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A B S T R A C T   

Genetic heterogeneity is a common trait in microbial populations, caused by de novo mutations and changes in 
variant frequencies over time. Microbes can thus differ genetically within the same species and acquire different 
phenotypes. For instance, performance and stability of anaerobic reactors are linked to the composition of the 
microbiome involved in the digestion process and to the environmental parameters imposing selective pressure 
on the metagenome, shaping its evolution. Changes at the strain level have the potential to determine variations 
in microbial functions, and their characterization could provide new insight into ecological and evolutionary 
processes driving anaerobic digestion. In this work, single nucleotide variant dynamics were studied in two time- 
course biogas upgrading experiments, testing alternative carbon sources and the response to exogenous hydrogen 
addition. A cumulative total of 76,229 and 64,289 high-confidence single nucleotide variants were discerned in 
the experiments related to carbon substrate availability and hydrogen addition, respectively. By combining 
complementary bioinformatic approaches, the study reconstructed the precise strain count—two for both 
hydrogenotrophic archaea—and tracked their abundance over time, while also characterizing tens of genes 
under strong selection. Results in the dominant archaea revealed the presence of nearly 100 variants within 
genes encoding enzymes involved in hydrogenotrophic methanogenesis. In the bacterial counterparts, 119 
mutations were identified across 23 genes associated with the Wood-Ljungdahl pathway, suggesting a possible 
impact on the syntrophic acetate-oxidation process. Strain replacement events took place in both experiments, 
confirming the trends suggested by the variants trajectories and providing a comprehensive understanding of the 
biogas upgrading microbiome at the strain level. Overall, this resolution level allowed us to reveal fine-scale 
evolutionary mechanisms, functional dynamics, and strain-level metabolic variation that could contribute to 
the selection of key species actively involved in the carbon dioxide fixation process.   

1. Introduction 

Environmental pollution is a significant global concern having a 
severe impact on the planet. One of the major contributors is the 
excessive emission of carbon dioxide (CO2) into the atmosphere. The 
increasing concentration of CO2 in the atmosphere has led to a signifi-
cant rise in global temperatures, causing climate change, and resulting 
in catastrophic consequences for the environment and human health. 
The sources of CO2 pollution are diverse, including the burning of fossil 
fuels for transportation, electricity, and heating, as well as deforestation, 
industrial processes, and agriculture. The growth of urbanization and 
population has also played a role in increasing CO2 emissions. Reducing 
CO2 emissions requires significant changes in energy production and 
consumption, as well as efforts to promote sustainable practices in 
agriculture and industry. 

The Carbon Capture and Utilization (CCU) concept has gained 

significant attention in recent years as a crucial solution in mitigating 
greenhouse gas emissions and addressing climate change (Sabri et al., 
2021). CCU can also target gaseous streams derived from industrial 
processes and convert them into useful products. Among the various 
applications of CCU, the green biogas generated through the anaerobic 
digestion of organic matter, including agricultural waste, food waste, 
and sewage sludge emerges as a highly encouraging and viable source of 
renewable energy (Deena et al., 2022). 

The biological process upon which CCU relies is the Anaerobic 
Digestion (AD), a microbial-mediated process in which complex com-
pounds such as organic wastes and agricultural residues are converted 
into methane. Biogas upgrading (BU), the process of removing CO2, and 
biogas cleaning from impurities such as hydrogen sulfide, are critical for 
the wider adoption of biomethane as a replacement for traditional fossil 
fuels (Angelidaki et al., 2018; Tabatabaei et al., 2020a, 2020b). The 
removal of unwanted compounds is important to increase biogas energy 
content, since a methane content around 60–65% corresponds to a 
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Lower Calorific Value of 20–25 MJ/m3-biogas. On the other hand, in 
biomethane (>95% methane) this metric reaches values up to 36 
MJ/m3-biogas, thus representing a higher fuel standard (Sun et al., 
2015a). Moreover, by removing biopollutants such as hydrogen sulfide 
and siloxanes helps prevent damage to combined heat and power units. 

BU technologies are divided into three categories: physical, chemical 
and biological (Angelidaki et al., 2018). In general, physical approaches 
are based either on absorption (Bauer et al., 2013), adsorption (Augel-
letti et al., 2017) or membrane separation (Bauer et al., 2013), all 
reaching almost pure biomethane. Chemical hydrogenation process, 
thanks to its high selectivity, allows a complete conversion of H2 to 
methane (Jürgensen et al., 2014). However, while both technologies are 
highly efficient, they necessitate specific materials (e.g., chemicals, pure 
gasses, membranes) and incur high energy costs for maintaining oper-
ational conditions. On the other hand, biological BU represents a more 
sustainable solution since CO2 is directly converted into methane, 
contributing significantly to a circular bio-based economy. More into 
detail, biological approaches are either photosynthetic (Muñoz et al., 
2015; Bahr et al., 2014), where cyanobacteria or microalgae are 
employed in photobioreactors for biomethane production, or chemo-
autotrophic (Kougias et al., 2017), in which a pure or mixed microbiota 
is responsible the conversion of H2 and CO2 into methane. To ensure the 
sustainability of biological upgrading, the H2 needed should come from 
renewable sources (Kim et al., 2013). Utilizing surplus electricity from 
wind or solar panels for water electrolysis and H2 production became an 
established solution, known as power to gas. 

A key role in the chemoautotrophic production of biogas through the 
AD of organic matter is played by methanogens. They are fundamental 
for the CO2 methanation, and, in particular the hydrogenotrophic 
archaea use hydrogen (H2) as an energy source (Lai et al., 2021) to 
perform the methanogenesis. During the BU process, these microor-
ganisms play a crucial role in regulating H2 concentration and actively 
contribute to the removal of sulfur and acetate through a synergistic 
relationship with sulfate-reducers (Barton and Fauque, 2009) and syn-
trophic acetate-oxidizing bacteria (SAOB) (Pan et al., 2021; Zhu et al., 
2017). The performance and stability of BU are linked to the composi-
tion of the microbiome responsible for the process. De novo mutations 
determine the generation of new strains in the population which can be 
positively selected over time determining an increase in the frequency of 
the corresponding variant. As a consequence, variants can fluctuate in 
frequency, and sometimes become fixed over time. Single Nucleotide 
Variants (SNVs) represent a form of genetic mutation arising from an 
alteration in the DNA involving a single base pair change. They can be 
classified according to their effect on the encoded amino acid as syn-
onymous and nonsynonymous. 

SNVs can exert a significant influence on the metabolism and on the 
functional potential of microbes (Garud et al., 2019; Roodgar et al., 
2021). In particular, nonsynonymous SNVs are more likely to result in 
modification at phenotypic level, since they can alter the protein 
structure and result in gain or loss of functions. Changes of environ-
mental conditions can arise from various factors, imposing selective 
pressures on the microbiomes during biogas production. Such 

perturbations can lead to the selection of strains harboring new muta-
tions. For example, the addition of feedstock, the introduction of 
inhibitory compounds (ammonia, carbon monoxide, etc.) and changes 
in environmental conditions (pH, temperature, etc.) can drive the se-
lection of new strains with distinct functional properties. These newly 
emerged strains may display enhanced metabolic capabilities, thereby 
potentially improving the effectiveness of the biogas generation process. 

Previous strain-level studies were exclusively based on cell isolation 
and phenotypic analysis, however, novel approaches based on meta-
genomics have been recently developed (Table 1). At the moment, the 
state of the art is represented by two different strategies: variant calling 
(Nayfach et al., 2016; Olm et al., 2021; Truong et al., 2017) and strain 
deconvolution (Luo et al., 2015; Quince et al., 2021; Smith et al., 2022). 
The first method relies on using shotgun metagenomic reads to track 
strains by looking for distinct patterns of alleles observed across SNVs 
within the species. Instead, the second strategy consists in a statistical 
deconvolution of allele frequencies from shotgun metagenomic data into 
strain genotypes. These two approaches are complementary and 
together enable the tracking of strains, assessing their abundance, and 
observing their evolution while considering their susceptibility to 
environmental conditions. Moreover, variant analysis allows the eval-
uation of the metabolic pathways under positive selection, uncovering 
mechanisms that drive the evolution and dominance of one strain over 
the others (Roodgar et al., 2021). 

Although in recent years many metagenomic studies investigated the 
AD process (Campanaro et al., 2020), there is still very limited knowl-
edge regarding the number of strains and their evolution. To the best of 
our knowledge, the sole precedent in the existing literature pertains to a 
study conducted on the response of gut microbial communities to anti-
biotic perturbations (Roodgar et al., 2021). The tracking of SNVs tra-
jectories over time enabled a comparison between genetic dynamics and 
ecological fluctuations occurring at the species level following the 
imposition of stressors. The genetic changes observed by Rodgar were 
also in species which did not experience a shift in abundance, high-
lighting the importance of monitoring the diversity beyond the 
species-level (Roodgar et al., 2021). For this reason, the study of the 
impact of SNVs in hydrogenotrophic archaea has the potential to reveal 
new insights into the genetic heterogeneity of these microorganisms and 
its impact on BU. 

In this study, we aim to investigate the impact of SNVs on the 
functional properties of hydrogenotrophic archaea in green BU. Two 
previous experiments were chosen as caste studies: a test of different 
feedstock substrates (PRJNA999073), and the effect of prolonged H2 
addition to the mixed microbial community (Zhu et al., 2020). The 
investigation will analyze the strains’ responses to these conditions and 
uncover the potential effects of variants on the metabolic mechanisms. 
This work aims to offer a more comprehensive insight into the genetic 
heterogeneity of a metagenome and the impact of mutations on the BU 
process. 

2. Materials and methods 

2.1. Datasets used in the analysis 

The current work considered two case studies with different set-ups: 
an experiment previously performed to test different feedstock sub-
strates in batch configuration (PRJNA999073), and another where 
exogenous H2 was added to three continuous stirred-tank reactors (Zhu 
et al., 2020). The shotgun reads were downloaded from SRA, project 
PRJNA999073 and PRJNA525781. Details regarding the experimental 
setup and measurements are reported in the original publication. 

The first involved an experiment focusing on testing feedstock sub-
strates using a batch configuration. The experimental setup included 
three different substrates (90% acetate and 10% H2CO2, 100% H2CO2, 
and a 1 to 1 M ratio of the two) to study the effect on a microbial 
community. The inoculum was taken from a trickle-bed reactor, then 
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cultured in a synthetic medium to produce a simplified community (G0). 
This community was used to run three parallel batch reactors (G1) and, 
after 14 days, a second generation (G2) was established by reinoculating 
the G1 cultures. Samples were collected from the initial G0 community, 
from each condition at day 13 from G1, and days 7 (TP1) and 9 (TP2) 
from G2. 

The second case study involved the addition of exogenous H2 to three 
lab-scale continuous stirred-tank reactors to simulate a BU process (Zhu 
et al., 2020). They were inoculated with digestate from a full-scale 
thermophilic biogas plant and operated under thermophilic conditions 
(55 ◦C) with a synthetic medium containing acetic acid as the sole car-
bon source. Once steady state was reached, H2 gas was added to each 
reactor at a rate of 1 mL/min. To optimize H2 utilization, the gas phase 
was constantly recirculated into the liquid phase using peristaltic 
pumps. Liquid samples were collected from the three reactors before H2 
addition (TP1), 18 h after (TP2), and 36 days after (TP3). 

2.2. Metagenomic data analysis 

A previously described genome-centric metagenomic pipeline 
(Zampieri et al., 2023) was applied to recover the microbial genomes. 
Reads were filtered with Trimmomatic v0.39 (Bolger et al., 2014) to 
eliminate adapters or low-quality bases, and checked for contamination 
with BBDuck v38.93. Paired reads were merged with BBMerge v38.93 
(Bushnell et al., 2017). Short-read co-assembly was performed with 
Megahit v1.29 (Li et al., 2015). Metagenome-assembled genome gain 
procedure was performed using multiple binning software as previously 
reported (Zampieri et al., 2023), specifically including Concoct v1.1.0 
(Alneberg et al., 2014), MaxBin v2.2.7 (Wu et al., 2016a), MetaBAT1, 
MetaBAT2 v2.15 (Kang et al., 2019), and VAMB v3.0.2–1 (Nissen et al., 
2021). The coverage profiles used for the binning approaches were 
generated using Bowtie2 v2.4.5 (Langmead and Salzberg, 2012) and 
SAMtools v1.16.1 (Danecek et al., 2021). MAGs underwent 
de-replication and were aggregated using dRep v3.4.0. (Olm et al., 
2017). To evaluate the quality of the MAGs and determine their relative 
abundance (RA), CheckM v1.2.1 was employed (Parks et al., 2015). For 
taxonomic classification, GTDB-Tk v2.1.0 (Chaumeil et al., 2020) was 
utilized (database version R214). The MAGs were assigned identifiers 
based on the taxonomic level and binning tool used. Additionally, a 
progressive number was incorporated into the final name. 
Alpha-diversity was calculated with the Phyloseq v1.40.0 R package 
using the mapped reads counts on the MAGs (McMurdie and Holmes, 
2013). 

2.3. Strain-level metagenomics 

The software InStrain v1.6.3 (Olm et al., 2021) was applied to the 
high quality (Bowers et al., 2017) MAGs of both experiments to perform 
variant analysis. The InStrain profile module requires a FASTA file 
containing the MAGs, individual BAM files for each sample, a 

scaffold-to-bin file, and a gene annotation file. Optional parameters 
were set as follows: -min_mapq 2, –min_read_ani 0.98 and –min_geno-
me_coverage 1. The most interesting MAGs were selected based on 
coverage and variant metrics, and a strain deconvolution pipeline was 
applied using STRONG (Quince et al., 2021). The pipeline used SPAdes 
for assembly (Prjibelski et al., 2020), CONCOCT for binning (Alneberg 
et al., 2014), and BayesPaths for graph disentangling (Quince et al., 
2021). The default parameters were used for the assembly and binning, 
while for the Bayesian algorithm, nb_strains was set to 5, max_giter to 4, 
and nft_runs to 10. The abundances of the deconvoluted strains were 
defined taking into account the RA of the corresponding MAG. 

2.4. Variant selection and phasing 

The results obtained from the variant calling using InStrain were 
processed in order to remove low confidence results. First, all the SNVs 
located within 150 bp from the 3′ and 5′-end of each scaffold were 
removed, since in those genomic regions the coverage tends to drop 
along with the results reliability. Then, all the variants where the dif-
ference between the coverage of the SNV and the average coverage of 
the scaffold exceeded the interval [− 100; +100] were discarded. Lastly, 
the ratio between the number of reads supporting the variant allele and 
the one supporting the reference allele was computed and all the SNVs 
where this ratio was lower than 0.15 were discarded. This procedure led 
to the removal of about 12–20% of the initial number of SNVs detected. 
After the selection, the variants were clustered together based on their 
frequency over time. The approach was performed using the scipy.stats 
library of Python, which is based on a hierarchical clustering algorithm. 
The Ward distance was used as a metric for calculating variant 
similarity. 

2.5. Gene annotation, metabolic reconstruction and functional impact of 
the variants 

Gene prediction was performed using Prodigal v2.6.3 (Hyatt et al., 
2010), and functional annotation was carried out using eggNOG-mapper 
v2.1.9 (Cantalapiedra et al., 2021). The reference database used was the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 
2023), consulted for enzyme class, orthology and metabolic pathways. 
Functions were defined according to the KEGG annotation. The KEGG 
orthologs obtained from the gene annotations were used to reconstruct 
the hydrogenotrophic pathway (Evans et al., 2019) for the dominant 
archaea and the canonical (Westerholm et al., 2016) and alternative 
(Song et al., 2020; Nobu et al., 2015) Wood-Ljungdahl (WL) pathways 
for the bacteria. The detected variants were linked to the genes they 
affect, and the Grantham distance (Grantham, 1974) between the 
reference amino acids and the mutated ones was evaluated. This metric 
measures the physical and chemical differences between two amino 
acids and ranges from 5 to 210. Variants with a distance above 70 were 
considered to have a medium to high putative impact on the protein. 

Table 1 
Summary of state-of-the-art tools available for variant analysis and strain identification in MAGs.  

Tool Type Algorithm Tested on Websites 

BCFtools Variant calling Probabilistic Human and mock communities https://github.com/samtools/bcftools 
FreeBayes Variant calling Probabilistic Not available https://github.com/freebayes/freebayes 
MetaSNV Variant calling Pool population Marine and fecal metagenomes https://github.com/metasnv-tool/metaSNV 
Instrain Variant calling Pool population Gut microbiome https://github.com/MrOlm/inStrain 
Mutec2 Variant calling Probabilistic Human and mock communities https://github.com/broadinstitute/gatk 
HaplotypeCaller Variant calling Probabilistic Human and mock communities https://github.com/broadinstitute/gatk 
STRONG Strain identification Strain deconvolution Mock communities https://github.com/chrisquince/STRONG 
StrainGE Strain identification Strain deconvolution Gut and mock communities https://github.com/broadinstitute/strainge 
StrainFinder Strain identification Maximum-likelihood on SNP frequencies Gut microbiome https://github.com/cssmillie/StrainFinder 
ConStrains Strain identification Strain separation using SNP patterns Gut and mock communities https://doi.org/10.1038/nbt.3319 
Strainberry Strain identification Strain separation using long reads Mock communities https://github.com/rvicedomini/strainberry 
DESMAN Strain identification Frequency count on contigs Marine and mock communities https://github.com/chrisquince/DESMAN 
StrainPanDA Strain identification Pangenome decomposition Gut microbiome https://github.com/xbiome/StrainPanDA  
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3. Results and discussion 

In this investigation, we considered two discrete case studies per-
taining to BU, each possessing its unique experimental configuration. 
These studies were selected based on their inherent incorporation of two 
prerequisites essential for strain-resolved metagenomic analysis: first, 
the implementation of a time-course experimental design encompassing 
multiple timepoints, second the application of selective pressure capable 
of shaping the microbiome composition. In both experimental scenarios, 
the primary impetus driving genetic evolution was a shift in carbon 
source utilization, compelling the dominant microbial strains to adapt 
towards a novel equilibrium state. 

3.1. Microbial community composition 

The average alignment rate of the shotgun reads to the global as-
sembly was around 90% for both case studies, confirming that the mi-
crobial community was almost entirely represented. The high alignment 
rate was probably due to the simple microbial community resulting from 
the application of the synthetic medium. The community of the first 
experiment consisted of 47 high-quality MAGs, with Firmicutes ac-
counting for 93% of the total (Supplementary Table 2). The 12 MAGs 
with a RA higher than 1% accounted on average for 94% of the com-
munity (Fig. 1a). The only archaeon present was Methanothermobacter 
wolfeii MA_1, which was also the most abundant species, with a mean RA 
of 84%. The primary methanogenic pathway for M. wolfeii is the 
reduction of CO2 to methane, however in the absence of H2 it is also able 
to use alternative electron donors such as acetate, formate and methanol 
for methanogenesis (Lins et al., 2012). The most abundant bacteria were 
Sphaerobacter thermophilus CO_9, Caldanaerobacter subterraneus MX_27 
and Limnochordia sp. MA_37, each accounting for 2% of RA on average. 

The second experiment’s assembly and binning process resulted in 
50 high-quality MAGs assigned to 13 phyla and Firmicutes was the most 
represented, accounting for 50% of the community (Supplementary 
Table 3). There were 31 MAGs with a RA higher than 1%, and together, 
they accounted for 87–94% of the community in each sample (Fig. 1b). 
Among the 5 detected archaea, the dominant ones were Methanosarcina 
thermophila MB_65 and Methanocullus thermophilus MA_62, both with a 
RA above 1% in all timepoints. The two archaea have different meta-
bolic preferences and characteristics, with M. thermophila preferring 
acetate as a substrate (Zinder and Anguish, 1992) and M. thermophilus 
being a known hydrogenotrophic (Zhu et al., 2019). This difference in 
metabolism is reflected in the RA trend, with M. thermophilus MA_62 
being positively affected by the addition of H2. Among the bacterial 
species, Limnochordia sp. MB_100, Bacteroidales sp. VB_122 and Ace-
tomicrobium sp. MX_67 showed the highest mean RA, respectively 10%, 
8% and 7%. 

In both experiments, the environmental parameters are favorable for 
the establishment of a cooperative coexistence of archaea and bacteria, 
which interact through the activity of methanogenesis and the conven-
tional (Westerholm et al., 2016) and alternative WL (Song et al., 2020; 
Nobu et al., 2015) pathways. The high abundance of both M. wolfeii 
MA_1 and M. thermophilus MA_62 in their respective communities is 
likely the result of a symbiotic relationship with acetate oxidizing bac-
teria. Despite both experiments having acetate as the initial substrate, 
the microbial composition was markedly diverse (Fig. S1). These dis-
parities primarily arise from variations in the dominant archaeal pop-
ulations, potentially driven by alternative substrate preferences, as well 
as differences in the experimental setup and medium composition 
employed, as previously demonstrated by Sun et al. in their study (Sun 
et al., 2015b). 

In the BU framework it is extremely interesting to note how such 
dynamics in microbial populations can be observed, despite the overall 
setup being convergent on the CO2 methanation process. Furthermore, 
alpha-diversity highlighted that the first community is much less com-
plex than the second one. Both the Shannon’s and Simpson’s diversity 

indexes were higher in the H2 addition experiment (PRJNA525781), 
indicating a greater variety of species (Fig. S2). This finding is further 
supported by a reduced count of observed species in the carbon sub-
strates experiment (PRJNA999073), as determined by the Chao1 index 
(Supplementary Table 4). 

Investigating the microbial communities at the species level in both 
experiments is crucial, as it reveals the favorable environmental condi-
tions for cooperative coexistence of archaea and bacteria, their symbi-
otic relationships, and variations in dominant populations. However, the 
assessment of a species’ RA alone is not enough to understand the ge-
netic changes within a given species (Olm et al., 2021). In fact, RA 
stability is not directly related to the number or to the abundance of the 
strains, and genetic alterations may still occur leading to the emergence 
of new strains (Roodgar et al., 2021). This study investigated 
species-level genetic modifications by examining SNVs in MAGs with a 
RA of at least 1%, determining the strains and tracking their dynamics 
through the shifts of SNVs frequency over time. The quantity of 
species-specific SNVs identified via variant calling closely resembled the 
findings reported by Rodgar (Roodgar et al., 2021). More specifically, 
approximately 10,000 SNVs were consistently monitored over time in 
Eubacterium eligens. Similarly, in the reconstructed MAGs of the two case 
studies, the figures were within the same order of magnitude, ranging 
between 1000 and 4000 nonsynonymous SNVs for the highly abundant 
MAGs (Fig. 1). 

3.2. Variant selection determined by the shift in carbon substrates 
availability 

In the first case study, a total of 76,229 SNVs were identified 
considering the subset of MAGs reported in Fig. 1a. The SNVs were 
further divided into synonymous (56%), nonsynonymous (30%), and 
intergenic (14%) variations. The variants’ distribution revealed sub-
stantial differences in the genetic composition of the MAGs analyzed. At 
the initial stage (G0) most of the nonsynonymous SNVs were associated 
with S. thermophilus CO_9, M. wolfeii MA_1 and Limnochordia sp. MA_37, 
with counts of 2893, 491, and 731, respectively (Fig. 1a). Furthermore, 
the comparison between RA and the temporal accumulation of SNVs 
revealed that species with a greater number of variants consistently 
maintained dominance across all observed generations. Subsequently, 
nonsynonymous SNVs were analyzed to unveil potential functional 
impact on key genes involved in methanogenesis and carbon fixation 
pathways. 

In order to evaluate the distribution of variants within the micro-
biome under investigation, a variant phasing approach was employed by 
clustering SNVs frequency, and comparing this information with the 
number of strains and their RA. This approach allows clustering together 
SNVs that are possibly belonging to the same strain, thus identifying 
those located on the same bacterial chromosome, and tracking the 
transmission of genetic variants over time. SNV phasing in M. wolfeii 
MA_1 revealed two distinct clusters, one with high frequency in the first 
two generations, and the other starting at low frequency (around 0.3) 
and increasing from G1 to G2 (Fig. 2a). This finding is supported by the 
strain deconvolution (Fig. 2b): M. wolfeii MA_1 was represented by two 
strains in all reactors, with strain str1 dominating during G0 and G1, 
then being replaced by str0, which experienced a rapid increase in 
abundance between G1 and G2. This shift after the environmental 
modification is likely due to strain str0 having a metabolic advantage 
over str1. 

A total of 248 positively selected SNVs were mapped to the genes to 
investigate whether the increased abundance of strain str0 was associ-
ated with an accumulation of genetic modifications in hydrogenotrophic 
methanogenesis enzymes (Evans et al., 2019). In reactor A (90% acetate 
and 10% H2CO2), variants having an increased frequency in the popu-
lation at G2 were found in three crucial proteins: heterodisulfide 
reductase (hdrB2), methyl-coenzyme M reductase (mcr), methenylte-
trahydromethanopterin cyclohydrolase (mch) and coenzyme F420 
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Fig. 1. Overview on the identified microbial taxa, RA across the considered reactors (orange) and corresponding number of nonsynonymous SNVs (blue). Only taxa 
with RA > 1% are represented in the phylogenetic tree. (a) Results for the experiment in which feedstock conditions were reported as average RA for acetate, H2CO2 
and Mix. (b) Results for the exogenous H2 addition experiment were reported as average RA for TP1, TP2 and TP3. 
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hydrogenase (frh) (Fig. 3). Additionally, three genes encoding subunits 
of energy-converting hydrogenase A (ehaL, ehaG, ehaR) were also 
harboring SNVs (Fig. 3). This hydrogenase plays a role in energy con-
servation, catalyzing the H2-dependent reduction of the ferrodoxin (Lie 
et al., 2012), thus providing electrons to fix CO2. In reactor B (100% 
H2CO2), alongside the genes identified in reactor A, additional genes 
were linked to SNVs, including formylmethanofuran dehydrogenase 
(fwd), the V/A-type H+/Na+-transporting ATPase (atpvA), and another 
subunit of heterodisulfide reductase (hdrA2) (Fig. 3). In reactor C (1:1 
acetate and H2CO2) the affected genes were identical to those identified 
in reactor B, plus one extra subunit of methyl-coenzyme M reductase 
(mcrD) and V/A-type ATPase (atpvI). 

The hydrogenotrophic pathway was under selective pressure in all 
reactors, since several genes aforementioned had a dN/dS ratio >1 
(Supplementary Table 5), suggesting the presence of one or more SAOB 
capable of converting acetate through the WL pathway (Nobu et al., 
2015). Reactors A and C showed 5% of positively selected SNVs asso-
ciated with genes involved in the putative syntrophic metabolisms of 
Limnochordia sp. MA_37 (Fig. S3). Specifically, variants were located in 
both acetate kinase (ackA) and formate dehydrogenase (fdh) genes 
(Fig. 3). Additionally, SNVs were identified in the enzymes involved in 
the conversion of pyruvate to 5,10-methenyltetrahydrofolate, including 
pyruvate formate lyase (pfl, pflA), pyruvate-ferredoxin/flavodoxin 
oxidoreductase (por), L-serine dehydratase (sda) and methylenete-
trahydrofolate dehydrogenase (folD) (Fig. 3). 

It is worth speculating that the presence of these variants may be 
associated with the existence of a syntrophic relationship between 
M. wolfeii MA_1 and Limnochordia sp. MA_37. Moreover, a potential 
syntrophy between M. wolfeii and Limnochordia spp. has already been 
suggested by flux balance analysis applied to BU (De Bernardini et al., 

2022). Overall, results highlight the potential impact of SNVs in 
enhancing the methanogenic capability of M. wolfeii MA_1, as indicated 
by a Grantham distance exceeding 70 in several instances (Supple-
mentary Table 6). However, further investigations will be needed to 
clarify the mechanistic impact of variants on protein functions and the 
activity of the hydrogenotrophic pathway. 

3.3. Variants selection in continuous stirred tank reactors upon exogenous 
H2 addition 

In the second case study, 64,289 SNVs were identified in MAGs of 
Fig. 1b: 55% were classified as synonymous, 31% nonsynonymous and 
13% intergenic. M. thermophilus MA_62 and M. thermophila MB_65, the 
two dominant archaea, displayed distinct behaviors both in terms of RA 
and SNVs dynamics. M. thermophilus MA_62 had a high number of SNVs 
fluctuating over time, ranging between 400 and 1100, while 
M. thermophila MB_65 accumulated around 300 variants in total 
(Fig. 1b). The SNV frequency for both archaea suggested the presence of 
multiple strains with different fitness depending on the reactor condi-
tion. One group of variants declined in frequency after TP1, while the 
second one showed an increase from TP1 to TP3. Additionally, de-novo 
SNVs with high frequency at TP3 were also evidenced (Fig. 4a and c). 

The strain deconvolution for M. thermophilus MA_62 confirmed the 
previous findings, with strain str1 being dominant at TP1, but its 
abundance decreased after the addition of H2. On the contrary, the 
abundance of strain str0 rapidly increased after H2 addition (Fig. 4a). 
These findings evidenced that H2 favored the hydrogenotrophic meta-
bolism of M. thermophilus MA_62, resulting also in the selection of a new 
strain, as already proposed by Treu et al. in a previous study (Treu et al., 
2018). On the other hand, M. thermophila MB_65 did not indicate any 

Fig. 2. Frequency of nonsynonymous SNVs over time and strain deconvolution results for M. wolfeii MA_1. (a,c,e) SNVs frequency at different time points for the 
reactors fed with 90% acetate and 10% H2CO2 (A1-A3), for those fed with 100% H2CO2 (B1–B3) and for those fed with 50% acetate and 50% H2CO2 (C1.C3). (b,d,f) 
Strains relative abundance for reactors A, B and C. The abundance was weighted by the RA of the MAG and the average value for the three replicates was reported. 

G. Ghiotto et al.                                                                                                                                                                                                                                 



Environmental Research 240 (2024) 117414

7

signs of strain selection. The abundance of the single strain detected 
remained stable (Fig. 4d), suggesting that the addition of H2 had no 
impact on its fitness. This outcome can be explained by the preference of 
M. thermophila for acetate as a substrate to perform methanogenesis 
(Zinder and Anguish, 1992). Moreover, the shift in frequency observed 
at TP2, which was not as pronounced as in M. thermophilus MA_62, likely 
resulted from other factors such as random fluctuations or competition 
with SAOB for acetate utilization. 

Additionally, the putative impact of SNVs on the methanogenic ac-
tivity of M. thermophilus MA_62 at high H2 concentrations was 

investigated. More specifically, nonsynonymous SNVs having an 
increased frequency at TP2 were mapped back to the genes. On average 
12% of these variants were affecting hydrogenotrophic pathway genes 
(Evans et al., 2019). Three crucial enzymes carrying SNVs were identi-
fied (Fig. 5): methyl-coenzyme M reductase (mcr), coenzyme F420 hy-
drogenase (frh), and formylmethanofuran dehydrogenase (fwd). 
Moreover, variants were also mapped on a subunit of the multicompo-
nent Na+:H+ antiporter (mnhD). This electrochemical potential-driven 
transporter is responsible for creating the proton gradient necessary 
for ATPase activity, thus helping in regulating cell homeostasis (Ito 

Fig. 3. Genes impacted by SNVs in M. wolfeii MA_1 and in the putative SAOB, Limnochordia sp. MA_37. Genes where SNVs have been mapped are highlighted with a 
yellow identifier. Their association with specific pathways and putative metabolic exchanges is schematically represented in figure. Methane, hydrogen, formate and 
CO2 molecules are reported showing their role in the putative syntrophic association. 
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et al., 2017). 
Overall, results suggest that SNVs could play a crucial role in the 

enhanced methanogenic capability of M. thermophilus MA_62. This is 
evidenced by several genes, i.e. mcr, exhibiting a dN/dS ratio >1 
(Supplementary Table 5) and multiple variants with Grantham distances 
above 100 (Supplementary Table 6). These findings highlight the 
importance of understanding the underlying mechanisms of short- and 
long-term archaeal adaptation to changing environments. As already 
suggested in previous studies (Treu et al., 2018; Wu et al., 2016b), an 
increase in network modularity over time indicates segregation into 
finer niches and specialized functional units, resulting in decreased 
overall interactivity. 

Variants were also investigated in Acetomicrobium sp. MX_67, since 
manual genome inspection unveiled the presence of a complete gene set 
for canonical and alternative WL pathways. Acetomicrobium spp. have 
previously been proposed to play a pivotal role within acetate-fed AD 
systems, particularly in conjunction with Methanoculleus spp. (Li et al., 
2022). Moreover, a metatranscriptomic analysis validated the active 
expression of genes associated with acetate metabolism (Singh et al., 
2023), thereby reinforcing the hypothesis of its role as candidate SAOB. 

Specifically, they exhibited on average 3% of positively selected SNVs 
affecting genes associated with this metabolic route (Nobu et al., 2015). 
This includes the gene encoding acetate kinase (ackA), which converts 
formate to acetyl-P, as well as the enzymes involved in the synthesis of 
pyruvate from acetyl-CoA (Fig. 5): pyruvate dehydrogenase (pdhA) and 
pyruvate formate lyase (pfl, pflA). Additionally, variants were identified 
across all components of the glycine cleavage system (Ren et al., 2022), a 
multi-subunit complex working in combination with the WL pathway to 
fuel the hydrogenotrophic methanogenesis (Fig. 5). Finally, variants 
were also detected in methylenetetrahydrofolate dehydrogenase (folD) 
and formate-tetrahydrofolate ligase (fhs), genes encoding enzymes 
involved in formate production (Fig. 5). These results suggest that 
Acetomicrobium sp. MX_67 could probably act as SAOB, establishing a 
syntrophic relationship with M. thermophilus MA_62 and competing for 
acetate with M. thermophila MB_65. 

4. Conclusions and prospects 

This study provided relevant information about the role of SNVs in 
promoting the adaptation of microbial species to environmental changes 

Fig. 4. Frequency of nonsynonymous SNVs over time and strain deconvolution results for M. thermophilus MA_62, M. thermophila MB_65 and Acetomicrobium sp. 
MX_67. (a,c,e) SNVs frequency at different time points for the reactors R1 (A1-A3), R2 (B1–B3) and R3 (C1–C3). (b,d,f) Strains relative abundance for reactors R1, R2 
and R3. The relative abundance of the strains was normalized taking into account the RA of the MAG; the average value for the three replicates was reported in figure. 
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that occur in reactors for biogas production. The results obtained aided 
the understanding of how nucleotide variants of genes involved in 
essential pathways are a fundamental and still poorly explored compo-
nent. More specifically, this investigation led to the conclusion that 
delving the dynamic behavior in the AD microbiome at the strain level is 
crucial since microbial diversity plays a key role, fostering positive in-
teractions among microorganisms, and leading to niche differentiation 
over time. 

The innovative approach proposed in the current study made it 
possible to connect the frequency of SNVs with the microbial strains to 
which individual variants are linked. To mitigate the occurrence of false- 
positive variants, a tailored filtering step was implemented, resulting in 
the successful removal of approximately 12–20% of spurious SNVs, 
varying by reactor. The presence of selective pressure and the accu-
mulation of variants were observed among certain species of archaea 
and bacteria, indicating their potential role in shaping the community 
structure and dynamics of mixed cultures involved in BU. The impact of 
SNVs on the methanogenic ability of hydrogenotrophic archaea was 
demonstrated, specifically in M. wolfeii and M. thermophilus species, 
highlighting the importance of considering the impact of genetic vari-
ations in cellular processes and energy metabolism for BU. The appli-
cation of this knowledge can lead in the future to an optimization of the 
methanation process, nonetheless a forthcoming life cycle assessment 
analysis will be imperative to quantify potential environmental impacts 

and ensure the method’s feasibility (Aghbashlo et al., 2022). 
In conclusion, exploring SNVs in hydrogenotrophic methanogens 

plays a pivotal role in enhancing our comprehension of metabolic shifts 
within the microbiota, which are responsible for their proper func-
tioning. Moreover, unveiling the most efficient and resistant strain can 
be used to establish a “gold standard” microbial community through 
isolation experiments and then integration in operating biogas plants, 
maximizing the CCU capability of the microorganisms and ensuring 
survival in the face of unbalanced environmental parameters. This 
would enable the development of a system that is more efficient in CO2 
fixation and less susceptible to failure in the event of unforeseen oc-
currences, such as pH acidification or sudden ammonia level spikes. 

Future research should prioritize a more comprehensive analysis of 
the variants’ impact on the proteins involved, potentially involving the 
reconstruction of the three-dimensional structures of the enzymes under 
investigation (Jumper et al., 2021). Given the current prominence of this 
topic in the metagenomics field, novel methodologies are actively under 
development. These include the exploration of extra-long Oxford 
Nanopore reads (Chen et al., 2022) or single-cell technologies (Zheng 
et al., 2022) to retrieve strain-level phased variants. The biotechnolog-
ical significance of this research will contribute to optimizing the BU 
methanation process and unleashing the complete potential of green 
biogas as a renewable and sustainable energy resource. 

Fig. 5. Genes impacted by SNVs in M. thermophilus MA_62 and the putative SAOB Acetomicrobium sp. MX_67. Genes where SNVs have been mapped are highlighted in 
yellow. Their association with specific pathways or transport functions is schematically represented in figure. Methane, hydrogen, formate and CO2 molecules are 
reported showing their putative role in the syntrophic association. 
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