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Abstract

The measure obtained from the Implicit Association Test (IAT; Greenwald et al., 1998)

is often used to predict people’s behaviors. However, it has shown poor predictive ability

potentially because of its typical scoring method (the D score), which is affected by the

across-trial variability in the IAT data and might provide biased estimates of the construct.

Linear Mixed-Effects Models (LMMs) can address this issue while providing a Rasch-like

parametrization of accuracy and time responses. In this study, the predictive abilities of D

scores and LMM estimates were compared. The LMMs estimates showed better predictive

ability than the D score, and allowed for in-depth analyses at the stimulus level that helped

in reducing the across-trial variability. Implications of the results and limitations of the

study are discussed.

Keywords: Implicit Association Test; Rasch Model; Log-normal Model; Mixed-Effects

models; Attitude-behavior gap
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Filling the gap between implicit associations and behavior: A Linear Mixed-Effects

Rasch analysis of the Implicit Association Test

The Implicit Association Test (IAT; Greenwald et al., 1998) is one of the most used measures

for the implicit assessment of socio-psychological constructs. The main fields of application

are in social psychology, where the IAT is often employed to indirectly investigate the attitudes

towards different social groups. Additionally, the IAT is used to assess food and brand prefer-

ences (see Epifania, Anselmi, & Robusto, 2022, for a review of the main fields of application of

the IAT). In both fields, the measure provided by the IAT is used to predict behavioral outcomes,

such as intergroup relations (e.g., Dovidio et al., 2002) or food choice (e.g., Perugini, 2005).

However, the IAT has shown poor ability to predict behavioral outcomes (e.g., Meissner et al.,

2019), potentially because of its typical scoring method (i.e., the so-called D score; Greenwald

et al., 2003). If the poor ability of the IAT to predict behaviors is ascribable to its typical scor-

ing method, the estimates obtained with more statistically sound approaches should result in

better predictions. In this contribution, a Rasch analysis based on Linear Mixed-Effects Mod-

els (LMMs) is introduced to address the across-trial variability in the IAT data and to obtain

reliable measures for accurate predictions of behaviors.

The IAT assesses the strength of the associations between targets and evaluative dimensions

by considering the speed and accuracy with which prototypical exemplars of two targets (e.g.,

Coke and Pepsi images in a Coke-Pepsi IAT) and two evaluative dimensions (Good and Bad

attributes) are assigned to their own category in two contrasting conditions. In one condition,

Coke and Good exemplars are assigned with the same key, while Pepsi and Bad exemplars are

assigned with the opposite key. In the contrasting condition, Pepsi and Good exemplars are

assigned with the same key, while Coke and Bad exemplars are assigned with the opposite key.

The task is expected to be easier (i.e., responses should be faster and more accurate) in the con-

dition consistent with one’s own automatically activated association. The D score (Greenwald

et al., 2003) is usually employed to express the IAT effect (i.e., the difference in the perfor-

mance between the two conditions). It is an effect size measure obtained by standardizing the

difference between the average response time in the two conditions by the standard deviation
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computed on the pooled trials of both conditions.

The IAT effect as expressed by the D score has been found to have poor ability to predict

behaviors. This can be ascribed to different factors, including the measure provided by the D

score, the construct assessed by the IAT (Meissner et al., 2019), and the type of behavioral

outcomes (Perugini, 2005). Additionally, the fully-crossed structure of the IAT (Westfall et

al., 2014) might compromise the predictive ability of its measure. If the fully-crossed design

of the IAT and its related sources of dependency are not properly addressed, biased estimates

are obtained, the importance of experimental effects is confused with random noise, and the

probability of committing Type I error is inflated (Judd et al., 2017; Wolsiefer et al., 2017).

Averaging across trials in each associative condition, the D score is highly sensitive to the

across-trial variability related to stimuli heterogeneity, and it cannot address the fully-crossed

design of the IAT (Wolsiefer et al., 2017). This can be accounted for by employing Linear

Mixed Effect-Models (LMMs) with appropriate random structures. Additionally, LMMs al-

low for obtaining parametrizations from accuracy and log-time responses that are conceptually

close to the Rasch (Rasch, 1960) and the log-normal (van der Linden, 2006) models, respec-

tively. These models disentangle the unique contribution of the respondent and the stimulus to

the observed response, hence providing fine-grained information at both levels.

Information at the stimulus level allows for investigating the contribution of each stimulus

to the IAT effect as well as the representativeness of each stimulus. Indeed, stimulus represen-

tativeness of its own category is a key feature for a correct functioning of the IAT (Bluemke &

Friese, 2006; Nosek et al., 2005). Selecting the most informative and representative stimuli can

help in reducing the across-trial variability, and could allow for designing better functioning

and briefer IATs.

In this study, the predictive abilities of the estimates obtained with LMMs and the D score

are compared. The predictive abilities of D scores computed on all stimuli and D scores com-

puted only on the most (or the least) informative stimuli are compared, as well. To these

ends, an IAT for the implicit assessment of the chocolate preference was used (Chocolate IAT).

The most and the least informative stimuli are identified by considering the difference in their

parameters between conditions (see e.g., Anselmi et al., 2013). Stimuli showing a higher differ-
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ence in their parameters between conditions are considered to be more informative than those

with a smaller difference in their parameters between conditions.

Method

Participant

Seventy-six university students (F = 71.05%, Mean age = 24.02± 2.88 years) volunteered to

take part in the study. Respondents did not receive any incentives for their participation.

Materials and Procedure

The script used for running the experiment, the stimuli, and the data are available in the Open

Science Framework repository at https://osf.io/54qat/. Twenty-six attribute stimuli

(13 Good and 13 Bad exemplars) and 7 chocolate images graphically modified to represent

either dark or milk chocolate (7 Dark and 7 Milk chocolate images) were used. Sixty trials

were presented in each associative condition (i.e., Dark-Good/Milk-Bad – DGMB – and Milk-

Good/Dark-Bad – MGDB – conditions). No feedback followed incorrect responses.

The chocolate preferences were explicitly investigated with two items (i.e., How much do

you like dark chocolate? and How much do you like milk chocolate?) evaluated on a 6-point

Likert-type scale (0 - Not at all, 5 - Very much). Respondents were asked about their food habits

and behaviors through 6 items (example item: I am usually on a diet, Cronbach’s α = 0.80)

rated on a 4-point agreement Likert-type scale (1 - Strongly disagree, 4 - Strongly agree). High

scores indicate high care for food habits. At the end of the experiment, participants were offered

with dark or milk chocolate. Their choices were registered after they left the laboratory.

Data cleaning and D score

Exclusion criteria based on accuracy (Nosek et al., 2002) and time responses (Greenwald et

al., 2003) were applied. The IAT was scored with the D4 algorithm (Greenwald et al., 2003),

which was computed with the online app DscoreApp (Epifania et al., 2020). Positive D scores

denote a preference for dark chocolate relative to milk chocolate.

https://osf.io/54qat/
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Model specifications

According to the Rasch model (Rasch, 1960), the observed accuracy response of respondent

p (p ∈ {1, . . . , P}) to stimulus s (s ∈ {1, . . . , S}) depends on respondent’s ability (i.e., the

respondent’s ability parameter θ) and stimulus difficulty (i.e., the stimulus difficulty parameter

b). In the IAT, the higher the ability parameter θ of respondent p, the higher the ability of re-

spondent p to perform the categorization task. The higher the difficulty parameter b of stimulus

s, the lower the probability of s to be assigned to the correct category. The probability of a

correct response of respondent p to stimulus s depends on the distance between respondent and

stimulus parameters (i.e., θp − bs). It is larger than .50 when θp > bs, smaller than .50 when

θp < bs, and equal to .50 when θp = bs.

Similar to the Rasch model, in the log-normal model (van der Linden, 2006) the observed

log-time response depends on the characteristics of the respondent (speed parameter τ ) and

those of the stimulus (time intensity parameter δ). In the IAT case, the lower the speed param-

eter τ of respondent p, the higher the time spent by respondent p on the task (i.e., lower speed).

The lower the time intensity parameter δ of stimulus s, the lower the time respondents spend in

responding to stimulus s. The expected log-time response is a function of the distance between

respondent and stimulus parameters (i.e., δs–τp). The expected log-time response is lower than,

faster than, and equal to the observed log-time response when δs > τp, δs < τp, and δs = τp,

respectively.

Rasch-like and log-normal parametrizations can be obtained by using Generalized Linear

Mixed-Effects Models (GLMMs) with logit link functions applied to accuracy responses and

Linear Mixed Effects Models (LMMs) applied to log-time responses, respectively. In these

applications, respondent and stimulus parameters are summed (i.e., θp + bs and δs + τp). This

parametrization of the accuracy responses is consistent with that of linear test models (LLTM,

see e.g., Fischer, 1973; Scheiblechner, 1972).The higher the value of stimulus parameter b, the

easier stimulus s is (i.e., the higher the number of correct responses registered on stimulus s is),

such that parameter b is considered as an easiness parameter. The lower the value of parameter

τ , the faster respondent p is. The suitability and usefulness of this approach for analyzing IAT

data has already been proved (e.g., Epifania, Robusto, & Anselmi, 2022).
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Rasch-like and log-normal parametrizations depend on the factors specified as random,

which account for the variability in the data. The fixed intercept is set at 0 (i.e., none of the

levels of the fixed slope – the associative condition – is taken as the reference level). Further

details on the procedure and on the random structures of the models are reported in the ap-

pendix. Table 1 summarizes the Rasch-like and log-normal parameters attainable from each

model random structure.

Table 1
Rasch-like and log-normal parametrizations.

Rasch-like parametrization Log-normal parametrization
Model Respondents Stimuli Respondents Stimuli

1 Overall (θp) Overall (bs) Overall (τp) Overall (δs)
2 Overall (θp) Condition–

specific (bsc)
Overall (τp) Condition–

specific (δsc)
3 Condition–

specific (θpc)
Overall (bs) Condition–

specific (τpc)
Overall (δs)

Note: p ∈ {1, . . . , P}, s ∈ {1, . . . , S}, c ∈ {1, . . . , C} denote any respondent, stimulus,
condition (P , S, and C are the number of respondents, stimuli, and conditions, respectively.)

In Model 1, the random intercepts of respondents and stimuli are specified to account for

the between–respondents and the between–stimuli variabilities across–conditions. This model

yields overall respondent (θp or τp) and stimulus (bs or δs) parameters across associative condi-

tions. Model 1 is expected to be the best fitting one when low between–conditions variability

is observed at both respondent and stimulus levels (i.e., neither respondents’ performance nor

stimuli functioning vary between associative conditions).

Specifying stimulus random slopes in associative conditions and respondent’s random in-

tercepts across conditions, Model 2 accounts for the within–stimuli between–conditions vari-

ability and the between–respondents across–conditions variability. This model yields overall

respondent (θp or τp) and condition–specific stimulus (bsc or δsc, where c denotes the asso-

ciative condition) parameters. Model 2 is expected to be the best fitting model when high

within–stimuli between–conditions variability is observed. This suggests that the IAT effect

is mostly due to variations in stimuli functioning between conditions. The difference between

condition–specific stimulus estimates allows for investigating the contribution of each stimulus
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to the IAT effect.

Model 3 addresses the within–respondents between–conditions variability and the between–

stimuli across–conditions variability by specifying respondent’s random slopes in associative

conditions and stimulus random intercepts across conditions. Model 3 yields condition–specific

respondent (θpc or τpc) and overall stimulus (bs or δs) parameters. Model 3 is expected to be the

best fitting model when high within–respondents between–conditions variability is observed,

this suggesting that the IAT effect is mostly due to the changes in respondents’ performance

between conditions. The difference between respondent condition–specific estimates allows

for investigating the bias on respondents’ performance due to the IAT associative conditions.

The models were applied to the Chocolate IAT data. In what follows, the models applied

to accuracy responses are identified by a capital “A”. Those applied to log-time responses are

identified by a capital “T”. No correction was applied on the incorrect time responses for es-

timating the log-normal models. Models were fitted with the lme4 package (Bates, Machler,

et al., 2015) in R (Version 3.5.1, R Core Team, 2018). Simple R scripts for estimating these

models from any IAT are available as supplementary material.

Results

Two participants showed more than 25% of incorrect responses in at least one associative con-

dition (Nosek et al., 2002). The final sample consisted of 74 participants (F = 71.62%, Mean

age = 24.08± 2.88 years). The 41.90% of the participants chose milk chocolate.

Accuracy models

Model comparison is reported in the top panel of Table 2. BIC suggests a better fit of Model

A1 compared to model A2, whereas AIC, Log-likelihood, and Deviance suggest a better fit of

Model A2. Thus, Model A2 was chosen. This model provides overall Rasch-like respondent

ability (θp) and condition–specific stimulus easiness (bMGDB and bDGMB) estimates. In this ap-

plication, the ability estimates θp can be considered as accuracy-based measures of the respon-

dents’ preference. Condition MGDB showed higher probability of correct responses (log-odds

= 3.67, SE = 0.14, z = 26.15, p < .001) than condition DGMB (log-odds = 2.61, SE = 0.10,
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Table 2
Model comparison between accuracy (top panel) and log-time (bottom panel) models.

Model AIC BIC Log-Likelihood Deviance

Accuracy
A1 3627.70 3656.10 −1809.90 3619.70

A2 3625.58 3668.10 −1806.80 3613.60

A3 Failed to converge

Log-time
T1 7856.45 7891.91 −3923.23 7846.45

T2 Aberrant estimates
T3 7159.23 7208.87 −3572.62 7145.23

z = 27.26, p < .001). Between–respondents variability was 0.33. Stimuli showed higher

variability in the MGDB condition (σ2 = 0.21) than in the DGMB condition (σ2 = 0.01). The

condition–specific stimulus random effects were weakly correlated (r = .20).

The condition–specific easiness estimates are reported in Table 3.
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Table 3
Condition–specific easiness estimates (bsc) and overall time intensity estimates (δs) of the stimuli.

bDGMB bMGDB bDGMB − bMGDB δs bDGMB bMGDB bDGMB − bMGDB δs

Good attributes Bad attributes

joy 2.62 4.02 −1.40 0.01 hate 2.59 3.85 −1.26 0.01

happiness 2.64 4.03 −1.39 0.02 failure 2.68 3.93 −1.25 0.07

pleasure 2.56 3.70 −1.15 0.01 terrible 2.64 3.89 −1.24 0.04

peace 2.64 3.77 −1.14 −0.03 disaster 2.66 3.90 −1.24 0.07

heaven 2.63 3.77 −1.14 0.08 bad 2.58 3.73 −1.15 0.07

marvelous 2.66 3.79 −1.13 0.05 horrible 2.62 3.76 −1.14 0.05

laughter 2.67 3.76 −1.10 0.06 evil 2.63 3.74 −1.11 0.10

good 2.66 3.74 −1.08 0.01 disgust 2.60 3.70 −1.11 0.01

glory 2.57 3.57 −1.00 0.02 nasty 2.59 3.33 −0.74 0.04

love 2.62 3.58 −0.96 0.02 ugly 2.60 3.32 −0.72 −0.01
excellent 2.64 3.59 −0.95 0.01 pain 2.58 3.23 −0.65 0.05

beauty 2.61 3.46 −0.85 0.02 annoying 2.58 3.05 −0.47 0.08

wonderful 2.62 3.45 −0.83 0.09 agony 2.57 2.49 0.08 0.04

M (SD) 2.63 (0.03) 3.71 (0.17) −1.09 (0.17) 0.03 (0.03) 2.61 (0.03) 3.53 (0.41) −0.92 (0.40) 0.05 (0.03)

Dark Chocolate Milk Chocolate

Dark5 2.56 3.94 −1.38 −0.12 Milk3 2.60 3.95 −1.35 −0.04
Dark2 2.60 3.82 −1.23 −0.11 Milk6 2.66 3.99 −1.33 −0.04
Dark6 2.55 3.72 −1.16 −0.10 Milk4 2.53 3.80 −1.27 −0.04
Dark4 2.62 3.62 −1.00 −0.07 Milk2 2.57 3.61 −1.04 −0.06
Dark3 2.58 3.53 −0.95 −0.08 Milk5 2.62 3.64 −1.02 −0.05
Dark7 2.58 3.41 −0.83 −0.07 Milk1 2.62 3.62 −1.01 −0.03
Dark1 2.49 3.27 −0.78 −0.11 Milk7 2.54 3.49 −0.95 −0.04
M (SD) 2.57 (0.03) 3.62 (0.22) −1.05 (0.20) −0.10 (0.02) 2.59 (0.05) 3.73 (0.17) −1.14 (0.17) −0.04 (0.01)

Note: DGMB: Dark-Good/Milk-Bad condition; MGDB: Milk-Good/Dark-Bad condition. Rows are ordered by increasing values of bDGMB − bMGDB. The units

of the easiness estimates are the log-odds, the units of the time intensity estimates are the log-seconds. The stimuli that, according to the condition–specific

easiness estimates, contributed the most and the least to the IAT effect are highlighted in bold and italic, respectively.
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Stimuli were easier in the MGDB condition than in the DGMB one (MMGDB = 3.64±0.29,

MDGMB = 2.60 ± 0.04; t (40) = −21.97, p < .001, 95% CI [−1.13,−0.94]). A linear model

was specified to investigate the effect of the stimulus categories on the difference between

condition–specific easiness estimates, which can be considered as an accuracy-based measure

of the IAT effect. An overall significant effect of the stimulus categories was found (F (4, 36) =

139.80, p < .001, Adjusted R2 = 0.93). Milk and Good exemplars contributed the most to

the IAT effect (BMilk = −1.13, SE= 0.11, t (36) = −10.84, p < .001; BGood = −1.09,

SE= 0.08, t (36) = −14.10, p < .001). Bad and Dark exemplars contributed the least

(BBad = −0.92, SE = 0.07, t (36) = −11.98, p < .001; BDark = −1.05, SE= 0.11

t (36) = −9.97, p < .001).

Log-time models

Model comparison is reported in the bottom panel of Table 2. Model T3 was chosen, providing

overall stimulus time intensity (δs) and respondent condition–specific speed estimates (τMGDB

and τDGMB) of the log-normal model. Responses were faster in the MGDB condition (B =

−0.36, SE = 0.02, t = −15.01) than in the DGMB condition (B = −0.12, SE = 0.03,

t = −4.28). The between–stimuli variability was extremely low (σ2 = 0.004). Respondents

showed similar variabilities in DGMB and MGDB conditions (σ2
DGMB = 0.05; σ2

MGDB = 0.03),

and their random effects were moderately correlated (r = .40). A linear model was specified

to investigate the effect of the stimulus categories on the time intensity estimates (Table 3). An

overall significant effect of the stimulus categories was found (F (4, 36) = 37.41, p < .001,

Adjusted R2 = 0.78). The exemplars of both targets required the least amount of time to get a

response (BDark = −0.09, SE= 0.01, t (36) = −8.99, p < .001; BMilk = −0.04, SE= 0.01,

t (36) = −4.09, p < .001), whereas exemplars of both evaluative dimensions required the

largest amount of time (BBad = 0.05, SE= 0.01, t (36) = 6.20, p < .001; BGood = 0.03,

SE= 0.01, t (36) = 3.70, p < .001).
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Relationship between model estimates, D scores, and explicit measures

A speed-differential was obtained by taking the difference between the condition–specific speed

estimates, which can be considered as a latency-based measure of the IAT effect. Positive

values indicated higher speed in the DGMB condition than in the MGDB condition. Results of

Pearson’s correlations between explicit measures, D scores, and model estimates are reported in

Table 4. Explicit chocolate evaluations strongly correlated with D scores and condition–specific

Table 4
Correlation between model estimates, explicit measures, and D score.

1 2 3 4 5 6 7

1 - Explicit Milk
2 - Explicit Dark −0.51∗∗∗

3 - D score −0.43∗∗∗ 0.51∗∗∗

4 - τDGMB 0.12 −0.43∗∗∗ −0.60∗∗∗

5 - τMGDB −0.36∗∗ 0.14 0.42∗∗∗ 0.42∗∗∗

6 - θp 0.01 0.18 0.06 0.07 0.18

7 - Speed-differential−0.41∗∗∗ 0.55∗∗∗ 0.95∗∗∗ −0.67∗∗∗ 0.39∗∗∗ 0.07

Note: ∗∗∗ p < .001, ∗∗ p < .01; τ : speed estimate; θ: Accuracy-based measure of respon-
dents’ preference, DGMB: Dark-Good/Milk-Bad condition; MGDB: Milk-Good/Dark-
Bad condition; Speed-differential: τMGDB − τDGMB.

speed estimates. The accuracy-based measure of the respondent’s preference correlated neither

with explicit chocolate evaluations nor with any of the condition–specific speed estimates or the

D score. As such, it appears these estimates cannot be considered as an indicator of the implicit

preference of the respondents. High speed in the MGDB condition correlated with positive

milk chocolate evaluations, and not with the dark chocolate evaluations. Similarly, high speed

in the DGMB condition correlated with positive dark chocolate evaluations, and not with the

milk chocolate evaluations. This suggests that the performance in each associative condition

is mostly driven by the associations between one of the two chocolates and positive attributes.

In this sense, the like for each of the two chocolates has a major importance in influencing the

responses.
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Choice prediction

The predictive abilities of model estimates and D scores were compared. Two data sets were

created from the full-length data set by selecting the responses to the three stimuli of each cate-

gory that contributed the most (bolded stimuli in Table 3) or the least (italicized stimuli in Table

3) to the IAT effect. The D4 algorithm was computed on both data sets. The predictive abilities

of differential measures (i.e., D scores and speed-differential) and of their single components

(i.e., MMGDB and MDGMB of the D scores, τDGMB and τMGDB of the speed-differential) were

investigated. All predictors were checked for collinearity by computing Variance Inflation Fac-

tors (VIFs). The D score was collinear with the speed differential, the two condition–specific

speed estimates, and the condition–specific average response times (VIFs > 10). Condition–

specific speed estimates were not collinear between each other (VIFs < 4.00), but they were

collinear with condition–specific average response times. Condition–specific speed and aver-

age response times, D score, and speed differential were not collinear with food habits and

preference estimates (VIFs < 4.00). Given the high collinearity between the predictors (i.e.,

the D score and the other time-based predictors, namely the condition–specific speed estimates,

the condition–specific average response times, and the speed differential), they were entered in

separate models. As such, eight logistic regression models were specified. Preference esti-

mates and food habits of the respondents were included in all starting models. Either the D

score, the speed differential, the condition–specific speed estimates, or the condition–specific

average response times were included in the same model. Relevant predictors were selected

with backward deletion. Model general accuracy (i.e., percentage of choices correctly iden-

tified by the model), model dark chocolate choice (DCC) accuracy (i.e., percentage of DCCs

correctly identified by the model), and model milk chocolate choice (MCC) accuracy (i.e., per-

centage of MCCs correctly identified by the model) were computed on the models resulting

from backward deletion (Table 5).

Speed-differentials and D scores resulted in similar predictive accuracies. “Best” and

“worst” data sets D scores provided more accurate predictions than full data set D scores.

The “best” data set D scores explained the highest proportion of variance. Condition–specific

speed estimates resulted in the highest MCC accuracy.
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Table 5
Choice prediction: Models resulting after backward deletion.

Predictors B SE Nagelkerke R2 General DCC MCC

Intercept −1.65∗∗ 0.51 0.26 66% 70% 61%

D score −2.03∗∗∗ 0.60

Intercept −1.65∗∗∗ 0.48 0.26 68% 72% 61%

Speed-differential −5.02∗∗∗ 1.43

Intercept −1.76∗∗∗ 0.52 0.30 70% 74% 65%

D score (Best) −2.07∗∗∗ 0.58

Intercept −1.23∗∗∗ 0.42 0.18 69% 72% 65%

D score (Worst) −1.40∗∗∗ 0.47

Single components

Intercept −0.23 1.36 0.27 65% 74% 52%

MDGMB 0.00∗∗ 0.01

MMGDB −0.01∗∗ 0.01

Intercept −2.05∗ 0.74 0.27 72% 74% 68%

τDGMB 4.73∗∗∗ 1.48

τMGDB −5.99∗∗∗ 1.98

Intercept −0.17 1.61 0.30 65% 74% 52%

MDGMB (Best) 0.00∗∗∗ 0.01

MMGDB (Best) −0.01∗ 0.01

Intercept 0.61 1.23 0.16 64% 77% 45%

MDGMB (Worst) 0.00∗ 0.01

MMGDB (Worst) 0.00∗ 0.01

Note: ∗∗∗: p < .001, ∗∗: p < .01, ∗: p < .05; Best: Highly contributing stimuli data set;
Worst: Lowly contributing stimuli data set; τ : Speed; Speed-differential: τMGDB− τDGMB;
DGMB: Dark-Good/Milk-Bad condition; MGDB: Milk-Good/Dark-Bad condition; Gen-

eral: General accuracy of chocolate choice predictions; DCC: Dark Chocolate Choice
Accuracy; MCC: Milk Chocolate Choice Accuracy.

Final remarks

This study investigated whether the predictive ability of the IAT could be enhanced with sta-

tistical models able to account for its fully-crossed structure. The results suggested that the

proposed modeling framework can improve the predictive ability of the IAT while providing

information on respondent’s performance and stimulus functioning. This information can be
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further employed to reduce the across-trial variability due to stimuli heterogeneity, thus leading

to better functioning, more informative, and potentially briefer IATs.

The stimulus functioning in respect to both its own category and other categories can be in-

vestigated through stimulus time intensity estimates. The within–category variability allows for

identifying the most and the least representative stimuli of each category, whereas the between–

category variability suggests different times for processing target and attribute exemplars that

potentially contribute to the across-trial variability.

Condition–specific easiness estimates suggested that the IAT effect in the Chocolate IAT

was mostly driven by Good and Milk exemplars. Consistently, the correlations between condition–

specific speed estimates and differential measures pointed at a major influence of the speed in

the MGDB condition. The correlations between speed estimates and explicit chocolate eval-

uations further suggested that the performance in each condition was mostly influenced by

positive attributes. As such, it can be speculated that the IAT effect is mostly driven by a milk

chocolate preference, but the performance in each condition is mostly influenced by the associ-

ations of positive attributes with one of the two chocolates. The ability of the model estimates

to disentangle the component(s) mostly involved in the performance at the IAT might have a

high resonance in both marketing and applied social psychology. In the former field, it can

clarify whether the obtained results are mostly due to the preference for one of two contrasting

brands and help in designing ad hoc marketing campaigns. In the latter one, it can disentangle

whether the performance at the IAT is mostly due to ingroup preference rather than outgroup

derogation. Understanding whether individuals more easily associate the ingroup with positive

attributes rather than the outgroup with negative ones has important practical implications.

Previous studies have stressed the sensitivity of the IAT to the stimulus properties, suggest-

ing that valid IATs can be obtained with a small number of highly informative and represen-

tative stimuli (Bluemke & Friese, 2006; Nosek et al., 2005). In this application, the selection

of highly contributing stimuli allowed for reducing the across-trial variability, such that the

number of trials was minimized while the information that could be gathered from the IAT

was maximized. This unveils the possibility of reducing the length of the IAT without losing

information and/or impairing its validity. Reducing the stimuli heterogeneity also resulted in
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D scores better able to predict the behavioral outcome. The D scores computed on the most

informative data set explained the highest proportion of variance and provided better predic-

tions than the D scores computed on the full-length data set. Interestingly, also the D scores

computed on the least informative data set better predicted the choice than the full-length D

scores. We speculate that by reducing the stimuli heterogeneity and the across trial variability,

more reliable D scores can be obtained because the sources of error variance are accounted for.

Being more reliable, the D scores obtained on reduced data sets can better predict behavioral

outcomes than those obtained on full data sets, which are affected by error variance. This result

might further stress the sensitivity of the D score to the across-trial variability. However, further

investigations on this topic are needed.

In this study, the target categories (i.e., dark chocolate and milk chocolate) were quite homo-

geneous. The modeling framework helped in highlighting the stimuli with a different function-

ing in respect to the stimuli belonging to the same category and those that mostly contributed

to the IAT effect (i.e., the stimuli that presented a high difference in their easiness estimates

between conditions). This information contributed to get a better understanding of the IAT

measure, and to reduce the across-trial variability, leading to a better prediction of the behav-

ioral outcome. When target categories are more heterogeneous (as it could be, e.g., race), the

proposed modeling framework can identify the malfunctioning stimuli and those that mostly

contribute to the IAT effect (Epifania et al., 2021). A reduction of the across-trial variability

can be expected also in the case of heterogeneous categories, but it might not directly result in

better predictions of behavioral outcomes. In these cases, the heterogeneity of the categories

might require a larger collection of stimuli to appropriately represent them and to efficiently

predict behavioral outcomes of interest. Future studies should investigate the functioning of

the proposed modeling framework when heterogeneous categories are used.

The comparisons between the full-length IAT and the short IATs based on the responses

from the same starting data set constitutes the main limitation of the study. In future studies,

two IATs could be designed, one including only highly representative stimuli, the other one

including only poorly representative stimuli. If the results are replicated with these IATs, fur-

ther evidence on the importance of the representativeness of the stimuli and about the D score
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sensitivity to the across-trial variability would be obtained.

Other models that can concurrently account for accuracy and time responses have been

applied to the IAT data, namely the Diffusion Model (DM; Klauer et al., 2007) and the Dis-

crimination Association Model (DAM; Stefanutti et al., 2013, see also the four-counter DAM

; Stefanutti et al., 2020). DM and DAM consider the performance of the respondents at the

IAT as the result of different processes, each of which is expressed by its own parameter. As

such, both models provide in-depth information concerning the individual differences of the

respondents. However, no information at the single stimulus level is available, but only at the

stimulus categories level. On the other hand, the modeling framework introduced in this con-

tribution results in fine-grained information also at the individual stimulus level, which in turn

allows for the investigation of the stimuli representativeness of their own category as well as of

their contribution to the IAT effect. A limitation of this study is that it does not provide a di-

rect comparison between the information resulting from the DAM or the DM and that resulting

from the modeling framework proposed here. Such a comparison could be of interest for future

studies.

The convergence failure of Model A3 and the aberrant estimates obtained with Model T2

raise concerns and should be considered as a potential drawback of the modeling framework in-

troduced in this contribution. Convergence failure or aberrant estimates suggest that the model

could not find a solution, usually because of a lack of variability in the data (i.e., the random

structure of the model requires a higher variability than that observed in the data, Bates, Kliegl,

et al., 2015). The poor variability in the accuracy performance of the respondents (SD = 0.11)

might have caused the convergence failure of Model A3. Similarly, the poor variability in the

response times of the stimuli (SD = 0.02) might have caused the degenerate solution of Model

T2.
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Appendix A

Generalized Linear Model and Rasch model

According to the Rasch model, the probability of a correct response is a function of the distance

on the latent trait between respondent and stimulus characteristics:

P (xps = 1|θp, bs) =
exp(θp − bs)

1 + exp(θp − bs)
, (1)

where P (xps = 1) is the probability of respondent p to correctly respond to stimulus s, θp is the

ability of respondent p (i.e., the amount of latent trait of respondent p) and bs is the difficulty of

stimulus s (i.e., the amount of latent trait required by item s to obtain a correct response). The

higher the value of θp, the higher the amount of responses correctly endorsed by respondent p.

The higher the value of bs, the lower the amount of correct responses observed on stimulus s.

In a Generalized Linear Model (GLM), the binomially distributed responses are linked to

the linear combination of predictors ηps by a logit link function. The probability of a correct

response µps given the linear combination of predictors ηps is obtained as:

µps = logit−1(ηps) =
exp(ηps)

1 + exp(ηps)
, (2)

where logit−1 is the inverse of the logit link function (i.e., logit = log
(

µps
1−µps

)
). The inverse of

the logit link function (Equation 2) is equivalent to the Rasch model (Equation 1). The Rasch

model parameters can be estimated by using a GLM with a logit link function (De Boeck et al.,

2011; Doran et al., 2007).

Linear Model and log-normal model

According to the log-normal model, the expected log-time response is a function of the distance

on the latent trait between respondent and stimulus characteristics:

tps = δs − τp, (3)
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where tps is the expected log-time response of respondent p to stimulus s, δs is the time absorb-

ing power of stimulus s (i.e., time intensity parameter), and τp expresses the speed with which

respondent p performs the task (i.e., speed parameter). The higher the value of δs, the higher

the amount of time spent on stimulus s. The higher the value of τp, the smaller the amount

of time respondent p spends on the stimuli. The expected log-time response depends on the

distance between respondent and stimulus parameters.

In a Linear Model (LM), the expected log-time responses are linked to the linear combina-

tion of predictors ηps by an identity function that follows a normal distribution:

tps = β0 + βsXs + βpXp + εps. (4)

The log-normal model in Equation 3 can be equated to the LM in Equation 4, where the

log-time responses are predicted by respondent and stimulus characteristics and the intercept is

set at 0.

Fixed and random structures of the (G)LMMs

The inclusion of random effects in the linear predictors η extends (G)LMs to (Generalized)

Linear Mixed-Effects Models ((G)LMM). When (G)LMMs are used to estimate the Rasch-like

and log-normal parameters, the stimulus and respondent parameters are summed together (i.e.,

from θp− bs to θp+ bs and from δs− τp to δs+ τp for the Rasch and log-normal models, respec-

tively). Consequently, the higher the value of bs, the higher the amount of correct responses

registered on stimulus s (i.e., easiness parameter), and the higher the value of τp, the slower

respondent p is (i.e., the larger the amount of time respondent p spends on each stimulus).

Respondent and stimulus estimates of Rasch-like and log-normal models are obtained from

respondent and stimulus Best Linear Unbiased Predictors (BLUPs, the deviation of each level

of the random effects from the estimates of the fixed effects, Doran et al., 2007). Person param-

eters (θp and τp) derive from the random effects of the respondents, being either αp ∼ N (0, σ2
αp

)

(random intercepts) or βpc ∼ MVN (0,Σpc) (random slopes in associative conditions c).

Stimulus parameters (bs and δs) derive from the random effects of the stimuli, being either

αs ∼ N (0, σ2
αs

) (random intercepts) or βsc ∼ MVN (0,Σsc) (random slopes in the associa-
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tive conditions c). Besides the distribution of the error term (i.e., ε ∼ Logistic(0, σ2) and

ε ∼ N (0, σ2) for the GLMMs and the LMMs, respectively), the random structures of the

(G)LMMs are identical. The expected response y to each trial of the IAT i (i ∈ {1, . . . , n}) of

participant p (p ∈ {1, . . . , P}) on stimulus s (s ∈ {1, . . . , S}) in condition c (c ∈ {1, . . . , C})

can be either the expected log-odds of the probability of a correct response (GLMMs) or the

expected log-time response (LMMs). Since the fixed intercept α is set at 0 (i.e., none of the

levels of the fixed slope is taken as the reference value), either the log-odds of a correct re-

sponse for each condition (GLMMs) or the average log-time for each condition (LMMs) are

estimated. The fixed structure of the models is kept constant, while the random structures vary

across models.

Accuracy models specification

Model A1: The random intercepts of respondents and stimuli across associative conditions

are specified:

yi = logit−1(α + βcXc + αp[i] + αs[i] + εi), (5)

with αp ∼ N (0, σ2
αp

) and αs ∼ N (0, σ2
αs

). The random structure of Model A1 provides overall

respondent ability θp and overall stimulus easiness bs estimates.

Model A2: The random slopes of stimuli in associative conditions and the random intercepts

of respondents across associative conditions are specified:

yi = logit−1(α + βcXc + αp[i] + βs[i]ci + εi), (6)

with βsc ∼ MVN (0,Σsc) (where Σsc is the variance-covariance matrix of the population of

stimuli) and αp ∼ N (0, σ2
αp

). Model A2 provides condition–specific stimulus easiness bsc and

overall respondent ability θp estimates.
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Model A3: The random slopes of respondents in associative conditions and the random in-

tercepts of stimuli across associative conditions are specified:

yi = logit−1(α + βcXc + αs[i] + βp[i]ci + εi), (7)

with βpc ∼ MVN (0,Σpc) (where Σpc represents the variance-covariance matrix of the pop-

ulation of respondents) and αs ∼ N (0, σ2
αs

). The random structure of model A3 provides

condition–specific respondent ability θpc and overall stimulus easiness bs estimates.

Log-time models specification

Model T1: The random intercepts of respondents and stimuli across associative conditions

are specified:

yi = α + βcXc + αp[i] + αs[i] + εi, (8)

with αp ∼ N (0, σ2
αp

) and αs ∼ N (0, σ2
αs

). Model T1 provides overall respondent speed τp and

overall stimulus time intensity δs estimates.

Model T2: The random slopes of stimuli in associative conditions and the random intercepts

of respondents across associative conditions are specified:

yi = α + βcXc + αp[i] + βs[i]ci + εi, (9)

with βsc ∼ MVN (0,Σsc) (where Σsc is the variance-covariance matrix of the population of

stimuli) and αp ∼ N (0, σ2
αp

). Model T2 provides condition–specific stimulus time intensity δsc

and overall respondent speed τp estimates.

Model T3: The random slopes of respondents in associative conditions and the random in-

tercepts of stimuli across associative conditions are specified:

yi = α + βcXc + αs[i] + βp[i]ci + εi, (10)
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with βpc ∼ MVN (0,Σpc) (where Σpc represents the variance-covariance matrix of the popu-

lation of respondents) and αs ∼ N (0, σ2
αs

). This model provides condition–specific respondent

speed τpc and overall stimulus time intensity δs estimates.
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