evaluation of the medical images. Even if the constant use of these support 

systems is useful in the reduction of error rate, other, more sophisticated approaches are required 

to achieve optimal standards. 

In the last decades, lot of attention was given to computed-aided detection (CAD) systems, where AI 

algorithms assist the clinician in the evaluation of radiographic, tomographic, and ultrasonographic 

images. In human medicine, several studies demonstrate the efficacy and utility of these methods 

and a plethora of possible applications have been advised  46,47. 

Some CADs for diagnostic imaging have been also proposed in veterinary medicine, with encouraging 

results 48–53. Among these, in the study by Burti et al 2020 four models based on four different CNNs 

for the evaluation of canine cardiomegaly in thoracic radiographies have been studied. All the models 

had a high diagnostic accuracy (area under the curve (AUC) > 0.9). Moreover, in the study by Banzato 

et al 2021 two CNNs have been applied to thoracic radiographs of the dog to detect some of the most 

commonly encountered thoracic radiographic findings (normality, cardiomegaly, alveolar pattern, 

bronchial pattern, interstitial pattern, mass, pleural effusion pneumothorax, and megaoesophagus): 

ResNet-50 ( a specific type of convolutional neural network) was capable of identifying all the findings 

(except for bronchial and interstitial patterns) with an AUC above 0.8.  

The application of deep-learning algorithms to computed tomography has yet not been explored in 

veterinary medicine. 

 

Main complications reported for hepatic and splenic biopsy  

Histological examination is, nowadays, the gold standard technique to obtain the final diagnosis of 

focal hepatic and splenic lesions 54,55. Haemorrhage and thrombosis after cytological or tru-cut 

sampling procedures are reported to be common, especially when a neoplastic lesion is sampled 54,56. 

The most common approach for focal splenic lesions, especially when large masses are present, is 

surgical splenectomy 27,57. Nevertheless, complications following splenectomy (mainly haemorrhagic 



 26 

and thrombotic events), are reported in 7.6% of the patients 58. On the other hand, cytology is 

reported to have a low sensitivity, but a high specificity, for both hepatic and splenic lesions 57,59. As 

a consequence, when a cytological diagnosis of malignancy is obtained it is recomended to proceed 

in the a oncological and/or surgical treatment of the patient. Vice versa, when a cytological diagnosis 

of benign lesion is obtained, other diagnostic approaches might be suggested to confirm such a 

diagnosis.   

 

AIM OF THE PhD PROJECT  

Based on what discussed in the above paragraphs, the possibility to distinguish non-invasively 

between benign and malignant focal lesions might be a game changing approach in the diagnostic 

workflow of splenic and hepatic lesions.  

The aim of this PhD project was to develop and train a deep learning-based algorithm capable of 

distinguishing between benign and malignant canine focal hepatic and splenic lesions based on their 

CT features. The entire study was composed by two parts: in the first part, we have developed a 

machine learning based algorithm based on the qualitative and quantitative CT features described by 

the radiologists. In the second part a CNN to predict whether a lesion was benign or malignant directly 

from the CT images was developed. Finally, a metanalysis study on focal liver lesions, with the aim to 

identify which of the qualitative and quantitative CT features reported in the literature are useful to 

distinguish malignant and benign hepatic lesions, was conducted.  
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CHAPTER TWO 

Diagnostic accuracy of delayed phase post 

contrast computed tomographic images in 

the diagnosis of focal liver lesions in dogs: 

69 cases. 
 

The chapter was adapted from:  

Burti S, Zotti A, Bonsembiante F, Contiero B, Banzato T. Diagnostic Accuracy of Delayed Phase Post 

Contrast Computed Tomographic Images in the Diagnosis of Focal Liver Lesions in Dogs: 69 Cases. 

Front Vet Sci. 2021 Mar 4;8:611556. doi: 10.3389/fvets.2021.611556. Erratum in: Front Vet Sci. 2021 

Nov 04;8:782672. PMID: 33748206; PMCID: PMC7969650.  
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ABSTRACT 

To describe the computed tomographic (CT) features of focal liver lesions (FLLs) in dogs, that could 

enable predicting lesion histotype. Dogs diagnosed with FLLs through both CT and cytopathology 

and/or histopathology were retrospectively collected.  Ten qualitative and 6 quantitative CT features 

have been described for each case. Lastly, a machine learning-based decision tree was developed to 

predict the lesion histotype. Four categories of FLLs - hepatocellular carcinoma (HCC, n=13), nodular 

hyperplasia (NH, n=19), other benign lesions (OBL, n=18), and other malignant lesions (OML, n=19) - 

were evaluated in 69 dogs. Five of the observed qualitative CT features resulted to be statistically 

significant in the distinction between the 4 categories: surface, appearance, lymph-node appearance, 

capsule formation, and homogeneity of contrast medium distribution. Three of the observed 

quantitative CT features were significantly different between the 4 categories: the Hounsfield Units 

(HU) of the radiologically normal liver parenchyma during the pre-contrast scan, the maximum 

dimension, and the ellipsoid volume of the lesion. Using the machine learning-based decision tree, it 

was possible to correctly classify NHs, OBLs, HCCs, and OMLs with an accuracy of 0.74, 0.88, 0.87, 

and 0.75 respectively. The developed decision tree could be an easy-to-use tool to predict the 

histotype of different FLLs in dogs. Cytology and histology are necessary to obtain the final diagnosis 

of the lesions. 
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INTRODUCTION 

Focal liver lesions (FLLs) are common in dogs, especially in older patients. Malignant primary hepatic 

tumours represent less than 1.5% of all the malignant tumours in dog. More than 50% of malignant 

FLLs in dogs are hepatocellular carcinomas (HCC), whereas bile duct carcinomas (BDC) account for 

22-40% of cases. Metastatic tumours (from pancreatic, splenic and gastroenteric tract in most cases) 

involving the liver are 2.5 times more frequent than primary tumours (2–4). Benign FLLs, especially 

in older dogs, are mostly nodular hyperplasia (NH), hepatocellular adenoma, and bile duct adenoma 

(2,5). 

In human medicine the computed tomographic (CT) features of different FLLs in the arterial, portal 

and delayed phase are well described, and, therefore, it is possible to infer the histopathologic 

subtype of a FLL from its CT features (6–8). For example, the presence of a hypervascular pattern in 

a heterogeneous enhancing hepatic lesion during the arterial phase, is a feature often associated 

with HCCs (9).  

In human medicine, the increasing availability of triple-phase CT, magnetic resonance imaging (MRI) 

and positron emission tomography (PET) have improved the scope to detect and diagnose FLLs (10). 

Moreover, the etiopathology of HCCs is well known (10), and the diagnostic and therapeutical 

approaches to this tumour are well detailed and based on the appearance of the lesions during the 

imaging examinations and on the histotype of the lesions (10,11). In animals, the etiopathology of 

FLLs is less detailed compared to human medicine, studies have involved a lower number of cases, 

and the inclusion and exclusion criteria related to the features of the lesions (e.g. margins, number, 

dimension) are less restrictive.  

The CT features of FLLs in dogs have seldom been described (5,12–15). The studies on this topic are 

very heterogenous, indeed, a variety of features, scanning protocols, lesions, were evaluated in the 

different studies. A moderate to high accuracy of some CT features (e.g.: delayed phase enhancement 

(15,16)), in the distinction between benign and malignant masses is reported. Despite such 

encouraging results previous studies have only considered either only benign or malignant lesions 

(15,16) , or only certain lesion histotypes (5,12,13). Another important limitation is that, to date, most 

of the studies have only evaluated the accuracy of individual features and an algorithm to classify 

hepatic lesions based on their CT features has not been developed yet. In such a scenario, 

histopathology is still the gold-standard method for characterisation of FLLs in dogs.  

The possible applications of machine learning algorithms have been widely explored in human 

diagnostic imaging in the last decades (17). On the other hand, in the last decade, the possibilities 
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offered by this technology has raised an increasing interest also in veterinary medicine (18–22). 

Machine learning comprise a wide range of algorithms that can be broadly divided into machine 

learning and deep learning (23). Generally speaking, the main difference between the two systems is 

that machine learning algorithms are statistical methods that are applied on human crafted features 

extracted from the images whereas deep learning algorithms, are end-to-end algorithms capable of 

automatically extracting the features from the images and analysing them accordingly. 

The aims of the present study are: 1) to describe the quantitative and qualitative computed 

tomographic features in pre-contrast and in the delayed phase of different histopathological 

subtypes of FLLs in dogs; 2) to develop a machine learning-based decision tree to assist the radiologist 

and the clinician in predicting different histopathological subtypes of FLLs based on their CT features. 

We hypothesized that a diagnostic algorithm, based on the CT features as described by the 

radiologist, could help in the prediction of the histopathological type of FLL.  

 

MATERIAL AND METHODS 

Study Population 

Dogs referred to the Pedrani Veterinary Clinic (Via Caldierino 14, Zugliano, Vicenza, Italy) and to the 

Veterinary Teaching Hospital of the University of Padua (Viale Dell’Università 16, Legnaro, Padua, 

Italy) between June 2015 and January 2020 and which underwent computed tomographic 

examination and had FLL diagnosed with cytopathology and/or histopathology were retrospectively 

selected. Complete signalment was recorded for each patient. Dogs with hepatic masses/nodules not 

diagnosed on pathology, or which underwent chemotherapy before the tomographic examination, 

were excluded. 

All the methods were carried out in accordance with the relevant guidelines and regulations. This 

study was conducted respecting the Italian law D. Leg.vo 26/2014 (that transposes EU Directive 

2010/63/EU). Nevertheless, since the data used in this study were part of routine clinical activity, no 

ethical committee approval was required. Informed consent regarding the treatment of personal 

data was obtained from the owners. 

 

Cytopathological and Histopathological Examination 

Cytological samples were obtained through ultrasound-guided fine-needle aspiration of the hepatic 

mass. 21 Gauge needles were always used. Aspirates were spread on glass slides that were air-dried, 
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stained with May-Grünwald-Giemsa stain and cover-slipped. The evaluation of the cytological slides 

was performed by one cytologist (FB).  

Histological samples were obtained through ultrasound-guided Tru-cut biopsy of the hepatic mass. 

Tissue samples were fixed in 10% neutral formalin, processed by dehydration in a graded ethanol 

series and embedded in paraffin. Histological examination was carried out on 4-µm-thick sections 

stained with haematoxylin and eosin by one pathologist. 

 

Computed Tomography Examination  

All the animals were fasted for a 12-hour-period prior to examination. General anaesthesia was 

always administered. The CT examinations were performed using three different scanners (Asteion 

super4, Toshiba Medical System Corporation; Revolution ACT, General Electric Medical System; 

Optima CT 520 Series, General Electric Medical System). Due to the different technology of the 

scanners, slightly different scanning protocols were used. The scanning protocols were as follows: In 

both facilities contrast medium (Ioversol 350mg/ml, Optiray 350, LIEBEL-FLARSHEIM COMPANY LLC, 

USA) at the dosage of 660mg I/kg of body weight was injected through an IV catheter placed in the 

cephalic vein. At the Pedrani Veterinary Clinic the contrast medium was administered by means of 

an injector. At the Veterinary Teaching Hospital, the contrast medium was manually administered 

through an intravenous bolus at the fastest possible rate. In both institutions a standard total-body 

scan with a pre-contrast and a delayed phase, starting from the nose tip at 60-70 seconds after the 

end of contrast medium injection, was used. This means that, considering the post-start injection-

scanning at the liver site a delay ranging from 69 to 105 seconds at the Pedrani Veterinary Clinic and 

a 74 to 120 seconds at the Veterinary teaching Hospital should be considered.  All the patients were 

placed on ventral recumbency during the scan. 

All the images were stored as digital imaging and communication in medicine (DICOM) files.  

 

Image Analysis 

All the scans were reviewed by two experienced radiologists (AZ and SB) using a picture archiving and 

communication system (PACS) workstation (RadiAnt DICOM Viewer 5.5.0). The qualitative and 

quantitative CT features were evaluated during both the pre-contrast phase and the delayed phase. 

In the case of multiple lesions, only the CT features of the lesions that were sampled have been 

described. All the studies were displayed in a soft tissue window (WW: 400 HU– WL: 40HU) 
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The following qualitative features were evaluated: 1) margins (well- or ill-defined); 2) surface (regular 

or irregular); 3) appearance (solid or cyst-like) - the lesion was classified as “cyst-like” if at least one 

area having a measured Hounsfield Unit (HU) value similar to that of the gallbladder of the same 

animal (representing possible necrosis or haemorrhage), was present (12); 4) portal lymph-nodes 

appearance (normal or abnormal) – portal lymph nodes were graded as abnormal if any of the 

following changes were evident: a) lymphoadenomagaly b) heterogeneous c) irregular shape; 5) 

capsule formation (present or absent) - the presence of a capsule was reported if a thin and 

hyperenhancing fibrous peripheral border, encompassing most of the lesion, was present and care 

was placed to differentiate between real capsule formation and the presence of enlarged vessels or 

sinusoids mimicking the presence of a real capsule (24); 6) portal invasion, meaning the invasion of 

the portal vein and its branches (present or absent); 7) homogeneity in the distribution of the 

contrast medium inside the lesion (homogeneous or heterogeneous); 8) enhancement pattern 

(prevalently central, marginal, or diffuse distribution). 

The following quantitative characteristics were evaluated: 1) attenuation (measured as an HU value) 

of the radiographically normal liver parenchyma surrounding the lesion, both in pre- and post-

contrast scans; 2) attenuation (HU value) of the lesion both in pre- and post-contrast scans; 3) 

maximum transverse diameter; 4) volume - the shape of the lesion was considered to be an ellipsoid 

and the formula 𝑉 = !
"
𝜋	(height ∗ width ∗ length) was applied (25); 5) attenuation of the lesion 

compared to that of the radiologically normal liver parenchyma in the pre-contrast images 

(hypoattenuating, isoattenuating or hyperattenuating); 6) enhancement degree of the lesion 

compared to that of the radiologically normal liver parenchyma in post-contrast images 

(hypoenhancing, isoenhancing or hyperenhancing). The attenuation and the enhancement degree of 

the lesion were determined based on the difference between the HU value measured in the lesion 

and the HU value measured on the radiologically normal liver parenchyma. If the difference between 

the lesion and the parenchyma felt in the ±10 HU range, the lesion was classified as iso-

attenuating/enhancing; with a difference greater than +10 HU the lesion was classified as hyper-

attenuating/enhancing; if the difference was lower than -10 HU, the lesion was classified as hypo-

attenuating/enhancing (13,14). The CT features were evaluated by two of the authors of this study 

(SB: with 4 years of experience in diagnostic imaging and AZ: with 20 years of experience in diagnostic 

imaging) that were blinded to the results of the histopathological examination.  
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HU values were measured on the three circular regions of interest (ROIs) which could be placed in 

different regions of both normal and pathological parenchyma. The same ROIs were placed in pre- 

and post-contrast images. 

 

Statistical Analysis 

All the statistical analysis was performed using R-software version 3.6.1 (R Core Team (2019); R: a 

language and environment for statistical computing. The R Foundation for Statistical Computing, 

Vienna, Austria). The difference in the distribution of the qualitative variables was analysed with the 

chi-Square test (χ2) or with Fisher’s exact method. Post-hoc multiple comparisons among levels were 

performed using Marascuilo approach. Differences in the distribution of the quantitative variables 

were analysed with a one-way analysis of variance (ANOVA) for normally distributed data, or with the 

Kruskal-Wallis test for non-normally distributed data. The Tukey-Kramer method was used for 

multiple comparison tests after ANOVA analysis. A Steel-Dwass-Critchlow-Fligner procedure was 

used for pairwise comparison testing after Kruskal-Wallis analysis. A p-value of < 0.05 was considered 

as statistically significant.  

A machine learning-classification tree analysis was performed to detect the best discriminating CT 

features. A recursive partitioning method was adopted using the rpart package of R(26).  This package 

builds a decision tree based on a three-step procedure. In the first step, the feature that provides the 

best splitting of the data into two groups is selected. The second step of the procedure uses a 10-

fold cross-validation to select the tree having both the lowest number of branches and the lowest 

misclassification rate. Thereafter, the developed tree is applied to the original dataset and sensibility, 

specificity, accuracy and misclassification rate are calculated.  

 

RESULTS 

Patients 

Based on the inclusion criteria, 69 dogs of different breeds (37 females and 32 males, with mean age 

of 11 years ranging from 4 to 16.5 years), with pathologically diagnosed FLLs, and which underwent 

a CT examination, were included. Cytopathology was performed in 54 dogs. Tru-cut biopsy was 

performed in 13 dogs, and both cytology and histology were performed in 3 dogs. In two of these 

latter cases there was an agreement between cytology and histology (both were suggestive of HCC); 

in one case the cytological diagnosis was blood collection and vacuolar degeneration, while NH was 

diagnosed by means of histology. Benign lesions were diagnosed in 37 cases (1 biliary duct adenoma, 
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1 haematoma, 1 inflammation, 2 hepatocellular adenomas, 2 normal liver parenchyma, 11 

degenerations, and 19 nodular hyperplasia), and malignant lesions were diagnosed in 32 cases (1 

mast cell tumour, 1 plasmocytoma, 1 biliary duct carcinoma, 1 undifferentiated carcinoma, 1 

melanoma, 1 metastasis of mammary neoplasia, 2 lymphomas, 4 endocrine neoplasia, 7 sarcomas 

and 13 HCCs). 

Due to the large variability in the histological subtypes of the lesions included in the study, the 

patients were grouped into the following four categories for the statistical analysis: NHs (19 cases); 

OBLs (18 cases), HCCs (13 cases), and OMLs (19 cases).  

 

Image Analysis 

A summary of all the CT parameters evaluated, along with the p-values of the statistical tests, is 

reported in Table 1 (qualitative features) and Table 2 (quantitative features). 
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Table 1 Number of cases, classified based on cytological or histological examination, showing the qualitative features, along with the 
p-value. 

 

 

Table 2 Quantitative features of the lesions, classified based on cytological or histological examination, are reported as medians along 
with the first and third quartile values and the p-value.  

Nodular hyperplasia Other benign lesions Hepatocarcinoma Other malignant lesions Total 

(n = 19) (n = 18) (n = 13) (n = 19) (n = 69)
Margins 0.07
well defined 14 (73.7%) 13 (72.2%) 13 (100%) 11 (57.9%) 51
ill defined 5 (26.3%) 5 (27.8%) 0 8 (47.1%) 18
Surface < 0.01
regular 5 (26.3%) 11 (61.1%) 0 2 (10.5%) 18
irregular 14 (73.7%) 7 (38.9%) 13 (100%) 17 (89.5%) 51
Aspect 0.03
solid 8 (42.1%) 9 (50.0%) 1 (7.7%) 9 (47.4%) 27
cyst-like 11 (57.9%) 9 (50.0%) 12 (92.3%) 10 (52.6%) 42
Lymph-nodes < 0.01
normal 14 (73.7%) 17 (94.4%) 6 (46.2%) 8 (42.1%) 45
abnormal 5 (26.3%) 1 (5.6%) 7 (53.8%) 11 (57.9%) 24
Portal invasion 0.39
present 0 0 0 2 (10.5%) 2
absent 19 (100%) 18 (100%) 13 (100%) 17 (89.5%) 67
Capsule formation 0.03
present 0 7 (38.9%) 7 (53.8%) 9 (47.4%) 23
absent 19 (100%) 11 (61.1%) 6 (46.2%) 10 (52.6%) 46
Homogeneity post-contrast medium < 0.01
homogeneous 7 (36.8%) 12 (66.7%) 0 6 (31.6%) 25
heterogeneous 12 (63.2%) 6 (33.3%) 13 (100%) 13 (68.4%) 54
Enhacement pattern 0.70
diffuse 16 (84.2%) 14 (77.8%) 11 (84.6%) 15 (78.9%) 56
marginal 3 (15.8%) 4 (22.2%) 2 (15.4%) 3 (15.8%) 12
central 0 0 0 1 (5.3%) 1
Attenuation pre-contrast medium 0.53
hypoattenuating 13 (68.4%) 15 (83.3%) 12 (92.3%) 16 (84.2%) 56
isoattenuating 6 (31.6%) 3 (16.7%) 1 (7.7%) 3 (15.8%) 13
hyperattenuating 0 0 0 0
Enhancement post-contrast medium 0.65
hypoenhancing 15 (78.9%) 16 (88.9%) 13 (100%) 17 (89.5%) 61
isoenhancing 1 (5.3%) 0 0 0 1
hyperenhancing 3 (15.8%) 2 (11.1%) 0 2 (10.5%) 7

p-value

Category

Nodular hyperplasia Other benign lesions Hepatocarcinoma Other malignant lesions
(n = 19) (n = 18) (n = 13) (n = 19)

HU normal liver pre-contrast medium 63.82 66.84 58.63 60.03 < 0.01

(53.79-69.79)ab (64.36-72.54)a (53.12-63.02)b (54.59-64.55)b

HU normal liver post-contrast medium 144.54 137.6 127.72 142.87 0.29
(120.59-169.15) (126.71-154.01) (116.12-135.06) (117.56-157.18)

HU lesion pre-contrast medium 45.68 39.5 41.48 39.93 0.8
(40.72-54.79) (29.94-45.99) (34.87-46.93) (34.39-46.12)

HU lesion post-contrast medium 114.37 75.65 67.39 83.19 0.13
(50.96-144.87) (61.37-121.17) (56.03-83.93) (66.32-121.40)

Max dimension 4.53 2.15 11.11 3.59 < 0.01

(2.45-6.75)ab (1.12-5.33)b (5.67-13.76)a (2.11-4.61)b

Ellipsoid volume 40.78 2.41 393.57 8.31 < 0.01

(6.15-112.86)ab (0.39-26.78)c (54.80-727.31)a (3.67-23.60)bc

Category

p-value
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Among the qualitative features the surface (c2 = 19.80; p-value < 0.01), appearance (c2 = 8.75; p-value 

= 0.03), lymph-node appearance (c2 = 13.19; p-value < 0.01), capsule formation (c2 = 9.23; p-value = 

0.03), and homogeneity in the distribution of the contrast medium inside the lesion (c2 = 13.79; p-

value < 0.01) showed statistically significant differences. No significant differences were evident for 

the characteristics of the margins (c2 = 7.14; p-value = 0.07), the presence of portal invasion (c2 = 

3.02; p-value = 0.39), the enhancement pattern (c2 = 3.83; p-value = 0.70), attenuation during the 

pre-contrast phase (c2 = 2.21; p-value = 0.53), and enhancement during the post-contrast phase (c2 

= 4.19; p-value = 0.65). Most of the HCCs included in this study (>90%), showed an irregular surface, 

a cyst-like appearance and heterogeneity post-contrast medium. The presence of abnormal lymph-

nodes was equally recorded both in HCC and OML (more than 50% of the cases). The presence of a 

capsule was recorded in all lesions, except NH.  

 

All the quantitative variables showed non-normal distribution. Therefore, values are reported as 

medians along with the first and third quartiles, and differences were calculated using the Kruskal- 

Wallis test. As a result of the Kruskal-Wallis test, the HU value of the radiologically normal liver 

parenchyma during the pre-contrast phase (K = 12.71; p-value < 0.01), maximum dimension (K = 

14.60; p-value < 0.01) and ellipsoid volume (K = 18.21; p-value < 0.01) showed statistically significant 

differences. Post-hoc testing revealed the following significant differences: 1) between HCCs and 

OBLs regarding maximum dimension (p-value < 0.01), ellipsoid volume (p-value < 0.01) and the HU 

value of the radiologically normal liver parenchyma during the pre-contrast phase (p-value < 0.01); 

2) between HCCs and OMLs regarding maximum dimension (p = 0.03), and ellipsoid volume (p-value 

< 0.01); 3) between nodular hyperplasia and OBLs (p-value = 0.04); 4) between other malignant and 

OBLs for the HU value of the radiologically normal liver parenchyma during the pre-contrast phase 

(p-value < 0.01). 

No statistically significant differences were evident for the remaining quantitative features: the HU 

value of the radiologically normal liver parenchyma during the post-contrast phase (K = 3.80; p-value 

= 0.29), and the HU value of the lesions during both pre-contrast (K = 2.76; p-value = 0.43) and post-

contrast (K = 4.93; p-value = 0.18) phases. 

NH is a benign condition, which is often an occasional finding, but it could be a diagnostic challenge 

in a patient with a known history for another malignancy (24). In the present study, NHs were mainly 

hypoattenuating (68.4%) and hypoenhancing (78.9%) lesions showing a diffuse contrast 

enhancement pattern (84.2%), with homogeneous distribution (63.2%), well-defined margins 
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(73.7%), an irregular surface (73.7%) and a cyst-like appearance (57.9%). The hepatic lymph nodes 

were radiologically normal in 14 out of 19 cases (73.7%), whereas neither portal vein invasion nor a 

real capsule formation were evident in any case.  

The OBLs were mainly hypoattenuating (83.3%) and hypoenhancing (88.9%) lesions characterised by 

a diffuse enhancement pattern (77.8%), homogeneous distribution (66.7%), well-defined margins 

(72.2%), a regular surface (61.1%), and with both a cyst-like (50%) and solid (50%) appearance.  

Hepatic lymph nodes were almost always radiologically normal (17/18), and portal vein invasion was 

never detected. A fibrous capsule was evident in 7 out of 18 patients.  

HCCs were mostly cyst-like (12/13, 92.3%), hypoattenuating (12/13) and hypoenhancing lesions 

(100%), with a diffuse enhancement pattern (84.6%), a heterogeneous distribution (100%), well-

defined margins (100%), and an irregular surface (100%). The hepatic lymph nodes were abnormal 

in 53.8% of the cases (7/13), and portal vein invasion was never evident. The lesions were surrounded 

by a fibrous capsule in 53.8% of cases. Post-hoc tests revealed no significant differences between 

HCCs and NHs for both qualitative variables and quantitative variables. 

The OMLs were mainly hypoattenuating (84.2%) and hypoenhancing (89.5%), showing a diffuse 

enhancement pattern (78.9%), heterogeneous distribution (68.4%), well-defined margins (57.9%) 

and an irregular surface (89.5%). They had both a cyst-like (52.6%) and a solid (47.4%) appearance. 

The hepatic lymph nodes were abnormal in 57.9% of cases. Portal vein invasion was evident only in 

2 patients (10.5%). Fibrous capsule formation was evident in 9 out of 19 (47.4%).  

Representative cases of each FLL showing the most typical CT features are reported in Figures 1-4. 

The final decision tree algorithm was built on five automatically selected CT features: 1 qualitative 

feature (lymph nodes), and 4 quantitative features (maximum dimension, HU normal liver pre- 

contrast, HU normal liver post-contrast, HU lesion pre-contrast). The confusion matrix is reported in 

Table 3. The sensitivity, specificity, accuracy, precision, Mathew’s correlation coefficient, and the 

misclassification rate for each group, along with the global misclassification rate are reported in Table 

4. The decision tree is set out in Figure 5.  

The decision tree misclassified 7 cases as OBL and 5 cases as OML. Among the 7 incorrectly classified 

OBLs, 6 were in fact degenerations (misclassified as OML in 4 cases, and as NH in 2 cases). The 

remaining case classified as OBL was in fact a hepatocellular adenoma (misclassified as NH). Among 

the 5 incorrectly classified OMLs, 1 metastatic splenic sarcoma was misclassified as HCC. Lastly, 1 

mast cell tumour, 1 endocrine neoplasia, 1 myeloma, and 1 metastasis of splenic sarcoma were 

classified as NH. 
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Figure 1 Example of a NH lesion that shows hypoattenuation and hypoenhancement, diffuse contrast enhancement pattern, with 
heterogeneous distribution, well-defined margins, irregular surface, and cyst-like appearance. A. image obtained from the pre-contrast 
scan; B. image obtained from the delayed scan. A ROI is placed inside the lesion in both. Based on the developed decision tree this lesion 
was classified as OBL. 

A B 

A B 

Figure 2 Example of an OBL lesion (diagnosed as adenoma) showing hyperattenuation and hypoenhancement, diffuse contrast 
enhancement pattern, with homogeneous distribution, well-defined margins, regular surface, and cyst-like appearance. A. image 
obtained from the pre-contrast scan; B. image obtained from the delayed scan. A ROI is placed inside the lesion in both. Based on the 
developed decision tree this lesion was classified as OBL. 
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Figure 3 Example of an HCC showing hypoattenuation and hypoenhancement, diffuse contrast enhancement pattern, with 
heterogeneous distribution, well-defined margins, irregular surface, and cyst-like appearance. A. image obtained from the pre-contrast 
scan; B. image obtained from the delayed scan. A ROI is placed inside the lesion in both. Based on the developed decision tree this lesion 
was classified as HCC.  

A B 

Figure 4 Example of an OML (diagnosed as lymphoma) showing hypoattenuation and hypoenhancement, diffuse contrast enhancement 
pattern, with heterogeneous distribution, well-defined margins, irregular surface, and solid appearance. A. image obtained from the 
pre-contrast scan; B. image obtained from the delayed scan. A ROI is placed inside the lesion in both. Based on the developed decision 
tree this lesion was classified as OML.  
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Table 3 Confusion matrix to summarize the performance of the machine learning algorithm giving the number of predicted cases among 
the four categories of FLLs. 

 

 

Table 4 Complete results of the classification of the FLLs based on the machine learning-based decision tree. 

 
*MCC, Matthews Correlation Coefficient 
 

 

 
  

Nodular hyperplasia Other benign lesions Hepatocarcinoma Other malignant lesions Total

Nodular hyperplasia 10 3 2 4 19
Other benign lesions 1 11 0 0 12
Hepatocarcinoma 3 0 8 1 12
Other malignant lesions 5 4 3 14 26
Total 19 18 13 19 69

Actual

Pr
ed

ic
te

d

Nodular hyperplasia Other benign lesions Hepatocarcinoma Other malignant lesions
Sensitivity (%) 53 61 62 74
Specificity (%) 82 98 93 76
Accuracy (%) 74 88 87 75
Precision (%) 53 92 67 54
MCC* 0.42 0.69 0.58 0.51
Miscassification rate (%) 47 39 38 26
Global misclassification rate (%) 38

Figure 5 The machine learning-based decision tree developed based on qualitative and quantitative CT features of the FLLs. 
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DISCUSSION 

A machine learning-based, easy-to-follow, algorithm to predict the histotype of canine liver lesions, 

based on their CT features, is proposed. The proposed algorithm had a variable accuracy in the 

classification of the different histotypes, ranging from 0.74 of NH to 0.88 of OBL. On the other hand, 

also the precision was extremely variable ranging from 0.53 of NH to 0.92 of OBL. The global 

misclassification rate was high with 38% of the lesion that were incorrectly classified. The same 

machine learning algorithm (decision tree) used in this paper was used by the authors in a previous 

report (3) on the CEUS features of canine malignant liver lesions. In that report, a higher number of 

cases (185 total cases) was available, thus offering the scope to split the dataset into a training and a 

test set. In the present study, the relatively low number of available cases did not allow such a division 

of the dataset, and, therefore, the accuracy of the decision tree was retested on the same dataset.  

A machine learning-based approach was used by other authors (15). In their report, Griebie and 

others 2017 used both a stepwise discriminant analysis and a Fisher prediction equation to identify 

the CT or ultrasound features that might be helpful in distinguishing between focal liver lesions. Using 

such a classification method allowed them to accurately (sensitivity = 96.7; specificity = 87.5) 

distinguish only between benign and malignant lesions. On the other hand, none of the features 

described by Griebie and others 2017 resulted as significant when a specific diagnosis classification 

was used.  

In the present study, the different histotypes of the lesions were grouped into four different 

categories, in order to have a sufficient number of cases in each category. Using such a classification 

scheme and applying the decision tree enabled us to progressively detect those features that might 

be helpful in distinguishing between specific categories of lesion. On the other contrary, using such 

an approach results in an overall lower accuracy of the model when compared to the binary 

classification proposed by Griebie and others 2017. 

A limitation of the present study is that, due to the fact that the masses were mostly incidental 

findings, only the delayed phase was evaluated in this study. In other studies on the same 

topic(5,13,15,16,27) the enhancement patterns have been evaluated in triple phase (arterial, portal, 

delayed). On the other hand, most (not all) of the CT features that are reported to be helpful in the 

distinction among different FLL are seen in the delayed phase. There is no agreement among different 

authors regarding the CT features of canine HCCs in the delayed phase. Indeed, Taniura and others 

2009, and Fukushima and others 2012 describe HCCs as hypoenhancing lesions, Jones and others 

2016 as hyperenhancing, and Kutara and others 2014 report that HCCs might have all the possible 
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enhancement patterns. The results of the present study were similar to the findings by Taniura and 

others 2009 and Fukushima and others 2012. Indeed, all the HCCs included in this study were 

hypoenhancing lesions. Furthermore, HCCs have been described as being cyst-like lesions (12) with 

a heterogeneous contrast enhancement (13). These finding were also similar to those reported the 

present study; indeed, 12/13 HCCs were cyst-like lesions and a heterogeneous distribution of the 

contrast medium was always evident. On the other hand, as a result of the decision tree, the most 

effective CT feature to classify HCCs was the maximum dimension of the lesion. Interestingly, the cut-

off value identified by the decision tree (9.6 cm) was very similar to the cut-off value reported by 

Griebie and others 2017 (9.5 cm) to identify malignant lesions.  

The presence of an hyperenhancing fibrous capsule surrounding the lesion is reported to be a 

distinctive CT feature of HCCs in humans, and, therefore, is used in the distinction between HCCs and 

NHs (24). While this feature is distinctive in people, the feature was only present in 7/13 dogs with 

HCC and in none of the NHs in the current study. Furthermore, also Taniura and others 2009 and 

Fukushima and others 2012 identified a hyperenhancing capsule in 25/36 and 13/14 HCC cases, 

respectively. Lastly, the presence of a hyperenhancing capsule in NHs in dogs is reported only in a 

single case (12). Nevertheless, the presence of such a capsule was also evident in 7/18 OBLs and in 

9/19 OMLs.  

There is also no agreement among different authors regarding the CT features of NH. Indeed, they 

are described as isoenhancing lesions in the venous phase by Taniura and others 2009, and 

Fukushima and others 2012. On the contrary, Kutara and others 2014 describe them as often being 

hyperenhancing or isoenhancing lesions showing a homogeneous distribution of the contrast 

medium. Interestingly, in the present study, most of the NH were hypoenhancing lesions showing a 

diffuse enhancement pattern. In human patients, NHs are reported to be mainly isoenhancing during 

the venous phase (24). 

A limitation of the present study is that Tru-cut biopsies were obtained only in 13 patients and only 

3 patients had both cytology and histology. Tru-cut and incisional biopsies are, nowadays, considered 

the gold-standard diagnostic techniques to determine the histopathological subtype of FLLs (28,29) 

and, indeed either Tru-cut (12,15) or surgical biopsies (5,13,16) have been used as reference standard 

in previous studies. However, because of the possible side effects, such as haemorrhage, 

hypercoagulable states, hypotension, peritonitis, hepatic emphysema (30–32), biopsies are not 

always performed in patients with FLL. In these cases, cytological examination represents a viable 

alternative to biopsies, even if the sensitivity for malignancy is lower (33,34). We are aware of the 
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lack of standardization of the injection procedures and also those manual procedures are slightly 

operator-dependent; however, the key-point is that each subject of our study was scanned during an 

earlier or slightly more advanced stage of the delayed phase. We would like to state again that this is 

not a relevant hepatic phase study; in fact, a specific arterial or portal phase was not performed in 

any subject. This study reports an analysis of the hepatic pathological CT patterns within slightly 

variable stages of the delayed phase that could be found during non-focused CT whole body 

examinations. 

Another possible limitation of the present study is that the CT features of the lesions were evaluated 

only during the delayed phase. This was carried out because of the different technology of the CT 

scanners used to acquire the images for this study. Indeed, both 4- and 16-row CT scanners were 

used. The former does not enable images to be acquired during the arterial phase and, therefore, in 

order to make a reliable comparison, only the delayed phase was analysed. At this point it is, however, 

important to stress that, in the study by Griebie and others 2017, using a multiphase CT scanner, only 

the CT features of the lesions in the venous and delayed phases were statistically significant for the 

development of their prediction model. Moreover, in a standard clinical protocol for CT total-body 

scan only the arterial and delayed phase are performed.  

The decision tree, based on the qualitative and quantitative CT features of the lesions, reported in 

the present results could be an easy-to-use tool for the veterinary clinician in predicting the histotype 

of different canine FLLs. A larger number of cases, enabling application of stricter inclusion/exclusion 

criteria (for example using cut-off values for the dimensions of the lesions to be included) could, 

prospectively, enable creation of a more accurate decision tree. Nevertheless, as is often the case 

also in human medicine, the final histotype of a FLL should always be determined based on cytology 

or histology. 

 

CONCLUSIONS 

The CT features of 69 FLL, analyzed in the pre-contrast and in the delayed phase, are reported. The 

developed machine learning algorithm had a 62% overall accuracy in the classification of the FLL 

based on their CT features. The misclassification rate was highest (47%) for NH and lowest for OML 

(26%). The use of the proposed decision tree, could, prospectively help the clinician in the evaluation 

of FLL. 
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CHAPTER THREE 

Computed tomography features for 

differentiating malignant and benign focal 

liver lesions in dogs: a meta-analysis. 
 

The chapter was adapted from:  

Burti S, Zotti A, Contiero B, Banzato T. Computed tomography features for differentiating malignant 

and benign focal liver lesions in dogs: A meta-analysis. Vet J. 2021 Dec;278:105773. doi: 

10.1016/j.tvjl.2021.105773. Epub 2021 Nov 3. PMID: 34742915. 
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ABSTRACT 

Computed tomography (CT) is often performed to complement ultrasound following detection of 

focal liver lesions (FLL). There is no consensus in the literature regarding the CT features that might 

be helpful in the distinction between benign and malignant FLL. The aim of this meta-analysis was to 

identify, based on the available literature, the qualitative and quantitative CT features able to 

distinguish between benign and malignant FLL. Studies on the diagnostic accuracy of CT in 

characterising FLL were searched in MEDLINE, Web of Science, and Scopus databases. Pooled 

sensitivity, pooled specificity, diagnostic odds ratio (DOR), receiver operator curve (ROC) area, were 

calculated for qualitative features. DORs were used to determine which qualitative features were 

most informative to detect malignancy; quantitative features were selected/identified based on 

standardised mean difference (SMD). 

Well-defined margins, presence of a capsule, abnormal lymph nodes, and heterogeneity in the 

arterial, portal and delayed phase were classified as informative qualitative CT features. The pooled 

sensitivity ranged from 0.630 (abnormal lymph nodes) to 0.786 (well-defined margins), while pooled 

specificity ranged from 0.643 (well-defined margins) to 0.816 (heterogeneous in delayed phase). 

Maximum dimensions, ellipsoid volume, attenuation of the liver in the pre-contrast phase, and 

attenuation of the liver in the arterial, portal, and delayed phase were found to be informative 

quantitative CT features. Larger maximum dimensions and volume (positive SMD), and lower 

attenuation values (negative SMD) were more associated with malignancy. This meta-analysis 

provides the evidence base for the interpreting CT imaging in the characterization of FLL.  
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INTRODUCTION 

Computed tomography (CT) is widely used for the diagnosis and monitoring of many diseases in dogs. 

CT is also frequently used as a stand-alone diagnostic imaging technique for neoplasm staging. 

Masses or nodules may also be found incidentally during CT imaging performed to investigate 

diseases elsewhere in the body (Burti et al., 2021). Regardless of reason for scanning, focal liver 

lesions (FLL) are common findings on CT scans of dogs, especially when older animals are investigated 

(Jones et al., 2016). FLL may also be initially identified using other diagnostic imaging techniques, 

such as ultrasonography, and then, if appropriate, better characterised by means of CT (Marolf, 

2017). CT offers the ability to evaluate the liver and any lesions in three dimensions and provides 

superior visualisation of lesional vascularisation in comparison to ultrasound. Furthermore, some 

types of lesions (e.g. vacuolar degeneration) are detectable only through enhanced CT techniques. 

While the CT features of the different histotypes of FLL have been widely investigated in human 

medicine, and, especially in the case of hepatocellular carcinoma (HCC; Shah et al., 2014), are well 

known and characterised (Ariff et al., 2009; Chou et al., 2015); to date, the CT features of FLL in dogs 

have been infrequently described. In addition, although some features (e.g., enhancement in the 

delayed phase, lesion dimensions) have been reported as useful in differentiating between benign 

and malignant FLL in dogs (Griebie et al., 2017; Burti et al., 2021), other authors report that no CT 

features were useful to aid this differentiation (Stehlík et al., 2020). The usefulness of CT in 

discriminating between benign and malignant FLL is still to be fully determined.  

The aim of this meta-analysis was to identify qualitative and quantitative CT features useful in 

distinguishing between benign and malignant FLL and to summarise their diagnostic accuracy. 

 

MATERIALS AND METHODS 

This meta-analysis was performed in accordance with the best practices in diagnostic test accuracy 

systematic reviews (PRISMA-DATA; Moher et al., 2009; DerSimonian and Laird, 2015). 

 

Search Strategy 

A literature search was conducted based on the PICOS (population, intervention, comparator, 

outcome, study design) approach (Methley et al., 2014). The target population was dogs with FLL 

evident on CT scans that had histopathological analysis of the FLL performed. Intervention was 

identification of CT features. Outcome was the diagnostic accuracy on benign vs. malignant 

characterisation of the FLL. FLL were defined as liver nodule(s) or mass(es) of any dimensional value, 
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that were identified in the CT scans due to their different attenuation when compared to the 

surrounding liver parenchyma. Study design was controlled or comparative, randomised or non-

randomised experimental studies, or prospective or retrospective observational studies. A search of 

the MEDLINE, Web of Science, and Scopus databases from January 2000 to Jan 2021 was performed. 

To maximise inclusion of articles for review, we opted to perform a search based on generic terms. 

Keywords used for searching were (computed tomography OR “CT” AND liver OR hepatic AND dog 

OR canine). The literature search was restricted to articles written in the English language. 

 

Screening of studies 

Screening of the studies was performed by two authors. The studies were first screened at both title 

and abstract level. Reviews were excluded. Thereafter, the identified articles were selected at a full-

text level and only those that entirely met the PICOS criteria were included.  

 

Eligibility criteria 

The inclusion criteria for the studies were: (1) CT evaluation of FLL in dogs; (2) evaluation of 

qualitative and quantitative CT features; (3) cytological and/or histological diagnosis of the lesions. 

 

Reference standard 

The reference standard were lesions with cytological and/or histological-confirmed diagnosis. Studies 

that used either histopathology and/or cytology as reference standards were included. Reference 

standards that fulfilled the above criteria were considered at low risk of bias.  

 

Data extraction 

For each included study, the following characteristics were recorded: type of study (i.e. prospective 

or retrospective), country in which the study was performed, time period over which data were 

collected, CT scanning method (i.e. dual-phase or triple-phase), number of dogs or FLL, age, body 

weight, and FLL size. In addition, the cytopathological/histopathological categories used, along with 

the number of FLL within each category, were also recorded. The cytopathological/histopathological 

categories used were condensed into ‘benign’ (which included nodular hyperplasia [NH]) or 

‘malignant’ (which included HCC).  
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Risk of bias assessment 

The risk of bias was assessed using the QUADAS-2 tool (Whiting et al., 2016). No modification to this 

tool was necessary for the specific search question. The assessment was completed independently 

by two authors. Discrepancies were resolved with the aid of a co-author of this study. 

 

Outcomes 

The primary outcome was the sensitivity and specificity of individual CT features in the identification 

of malignant FLL in dogs. Data were analysed on a per-lesion level, as both benign and malignant 

lesions can be present in the same individual at the same time. Secondary outcomes were CT 

characteristics, study population factors, study design, and risk of bias.  

 

Data analysis 

For dichotomous predictor variables, diagnostic test measures were calculated using 2 x 2 

contingency tables based on the number of FLL displaying each CT feature as reported in the results 

of the articles included in the meta-analysis. Sensitivity, specificity, and accuracy, along with their 

95% confidence intervals (CI), were calculated for each individual study. The area under the receiver 

operating characteristic (ROC) curves (AUC) was also estimated, and this information was used for 

meta-analysis of the qualitative features. The outcome of the meta-analysis was a pooled estimate 

of sensitivity, specificity, diagnostic odds ratio (DOR), and AUC. Based on these aggregated results, it 

was possible to determine whether the presence of a certain CT feature was an accurate predictor 

for malignancy. DOR could range from 0 to infinity, with higher values indicating better discriminatory 

test performance. As value of 1 implies that the test had no discriminative power, any CT feature 

where the 95% CI of its DOR did not span 1 was considered as informative. 

 

For the continuous predictors, the descriptive statistics (as mean and standard deviation (SD); or 

median and range) were reported for the two groups (malignant vs. benign) as reported in their 

respective individual studies. For the meta-analysis of the continuous measures, comparison of the 

means between malignant and benign cases was performed using the standardised mean difference 

(SMD). For the studies reporting only the range the SD was estimated by dividing the range by 4. 

Based on the pooled result, any CT features where the 95% CI of its SMD did not span 0 were 

considered statistically significant at the 5% level (P <0.05). Cohen's rule of thumb for interpreting 
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the SMD statistic is to consider the absolute value: a value of 0.2 indicates a small effect, a value of 

0.5 indicates a medium effect and a value of 0.8 or higher indicates a large effect. 

 

For both qualitative and quantitative CT features, study heterogeneity was assessed to determine 

whether a fixed or random effects model had to be used for the meta-analysis. The agreement or 

disagreement between the studies was examined using different measures of heterogeneity: 

Cochran’s Q and I2 statistics (Higgins, 2003). A Q >0.1 and an I2 >0.5 were considered as indicative for 

heterogeneity. When heterogeneity was present, the random effects model was used. 

 

Forest plot graphs were used to show the meta-analysis results for every study, along with the 95% 

CI and the numerical estimate of the overall effect of interest (global DOR or SMD, sensitivity, and 

specificity). In the graphs, the length of the horizontal lines represents the confidence intervals of the 

studies, the dimensions of the boxes represent the weights assigned to each of them. These weights 

depended on sample size and on the model adopted (fixed or random effects). All the analyses were 

conducted using ‘mada’ (Doebler, 2020) and ‘meta’ (Schwarzer, 2021) packages (Shim et al., 2019) 

of R (version: 2020)1. 

 

RESULTS 

Study search 

The search in the MEDLINE, Web of Science, and Scopus databases retrieved 435 potentially relevant 

studies. Duplicates were removed. All the articles not matching the inclusion criteria (case reports, 

reviews, letters, abstracts, recommendations, guidelines) were excluded (n = 427). Eight articles in 

total matched the inclusion criteria. The study selection process is reported in Fig.1. 

 

 
1 See: R: A Language and Environment for Statistical Computing https://www.R-project.org (Accessed 25 October 2021). 
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Study characteristics 

A total of 404 dogs were included, and the CT features of 419 FLL, along with their histopathological 

or cytological diagnosis, were reported. In Taniura et al. (2009) only FLL with a diagnosis of nodular 

hyperplasia (NH) or HCC were included. In Fukushima et al. (2012) only FLL with a diagnosis of HCC, 

NH, or another benign process were included. No a-priori selection of the FLL was made in the 

remaining studies. The characteristics of the studies are summarised in Table 1.  

 

 

 

 

 

 

Figure 1 Flow chart showing the literature search process 



 62 

Table 1 Characteristics of the studies included in the analysis. 

 
CT, computed tomography; FLL, focal liver lesions 
a Mean (± standard deviation)   
b Median (range) 
c Pooled results from available data 

 

Quality of the studies 

The risk of bias was evaluated as high for the selection of cases in the studies by Taniura et al. (2009) 

and Kutara et al. (2014), as only dogs diagnosed with certain pathologies (NH and HCC in Taniura et 

al., 2009; HCC, NH and metastatic tumours in Kutara et al., 2014) were included. The applicability of 

the results presented, as well as the applicability of the index test, were consequentially considered 

as heavily biased. For the remaining studies the risk of bias was classified as low for: case selection, 

Index test, and flow and timing. For all the studies, the blinding of pathologists and radiologists to the 

results of other tests was not mentioned and, therefore, classified as unknown. Lastly, a power 

analysis was not conducted in any of the included studies. The study quality results are summarised 

in Table 2.  

 

Study design/Country Time period Scanning method Dogs/FLL (n) Age range (years) Body weight (kg) Diagnosis (n) Lesion size (cm)

Retrospective / Benign (17)

Czech Republic and Italy Malignant (14)

Retrospective / Benign (37)

Italy Malignant (32)

Prospective / Benign (18)

Japan Malignant (52)

Retrospective / Benign (16)

USA Malignant (30)

Retrospective/ Benign (10)

UK Malignant (14)

Prospective / Benign (14)

Japan Malignant (56)

Retrospective / Benign (19)

Japan Malignant (14)

Retrospective / Benign (40)

Japan Malignant (36)

Stehlik et al., 2021 2016-2019 Triple-phase CT 31 5-16 years 23.3 ± 10.8 a

Burti et al., 2021 2015-2020 Dual-phase CT 69 4-16 years Not given 5.37 ± 4.36 a

4.85 ± 2.25 a, c

Griebie et al., 2017 2014-2016 Triple-phase CT 44 / 46 4-13 years Not given 7.135 c

Leela-Arporn et al., 2019 2016-2019 Triple-phase CT 57 / 70 8-13 years 9.2 ± 6.6 a

6.0 (1.5-6.95) b

Kutara et al., 2014   Not given Triple-phase CT 70 7-16 years 14.8 ± 9.1 a 6.35 ± 3.32 a

Jones et al., 2016 2008-2014 Dual-phase CT 24 3-15 years 24 (4-54) b

7.77 (2.8-16.5) b, c

Taniura et al., 2009 2004-2007 Triple-phase CT 76 Not given Not given 4.76 ± 2.06 a, c

Fukushima et al., 2012 2005-2010 Triple-phase CT 33 0.25-15 years 7.2 (1.5-38.5) b
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Table 2 Risk of bias and applicability concerns assessment for each of the studies included in the analysis 

 

 

Categorisation of the CT features 

Twenty-eight overlapping CT features were evaluated in the different studies. Sixteen qualitative 

features (well-defined margins, irregular surface, presence of a capsule, abnormal lymph nodes, 

marginal enhancement pattern, diffuse enhancement pattern, heterogeneous pattern in arterial 

phase, heterogeneous pattern in portal phase, heterogeneous pattern in delayed phase, 

hypoattenuation, and hypoenhancement, enhancement in the portal phase, and enhancement in the 

delayed phase; these latter two features were further divided into hypo, iso, and hyper) and 10 

quantitative continuous features (maximum dimension, ellipsoid volume, attenuation of normal liver 

in the pre-contrast phase, attenuation of normal liver in arterial phase, attenuation of normal liver in 

portal phase, attenuation of normal liver in delayed phase, attenuation of pre-contrast FLL, 

attenuation of FLL in arterial phase, attenuation of FLL in portal phase, attenuation of FLL in delayed 

phase) were considered because these were evaluated in at least two studies.  

 

Diagnostic accuracy of the CT features in the individual studies 

The sensitivity, specificity, accuracy, and AUC of the qualitative CT features as evaluated in each study 

are reported in Table 3. The mean and the standard deviation and/or median with overall range of 

the continuous variables as evaluated in the individual studies are reported in Table 4. Taniura et al. 

(2009) reported AUCs above 0.80 for most of the considered CT features, whereas Kutara et al. (2014) 

reported an AUC of 0.82 for heterogeneity in the portal phase. Accuracy index values higher than 

80% were evident for well-defined margins in Leela-Arpon et al. (2019) and Taniura et al. (2009), and 

for presence of a capsule, hypoattenuation, and hypoenhancement in the portal phase and delayed 

phase in Taniura et al. (2009). Significant differences for the quantitative CT features were reported 

for the maximum lesion dimensions in Leela-Arpon et al. (2019) and Taniura et al. (2009), for 

Case selection Index test Reference standard Flow and timing Case selection Index test Reference standard

Taniura et al., 2009 High Unknown Unknown Low High Unknown Unknown

Fukushima et al., 2012 Low Low Unknown Low Low Low Low

Kutara et al., 2014 High Unknown Unknown Low High Unknown Low

Jones et al., 2016 Low Low Unknown Low Low Low Low

Griebie et al., 2017 Low Low Unknown Low Low Low Low

Leela-Arporn et al., 2019 Low Low Unknown Low Low Low Low

Stehlik et al., 2021 Low Low Unknown Low Low Low Low

Burti et al., 2021 Low Low Unknown Low Low Low Low

Risk of bias Applicability concerns
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attenuation of pre-contrast normal liver in Burti et al. (2021), and for ellipsoid volume, attenuation 

of post-contrast normal liver, and attenuation of normal liver in portal phase in Leela-Arpon et al. 

(2019).  

Table 3 Calculated accuracy measures of malignant diagnosis considering the qualitative features (95% CI, 95% confidence interval; SE, 
standard error; AUC, area under the curve). 

 

Qualitative feature and references Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUC SE

Well-defined margins

Burti et al., 2021 0.750 (0.566-0.885) 0.487 (0.319-0.656) 0.608 (0.483-0.724) 0.618 0.07

Leela-Arporn et al., 2019 0.933 (0.841-0.988) 0.933 (0.173-0.643) 0.800 (0.687-0.886) 0.666 0.07

Jones et al., 2016 0.500 (0.230-0.700) 0.600 (0.262-0.878) 0.542 (0.328-0.745) 0.55 0.12

Fukushima et al., 2012 0.857 (0.572-0.982) 0.211 (0.061-0.456) 0.485 (0.308-0.665) 0.534 0.1

Taniura et al., 2009 0.694 (0.519-0.837) 1 (0.912-1) 0.855 (0.756-0.926) 0.847 0.04

Irregular surface

Burti et al, 2021  0.938 (0.792-0.992) 0.432 (0.271-0.605) 0.667 (0.543-0.776) 0.685 0.06

Leela-Arporn et al., 2019 0.346 (0.220-0.491) 0.940 (0.727-0.999) 0.500 (0.378-0.622) 0.645 0.07

Fukushima et al., 2012 0.571 (0.289-0.823) 0.211 (0.061-0.456) 0.364 (0.204-0.549) 0.527 0.1

Presence of a capsule

Burti et al, 2021 0.500 (0.319-0.681) 0.811 (0.648-0.920) 0.667 (0.543-0.776) 0.655 0.07

Leela-Arporn et al., 2019 0.423 (0.287-0.568) 0.889 (0.653-0.986) 0.543 (0.419-0.663) 0.656 0.07

Fukushima et al., 2012 0.929 (0.661-0.998) 0.474 (0.245-0.711) 0.667 (0.482-0.820) 0.701 0.09

Taniura et al., 2009 0.694 (0.519-0.837) 1 (0.912-1) 0.855 (0.756-0.926) 0.847 0.05

Abnormal lymph nodes

Burti et al., 2021 0.563 (0.377-0.736) 0.838 (0.680-0.938) 0.710 (0.588-0.813) 0.7 0.06

Jones et al., 2016 0.785 (0.492-0.953) 0.400 (0.122-0.738) 0.625 (0.406-0.812) 0.593 0.12

Marginal enhancement pattern

Burti et al., 2021 0.156 (0.053-0.328) 0.811 (0.648-0.920) 0.507 (0.384-0.630) 0.484 0.07

Jones et al., 2016 0.143 (0.018-0.428) 0.800 (0.444-0.975) 0.417 (0.221-0.634) 0.471 0.12

Diffuse enhancement pattern

Burti et al., 2021 0.813 (0.636-0.928) 0.189 (0.080-0.352) 0.478 (0.357-0.602) 0.501 0.07

Jones et al., 2016 0.857 (0.572-0.982) 0.200 (0.025-0.556) 0.583 (0.366-0.779) 0.529 0.12

Hypoattenuation

Burti et al., 2021 0.875 (0.710-0.965) 0.243 (0.118-0.412) 0.536 (0.412-0.657) 0.559 0.06

Taniura et al., 2009 0.833 (0.672-0.936) 0.850 (0.702-0.943) 0.842 (0.740-0.916) 0.842 0.04

Heterogeneous in arterial phase

Leela-Arporn et al., 2019 0.769 (0.632-0.875) 0.556 (0.308-0.785) 0.714 (0.594-0.816) 0.662 0.1

Kutara et al., 2014 0.714 (0.578-0.827) 0.571 (0.289-0.823) 0.686 (0.564-0.792) 0.643 0.11

Heterogeneous in portal phase

Burti et al., 2021 0.813 (0.636-0.928) 0.514 (0.344-0.681) 0.652 (0.528-0.763) 0.663 0.07

Leela-Arporn et al., 2019 0.769 (0.632-0.875) 0.722 (0.465-0.903) 0.757 (0.640-0.852) 0.746 0.06

Jones et al., 2016 0.429 (0.177-0.711) 0.400 (0.122-0.738) 0.417 (0.221-0.634) 0.714 0.1

Kutara et al., 2014 0.714 (0.578-0.827) 0.929 (0.661-0.998) 0.757 (0.640-0.852) 0.821 0.05
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Heterogeneous in delayed phase

Leela-Arporn et al., 2019 0.750 (0.611-0.860) 0.722 (0.465-0.903) 0.743 (0.624-0.840) 0.736 0.06

Kutara et al., 2014 0.554 (0.415-0.687) 0.929 (0.661-0.998) 0.629 (0.505-0.741) 0.741 0.07

Hyponhancement in portal phase

Stehlik et al., 2021 0.429 (0.177-0.711) 0.412 (0.184-0.671) 0.419 (0.246-0.609) 0.42 0.1

Leela-Arporn et al., 2019 0.096 (0.032-0.210) 0.833 (0.586-0.964) 0.286 (0.184-0.406) 0.465 0.08

Jones et al., 2016 0.143 (0.018-0.428) 0.800 (0.444-0.975) 0.417 (0.221-0.634) 0.471 0.12

Kutara et al., 2014 0.571 (0.432-0.703) 1 (0.768-1) 0.657 (0.534-0.766) 0.786 0.06

Fukushima et al., 2012 0.857 (0.572-0.982) 0.421 (0.203-0.665) 0.606 (0.421-0.771) 0.639 0.1

Taniura et al., 2009 0.917 (0.775-0.983) 0.975 (0.868-0.999) 0.947 (0.871-0.986) 0.946 0.03

Isoenhancement in portal phase

Stehlik et al., 2021 0.571 (0.289-0.823) 0.706 (0.440-0.897) 0.645 (0.454-0.808) 0.639 0.1

Leela-Arporn et al., 2019 0.154 (0.069-0.281) 0.778 (0.524-0.936) 0.314 (0.209-0.436) 0.466 0.08

Kutara et al., 2014 0.268 (0.158-0.403) 0.643 (0.351-0.872) 0.343 (0.234-0.466) 0.455 0.09

Fukushima et al., 2012 0.143 (0.018-0.428) 0.842 (0.604-0.966) 0.546 (0.364-0.719) 0.492 0.1

Taniura et al., 2009 0.056 (0.068-0.187) 0.075 (0.016-0.204) 0.066 (0.022-0.147) 0.065 0.03

Hyperenhancement in portal phase

Stehlik et al., 2021 0 (0-0.232) 0.882 (0.636-0.985) 0.484 (0.301-0.669) 0.441 0.1

Leela-Arporn et al., 2019 0.750 (0.611-0.860) 0.389 (0.173-0.643) 0.657 (0.534-0.767) 0.569 0.08

Jones et al., 2016 0.500 (0.230-0.770) 0.900 (0.555-0.998) 0.667 (0.447-0.844) 0.7 0.11

Kutara et al., 2014 0.161 (0.076-0.283) 0.357 (0.128-0.649) 0.200 (0.114-0.313) 0.259 0.08

Fukushima et al., 2012 0 (0-0.232) 0.737 (0.488-0.909) 0.424 (0.255-0.608) 0.368 0.1

Taniura et al., 2009 0.028 (0-0.145) 1 (0.912-1) 0.539 (0.421-0.654) 0.514 0.07

Hyponhancement in delayed phase

Stehlik et al., 2021 0.357 (0.128-0.649) 0.529 (0.278-0.770) 0.452 (0.273-0.640) 0.443 0.11

Burti et al., 2021 0.906 (0.750-0.980) 0.162 (0.062-0.320) 0.507 (0.384-0.630) 0.534 0.07

Leela-Arporn et al., 2019 0.039 (0.005-0.132) 0.833 (0.586-0.964) 0.243 (0.148-0.360) 0.436 0.08

Kutara et al., 2014 0.482 (0.347-0.620) 1 (0.768-1) 0.586 (0.462-0.702) 0.741 0.07

Fukushima et al., 2012 0.929 (0.661-0.998) 0.421 (0.202-0.665) 0.636 (0.451-0.796) 0.675 0.1

Taniura et al., 2009 0.944 (0.813-0.993) 1 (0.912-1) 0.974 (0.908-0.997) 0.972 0.02

Isoenhancement in delayed phase

Stehlik et al., 2021 0.571 (0.289-0.823) 0.471 (0.229-0.722) 0.516 (0.331-0.699) 0.521 0.11

Burti et al., 2021 0 (0-0.109) 0.973 (0.858-0.999) 0.522 (0.384-0.630) 0.486 0.07

Leela-Arporn et al., 2019 0.308 (0.187-0.451) 0.556 (0.308-0.785) 0.371 (0.259-0.495) 0.432 0.08

Kutara et al., 2014 0.393 (0.265-0.533) 0.286 (0.084-0.581) 0.371 (0.259-0.495) 0.339 0.09

Fukushima et al., 2012 0.071 (0.002-0.339) 0.632 (0.384-0.837) 0.394 (0.229-0.579) 0.352 0.1

Taniura et al., 2009 0.056 (0.007-0.187) 0 (0-0.088) 0.026 (0.003-0.092) 0.028 0.02

Hyperenhancement in delayed phase

Stehlik et al., 2021 0.071 (0.002-0.339) 1 (0.805-1) 0.581 (0.391-0.754) 0.536 0.11

Burti et al., 2021 0.062 (0.008-0.208) 0.865 (0.712-0.955) 0.493 (0.370-0.616) 0.464 0.07

Leela-Arporn et al., 2019 0.654 (0.509-0.780) 0.611 (0.358-0.827) 0.643 (0.519-0.754) 0.632 0.07

Kutara et al., 2014 0.125 (0.052-0.241) 0.714 (0.419-0.916) 0.243 (0.148-0.360) 0.42 0.09

Fukushima et al., 2012 0 (0-0.232) 0.947 (0.740-0.999) 0.546 (0.363-0.719) 0.474 0.1
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Table 4 Descriptive values for malignant and benign lesions recorded as quantitative continuous features with reported P-values. 

 

Qualitative feature and references Malignant Benign Reported P -value

Burti et al., 2021 4.3 (0.5-16.3) 3.5 (0.5-18.1) 0.06

Leela-Arporn et al, 2019 6.6 (±3.1) 3.1 (±1.4) <0.0001

Jones et al, 2016 6.1 (1.5-69.5) 6.0 (3.2-34.5) 0.95

Taniura et al., 2009 6.8 (±3.5) 2.7 (±0.6) <0.05

Ellipsoid volume (cm3)

Burti et al., 2021 20.8 (0.02-1576) 11.5 (0.04-1995) 0.2

Leela-Arporn et al., 2019 195.0 (±228.6) 21.3 (±24.5) <0.0001

Stehlik et al., 2021 63.1 (±9.0) 60.9 (±8.7) n.s.

Burti et al., 2021 58.9 (46.2-82.1) 66.1 (51.8-85.5) < 0.01

Jones et al., 2016 60.0 (53.0-75.0) 71.0 (49.0-79.0) 0.13

Taniura et al., 2009 58.1 (±11.2) 62.7 (±8.1) Not reported

Burti et al., 2021 40.3 (10.5-67.3) 43.7 (9.6-70.1) 0.66

Jones et al., 2016 46.0 (32.0-68.0) 60.0 (26.0-69.0) 0.32

Taniura et al., 2009 44.2 (±11.6) 61.1 (±10.1) Not reported

Stehlik et al., 2021 67.9 (±7.1) 69.9 (±16.1) n.s.

Leela-Arporn et al., 2019 117.2 (±18.4) 121.2 (±16.1) 0.39

Taniura et al., 2009 106.1 (±26.4) 111.9 (±24.8) Not reported

Stehlik et al., 2021 52.8 (±17.2) 65.0 (±28.8) n.s.

Leela-Arporn et al., 2019 112.0 (±49.6) 134.7 (±72.3) 0.15

Taniura et al., 2009 91.1 (±35.2) 116.1 (±44.4) Not reported

Stehlik et al., 2021 113.8 (±11.4) 114.6 (±18.7) n.s.

Leela-Arporn et al., 2019 156.0 (±25.5) 172.1 (±26.3) 0.03

Taniura et al., 2009 136.6 (±23.7) 126.0 (±21.8) Not reported

Stehlik et al., 2021 85.6 (±30.6) 90.5 (±42.4) n.s.

Leela-Arporn et al., 2019 118.4 (±44.9) 148.4 (±61.1) 0.07

Taniura et al., 2009 109.8 (±38.9) 130.8 (±24.3) Not reported

Attenuation of portal phase – lesion (HU)

Maximum dimension (cm)

Attenuation of pre-contrast normal liver (HU)

Attenuation of pre-contrast lesion (HU)

Attenuation of arterial phase – normal liver (HU)

Attenuation of arterial phase – lesion (HU)

Attenuation of portal phase – normal liver (HU)
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n.s., not statistically significant (p > 0.05); HU, Hounsfield unit; CE, contrast-enhanced 
a Data are reported as mean (± standard deviation) or as median (range) 
 

Overall diagnostic accuracy 

Results of the meta-analysis for qualitative CT features reported in at least two studies are reported 

in Table 5. The pooled sensitivity, specificity, DOR, and AUC were calculated using either a fixed or 

random effects model, depending on the outcome of the heterogeneity test. The results of the 

heterogeneity tests for each variable considered are reported as Supplementary Material. Six of the 

16 qualitative features included in the meta-analysis were considered as informative. These were: 

well-defined margins, presence of a capsule, abnormal lymph nodes, and heterogeneity in the 

arterial, portal, and delayed phase. Of these, presence of a capsule and hyperenhancement in the 

delayed phase showed the highest specificity, with 0.884 (95% CI 0.537-0.980) and 0.864 (95% CI 

0.681-0.950) respectively. These results were considered quite robust, as they were based on four 

and five studies respectively. Two variables showed a pooled sensitivity above 0.8, these were: 

hypoattenuation (0.853, 95% CI 0.748-0.919) and diffuse enhancement pattern (0.826, 95% CI 0.689-

0.911). However, these results were based on only two studies each, with hypoattenuation evaluated 

in Burti et al. (2021) and Taniura et al. (2009), and diffuse enhancement pattern evaluated in Burti et 

al. (2021) and Jones et al. (2016). Heterogeneity in the portal phase showed the highest overall 

diagnostic accuracy, with an AUC of 0.751 and a DOR of 4.749. The forest plots of the pooled 

diagnostic accuracy measures (sensitivity, specificity, and DOR) for heterogeneity in the portal phase 

is reported in Fig.2. The remaining forest plots graphs are reported as Supplementary Material. 

 

Stehlik et al., 2021 107.1 (±13.2) 112.8 (±7.1) n.s.

Leela-Arporn et al., 2019 125.3 (±16.8) 131.1 (±15.4) 0.19

Taniura et al., 2009 127.7 (±22.1) 122.9 (±17.7) Not reported

Stehlik et al., 2021 87.0 (±30.2) 83.2 (±29.3) n.s.

Burti et al, 2021 83.2 (62.4-121.2) 83.9 (62.6-121.3) 0.13

Leela-Arporn et al., 2019 105.2 (± 28.1) 119.7 (± 37.5) 0.15

Jones et al., 2016 77.0 (42.0-120.0) 99.0 (25.0-121.0) 0.62

Taniura et al., 2009 104.9 (±34.6) 123.9 (±17.5) Not reported

Attenuation of delayed phase – normal liver (HU)

Attenuation of delayed phase – lesion (HU)
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Table 5 Summary of meta-analysis for qualitative features: diagnostic accuracy of the predictors to identify the malignant cases. Overall 
sensitivity, specificity, and diagnostic odd’s ratio (DOR) are reported with 95% confidence interval between parentheses. Overall area 
under the curve (AUC) and standard error (SE) are reported. 

 

CT features Studies (n) Sensitivity Specificity DOR AUC SE

Well-defined margins 5 0.790 (0.622-0.890) 0.641 (0.220-0.921) 4.83 (1.43-16.36) 0.677 0.06

Irregular surface 3 0.680 (0.291-0.922) 0.580 (0.163-0.909) 3.18 (0.30-33.29) 0.535 0.07

Capsule presence 4 0.631 (0.420-0.809) 0.883 (0.537-0.980) 9.61 (2.75-33.55) 0.728 0.05

Abnormal lymph nodes 2 0.633 (0.483-0.760) 0.678 (0.331-0.901) 5.02 (1.94-12.99) 0.676 0.06

Marginal enhancement pattern 2 0.151 (0.070-0.290) 0.806 (0.670-0.910) 0.76 (0.26-2.25) 0.481 0.06

Diffuse enhancement pattern 2 0.834 (0.692-0.914) 0.194 (0.103-0.332) 1.11 (0.39-3.19) 0.508 0.06

Hypoattenuation 2 0.850 (0.750-0.919) 0.571 (0.153-0.913) 8.04 (0.67-96.26) 0.708 0.1

Heterogeneous in arterial phase 2 0.740 (0.650-0.815) 0.523 (0.392-0.721) 3.75 (1.64-8.57) 0.654 0.07

Heterogeneous in portal phase 4 0.730 (0.653-0.792) 0.660 (0.431-0.831) 4.75 (1.16-19.42) 0.751 0.03

Heterogeneous in delayed phase 2 0.652 (0.511-0.780) 0.820 (0.610-0.930) 9.34 (3.28-26.61) 0.738 0.04

Hypoenhancement in portal phase 6 0.510 (0.230-0.811) 0.831 (0.533-0.964) 4.22 (0.58-30.91) 0.64 0.08

Isoenhancement  in portal phase 5 0.200 (0.091-0.373) 0.599 (0.281-0.853) 0.37 (0.05-2.51) 0.407 0.09

Hyperenhancement  in portal phase 6 0.102 (0.011-0.503) 0.810 (0.480-0.950) 0.71 (0.14-3.61) 0.472 0.06

Hypoenhancement in delayed phase 6 0.663 (0.243-0.921) 0.832 (0.313-0.984) 4.83 (0.66-35.32) 0.646 0.08

Isoenhancement in delayed phase 6 0.151 (0.043-0.423) 0.442 (0.091-0.869) 0.20 (0.05-0.83) 0.345 0.07

Hyperenhancement in delayed phase 5 0.110 (0.020-0.390) 0.861 (0.683-0.950) 0.93 (0.30-2.89) 0.511 0.04
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Figure 2 Forest plot of the pooled diagnostic accuracy measures (sensitivity, specificity, and diagnostic odds ratio [DOR]) for 
heterogeneity in the portal phase. The squares represent the proportion of malignant focal liver lesion (FLL) and the whiskers represent 
the 95% confidence interval (CI). The diamond represents the pooled effect. The location of the diamond represents the estimated effect 
size, and the width of the diamond reflects the precision of the estimate. Heterogeneity indexed (I2 and c2 = Q) were also reported. 

 

The results of the SMD test for quantitative features evaluated in at least two studies are reported in 

Table 6. Based on the SMD test, maximum dimension, ellipsoid volume, attenuation of pre-contrast 

liver, and attenuation of the liver in the arterial, portal, and delayed phase were considered 

informative. The SMD was negative for all informative quantitative CT features based on attenuation, 

meaning that malignant lesions showed lower attenuation values than benign lesions. Ellipsoid 

volume and the maximum dimension had positive SMD. Forest plots reporting the pooled SMD for 

the informative quantitative CT features are reported in Fig.3.  
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Table 6 Summary of meta-analysis for quantitative features 

 
SE, standard error; t, Student’s t-test 
 

CT feature Studies (n)
Standardized mean 

difference
SE t p-value

Maximum dimension 4 0.858 0.35 2.44 0.015

Ellipsoid volume 2 0.567 0.28 2.97 0.003

Attenuation of pre-contrast normal liver 4 -0.596 0.3 -2 0.046

Attenuation of pre-contrast lesion 3 -0.988 0.52 -1.88 0.062

Attenuation of arterial phase normal liver 3 -0.209 0.16 -1.34 0.183

Attenuation of arterial phase lesion 3 -0.517 0.16 -3.26 0.001

Attenuation of portal phase normal liver 3 -0.057 0.35 -0.16 0.869

Attenuation of portal phase lesion 3 -0.526 0.16 -3.31 0.001

Attenuation of delayed phase normal liver 3 -0.107 0.16 -0.68 0.497

Attenuation of delayed phase lesion 5 -0.377 0.13 -2.98 0.003
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Figure 3 Pooled standardised mean difference (SMD) for maximum dimensions, ellipsoid volume, attenuation of pre-
contrast normal liver, and attenuation of lesion in arterial, portal, and delayed phase post-contrast. 95% CI, 95% 
confidence interval; SD, standard deviation; HU, Hounsfield unit. 
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DISCUSSION 

The results of this meta-analysis revealed that, based on the available literature, some qualitative CT 

features showed statistically significant differences between benign and malignant FLL. The presence 

of a capsule, hypoattenuation, and heterogeneity in the delayed phase showed the highest DOR and, 

therefore, are the most reliable qualitative CT features for the detection of malignant FLL. Well-

defined margins, abnormal lymph nodes, heterogeneity in the arterial phase, and heterogeneity in 

the portal phase were also found to be informative, albeit with a lower level of confidence. The 

quantitative features of maximal FLL dimension, attenuation of pre-contrast normal liver, and 

attenuation of the normal liver in the arterial, portal, and delayed phases had statistically significant 

differences between benign and malignant groups. Interestingly, the attenuation of the CT-normal 

liver parenchyma showed statistically significant differences between benign and malignant FLL. The 

finding of significant differences between attenuation of what was considered to be ‘normal’ liver 

between the two groups might indicate that the ‘normal’ liver parenchyma surrounding the 

malignant FLL could also be involved in the neoplastic process. This implies that, in addition to 

sampling the FLL, sampling of the ‘normal’ liver parenchyma should be considered. 

 

As only individual CT features could be analysed in this meta-analysis, the overall accuracy of CT in 

the detection of malignant FLL could not be determined. However, the results provided in Tables 5 

and 6 are, in the authors’ opinion, a valuable aid for the veterinary radiologist in characterising FLL in 

dogs, as they indicate several qualitative and quantitative CT features that might be useful in 

differentiating between malignant and benign lesions. However, the diagnostic accuracy of even the 

most discriminating CT features was only moderate such that aspirate cytology and, in some cases, 

biopsy histopathology remain necessary to accurately characterise FLL. Nonetheless, informative CT 

features can lend weight to the results of pathology and provide a more accurate evaluation of FLL 

in dogs, while some FLL are located at sites inaccessible to sampling.  

 

Another aspect that emerged from this meta-analysis was the relatively low number of studies (and 

cases) available in the veterinary literature on this topic, especially when compared to the human 

literature. The CT features of only 419 FLL in dogs had been described, whereas meta-analyses 

including thousands of patients are currently available in the medical literature (Lee et al., 2015; 

Roberts et al., 2018a). Such a dissimilarity is, most likely, related to differences in the standards of 

care between humans and dogs both in access to CT imaging and to subsequent investigation of FLL 
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identified. It is anticipated that, as the number of CT scanners available in veterinary clinics increases, 

a higher number of cases and FLL will be available for review.  

 

A limitation of this meta-analysis was related to the different scanning protocols used in the included 

studies. Burti et al. (2021) and Jones et al. (2016) used a dual-phase CT scanning protocol that 

included only a delayed phase post-contrast scan, while the remaining studies used a triple-phase CT 

scanning protocol that included arterial, portal, and delayed phase post-contrast scans. Most of the 

CT features that were deemed informative from the meta-analysis results can be evaluated using 

either CT scanning protocol. Both heterogeneity and attenuation were informative in all phases, and 

the remaining informative CT features (i.e. well-defined margins, presence of a capsule, lymph nodes, 

and maximum dimension) could be evaluated independent of the scanning protocol. Due to the 

limited number of included studies, a subgroup analysis was not performed. 

 

A low risk of bias was attributed to most of the considered studies. While this indicated an acceptable 

quality of the veterinary literature on this topic, it did highlight some frequently encountered 

limitations. For example, none of the authors specified whether the pathologists performing the 

cytological or histopathological analyses were blinded to the results of the CT imaging. It is suspected 

that the pathologists had not be blinded, as many of the studies were retrospective and during 

routine clinical practice there is constant dialogue between radiologists and pathologists, as this is 

considered to enhance diagnostic accuracy (Raab et al., 2000). The retrospective nature of many of 

the studies may also have of rendered subsequent blinded review of the cytological or 

histopathological samples unfeasible. The risk of bias for case selection was considered as high in two 

studies, Taniura et al. (2009) and Kutara et al. (2014), as they limited their inclusion criteria to only 

certain FLL histotypes. Neither paper provided justification for such a choice, and therefore a 

selection bias was evident. The inclusion of data from these studies might have influenced the overall 

results of the meta-analysis towards an increased pooled diagnostic accuracy for some of the CT 

features. It is warranted that future studies on this topic should adopt study designs that avoid 

selection bias. 

 

None of the studies included a power analysis or equivalent estimation method. A lack of 

effectiveness in study design, as previously highlighted by Di Girolamo and Reynders (2016), is a 

general problem in the veterinary medical literature. Low incidence rates of primary hepatic 
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neoplasms in dogs (Marolf, 2017), along with the increasing publication pressure exerted on 

researchers, make such a topic attractive for retrospective, rather than prospective, study.  

 

Because HCC is the most common histotype of FLL in humans and is the liver neoplasia with the most 

available treatment options (Lee et al., 2015), the medical literature on FLL is mainly focused on the 

detection and grading of HCC. A continuously updating, extensive and detailed algorithm for the 

imaging, reporting, and care of HCC in humans, the Liver Imaging Reporting and Data System (LI-

RADS; Elsayes et al., 2017) contains guidelines for the use of various diagnostic imaging modalities, 

including CT, in the surveillance and grading of HCC. In humans, HCC mainly arise in cirrhotic livers, 

while the correlation between hepatic degenerative disease and HCC has not yet been demonstrated 

in dogs. The efficacy of some treatments for HCCs have been studied in dogs (Marconato et al., 2020), 

while treatments for the other liver malignancies have been scarcely described. A veterinary 

counterpart of the human LI-RADS is currently not available, in part due to a lack of meta-analyses 

on this topic. Due to the relatively low number of studies available in the literature, the specific CT 

features of HCC in dogs could not be evaluated separately to those of other malignant FLL in the 

present meta-analysis. However, increasing numbers of publications focusing on the description of 

the diagnostic imaging features of FLL in dogs have become available in the last few years. In 

particular, the ultrasonographic (Warren-Smith et al., 2012), contrast-enhanced ultrasonographic 

(Nakamura et al., 2010; Morishita et al., 2017; Banzato et al., 2019; Burti et al., 2020), CT, and MRI 

(Constant et al., 2016; Borusewicz et al., 2019) features of FLL (including HCC) have been described. 

The data reported in the present study point towards the possible creation of diagnostic algorithms 

for the diagnosis and management of FLL in dogs.  

 

Most of the meta-analyses on FLL in the human medical literature focus on the relative diagnostic 

accuracy of MRI and CT in the detection of HCC (Lee et al., 2015; Roberts et al., 2018b). A comparison 

of the diagnostic accuracy of MRI and CT in differentiating between benign and malignant FLL in dogs 

is not feasible at the present time, as the MRI features of FLL in dogs have rarely been evaluated 

(Constant et al., 2016; Borusewicz et al., 2019). The low number of publications on this topic is, most 

likely, related to the limited availability of high-field MRI scanners in the veterinary sector and their 

limited use in evaluating the abdomen.  
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A final limitation of the present meta-analysis is that techniques to account for the non-independence 

of sensitivity and specificity, such as bivariate models and hierarchical summary ROCS could not be 

performed due to the low number of studies that fit the inclusion criteria (Harbor et al., 2007). 

Additional studies on this topic are required to remedy this. 

 

CONCLUSIONS 

The qualitative and quantitative CT features to differentiate malignant from benign FLL were 

analysed. Well-defined margins, presence of a capsule, abnormal lymph nodes, heterogeneity in the 

arterial, portal, and delayed phase, maximum dimension, ellipsoid volume, attenuation of the liver in 

the pre-contrast phase, and attenuation of the liver in the arterial, portal, and delayed phase were 

found to be informative.  
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CHAPTER FOUR 

A machine learning-based approach for 

classification of focal splenic lesions based 

on their CT features. 
 

The chapter was adapted from: 
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Approach for Classification of Focal Splenic Lesions Based on Their CT Features. Front. Vet. Sci. 
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ABSTRACT 

The aim of the study was to describe the CT features of focal splenic lesions (FSLs) in dogs in order to 

predict lesion histotype. Dogs that underwent a CT scan and had a FSL diagnosis by cytology or 

histopathology were retrospectively included in the study. For the statistical analysis the cases were 

divided into four groups, based on the results of cytopatholoy or hystopathology, namely: nodular 

hyperplasia (NH), other benign lesions (OBLs), sarcoma (SA), round cell tumour (RCT). Several 

qualitative and quantitative CT features were described for each case. The relationship occurring 

between each individual CT feature and the histopathological groups was explored by means of c chi-

square test for the count data and by means of Kruskal-Wallis or ANOVA for the continuous data. 

Furthermore, the main features of each group were described using factorial discriminant analysis, 

and a decision tree for lesion classification was then developed. Sarcomas were characterised by 

large dimensions, a cystic appearance and an overall low post contrast-enhancement. NH and OBLs 

were characterised by small dimensions, a solid appearance and a high post-contrast enhancement. 

OBLs showed higher post-contrast values than NH. Lastly, RCTs did not exhibit any distinctive CT 

features. The proposed decision tree had a high accuracy for the classification of SA (0.89) and a 

moderate accuracy for the classification of OBLs and NH (0.79), whereas it was unable to classify 

RCTs. The results of the factorial analysis and the proposed decision tree could help the clinician in 

classifying FSLs based on their CT features. A definitive FSL diagnosis can only be obtained by 

microscopic examination of the spleen. 

 

 

 

 

 

 

 

 

 

 

 

 



 82 

INTRODUCTION 

Focal splenic lesions (FSLs) are common in dogs, especially in elderly subjects. Most FSLs (51%) are 

benign; the most common histotypes are haematoma, nodular hyperplasia, and myelolipoma (1–3). 

Haemangiosarcoma is reported as the most common primary malignant tumour of the spleen, 

accounting for almost 80% of malignant FSLs (1,2), followed by fibrosarcoma and leiomyosarcoma. 

Splenic metastases (from other primary sarcomas, carcinomas or neuroendocrine tumours in most 

cases) are less common, accounting for 1-6% of the total of the FSLs (3).  

Despite FSLs being a common finding in canine ultrasound (US) and computed tomography (CT) (4) 

there is a general paucity of studies systematically describing their imaging features. No specific US 

features are reported as useful in distinguishing between different FSL histotypes (5). Previous 

studies describing the CT features of FSLs have reported conflicting results. Fife et al., 2004 (6), 

reported that, in dual-phase CT imaging, a FSL with a post-contrast Hounsfield Unit value lower than 

55 is most likely malignant. However, Jones et al., 2016 (7), reported no dual-phase CT features as 

useful in the distinction between benign and malignant lesions. Kutara et al., 2017(2), using triple-

phase CT imaging, reported some CT features (lesion volume and homogeneous contrast 

enhancement) as useful in differentiating between haematoma, nodular hyperplasia, 

haemangiosarcoma and undifferentiated sarcoma in dogs. Lastly, Lee et al, 2018 (8) reported triple-

phase CT, combined with ultrasonography, as useful in the differentiation between benign and 

malignant lesions.  

In the last few years, an increasing number of research papers exploring the possible applications of 

machine learning in veterinary radiology have been published (9-15). Research in this field has mostly 

been focused on the automatic classification of radiographic images (14,16,17), the distinction 

between benign and malignant brain lesions on MRI (10,18), and the classification of liver focal lesion 

types on CT images (19). To the best of the authors’ knowledge, the approach of applying machine 

learning to classify splenic lesions based on their CT appearance has not yet been explored. 

In such a scenario, the aims of this study are: 1) to describe the CT features of FSLs in dogs; 2) to use 

machine learning algorithms to describe the complex relationship existing between different FSL 

histotypes and their CT features; and 3) to develop an easy-to-use algorithm for classifying FSLs based 

on their CT features. 
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MATERIAL AND METHODS 

Study Population 

The medical records of 62 dogs (32 males and 30 females – mean age 10.4 ± 2.3 years) referred to 

the Pedrani Veterinary Clinic (Via Caldierino 14, Zugliano, Vicenza, Italy) and to the Veterinary 

Teaching Hospital of the University of Padua (Viale Dell’Università 16, Legnaro, Padua, Italy) between 

June 2015 and November 2021 were prospectively collected. Criteria for inclusion in the study were: 

1) a CT scan was conducted, 2) cytopathological and/or histopathological diagnosis of the splenic 

lesion. Exclusion criteria were: 1) chemotherapy at the time of the CT scan; 2) non-diagnostic 

cytopathological samples or equivocal cytopathological diagnosis. Patient signalment was recorded 

for each animal. The dogs belonged to several different breeds (31 mixed breeds, 4 Labrador 

Retrievers, 3 Golden Retrievers, 2 Boxers, 2 Bernese Mountain dogs, 2 German Shepherds, 2 Cockers, 

2 Cane Corso, and one each of Fox Terrier, Yorkshire Terrier, English setter, Whippet, Great Dane, 

Weimaraner, Pointer, Jack Russell Terrier, Belgian Shepherd Dog, Australian Shepherd Dog, Shih Tzu, 

Lakeland Terrier and Hovawart). Six dogs were excluded because they were receiving chemotherapy 

at the time of the CT scan, and four were excluded because the cytopathological samples resulted as 

non-diagnostic. Of the remaining 52 dogs, 16 had a final diagnosis of nodular hyperplasia, 6 of normal 

splenic parenchyma, 5 of extramedullary haematopoiesis, 3 of haematoma, 2 of lymphoma, 2 of 

histiocytic sarcoma, 2 of mastocytoma, 1 of mesenchymal neoplasia, 1 of plasma-cell neoplasia, and 

14 of sarcoma (5 sarcoma, 4 stromal sarcoma, 3 hemangiosarcoma, 1 leiomyosarcoma, and 1 myxoid 

liposarcoma). The cases were grouped into four broader histological categories for the statistical 

analysis: nodular hyperplasia NH, 16 cases; other benign lesions (OBLs), 14 cases; round cell tumour 

(RCT), 8 cases, sarcoma (SA), 14 cases.  

All the methods were carried out in compliance with the relevant guidelines and regulations. This 

study was conducted respecting the Italian Legislative Decree N° 26/2014 (transposing EU Directive 

2010/63/EU). Nevertheless, since the data used in this study were part of routine clinical activity, no 

ethical committee approval was required. Informed consent for personal data processing was 

obtained from the owners. 

 

Cytopathological and Histopathological Examination 

Thirty-three splenic masses were sampled through ultrasound-guided fine needle aspiration for 

cytological assessment. 21-gauge needles were always used. Cytological slides were obtained by 
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smearing the aspirates on glass slides, which were subsequently air-dried, stained with May-

Grünwald-Giemsa stain and cover-slipped. All the cytological slides were evaluated by the same 

cytologist (FB). Cytology was always performed immediately after the CT scan. Histopathology was 

not performed in any of these cases.  

Twenty-one splenic masses were sampled through ultrasound-guided Tru-cut biopsy for histological 

assessment. Formalin-fixed tissue samples were dehydrated in a graded ethanol series and 

embedded in paraffin. 4-µm-thick sections were stained with haematoxylin and eosin and evaluated 

by one pathologist. 

 

Computed Tomography Examination  

Three different scanners were used to perform the CT examinations: Asteion super 4 (Toshiba 

Medical System Corporation), at the Veterinary Teaching Hospital; Revolution ACT, General Electric 

Medical System), and Optima CT 520 Series (General Electric Medical System) at the Pedrani 

Veterinary Clinic. The scanning protocols were slightly different for the different scanners. The 

protocols for the Asteion super 4 were: helical acquisition mode, exposure time of 0.725 seconds, 

voltage of 120 kV, amperage of 150 mA, and slice thickness of 1-3 mm. For the Revolution ACT, were: 

exposure time of 0.725 seconds, voltage of 100 kV, amperage of 100 mA, and slice thickness of 1-2.5 

mm. Lastly for the Optima CT 520 Series were: exposure time of 0.725 seconds, voltage of 120 kV, 

amperage of 180 mA, and slice thickness of 1-3 mm. 

All the dogs underwent a 12-hour fasting period prior to examination. All the examinations were 

performed on anaesthetised subjects placed in ventral recumbency. Contrast medium (Ioversol 

350mg/ml, Optiray 350, Liebel-Flarsheim Company LLC, USA) was administered at the dosage of 660 

mg/kg through two different modalities depending on the facility: 1) via an injector at the Pedrani 

Veterinary Clinic; 2) manually injected intravenously as a bolus at the Veterinary Teaching Hospital. 

Pre-contrast and delayed phase CT scans, the latter starting 30-50 seconds after the end of the 

contrast medium injection, were always performed.  

All the images were stored as digital imaging and communication in medicine (DICOM) files.  

 

Image Analysis 

All the scans were retrieved using a picture archiving and communication system (PACS). All the 

images were reviewed in a soft tissue window (WW: 400 HU - WL: 40HU) using a commercially 
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available software (Horos v3.3.6). In the case of multiple lesions in the same dog, the largest sampled 

lesion was described. 

 

The following qualitative features were evaluated: 1) margins (well- or ill-defined); 2) surface (regular 

or irregular); 3) appearance (solid or cyst-like) - the lesion was classified as “cyst-like” in the presence 

of at least one area with a measured Hounsfield Unit (HU) value similar to that of the animal’s 

gallbladder (representing possible necrosis or haemorrhage) (20); 4) splenic lymph-nodes 

appearance (normal or abnormal) – splenic lymph nodes were classified as abnormal if any of the 

following changes were evident: a) lymphadenomegaly (the dimensions of the splenic lymph nodes 

were subjectively compared to the surrounding  abdominal lymph nodes), b) heterogeneous 

appearance c) round or irregular shape; 5) homogeneity of contrast-medium distribution inside the 

lesion (homogeneous or heterogeneous); 6) enhancement pattern (prevalently central, rim 

enhancement, or diffuse distribution). 

 

The following quantitative characteristics were evaluated: 1) attenuation (measured as an HU value) 

of the tomographically normal splenic parenchyma, in both the pre-contrast and the delayed phase; 

2) attenuation (mean HU value) of the lesion in both the pre-contrast and the delayed phase; 3) 

maximum transverse diameter; 4) volume - the shape of the lesion was considered to be an ellipsoid 

and the formula 𝑉 = !
"
𝜋	(height/2 ∗ width/2 ∗ length/2) was applied (21); 5) attenuation of the 

lesion compared to that of the radiologically normal splenic parenchyma in the pre-contrast images 

(hypoattenuating, isoattenuating or hyperattenuating); 6) enhancement degree of the lesion 

compared to that of the radiologically normal splenic parenchyma in post-contrast images 

(hypoenhancing, isoenhancing or hyperenhancing). The attenuation and the enhancement degree of 

the lesion were determined based on the difference between the mean HU value measured on the 

lesion and the HU value measured on the radiologically normal splenic parenchyma. The lesions were 

classified as: a) isoattenuating/isoenhancing if the difference fell in the ±10 HU range; b) 

hyperattenuating/hyperenhancing with a difference greater than +10 HU; c) 

hypoattenuating/hypoenhancing if the difference was lower than -10 HU (7,22). The HU values were 

measured in three circular regions of interest (ROIs), in both the normal and in the pathological 

parenchyma, carefully avoiding cystic regions and vascular structures. The same ROIs were selected 

in pre- and post-contrast images. The size of the ROI was manually adjusted for each case. 
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The CT features were evaluated separately by two of the authors of this study (SB: with 4 years’ 

experience in diagnostic imaging and AZ, with 20 years’ experience in diagnostic imaging). The 

reviewers were blinded to the results of the histopathological examination.  

 

Statistical Analysis 

To compare the differences between the four diagnostic categories, the count data expressed as 

percentages were analysed with a chi-square test (or Fisher’s exact test when there were fewer than 

5 units of data). The quantitative variables were assessed for normality using Shapiro-Wilks test. 

Differences between the four diagnostic categories were analysed with a one-way analysis of 

variance (ANOVA) for normally distributed data, whereas the non-parametric Kruskal-Wallis test was 

used for non-normally distributed data. A Bonferroni post-hoc pairwise comparison test was 

performed. A p<0.05 was considered as statistically significant. The analyses were conducted with 

SAS 9.4 (SAS Institute Inc., Cary, NC, USA). 

To describe the complex relationship existing between all the different CT features and the 

histopathological groups, two different supervised machine learning techniques were applied. The 

first to be used was a dimensionality reduction technique, known as factorial discriminant analysis 

(FDA). This technique was chosen in order to identify which of the CT features best discriminated 

between the four histopathological categories. FDA aims to identify different linear combinations of 

original features (components - F) that provide the best possible separation of two or more classes 

of units. A coefficient is assigned to each original variable based on its relative ability to discriminate 

between different groups. Different components are computed and, usually, the first two 

components explain most of the variance in the dataset. The correlations between the original 

variables and components were calculated in our study and coefficient values of |r|>0.6 and >0.5 for 

the first component and the second component respectively were considered significant. 

Classification of all the cases based on the first two components is plotted on a Cartesian plane, where 

the position on the x-axis is determined by the results of F1 and the position on the y-axis is 

determined by the results of F2, and this enables the discrimination ability of the analysis to be 

visually assessed. Lastly, the centroids (i.e. the arithmetic mean positions of all the points in a group) 

are plotted. The further away each centroid is from the 0 of the Cartesian axes and from the centroids 

of the other groups, the better is the discrimination ability of the analysis is for that group. The 

factorial discriminant analysis was performed using XLStat (Addinsoft 2022, XLSTAT statistical and 

data analysis solution, New York, USA).  
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Decision tree analysis was then performed to detect the best discriminating CT features (a recursive 

partitioning method was adopted using the rpart package of R-https://cran.r-

project.org/web/packages/rpart/vignettes/longintro.pdf,  and a three-step procedure was applied to 

build the decision tree: 1) the features that provided the best data splitting were selected; 2)10-fold 

cross-validation was used to prune the decision tree having the lowest number of branches and the 

lowest misclassification rate (23); 3) a confusion matrix was built by comparing the values of actual 

vs predicted samples (obtained from the decision tree classification), and some quality indices 

regarding model performance were calculated (sensitivity, specificity, accuracy and misclassification 

rate).   

 

RESULTS 

The results of the analysis of the qualitative and quantitative features of the images, along with their 

p-values, are reported in Table 1 and Table 2 respectively. Pre- and post- contrast example images 

for each histopathological category are reported in Figures 1-4. Among the qualitative features, only 

the surface (χ2 =8.71; p-value=0.033) and the appearance (χ2 =12.98; p-value=0.005) showed 

statistically significant differences between histopathological groups. In particular, the main 

differences were found between OBLs and SAs for both the surface and the appearance. In fact, 

almost all (13/14) the SAs had an irregular surface and a cyst-like appearance. Instead, OBLs showed 

mainly a solid appearance (11/14) whereas surface was almost evenly distributed between regular 

(8/14) and irregular (6/14). The margins (χ2 =5.12; p-value=0.163), lymph nodes (p-value= 0.169), 

post contrast homogeneity (χ2 =4.37; p-value=0.224), and enhancement pattern (χ2 =1.10; p-

value=0.776) did not show statistically significant differences between the histopathological groups. 
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Table 3 Qualitative features, along with cytological or histological classification. 

 
Different letters along columns mean significant values for p < 0.05 
* k proportion test 
** Fisher's exact test 
† Other benign lesions = 6 normal parenchyma, 5 extramedullary hematopoiesis, 3 hematomas 
✢ Round cells tumors = 2 mastocytomas, 2 lymphomas, 2 hystiocitic sarcoma, 1 mesenchimal neoplasia, 1 plasmacellular neoplasia 
✢✢ Sarcoma = 5 sarcoma, 4 stromal sarcoma, 3 hemangiosarcoma, 1 leiomyosarcoma, 1 myxoid liposarcoma 
 

 

 

Nodular hyperplasia  (n 
= 16)

Other benign lesions   † 

(n = 14)
Round cells tumors   ✢  

(n = 8)
Sarcoma✢✢  (n = 14) Total (n = 52) p-value

Margins* 0.163

well defined 9 (56%) 10 (71%) 6 (75%) 13 (93%) 38 (73%)

ill defined 7 (44%) 4 (29%) 2 (25%) 1 (7%) 14 (27%)

Surface* 0.033

regular 7 (44%) 8 (57%) 2 (25%) 1 (7%) 18 (35%)

irregular 9 (56%) ab 6 (43%) b 6 (75%) ab 13 (93%) a 34 (65%)

Aspect* 0.005

solid 10 (62%) 11 (79%) 5 (62%) 2 (14%) 28 (54%)

cyst-like 6 (38%) ab 3 (21%) b 3 (38%) ab 12 (86%) a 24 (46%)

Lymph-nodes** 0.169

normal 13 (81%) 10 (71%) 5 (63%) 6 (43%) 34 (65%)

abnormal 3 (19%) 4 (29%) 3 (38%) 8 (57%) 18 (35%)

Homogeneity post-contrast medium* 0.224

homogeneous 5 (31%) 5 (36%) 1 (14%) 1 (7%) 12 (23%)

heterogeneous 11 (69%) 9 (64%) 7 (86%) 13 (93%) 40 (77%)

Enhacement pattern* 0.776

diffuse 12 (75%) 11 (79%) 5 (63%) 9 (64%) 37 (71%)

marginal 4 3 3 5 15 (29%)

central 0 0 0 0 0

Attenuation pre-contrast medium** 0.171

hypoattenuating 7 (44%) 6 (43%) 5 (63%) 11 (79%) 29 (56%)

isoattenuating 9 (56%) 6 (43%) 3 (38%) 3 (21%) 21 (40%)

hyperattenuating 0 2 (14%) 0 0 2 (4%)

Enhancement post-contrast medium** 0.309

hypoenhancing 8 (50%) 7 (50%) 5 (63%) 12 (86%) 32 (61%)

isoenhancing 1 (6%) 1 (7%) 1 (13%) 0 3 (6%)

hyperenhancing 7 (44%) 6 (43%) 2 (25%) 2 (14%) 17 (33%)

Category
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Table 2 Quantitative features, along with the cytological or histological classification 

 
Different letters along columns mean significant values for p < 0.05 
* Kruskal-Wallis test 
** One-way ANOVA 
† Other benign lesions = 6 normal parenchyma, 5 extramedullary hematopoiesis, 3 hematomas 
✢ Round cells tumors = 2 mastocytomas, 2 lymphomas, 2 hystiocitic sarcoma, 1 mesenchimal neoplasia, 1 plasmacellular neoplasia 
✢✢ Sarcoma = 5 sarcoma, 4 stromal sarcoma, 3 hemangiosarcoma, 1 leiomyosarcoma, 1 myxoid liposarcoma 
HU = Hounsfield Unit 

 

Maximum dimension and ellipsoid volume showed a non-normal distribution and, therefore, 

differences between the groups were calculated with the Kruskal-Wallis test. All the remaining 

variables showed a normal distribution and, therefore, differences were evaluated with the ANOVA. 

Most of the quantitative features revealed significant differences between the groups: HU value of 

pre-contrast normal spleen (F=3.37; p-value = 0.026), HU value of pre-contrast lesion (F=6.97; p-

value= 0.001), HU value of post-contrast lesion (F=4.20; p-value=0.01), maximum dimension 

(k=16.13; p-value=0.001), and ellipsoid volume (k=16.94; p-value=0.001). Only the HU value of the 

post-contrast normal spleen showed no statistically significant differences between groups (F=0.53; 

p-value=0.665). Box-plots of all the quantitative variables are reported in Figure 5. It seems clear from 

analysis of the box plots that differences are mainly evident between sarcomas and other lesions. In 

particular the only statistically significant differences in the HU values of pre-contrast lesions and of 

post-contrast lesions are between OBLs and SAs. Only differences between NH and SAs were evident 

for both maximum dimension and ellipsoid volume (two highly correlated values).  

The first two main components of the FDA (called F1 and F2) together explained about 86% of the 

total variability. The coefficients for F1 and F2 are reported in Table 3. The first component, explaining 

63.82% of the total variability, is positively correlated (|r|>0.6) mainly with the HU value of the pre- 

and post-contrast lesion and with a solid appearance of the lesion, and is inversely correlated with 

maximum dimension and cystic appearance. The second component, explaining only 22% of the total 

variability, is moderately related only to pre-contrast hyperattenuatuation (|r|>0.5). Case 

Nodular hyperplasia     
(n = 16)

Other benign lesions  †  

(n = 14)
Round cells tumors  ✢   

(n = 8)
Sarcoma✢✢  (n = 14) Total (n = 52) p-value

Max dimension (cm)* 2.17 (1.65-2.97) b 5.09 (2.50-8.65) ab 5.47 (1.22-12.37) ab 10.67 (7.57-16.00) a 4.59 (1.96-10.28) 0.001

Ellipsoid volume (cm3)* 2.77 (1.45-8.32) b 23.45 (5.50-315.99) b 72.20 (0.62-538.71) b 375.24 (152.03-1387.69) a 23.45 (2.39-350.86) 0.001

HU normal spleen pre-contrast medium** 61.03±6.01 63.11±11.59 55.11±9.34 54.18±7.06 58.83±9.18 0.026

HU normal spleen post-contrast medium** 106.29±17.05 108.61±24.31 116.65±20.88 108.46±14.74 109.09±19.05 0.665

HU lesion pre-contrast medium** 49.59±12.67 ab 60.75±24.59 a 42.49±10.91 ab 33.26±11.29 b 47.10±18.95 0.001

HU lesion post-contrast medium** 93.90±29.19 ab 106.77±47.24 a 88.85±31.28 ab 60.17±32.23 b 87.51±39.22 0.010

Category
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distribution using the Cartesian system, based on classification by the two main components, is 

represented in Figure 6. From the graph in Figure 6a, and from the positions of the centroids (Figure 

6b), it appears evident that the sarcoma group lies (almost completely) in the negative part of the x-

axis, and is therefore associated with characteristics such as larger maximum dimensions and a cyst 

like appearance (that had a negative correlation to F1). The NH and OBL groups are both positioned 

in the positive part of the x-axis, and are therefore mainly characterised by smaller dimensions, higher 

pre- and post-contrast mean HU values and a solid appearance (positive correlation with F1). 

Furthermore, OBLs and NH are separated on the y-axis (F2), with OBLs exhibiting higher values than 

nodular hyperplasia. Lastly, RCTs are located in the centre of the Cartesian axis system and thus do 

not show any distinctive CT feature. Lastly, although an overall tendency for each group is noted, the 

large superimposition of the cases around the 0 on the Cartesian axes indicates that the subdivision 

of SA, OBL, and NH based on the CT features is suboptimal. 
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Table 3 F1 and F2 values of the factorial discriminant analysis based on 8 qualitative and 5 quantitative predictors 

 

 

 

 

  

F1 F2

Well-defined margins -0.384 0.255

Ill-defined margins 0.384 -0.255

Regular surfaces 0.54 0.189

Irregular surfaces -0.54 -0.189

Solid aspect 0.636 0.144

Cyst-like aspect -0.636 -0.144

Normal lymph-nodes 0.413 -0.161

Abnormal lymph-nodes -0.413 0.161

Homogeneous distribution 0.381 0.089

Heterogeneous distribution -0.381 -0.089

Diffused contrast enhancement pattern 0.174 0.075

Marginal contrast enhancement pattern -0.174 -0.075

Hypoattenuation -0.421 -0.006

Isoattenuation 0.338 -0.202

Hyperattenuation 0.225 0.528

Hypoenhancement -0.426 0.028

Isoenhancement 0.143 -0.035

Hyperenhancement 0.371 -0.011

Max dimension -0.769 0.38

HU normal spleen pre-contrast medium 0.533 0.191

HU normal spleen post-contrast medium -0.064 0.018

HU lesion pre-contrast medium 0.69 0.401

HU lesion post-contrast medium 0.593 0.178
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The decision tree resulting from the analysis is reported in Figure 7. Three variables (max dimension, 

mean HU value of the pre-contrast lesion and HU value of the post-contrast lesion) were used for 

classification. Following the first split (max. dimensions < 3.6 cm), the decision tree classified 48% of 

the cases as nodular hyperplasia (max. dimension < 3.6 cm) and 52% of the cases as sarcoma (max 

dimension > 3.6 cm). Of these 48% classified as NH 56% were actually NH, 24% were OBLs, 16% were 

RCTs and only 4% were SAs. Instead, of the 52% of the cases classified as SA 7% were NH, 30% were 

OBLs, 15% were RCTs, and 48% were actually SAs. Following the second split on the left (mean HU 

value of the post-contrast lesion < 126), 35% of the cases were classified as NH (67% actually NH, 

11% actually OBL, 17% actually RCT, 6% actually SA) and 13% (HU lesion post mean > 126) were 

classified as OBL (29% actually NH, 57% actually OBL, 14% actually RCT, and 0% actually SA). On 

another decision tree branch (mean HU values of pre-contrast lesion ³44), 23% of the cases were 

classified as OBLs (17% actually NH, 58% actually OBL, 17% actually RCT, and 8% actually SA). On 

another secondary branch the algorithm classified 29% of the cases as sarcomas (0% actually NH, 7% 

actually OBL, 13% RCT, 80% actually SA).  

Therefore, the following observations summarise the main findings of the decision tree. If the lesion 

is smaller than 3.6 cm and has a post-contrast HU value lower than 126 there, is a 67% chance that 

is NH (a 78% combined chance that it is benign if classing NH and OBLs together). If the lesion is 

smaller than 3.6 cm and has a post-contrast HU value higher than 126, there is a 57% chance that it 

is an OBL (an 86% combined chance that it is benign if classing OBLs and NH together). Instead, if the 

lesion is larger than 3.6 cm and has a mean pre-contrast mean HU value higher or equal to 44, there 

is a 58% chance the lesion is an OBL and a cumulative 75% chance it is benign. Lastly, if the lesion is 

larger than 3.6 cm and has a pre-contrast HU lower than 44, there is an 80% chance it is a SA and a 

cumulative 93% chance it is malignant (classing RCT and SA together). Not surprisingly, the algorithm 

did not identify any specific feature enabling the differentiation of RCTs from the remaining 

histopathological categories. The overall accuracy of the decision tree, when reapplied on the original 

data, was 0.67 and the k was 0.54. The sensitivity, the specificity and the balanced accuracy of the 

decision tree for each FSL category is reported in Tables 4-5.  
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Table 4 Confusion matrix that summarize the performance of the machine-learning based decision tree, giving the number of predicted 
cases 

 

Table 5 Results of the classification of the FSLs based on the machine-learning based decision tree   
Nodular hyperplasia       

(n = 16)
Other benign lesions       

(n = 14)
Round cells tumors       

(n = 8)
Sarcoma (n = 14)

Sensitivity 0.75 0.79 0.00 0.86

Specificity 0.83 0.79 1.00 0.92

Balanced accuracy 0.79 0.79 0.50 0.89

Nodular hyperplasia Other benign lesions Round cells tumors Sarcoma Total

Nodular hyperplasia 12 2 3 1 18

Other benign lesions 4 11 3 1 19

Round cells tumors 0 0 0 0 0

Sarcoma 0 1 2 12 15

Total 16 14 8 14 52

Actual

Pr
ed

ic
te

d



 94 

Figure 1 Pre- (A) and post- (B) contrast images of NH showing isoattenuation and hypoenhancement, diffuse enhancement 
pattern with heterogeneous distribution, well-defined margins, irregular surface, and a cyst-like appearance. Pre- (C) and 
post- (D) contrast images of NH showing hypoattenuation and hypoenhancement, diffuse enhancement pattern, with 
heterogeneous distribution, ill-defined margins, regular surface, and cyst-like appearance. Pre- (E) and post- (F) contrast 
images of NH showing hypoattenuation and hyperenhancement, rim enhancement pattern with heterogeneous 
distribution, well-defined margins, irregular surface, and solid appearance. The ROI is placed inside the lesions. 
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Figure 2 Pre- (A) and post- (B) contrast images of an OBL (diagnosed as extramedullary haematopoiesis) 
showing hypoattenuation and hypoenhancement, diffuse enhancement pattern with heterogeneous 
distribution, well-defined margins, irregular surface, and solid appearance. Pre- (C) and post- (D) contrast 
images of an OBL (diagnosed as extramedullary haematopoiesis) showing isoattenuation and 
hyperenhancement, diffuse enhancement pattern with homogeneous distribution, well-defined margins, 
regular surface, and solid appearance. Pre- (E) and post- (F) contrast images of an OBL (diagnosed as 
haematoma) showing hypoattenuation and hypoenhancement, diffuse enhancement pattern with 
heterogeneous distribution, well-defined margins, regular surface, and cyst-like appearance. The ROI is 
placed inside the lesions. 



 96 

 
  

Figure 3 Pre- (A) and post- (B) contrast images of a RCT (diagnosed as lymphoma) showing isoattenuation and 
hyperenhancement, diffuse enhancement pattern with homogeneous distribution, ill-defined margins, irregular 
surface, and solid appearance. Pre- (C) and post- (D) contrast images of a RCT (diagnosed as mastocytoma) showing 
hypoattenuation and hyperenhancement, rim enhancement pattern, with heterogeneous distribution, well-defined 
margins, regular surface, and solid appearance. Pre- (E) and post- (F) contrast images of a RCT (diagnosed as 
mesenchymal neoplasia) showing hypoattenuation and hypoenhancement, diffuse enhancement pattern with 
heterogeneous distribution, well-defined margins, irregular surface, and cyst-like appearance. The ROI is placed 
inside the lesions. 
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Figure 4 Pre- (A) and post- (B) contrast images of a sarcoma (diagnosed as haemangiosarcoma) showing 
hypoattenuation and hypoenhancement, rim enhancement pattern with heterogeneous distribution, well-
defined margins, irregular surface, and cyst-like appearance. Pre- (C) and post- (D) contrast images of a 
sarcoma (diagnosed as sarcoma) showing isoattenuation and hypoenhancement, diffuse enhancement 
pattern with heterogeneous distribution, well-defined margins, irregular surface, and cyst-like appearance. 
Pre- (E) and post- (F) contrast images of a sarcoma (diagnosed as stromal sarcoma) showing hypoattenuation 
and hyperenhancement, diffuse enhancement pattern with heterogeneous distribution, well-defined 
margins, irregular surface, and cyst-like appearance. The ROI is placed inside the lesions. 
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Figure 5 Box and whisker plot of the maximum dimension (A), ellipsoid volume (B), HU value of the pre-contrast normal 
spleen (C), HU value of the post-contrast normal spleen (D), HU value of the pre-contrast lesion (E), HU value of the 
post-contrast lesion (F). 
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Figure 6 Distribution of the cases (A) and of the centroids (B) based on the F1 and F2 components of the factorial discriminant 
analysis classification. 

Figure 7 The machine learning-based decision tree developed on the qualitative and the quantitative CT features of the focal splenic 
lesions. The second line in each box shows the probability of each class at that node (i.e. the probability of the class conditioned on 
the node) and the third line shows the percentage of observations used at that node. 
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DISCUSSION 

The complex relationship occurring between the CT features and the FSL histotypes were described 

using both a classical statistical and a machine learning-based approach. The classical statistical 

analysis revealed some significant differences between groups, mainly for the quantitative features, 

whereas no significant differences, with the exception of surface and appearance, were evident for 

the qualitative features. The machine learning algorithms substantially confirmed the results of the 

classical statistical analysis; indeed, all the features included in both in the FDA and the decision tree 

resulted as significantly different between the different groups in the classical statistical analysis 

tests. Nonetheless, the main advantage of FDA is that it allows identification of subtler trends than 

the classical statistical analysis does. As a result of the FDA, it emerged that while SAs were 

characterised both by larger dimensions and a cyst-like appearance, strong similarities were evident 

in the appearance of NH, OBLs and SAs than based on classical statistical analysis. Furthermore, the 

decision tree provided a straightforward and easy-to-use chart that could be directly used to classify 

lesions based on their CT features with a very high accuracy for SAs and a moderate accuracy for 

OBLs and NH, while RCTs could not be classified through the decision tree. 

NH nodules are reported as having a variable appearance (both homogeneous and heterogeneous) 

and as being markedly hyperenhancing on post-contrast CT images (2,6,7). The results of both the 

discriminant analysis and the decision tree confirm such findings and, in fact, NHs were characterised 

by higher pre- and post-contrast HU values and a smaller volume than SAs were. Interestingly, but 

not unexpectedly since several extramedullary haematopoiesis cases were present in the OBL group, 

NH showed an overall lower enhancement than the OBLs did.    

 

In this paper we placed all benign lesions other than NH (i.e. haematomas and extramedullary 

haematopoiesis) in the OBL group and, therefore, a straightforward comparison with the features 

reported by other authors for this lesion category is not possible. Haematomas are reported as mainly 

heterogeneously enhancing masses in all phases by both Kutara et al., 2017, and Jones et al., 2016. 

Splenic extramedullary haematopoiesis nodules have been described as having a very variable 

appearance and as hyperenhancing in all phases (4). The CT features of all the other possible OBLs 

(e.g.: splenitis, lipoma, etc.) have not yet been reported in the literature.   

The literature reporting the CT features of malignant splenic lesions is fragmentary and different 

authors have grouped malignant lesions differently. Both Fife et al., 2004 and Jones et al., 2016, 

grouped all malignant lesions into a single category during statistical analysis. To date only Kutara et 



 101 

al., 2017 have considered sarcoma and haemangiosarcoma as individual categories during statistical 

analysis. In the present study, all the sarcoma cases were grouped together due to the presence of 

only 3 haemangiosarcomas in the database. To the best of the authors’ knowledge, this is the first 

manuscript considering RCT as an individual category for the analysis. The results of the present study 

confirm the finding that sarcomas have a lower attenuation and larger dimensions compared to 

benign splenic lesions (both NH and OBLs). Instead, RCTs did not show any distinctive CT feature. 

Therefore, splenic lesions should not be classified based on their CT features alone since other 

diagnostic procedures (e.g.: cytology) are necessary to determine the histotypes. Interestingly, the 

splenic lymph nodes were normal in 63 % of RCTs and 43% of SAs, whereas the lymph nodes were 

abnormal in 23% of the benign lesions. Therefore, it is the author’s opinion that lymph node 

evaluation also has poor value in determining whether a lesion is benign or malignant.  

Fife et al., 2004, reported the presence of abdominal effusion as significantly correlated with the 

presence of malignant splenic lesions. Instead, abdominal effusion was not detected in any of the 

cases included in the present study and, therefore, the significance of such a finding was not 

evaluated. The significance of abdominal effusion was also not evaluated by Lee et al., 2017, and 

Jones et al., 2016.  

Contrast-enhanced ultrasound has seldom been reported as useful in the differentiation between 

benign and malignant FSLs (24,25). However, these reports are largely outdated and based on a 

relatively low number of cases (26 and 29 cases respectively), and the full efficacy of this imaging 

technique has yet to be proven.  

In human medicine, FSL diagnosis based on diagnostic imaging findings alone poses challenges similar 

to those of the veterinary context (26). Nonetheless, the combination of CT, MRI and 18F-FDG PET/CT 

enables attainment of a high degree of confidence for lesion characterisation (26). However, due to 

the limited availability of such imaging devices and of properly developed techniques (18F-FDG 

PET/CT) in veterinary medicine, the MRI features of FSLs have seldom been described in dogs (27). It 

is likely that the combination of different imaging techniques could enable attainment of a higher 

degree of confidence in FSL diagnosis also in the veterinary field. Nonetheless, this will require a 

broad standardisation of the features of FSLs in each individual diagnostic imaging technique.  

 

Most of the results of the present study are in agreement with those reported in the literature. In 

particular, Lee et al. 2018 reported the HU values of the lesion in pre-contrast phase, along with the 

regular and irregular margination of the lesion as statistically significant features in the distinction 
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between malignant and benign tumors. Results of this study confirmed, the appearance of the 

surface and the HU values of the lesion during pre-contrast phase to be useful in the distinction 

among the four considered pathological categories.  

Fife et al. 2004 reported the HU values of the lesion during pre- and post-contrast phase as 

significantly different between malignant lesions, hematomas and NH. Nevertheless, the authors 

found a threshold of <55HU in post contrast scans for classification of malignant lesions. In our study, 

the decision tree, used a threshold of <44 HU to distinguish between sarcoma and OBL, and of <126 

HU to distinguish between NH and OBL. 

Lastly, Kutara et al. 2017 found the size of the mass as statistically different between NH, hematomas, 

hemangiosarcoma, and undifferentiated sarcoma. In particular, the size was smaller for NH. Our 

results confirmed that the size is significantly smaller in case of NH, with a 3.6 cm cut-off value. 

 

One limitation of the present study is that, since most of the FSLs were occasional findings on CT 

scans performed for other reasons (e.g. staging of neoplasia), the lesions were evaluated only in the 

pre-contrast and in the delayed phase and no arterial phase was available for the selected cases. 

Previous reports on the CT features of FSL (2,6–8) used both dual-phase (6,7) and triple-phase (2,8) 

scanning protocols. To the best of the authors’ knowledge, no CT features specifically related to the 

arterial phase have yet been shown as useful in differentiating between the different FSL histotypes.  

 

Another limitation is that no specific RCTs were differentiated by the proposed decision tree. A 

possible explanation of this is that several different histotypes (lymphoma, histiocytic sarcoma, 

mastocytoma, mesenchymal neoplasia, plasma-cell neoplasia) with different imaging features were 

included in the RCT category. By including a larger number of cases in a future study, a larger number 

of groups could likely be considered during analysis, which would therefore provide a more detailed 

description of the CT features of FSLs.  

 

The third possible limitation is related to the use of cytopathology to classify the cases. Indeed, the 

agreement between cytopathological and hystopathological diagnoses of the spleen is reported to 

be only moderate (Cohen’s Kappa = 0.473) (28).  In the present study histopathology was performed 

only in 19 cases, while the remainder 33 cases were evaluated only by means of cytopathology. To 

improve the classification accuracy both non-diagnostic cases and cases with doubtful cytological 
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diagnosis were excluded. It is the authors’ opinion that, including only cases with high quality 

cytopathological samples increase the diagnostic accuracy of the cytological exam. 

 

CONCLUSION 

The CT features of different groups of FSL have been described and analysed using both classical 

statistical analysis and machine learning algorithms. SAs are characterised by large dimensions, a 

cystic appearance and an overall low post-contrast enhancement. NH and OBLs are characterised by 

small dimensions, a solid appearance and a high post-contrast enhancement. OBLs show higher post- 

contrast values than NH. Lastly, RCTs do not exhibit any distinctive CT features. A straightforward, 

easy-to-use decision tree for classifying FSLs is proposed.  
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CHAPTER FIVE 

Application of a convolutional neural 

network to CT images of focal liver and 

splenic lesions. 
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IMAGE PREPROCESSING  

Starting from the same patients included in the descriptive study (69 cases of liver lesions, 52 cases 

of splenic lesions), we have exported all the images in a Digital Imaging and Communications in 

Medicine (DICOM) format into two folders, namely training set and test set, both containing two 

subfolders: one for benign, and one for malignant cases. 15% of the patients was included in the test 

set, whereas the remaining 85% was included in the training set. Therefore, the hepatic lesions test 

set was composed of the images from 5 benign and 5 malignant cases; the splenic lesions test set 

was composed of the images from 4 benign and 4 malignant cases. All the examination were 

reviewed with Osirix 10.0.4 program. Using the drawing tool, the masks were manually drowned, 

following the contour of each lesion in every slice where was visible. The pixel values inside the masks 

were set to 1, and the pixel values outside the masks were set to 0 (Figure 1 and 2). In this way, we 

have obtained a spatial representation of lesion inside the patient. The masks were exported, and 

two volumes were created using 3D-Slicer (v. 4.10.1) 1: 1) a binary volume containing the information 

of the mask; and 2) a volume containing the reconstruction of the original tomographic examination. 

The aim of the mask was to allow the algorithm to identify the coordinates for the localization of the 

lesion in the patient and then to extract the lesion from the volumes. One of the big challenges was 

to identify the best images cropping method. Neural networks are only capable of processing  square 

images with constant dimensions (i.e. 224 x 224 pixel) that are specific to the algorithm used. As a 

consequence, if we use the dimension of the lesion as crop factor, the smaller lesions will be 

magnificated leading to a loss of dimensional information. On the other hand, the biggest lesions will 

be compressed to smaller dimensions with strong geometrical distortions of the image. Instead, if we 

decide to crop the lesions using a fixed dimension (i.e. 120 x 120 pixel), some lesions will be very 

small compared to the included area, leading to a difficult identification by the deep-learning 

algorithm. The perfect approach does not exist, so we opted for a compromise: using an on-purpose 

developed Python (v. 3.9.0) script, we matched the two volumes and the lesions were cropped with 

a 0.6 factor, based on the dimension of the biggest lesion. In this way, the dimensions of the smaller 

lesions were preserved and only a few portions of the largest lesions were excluded from the crop. 

Finally, only the slices containing at least 200 pixels of the lesion were sent to the CNN. 
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Figure 1 Example of a mask drowned around the contour of a hepatocarcinoma on a single CT slice. A. The mask is drowned 
B. Pixel volumes external to the mask is changed to 0 C. Pixel volumes internal to the mask is changed to 1.  

Figure 2 Example of a mask drowned around the contour of a splenic sarcoma on a single CT slice. A. The mask is drowned B. 
Pixel volumes external to the mask is changed to 0 C. Pixel volumes internal to the mask is changed to 1. 
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DEEP LEARNING 

For the deep-learning analysis a dedicated work-station (Linux operating system, Ubuntu 18.04, 

Canonical) with 4 GPU units (Tesla V100; NVIDIA), 2.2 GHz processor (Intel Xeon E5-2698 v4; Intel), 

and 256 of memory RAM was used. The pre-trained on ImageNet Incetion V3 2,3 CNN was used.   

One of the limitation of the use of neural networks on small datasets (like in our study) is represented 

by overfitting, also known as overtraining; when a model is trained on a small dataset, it might be 

able to learn the typical features describing the test dataset, but then has a poor generalization ability 

on new datasets 4. In other words, the model will perform well in the training set, but its 

performances will be significantly lower on new images. Different methods were proposed to 

overcome (at least partially) the overfitting problem. Among others there is data augmentation. With 

this method new synthetic samples are created from the original dataset. These new samples are 

added to the original dataset resulting in an augmentation of its dimension and, therefore, in the 

reduction of overfitting. As a consequence, the model will have a better generalization ability on new 

datasets. In our study, we applied the following data augmentation methods: cropping (the images 

were cropped in sub-images starting from each slice of the CT examination); translation (images are 

Figure 3 Example of crop of a lesion with crop factor of 0.6. In the upper part a 
hepatocarcinoma is reported; in the bottom part a splenic sarcoma is reported. 
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translated along the x and y axes); flipping (images are mirrored horizontally and vertically); rotation 

(images are rotated clock-wise and counterclock-wise); changes in the contrast levels of the images. 

 

CASES CLASSIFICATION 

The Inception V3 performances were evaluated by means of accuracy, sensitivity, and specificity, 

considering a p-value of 0.05. Since every case was composed by hundreds of images and the 

algorithm classifies each image independently, every case of the test set was classified as malignant 

if at least the 60% of the images was classified as malignant. 

Using this scheme, Inception V3 correctly classified 7 out of 10 cases of the hepatic lesions (4 

malignant and 3 benign), and 5 out of 8 cases of the splenic lesions (3 malignant and 2 benign) in the 

test set. The confusion matrix of the hepatic and splenic lesions classification results is reported in 

Table 1 and 2 respectively. Accuracy, sensitivity, and specificity results are reported in Table 3. 

 

Table 4 Confusion matrix of the classification of liver lesions with Inception V3. 

 

 

Table 2 Confusion matrix of the classification of splenic lesions with Inception V3. 

 

 
Table 5 Performance of Inception V3 in the classification od liver and splenic lesions. 

 
 
 

Maligno Benigno Totale

Maligno 4 2 6

Benigno 1 3 4

Totale 5 5 10

Reale

Pr
ed
et
to

Maligno Benigno Totale

Maligno 3 2 5

Benigno 1 2 3

Totale 4 4 8

Reale

Pr
ed
et
to

Accuratezza Sensibilità Specificità PLR NLR

Masse epatiche 0.70 0.80 0.60 2.00 3.00

Masse spleniche 0.63 0.75 0.50 1.50 2.00
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CONCLUSIONS 

To the best of our knowledge, this is the first study exploring the application of CNNs to distinguish 

between malignant and benign canine focal hepatic and splenic lesions based on CT studies. This 

distinction is crucial, since the treatment and the prognosis of the patient are closely related to the 

nature of the lesion. At the present time the gold standard diagnostic technique for the 

characterization of hepatic and splenic masses remains histopathology, despite being invasive and 

risky for the patient 5–7.  

In human medicine, commercial products applying deep learning in the diagnostic imaging field are 

already available 8–10, and are considered as teh state-of-the-art to solve common tasks like lesion 

identification, segmentation, and classification 11. Indeed, deep learning algorithms have 

demonstrates high level of accuracy (96-100%) in the identification of focal liver lesions and steatosis, 

and of 90% in the discrimination among the different tumoral histotype on the ultrasonographic 

images 9. In the study of Zhou et al 2019 they highlight that the deep-learning algorithms are able to 

identify liver tumoral masses and metastatic lesions with 86% and 90% of accuracy respectively, when 

applied to CT images. Also in human medicine no advanced studies exploring the applications of deep 

learning on focal splenic lesions are available.  

In the veterinary literature, a study 12 proposing a machine-learning based model applied to hepatic 

lesions showed an accuracy of 0.90 (sensitivity 0.67, specificity 1.00) in the distinction between 

malignant and benign lesions. In their model the features of voxel volume and uniformity resulted to 

be more informative for the distinction. Nevertheless, in their study almost only quantitative features 

were considered (with only 2 qualitative features). On the other hand, they have used a machine-

learning model that usually perform better than deep learning on small datasets. By the way, in this 

type of model the human intervention is necessary to decide the features to be considered for the 

classification. In our study, both quantitative and qualitative features were considered and the CNN 

automatically extracted the features for the classification, without no human intervention.  

The CNN Inception V3 correctly classified the 70% of the cases of the hepatic test set, with a good 

level of accuracy (0.80) and sensitivity (0.80), but low specificity (0.60). This means that the model 

has a good accuracy in the identification the malignant liver lesions, but a low accuracy in the 

distinction of benign lesions. On the other hand, the CNN developed on splenic lesions showed good 

levels of sensitivity (0.75), but a low specificity (0.50) and accuracy (0.63), correctly classifying only 

the 62.5% of the cases. It appears evident that one the main limitations of this study was the limited 

dimensions of the dataset. Indeed, the high performance that these algorithms reach in human 
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medicine11,13,14 arise from a very large training set containing hundreds of thousand images. The 

results of this study are promising but still very in a very embryonal phase, a first step in the future, 

through completely new horizons for the veterinary medicine. One of the main advantages of deep 

learning algorithms is that both they can be easily implemented by increasing the dimensions of the 

training dataset. Furthermore, there is a very active research aimed to develop new and more 

preforming deep learning algorithms specifically designed for medical images. This project is not 

concluded: more cases will be added in the future.  
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A FRAILTY INDEX BASED ON CLINICAL DATA TO QUANTIFY MORTALITY RISK IN DOGS 

Banzato T, Franzo G, Di Maggio R, Nicoletto E, Burti S, Cesari M, Canevelli M. A Frailty Index based on 

clinical data to quantify mortality risk in dogs. Sci Rep. 2019 Nov 14;9(1):16749. doi: 10.1038/s41598-

019-52585-9. PMID: 31727920; PMCID: PMC6856105 1 

 

Frailty is defined as a decline in an organism’s physiological reserves resulting in increased 

vulnerability to stressors. In humans, a single continuous variable, the so-called Frailty Index (FI), can 

be obtained by multidimensionally assessing the biological complexity of an ageing organism. Here, 

we evaluate this variability in dogs and compare it to the data available for humans. In dogs, there 

was a moderate correlation between age and the FI, and the distribution of the FI increased with age. 

Deficit accumulation was strongly related to mortality. The effect of age, when combined with the FI, 

was negligible. No sex-related differences were evident. The FI could be considered in 

epidemiological studies and/or experimental trials to account for the potential confounding effects 

of the health status of individual dogs. The age-related deficit accumulation reported in dogs is similar 

to that demonstrated in humans. Therefore, dogs might represent an excellent model for human 

aging studies. 
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CONTRAST-ENHANCED ULTRASONOGRAPHY FEATURES OF HEPATOBILIARY 

NEOPLASMS IN CATS 

Banzato T, Burti S, Rubini G, Orlandi R, Bargellini P, Bonsembiante F, Zotti A. Contrast-enhanced 

ultrasonography features of hepatobiliary neoplasms in cats. Vet Rec. 2020 Mar 14;186(10):320. doi: 

10.1136/vr.105453. Epub 2019 Oct 3. PMID: 31582574; PMCID: PMC7079193. 2 

 

Background Contrast-enhanced ultrasonography (CEUS) features of primary hepatobiliary neoplasms 

have been reported in dogs but no information is available in cats. 

Methods Qualitative and quantitative features of bile duct adenomas (BDAs, n=20), bile duct 

carcinomas (BDCs, n=16), and hepatocellular carcinomas (HCCs, n=8) are described in 44 cats. 

Results There was an overlap in CEUS qualitative features between different histotypes, both in wash-

in and wash-out phases. Distinction between different neoplasms based only on the CEUS qualitative 

features was not possible. At peak of enhancement, the BDAs, BDCs and HCCs showed a large range 

of echogenicities, from hypoenhancement to hyperenhancement, in comparison to the liver 

parenchyma. Eight of 20 BDAs showed inhomogeneous hyperenhancement during wash-in, which is 

a feature reported as typical of malignant lesions in dogs. BDC had a significantly faster wash-in 

compared with both BDA and HCC but the diagnostic accuracy of all the included quantitative 

variables was only moderate. No significant differences in the wash-out quantitative features of BDA 

and BDC were evident. 

Conclusion There is poor evidence that CEUS may be used to distinguish between different primary 

hepatobiliary neoplasms in cats. 
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CORRELATION BETWEEN RENAL HISTOPATHOLOGY AND RENAL ULTRASOUND IN 

DOGS 

Burti S, Zotti A, Bonsembiante F, Mastellaro G, Banzato T. Correlation between renal histopathology 

and renal ultrasound in dogs. Res Vet Sci. 2020 Apr;129:59-65. doi: 10.1016/j.rvsc.2020.01.003. Epub 

2020 Jan 3. PMID: 31931264. 3 

 

Fifty-three privately owned dogs were included in the study. Ultrasonography of the kidneys was 

performed ante mortem. All the dogs died or were euthanized for reasons unrelated to this study. 

Histopathology of both kidneys was performed, and a degeneration and an inflammation score 

ranging from zero to two was assigned by consensus between two pathologists. A numerical score 

based on a three level semi-quantitative scale (0, 0.5, 1) was assigned by consensus between two of 

the authors to the following ultrasonographic abnormalities: corticomedullary definition, 

echogenicity of the renal cortex, echogenicity of the medulla, renal shape, cysts, scars, 

mineralizations, subcapsular perirenal fluid accumulation, pyelectasia. The scores deriving from the 

consensus were summed to create a summary index called renal ultrasound score (RUS). Statistically 

significant differences in cortico-medullary definition, echogenicity of the renal cortex, echogenicity 

of the medulla, renal shape, scars and pyelectasia were evident between the degeneration score 

groups. There were significantly different distributions of cortico-medullary definition, renal shape 

and scars between the inflammatory score groups. There were statistically significant differences in 

the RUS between the degenerative score groups (F = 24.154, p-value<.001). Post-hoc tests revealed 

significant differences between all groups. There were no significant differences in the RUS between 

the inflammatory score groups (F = 1.312, p-value = .264). Post-hoc tests revealed no significant 

differences between groups. The results of the present study suggest that the number and severity 

of the ultrasonographic abnormalities are correlated with the severity of the kidney degeneration. 

On the other hand, inflammation showed poor influence on the ultrasonographic appearance of the 

kidneys. 
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CONTRAST-ENHANCED ULTRASOUND FEATURES OF MALIGNANT FOCAL LIVER 

MASSES IN DOGS 

Burti S, Zotti A, Rubini G, Orlandi R, Bargellini P, Bonsembiante F, Banzato T. Contrast-enhanced 

ultrasound features of malignant focal liver masses in dogs. Sci Rep. 2020 Apr 8;10(1):6076. doi: 

10.1038/s41598-020-63220-3. PMID: 32269300; PMCID: PMC7142119. 4 

 

A total of 185 cases (150 retrospectively and 35 prospectively) of malignant liver masses were 

collected. In the retrospectively collected cases hyperenhancement during wash-in was the most 

common feature in HCCs but there was a high percentage of cases showing no enhancement or 

hypo/isoenhancement. ICCs displayed a large variety of contrast enhancement patterns and, 

although statically significant differences between ICCs and HCCs were evident, no clear distinction 

between these two pathologies was possible based only on their CEUS appearance. Sarcomas 

displayed all the possible degrees of wash-in enhancement with non-enhancing being the most 

common appearance. Metastases displayed all the possible contrast-enhancement patterns, with the 

most common being hyperenhancement in the wash-in phase followed by hypoenhancement in the 

wash-out phase. A decision tree was developed based on the features of the retrospectively selected 

cases. Based on the developed decision tree 27/35 prospectively collected cases were correctly 

classified. Even if some significant differences among groups were evident, all the histotypes 

displayed all the possible patterns of contrast enhancement, and, therefore, the differentiation of 

liver masses in dogs based only on their CEUS features is not feasible and, therefore, cytology or 

histopathology is required.  
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USE OF DEEP LEARNING TO DETECT CARDIOMEGALY ON THORACIC RADIOGRAPHS IN 

DOGS 

Burti S, Longhin Osti V, Zotti A, Banzato T. Use of deep learning to detect cardiomegaly on thoracic 

radiographs in dogs. Vet J. 2020 Aug;262:105505. doi: 10.1016/j.tvjl.2020.105505. Epub 2020 Jul 7. 

PMID: 32792095. 5 

 

The purpose of this study was to develop a computer-aided detection (CAD) device based on 

convolutional neural networks (CNNs) to detect cardiomegaly from plain radiographs in dogs. Right 

lateral chest radiographs (n = 1465) were retrospectively selected from archives. The radiographs 

were classified as having a normal cardiac silhouette (No-vertebral heart scale [VHS]-Cardiomegaly) 

or an enlarged cardiac silhouette (VHS-Cardiomegaly) based on the breed-specific VHS. The database 

was divided into a training set (1153 images) and a test set (315 images). The diagnostic accuracy of 

four different CNN models in the detection of cardiomegaly was calculated using the test set. All 

tested models had an area under the curve >0.9, demonstrating high diagnostic accuracy. There was 

a statistically significant difference between Model C and the remainder models (Model A vs. Model 

C, P = 0.0298; Model B vs. Model C, P = 0.003; Model C vs. Model D, P = 0.0018), but there were no 

significant differences between other combinations of models (Model A vs. Model B, P = 0.395; Model 

A vs. Model D, P = 0.128; Model B vs. Model D, P = 0.373). Convolutional neural networks could 

therefore assist veterinarians in detecting cardiomegaly in dogs from plain radiographs. 
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AUTOMATIC CLASSIFICATION OF CANINE THORACIC RADIOGRAPHS USING DEEP 

LEARNING 

Banzato T, Wodzinski M, Burti S, Osti VL, Rossoni V, Atzori M, Zotti A. Automatic classification of 

canine thoracic radiographs using deep learning. Sci Rep. 2021 Feb 17;11(1):3964. doi: 

10.1038/s41598-021-83515-3. PMID: 33597566; PMCID: PMC7889925. 6 

 

The interpretation of thoracic radiographs is a challenging and error-prone task for veterinarians. 

Despite recent advancements in machine learning and computer vision, the development of 

computer-aided diagnostic systems for radiographs remains a challenging and unsolved problem, 

particularly in the context of veterinary medicine. In this study, a novel method, based on multilabel 

deep convolutional neural network (CNN), for the classification of thoracic radiographs in dogs was 

developed. All the thoracic radiographs of dogs performed between 2010 and 2020 in the institution 

were retrospectively collected. Radiographs were taken with two different radiograph acquisition 

systems and were divided into two data sets accordingly. One data set (Data Set 1) was used for 

training and testing and another data set (Data Set 2) was used to test the generalization ability of 

the CNNs. Radiographic findings used as non-mutually exclusive labels to train the CNNs were: 

unremarkable, cardiomegaly, alveolar pattern, bronchial pattern, interstitial pattern, mass, pleural 

effusion, pneumothorax, and megaesophagus. Two different CNNs, based on ResNet-50 and 

DenseNet-121 architectures respectively, were developed and tested. The CNN based on ResNet-50 

had an Area Under the Receive-Operator Curve (AUC) above 0.8 for all the included radiographic 

findings except for bronchial and interstitial patterns both on Data Set 1 and Data Set 2. The CNN 

based on DenseNet-121 had a lower overall performance. Statistically significant differences in the 

generalization ability between the two CNNs were evident, with the CNN based on ResNet-50 

showing better performance for alveolar pattern, interstitial pattern, megaesophagus, and 

pneumothorax.  
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The present study was structured in two main steps. In the first step I have applied some machine 

learning algorithms (decision tree mainly) to distinguish among different focal hepatic and splenic 

lesions based on their tomographic features. Furthermore, a metanalysis study to characterise the 

accuracy of individual CT features of focal liver lesions in the distinction between benign and 

malignant lesions was conducted. In the second step of my project a deep-learning convolutional 

neural network to classify malignant and benign focal liver and splenic lesions based on the CT images 

was developed.  

 

Based on the results of my study HCCs are usually characterised by heterogeneous and cyst-like 

appearance, and hypoattenuating in the delayed phase. These results  are only partially in agreement 

with the previous literature: indeed, all the possible enhancement patterns in post-contrast phases 

are described for HCC1–8. On the other hand, all the enhancement patterns nodular hyperplasia is 

reported in fact also in these lesions are possible1–8. 

The proposed machine-learning based decision-tree, is capable to classify the histotype of the hepatic 

lesions, based on their CT quantitative and qualitative features, with a moderate overall accuracy 

(62%). The accuracy in the classification of the histotypes ranged between 0.53 for nodular 

hyperplasia, and 0.92 for the benign lesions other than the nodular hyperplasia. However, the dataset 

wasn’t divided into training-set and test-set due to its poor dimensions. Therefore, the same dataset 

used for training the decision-tree has been used for the calculation of its accuracy. 

Furthermore, we developed a decision-tree for the classification of malignant focal liver based on 

their CEUS features. The model successfully classified the new cases with an accuracy of 0.79. All the 

sarcoma cases have properly detected and the hepatocarcinoma cases have been accurately identify. 

By the way, in this case benign lesions were not taken into account. The decision-tree is an easy and 

useful tool in everyday clinical practice for helping the veterinarian in the formulation of a diagnostic 

suspect. 

 

In our metanalysis study, all the descriptive studies focused on CT features of focal liver lesions have 

been reviewed. Some features resulted to be useful in the distinction between benign and malignant 

lesions. Specifically, the presence of a capsule, hypoattenuation and heterogeneity of the lesion in 

delayed phase showed high DOR values, therefore could be used for focal liver lesions classification. 

In addition, other features such as maximum dimension, attenuation of the radiologically normal 

parenchyma during pre-contrast, arterial, portal and delayed phase resulted to be significantly 
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different among benign and malignant lesions. This an interesting result, suggesting that also 

radiologically normal liver parenchyma should be sampled during cytological or histological 

examination. 

 

For the focal splenic lesions, in our study we have substantially confirmed what already reported in 

the literature. Indeed, the results of the study suggested that sarcomas are larger compared to 

nodular hyperplasia, and by a cyst-like appearance. The developed decision-tree showed high 

accuracy in the classification of sarcomas but low for benign lesions. More specifically, a cut-off of 

3.6 cm was identified to distinguish sarcoma from nodular hyperplasia. Similarly, a cut-off value of 44 

HU was for the distinction between benign lesions other than nodular hyperplasia and sarcomas wa 

identified. Furthermore, a 126 HU cut-off for the distinction between nodular hyperplasia (< 126 HU) 

and other benign lesions (> 126 HU) was identified. The decision-tree can be considered a viable and 

simple tool for the veterinary practise in this case too. 

  

In the second phase of our study, we have trained and tested a CNN (Inception V3) on the CT images 

of focal hepatic and splenic lesions. The applications of CNNs to diagnostic imaging is giving promising 

results in human medicine where the CNNs are trained on data-set considerably bigger (hundred of 

thousand of cases) compared to the data-set available in our study (69 cases for liver and 52 for 

spleen). 

Several methods of data augmentation can partially overcome the limitations deriving from small 

datasets in the reduction of overfitting. In this project we applied cropping, translation, flipping, 

rotation and contrast change methods of data augmentation. Indeed, these are highlighted as the 

most effective in medical imaging assessment 9. 

  

Despite the limited results of the study in the application of CNNs on hepatic and splenic pathologies 

obtained in this study, I am keen on improving the training the CNN on focal liver and splenic lesions 

increasing as much as possible the record of cases. 

 

Hepatic and splenic pathologies are a complex matter and the there is an extremely wide range of a 

benign or malignant possible differential diagnosis and to have a concrete and reliable diagnosis in 

short terms is a focal target in veterinary medicine leading to promptly approach the case with the 

best possible therapy. CT is one of the main diagnostic imaging techniques used veterinary medicine 
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and, with our research, the results of this PhD have provided some tools that could be employed in 

the everyday veterinary clinical practice.   
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