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Abstract

Phishing attacks are on the rise and phishing websites are everywhere, denoting the
brittleness of security mechanisms reliant on blocklists. Prior work proposed en-
hancing Phishing Website Detectors (PWD) to mitigate this threat with data-driven
techniques powered by Machine Learning (ML). The main advantage of ML models
is their intrinsic ability of noticing weak patterns in the data that are overlooked by
a human, and then leveraging such patterns to devise ‘flexible’ detectors that can
counter even adaptive attackers.

This dissertation addresses three significant aspects arising from the interaction
between machine learning and phishing website detection: (i) Adversarial attack
for machine learning-based phishing website detection (ML-PWD), (ii) User percep-
tions of Phishing webpages, and (iii) Phishing website detection in multi-language
environment (i.e., Chinese and Western)

The first part presents the security of ML-based phishing website detection. Ex-
isting literature on adversarial Machine Learning (ML) focuses either on showing
attacks that break every ML model, or defenses that withstand most attacks. Un-
fortunately, little consideration is given to the actual cost of the attack or the de-
fense. We formalize the “evasion-space" in which an adversarial perturbation can
be introduced to fool a ML-PWD and propose a realistic threat model describing
evasion attacks against ML-PWD that are cheap to stage. Our contribution paves
the way for a much-needed re-assessment of adversarial attacks against ML systems
for cybersecurity. The second part of the dissertation presents a study to under-
stand user perceptions of phishing and adversarial phishing webpages. Adversarial
phishing webpages containing perturbations can easily fool ML-based PWD, but it
remains uncertain whether these perturbations could equally deceive the real target-
end users. Our study indicates adversarial phishing webpages containing typos are
more likely to be perceived by users. The third - and last - part of the dissertation
reveals the gap between Chinese and Western ML-based PWD, aiming to urge that
future work in PWD should take into account the applicability of multilingual envi-
ronments and pave the way for PWD systems that can protect users having different
backgrounds.
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Chapter 1

Introduction

Phishing is the topmost form of cybercrime according to the FBI’s Internet crime re-
port [10]. In the second quarter of 2022, the Anti-Phishing Working Group reported
over 1M phishing attacks—the worst quarter ever observed [24]. In this context,
phishing websites represent one of the most common vectors employed by attackers,
who aim to reach their goals by tricking their victims via apparently legitimate web-
sites [28]. In the first half of 2022, over 200k phishing websites were generated every
month [213]—showing that a universal solution to this threat has yet to be found.

The subject of Phishing Website Detection (PWD) is well-studied both in
academia and industry. Lots of anti-phishing schemes have been proposed, either
“human” centered, such as phishing education (e.g., [148, 157]); or “machine” cen-
tered, such as automated detection methods (e.g., [134, 222]). This paper focuses
on the latter, which does not require any prior knowledge of phishing by potential
victims.

Automated PWD can leverage two detection approaches (or a combination
thereof), based on either signature (in the form of “blocklists” [215]), or on data-
driven heuristics (e.g., [50, 142, 144]). The former is widely used in browsers; for
instance, Google Safe Browsing [32] relies on a constantly updated blocklist which
is checked before opening any website, thereby raising an alert if the visited URL
(or part of it) is included in such a blocklist. Despite being very precise (i.e., low
rates of false positives), blocklist-based PWD cannot detect ‘novel’ phishing web-
sites [198, 199]. To overcome this limitation, some advanced PWD leverage data-
driven methods in the domain of Machine Learning (ML): the intuition is to an-
alyze some “features” of a website (extracted from, e.g., its URL or even the un-
derlying HTML [276]) to discriminate benign from malicious webpages. ML-based
PWD (ML-PWD) are capable of detecting phishing webpages not included in any
blocklist [247], but at the expense of a superior (but still acceptable [55]) rate of false
alarms.

The cornerstone of ML is having “machines that automatically learn from expe-
rience” [150], and such experience comes in the form of data. ML models can notice
weak patterns in the data that are overlooked by a human with the help of this in-
trinsic ability, and then leverage such patterns to devise ‘flexible’ detectors that can
counter even adaptive attackers. As a matter of fact, Tian et al. [247] show that a ML
model based on Random Forest (RF) is effective even against “squatting” phishing
websites—while retaining a low-rate of false alarms (only 3%). Moreover, acquiring
suitable data (i.e., recent and labelled) for ML-PWD is not difficult—compared to
other cyber-detection problems for which ML has been proposed [62].

Such advantages have been successfully leveraged by many research efforts
(e.g., [196, 241]). Existing ML-empowered PWD can leverage different types of infor-
mation (i.e., features) to perform their detection. Such information can pertain either
to a website’s URL [255] or to its representation, e.g., by analyzing the actual image
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of a webpage as rendered by the browser [131], or by inspecting the HTML [144].
For example, Mohammad et al. [188] observed that phishing websites usually have
long URLs; and often contain many ‘external’ links (pointing to, e.g., the legitimate
‘branded’ website, or the server for storing the phished data), which can be inferred
from the underlying HTML. Although some works use only URL-related features
(e.g., [85]) – which can also be integrated into phishing email filters (e.g., [128]) –
more recent proposals use combinations of features (e.g., [97, 252]); potentially, such
features can be derived by querying third-party services (e.g., DNS servers [143]).

The cost-effectiveness of ML-PWD increased their adoption: even commercial
browsers (e.g., Google Chrome [171]) integrate ML models in their phishing filters
(which can be further enhanced via customized add-ons [242]); moreover, ML-PWD
can also be deployed in corporate SIEM [136].

1.1 Research Motivation and Contribution

This thesis mainly investigates issues in Machine learning-based Phishing website
detection, focusing on three major aspects.

1. Adversarial attack for machine learning-based phishing website detection: solutions
aiming to estimate the actual threat posed by adversarial attacks in the field
of Phishing website detection. Chapter 2 formalized the “evasion-space" in
which an adversarial perturbation can be introduced to fool the ML-PWD, and
proposed a realistic threat model describing evasion attacks against ML-PWD
that is cheap to stage. All attacks occur in a single space. Chapter 3 consid-
ers a “stronger" attacker that applies multiple perturbations in mixed evasion
spaces.

2. User perceptions of Phishing webpages: aiming to estimate user perceptions on
phishing webpages. Chapter 4 focus on answering whether adversarial phish-
ing websites equally deceive users as deceiving machine learning models, and
elucidate users’ awareness of phishing websites.

3. Phishing website detection in multi-language environment: aiming to evaluate the
“cross-language" effectiveness of state-of-the-art PWD and reveal the differ-
ence between Western and Chinese phishing websites (i.e., phonetic and hi-
eroglyphics language-based phishing websites). Chapter 5 presents Chphish,
a study aiming to elucidate and bridge the gap between Western and Chinese
phishing website detection.

In this dissertation, some passages have been quoted verbatim, and some figures
have been reused from the work [59], coauthored by the author of the thesis.

SpacePhish: The Evasion-space of Adversarial Attacks against Phishing Website
Detectors using Machine Learning

Existing literature on adversarial Machine Learning focuses either on showing at-
tacks that break every ML model, or defenses that withstand most attacks. Unfor-
tunately, little consideration is given to the actual cost of the attack or the defense.
Moreover, adversarial samples are often crafted in the “feature-space”, making the
corresponding evaluations of questionable value. Simply put, the current situation
does not allow to estimate the actual threat posed by adversarial attacks, leading to
a lack of secure ML systems.
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Contribution In Chapter 2, We aim to clarify such confusion in this paper. By
considering the application of ML for Phishing Website Detection, we formalize the
“evasion-space” in which an adversarial perturbation can be introduced to fool a
ML-PWD—demonstrating that even perturbations in the “feature-space” are useful.
Then, we propose a realistic threat model describing evasion attacks against ML-
PWD that are cheap to stage, and hence intrinsically more attractive for real phish-
ers. Finally, we perform the first statistically validated assessment of state-of-the-art
ML-PWD against 12 evasion attacks. Our evaluation shows (i) the true efficacy of
evasion attempts that are more likely to occur; and (ii) the impact of perturbations
crafted in different evasion-spaces. Our realistic evasion attempts induce a statisti-
cally significant degradation (3–10% at p <0.05), and their cheap cost makes them
a subtle threat. Notably, however, some ML-PWD are immune to our most realistic
attacks (p=0.22). Our contribution paves the way for a much needed re-assessment
of adversarial attacks against ML systems for cybersecurity.

Multi-SpacePhish: Extending the Evasion-space of Adversarial Attacks against
Phishing Website Detectors using Machine Learning

Research papers intrinsically impair the development of secure ML systems, because
the aim is often to “outperform the state-of-the-art”. In adversarial ML, this leads to
papers that either showcase devastating attacks stemming from extremely powerful
adversaries (i.e., white-box [237]); or vice versa, i.e., show that even oblivious attack-
ers can thwart ML systems [207]. However, real ‘adaptive’ attackers (i.e., those that
ML methods should be protected against) do not conform to these two extremes. In-
deed, having complete knowledge of the target system requires a huge resource in-
vestment (especially if such system is devoted to cybersecurity), which may be better
spent elsewhere; conversely, it is unlikely that opponents will launch attacks while
knowing nothing of the defender. Hence, to provide valuable research, efforts on
adversarial ML should start focusing on the gray area within these two extremes—
which implicitly are more likely to occur [56]. In the context of ML-PWD, our paper
is a first step in this direction: despite being devastating, existing evasion attempts
are costly to launch—even in black-box settings.

Contribution In Chapter 3, we propose and empirically evaluate the intriguing
case wherein an attacker introduces perturbations in multiple evasion spaces simul-
taneously. This work extended the single space attack in [59] to ‘deeper’ multiple
spaces. These new results show that applying perturbations in the problem- and
feature-space at the same time can lead to a significant decrease in the detection rate
from 0.95 to 0.

Understanding User Perceptions of Adversarial Phishing Websites

Machine learning based phishing website detectors (ML-PWD) are a critical part
of today’s anti-phishing solutions in operation. Unfortunately, ML-PWD are prone
to adversarial evasions, evidenced by both academic studies and analyses of real-
world adversarial phishing webpages. However, existing works mostly focused on
assessing adversarial phishing webpages against ML-PWD, while neglecting a cru-
cial aspect: investigating whether they can deceive the actual target of phishing—the
end users.
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Contribution In Chapter 4, we fill this gap by conducting two user studies (n=470)
to examine how human users perceive adversarial phishing webpages, spanning
both synthetically crafted ones (which we create by evading a state-of-the-art ML-
PWD) as well as real adversarial webpages (taken from the wild Web) that bypassed
a production-grade ML-PWD. Our findings confirm that adversarial phishing is a
threat to both users and ML-PWD, since most adversarial phishing webpages have
comparable effectiveness on users w.r.t. unperturbed ones. However, not all ad-
versarial perturbations are equally effective. For example, those with added typos
are significantly more noticeable to users, who tend to overlook perturbations of
higher visual magnitude (such as replacing the background). We also show that
users’ self-reported frequency of visiting a brand’s website has a statistically neg-
ative correlation with their phishing detection accuracy, which is likely caused by
overconfidence.

ChinaPhish: Revealing, Assessing, and Bridging the Gap between Western and
Chinese Phishing Website Detection

Despite existing ML-based phishing website detectors achieving promising results
both in research and practice, they mostly focus on “western" websites, e.g., they
consider websites in English, German, or Italian. In contrast, phishing websites
targeting “eastern" countries, such as China, have been mostly neglected—despite
phishing being rampant also on this side of the world.

The motivation of this study has its root in the fact that: (i) an increasing num-
ber of Western people now reside in China [16], and that (ii) an increasing number
of Chinese people migrated to the West [11]. As such, it is important to scrutinize
whether phishing website detectors can “transfer” between different regions: For
instance, an English person can be protected if they live in the UK and only visit
English websites—but what if such a person goes to China and starts visiting (also)
Chinese websites? And, vice-versa, previously proposed Chinese PWD may be ef-
fective as long as they are integrated into browsers used in China—but what if a
Chinese person goes abroad and starts visiting Western websites?

Contributions In Chapter 5, we scrutinize whether the current phishing website
detectors can simultaneously work against Western and Chinese phishing websites.
We first elucidate the differences between Western and Chinese websites, in terms of
textual language and webpage structure—suggesting that existing PWD for “west-
ern” websites may not work on Chinese ones. Then, we empirically prove the ex-
istence of a gap between Chinese and Western PWD. Practically, we evaluate 61
commercial PWD and 89 ML-based PWD on three datasets containing thousands
of websites of different languages—including a novel dataset for Chinese PWD, the
first of its kind, which we publicly release. Our experiments reveal that PWD tai-
lored for Western websites perform poorly when tested on Chinese websites, with
F1-score dropping by 19%–47%, and vice-versa. The gap we identified is not ac-
ceptable today, given the increasing migratory waves from/to diverse areas of the
World. Our takeaway is that future work on PWD should stop focusing only on
Western websites, thereby paving the way for PWD systems that can protect users
having different backgrounds.
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1.1.1 Publications

This section summarizes manuscripts produced during my Ph.D. period and
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manuscripts are listed in chronological order of acceptance and submission.

Journal Publication

1. Yuan, Y., Apruzzese, G., & Conti, M. (2023). Multi-SpacePhish: Extending
the Evasion-space of Adversarial Attacks against Phishing Website Detectors
using Machine Learning. ACM Digital Threats: Research and Practice. Submitted

Conference Publication
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Chapter 2

SpacePhish: The Evasion-space of
Adversarial Attacks against
Phishing Website Detectors using
Machine Learning

After more than a decade of research [80] and thousands of papers [15], it is well-
known that Machine Learning (ML) methods are vulnerable to adversarial attacks.
Specifically, by introducing imperceptible perturbations (down to a single pixel or
byte [57, 237]) in the input data, it is possible to compromise the predictions made
by a ML model. Such vulnerability, however, is more dangerous in settings that
implicitly assume the presence of adversaries. A cat will not try to fool a ML model.
An attacker, in contrast, will actively try to evade a ML detector—the focus of this
paper.

On the surface, the situation portrayed in research is vexing. The confirmed
successes of ML [150] are leading to large-scale deployment of ML in production
settings (e.g., [103, 219, 242]). At the same time, however, dozens of papers show-
case adversarial attacks that can crack ‘any’ ML-based detector (e.g., [58, 171]). Al-
though some papers propose countermeasures (e.g., [209]), they are quickly defeated
(e.g., [89]), and typically decrease the baseline performance (e.g. [58, 104]). As a re-
sult, recent reports [115, 156] focusing on the integration of ML in practice reveal that:
“I Never Thought About Securing My Machine Learning Systems” [82]. This is not
surprising: if ML can be so easily broken, then why invest resources in increasing its
security through –unreliable– defenses?

Sovereign entities (e.g., [8, 13]) are endorsing the development of “trustworthy”
ML systems; yet, any enhancement should be economically justified. No system is
foolproof (ML-based or not [87]), and guaranteeing protection against omnipotent
attackers is an enticing but unattainable objective. In our case, a security system
should increase the cost incurred by an attacker to achieve their goal [191]. Real at-
tackers have a cost/benefit mindset [259]: they may try to evade a detector, but only
if doing so yields positive returns. In reality, worst-case scenarios are an exception—
not the norm.

This study is inspired by several recent works that pointed out some ‘inconsis-
tencies’ in the adversarial attacks carried out by prior studies. Pierazzi et al. [214] ob-
serve that real attackers operate in the “problem-space”, i.e., the perturbations they
can introduce are subject to physical constraints. If such constraints are not met, and
hence the perturbation is introduced in the “feature-space” (e.g., [195]), then there
is a risk of generating an adversarial example that is not physically realizable [248].
Apruzzese et al. [56], however, highlight that even ‘impossible’ perturbations can be
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applied, but only if the attacker has internal access to the data-processing pipeline
of the target system. Nonetheless, Biggio and Roli suggest that ML security should
focus on “anticipating the most likely threats” [80]. Only after proactively assessing
the impact of such threats a suitable countermeasure can be developed—if required.

We aim to promote the development (and deployment) of secure ML systems.
However, meeting Biggio and Roli’s recommendation presents two tough challenges
for research papers. First, it is necessary to devise a realistic threat model which por-
trays adversarial attacks that are not only physically realizable, but also econom-
ically viable. Devising such a threat model, however, requires a detailed security
analysis of the specific cyberthreat addressed by the detector—while factoring the re-
sources that attackers are willing to invest. Second, it is necessary to evaluate the
impact of the attack by crafting the corresponding perturbations. Doing so is diffi-
cult if the threat model assumes an attacker operating in the problem-space, because
such perturbations must be applied on raw-data, i.e., before any preprocessing occurs—
which is hard to find.

In this paper, we tackle both of these challenges. In particular, we focus on
ML-systems for Phishing Website Detection (PWD). Countering phishing – still
a major threat today [28, 151] – is an endless struggle. Blocklists can be easily
evaded [247], and to cope against adaptive attackers some detectors are equipped
with ML (e.g. [242]). Yet, as shown by Liang et al. [171], even such ML-PWD
can be “cracked” by oblivious attackers—if they invest enough effort to reverse
engineer the entire ML-PWD. Indeed, we address ML-PWD because prior work
(e.g., [74, 124, 165, 229]) assumed threat models that hardly resemble a real scenario.
Phishing, by nature, is meant to be cheap [152] and most attempts end up in fail-
ure [200]. It is unlikely1 that a phisher invests many resources just to evade ML-PWD:
even if a website is not detected, the user may be ‘hooked’, but is not ‘phished’ yet.
As a result, the state-of-the-art on adversarial ML for PWD is immature—from a
pragmatic perspective.

Contribution and Organization. Let us explain how we aim to spearhead the
security enhancements to ML-PWD. We begin by introducing the fundamentals con-
cepts (PWD, ML, and adversarial ML) at the base of this study in §2.1, which also
serves as a motivation. Then, we make the following four contributions.

• We formalize the evasion-space of adversarial attacks against ML-PWD (§2.2),
rooted in exhaustive analyses of a generic ML-PWD. Such evasion-space ex-
plains ‘where’ a perturbation can be introduced to fool a ML-PWD. Our for-
malization highlights that even adversarial samples created by direct feature
manipulation can be realistic, validating all the attacks performed by past work.

• By using our formalization as a stepping stone, we propose a realistic threat
model for evasion attacks against ML-PWD (§2.3). Our threat model is
grounded on detailed security considerations from the viewpoint of a typi-
cal phisher, who is confined in the ‘website-space’. Nevertheless, our model
can be relaxed by assuming attackers with greater capabilities (which require
a higher cost).

• We combine and practically demonstrate the two previous contributions (§2.4).
We perform an extensive, reproducible, and statistically validated evaluation of
adversarial attacks against state-of-the-art ML-PWD. By using diverse datasets,

1It is unlikely, but not impossible. Hence, as recommended by Arp et al [70], it is positive that such
cases have also been studied by prior work.
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ML algorithms and features, we develop 18 ML-PWD, each of which is as-
sessed against 12 different evasion attacks built upon our threat model.

• By analyzing the results of our evaluation (§2.5): (i) we show the impact of attacks
that are very likely to occur against both baseline and adversarially robust ML-
PWD; and (ii) we are the first to fairly compare the effectiveness of evasion attacks
in the problem-space with those in the feature-space.

Our results highlight that more realistic attacks are not as disruptive as claimed by
past works (§2.6), but their low-cost makes them a threat that induces statistically
significant degradations. Finally, our evaluation serves as a ‘benchmark’ for future
studies: we provide the complete results and source-code in a dedicated website:
https://spacephish.github.io.

2.1 Background and Motivation

This study lies at the intersection of Phishing Website Detection (PWD) and Machine
Learning (ML) security. To set-up the stage for our contribution and motivate its
necessity, we first summarize PWD (§2.1.1), and then explain the role of ML in PWD
(§2.1.2). Finally, we provide an overview of the adversarial ML domain (§2.1.3).

2.1.1 Phishing Website Detection

Although having been studied for nearly two decades [153], phishing attacks
are still a rampant menace [151]: according to the FBI [7], the number of reported
phishing attempts has increased by 900% from 2018 to 2020 (26k up to 240k). Aside
from the well-known risks to single users (e.g., fraud, credential theft [127]), phish-
ing is still one of the most common vectors to penetrate an organization’s perimeter.
Intuitively, the best countermeasure to phishing is its prevention through proper ed-
ucation [264]. Despite recent positive trends, however, such education is far from
comprehensive: the latest “State of the Phish” report [28] states that more than 33%
of companies do not have any training program for their employees, and more than
50% only evaluate such education through simulations. As a result, there is still a
need of IT solutions that mitigate the phishing threat by its early detection. In our
case, this entails identifying a phishing website before a user lands on its webpage,
therefore defusing the risk of falling victim to a phishing attack. We provide in
Fig. 2.1 an exemplary architecture of a Phishing Website Detector (PWD).

Phishing Website Detector

Benign

Phishing

AnalysisPreprocessing

Website

output

FIGURE 2.1: Exemplary PWD. After preliminary preprocessing, a
website is analyzed by a detector to determine its legitimacy.

Despite extensive efforts, PWD remains an open issue. This is due to the in-
trinsic limitations of the most common detection approaches reliant on blocklisting
(e.g., [199, 215]). Such techniques have been improved and nowadays they even

https://spacephish.github.io
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involve automatic updates with recent feeds (e.g., PhishTank [26]). However, block-
lists are a double-edged sword: on the good side, they are very precise and are hence
favored due to the low rate of false alarms; on the bad side, they are only effective
against known phishing websites [45]. The latter is a problem: expert attackers are
aware of blocklists and hence move their phishing ‘hooks’ from site to site, bypass-
ing most PWD. As shown by Tian et al. [247], such strategies can elude over 90%
of popular blocklists for more than one month. To counter such adaptive attackers,
much attention has been given to data-driven detection schemes—including those
within the Machine Learning (ML) paradigm [242]. Indeed, ML allows to greatly
enhance the detection capabilities of PWD. Let us explain why.

2.1.2 Machine Learning for PWD

The cornerstone of ML is having “machines that automatically learn from expe-
rience” [150], and such experience comes in the form of data. By applying a given
ML algorithm A, e.g. Random Forest (RF), to analyze a given dataset D, it is possible
to train a ML model M that is able to ‘predict’ previously unseen data. We provide
a schematic of such workflow in Fig. 2.2. In the case of PWD, a ML model M can
be deployed in a detector (e.g., in the hexagon in Fig. 2.1) to infer whether a given
webpage is benign or phishing.

Dataset
D

A

train
ML model

M
Algorithm

future 
data 

predict

FIGURE 2.2: Machine Learning workflow. By training A on D, a ML
model M is developed. Such M can be used to predict future data.

The main advantage of ML models is their intrinsic ability of noticing weak pat-
terns in the data that are overlooked by a human, and then leveraging such patterns
to devise ‘flexible’ detectors that can counter even adaptive attackers. As a mat-
ter of fact, Tian et al. [247] show that a ML model based on RF is effective even
against “squatting” phishing websites—while retaining a low-rate of false alarms
(only 3%). Moreover, acquiring suitable data (i.e., recent and labelled) for ML-PWD
is not difficult—compared to other cyber-detection problems for which ML has been
proposed [62].

Such advantages have been successfully leveraged by many research efforts
(e.g., [196, 241]). Existing ML-empowered PWD can leverage different types of infor-
mation (i.e., features) to perform their detection. Such information can pertain either
to a website’s URL [255] or to its representation, e.g., by analyzing the actual image
of a webpage as rendered by the browser [131], or by inspecting the HTML [144].
For example, Mohammad et al. [188] observed that phishing websites usually have
long URLs; and often contain many ‘external’ links (pointing to, e.g., the legitimate
‘branded’ website, or the server for storing the phished data), which can be inferred
from the underlying HTML. Although some works use only URL-related features
(e.g., [85]) – which can also be integrated in phishing email filters (e.g., [128]) – more
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recent proposals use combinations of features (e.g., [97, 252]); potentially, such fea-
tures can be derived by querying third-party services (e.g., DNS servers [143]).

The cost-effectiveness of ML-PWD increased their adoption: even commercial
browsers (e.g., Google Chrome [171]) integrate ML models in their phishing filters
(which can be further enhanced via customized add-ons [242]); moreover, ML-PWD
can also be deployed in corporate SIEM [136]. However, it is well-known that no
security solution is foolproof: in our case, ML models can be thwarted by exploiting
the so-called adversarial attacks [58].

2.1.3 Adversarial Attacks against ML

The increasing diffusion of ML led to question its security in adversarial envi-
ronments, giving birth to “adversarial machine learning” research [80, 91]. Attacks
against ML exploit adversarial samples, which leverage perturbations to the input data
of a ML model that induce predictions favorable to the attacker. Even imperceptible
perturbations can mislead proficient ML models: for instance, Su et al. [237] modify
a single pixel of an image to fool an object detector; whereas Apruzzese et al. [57]
evade botnet detectors by extending the network communications with few junk
bytes.

An adversarial attack is typically described with a threat model, which explains
the relationship of a given attacker with the defender’s system. In particular, the at-
tacker has a goal and, by leveraging their knowledge and capabilities, they will adopt
a specific strategy [80]. Common terms associated with the attacker’s knowledge are
white-box and black-box: in the former, the attacker knows everything about the de-
fender; whereas in the latter the attacker knows nothing [207, 275]. The capabilities
describe how the attacker can interact with the target system, e.g., they: can influ-
ence only the inference or also the training stage of the ML model; can use the ML
model as an “oracle” by inspecting the output to a given input; and can be subject to
constraints on the creation of the adversarial perturbation (e.g., a limited amount of
queries).

Despite thousands of papers focusing on this topic, a universal and pragmatic so-
lution has not been found yet. Promising defenses are invalidated within the times-
pan of a few months (e.g. distillation was proposed in [209] and broken in [89]).
Even “certified” defenses [149] can only work by assuming that the perturbation is
bounded within some magnitude—which is not a constraint to which real attackers
must abide (as pointed out by Carlini et al. [88]). From a pragmatic perspective, any
defense has a cost: first, because it must be developed; second, because it can induce
additional overhead. The latter is particularly relevant in cybersecurity, because it
may decrease the performance of the ML model when no adversarial attack occurs.
For instance, a well-known defense is feature removal [235], which entails developing
ML models that do not analyze the features expected to be targeted by a pertur-
bation. Doing this, however, leads to less information provided to the ML model,
hence inducing performance degradation (e.g., [58]). Even when countermeasures
have a small impact (e.g., [104]), this is not negligible in cyber-detection: attacks are
a “needle in a haystack” [247], and even a 1% increase in false positives is detrimen-
tal [253]. Therefore, ML engineers will not devise any protection mechanism unless
the corresponding threat is shown to be dangerous in reality [156].

The Problem. Unfortunately, research papers intrinsically impair the develop-
ment of secure ML systems, because the aim is often to “outperform the state-of-the-
art”. In adversarial ML, this leads to papers that either showcase devastating attacks
stemming from extremely powerful adversaries (i.e., white-box [237]); or viceversa,
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i.e., show that even oblivious attackers can thwart ML systems [207]. However, real
‘adaptive’ attackers (i.e., those that ML methods should be protected against) do not
conform to these two extremes. Indeed, having complete knowledge of the target
system requires a huge resource investment (especially if such system is devoted
to cybersecurity), which may be better spent elsewhere; conversely, it is unlikely
that opponents will launch attacks while knowing nothing of the defender. Hence,
to provide valuable research, efforts on adversarial ML should start focusing on the
gray area within these two extremes—which implicitly are more likely to occur [56].
In the context of ML-PWD, our paper is a first step in this direction: as we will show,
evasion attempts evaluated in literature (§2.6), despite being devastating, are costly
to launch—even in black-box settings.

2.2 The Evasion-space of Adversarial Attacks against ML-
PWD

We aim to spearhead valuable research in adversarial attacks against ML-PWD. To
this purpose, we first elucidate the internal functionalities of a ML-PWD (§2.2.1).
Then, we propose our original formalization of the evasion-space of adversarial per-
turbations (§2.2.2). Finally, we explain why our contribution validates all prior work
(§2.2.3).

2.2.1 Analysis of a ML-PWD

Let us connect the previously introduced concepts (cf. §2.1.1 and §2.1.2) and
provide an overview of a generic ML-PWD in Fig. 2.3.

Feature 
Extraction

Benign

Phishing

ML model
M

Output space

M (Fx)x Fx

Machine Learning-based Phishing Website DetectorWebsite

yx

DAFeature set 
F

Machine Learning spacePreprocessing spaceWebsite space

FIGURE 2.3: Architecture of a ML-PWD. A website, x, is preprocessed
into Fx. A ML model M analyzes such feature representation and

predicts its ground truth as M(Fx) = yx.
A sample (i.e., a website), x, ‘enters’ the ML-PWD and is subject to some prepro-

cessing aimed at transforming any input into a format accepted by the ML model—
according to a given feature set, F. (We assume that x is not blocklisted.) The result
of such preprocessing is the feature representation of the website x, i.e. Fx, which can
now be analyzed by the ML model M. We consider a ML model focused on binary
classification. Hence, training M requires: a dataset, D, whose samples are labelled
as benign or phishing; and any ML algorithm, A, supporting classification tasks (e.g.,
RF).

The ML model M predicts the ground truth of Fx as yx, i.e., M(Fx) = yx. Hence,
we can summarize the workflow of our ML-PWD through the following Expression:

x → Fx → M(Fx) = yx. (2.1)
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If x is a phishing (benign) webpage and yx is also phishing (benign), then we have
a true positive (true negative); otherwise, we have an incorrect classification (either
a false positive or a false negative). We assume that M has been properly trained,
so that its deployment performance yields a high true positive rate (tpr) while main-
taining a low false positive rate ( f pr)—under the assumption that no adversarial
attack occurs.

2.2.2 Evasion Attacks against ML-PWD

Adversarial attacks exploit a perturbation, ε, that induces a ML model M to pro-
vide an output favoring the attacker (cf. §2.1.3). In our case, M is a (binary) classifier
that analyzes Fx, hence we can express an adversarial attack through the following
Expression:

find ε s.t. M(Fx) = yε
x ̸= yx. (2.2)

In other words, the objective is finding a perturbation ε that induces a ML model M
(that is assumed to work well) to misclassify a given sample x (i.e., yε

x ̸= yx). Because
our focus is on evasion attacks, such misclassification entails having a positive (i.e.,
phishing) classified as a negative (i.e., benign). It is implicitly assumed that such ε
must: (i) preserve the ground truth2 (i.e., yε

x should be the same as yx); and (ii) pre-
serve the phishing logic of a webpage [206]. Such ε, however, can lead to different
effects on yε

x depending on ‘where’ it is applied during the workflow described by
Exp. 2.1. We describe such occurrence by formalizing the evasion-space of an attacker.

EVASION-SPACE. Let us observe Fig. 2.3. We can see that the figure is divided
into four ‘spaces’, each allowing the introduction of a perturbation ε that can affect
the output of the ML-PWD. Of course, a perturbation in the last space, i.e., the output-
space, cannot be considered as an ‘adversarial ML attack’, because it will have no
relationship with the ML model M. Hence, the evasion-space of an attacker that
wants to induce a misclassification by M is confined to the first three spaces. Let us
analyze each of these.

1. Website-space Perturbations (WsP). The entire detection workflow begins in the
‘website-space’, in which the website (i.e., x) is generated. Such space is ac-
cessible by any attacker, because they are in control of the generation process
of their (phishing) website. As an example, the attacker can freely modify the
URL or the representation of a website (subject to physical constraints3). Intro-
ducing a perturbation ε in this space (i.e., a WsP) yields an adversarial sample
x= x+ε, and the effects of such ε can affect all the operations performed by the
ML-PWD (cf. Exp 2.1). We emphasize the word “can”: this is because what
happens after x enters the ML-PWD strictly depends on the implementation of
such ML-PWD—which may, or may not, ‘notice’ the corresponding ε (e.g., M
can analyze an F that is not influenced by ε).

2. Preprocessing-space Perturbations (PsP). After x is acquired by the ML-PWD, it is
first transformed into Fx. An attacker with write access to the ‘preprocessing-
space’ can introduce a PsP ε that affects the process that yields the feature
representation of a website, leading to Fx = Fx+ε. For instance, a website x
with an URL of 40 characters can be turned into a Fx that has the URL_length
feature=20. Intuitively, attackers able to introduce PsP are powerful, but are

2E.g., changing a URL from “go0gle.com” to “google.com” is not a valid ε.
3Which depend on the semantics of websites, e.g., URLs cannot be 1 character long.
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still subject to constraints: before any Fx is sent to the ML model M, such Fx
is checked to ensure that it is not corrupted [56]. Indeed, Fx must not violate
any inter-feature dependencies or physical constraints. With respect to WsP,
PsP are guaranteed to be ‘noticed’ by the ML-PWD; however, they do not nec-
essarily influence the predictions of M: making a URL shorter may not be
enough to fool the detection process.

3. ML-space Perturbations (MsP). After the preprocessing, the feature representa-
tion of a website Fx enters the Machine Learning-space in order to be ana-
lyzed by M. If an attacker has write access to this space, they can introduce an
MsP, i.e., a perturbation ε that affects Fx immediately before it reaches M. An
MsP is the ‘strongest’ type of perturbation because it affects the Fx after all
integrity checks4 have been performed—potentially leading to corrupted val-
ues, or which have no relationship to any real x. We hence denote MsP as
Fx = Fx + ε. As an example, a MsP can yield a Fx having an URL_length=0.
As such, MsP are very likely to induce uncanny responses by M (but do not
guarantee evasion).

Summary and Cost. From Exp. 2.2, we observe that any perturbation ε should
ultimately affect the feature representation Fx of a given sample x. Hence, the crux
is determining ‘where’ such perturbation is introduced—which can happen in three
spaces. We formally define adversarial attacks by means of introducing a perturba-
tion in each of these spaces (i.e., WsP, PsP and MsP) through the following Expres-
sion (which extends Exp. 2.1):

find ε s.t.

⎧⎪⎨⎪⎩
x = x + ε ⇒ x → x → Fx → M(Fx) = yε

x ̸= yx WsP

Fx = Fx + ε ⇒ x → Fx → M(Fx) = yε
x ̸= yx PsP

Fx = Fx + ε ⇒ x → Fx → Fx → M(Fx) = yε
x ̸= yx MsP

(2.3)

We remark that the effects of WsP can match those of PsP—which can also match
those of MsP. For instance, a MsP can yield a sample with an URL_length of 20 which
– as long as it does not violate any inter-feature dependency – can represent a valid
website (hence MsP=PsP)5; to obtain an equivalent WsP, the attacker would have
to modify the actual URL and make it of exactly 20 characters (which is doable).
Hence, in some cases, Fx=Fx=Fx. As such, although some MsP cannot be crafted in
the website-space, it is also unfair to consider all MsP (or PsP) as being not physically
realizable. Finally, from a cost viewpoint, WsP≪PsP<MsP, because realizing MsP
requires the attacker to have more control6 on the ML-PWD (i.e., they must obtain
write-access to deeper segments of the ML-PWD).

2.2.3 Validation of Previous Work

An important contribution of our evasion-space is that it validates all past research
that consider perturbations in the “feature-space” (i.e., PsP or MsP). Let us explain
why.

4Indeed, a ML model M is agnostic to the generation process of a given input.
5Of course MsP=PsP if there is no ‘integrity check’.
6Our formalization is orthogonal to the one by Šrndic and Laskov. [277]: while [277] focus on the

attacker’s knowledge (“what does the attacker know about the ML system?”), we focus on the capabilities
(i.e., “where can the attacker introduce a perturbation affecting the ML system?”). Moreover, our PsP
are semantically different than the “adversarial preprocessing” by Quiring et al. [217]: while [217]
affect the preprocessing phase from outside the ML system, our PsP affect such phase from the inside.
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Context. By using Pierazzi et al. [214] notation, our WsP can be seen as per-
turbations in the “problem-space”; whereas PsP and MsP are perturbations in the
“feature-space”. The main thesis of Pierazzi et al. [214] is that evaluations carried
out in the feature space are unreliable due to the “inverse mapping problem”: some
changes in the feature representation of a sample (i.e., Fx) may not be physically
realizable when manipulating the original sample (i.e., x)—therefore exposing the
“weakness of previous evasion approaches.”

Intuition. Our original formalization elucidates that the “weaknesses” of past
work are not, in fact, weaknesses—therefore overturning some of the claims of Pier-
azzi et al. [214]. Our thesis is rooted in the following observation: the “inverse map-
ping problem” is irrelevant if the attacker has write access to the ML-PWD.

Explanation. Any attacker is able to craft WsP by manipulating their own phish-
ing webpages (to some degree). In contrast, reliably realizing PsP and MsP can only
be done by assuming an attacker that can manipulate the corresponding space (i.e.,
either the preprocessing- or the ML-space). Achieving this in practice presents a
high barrier of entry—but it is not impossible. For instance, consider the case of an
attacker who has compromised a given device integrating a client-side ML-PWD:
such attacker can interfere with any of the ML-PWD operations—especially if it is
open-source (e.g., [137]). Of course, realizing PsP or MsP if the ML-PWD is deployed
in an organization-wide intrusion detection system is harder, but not unfeasible (as
pointed out by [56]).

Takeaway: Our formalization validates all evasion attacks against ML-PWD previ-
ously evaluated through perturbations in any internal ‘space’ of the ML-PWD. This
requires to change the attacker’s assumptions, implicitly increasing the cost of the at-
tack.

Consequences. Simply put, we restore the value (partially ‘lost’ after the publica-
tion of [214]) of the evaluations performed by prior work (§2.6). By assuming that the
considered attacker can access a given space of the ML-PWD (either for PsP or MsP),
then there is no risk of falling into the “inverse mapping problem”—because it is a
constraint that such attacker is not subject to. Such different assumptions, however,
implicitly raise the cost of the corresponding attack. For example. Corona et al. [97]
craft perturbations in the ML-space: according to [214], the resulting perturbations
are, hence, unreliable. However, by assuming that the attacker can manipulate the
ML-space, then such adversarial examples (deemed unreliable by [214]) would be-
come realistic (thanks to our contribution).

2.3 Proposed Realistic Threat Model

We use our evasion-space formalization to devise our proposed adversarial ML
threat model—describing attractive strategies for real phishers. We first provide its
definition (§2.3.1), and then support its realisticness via security analyses (§2.3.2). In
Appendix 2.9 we show how to apply WsP on real phishing webpages. .

2.3.1 Formal Definition

We define our threat model according to the following four criteria (well-known
in adversarial ML [80]).

Goal. The adversary wants to evade a ML-PWD that uses M as a detection
method (i.e., the attacker wants to satisfy Exp. 2.2).



18
Chapter 2. SpacePhish: The Evasion-space of Adversarial Attacks against

Phishing Website Detectors using Machine Learning

Knowledge. The adversary has limited knowledge of the target system, the ML-
PWD. They know nothing about: the ML model M, its training data D, and its
underlying ML algorithm A (except that it supports binary classification). However,
the adversary knows a subset of the feature set F analyzed by M. Let K ⊆ F be such
a subset. The adversary is also aware that the ML-PWD will likely detect phishing
websites if no evasion attempt is made (otherwise, there would be no reason to do
so). Finally, the adversary implicitly knows that no blocklist includes their phishing
webpages (otherwise, the attacker would be forced to manipulate the URL).

Capability. The adversary has no access to the ML-PWD. They cannot use the
ML-PWD as an “oracle” (i.e., inspect the output to a given input); and they are there-
fore confined to perturbations in the website-space (i.e., WsP).

Strategy. The adversary uses their knowledge of K to craft WsP that may result
in successful evasion attacks at inference time.

We observe that our threat model is general because no specific set of features
(F) or ML model M (and hence D and A) is provided. Therefore, our threat model
can cover any ML-PWD that resembles the one in Fig. 2.3. Potentially, it can even
be a ML-PWD used by email filters if the corresponding M analyzes URL-related
information (e.g., [110, 128]). Furthermore, our threat model can be extended. We
will do so in our evaluation (§2.4), in which we compare the effects of attacks using
WsP against those entailing PsP and MsP (by assuming the same knowledge, i.e.,
limited to K).

2.3.2 Security Analysis

Let us analyze our threat model and explain why it portrays a realistic attacker—
especially if compared to typical ‘white-/black-box’ adversarial scenarios (cf. §2.1.3).
We intend to justify that our threat model describes attacks that are interesting to
investigate, and hence valuable for the security of ML-PWD.

Phishing in a nutshell. We start by focusing the attention on the intrinsic nature
of phishing. Indeed, phishing attempts – and especially those involving phishing
websites – are ‘cheap’ in nature [152]. Considering that real attackers operate with a
cost-benefit mindset, it is unlikely that such attackers will invest extensive resources
just to have their webpages evade a ML-PWD. Firstly, because such evasion will be
temporary (as soon as the webpage is reported in a blocklist, any adversarial attack
will be useless); secondly, because, even if a website evades a ML-PWD, the phishing
attempt is not guaranteed to succeed (a user still has to input its sensitive data). In-
deed, despite the exponential proliferation of phishing [28], most phishing attempts
are prone to failure [200]—and the attackers are well aware of this fact. Of course, at-
tackers can opt for more expensive spear-phishing campaigns [86] (which still have a
success rate of barely 10% [134]), but in this case they will likely design entirely new
phishing webpages—and not rely on cheap perturbations on pre-existing samples.

Limited Knowledge. Our attacker knows something (i.e., K) about the ML-PWD,
but they are not omniscient—hence, our threat model can be considered as a gray-
box scenario. Such ‘box’, however, is the entire ML-PWD, i.e., the blue rectangle in
Fig. 2.3. Our scenario is more interesting to investigate than white-box scenarios. The
reason is simple: ours is more likely to occur, because ‘phishers’ with complete knowl-
edge of the entire ML-PWD are extremely unlikely. Furthermore, extensive adver-
sarial ML literature [80] has ably demonstrated that white-box attacks can break
most systems—including ML-PWD (e.g., [44, 124, 174, 236]).
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Realistic Capabilities. Our ‘standard’ attacker has no access to the ML-PWD,
which is a realistic assumption. For instance, the attacker can share a phishing web-
site via social media, but without knowing which device (and, hence, ML-PWD) is
being used by potential victims to open such website. Therefore, the attacker cannot
reliably use M as an oracle. They could opt for querying a surrogate ML-PWD to
reverse-engineer its functionalities and then leverage the transferability of adversar-
ial attacks [105]. However, such ‘black-box’ scenario is both (i) unlikely to occur; and
(ii) ultimately not interesting to consider for a research paper. Unlikely, because it
would defeat the purpose of phishing attacks: reverse-engineering operations require
a huge resource investment—which can be invalidated via a simple re-training of
M (a common cybersecurity practice [61]). Not interesting, because such attacks have
been investigated before [48, 221]. For instance, Liang et al. [171] clearly demonstrated
that attackers with access to client-side detectors can successfully crack and evade
the corresponding ML-PWD; doing this, however, required more than 24 hours of
constant queries [171].

Takeaway: Phishing attempts have an intrinsic low rate of success. Attackers that
aim to evade a ML-PWD will favor ‘cheap’ tactics—which can be represented by our
proposed threat model.

Consideration. Attacking ML-PWD through (potentially unreliable) WsP is not
the only way to ‘realistically’ evade ML-PWD. This is clearly evidenced by prior
work—whose validity is restored thanks to our evasion-space formalization. How-
ever, our proposed ‘cheap’ attacks (through WsP) have never been investigated be-
fore in adversarial ML literature on PWD (§2.6). We hence set out to proactively
assess the impact of feasible WsP on state-of-the-art ML-PWD; and comparing such
impact to ‘less realistic’ (hence, less likely to occur) attacks performed through PsP
and MsP. Therefore, our evaluation will also consider such worst-case scenarios. We
stress, however, that our threat model shall not envision attackers who: (i) can ob-
serve or manipulate D (for poisoning attacks); (ii) can observe the output-space (for
black-box attacks); (iii) have full knowledge of the ML-PWD (for white-box attacks).

2.4 Evaluation

As a constructive step forward, we assess the robustness of 18 ML-PWD against 12
evasion attacks—all based on our threat model, but performed in different evasion
spaces. We have three goals:

• assess state-of-the-art ML-PWD against feasible attacks;

• compare perturbations introduced in distinct evasion-spaces;

• provide a statistically validated benchmark for future studies.

Achieving all such goals is challenging in research. Indeed, crafting perturbations in
the three distinct spaces (i.e., WsP, PsP, MsP) requires: (i) datasets containing raw-
data (for WsP), which are difficult to find; (ii) devising custom feature extractors
(for developing the ML-PWD); as well as (iii) foreseeing the effects of WsP on such
extractor (for PsP). Furthermore, to derive statistically sound conclusions, we must
repeat our experiments multiple times [62].

We describe our experimental setup (§2.4.1), and then summarize our evaluation
workflow (§2.4.2). More details are in Appendix 2.11.



20
Chapter 2. SpacePhish: The Evasion-space of Adversarial Attacks against

Phishing Website Detectors using Machine Learning

2.4.1 Experimental Setup

We consider a total of 18 ML-PWD, which vary depending on the source dataset
(2), the ML algorithm (3), and the feature set (3) used to develop the corresponding
ML model. Such a wide array allows one to draw more generalizable conclusions.

Source Datasets

We rely on two datasets for ML-PWD: δphish and Zenodo [97, 252]. Our choice is
based on three reasons.

• Both datasets include raw information of each sample (specifically, its URL and
its HTML). This is necessary because most of our attacks leverage WsP, for
which we must modify the raw webpage, i.e., before its features are extracted.

• Both datasets have been used by the state-of-the-art. Prior research [97, 252] has
demonstrated the utility of both datasets for ML-PWD, allowing for fair and
significant comparisons.

• They enable experimental reproducibility. Indeed, collecting ad-hoc data
through public feeds (e.g., AlexaTop/PhishTank) prevents fair future compar-
isons: phishing webpages are taken down quickly, and it is not possible to
retrieve the full information of webpages ‘blocklisted’ years before.

We provide an overview of our datasets in Table 2.2, which shows the number of
samples (benign and phish) and the performance (tpr and f pr) achieved by their
creators (in the absence of evasion).

ML Algorithms

We consider ML-PWD based on shallow and deep learning algorithms [58] for
binary classification. Our selection aims to provide a meaningful assessment of ex-
emplary ML-PWD based on exemplary ML methods. In particular, we consider:

• Logistic Regression (LR). One of the simplest ML algorithms, we consider LR
because it was (assumed to be) used by the ML-PWD embedded in Google
Chrome [171].

• Random Forests (RF). An ensemble technique, RF often outperforms other
contenders in phishing detection tasks [247].

• Convolutional neural Network (CN). We consider this well-known deep learn-
ing technique [163] due to its demonstrated proficiency also in ML-PWD
(e.g., [258]).

Feature Sets

We consider ML-PWD that use three feature sets (F), all resembling the one de-
scribed in our use-case (Appendix 2.9). Specifically, our ML-PWD analyze one of the
following:

• URL-only (Fu), i.e., the first 35 features in Table 2.1.

• Representation-only (Fr), i.e., the last 22 features in Table 2.1.

• Combined (Fc), corresponding to all features in Table 2.1.
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Rationale. Analyzing more information (i.e., larger feature sets, such as Fc) leads
to superior detection performance—as shown, e.g., in [97]. However, in some cases
this may not be possible: for instance, phishing email filters may make their decisions
only by analyzing the URL (cf. §2.1.2). Nevertheless, modifying the URL is one
of the easiest ways to trick a ML-PWD [201]: hence, a defender may develop an
‘adversarially robust’ detector that analyzes only the representation of a webpage.
Such detector will have a lower performance (w.r.t. Fc) in non-adversarial scenarios,
but will counter evasion attacks that manipulate the URL (cf. §2.1.3).

Observation. Our feature sets are not only popular in research (e.g., [130, 143, 188,
227]), but also used in practice. Indeed, several leading security companies yearly
organize MLSEC, an ML evasion competition [22]. In 2021 and 2022, MLSEC also
involved evading ML-PWD which specifically analyzed the HTML representation of a
webpage—i.e., our Fr. We will also refer to MLSEC in our evaluation.

Considered Attacks

In our evaluation, we assess the robustness of each of the 18 ML-PWD against a
total of 12 evasion attacks, which vary depending on the attacker’s knowledge (i.e.,
K), capabilities (i.e., the evasion-space) and strategy (i.e., the features ‘targeted’). In
particular, we consider two macro-families of attacks:

• Cheap (Website) Attacks (WA), corresponding exactly to our threat model and
exhaustively described in our case-study (in Appendix 2.9). The adversary
has no access to the ML-PWD, and can only apply WsP (which may not be
effective).

• Advanced Attacks, where we relax some of the assumptions of our threat
model to describe a more powerful attacker7. We consider three families: ˆ︂WA,
wherein the attacker uses WsP, but knows a portion of the low-level imple-
mentation of the feature extractor; PA, wherein the attacker has write-access to
(parts of) the preprocessing-space, and applies PsP; and MA, wherein the attacker
has write-access to the ML-space and will apply MsP (a worst-case scenario).

Each of these four attack families (i.e., WA, ˆ︂WA, PA, MA) comes in three variants—
depending on the features known (and targeted) by the attacker (i.e., u, r, c). For
instance, WAr is a WA in which the attacker tries to affect (through WsP) features
related to the HTML representation of the webpage. Despite all our perturbations
being ultimately ‘blind’ (the attacker will never be able to observe their effect), we
can expect that MA will have a greater impact than WA on the ML-PWD. However
such impact is compensated by the higher entry barrier for MA (see §2.2.2). More
details, including a high-level estimate of the affordability of our attacks, are in Ap-
pendix 2.11.

2.4.2 Workflow and Statistical Validation

Each source dataset (Zenodo and δphish) represents a different setting—which
we use to extract the corresponding training and inference partitions for our ML-
PWD. Such ML-PWD are based on one among three ML algorithms, encompassing
either shallow (LR and RF) or deep learning (CN) classifiers. Each of these classifiers

7These attacks are solely for research: their implicit higher cost w.r.t. WA may discourage real phish-
ers from launching them (although they are not completely impossible).
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FIGURE 2.4: Effectiveness of the most likely attacks (WA). The three
plots in each subfigure represent the algorithm used by a specific ML-
PWD. Each plot has bars divided in three groups, each denoting a
specific F used by the ML-PWD. The green bars show the tpr on the
original samples, while the others show the tpr against a specific vari-

ant of WA.

presents three variants, depending on the analyzed features (Fu, Fr, or Fc), yield-
ing a total of 9 ‘baseline’ ML-PWD per source dataset. After ensuring that such 9
ML-PWD maximize their performance (high tpr and low f pr, at least for Fc), we as-
sess their robustness against all the 12 proposed evasion attacks. Such attacks come
in four families (WA, ˆ︂WA, PA, MA) depending on the knowledge and capabilities of
the opponent, and each family presents three variants denoting the specific strat-
egy, i.e., which features are ‘targeted’ by the attacker (either u, r, or c). We consider
ML-PWD using Fc to be the ‘true’ baselines (likely highest performance in the ab-
sence of evasion attempts); whereas those using either Fu or Fr can be considered as
‘robust’ baselines (i.e., those using Fu will protect against attacks targeting Fr, and
viceversa).8 Such workflow is depicted in Fig. 2.6.

To provide results that are devoid of experimental bias and also to serve as a
reliable benchmark for future researches, we repeat all the abovementioned operations
50 times. This means that each source dataset is randomly sampled 50 times, each
resulting in a different training partition D and, hence, a different M. Such M is, in
turn, assessed on different data (i.e., different inference partitions), yielding different
tpr and f pr, and is also subject to the 12 evasion attacks (all using different malicious
samples as basis).

Such a large9 evaluation allows one to perform statistically validated comparisons
by leveraging well-known techniques [62]. We will do this to infer whether some
attacks induce a performance degradation that is statistically significant. To the best
of our knowledge, we are the first to use statistical tests to validate the impact of
adversarial attacks against ML-PWD.

2.5 Results and Discussion

We present the results of our evaluation by focusing on our evasion attacks. Specifi-
cally, our results aim at answering two questions:

• (§2.5.1) how dangerous are the most likely attacks (i.e., WA)?

• (§2.5.2) what is the effectiveness of attacks carried out in different evasion
spaces (i.e., ˆ︂WA, PA, MA)?

8Of course, the attacker expects the target ML-PWD to be using Fc.
9Overall, for our experiments we develop 900 M (given by: 2 source datasets * 50 random draws *

3 F * 3 A), each assessed against 1200 adversarial examples.
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We discuss our evaluation and potential for future work in §2.5.3. Our Artifact in-
cludes the full ‘benchmark’ results.

Preliminary assessment. Our results in the absence of adversarial attacks, re-
ported in Table 2.3, show that the best ML-PWD on both datasets use RF. We appre-
ciate that the ‘true’ baseline ML-PWD (using Fc) exhibit similar results as the state-
of-the-art (cf. Table 2.2). In contrast, the ‘robust’ baselines (using either Fr or Fu)
are slightly inferior10. For instance, on Zenodo, the RF using Fu has almost the same
performance as Fc, but the one using Fr has 5% less tpr and 2% more f pr; whereas on
δphish, the RF using Fu has 50% less tpr (but similar f pr), while the one using Fr has
0.5% more f pr, but only 3% less tpr. Such degradation is the cost of using defenses
based on feature removal on the considered ML-PWD. The expected benefit, however,
is a superior resilience to evasion attempts.

2.5.1 Effectiveness of the most likely attacks (WA)

Let us focus the attention on the most likely attacks. We report in Figs. 2.4 the
tpr achieved by all our ML-PWD against all our WA attacks (red bars), and compare
it with the tpr (no-atk, shown in green bars) achieved by the same ML-PWD on the
original set of samples used as basis for WA. Some intriguing phenomena occur.

True Baseline (Fc). We first consider ML-PWD using Fc (leftmost group of bars
in each plot), as they are the ‘true’ baseline.

• On δphish (Fig. 2.4b), all ML-PWD are affected by the ‘strongest’ cheap attack,
i.e., WAc. Specifically, the ML-PWD using LR is completely defeated (from 0.86
tpr down to 0.36); in contrast, those using CN or RF suffer a smaller, but still
significant drop (from nearly 0.95 down to ∼0.8). Notably, the CN despite
being worse than the RF in non-adversarial settings (cf. Table 3.6), appears to
be slightly more robust.

• The situation is different on Zenodo (Fig. 2.4a). Here, while the LR is still de-
feated, the CN and RF appear not to be very affected by WAc. However, consid-
ering that both CN and RF exhibit very high performance in non-adversarial
settings (cf. Table 2.3), it is crucial to determine whether WAc poses a real threat
to such ML-PWD. To this purpose, we carry out a Welch t-test, which we can
do thanks to our large amount of trials. We set our null hypothesis as “WAc

and no-atk are equal”. The findings are valuable: against RF, the p-value is
0.221; whereas against CN, the p-value is 0.002. By using the common statisti-
cal significance threshold of 0.05, we can hence provide the following answer:
the RF is not affected by WAc, whereas the CN is affected by WAc.

The latter finding is intriguing, because it suggests that shallow learning methods can
be more resilient than deep learning ones for PWD—against our proposed attacks.
Finally, we also observe that WAr clearly defeat LR on both datasets, whereas the
impact on RF and CN is significant on δPhish, but small on Zenodo.

Robust Baselines (Fu, Fr). The robust baselines are, in general, reliable against
WA. The ML-PWD using Fu counter WAr (and viceversa), because the tpr is exactly
the same as the original one. Notably, however, ML-PWD using Fr (similar to the

10Focusing on the ML-PWD using Fr (which are similar to the real ML-PWD in MLSEC [22]), we
appreciate that RF achieves a remarkable 0.935 tpr and 0.01 f pr (averaged on both datasets), making
such ML-PWD a valid baseline.
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ML-PWD of11 MLSEC [22]) are affected by WAr: the LR is clearly defeated on both
datasets, whereas RF suffers a 10% and 3% drop on δphish and Zenodo, respectively.
Nevertheless, we observe a fascinating phenomenon: in some cases, the tpr under
attack is higher than in no-atk; e.g., on δphish the RF analyzing Fu has its tpr to increase
from 0.56 to ∼0.84 against both WAu and WAc. Such phenomenon occurs because the
attacker (in any variant of WA) does not know ‘what to do’ to reliably evade the ML-
PWD: the attacker guesses some WsP, which can have no impact, or even make the
website closer to a ‘malicious’ one (from the viewpoint of M).

Takeaway: The realistic attacks in the website-space (WAc) can evade five (out of
six) ML-PWD. Despite being small, the performance degradation is statistically sig-
nificant: hence, due to their cheap cost, WAc represent a threat to state-of-the-art
ML-PWD.
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(A) Zenodo. Each plot reports the tpr resulting
from the 9 advanced attacks (i.e., ˆ︂WA, PA, MA)
across the 50 trials. Colors denote the targeted fea-

tures (u, r, c).
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(B) δphish. Each plot reports the tpr resulting
from the 9 advanced attacks (i.e., ˆ︂WA, PA, MA)
across the 50 trials. Colors denote the targeted fea-
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FIGURE 2.5: Comparison of attacks carried out in different evasion-
spaces. Each subfigure refers to a specific dataset, and presents 9
plots. Such plots are organized in three rows and three columns.
Rows denote a specific ML algorithm (LR, RF, CN). Columns denote
a specific feature set: the ‘true’ baseline (using Fc) is on the left; the

others are the ‘robust’ baselines (using Fu or Fr).

2.5.2 Comparing the evasion-space (ˆ︂WA, PA, MA)

We now focus on comparing the effectiveness of attacks that aim at influencing
the same features (i.e., either u, r, c), but whose perturbations are introduced in dif-
ferent spaces (i.e., either WsP, PsP, or MsP). We visualize such results in Fig. 2.5.

The ‘true’ baselines (using Fc, i.e., the leftmost plots in Fig. 2.5) are defeated by
MA. However, there are some notable exceptions: on Zenodo, the RF and CN are
resilient to MAr (this is because the HTML features have little importance for Fc).

11We also successfully attacked the competition-grade ML-PWD of [22] with WAr, achieving similar
results than the one shown in our custom-built ML-PWD. A demonstrative video (of 140s) can be
found at the homepage of our website.

https://spacephish.github.io


2.5. Results and Discussion 25

In contrast, on δphish, RF can withstand MAu. The ‘robust’ baselines counter the
corresponding MA, but unsurprisingly suffer against the others.

In general, PA tend to have a larger impact than ˆ︂WA against the ‘true’ baselines.
However, this is not always true: we find enlightening that the CN on Zenodo is more
robust to PA than to ˆ︂WA. What is even more surprising is that such CN significantly
outperforms the RF against PA, but also against MA. Such finding could inspire de-
ployment of ML-PWD using deep learning on Zenodo—despite being inferior to RF
in the no-atk (Table 2.3) and against WAc (§2.5.1).

We note that ˆ︃WAu perfectly match WAu, which makes sense as they involve ex-
actly the same WsP (cf. Appendix 2.11). We can also see some discrepancies betweenˆ︂WA and PA: as a matter of fact, our anticipation of the preprocessing-space (i.e., the
PsP of PA) did not exactly match what truly happened in the website-space . How-
ever, in some cases (e.g., the RF using Fc and Fr on δphish) we observe that the
effectiveness of ˆ︂WA and PA tend to be similar. Such crucial finding demonstrates
that perturbations applied directly to Fx (which we use for PA) can induce the same
effects as those applied to x (which we use for ˆ︂WA). In other words: if properly
crafted, then even perturbations in the “feature-space” can resemble adversarial ex-
amples that are physically realizable [248].

Let us compare our attacks with those considered by δphish creators. Specifically,
the attacks in [97] manipulate increasingly higher amounts of features (up to 10),
and all ultimately evade target ML-PWD (which analyzes the HTML). Such finding
is confirmed by our results on the ML-PWD analyzing Fr on δphish against MAr,
which all misclassify the adversarial samples. However, if the perturbations are applied
in different spaces (i.e., PsP or WsP), then the ML-PWD is significantly less affected.

2.5.3 Discussion and Future Work

Our evaluation is a proof-of-concept, and we do not claim that all ML-PWD will
respond in the same way as ours, and neither we claim novelty in the ‘generic’
method used to to evade PWD (attackers have been manipulating the HTML or
URL for decades [80]). Indeed, our goal was to validate our primary contribution
(whose focus is on machine learning) by performing a fair comparison of attacks
(each having a different cost) in diverse evasion-spaces.

Warning on WA. A legitimate observation is that our cheap attacks, despite af-
fecting most ML-PWD, have a small impact—even if statistically significant (§2.5.1).
Such results, however, must not induce conclusions such as “these attacks are not
interesting” or (worse) “these attacks can be overlooked in the security lifecycle”.
Indeed, the main threat of WA is represented by the cheap cost: thousands of phishing
websites are created every day [28], and in such big numbers even a 1% difference
can be the separation between a compromised and secure system [61]. Our goal is
not to propose devastating attacks that bypass any ML-PWD; rather, we focus on
those attacks that are more likely to occur in reality. As a matter of fact, WAs can
be automatized and implemented within seconds and few lines of code; in contrast, the
advanced attacks (including those of past work, e.g., [97, 171]) require to compro-
mise or reverse-engineer the ML-PWD (§2.2.1). The cost of an attack should also
account for the effort required for its implementation. Most related literature focuses
on measuring ‘queries’ (e.g., [105]): our WA do not require any query. Nonetheless,
we invite future work to explore metrics to estimate the cost of attacks in terms of
human effort.

Extensions. The main purpose of our evaluation is to highlight how state-of-
the-art ML-PWD respond to diverse evasion attacks. There are, however, millions
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of ways to do the above. For instance, the attacks can target different features (and
in different ways) than the ones considered in our evaluation (i.e., u, r, c); the ML-
PWD can analyze different features, which can be generated via different prepro-
cessing mechanisms (e.g., [154]). Additional defenses can also be considered (e.g.,
adversarial training [205, 250]). For instance, we did not consider ML-PWD that
analyze the visual representation of a webpage (e.g., [44, 174]): such attacks would
resemble those conducted in computer vision, which are well-known to be effec-
tive (e.g., [208, 249]). Nevertheless, our threat model is agnostic of the data-type, so
we endorse future work to also consider ML-PWD analyzing images. Finally, our
evasion-space formalization can be applied even to settings beyond phishing (e.g.,
malware), which may entail attackers more likely to use PsP or MsP.

2.6 Related Work

Countering phishing is a long-standing security problem, which can be considered
as a subfield of cyberthreat detection—a research area that is being increasingly in-
vestigated also by adversarial ML literature [58]. We focus on the detection of phish-
ing websites. Papers that consider phishing in social networks [81], darkweb [267],
phone calls [129], or emails [110] are complementary to our work—although our
findings can also apply to phishing email filters if they analyze the URLs included
in the body text (e.g., [128]). Our focus is on attacks against ML-PWD. For instance,
Tian et al. [247] evade PWD that use common blacklists, and their main proposal
is to use ML as a detection engine to counter such “squatting” phishing websites.
Hence, non-ML-PWD (e.g., [272]) are outside our scope.

Let us compare our paper with existing works on evasion attacks against ML-
PWD. We provide an overview in Table 2.4, highlighting the main differences of our
paper with the state-of-the-art. Only half of related papers craft their attacks in the
problem-space—which requires modifying the raw webpage. Unfortunately, most
publicly available datasets do not allow similar procedures. A viable alternative is
composing ad-hoc dataset through public feeds as done, e.g., by [124] and [221] (the
latter only for URL-based ML-PWD). All these papers, however, do not release the
actual dataset, preventing reproducibility and hence introducing experimental bias.
The authors of [236] share their dataset, but while the malicious websites are provided
with complete information (i.e., URL and HTML), the benign websites are provided
only with their URL—hence preventing complete reproducibility of attacks in the
problem-space against ML-PWD inspecting the HTML. The latter is a well-known
issue in related literature [206], which does not affect our paper because our en-
tire evaluation is reproducible. Notably, Aleroud et al. [49] evaluate attacks both in
the problem and feature-space, but on different datasets, preventing a fair compari-
son. Indeed, they evade one ML-PWD trained on PhishStorm (which only includes
raw URLs) with attacks in the problem space; and another ML-PWD trained on UCI

(which is provided as pre-computed features) through feature space attacks. Hence,
it is not possible to compare these two settings. A similar issue affects also [48],
which consider 4 datasets, each having a different F. Therefore, no prior work com-
pared the impact of attacks carried out in distinct evasion-spaces—to the best of our
knowledge. Not many papers consider adversarially robust ML-PWD, and only half
consider both SL and DL algorithms—which our evaluation shows to respond dif-
ferently against adversarial examples (cf. §2.5.2). It is concerning that few papers
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overlook the importance of statistically significant comparisons. The most remark-
able effort is [229] which only performs 10 trials (we do 50), which are not enough
to compute precise statistical tests.

Nevertheless, most prior work assume stronger attackers than those envisioned
in our threat model (cf. §2.3). Indeed, past threat models portray black-box attackers
who can freely inspect the output-space and query the ML-PWD (e.g., [48, 171, 221]);
or white-box attackers who perfectly know the target ML model M, such as its con-
figuration, its training data D, or the feature importance (e.g., [44, 124, 174]). The
only papers considering attackers that are closer to our threat model are [165, 201]
and [44]. However, the ML-PWD considered in [44] is specific for images, which are
tough to implement (cf. §2.5.3) and also implicitly resembles a ML system for com-
puter vision—a task well-investigated in adversarial ML literature [80]. In contrast,
the ML-PWD considered in [165] and [201] is similar to ours, but the adversarial
samples are randomly created in the feature space, hence requiring an attacker with
write-access to the internal ML-PWD workflow. Such an assumption is not unreal-
istic, but very unlikely in the context of phishing (cf. §2.3.2).

2.7 Conclusions

This study aims to provide a constructive step towards developing ML systems that
are secure against adversarial attacks.

Specifically, we focus on the detection of phishing websites, which represent a
widespread menace to information systems. Such context entails attackers that ac-
tively try to evade ‘static’ detection mechanisms via crafty, but ultimately simple
tactics. Machine learning is a reliable tool to catch such phishers, but ML is also
prone to evasion. However, realizing the evasion attempts considered by most past
work requires a huge resource investment—which contradicts the very nature of
phishing. To provide valuable research for ML security, the emphasis should be on
attacks that are more likely to occur in the wild. We set this goal as our primary
objective.

After dissecting the architecture of ML-PWD, we propose an original interpreta-
tion of attacks against ML systems by formalizing the EVASION-SPACE of adversarial
perturbations. We then carry out a large evaluation of evasion attacks exploiting di-
verse ‘spaces’, focusing on those requiring less resources to be staged in reality.

TAKEAWAY: The findings of our paper are useful to both research and practice in
the domain of adversarial ML.

• Our evasion-space formalization allows researchers to evaluate adversarial
ML attacks without the risk of falling into the “unrealizable” perturbation
trap (as long as the corresponding cost is factored in).

• Our results raise an alarm for practitioners: some ML-PWD can be evaded
with simple tactics that do not rely on gradient computations, days of brute-
forcing, or extensive intelligence gathering campaigns.

2.8 Supplementary Tables and Figures

We report in Table 2.1 the complete list of features of the ML-PWD considered in our
paper. Table 2.2 shows some essential information on our datasets; Table 2.3 reports
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the baseline performance of our ML-PWD (developed through the workflow shown
in Fig. 2.6); and Table 2.4 shows the related works discussed in §2.6.

TABLE 2.1: Features F of the considered ML-PWD.

# Feature Name # Feature Name # Feature Name

1 URL_length 20 URL_shrtWordPath 39 HTML_commPage
2 URL_hasIPaddr 21 URL_lngWordURL 40 HTML_commPageFoot
3 URL_redirect 22 URL_DNS 41 HTML_SFH
4 URL_short 23 URL_domAge 42 HTML_popUp
5 URL_subdomains 24 URL_abnormal 43 HTML_rightClick
6 URL_atSymbol 25 URL_ports 44 HTML_domCopyright
7 URL_fakeHTTPS 26 URL_SSL 45 HTML_nullLnkWeb
8 URL_dash 27 URL_statisticRe 46 HTML_nullLnkFooter
9 URL_dataURI 28 URL_pageRank 47 HTML_brokenLnk
10 URL_commonTerms 29 URL_regLen 48 HTML_loginForm
11 URL_numerical 30 URL_checkGI 49 HTML_hiddenDiv
12 URL_pathExtend 31 URL_avgWordPath 50 HTML_hiddenButton
13 URL_punyCode 32 URL_avgWordHost 51 HTML_hiddenInput
14 URL_sensitiveWrd 33 URL_avgWordURL 52 HTML_URLBrand
15 URL_TLDinPath 34 URL_lngWordPath 53 HTML_iframe
16 URL_TLDinSub 35 URL_lngWordHost 54 HTML_favicon
17 URL_totalWords 36 HTML_freqDom 55 HTML_statBar
18 URL_shrtWordURL 37 HTML_objectRatio 56 HTML_css
19 URL_shrtWordHost 38 HTML_metaScripts 57 HTML_anchors

All features in Table 2.1 are used by both the ML-PWD targeted in our pragmatic
use-case (cf. §2.9), as well as by the ‘true baselines’ ML-PWD (i.e., those analyzing
Fc) used in our evaluation (cf. §2.4.1); in contrast, the ‘robust’ ML-PWD (i.e., those
analyzing either Fu or Fr) consider subsets of the features in Table 2.1 (see §2.4.1).

TABLE 2.2: Statistics and state-of-the-art of our datasets.

Dataset #Benign #Phish fpr tpr

δphish [97] 5511 1012 0.01 0.98
Zenodo [252] 2000 2000 0.08 0.99

We mention that the original Zenodo contains 100k phishing, and almost 4M be-
nign webpages. To make our evaluation “humanly feasible,” we randomly sample
4000 webpages from Zenodo, equally split between benign and phishing. In such
a way, we can analyze the response of ML-PWD having diverse balancing: while
Zenodo is perfectly balanced, δPhish has significantly more benign samples.

By comparing Table 2.3 with Table 2.2, we appreciate that our ML-PWD using
Fc achieve comparable performance as prior work (even after our subsampling on
Zenodo), confirming their relevance as baseline. Our repository includes the 4K pages
we used for Zenodo.
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TABLE 2.3: Performance in non-adversarial settings, reported as the
average (and std. dev.) tpr and f pr over the 50 trials.

A F Zenodo δphish

tpr f pr tpr f pr

CN
Fu 0.96±0.008 0.021±0.0077 0.55±0.030 0.037±0.0076

Fr 0.88±0.018 0.155±0.0165 0.81±0.019 0.008±0.0020

Fc 0.97±0.006 0.018±0.0088 0.93±0.013 0.005±0.0025

RF
Fu 0.98±0.004 0.007±0.0055 0.45±0.022 0.003±0.0014

Fr 0.93±0.013 0.025±0.0118 0.94±0.016 0.006±0.0025

Fc 0.98±0.006 0.007±0.0046 0.97±0.007 0.001±0.0011

LR
Fu 0.95±0.009 0.037±0.0100 0.24±0.017 0.011±0.0026

Fr 0.82±0.017 0.144±0.0171 0.74±0.025 0.018±0.0036

Fc 0.96±0.007 0.025±0.0077 0.81±0.020 0.013±0.0037
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FIGURE 2.6: Experimental workflow. Each source dataset (containing
benign, B, and phishing, P, samples) is randomly split into the train-
ing (Bt and Pt) and inference (Bi and Pi) partitions, used to train and

test each ML-PWD. We use Pi as basis for our adversarial samples.
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TABLE 2.4: Adversarial attacks against ML-PWD. For each paper,
we report: the evasion space (for simplicity we consider problem and
feature-space); which features (F) are analyzed by the ML-PWD; the
ML algorithms used by the ML-PWD (SL or DL); if some defense is
evaluated; how many datasets are used (and if they are reproducible);

and if the experiments are repeated for statistical validation.

Paper
(1st Author)

Year
Evasion

space
ML-PWD
types (F)

ML
Algorithms

Defense
Datasets
(reprod.)

Stat.
Val.

Liang [171] 2016 Problem Fc SL ✗ 1 (✗) ✗

Corona [97] 2017 Feature Fr, Fc SL ✓ 1 (✓) ✗

Bahnsen [74] 2018 Problem Fu DL ✗ 1 (✗) ✗

Shirazi [229] 2019 Feature Fc SL ✗ 4 (✓) ✓*
Sabir [221] 2020 Problem Fu SL, DL ✓ 1 (✗) ✗

Lee [165] 2020 Feature Fc SL ✓ 1 (✓) ✗

Abdelnabi [44] 2020 Problem Fr DL ✓ 1 (✓) ✗

Aleroud [49] 2020 Both Fu SL ✗ 2 (✓) ✗

Song [236] 2021 Problem Fc SL ✓ 1 (✓*) ✗

Bac [72] 2021 Feature Fu SL, DL ✗ 1 (✗) ✗

Lin [174] 2021 Feature Fc DL ✓ 1 (✓) ✗

O’Mara [201] 2021 Feature Fr SL ✗ 1 (✓) ✗

Al-Qurashi [48] 2021 Feature Fu, Fc SL, DL ✗ 4 (✓) ✗

Gressel [124] 2021 Feature Fc SL, DL ✓ 1 (✗) ✗

Ours Both Fu, Fr, Fc DL, SL ✓ 2 (✓) ✓

2.9 Pragmatic Use-Case

Let us showcase how an attacker can physically realize WsP leading to adversarial
samples. We intend to demonstrate that WsP “can be done”, and hence represent a
(likely) threat that must be considered in a proactive development lifecycle of ML-
PWD.

Target System. We consider the ML-PWD proposed in [143], whose architec-
ture aligns with the one in Fig. 2.3. The corresponding M is a RF classifier trained
on a dataset created ad-hoc through public feeds. The complete feature set F ana-
lyzed by M is reported in Table 2.1, which includes features related to both the URL
and the representation of the website (based on the HTML). The ML-PWD extracts
such features by inspecting the raw webpage according to the thresholds proposed
in [188] (and also used in [143]). We observe that such methodology (and, hence, F)
is also adopted by very recent works (e.g., [130, 227]). We provide more details in
the Artifact.

Attacker. The attacker expects the usage of a ML-PWD, but they are agnostic
of anything about the ML model M, i.e., they are oblivious of the ML algorithm
(i.e., RF) and its training data. The attacker, however, follows the state-of-the-art and
hence knows the most popular feature sets used by ML-PWD (e.g., [227]). In particu-
lar, the attacker correctly guesses that the ML-PWD analyzes features related to both
the URL and the representation of the webpage, and specifically the URL length and
the objects embedded in the HTML. Formally: K=(URL_length, HTML_objectRatio).
The attacker, however, does not know the exact functionality of the feature extrac-
tor, the complete feature set F, and which features are more important for the final
classification (the latter requires knowledge of M). To provide a concrete example,
we assume that the attacker owns the phishing12 webpage shown in Fig. 2.7, whose
URL is “https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/”.

Real Perturbations. To craft perturbations in the website-space (i.e., WsP) that
affect K ⊂ F, the attacker can do the following.

12PhishTank reports such webpage to be a true and verified phishing (March 2022).
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FIGURE 2.7: An exemplary (and true) Phishing website, whose URL
is https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/.

(1) Modify the HTML. The attacker knows that phishing websites have many links
that point to external domains13 with respect to internal resources (which would
require to invest more into webhosting). Hence, the attacker can introduce (in the
HTML) a high number of ‘fake links’ that point to non-existent internal resources,
which will affect the ratio of internal-to-external objects (making it more even). Such
fake links, however, are can be made invisible (by exploiting some CSS properties)
to users, who will not notice any difference14. We provide a visual representation
of such WsP in Fig. 2.8, showing a snippet of the HTML of the original phishing
webpage (cf. Fig. 2.7); the red rectangles denote two exemplary ‘perturbations’, i.e.,
the introduction of (hidden) links pointing to an internal resource (which may not
exist). Note that such WsP does not break the website’s functionality, and can be
cheaply introduced anywhere (and many times) in the source HTML. Similar WsP
are feasible and will15 influence the HTML_objectRatio (included in K).

(2) Modify the URL. The attacker knows that long URLs are suspicious. So the
attacker can, e.g., use a URL-shortening service (e.g., bit.ly) to alter the length of
the phishing URL. In our case, the original URL (of 52 characters) can be shrunk
to “https://bit.ly/3MZHjt7” (of 14 characters), thereby resulting in a completely
different URL. Such a WsP will affect many features analyzed by M (cf. Table 2.1).
Such features are not included in K, and hence their modifications are beyond the
attacker’s knowledge. The shrunk URL can then be distributed by the attacker in
the wild16.

(3) Both of the above. The attacker can easily perturb both the URL and HTML to
induce perturbations of higher impact.

13E.g., phishing associated with AT&T will have many links pointing to the real AT&T.
14N.b.: complete ‘invisibility’ is not a strict requirement. Some WsP can be ‘spotted’ by a detailed

analysis, but users may not notice them while still being phished. E.g., a link can be deleted; or a WsP
can wrap: <a href=’link’> into <a onclick="this.href=’link’">.

15In theory, similar WsP could be detected by analyzing whether a given link is valid or not. Doing
so, however, would pose an extremely high overhead: it requires checking every single link for every
webpage that is analyzed by the ML-PWD.

16The ML-PWD will be fooled if it is stateless and does not visit all the redirections of the shortening
service. Nevertheless, there are many ways to reduce the URL_length.
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Observation. None of these WsP are guaranteed to evade the ML-PWD. Indeed,
a short URL is not necessarily benign, and having a non-suspicious ratio of internal-
to-external objects is also not a strict requirement for being a benign webpage. The
WsP could even be useless in the first place, e.g., the original URL could be already
‘short’. Indeed, our attacker is not aware of what happens inside the ML-PWD.
The problem, however, is that such uncertainty is shared by both the attacker (who
cannot observe the ML-PWD) and the defender (who cannot exactly pinpoint what
the attacker does). To reveal the uncanny effects of such WsP, we assess them in §2.5

FIGURE 2.8: A perturbation ε in the website-space (WsP). The original
HTML (related to the website in Fig. 2.7) is modified by introducing

hidden link(s). Such WsP will not be noticed by a user.

2.10 Threat Model: Considerations

Let us enhance our threat model with four considerations.
(1) The attacker can easily acquire a rough idea of the feature set F analyzed by

the ML-PWD. For instance, the descriptions of many state-of-the-art solutions are
openly accessible. However, it is unlikely that the attacker knows the exact feature
set F: the actual implementation of a ML-PWD (including the feature extractor) can
– or, rather, should! – differ from the publicly available information. This is why we
consider an attacker that only knows K ⊆ F.

(2) We note that it is also possible that K = ∅. In this case, the attacker expects the
ML-PWD to analyze some features that are not actually analyzed by M (for instance,
the attacker can modify the URL, but nothing about the URL is analyzed by M). This
can happen, e.g., against an ‘adversarially robust’ ML-PWD that leverages the well-
known feature removal strategy (cf. §2.1.3). As a result, WsP targeting such K will
likely result in a negligible impact. Furthermore, it is also possible that some features
in K simply cannot be influenced by an attacker operating in the website-space (e.g.,
features that depend on third-party sources, such as DNS logs).

(3) Since our attacker cannot access the ML-PWD, they cannot observe the
output-space and, thus, cannot optimize their perturbations to find the best WsP that
guarantees evasion; and cannot even verify whether their WsP evade the ML-PWD
or not. The attacker is, however, not subject to strict boundaries on WsP (§2.2.2).
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(4) Our threat model considers attacks at inference-time (i.e., after M has been
deployed in the PWD). This is because the dataset used to devise ML-based security
systems is typically well-protected [56]. Compromising such dataset would signifi-
cantly raise the cost of the offensive campaign (as also highlighted in [172]). There-
fore, phishers are unlikely to launch attacks at training-time.

The last two are significant: lack of access (and, hence, knowledge) on the train-
ing set prevents from achieving the no-box attacks of [166]; furthermore, the impos-
sibility of witnessing the output of M prevents enacting typical black-box strategies
(e.g., [194]).

2.11 Experiments: Considered Attacks

In our paper, we consider a total of 12 evasion attacks, divided in four families. One
of these families is an exact replica of our ‘standard’ threat model. The remaining
three families, however, are extensions of our threat model, which assume more ‘ad-
vanced’ adversaries who have superior knowledge and/or capabilities.

Two of our families involve WsP (WA and ˆ︂WA), but assume attackers with differ-
ent knowledge; whereas the remaining two families involve either PsP or MsP (PA
and MA). Each family has three variants depending on the features ‘targeted’ by the
attacker, i.e., either those related to the URL, the HTML, or a combination of both (u,
r, or c). For WsP, the underlying ‘attacked’ features are always the same for all vari-
ants, which are assumed to be known by the attacker: u is always the URL_length;
for r is the HTML_objectRatio; and for c they are both of these. (Do note that our WsP
will affect also features beyond the attacker’s knowledge.)

• Cheap Website Attacks (WA) perfectly align with our threat model (ans resemble
the use-cases in Appendix 2.9). The perturbations are created in the website-
space (WsP), realizing either WAu, WAr, or WAc. Specifically for r (and c), we
consider two semantically equivalent WsP: “add fake link” for δPhish, and
“link wrapping” for Zenodo. Such WsP attempt to balance the object ratio: the
former by adding (invisible) links to (fake) internal objects, whereas the lat-
ter by eluding the preprocessing mechanism—thereby having a link not being
counted among the total links shown in a webpage.

• Advanced Website Attacks ( ˆ︂WA), which envision a more knowledgeable attacker
than WA. The attacker knows how the feature extractor within the ML-PWD
operates (i.e., they know the specific thresholds used to compute some fea-
tures). The attacker – who is still confined in the website-space – will hence
craft more sophisticated WsP because they know how to generate an adver-
sarial sample that is more likely to influence the ML-PWD. Thus, the attacker
will modify either the URL, the HTML, or both (i.e., ˆ︃WAu, ˆ︃WAr, ˆ︃WAc), but in
more elaborate ways—e.g., by ensuring that the HTML_objectRatio exactly re-
sembles the one of a ‘benign’ sample; or by making an URL to be ‘long enough’
to be considered short.

• Preprocessing Attacks (PA), which are an extension of our threat model, and as-
sume an even stronger attacker that is able to access the preprocessing stage
of the ML-PWD, and hence introduce PsP. Such an attacker is capable of direct
feature manipulation—subject to integrity checks (i.e., the result must reflect
a “physically realizable” webpage). Since the attacker does not know any-
thing about the actual M, the attacker must still guess their PsP. Such PsP will
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target features based on either u, r, c (i.e., PAu, PAr, PAc) by accounting for inter-
dependencies between other features.

• ML-space attacks (MA), representing a worst-case scenario. The attacker can ac-
cess the ML-space of the ML-PWD, and can hence freely manipulate the entire
feature representation of their webpage through MsP. However, the attacker is
still oblivious of M, and must hence still guess their WsP. Thus, the MsP ap-
plied by the attacker completely ‘flip’ many features related to u, r, c (i.e., MAu,
MAr, MAc).

Motivation. We consider these 12 attacks for three reasons. First, to assess the
effects of diverse evasion attacks at increasing ‘cost’. For instance, the simplicity of WA
makes them the most likely to occur; whereas MA can be disruptive, but are very ex-
pensive (from the attacker’s viewpoint). Second, to study the response of ML-PWD
to WsP targeting the same features (WAr), but in different ways (one per dataset),
leading to alterations of different features beyond the attacker’s knowledge. Third. to
highlight the effects of potential ‘pitfalls’ of related researches. Indeed, we observe that
all three remaining families ( ˆ︂WA, PA, MA) envision attackers with similar knowledge
which they use to target similar features. Such peculiarity allows comparing attacks
carried out in different ‘spaces.’ A particular focus is on PA, for which we apply
PsP by anticipating how a WsP can yield a physically realizable [248] PsP. Put differ-
ently, our evaluation shows what happens if the perturbations are applied without
taking into account all preprocessing operations that transform a given x into the Fx
analyzed by M.

Implementation. We follow three steps: isolate, perturb, evade. We refer to the
Artifact and source-code for the low-level details.

1. Isolate. Our threat model envisions evasion attacks that occur during inference,
hence our adversarial samples are generated from those in Pi. Furthermore,
we recall that the attacker expects the ML-PWD to be effective against ‘reg-
ular’ malicious samples (cf. §2.3.1). To meet such condition, we isolate 100
samples from Pi that are detected successfully by the best ML-PWD (typically
using Fc). Such samples are then used as basis to craft all the adversarial sam-
ples (through WsP, PsP or MsP) of our evaluation—thereby ensuring that all
detectors are assessed against the exact same adversarial samples (which is necessary
for a fair comparison).

2. Perturb. We apply the perturbations as follows. For WA and ˆ︂WA, we craft the
corresponding WsP, apply them to each of the 100 samples from Pi, and then
preprocess such samples by using the feature extractor. For PA and MA, we
first preprocess the 100 samples with the feature extractor, and then apply the
corresponding PsP or MsP. Overall, these operations result in 1200 adversarial
samples (12*100).

3. Evade. The 1200 adversarial samples are then sent to all the 9 ML-PWD (for
each dataset), and we measure the tpr again.

We expect the tpr on the adversarial samples (generated by any of our 12 considered
attacks) to be lower than the tpr on the originals.

Effectiveness and Affordability. In terms of effectiveness, assuming the same
targeted features, WA<ˆ︂WA<PA≪MA (§2.5.2). This is justified by the higher invest-
ment required by the attacker, who must either perform extensive intelligence gath-
ering campaigns (to understand the exact feature extractor for ˆ︂WA) or gain write-
access to the ML-PWD (for PA and MA). Let us provide a high-level summary of the
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requirements to implement all our attacks—all of which are query-less and rely on
blind perturbations.

• WA: they require as little as a dozen lines of elementary code, and a very rough
understanding of how ML-PWD operate (which can be done, e.g., by reading
research papers).

• ˆ︂WA: they also require a few lines of code to implement. However, determining
the exact thresholds requires a detailed intelligence gathering campaign (or
many queries to reverse-engineer the ML-PWD, if it is client-side).

• PA: they require a compromise of the ML-PWD. For example, introducing a
special ‘backdoor’ rule that “if a given URL is visited, then do not compute
its length and return that the URL is short”. Doing this is costly, but it is not
unfeasible if the feature extractor is open-source (e.g., [73]).

• MA: they also require a compromise of the ML-PWD. In this case, the ‘back-
door’ is introduced after all features have been computed—and irrespective
of their relationships. Hence. the cost is very high: the ML model is likely
to be tailored for a specific environment, thereby increasing the difficulty of
successfully introducing such backdoors in one of the deepest segments of the
ML-PWD.

Hence, in terms of affordability: WA≫ˆ︂WA≫PA>MA (i.e., the relationship is the re-
verse of the effectiveness). For this reason, in our evaluation we will put a greater
emphasis on WA, because ‘cheaper’ attacks are more likely to occur in the wild: while
WA can be associated with “horizontal phishing” (the majority), the others are tai-
lored for “spear phishing” (the minority).
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Chapter 3

Multi-SpacePhish: Extending the
Evasion-space of Adversarial
Attacks against Phishing Website
Detectors using Machine Learning

In this Chapter, we will introduce the details of attack implementation in different
spaces, and analyse the result of one proof-of-concept evaluation on competition-
grade ML-PWD. Afterwards, we further propose two extensions of our threat model,
i.e., Deeper spaces and Mixed spaces.

3.1 Attacks Implementation

We now focus on our considered attacks in a single space. We describe their technical
implementation.

Let us discuss how we implement our perturbations, and provide some insight
as to which features are influenced as a result of our attacks. We recall that each
attack family presents three variants, depending on which features the attacker is
‘consciously’ trying to affect. Namely: u, r and c, i.e., features involving the URL, the
representation (HTML) or a combination thereof. All attacks are created by manipu-
lating (phishing) samples taken from Pi. In particular, during our first trial we isolate
100 samples from Pi that are correctly detected by the best ML-PWD: such samples
are then used as basis for all their adversarial variants (to ensure consistency). For
simplicity, we will denote any of such samples as p.

We start by describing MA which are the easiest to implement. Then, we describe
WA and ˆ︃WA. Finally, we describe PA, which are the most complex to implement
because they must consider several implications (e.g., inter-feature dependencies).
(Our repository includes the exact implementation of MA and PA, and also all the
pre-processed variant of the samples generated via WA and ˆ︃WA.)

ML-space attacks

The attacks (i.e., MA) are the easiest to implement. Indeed, we simply follow the
same procedure as done by most prior works (e.g., [97, 165]) that directly manip-
ulate the feature representation Fp of a sample p right before it is analyzed by the
ML-PWD. We do this without taking into account any inter-dependency between
features and/or any physical property that the actual webpage must preserve: this is
compliant with our assumption that the attacker has access to the ML-space. Specif-
ically, for each MA we apply the following MsP:
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• MAu: The attacker targets URL-related features. Hence, we manipulate Fp by
setting features based on Fu equal to -1, which denotes a value that is more
likely associated with a benign sample. In particular, we set to -1 the features
in Table 2.1 with the following numbers: (1-17,19-21,27,30-35)

• MAr: Same as above, but the targeted features are within Fr. Hence, we set to
-1 the features in Table 2.1 with the following numbers: (36-40,42-52,54-57)

• MAc: We set to -1 all features involved in MAu and MAr.

We remark that the attacker is not aware of the feature importance (because it would
require knowledge of M). Hence, although some manipulations will likely ‘move’
Fp towards a benign webpage, it is not guaranteed that M will actually classify such
Fp as benign: if the manipulated features are not important, then even MsP may have
no effect (and such phenomenon does happen in our evaluation, e.g., the ML-PWD
using RF with Fc on Zenodo against MAr).

Of course, we could set all features to -1 (e.g., all Fu and Fr). Doing this, however,
would obviously result in a perfect misclassification (and hence not interesting to
show). Moreover, it would not be sensible even for the attacker. Indeed, MA assume
no knowledge of M and of D, meaning that an attacker may suspect the existence
of a honeypot [226]. For instance, D may contain some samples with all features set
to -1 (i.e., benign) that are labelled as phishing—for the sole purpose of defeating
similar attacks in the ML-space. Hence, it is realistic to assume that even an attacker
capable of MA would not exaggerate with their perturbations.

Website attacks

We recall that we perform two families of attacks in the website-space: WA andˆ︂WA. The peculiarity of both of these attacks (both relying on WsP) is that the attacker
does not have access to the ML-PWD. Hence, they are not able to manipulate Fp, and
they are not even able to observe Fp.

• WA These attacks resemble the pragmatic example (§2.9).

– WAu: We set the URL to a random string starting with “www.bit.ly/”,
followed by 7 randomly chosen characters (which what this popular URL
shortener does).

– WAr: For δPhish, we change the HTML by adding 50 invisible internal
links (i.e., having the same root domain of the website);1 for Zenodo, we
wrap all links within an “onclick”, i.e., we change: <a href=‘link’> into <a
onclick=“this.href=‘link’">.2

– WAc: We do both of the above for each dataset.

• ˆ︂WA: These attacks envision an attacker that knows how the feature extractor
within the ML-PWD operates (see §2.4.1). Such knowledge can be acquired,
e.g., if the attacker has (or is) an insider that provided them with such intelli-
gence. However, the attacker is still confined in the website-space, and hence

1The exact string we inject is: “<a href=‘#’ style=’display:none’> can not see</a>”, which is the second
string shown in our pragmatic example (§2.9).

2This WsP, if applied to textual link, would remove the underline of such a link, therefore being
visible to a user; however, it is possible to make it invisible by editing the CSS properties. Our feature
extractor is agnostic of such properties, so we do not do this: the results would be equivalent.
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can only apply WsP (to generate p). For a meaningful comparison, we assume
an attacker who is aware of how the features targeted in WA are “extracted”
within the ML-PWD. Hence, we craft each ˆ︂WA as follows:

– ˆ︃WAu: The attacker, having knowledge of the extractor, knows that by us-
ing an URL shortener they will affect all features related to the URL (i.e.,
Fu); furthermore, they know the threshold (53) that makes an URL to be
considered as ‘benign’. Such length is well above that of an URL gener-
ated via any shortening service. As such, these attacks are an exact replica
as ˆ︃WAu (the only difference is that the attacker of ˆ︃WAu is more confident
than the one in WAu).

– ˆ︃WAr: The attacker manipulates the HTML in the same was as in WAc.
However, the attacker also knows the threshold (0.15) of internal-to-
external links that yields a benign value of the HTML_objectRatio feature.
Hence, the WsP manipulate the HTML of each p by introducing as many
links (or wrappings) as necessary to meet such threshold.

– ˆ︃WAc: The attacker does both of the above.

We stress that the attacker cannot observe Fp. Indeed, doing this would require
the attacker to completely replicate the feature extractor, which is costly, and
may not even be possible (some third-party services may require subscriptions
to be used). As such, the attacker is aware of how to craft WsP that are more
likely noticed by the ML-PWD, but evasion is not guaranteed.

Preprocessing attacks

These attacks are the hardest to realize from a research perspective and in a fair way.
Challenges. The underlying principle of PsP (the backbone of PA) is affecting

the preprocessing space of the ML-PWD. Technically, since we are the developers
of our own feature-extractor (i.e., the component of the ML-PWD devoted to data
preprocessing), we could simply directly manipulate our own extractor, i.e., by in-
troducing a ‘backdoor’. However, doing this would prevent a fair generalization
of our results: for instance, it is possible to develop another feature extractor, hav-
ing the same functionality but whose operations are executed in a different order.
Hence, to ensure a more fair evaluation, we apply the perturbations at the end of
the preprocessing phase, but we do so by anticipating how a perturbation in the
website-space (a WsP) could affect the preprocessing-space, thereby turning a WsP
into a “physically realizable” PsP. To this purpose, we assume the viewpoint of an at-
tacker. For instance, we ask ourselves: “if an attacker wants to affect URL features
by using an URL shortener, how would the feature extractor react?”.

Scenario. In PA the attacker knows and can interfere (through PsP) with the feature
extraction process of the targeted ML-PWD. However, the attacker is not aware of
what happens next: the ML-space and the output-space are both inaccessible by
the attacker (from both a read and write perspective). Hence, once the PsP has been
applied and Fp is generated, the attacker cannot influence Fp any longer. For each PA
we do the following:

• PAu: we anticipate an attack that targets URL features, and specifically
URL_length, by using an URL shortener. Hence, we can foresee that opera-
tions (in the website-space) can lead to alterations of all the features involved
with the URL (i.e., Fu). For instance, doing this would make weird charac-
ters (if present) to disappear from the URL. However, doing this would induce
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to alterations also to Fr. For instance, some objects originally considered to
be ‘internal’ would become ‘external’. Hence, we implement PAu by setting
the following features (from Table 2.1) to -1: (1-3,5,6,8,10-16,22,23,25,26,28-30),
whereas the following features are set to +1: (4,27,36-38,41,44,48,52,54,56).

• PAr: we anticipate an attack that targets features related to the representation
of a website—in our case the HTML, and specifically the HTML_objectRatio fea-
ture. We foresee that an attacker can interfere with such feature in many ways,
for instance by removing links, adding new ones, or changing those already
contained in the webpage. All such changes will affect many features, such as
the HTML_freqDom: because populating the HTML with (fake) internal links
would change the ‘frequent domains’ included in the HTML. Such changes
can also affect the links in the footer of the webpage (HTML_nullLnkFooter); or
the anchors (HTML_anchors); but also others. We implement PAr by setting the
following features (from Table 2.1) to -1: (36–38,41,51,54,56,57); whereas we set
(39,40) to 1 and 46 to 0.

• PAc: they are a combination of the two above. We expect the attacker to use
a URL shortener, and also infterfer with the HTML_objectRatio. However, we
cannot simply set the features to the same values as PAr and PAu, because one
of the two will prevail. In our case, shortening the URL will be ‘stronger’,
because the URL will change (to that of the URL shortener) and hence the
internal objects will become ‘external’. Hence, we implement PAc by setting
the following features (from Table 2.1) to -1: (1-3,5,6,8,10-16,22,23,25,26,28-30),
whereas the following features are set to +1: (4,27,36-38,41,44,48,52,54,56).

We remark that our PsP may not yield an Fp that is a perfect match with a Fp gener-
ated via WsP (i.e., those of ˆ︃WA). Indeed, some inconsistencies may be present—likely
due to ‘inaccurate’ anticipations from our (i.e., the attacker’s) side. Such inconsisten-
cies are sensible. An attacker with access to the preprocessing-space can theoretically
replicate the entire feature extractor, and use it to exactly pinpoint how to generate
PsP that are an exact match with WsP (i.e., Fp=Fp). However, doing this would be
very expensive. Furthermore, it would defeat the purpose of using PsP: the attacker
does not want that Fp=Fp, rather, they want a PsP that is ‘stronger’; otherwise, why
use PsP in the first place?

3.2 Proof-of-concept: attacks against a competition-grade
ML-PWD

To further prove the impact of our ‘cheap’ attacks (i.e., WA), we tested them on a real
ML-PWD that is used in a well-known Machine Learning Security Evasion Com-
petition (MLSEC [22]). Such competition is held yearly, and is organized by lead-
ing tech-companies that provide cybersecurity services reliant on ML methods. The
2022 edition of MLSEC envisions a challenge in which participants are asked to evade
ML-PWD. We took this opportunity to assess whether our attacks had any impact
against such ‘competition-grade’ ML-PWD. Short story: they do. A demonstrative
video can be found at the homepage of our website (which also includes the source-
code).

https://spacephish.github.io/
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3.2.1 Challenge

Participants of the phishing evasion challenge are given 10 ‘phishing’ webpages,
which are provided in their raw HTML form. The purpose of the challenge is to ma-
nipulate such webpages so that (i) they render exactly as the originals, and (ii) they
evade a ML-PWD. Specifically, the organizers provide 8 different ML-PWD, which
the participants can use as a black-box: by sending an input (i.e., the HTML of a
phishing webpage), they are given an output (i.e., the probability that such webpage
is malicious—according to the specific ML-PWD). Such ML-PWDs only analyze the
HTML of the webpage (which must render exactly as the original). Put simply: the
objective of the challenge is to tweak the HTML of the 10 webpages with impercep-
tible modifications that decrease the confidence of the 8 ML-PWD.

3.2.2 Method

Of course, the setting described above perfectly describes the black-box scenar-
ios envisioned in adversarial ML papers: query the detector, and use the response
as a guide to craft a more evasive phishing webpage. Our primary attacks (WA),
however, are query-less. Because we are aware that the target ML-PWD analyzes
the HTML (recall that this is an assumption of our threat model), we then craft our
‘adversarial’ phishing webpages by using exactly the same WAr used in our paper
for δPhish: we add 50 invisible internal links. We apply these WsP to all the 10 web-
pages provided by the organizers of the challenge, and then test whether they had any
impact to the real ML-PWD involved in the challenge.

3.2.3 Results

By taking into account all webpages against all ML-PWD, our attacks induced a
drop of 3.4% in the confidence of the ML-PWD, indicating that our WsP had some
effect. However, while some ML-PWD were not very affected, others incurred a sig-
nificant drop. Specifically, we focus our attention on the first and third ML-PWD
provided by the organizers of MLSEC. The results of our proof-of-concept experi-
ments are shown in Figs. 3.1. These graphs show phishing probability (y-axis) given
as output by the corresponding ML-PWD for each of the 10 webpages of the chal-
lenge (x-axis). We report two bars: the blue bar are the results of the original web-
pages, whereas the red bars are the results after applying our WsP.

3.2.4 Analysis

These two detectors were significantly less certain after our WsP, with an aver-
age confidence drop of 17.5%. We observe that in most cases, the confidences were
still above 0.5 (i.e., the webpages would still be classified as ‘phishing’). A more de-
tailed look, however, reveals that these detectors were completely fooled by some
webpages (i.e., their confidence dropped to below 0.5). We report:

• Page #3: from 0.90 down to 0.43 for the 1st and 3rd detectors.

• Page #6: from 0.90 down to 0.49 for the 1st detector.

We also attempted the same WAr by changing the number of fake links, and also
by considering a different string3. When applied to, e.g., webpage #3, adding 280

3We also considered the ‘wrapping’ WsP for Zenodo: the effects were negligible—probably be-
cause these ML-PWD factored such links into their ‘count’ (i.e., the attacker made a wrong guess). See
Appendix 3.6.2
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links dropped the confidence to below 0.2; whereas adding a slightly different string
(the first one shown in our pragmatic example in Appendix B) 280 times, the con-
fidence dropped to 0.2 for the first and third detector, and to 0.49 for the seventh
detector. The seventh detector was also fooled by adding such alternative string 50
times to webpage #4, causing a confidence of 0.46 (down from 0.68). The source-
code is available in our repository, and the experiments are entirely reproducible.
Interestingly, these results align with those shown in our primary evaluation: our
query-less WA attacks cannot bypass any ML-PWD, but in some cases they can induce
a miss-classification.
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FIGURE 3.1: Effectiveness of the most likely attacks (WAr on δPhish)
against the ML-PWD provided by the organizers of MLSEC [22].

3.3 Threat Model Extensions

Our threat model (§2.3) can be extended by relaxing some of its assumptions. Indeed,
in its current formulation, our threat model envisions an attacker that is “weak”
(and, hence, very likely to appear in reality). However, some adversaries may be
willing to invest more resources to ensure that their attacks come to fruition (i.e.,
increasing the chances that their phishing webpages are misclassified by the ML-
PWD, and hence displayed to the end-user). Abundant prior work in the adversarial
ML domain considers attacks having different levels of knowledge (i.e., the so-called
“black-box” and “white-box” [55]). However, given that our original formalization
focuses on the attacker’s capabilities (§2.2), we identify two types of extensions that
portray a stronger attacker. Namely:

• Deeper spaces. An attacker who manages to obtain write-access to the ML-PWD
(or part of its elements) can tamper with its internal functionalities, thereby
realizing either PsP or MsP.

• Mixed spaces. If the attacker can obtain some control on either the
Preprocessing- or Machine Learning-space, then – alongside being able to ap-
ply PsP or MsP – they are also able to apply WsP. Indeed, the attacker will
always be able to manipulate the phishing webpage, since it is (by definition)
under their complete control. Hence, an attacker who can inject PsP can also
inject a WsP; furthermore, an attacker who can inject a MsP can also inject a
PsP (since they can overlap), and can, of course, also inject a WsP.

We will empirically assess attacks entailing perturbations in different spaces (§3.4).
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3.4 Additional Experiments: Same-space and Mixed-Space

We expand the evaluation carried out in Chapter 2 with additional experiments. Our
goal is twofold:

• assessing other types of perturbations (either WsP, PsP or MsP) in the same
space;

• consider a “stronger” attacker that applies multiple perturbations also in differ-
ent spaces (cf. §3.3).

We first describe (§3.4.1) and empirically evaluate (§3.4.2) the attacks entailing per-
turbations in the “same-space”. Then, we describe (§3.4.3) and evaluate (§3.4.4) the
“multi-space” attacks.

3.4.1 Same-space Attacks: Description

In this section, we elaborate on new attacks in the same evasion space involving
our WsP, PsP, and MsP. Building upon the attacks considered in the main evaluation
(§2.11), we introduce additional perturbations. The motivation behind this extension
is to present a more comprehensive range of use cases—all of which are likely to
happen, since they are well within the attacker’s capabilities (who will never have
complete knowledge of the target PWD). Therefore, we explore novel perturbations
of the HTML (§3.4.1) and URL (§3.4.1), as well as introduce new variations of MsP,
PsP, and WsP. Altogether, the details of the new specific attacks are provided in
Table 3.1.

HTML

As we know (§2.1), the HTML reflects the visual appearance of a webpage—
therefore, changes to the HTML can lead to differences in the way the webpage is
presented to its users.4 Some of them may be noticed by users (e.g., alterations of
the background), while others may not change the appearance at all (e.g., the hid-
den links considered in our pragmatic use-case §2.9). Here, we consider a wide-
array of HTML-related perturbations, and scrutinize which are more likely to evade
the detection of PWD. Practically, we propose a total of 37 new HTML-related
perturbations—of which, 24 are WsP (i.e., new WAr), which can be divided into the
three following categories:

1) iWsP (invisible WsP), which denote perturbations that are inserted into the
webpages but remain invisible to users. This means that the webpage appears
unchanged before and after the perturbation insertion.

2) eWsP (elusive WsP), which introduce slight changes to the appearance of the
webpage. While these changes may require some effort to be noticed by users,
they are still discernible upon careful observation.

3) rWsP (recognizable WsP), which result in changes that are clearly visible by
users. These modifications have a more pronounced impact on the webpage’s
appearance, making them readily noticeable.

4We recall that our threat model does not assume that the perturbations are “imperceptible” to
humans. This is because, in a real scenario, phishing is effective because humans are distracted. Hence,
even if the webpage changes, the phishing attack can still be successful.
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The remaining 13 HTML-related perturbations are PsP and MsP (i.e., new PAr and
MAr). Both of which require write-access to the ML-PWD. PAr can bypass some of
the checks of ML-PWD. Moreover, in MAr, attackers may solely focus on evading
ML-PWD: as a result, some MAr might violate the fundamental rules of HTML.

URL

Domain and path are two essential components of URL, and most of our URL
features in Table 2.1 are extracted from them. In this section, we implemented 6
types of perturbations that specifically target the URL. These perturbations, referred
to as WAu, the specific details are provided below.

• replChar, we replaced the characters in the domain with visually similar char-
acters.

• sepWrd, we randomly inserted space within the domain to separate the indi-
vidual word.

• delChar, we deleted one character from the domain.

• swpChar, we randomly swapped two adjacent characters in domain.

• addChar, we randomly inserted an additional character into the domain.

• atkPth, we also conducted operations of swap, delete, or insert randomly
within the path of the URL.

We do not consider URL-related perturbations that affect other spaces (i.e., PsP or
MsP).

3.4.2 Same-space Attacks: Evaluation

We now assess the impact of the abovementioned perturbations. For HTML per-
turbations (§3.4.2), we consider the effects both on the ML-PWD we developed by
using the δPhish and Zenodo datasets, as well as by those provided by MLSEC (we
carried out these experiments in December 2022, when the MLSEC API was still
open for research purposes). For the URL perturbations (§3.4.2) we consider only
the ML-PWD trained on δPhish and Zenodo because those provided by MLSEC do
not consider the URL in their analyses.

Impact of HTML perturbations

We begin by considering δPhish, Zenodo, and then focus on MLSEC.
δPhish and Zenodo. In Figs. 3.2, we present the tpr achieved by ML-PWD

trained on δPhish and Zenodo. We evaluate the performance of these ML-PWD
against iWAr, eWAr and rWAr (represented by yellow and red bars)5. To provide a
comparison, we also include the tpr achieved by the same ML-PWD on the original
set of samples, depicted by the leftmost green bar labeled as “no-atk". These results
aim to address two key questions:

• Will different WsP have different impacts on ML-PWD and how?

5Our figures only present the most effective WsP, i.e., iWAr denotes addHidP, eWAr stands for
addImgBot, and rWAr represent modFntClr.
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TABLE 3.1: New Attacks for HTML

Category Perturbation Description

iWAr addInLnk insert internal links
replOnc ⟨a hre f = ‘link ′⟩ to ⟨a onclick = “this.hre f = ‘link ′”⟩
delHidIt delete hidden items from HTML
addHidP add hidden large page

replJS replace ⟨a hre f = ‘#′⟩ with ⟨a hre f = ‘javascript : void(0)′⟩
replRet replace ‘\n’ with whitespace
htEsc escape the whole body content, and write “document.write(unescape(‘ ’))" to HTML

htEncd encode HTML with base64
replPass replace ⟨input type = ‘password′⟩ with ⟨input type = ‘text′ ⟩

replOnfoc replace ⟨input type = ‘password′/‘email′⟩ with ⟨input on f ocus = “this.type = ‘password′/‘email′”⟩
addSusLnk add suspicious links ⟨a⟩, e.g., ⟨a hre f = ‘#skip′⟩

eWAr addImgBot insert 20 small local images to the webpage bottom
modFntTyp modify the font type italic

addTps randomly insert few typos into HTML text
modCpy modify copyright
addIcn add local icon

delSusLnk delete suspicious links
delSusFrm delete suspicious form (i.e., with empty or external ‘action’ links)

modTtl randomly modify the title
delCpy delete copyright information from HTML

rWAr modBgimg change the background image
modBgClr randomly change the background color
modFntClr randomly modify the font color
modFntSiz modify the body font size to 0

PAr delTxt delete all text from HTML
delFrm remove forms
delSpn remove all span
delTtl remove title

addLngTxt add long visible text to HTML
delFtr remove footer

replSusFtrLnk replace suspicious links of footer with internal links

MAr brTg break the tag ⟨html⟩
delHt remove the whole html
delHd delete the whole ⟨head⟩ except style
delBdy delete the whole ⟨body⟩
brTgs break tags
hmg replace characters with homographic letters

• What kind of WA is more likely to evade the ML-PWD trained on δPhish and
Zenodo?

As shown in Fig. 3.2a, the iWAr perturbation emerges as the most impactful at-
tack, leading to a significant reduction (reduced by 0.68–0.95) in the tpr of Fr- and
Fc-based ML-PWD trained on δPhish. Specifically, the tpr of RF-PWD trained on
Fc drops from 0.945 to 0.037, and the tpr of RF-PWD trained on Fr decreases from
0.947 to 0. In comparison, the influence of eWAr and rWAris relatively smaller. How-
ever, eWAr still causes a notable drop in the tpr of Fr-based LR-PWD, reducing it
from 0.78 to 0.47. On the other hand, rWsP has minimal impact on PWD (only Fc-
based LR-PWD’s tpr decreased by 0.12). A similar trend is observed in Fig. 3.2b for
the influence on Zenodo, where iWAr remains the most effective attack. Additionally,
eWAr affects ML-PWD to a greater extend (except for Fr-based LR-PWD) compared
to rWAr. These findings demonstrate that iWAr poses the greatest challenge to ML-
PWD of δPhish and Zenodo, significantly reducing their detection performance. eWAr

also has a notable impact, while rWAr has a relatively minor effect on most ML-PWD
(except for the ML-PWD using LR to analyze Fr).

Figs. 3.3 represents the impact of new PAr and MAr on ML-PWD trained on δPhish

and Zenodo. In this context, PAr refers to delFrm (i.e., remove forms from the web-
page), while MAr denotes applying perturbation hmg to HTML (i.e., inserting typos
to the HTML, both tags and text). Comparing with the tpr of ‘no-atk’, it is evi-
dent that both PAr and MAr have negative impact on the tpr of ML-PWD trained on
δPhish and Zenodo. Specifally, PAr reduced the tpr of all Fc- and Fr-based ML-PWD on
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FIGURE 3.2: Effectiveness of the most likely new attacks WAr. The
three plots in each subfigure represent the algorithm used by a spe-
cific ML-PWD. Each plot has bars divided in three groups, each bar
denotes a specific F used by the ML-PWD. The green bars show the
tpr on the original samples, while the others show the tpr against a

specific variant of WA.
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δPhish, with small decreases ranging from 0.01 to 0.08. On the other hand, MAr had a
more pronounced effect compared to PAr, successfully reducing the tpr of Fr-based
ML-PWD by 0.1–0.17. Nevertheless, WAr is still the most effective attack compared
with them.
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(A) Impact of new PAr and MAr on ML-PWD trained on δphish
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(B) Impact of new PAr and MAr on ML-PWD trained on Zenodo

FIGURE 3.3: Effectiveness of new attacks PAr and MAr. The three
plots in each subfigure represent the algorithm used by a specific ML-
PWD. Each plot has bars divided in three groups, each denoting a
specific F used by the ML-PWD. The green bars show the tpr on the
original samples, the blue bars represent tpr against PAr and the red

bars in the rightmost show the tpr against MAr.

MLSEC. We have summarized the impact of the new HTML attacks on MLSEC
in Table 3.2. These attacks are the same HTML attacks used in δPhish and Zenodo.
Our findings reveal several interesting phenomena in the evaluation:

• Among the attacks evaluated, iWAr emerges as the most potent attack, signifi-
cantly degrading the performance of PWD of MLSEC. The confidence of mod-
els m0 and m2 drop from nearly 0.9 to 0.02, indicating a stark decrease in their
ability to accurately detect malicious webpages. However, it is worth noting
that other attacks also have a substantial impact on degrading the detection
capability of PWD. For instance, PAr reduce the confidence of m2 from 0.9 to
0.61, while MAr results in a decrease of 0.76 in the confidence of m6.

• Comparing to eWAr and rWAr, iWAr has a greater influence on m0–m3, leading
to a decrease in their confidence by 0.35–0.89. However, for PWD m4–m7, iWAr

does not decrease their confidence but slightly increase them by 0.01. On the
other hand, rWAr reduces their confidence by 0.1 (from nearly 0.8 to 0.7), while
eWAr results in a confidence reduction of 0.2 for PWD m4 and m6. This phe-
nomenon can be considered reasonable since PWD employed in MLSEC are
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black-box models which may consist of multiple types of PWD. It implies that
the impact of perturbations may vary depending on the specific model charac-
teristics and vulnerabilities. Hence, it is important to note that the goal of this
study is not to propose a generalized perturbation set that works for all PWD,
but rather to investigate the impact and effectiveness of cheap perturbations
on PWD in practice.

• It is observed that rWAr has a more widespread impact as it influences all seven
PWD on MLSEC, resulting in a reduction of confidence by 0.1 across the board.

• Both PAr and MAr are effective attacks that successfully evade the detection of
PWD in MLSEC. In particular, MAr proves to be a potent attack, as it evades
five (out of eight) PWD, causing their confidence score to drop below 0.5. Ad-
ditionally, the confidence scores of seven PWD decrease to approximately 0.65
from initial values of around 0.85. These findings highlight the impact of PAr

and MAr on the performance of PWD on MLSEC.

TABLE 3.2: New attack’s impact on MLSEC (HTML perturbations)

A no-atk iWAr eWAr rWAr PAr MAr

m0 0.91±0.052 0.02±0.011 0.65±0.185 0.81±0.116 0.91±0.052 0.90±0.062

m1 0.87±0.071 0.52±0.161 0.87±0.085 0.78±0.100 0.67±0.262 0.31±0.051

m2 0.90±0.051 0.02±0.011 0.65±0.185 0.85±0.087 0.61±0.390 0.88±0.096

m3 0.88±0.070 0.51±0.172 0.87±0.079 0.81±0.091 0.66±0.271 0.26±0.080

m4 0.82±0.106 0.83±0.123 0.64±0.199 0.73±0.112 0.57±0.372 0.80±0.121

m5 0.81±0.120 0.82±0.136 0.85±0.107 0.70±0.103 0.64±0.280 0.39±0.166

m6 0.83±0.108 0.84±0.116 0.64±0.198 0.73±0.111 0.56±0.373 0.07±0.076

m7 0.82±0.121 0.83±0.127 0.85±0.106 0.70±0.097 0.64±0.279 0.36±0.129

Takeaway: Applying iWsP does not change the webpage’s appearance but it proves
to be highly effective in evading ML-PWD. In contrast, the application of rWsP re-
sults in obvious changes to the webpage’s appearance but it has a relatively minor
impact on the performance ML-PWD. MAr had a more pronounced effect compared
to PAr. Nevertheless, WAr is still the most effective attack compared with them.

Impact of URL perturbations

The impact of WAu is illustrated in Figs. 3.4. Fig. 3.4a reveal the changes when
performing atkPth on ML-PWDtrained on δPhish. Green boxes represent the tpr of
‘no-atk’ (i.e., baseline), while the orange boxes indicate the impact of WAu. Com-
paring the medians of each box plot, the median line of orange boxes is lower than
Green boxes for Fu-based ML-PWD, indicating that WAu can degrade ML-PWD’s
tpr. In contrast, this type of WAu does not decrease tpr of Fu-based CN-PWD trained
on Zenodo (as shown in Table 3.24 in Appendix 3.6.3. However, it is significantly re-
duces the performance of Fr-based ML-PWD. This is because some HTML features
require extracting information from both URL and HTML (e.g., HTML_URLBrand:
which checks (in the HTML) if the webpage title includes the brand name that ap-
peared in the URL). Therefore, either URL perturbations or HTML perturbations can
possibly affect the Fr-based ML-PWD. Furthermore, as shown in Fig. 3.4b, another
WAu sepWrd, also clearly decreases the tpr of Fr-based ML-PWD. Simply put, WAu

will affect ML-PWD’s performance.
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FIGURE 3.4: Effectiveness of new attacks WAu. The three plots in
each subfigure represent the algorithm used by a specific ML-PWD.
Each plot has box divided into three groups, each denoting a specific
F used by the ML-PWD. The green box shows the tpr on the original

samples, while the orange box show the tpr against WAu.

3.4.3 Multi-space Attacks: Description

Insofar, we have always considered perturbations applied in a single space.
However, as mentioned in §3.3, an attacker who can apply PsP or MsP (which re-
quire write-access to the ML-PWD) can also apply WsP (which only requires ac-
cess to the phishing webpage—which the attacker owns). These “mixed-space” at-
tacks are worth considering because they are trivial to implement for an attacker—
assuming that such an attacker can already apply PsP andor MsP (we recall that,
from a cost viewpoint, WsP<< PsP<MsP). Therefore, we introduce 66 types of
‘mixed-space’ attacks (the complete details are in Appendix 3.6.3). These attacks
span across all the defined evasion spaces (§2.2): Website space, Preprocessing space,
and Machine Learning space. In particular, we consider “accessible” attacks (which
combine WA and PA), as well as stronger ones (which entail MA and PA). We also
consider “double” attacks, entailing multiple perturbations in the same space (e.g.,
WsP+WsP). We expect that mixed-space attacks, which exploit vulnerabilities and
weaknesses present in different stages of the detection process, lead to more evasive
samples (at least w.r.t. the corresponding single-space attacks).

3.4.4 Multi-space Attacks: Evaluation

We evaluate the evasion capabilities of our new mixed-space attacks on the ML-
PWD trained on the δphish, Zenodo, as well as those provided by MLSEC.6 We begin
by considering attacks entailing two perturbations in the same space, i.e., PsP+PsP
(§3.4.4) and WsP+WsP (§3.4.4); then, we consider attacks entailing two perturbations
in different spaces, i.e., PsP+WsP (§3.4.4 and PsP+MsP (§3.4.4).

6Since MLSEC only analyzes the HTML, we do not consider mixed-space attacks entailing pertur-
bations of the URL.
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Double-PsP

• δPhish and Zenodo. Table 3.12 and Table 3.26 demonstrate the impact of 8
kinds of PAr+PAr on ML-PWD trained on δPhish and Zenodo. Even though
not all of them significantly impact the PWD of δPhish. While not all com-
binations significantly affect the PWD, there are notable influences observed.
For instance, when the combination attack occurs(specifically, the perturbation
delSpn_delTtl), the tpr of LR-PWD based on Fc and Fr drops by 0.1 and 0.16,
respectively. additionally, the tpr of Fr-based LR-PWD down from 0.8 to 0.58,
and CN-PWD’s drops from 0.86 to 0.64 after being subjected to PAr+PAr. In
contrast, Fu-based PWD is not affected, and most of Fc-based PWD remain un-
changed. That is because our PAr+PAr combinations specifically target HTML,
and Fu is the core component when crafting the Fc-based ML-PWD.

• MLSEC. In the case of MLSEC’s PWD, Table 3.18 indicates that all cheap
PAr+PAr combination attacks proposed can decrease the performance of PWD,
resulting in the confidence score dropped by 0.01–0.32.

Double-WsP

• δPhish and Zenodo. As shown in Table 3.14, the combination attack WAr+WAr

did not reduce the tpr of ML-PWD trained on δPhish. In fact, in some cases,
the tpr increased to 1.0, such as the tpr of Fr-based CN-PWD increased from
0.79 to 1. Similarly, ‘replOn f oc_replRet’ did not affect the ML-PWD of Zenodo,
as shown in Table 3.29). However, it is importance to note that under the influ-
ence of ‘htEsc_replRet’, the tpr of Fr-based LR-PWD reduced to 0.55 from 0.8.
Moreover, ‘htEncd_replRet’ reduced tpr of Fr-based CN-, LR- and RF-PWD to
0. These findings suggest that while some combinations of WA+WAattacks may
not result in a significant reduction in the tpr of ML-PWD, specific combina-
tions can still have an impact on the detection performance, leading to a de-
crease in the tpr. The effectiveness and impact of these combinations may vary
depending on the specific ML-PWD and the nature of the attacks employed.

• MLSEC. On the contrary, WAr+WAr proves to be a powerful weapon for dis-
rupting PWD of MLSEC. As indicated in Table 3.21, the combination attack
‘replOn f oc_replRet’ defeated all detectors, leading to a significant decrease in
their confidence scores by 0.12–0.58. Moreover, four PWD have their confi-
dence scores reduced below 0.5, indicating a successful evasion. Furthermore,
the attack ‘htEsc_replRet’ evades four detectors, resulting in a substantial re-
duction in their confidence scores to 0.03 or near 0.15. Additionally, the attack
‘htEncd_replRet’ successfully bypasses four detectors and notably decreases
the confidence score of model m0 from 0.91 to 0.08. These findings demonstrate
the effectiveness and potency of WAr+WAr combination attacks in evading de-
tection and undermining the confidence of PWD in MLSEC. The combination
of multiple WAr proves to be highly disruptive, highlighting the need for ro-
bust defense mechanisms against such attacks.

Takeaway: The simplest and cheapest attacks can indeed be highly effective in evad-
ing PWD, but their effectiveness may vary across different PWD. While these attacks
may prove to be successful in bypassing certain PWD, they may not necessarily work
equally well on all PWD.
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Mixed: PsP and WsP

• δPhish and Zenodo. As presented in Tables 3.11, we analyze the impact of
52 attacks across the Preprocessing space and Website space of δPhish. These
attacks have a detrimental effect on the detection performance of ML-PWD,
particularly those based on Fr. Among these attacks, the combination attacks
involving ‘addHidP’ demonstrate the most significant impact on the ML-PWD.
For instance, the attack ‘addLngTxt_addHidP’ mentioned in Table 3.11a re-
duce the tpr of Fr-based ML-PWD from 0.79, 0.95 and 0.78 to 0.03, 0 and 0
respectively. This indicates a drastic reduction in the ability of the ML-PWD
to detect and classify phishing instances. Similar situation is observed in ML-
PWD of Zenodo, as illustrated in Table 3.27, the combination attack of PAr+WAr

demonstrates a decrease in the tpr of ML-PWD trained on Zenodo. Notably,
the attack ‘delFtr_addHidP’ leads to a significant reduction in the tpr of Fr-
based RF-PWD, dropping from 0.9 to 0.15. Furthermore, when encountering
attack ‘delSpn_addHidP’, the tpr decreases to 0.03. Other PAr+WAr combi-
nation attacks also prove effective in bypassing the detection of ML-PWD of
Zenodo. For example, the attack ‘delFtr_replPass’ results in a similar drop, and
‘delFtr_addSusLnk’ reduces the tpr by 0.4–0.65. These findings highlight the
susceptibility of ML-PWD trained on Zenodo to PAr+WAr attacks.

• MLSEC. We executed 53 kinds of PAr+WAr on MLSEC’s PWD and evaluated
their impact, which is reported in Tables 3.20. All of these combination at-
tacks affected the decision of PWD, with 51 (i.e., except ‘delSpn_modBgClr’ and
‘delFtr_modBgClr’) out of 53 attacks noticeably degrading the confidence of at
least one PWD. One particular attack, ‘delFrm_addHidP’ minimizes the confi-
dence of all PWD. Specifically, the confidence of m0 and m2 dropped from 0.9
to 0.01, while the confidence of other PWDs decreased by 0.16–0.5. This sub-
stantial reduction caused by this cheap attack is both shocking and expected,
as this combination attack simultaneously considers the “feature space" and
“problem space", i.e., both the high-level definitions of adversarial perturba-
tions [214].

Takeaway: Comparing to other attacks mixing evasion spaces, it is evident that
PAr+WAr possess greater destructive power and have a substantial impact on the
tpr of PWD. These attacks are particularly potent because they traverse both the
‘feature-space’ (e.g., Preprocessing space) and ‘problem-space’ (e.g., Website space).

Mixed: PsP and MsP

• δPhish and Zenodo. We showcase 3 combination PAr+MAr attacks target ML-
PWD trained on δPhish and Zenodo in Table 3.13 and Table 3.28, respectively.
It is worth noting that these combination attacks are difficult to achieve and
require high costs, as attackers must obtain write-access to deeper segments of
the ML-PWD. Interestingly, despite the high cost associated with these attacks,
they do not consistently and effectively disrupt ML-PWD, except for the attack
‘delFtr_brTgs’ which reduces the tpr of Fr-based CN-PWD from 0.86 to 0.64.

• MLSEC. As depicted in Table 3.19, the combination attack PAr+MAr decreases
the performance of all considered ML-PWD, but the impact is relatively minor.
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The largest impact is observed with ‘delSpn_brTgs’ and ‘delFtr_brTgs’. These
attacks lead to a decrease in the confidence of m0 by 0.16 and 0.13, respectively.

Takeaway: Costly attacks (which require both MsP and PsP) do not always possess
formidable attacking capabilities. They may slightly affect certain detectors or have
no impact on others.

3.5 Summary

This paper aims to promote the development of secure ML systems. To do so, it
is necessary to devise a realistic threat model which portrays adversarial attacks
that are not only physically realizable, but also economically viable. At the same
time, it is necessary to evaluate the attack’s impact by crafting the corresponding
perturbations. In the context of phishing detection, we formalized the evasion space
to explain ‘where’ the perturbation can be introduced to bypass ML-based phishing
website detectors. Furthermore, we proposed a realistic threat model for evasion
attacks against ML-based phishing website detectors. Our threat model is grounded
on detailed security considerations from the viewpoint of a typical phisher, who is
confined in the ‘website-space’. Nevertheless, our model can be relaxed by assuming
attackers with greater capabilities but which require higher costs.

We provided lots of attack examples in different spaces, from single spaces ex-
tended to deeper and mixed spaces, to carry out a large evaluation of evasion at-
tacks exploiting diverse ‘spaces’. We focus on those requiring less resources to be
staged in reality. Our paper provided a constructive step towards developing se-
cure ML systems against adversarial attacks and paved the way for a much-needed
re-assessment of adversarial attacks against ML systems for cybersecurity.

3.6 Appendix

3.6.1 Complete Benchmark Tables

We carry out our experiments by developing original software tools, all written
in Python3 by leveraging well-known libraries (e.g., scikit-learn, Tensorflow). The
ML-PWD using RF and LR are assessed on a system mounting an Intel Xeon W-
2223@3.6GHz with 32GB RAM. For the CN, we use an nVidia P100 GPU.

TABLE 3.3: Evasion Robustness of the ML-PWD on the Zenodo

dataset. The cells report the average (and std. dev.) tpr over the
50 reiterations. Lines correspond to the ML-PWD, while rows corre-

spond to a specific attack.

A F no-atk WAu WAr WAc ˆ︃WAu ˆ︃WAr ˆ︃WAc PAu PAr PAc MAu MAr MAc

CN
Fu 0.96±0.007 1.00±0.000 0.93±0.020 1.00±0.000 1.00±0.000 0.95±0.018 1.00±0.000 1.00±0.017 0.95±0.018 1.00±0.017 0.18±0.222 0.95±0.018 0.18±0.222

Fr 0.86±0.013 0.88±0.013 0.87±0.056 0.87±0.055 0.88±0.013 0.44±0.153 0.83±0.051 0.54±0.108 0.29±0.120 0.31±0.118 0.88±0.013 0.02±0.095 0.02±0.095

Fc 0.97±0.009 0.92±0.036 0.93±0.020 0.94±0.063 0.92±0.036 0.92±0.016 0.83±0.115 1.00±0.011 0.90±0.031 0.99±0.017 0.51±0.131 0.92±0.036 0.15±0.211

RF
Fu 0.96±0.007 1.00±0.000 0.96±0.008 1.00±0.000 1.00±0.000 0.96±0.008 1.00±0.000 0.54±0.183 0.96±0.007 0.54±0.183 0.04±0.098 0.96±0.007 0.04±0.098

Fr 0.90±0.013 0.90±0.013 0.88±0.024 0.88±0.025 0.90±0.013 0.71±0.053 0.80±0.025 0.59±0.086 0.47±0.082 0.30±0.088 0.90±0.013 0.04±0.155 0.04±0.155

Fc 0.97±0.009 0.98±0.064 0.94±0.012 0.94±0.171 0.98±0.063 0.94±0.010 0.94±0.191 0.65±0.101 0.94±0.010 0.21±0.134 0.07±0.115 0.92±0.012 0.03±0.158

LR
Fu 0.97±0.005 1.00±0.000 0.95±0.005 1.00±0.000 1.00±0.000 0.96±0.005 1.00±0.000 0.73±0.071 0.96±0.006 0.73±0.071 0.00±0.000 0.96±0.006 0.00±0.000

Fr 0.80±0.013 0.80±0.013 0.65±0.043 0.64±0.040 0.80±0.013 0.54±0.027 0.56±0.022 0.61±0.007 0.08±0.013 0.01±0.010 0.80±0.013 0.00±0.000 0.00±0.000

Fc 0.98±0.005 0.82±0.035 0.95±0.015 0.32±0.079 0.80±0.038 0.93±0.014 0.32±0.132 0.46±0.053 0.91±0.032 0.06±0.025 0.00±0.000 0.76±0.036 0.00±0.000
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TABLE 3.4: Evasion Robustness of the ML-PWD on the δphish

dataset. The cells report the average (and std. dev.) tpr over the
50 reiterations. Lines correspond to the ML-PWD, while rows corre-

spond to a specific attack.

A F no-atk WAu WAr WAc ˆ︃WAu ˆ︃WAr ˆ︃WAc PAu PAr PAc MAu MAr MAc

CN
Fu 0.65±0.028 0.91±0.276 0.65±0.029 0.91±0.275 0.90±0.299 0.65±0.029 0.90±0.300 0.60±0.165 0.65±0.028 0.60±0.165 0.14±0.346 0.65±0.028 0.14±0.346

Fr 0.79±0.013 0.80±0.013 0.35±0.018 0.34±0.017 0.80±0.013 0.86±0.033 0.88±0.020 0.46±0.065 0.69±0.038 0.46±0.064 0.81±0.013 0.00±0.000 0.00±0.000

Fc 0.95±0.010 0.88±0.066 0.93±0.012 0.84±0.113 0.89±0.046 0.89±0.020 0.87±0.058 0.90±0.107 0.58±0.059 0.82±0.163 0.04±0.198 0.01±0.011 0.04±0.196

RF
Fu 0.56±0.037 0.84±0.330 0.56±0.036 0.84±0.330 0.84±0.330 0.56±0.034 0.84±0.331 0.57±0.238 0.56±0.037 0.57±0.238 0.01±0.053 0.56±0.037 0.01±0.053

Fr 0.95±0.008 0.95±0.009 0.84±0.003 0.84±0.043 0.95±0.009 0.80±0.038 0.94±0.009 0.84±0.049 0.55±0.090 0.95±0.055 0.95±0.008 0.00±0.000 0.00±0.000

Fc 0.95±0.009 0.90±0.020 0.92±0.006 0.77±0.047 0.90±0.017 0.86±0.018 0.92±0.015 0.90±0.065 0.68±0.013 0.86±0.097 0.88±0.026 0.00±0.001 0.00±0.000

LR
Fu 0.30±0.014 0.21±0.332 0.30±0.015 0.22±0.341 0.26±0.364 0.30±0.015 0.24±0.359 0.64±0.256 0.30±0.014 0.64±0.256 0.00±0.000 0.30±0.014 0.00±0.000

Fr 0.78±0.011 0.78±0.011 0.57±0.014 0.56±0.047 0.78±0.011 0.60±0.030 0.63±0.010 0.80±0.029 0.04±0.006 0.45±0.068 0.78±0.011 0.00±0.000 0.00±0.000

Fc 0.86±0.014 0.47±0.094 0.81±0.011 0.36±0.102 0.73±0.126 0.73±0.018 0.63±0.150 0.65±0.157 0.23±0.014 0.32±0.109 0.00±0.000 0.00±0.000 0.00±0.000

Evasion Performance We report the complete results of all the 12 considered
evasion attacks against all the 18 considered ML-PWD in Table 3.3 (for Zenodo) and
Table 3.4 (for δphish). These tables also include the performance in non-adversarial
settings computed on the 100 phishing samples (drawn from Pi that are used as
base for the adversarial samples). We remark that we chose such 100 samples by
randomly selecting 100 samples which were correctly detected by the best ML-PWD
on each dataset. As such, the tpr reported in the no-atk column can slightly differ
from the one in Table 2.3 (which is computed on the entire Pi).

Runtime. We report in Table 3.5 the runtime for training and testing all our
ML-PWD in non-adversarial scenarios. The values denote the average runtime
(and standard deviation) across the 50 trials. Training the RF and LR uses all
cores/threads of our CPU.

TABLE 3.5: Execution Times for training (on D) and testing (on both
Pi and Bi) the ML models used by our ML-PWD.

A F Zenodo δphish

Train (s) Test (ms) Train (s) Test (ms)

CN
Fu 110.88±15.318 178.13±9.661 201.314±21.753 301.91±46.133

Fr 76.61±4.562 171.95±10.577 167.74±25.197 273.4±43.99

Fc 152.325±13.183 222.696±86.618 165.486±23.367 274.84±47.975

RF
Fu 0.152±0.0052 7.59±0.208 0.583±0.0181 28.09±0.402

Fr 0.146±0.0037 7.85±0.07 0.369±0.0181 22.39±0.151

Fc 0.179±0.0035 9.39±0.312 0.44±0.0062 23.6±0.205

LR
Fu 0.045±0.019 0.1±0.005 0.185±0.0285 0.45±0.895

Fr 0.055±0.0182 0.09±0.003 0.083±0.0509 0.74±1.161

Fc 0.063±0.0179 0.17±0.014 0.301±0.0678 0.36±0.678

3.6.2 Alternative WAr for Zenodo and δPhish

As we mentioned in § 3.1, we applied two different WAr to the ML-PWD of δPhish

and Zenodo (i.e., replOnc: swap <a href=‘link’> into <a onclick=“this.href=‘link’">
on Zenodo, and addInLnk: insert <a href=‘#’ style=‘display:none’> can not see</a>
to the samples of δPhish), and report their influence in Figs. 2.4. In this section,
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we apply the same WAr, but with the datasets swapped to see if the influence will
change, i.e., applying addInLnk to Zenodo and applying replOnc to δPhish. The new
influence on each dataset is depicted in Table. 3.6. Comparing with the Figs. 2.4,
it can be concluded that the δPhish is more vulnerable to addInLnk, whereas their
impact on Zenodo are similar.

TABLE 3.6: Impact of Alternative WAr on ML-PWD generated on
Zenodo and δPhish, reported as the average (and std. dev.) tpr over

the 50 trials.

A F Zenodo δphish

tpr (no-atk) tpr (addInLnk) tpr (no-atk) tpr(replOnc)

CN
Fu 0.96±0.008 0.95±0.018 0.55±0.030 0.65±0.029

Fr 0.88±0.018 0.61±0.034 0.81±0.019 0.89±0.018

Fc 0.97±0.006 0.97±0.021 0.93±0.013 0.93±0.012

RF
Fu 0.98±0.004 0.96±0.008 0.45±0.022 0.56±0.036

Fr 0.93±0.013 0.94±0.018 0.94±0.016 0.99±0.003

Fc 0.98±0.006 0.97±0.008 0.97±0.007 0.98±0.006

LR
Fu 0.95±0.009 0.96±0.002 0.24±0.017 0.3±0.015

Fr 0.82±0.017 0.95±0.005 0.74±0.025 0.78±0.014

Fc 0.96±0.007 0.98±0.007 0.81±0.020 0.89±0.011

3.6.3 Supplementary Tables for Additional Experiments

We now report the complete results of all our new experiments, which we dis-
cussed in §3.4.

Perturbation’s impact on δPhish

We report new WAr’s impact on the ML-PWD generated on δPhish in Table 3.7
and Table 3.8. PsP and WsP’s influence were depicted in Table 3.9. And Table 3.10
describes the tpr of ML-PWD generated on δPhish against WAu. Table 3.12, 3.13, 3.11
and 3.14 report the influence of hybrid space attacks on δPhish.

TABLE 3.7: Evasion Robustness of the ML-PWD against iWAr on the
δPhish. The cells report the average (and std. dev.) tpr over the 50 re-
iterations. Lines correspond to the ML-PWD, while rows correspond

to a specific iWsP perturbation.

A F no-atk replOnc delHidIt addHidP replJS replRet htEsc htEncd replPass replOnfoc addSusLnk

CN
Fu 0.65±0.028 0.65±0.029 0.65±0.029 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.035 0.64±0.031

Fr 0.79±0.013 0.89±0.018 0.81±0.013 0.03±0.006 0.79±0.011 0.81±0.013 0.94±0.03 1.0±0.0 0.81±0.013 0.81±0.013 0.19±0.012

Fc 0.95±0.010 0.93±0.012 0.95±0.016 0.22±0.059 0.89±0.021 0.96±0.011 0.99±0.01 0.99±0.014 0.95±0.011 0.95±0.013 0.79±0.039

RF
Fu 0.56±0.037 0.56±0.036 0.56±0.035 0.56±0.033 0.56±0.034 0.57±0.033 0.57±0.031 0.56±0.033 0.57±0.033 0.56±0.037 0.56±0.032

Fr 0.95±0.008 0.99±0.003 0.88±0.011 0.0±0.0 0.81±0.021 0.95±0.008 1.0±0.003 1.0±0.0 0.95±0.008 0.95±0.008 0.44±0.069

Fc 0.95±0.009 0.98±0.006 0.93±0.01 0.04±0.017 0.86±0.015 0.95±0.01 1.0±0.007 1.0±0.0 0.95±0.009 0.94±0.009 0.48±0.043

LR
Fu 0.30±0.014 0.3±0.015 0.29±0.015 0.3±0.015 0.3±0.016 0.3±0.014 0.3±0.014 0.3±0.015 0.3±0.014 0.3±0.021 0.3±0.014

Fr 0.78±0.011 0.78±0.014 0.68±0.017 0.0±0.0 0.68±0.005 0.78±0.011 0.84±0.006 1.0±0.0 0.78±0.011 0.78±0.011 0.3±0.009

Fc 0.86±0.014 0.89±0.011 0.82±0.016 0.17±0.015 0.78±0.01 0.86±0.014 0.92±0.015 1.0±0.005 0.87±0.014 0.74±0.042 0.62±0.025
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TABLE 3.8: Evasion Robustness of the ML-PWD against eWAr and
rWAr on the δPhish. The cells report the average (and std. dev.)
tpr over the 50 reiterations. Lines correspond to the ML-PWD, while

rows correspond to a specific eWsP or rWsP attack.

A F no-atk
eWsP rWsP

addImgBot modFntTyp modCpy addIcn delSusLnk delSusFrm modTtl delCpy modBgimg modBgClr modFntClr modFntSiz

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.63±0.036 0.64±0.031

Fr 0.79±0.013 0.63±0.063 0.81±0.013 0.77±0.016 0.71±0.024 0.84±0.021 0.75±0.012 0.81±0.013 0.77±0.016 0.81±0.013 0.81±0.013 0.81±0.013 0.81±0.013

Fc 0.95±0.010 0.92±0.032 0.95±0.011 0.94±0.014 0.92±0.021 0.93±0.012 0.93±0.016 0.95±0.011 0.94±0.014 0.95±0.011 0.95±0.011 0.94±0.017 0.95±0.011

RF
Fu 0.56±0.037 0.57±0.034 0.56±0.033 0.56±0.033 0.56±0.033 0.56±0.033 0.56±0.032 0.56±0.033 0.56±0.034 0.56±0.034 0.57±0.034 0.56±0.036 0.56±0.033

Fr 0.95±0.008 0.88±0.026 0.95±0.008 0.95±0.007 0.89±0.019 0.92±0.011 0.91±0.021 0.95±0.008 0.95±0.007 0.95±0.008 0.95±0.008 0.95±0.008 0.95±0.008

Fc 0.95±0.009 0.88±0.015 0.95±0.009 0.94±0.009 0.89±0.015 0.92±0.007 0.91±0.009 0.95±0.009 0.94±0.009 0.95±0.009 0.95±0.009 0.94±0.009 0.95±0.009

LR
Fu 0.30±0.014 0.3±0.014 0.3±0.014 0.3±0.014 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.014 0.3±0.024 0.3±0.014

Fr 0.78±0.011 0.47±0.026 0.78±0.011 0.77±0.011 0.61±0.015 0.83±0.007 0.75±0.025 0.79±0.011 0.77±0.011 0.78±0.011 0.78±0.011 0.78±0.011 0.78±0.011

Fc 0.86±0.014 0.66±0.028 0.87±0.014 0.89±0.013 0.82±0.013 0.91±0.009 0.78±0.018 0.87±0.014 0.89±0.013 0.87±0.013 0.87±0.014 0.74±0.044 0.87±0.014

TABLE 3.9: Impact of PAr and MAr on ML-PWD generated on δphish.
The cells report the average (and std. dev.) tpr over the 50 reiterations.
Lines correspond to the ML-PWD, while rows correspond to a specific

PsP or MsP attack.

A F no-atk
PsP MsP

delTxt delFrm delSpn delTtl addLngTxt delFtr replSusFtrLnk brTg delHt delHd delBdy brTgs hmg

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.65±0.032

Fr 0.79±0.013 0.78±0.014 0.75±0.012 0.8±0.013 0.81±0.013 0.81±0.013 0.76±0.015 0.79±0.011 0.81±0.013 1.0±0.0 0.79±0.009 0.87±0.018 0.81±0.012 0.76±0.019

Fc 0.95±0.010 0.89±0.034 0.93±0.016 0.95±0.012 0.91±0.027 0.95±0.011 0.93±0.013 0.95±0.011 0.95±0.011 0.99±0.014 0.82±0.045 0.98±0.015 0.95±0.011 0.78±0.034

RF
Fu 0.56±0.037 0.56±0.033 0.56±0.032 0.57±0.032 0.57±0.032 0.57±0.033 0.56±0.033 0.56±0.035 0.56±0.035 0.56±0.035 0.56±0.033 0.57±0.033 0.56±0.034 0.56±0.036

Fr 0.95±0.008 0.94±0.012 0.91±0.021 0.95±0.007 0.94±0.012 0.95±0.008 0.91±0.01 0.94±0.011 0.95±0.008 1.0±0.0 0.83±0.019 1.0±0.003 0.95±0.008 0.79±0.024

Fc 0.95±0.009 0.92±0.012 0.91±0.009 0.94±0.009 0.93±0.011 0.95±0.009 0.94±0.01 0.94±0.009 0.95±0.009 1.0±0.0 0.86±0.015 1.0±0.007 0.94±0.009 0.8±0.017

LR
Fu 0.30±0.014 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.014 0.3±0.016 0.3±0.016 0.3±0.014

Fr 0.78±0.011 0.64±0.024 0.75±0.025 0.75±0.016 0.64±0.025 0.78±0.011 0.79±0.016 0.76±0.011 0.78±0.011 1.0±0.0 0.65±0.01 0.84±0.006 0.78±0.011 0.69±0.01

Fc 0.86±0.014 0.78±0.018 0.78±0.018 0.87±0.014 0.76±0.02 0.87±0.014 0.89±0.014 0.85±0.012 0.87±0.013 1.0±0.004 0.76±0.03 0.95±0.008 0.87±0.013 0.76±0.013

TABLE 3.10: Impact of WAu on ML-PWD of δPhish.

A F no-atk replChar sepWrd delChar swpChar addChar atkPth

CN
Fu 0.65±0.028 0.64±0.043 0.64±0.038 0.63±0.033 0.63±0.037 0.64±0.044 0.6±0.029

Fr 0.79±0.013 0.81±0.013 0.79±0.016 0.8±0.014 0.81±0.014 0.81±0.014 0.8±0.013

Fc 0.95±0.010 0.95±0.009 0.95±0.01 0.94±0.01 0.95±0.011 0.94±0.012 0.94±0.009

RF
Fu 0.56±0.037 0.56±0.03 0.59±0.024 0.56±0.029 0.56±0.032 0.56±0.031 0.52±0.027

Fr 0.95±0.008 0.95±0.009 0.95±0.008 0.95±0.009 0.95±0.009 0.95±0.009 0.95±0.008

Fc 0.95±0.009 0.94±0.009 0.94±0.009 0.92±0.011 0.94±0.009 0.94±0.009 0.94±0.01

LR
Fu 0.30±0.014 0.3±0.02 0.31±0.024 0.28±0.019 0.28±0.02 0.29±0.019 0.29±0.015

Fr 0.78±0.011 0.78±0.011 0.79±0.012 0.77±0.012 0.78±0.012 0.78±0.011 0.78±0.011

Fc 0.86±0.014 0.83±0.018 0.85±0.028 0.84±0.016 0.83±0.019 0.83±0.021 0.88±0.01
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TABLE 3.11: Impact of PAr+WAr on ML-PWD generated on δphish.
The cells report the average (and std. dev.) tpr over the 50 reiterations.
Lines correspond to the ML-PWD, while rows correspond to a specific

PsP+WsP perturbation.

(A) PAr+WAr

A F no-atk addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_
addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.032 0.64±0.031 0.63±0.036 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

Fr 0.79±0.013 0.35±0.017 0.81±0.013 0.81±0.013 0.81±0.013 0.03±0.006 0.79±0.011 0.84±0.021 0.77±0.016 0.81±0.013 0.71±0.024 0.2±0.013 0.63±0.063 0.81±0.013

Fc 0.95±0.010 0.92±0.029 0.95±0.016 0.95±0.011 0.95±0.011 0.22±0.059 0.89±0.021 0.92±0.017 0.94±0.014 0.95±0.011 0.92±0.021 0.8±0.033 0.91±0.035 0.95±0.011

RF
Fu 0.56±0.037 0.56±0.035 0.57±0.034 0.56±0.033 0.57±0.031 0.56±0.033 0.56±0.032 0.56±0.035 0.56±0.034 0.56±0.033 0.56±0.034 0.56±0.034 0.56±0.034 0.56±0.034

Fr 0.95±0.008 0.84±0.043 0.88±0.011 0.95±0.008 0.95±0.008 0.0±0.0 0.81±0.021 0.92±0.011 0.95±0.007 0.95±0.008 0.89±0.019 0.46±0.045 0.88±0.026 0.95±0.008

Fc 0.95±0.009 0.92±0.017 0.93±0.01 0.95±0.009 0.95±0.009 0.04±0.017 0.86±0.015 0.92±0.008 0.94±0.009 0.95±0.009 0.89±0.015 0.58±0.039 0.88±0.015 0.95±0.009

LR
Fu 0.30±0.014 0.3±0.015 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.024 0.3±0.014 0.3±0.015 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.016

Fr 0.78±0.011 0.57±0.045 0.68±0.017 0.78±0.011 0.78±0.011 0.0±0.0 0.68±0.005 0.83±0.007 0.77±0.011 0.79±0.011 0.61±0.015 0.38±0.026 0.44±0.026 0.78±0.011

Fc 0.86±0.014 0.8±0.017 0.81±0.014 0.87±0.013 0.87±0.014 0.17±0.016 0.78±0.01 0.8±0.043 0.89±0.013 0.87±0.014 0.82±0.012 0.68±0.021 0.66±0.03 0.87±0.015

(B) PAr+WAr

A F no-atk delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_
addInLnk onclick delHidIt addHidP replJS delSusLnk addImgBot modFntSiz modBgimg modBgClr delCpy modTtl modCpy addIcn replRet

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

Fr 0.79±0.013 0.25±0.021 0.93±0.019 0.76±0.011 0.01±0.004 0.73±0.009 0.87±0.018 0.54±0.081 0.76±0.011 0.76±0.011 0.76±0.011 0.72±0.014 0.76±0.011 0.72±0.014 0.64±0.024 0.76±0.011

Fc 0.95±0.010 0.85±0.04 0.97±0.014 0.93±0.017 0.19±0.062 0.81±0.021 0.91±0.013 0.88±0.036 0.91±0.017 0.91±0.017 0.91±0.017 0.89±0.02 0.91±0.017 0.89±0.02 0.86±0.031 0.91±0.017

RF
Fu 0.56±0.037 0.56±0.033 0.56±0.033 0.56±0.034 0.56±0.034 0.57±0.032 0.57±0.033 0.56±0.033 0.56±0.033 0.56±0.034 0.57±0.032 0.56±0.034 0.56±0.033 0.56±0.034 0.57±0.032 0.56±0.036

Fr 0.95±0.008 0.85±0.055 0.99±0.007 0.89±0.015 0.0±0.0 0.74±0.015 0.91±0.014 0.85±0.018 0.9±0.011 0.9±0.011 0.9±0.011 0.9±0.01 0.9±0.011 0.9±0.01 0.82±0.02 0.9±0.011

Fc 0.95±0.009 0.88±0.023 0.98±0.011 0.92±0.009 0.03±0.016 0.8±0.011 0.91±0.011 0.87±0.017 0.9±0.012 0.9±0.012 0.9±0.012 0.91±0.009 0.9±0.012 0.91±0.009 0.83±0.021 0.9±0.012

LR
Fu 0.30±0.014 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.014 0.3±0.015 0.3±0.017

Fr 0.78±0.011 0.43±0.082 0.79±0.013 0.72±0.024 0.0±0.0 0.68±0.01 0.84±0.008 0.43±0.04 0.74±0.019 0.74±0.019 0.74±0.019 0.73±0.019 0.75±0.019 0.73±0.019 0.57±0.022 0.74±0.019

Fc 0.86±0.014 0.7±0.028 0.85±0.019 0.82±0.012 0.16±0.011 0.73±0.01 0.89±0.013 0.57±0.026 0.79±0.012 0.79±0.011 0.79±0.011 0.81±0.016 0.79±0.011 0.81±0.016 0.74±0.013 0.79±0.011

(C) PAr+WAr

A F no-atk delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_
addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk modBgClr

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

Fr 0.79±0.013 0.26±0.012 0.76±0.014 0.76±0.015 0.76±0.015 0.01±0.01 0.76±0.014 0.83±0.021 0.75±0.017 0.76±0.015 0.64±0.022 0.14±0.015 0.76±0.015

Fc 0.95±0.010 0.9±0.031 0.92±0.019 0.93±0.013 0.93±0.013 0.22±0.058 0.87±0.019 0.92±0.011 0.92±0.013 0.93±0.013 0.88±0.019 0.77±0.032 0.93±0.013

RF
Fu 0.56±0.037 0.57±0.032 0.56±0.034 0.56±0.033 0.56±0.034 0.56±0.032 0.56±0.033 0.56±0.034 0.56±0.034 0.56±0.033 0.56±0.033 0.56±0.034 0.56±0.033

Fr 0.95±0.008 0.86±0.044 0.86±0.016 0.91±0.01 0.91±0.01 0.0±0.001 0.77±0.021 0.92±0.009 0.91±0.009 0.91±0.01 0.83±0.015 0.44±0.055 0.91±0.01

Fc 0.95±0.009 0.91±0.021 0.91±0.009 0.94±0.01 0.94±0.01 0.03±0.016 0.85±0.012 0.92±0.008 0.93±0.012 0.94±0.01 0.86±0.021 0.56±0.045 0.94±0.01

LR
Fu 0.30±0.014 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.016 0.3±0.014

Fr 0.78±0.011 0.61±0.053 0.69±0.014 0.79±0.016 0.79±0.016 0.0±0.0 0.71±0.012 0.85±0.003 0.78±0.016 0.8±0.016 0.62±0.016 0.38±0.028 0.79±0.016

Fc 0.86±0.014 0.84±0.016 0.82±0.012 0.89±0.014 0.89±0.014 0.19±0.021 0.78±0.01 0.9±0.009 0.89±0.012 0.89±0.014 0.85±0.014 0.72±0.019 0.89±0.014

(D) PAr+WAr

A F no-atk delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_
addInLnk replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

Fr 0.79±0.013 0.35±0.019 0.8±0.013 0.8±0.013 0.06±0.025 0.78±0.011 0.82±0.019 0.78±0.014 0.8±0.013 0.69±0.022 0.22±0.023 0.61±0.067 0.8±0.013

Fc 0.95±0.010 0.92±0.033 0.95±0.012 0.95±0.012 0.22±0.059 0.89±0.021 0.93±0.013 0.94±0.014 0.95±0.012 0.92±0.022 0.8±0.035 0.89±0.042 0.95±0.012

RF
Fu 0.56±0.037 0.57±0.032 0.56±0.032 0.57±0.033 0.56±0.032 0.56±0.034 0.56±0.034 0.56±0.033 0.56±0.032 0.57±0.035 0.56±0.032 0.56±0.032 0.57±0.032

Fr 0.95±0.008 0.84±0.042 0.95±0.007 0.95±0.007 0.0±0.0 0.84±0.024 0.92±0.011 0.95±0.006 0.95±0.007 0.89±0.019 0.45±0.045 0.9±0.015 0.95±0.007

Fc 0.95±0.009 0.92±0.015 0.94±0.009 0.94±0.009 0.03±0.016 0.85±0.015 0.92±0.007 0.94±0.009 0.94±0.009 0.89±0.015 0.54±0.036 0.88±0.015 0.94±0.009

LR
Fu 0.30±0.014 0.3±0.014 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.016 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.014

Fr 0.78±0.011 0.55±0.056 0.75±0.016 0.75±0.016 0.0±0.0 0.68±0.009 0.83±0.007 0.74±0.016 0.76±0.016 0.6±0.028 0.32±0.018 0.45±0.028 0.75±0.016

Fc 0.86±0.014 0.8±0.019 0.87±0.014 0.87±0.014 0.17±0.014 0.79±0.009 0.91±0.008 0.89±0.014 0.87±0.014 0.82±0.013 0.66±0.024 0.65±0.027 0.87±0.014
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TABLE 3.12: Impact of PAr+PAr on ML-PWD generated on
δPhish.The cells report the average (and std. dev.) tpr over the 50 re-
iterations. Lines correspond to the ML-PWD, while rows correspond

to a specific PsP+PsP perturbation.

A F no-atk addLngTxt_delTtl delFtr_delTtl delFtr_addLngTxt delSpn_delTtl delSpn_delFtrer delSpn_addLngTxt delFrm_delFtr delFrm_delSpn

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031 0.64±0.031

Fr 0.79±0.013 0.81±0.013 0.76±0.015 0.76±0.015 0.8±0.013 0.75±0.015 0.8±0.013 1.0±0.0 0.74±0.01

Fc 0.95±0.010 0.91±0.027 0.89±0.026 0.93±0.013 0.9±0.03 0.92±0.014 0.95±0.012 0.99±0.014 0.9±0.018

RF
Fu 0.56±0.037 0.56±0.033 0.57±0.033 0.56±0.032 0.56±0.033 0.57±0.033 0.56±0.034 0.56±0.034 0.56±0.032

Fr 0.95±0.008 0.94±0.012 0.89±0.014 0.91±0.01 0.94±0.011 0.91±0.011 0.95±0.007 1.0±0.0 0.91±0.01

Fc 0.95±0.009 0.93±0.011 0.91±0.016 0.94±0.01 0.92±0.012 0.94±0.01 0.94±0.009 1.0±0.0 0.92±0.008

LR
Fu 0.30±0.014 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.015 0.3±0.014 0.3±0.015 0.3±0.014

Fr 0.78±0.011 0.64±0.025 0.64±0.024 0.79±0.016 0.62±0.035 0.76±0.02 0.75±0.016 1.0±0.0 0.74±0.019

Fc 0.86±0.014 0.76±0.02 0.79±0.019 0.89±0.014 0.76±0.021 0.89±0.014 0.87±0.014 1.0±0.005 0.81±0.01

TABLE 3.13: Impact of PAr+MAr attacks on δPhish.The cells report
the average (and std. dev.) tpr over the 50 reiterations. Lines corre-
spond to the ML-PWD, while rows correspond to a specific PsP+MsP.

A F no-atk addLngTxt_delBdy delfoot_delBdy delSpn_delBdy

CN
Fu 0.65±0.028 0.64±0.031 0.64±0.031 0.64±0.031

Fr 0.79±0.013 0.81±0.012 0.76±0.015 0.8±0.013

Fc 0.95±0.010 0.95±0.011 0.93±0.013 0.95±0.012

RF
Fu 0.56±0.037 0.56±0.031 0.56±0.034 0.56±0.033

Fr 0.95±0.008 0.95±0.008 0.91±0.01 0.95±0.006

Fc 0.95±0.009 0.94±0.009 0.94±0.01 0.94±0.009

LR
Fu 0.30±0.014 0.3±0.014 0.3±0.014 0.3±0.015

Fr 0.78±0.011 0.78±0.011 0.79±0.016 0.75±0.016

Fc 0.86±0.014 0.87±0.014 0.89±0.014 0.87±0.014

TABLE 3.14: Impact of WAr+WAr on δPhish.The cells report the av-
erage (and std. dev.) tpr over the 50 reiterations. Lines correspond to

the ML-PWD, while rows correspond to a specific WsP+WsP.

A F no-atk replOnfoc_replRet htEsc_replRet htEncd_replRet

CN
Fu 0.65±0.028 0.64±0.031 0.63±0.035 0.64±0.031

Fr 0.79±0.013 0.81±0.013 1.0±0.0 1.0±0.0

Fc 0.95±0.010 0.96±0.011 0.97±0.033 0.99±0.014

RF
Fu 0.56±0.037 0.56±0.034 0.56±0.036 0.56±0.032

Fr 0.95±0.008 0.95±0.008 1.0±0.0 1.0±0.0

Fc 0.95±0.009 0.95±0.01 1.0±0.0 1.0±0.0

LR
Fu 0.30±0.014 0.3±0.016 0.3±0.023 0.3±0.015

Fr 0.78±0.011 0.78±0.011 1.0±0.0 1.0±0.0

Fc 0.86±0.014 0.86±0.014 0.91±0.069 1.0±0.004
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Perturbation’s impact on MLSEC

We executed 37 kinds of single attacks and report the influence of MLSEC’s PWD
in Table 3.15, 3.16 and 3.17, and the influence of hybrid space attacks in Table 3.19,
3.18, 3.20 and 3.21.

TABLE 3.15: Impact of iWAr on the PWD of MLSEC. The cells report
the average (and std. dev.) tpr over the 50 reiterations. Lines cor-
respond to the ML-PWD, while rows correspond to a specific iWsP

perturbation.

A no-atk addInLnk replOnc delHidIt addHidP replJS replRet htEsc htEncd replPass replOnfoc addSusLnk

m0 0.91±0.052 0.73±0.159 0.91±0.052 0.88±0.049 0.02±0.011 0.9±0.059 0.79±0.123 0.06±0.046 0.06±0.036 0.48±0.259 0.5±0.254 0.5±0.203

m1 0.87±0.071 0.86±0.083 0.88±0.07 0.85±0.093 0.52±0.161 0.85±0.088 0.74±0.115 0.37±0.113 0.41±0.126 0.85±0.068 0.84±0.09 0.85±0.1

m2 0.9±0.051 0.73±0.158 0.9±0.052 0.88±0.052 0.02±0.011 0.9±0.058 0.83±0.105 0.85±0.127 0.9±0.051 0.47±0.266 0.51±0.263 0.5±0.202

m3 0.88±0.07 0.86±0.08 0.87±0.07 0.85±0.096 0.51±0.172 0.85±0.087 0.79±0.108 0.86±0.099 0.88±0.07 0.85±0.066 0.85±0.093 0.85±0.1

m4 0.82±0.106 0.83±0.108 0.82±0.111 0.8±0.136 0.83±0.123 0.82±0.126 0.69±0.122 0.09±0.067 0.07±0.045 0.46±0.256 0.46±0.242 0.47±0.171

m5 0.81±0.12 0.82±0.12 0.81±0.124 0.8±0.141 0.82±0.136 0.81±0.136 0.67±0.114 0.43±0.098 0.46±0.139 0.79±0.125 0.79±0.119 0.8±0.157

m6 0.83±0.108 0.83±0.11 0.83±0.112 0.81±0.131 0.84±0.116 0.82±0.127 0.73±0.148 0.84±0.126 0.83±0.108 0.47±0.256 0.49±0.236 0.47±0.174

m7 0.82±0.121 0.82±0.122 0.82±0.126 0.81±0.136 0.83±0.127 0.81±0.138 0.7±0.145 0.84±0.121 0.82±0.121 0.79±0.126 0.81±0.125 0.8±0.157

TABLE 3.16: Evasion Robustness of the MLSEC’s PWD against eWAr

and rWAr. The cells report the average (and std. dev.) tpr over the 50
reiterations. Lines correspond to the PWD, while rows correspond to

a specific eWsP or rWsP attack.

A no-atk
eWsP rWsP

addImgBot modFntTyp modCpy addIcn delSusLnk delSusFrm modTtl delCpy modBgimg modBgClr modFntClr modFntSiz

m0 0.91±0.052 0.65±0.185 0.92±0.051 0.89±0.061 0.76±0.126 0.86±0.095 0.8±0.253 0.87±0.102 0.89±0.061 0.92±0.053 0.91±0.056 0.81±0.116 0.92±0.051

m1 0.87±0.071 0.87±0.085 0.89±0.063 0.85±0.091 0.77±0.089 0.82±0.146 0.81±0.106 0.84±0.12 0.85±0.089 0.89±0.064 0.88±0.077 0.78±0.1 0.89±0.063

m2 0.9±0.051 0.65±0.185 0.91±0.05 0.89±0.06 0.76±0.122 0.86±0.095 0.79±0.262 0.87±0.101 0.89±0.06 0.91±0.052 0.91±0.055 0.85±0.087 0.91±0.05

m3 0.88±0.07 0.87±0.079 0.89±0.064 0.85±0.09 0.77±0.081 0.82±0.146 0.8±0.124 0.84±0.119 0.85±0.088 0.89±0.066 0.88±0.076 0.81±0.091 0.89±0.064

m4 0.82±0.106 0.64±0.199 0.87±0.065 0.81±0.124 0.83±0.109 0.8±0.156 0.73±0.257 0.8±0.156 0.81±0.127 0.87±0.066 0.86±0.079 0.73±0.112 0.87±0.065

m5 0.81±0.12 0.85±0.107 0.85±0.089 0.8±0.136 0.82±0.122 0.79±0.145 0.78±0.14 0.79±0.167 0.8±0.137 0.85±0.089 0.84±0.096 0.7±0.103 0.85±0.089

m6 0.83±0.108 0.64±0.198 0.87±0.066 0.81±0.126 0.83±0.109 0.8±0.157 0.72±0.261 0.79±0.157 0.81±0.128 0.87±0.066 0.86±0.079 0.73±0.111 0.87±0.065

m7 0.82±0.121 0.85±0.106 0.85±0.089 0.8±0.138 0.82±0.123 0.79±0.146 0.78±0.141 0.79±0.169 0.81±0.138 0.85±0.089 0.84±0.097 0.7±0.097 0.85±0.089

TABLE 3.17: Impact of PAr and MAr on PWD of MLSEC. The cells
report the average (and std. dev.) tpr over the 50 reiterations. Lines
correspond to the ML-PWD, while rows correspond to a specific PsP

or MsP attack.

A no-atk
PsP MsP

delTxt delFrm delSpn delTtl addLngTxt delFtr replSusFtrLnk brTg delHt delHd delBdy brTgs hmg

m0 0.91±0.052 0.64±0.272 0.91±0.052 0.85±0.089 0.88±0.062 0.86±0.095 0.87±0.085 0.9±0.059 0.9±0.062 0.9±0.062 0.9±0.062 0.9±0.062 0.9±0.062 0.9±0.062

m1 0.87±0.071 0.83±0.133 0.67±0.262 0.67±0.262 0.82±0.117 0.83±0.133 0.82±0.117 0.67±0.262 0.31±0.051 0.31±0.051 0.31±0.051 0.31±0.051 0.31±0.051 0.31±0.051

m2 0.9±0.051 0.84±0.148 0.61±0.39 0.61±0.39 0.85±0.087 0.84±0.148 0.85±0.087 0.61±0.39 0.88±0.096 0.88±0.096 0.88±0.096 0.88±0.096 0.88±0.096 0.88±0.096

m3 0.88±0.07 0.83±0.131 0.66±0.271 0.66±0.271 0.82±0.115 0.83±0.131 0.82±0.115 0.66±0.271 0.26±0.08 0.26±0.08 0.26±0.08 0.26±0.08 0.26±0.08 0.26±0.08

m4 0.82±0.106 0.8±0.169 0.57±0.372 0.57±0.372 0.79±0.149 0.8±0.169 0.79±0.149 0.57±0.372 0.8±0.121 0.8±0.121 0.8±0.121 0.8±0.121 0.8±0.121 0.8±0.121

m5 0.81±0.12 0.79±0.16 0.64±0.28 0.64±0.28 0.79±0.143 0.79±0.16 0.79±0.143 0.64±0.28 0.39±0.166 0.39±0.166 0.39±0.166 0.39±0.166 0.39±0.166 0.39±0.166

m6 0.83±0.108 0.8±0.17 0.56±0.373 0.56±0.373 0.79±0.144 0.8±0.17 0.79±0.144 0.56±0.373 0.07±0.076 0.07±0.076 0.07±0.076 0.07±0.076 0.07±0.076 0.07±0.076

m7 0.82±0.121 0.79±0.161 0.64±0.279 0.64±0.279 0.79±0.138 0.79±0.161 0.79±0.138 0.64±0.279 0.36±0.129 0.36±0.129 0.36±0.129 0.36±0.129 0.36±0.129 0.36±0.129

TABLE 3.18: Impact of PAr+PAr on MLSEC.The cells report the aver-
age (and std. dev.) tpr over the 50 reiterations. Lines correspond to
the PWD, while rows correspond to a specific PsP+PsP perturbation.

A no-atk addLngTxt_delTtl delFtr_delTtl delFtr_addLngTxt delSpn_delTtl delSpn_delFtrer delSpn_addLngTxt delFrm_delFtr delFrm_delSpn

m0 0.91±0.052 0.82±0.16 0.85±0.092 0.8±0.167 0.84±0.093 0.84±0.096 0.79±0.173 0.59±0.375 0.58±0.375

m1 0.87±0.071 0.81±0.145 0.84±0.089 0.81±0.13 0.81±0.117 0.83±0.105 0.79±0.157 0.66±0.269 0.62±0.28

m2 0.9±0.051 0.81±0.159 0.85±0.094 0.8±0.166 0.83±0.095 0.84±0.096 0.79±0.172 0.59±0.376 0.58±0.376

m3 0.88±0.07 0.81±0.143 0.83±0.093 0.81±0.128 0.81±0.118 0.83±0.106 0.79±0.154 0.65±0.276 0.62±0.288

m4 0.82±0.106 0.77±0.178 0.78±0.146 0.75±0.2 0.78±0.145 0.77±0.156 0.76±0.204 0.57±0.358 0.56±0.367

m5 0.81±0.12 0.77±0.172 0.8±0.111 0.77±0.157 0.78±0.141 0.8±0.124 0.77±0.191 0.66±0.259 0.63±0.275

m6 0.83±0.108 0.77±0.177 0.77±0.155 0.74±0.198 0.77±0.152 0.77±0.154 0.76±0.201 0.56±0.358 0.56±0.367

m7 0.82±0.121 0.77±0.17 0.8±0.12 0.77±0.155 0.78±0.146 0.8±0.122 0.77±0.186 0.67±0.255 0.63±0.273
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TABLE 3.19: Impact of PAr+MAr on MLSEC. The cells report the av-
erage (and std. dev.) tpr over the 50 reiterations. Lines correspond to
the PWD, while rows correspond to a specific PsP+MsP perturbation.

A no-atk addLngTxt_delBdy delfoot_delBdy delSpn_delBdy

m0 0.91±0.052 0.78±0.167 0.79±0.137 0.75±0.156

m1 0.87±0.071 0.8±0.146 0.81±0.115 0.78±0.14

m2 0.9±0.051 0.8±0.161 0.8±0.13 0.77±0.149

m3 0.88±0.07 0.83±0.125 0.82±0.108 0.79±0.133

m4 0.82±0.106 0.79±0.136 0.76±0.154 0.72±0.184

m5 0.81±0.12 0.8±0.139 0.8±0.122 0.77±0.148

m6 0.83±0.108 0.79±0.137 0.76±0.154 0.72±0.183

m7 0.82±0.121 0.8±0.139 0.8±0.123 0.77±0.145

Perturbation’s impact on Zenodo

In this section, we present new perturbation’s influence on Zenodo, single attacks’
influence is shown in Table 3.22, 3.23, 3.25, and hybrid attacks’ impact is shown in
Table 3.28, 3.26, 3.27 3.29.
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TABLE 3.20: Impact of PAr+WAr on PWD of MLSEC. The cells report
the average (and std. dev.) tpr over the 50 reiterations. Lines cor-
respond to the PWD, while rows correspond to a specific PsP+WsP

perturbation.

(A) PAr+WAr

A no-atk delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_
addInLnk onclick delHidIt addHidP replJS delSusLnk addImgBot modFntSiz modBgimg modBgClr delCpy modTtl modCpy addIcn replRet combine

m0 0.91±0.052 0.49±0.335 0.61±0.388 0.6±0.384 0.01±0.008 0.61±0.388 0.59±0.379 0.43±0.325 0.63±0.388 0.63±0.388 0.63±0.387 0.61±0.387 0.59±0.383 0.61±0.386 0.49±0.329 0.51±0.341 0.01±0.008

m1 0.87±0.071 0.66±0.268 0.67±0.262 0.63±0.284 0.41±0.181 0.67±0.262 0.62±0.291 0.69±0.243 0.69±0.265 0.69±0.265 0.69±0.265 0.67±0.261 0.65±0.27 0.66±0.261 0.55±0.254 0.53±0.257 0.37±0.196

m2 0.9±0.051 0.49±0.338 0.61±0.39 0.61±0.386 0.01±0.008 0.61±0.39 0.59±0.38 0.43±0.326 0.63±0.388 0.63±0.388 0.63±0.387 0.61±0.389 0.59±0.385 0.61±0.388 0.49±0.33 0.57±0.36 0.01±0.008

m3 0.88±0.07 0.66±0.277 0.66±0.271 0.63±0.289 0.38±0.196 0.66±0.271 0.61±0.299 0.68±0.253 0.69±0.266 0.69±0.266 0.69±0.266 0.66±0.269 0.64±0.278 0.66±0.269 0.55±0.257 0.6±0.253 0.37±0.198

m4 0.82±0.106 0.57±0.372 0.56±0.372 0.55±0.378 0.57±0.379 0.56±0.372 0.56±0.378 0.42±0.324 0.6±0.377 0.6±0.377 0.6±0.377 0.57±0.366 0.55±0.375 0.56±0.371 0.56±0.372 0.47±0.314 0.54±0.388

m5 0.81±0.12 0.64±0.28 0.63±0.28 0.61±0.3 0.65±0.28 0.64±0.28 0.62±0.293 0.68±0.241 0.67±0.277 0.67±0.277 0.67±0.277 0.65±0.261 0.61±0.298 0.63±0.279 0.63±0.281 0.5±0.257 0.6±0.319

m6 0.83±0.108 0.56±0.373 0.56±0.372 0.55±0.378 0.57±0.379 0.56±0.373 0.56±0.377 0.42±0.328 0.6±0.376 0.6±0.376 0.6±0.376 0.57±0.367 0.55±0.376 0.56±0.371 0.56±0.372 0.47±0.314 0.55±0.392

m7 0.82±0.121 0.63±0.28 0.64±0.279 0.62±0.294 0.66±0.267 0.64±0.279 0.63±0.282 0.69±0.237 0.67±0.276 0.67±0.276 0.67±0.276 0.65±0.26 0.62±0.297 0.64±0.277 0.63±0.279 0.51±0.254 0.62±0.303

(B) PAr+WAr

A no-atk delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_
addInLnk replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr combine

m0 0.91±0.052 0.73±0.137 0.41±0.28 0.39±0.277 0.02±0.007 0.85±0.087 0.84±0.117 0.85±0.091 0.83±0.12 0.7±0.127 0.68±0.195 0.6±0.199 0.88±0.075 0.0±0.004

m1 0.87±0.071 0.83±0.112 0.78±0.129 0.8±0.116 0.52±0.149 0.82±0.115 0.79±0.165 0.82±0.119 0.8±0.14 0.7±0.1 0.83±0.117 0.85±0.097 0.86±0.096 0.55±0.106

m2 0.9±0.051 0.73±0.131 0.42±0.287 0.38±0.282 0.02±0.008 0.85±0.085 0.84±0.117 0.85±0.089 0.83±0.118 0.7±0.125 0.68±0.194 0.59±0.199 0.88±0.073 0.0±0.003

m3 0.88±0.07 0.83±0.104 0.79±0.129 0.79±0.111 0.51±0.17 0.82±0.113 0.79±0.164 0.82±0.117 0.8±0.137 0.7±0.097 0.82±0.114 0.84±0.094 0.86±0.094 0.52±0.125

m4 0.82±0.106 0.79±0.149 0.43±0.248 0.43±0.261 0.8±0.149 0.79±0.141 0.77±0.168 0.78±0.162 0.76±0.179 0.78±0.153 0.65±0.175 0.6±0.215 0.84±0.088 0.5±0.263

m5 0.81±0.12 0.79±0.143 0.77±0.137 0.76±0.151 0.81±0.142 0.8±0.137 0.77±0.142 0.79±0.153 0.77±0.181 0.79±0.149 0.8±0.145 0.84±0.116 0.84±0.097 0.84±0.112

m6 0.83±0.108 0.78±0.152 0.44±0.253 0.43±0.262 0.8±0.15 0.79±0.147 0.77±0.167 0.78±0.162 0.76±0.176 0.79±0.148 0.66±0.178 0.6±0.215 0.84±0.09 0.53±0.275

m7 0.82±0.121 0.79±0.148 0.78±0.136 0.76±0.145 0.81±0.142 0.79±0.14 0.77±0.14 0.78±0.152 0.77±0.177 0.79±0.144 0.79±0.143 0.84±0.113 0.83±0.098 0.83±0.116

(C) PAr+WAr

A no-atk delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_
addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addicon addSusLnk addImgBot modBgClr combine

m0 0.91±0.052 0.77±0.132 0.77±0.241 0.49±0.197 0.51±0.196 0.02±0.009 0.87±0.085 0.84±0.118 0.87±0.085 0.85±0.099 0.72±0.148 0.71±0.194 0.67±0.187 0.89±0.071 0.0±0.002

m1 0.87±0.071 0.85±0.092 0.78±0.165 0.81±0.086 0.83±0.089 0.53±0.148 0.85±0.086 0.81±0.156 0.85±0.086 0.84±0.092 0.73±0.093 0.85±0.099 0.87±0.077 0.87±0.076 0.36±0.096

m2 0.9±0.051 0.77±0.131 0.77±0.253 0.48±0.214 0.49±0.215 0.02±0.011 0.87±0.084 0.84±0.117 0.87±0.084 0.85±0.098 0.72±0.147 0.71±0.192 0.67±0.187 0.89±0.07 0.0±0.001

m3 0.88±0.07 0.85±0.092 0.78±0.18 0.82±0.094 0.82±0.091 0.51±0.173 0.85±0.085 0.81±0.155 0.85±0.085 0.84±0.09 0.73±0.092 0.85±0.096 0.87±0.076 0.87±0.075 0.33±0.11

m4 0.82±0.106 0.79±0.154 0.71±0.263 0.5±0.187 0.54±0.174 0.81±0.145 0.79±0.143 0.77±0.171 0.79±0.143 0.79±0.15 0.79±0.154 0.67±0.177 0.65±0.191 0.85±0.072 0.57±0.193

m5 0.81±0.12 0.81±0.117 0.78±0.164 0.77±0.137 0.78±0.138 0.83±0.109 0.82±0.107 0.79±0.134 0.82±0.107 0.81±0.115 0.81±0.117 0.8±0.146 0.86±0.084 0.86±0.069 0.84±0.116

m6 0.83±0.108 0.79±0.153 0.71±0.263 0.5±0.206 0.53±0.196 0.81±0.146 0.78±0.153 0.77±0.171 0.78±0.153 0.78±0.147 0.78±0.153 0.67±0.184 0.65±0.194 0.85±0.077 0.59±0.22

m7 0.82±0.121 0.81±0.116 0.78±0.156 0.78±0.142 0.78±0.136 0.84±0.109 0.81±0.116 0.79±0.134 0.81±0.116 0.81±0.112 0.81±0.116 0.8±0.148 0.86±0.084 0.85±0.075 0.84±0.118

(D) PAr+WAr

A no-atk addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_
addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr combine

m0 0.91±0.052 0.69±0.214 0.73±0.277 0.41±0.245 0.42±0.272 0.02±0.011 0.83±0.158 0.68±0.218 0.83±0.158 0.83±0.158 0.67±0.187 0.68±0.218 0.59±0.227 0.84±0.157 0.0±0.004

m1 0.87±0.071 0.85±0.105 0.73±0.216 0.8±0.144 0.82±0.116 0.5±0.189 0.82±0.141 0.86±0.103 0.82±0.141 0.82±0.141 0.69±0.136 0.86±0.103 0.84±0.126 0.84±0.131 0.48±0.139

m2 0.9±0.051 0.69±0.213 0.73±0.281 0.42±0.25 0.41±0.275 0.02±0.011 0.83±0.157 0.68±0.215 0.83±0.157 0.83±0.157 0.66±0.189 0.68±0.215 0.58±0.227 0.84±0.156 0.0±0.004

m3 0.88±0.07 0.86±0.102 0.73±0.228 0.81±0.149 0.82±0.114 0.5±0.186 0.82±0.14 0.86±0.101 0.82±0.14 0.82±0.14 0.69±0.136 0.86±0.101 0.83±0.125 0.84±0.13 0.48±0.152

m4 0.82±0.106 0.8±0.169 0.68±0.3 0.43±0.236 0.46±0.26 0.81±0.166 0.78±0.18 0.72±0.126 0.79±0.179 0.79±0.179 0.8±0.169 0.72±0.126 0.59±0.231 0.84±0.116 0.42±0.252

m5 0.81±0.12 0.79±0.16 0.71±0.252 0.77±0.152 0.77±0.158 0.81±0.156 0.78±0.173 0.82±0.125 0.79±0.17 0.79±0.17 0.79±0.16 0.82±0.125 0.82±0.134 0.82±0.122 0.69±0.251

m6 0.83±0.108 0.8±0.169 0.68±0.3 0.45±0.238 0.46±0.263 0.81±0.167 0.78±0.179 0.72±0.128 0.79±0.178 0.79±0.178 0.8±0.17 0.72±0.128 0.59±0.23 0.83±0.115 0.48±0.259

m7 0.82±0.121 0.79±0.161 0.71±0.248 0.78±0.163 0.77±0.159 0.81±0.159 0.78±0.172 0.82±0.126 0.79±0.169 0.79±0.169 0.8±0.162 0.82±0.126 0.82±0.134 0.82±0.119 0.72±0.245
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TABLE 3.21: Impact of WAr+WAr on MLSEC. The cells report the av-
erage (and std. dev.) tpr over the 50 reiterations. Lines correspond to

the PWD, while rows correspond to a specific WsP+WsP.

A no-atk replOnfoc_replRet htEsc_replRet htEncd_replRet

m0 0.91±0.052 0.33±0.165 0.03±0.021 0.08±0.04

m1 0.87±0.071 0.63±0.136 0.16±0.065 0.22±0.082

m2 0.9±0.051 0.46±0.229 0.86±0.137 0.9±0.051

m3 0.88±0.07 0.76±0.13 0.86±0.105 0.88±0.07

m4 0.82±0.106 0.31±0.176 0.03±0.017 0.11±0.05

m5 0.81±0.12 0.55±0.124 0.15±0.053 0.28±0.093

m6 0.83±0.108 0.36±0.221 0.85±0.124 0.83±0.108

m7 0.82±0.121 0.62±0.182 0.85±0.109 0.82±0.121

TABLE 3.22: Evasion Robustness of the ML-PWD against iWAr on
the Zenodo. The cells report the average (and std. dev.) tpr over
the 50 reiterations. Lines correspond to the ML-PWD, while rows

correspond to a specific iWsP perturbation.

A F no-atk addInLnk delHidIt addHidP replJS replRet htEsc htEncd replPass replOnfoc addSusLnk

CN
Fu 0.96±0.007 0.95±0.018 0.95±0.018 0.93±0.017 0.96±0.013 0.96±0.013 0.92±0.023 0.96±0.013 0.96±0.013 0.95±0.018 0.96±0.013

Fr 0.86±0.013 0.61±0.034 0.88±0.012 0.28±0.008 0.74±0.05 0.88±0.013 0.87±0.025 0.0±0.0 0.88±0.013 0.88±0.013 0.48±0.022

Fc 0.97±0.009 0.97±0.021 0.96±0.016 0.86±0.027 0.95±0.013 0.97±0.012 0.92±0.019 0.9±0.033 0.97±0.012 0.97±0.012 0.97±0.021

RF
Fu 0.96±0.007 0.96±0.008 0.96±0.008 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.96±0.007 0.98±0.005

Fr 0.90±0.013 0.94±0.018 0.84±0.01 0.03±0.064 0.71±0.016 0.9±0.013 0.84±0.027 0.0±0.0 0.9±0.013 0.9±0.013 0.64±0.062

Fc 0.97±0.009 0.97±0.008 0.97±0.01 0.96±0.006 0.96±0.006 0.98±0.004 0.96±0.007 0.96±0.007 0.98±0.005 0.97±0.01 0.97±0.008

LR
Fu 0.97±0.005 0.96±0.002 0.96±0.005 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.005 0.97±0.009 0.97±0.004 0.95±0.005 0.97±0.004

Fr 0.80±0.013 0.95±0.005 0.79±0.014 0.24±0.019 0.46±0.013 0.8±0.013 0.55±0.009 0.0±0.0 0.8±0.013 0.8±0.013 0.72±0.0

Fc 0.98±0.005 0.98±0.007 0.97±0.007 0.95±0.007 0.96±0.005 0.98±0.002 0.97±0.007 0.97±0.005 0.98±0.002 0.98±0.003 0.97±0.0

TABLE 3.23: Evasion Robustness of the ML-PWD against eWAr and
rWAr on the Zenodo. The cells report the average (and std. dev.)
tpr over the 50 reiterations. Lines correspond to the ML-PWD, while

rows correspond to a specific eWsP or rWsP perturbation.

A F no-atk
eWsP rWsP

addImgBot modFntTyp modCpy addIcn delSusLnk delSusFrm modTtl delCpy modBgimg modBgClr modFntClr modFntSiz

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.74±0.06 0.88±0.013 0.76±0.045 0.82±0.019 0.91±0.016 0.86±0.036 0.88±0.013 0.76±0.045 0.88±0.013 0.88±0.013 0.88±0.013 0.88±0.013

Fc 0.97±0.009 0.97±0.01 0.97±0.012 0.97±0.013 0.96±0.012 0.96±0.012 0.97±0.012 0.97±0.013 0.97±0.013 0.97±0.012 0.97±0.012 0.97±0.012 0.97±0.012

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.8±0.045 0.9±0.013 0.89±0.014 0.84±0.025 0.9±0.015 0.9±0.014 0.9±0.013 0.89±0.014 0.9±0.013 0.9±0.013 0.9±0.013 0.9±0.013

Fc 0.97±0.009 0.98±0.006 0.98±0.005 0.98±0.005 0.98±0.005 0.96±0.006 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.004 0.98±0.004 0.98±0.004 0.98±0.005

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

Fr 0.80±0.013 0.9±0.021 0.8±0.013 0.8±0.013 0.88±0.013 0.74±0.017 0.8±0.012 0.79±0.013 0.8±0.013 0.8±0.013 0.8±0.013 0.8±0.013 0.8±0.013

Fc 0.98±0.005 0.97±0.008 0.98±0.001 0.98±0.002 0.97±0.008 0.96±0.002 0.97±0.008 0.98±0.002 0.98±0.001 0.98±0.001 0.98±0.001 0.98±0.002 0.98±0.005
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TABLE 3.24: Impact of WAu on ML-PWD of Zenodo. The cells report
the average (and std. dev.) tpr over the 50 reiterations. Lines cor-
respond to the ML-PWD, while rows correspond to a specific iWsP

perturbation.

A F no-atk replChar sepWrd delChar swpChar addChar atkPth

CN
Fu 0.96±0.007 0.98±0.012 0.95±0.024 0.99±0.009 0.99±0.013 0.99±0.007 0.97±0.017

Fr 0.86±0.013 0.5±0.043 0.49±0.04 0.5±0.043 0.49±0.04 0.49±0.038 0.5±0.043

Fc 0.97±0.009 0.98±0.017 0.95±0.025 0.99±0.024 0.99±0.019 0.99±0.017 0.97±0.021

RF
Fu 0.96±0.007 1.0±0.004 0.98±0.0 1.0±0.005 1.0±0.004 1.0±0.006 0.99±0.002

Fr 0.90±0.013 0.73±0.043 0.73±0.043 0.74±0.043 0.74±0.041 0.75±0.041 0.73±0.043

Fc 0.97±0.009 1.0±0.005 0.99±0.001 1.0±0.0 1.0±0.002 1.0±0.003 0.98±0.006

LR
Fu 0.97±0.005 0.99±0.002 0.99±0.003 1.0±0.003 1.0±0.0 0.99±0.001 0.97±0.007

Fr 0.80±0.013 0.78±0.0 0.79±0.0 0.79±0.0 0.79±0.0 0.8±0.0 0.78±0.0

Fc 0.98±0.005 0.99±0.0 1.0±0.001 1.0±0.0 1.0±0.0 1.0±0.0 0.97±0.004

TABLE 3.25: Impact of PAr and MAr on ML-PWD generated on
Zenodo. The cells report the average (and std. dev.) tpr over the
50 reiterations. Lines correspond to the ML-PWD, while rows corre-

spond to a specific PsP or MsP attack.

A F no-atk
PsP MsP

delTxt delFrm delSpn delTtl addLngTxt delFtr replSusFtrLnk brTg delHt delHd delBdy brTgs hmg

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.97±0.014

Fr 0.86±0.013 0.78±0.046 0.86±0.036 0.88±0.015 0.88±0.013 0.88±0.013 0.64±0.052 0.74±0.05 0.88±0.013 0.0±0.0 0.82±0.011 0.43±0.049 0.88±0.013 0.4±0.035

Fc 0.97±0.009 0.97±0.012 0.97±0.012 0.97±0.012 0.98±0.011 0.97±0.012 0.96±0.017 0.96±0.012 0.97±0.012 0.9±0.033 0.95±0.02 0.93±0.019 0.97±0.012 0.92±0.026

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.97±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.006

Fr 0.90±0.013 0.86±0.032 0.9±0.014 0.9±0.012 0.86±0.032 0.9±0.013 0.86±0.018 0.84±0.012 0.9±0.013 0.0±0.0 0.66±0.083 0.46±0.024 0.9±0.013 0.22±0.066

Fc 0.97±0.009 0.98±0.005 0.98±0.005 0.98±0.004 0.98±0.005 0.98±0.004 0.97±0.006 0.97±0.004 0.97±0.006 0.96±0.006 0.98±0.005 0.96±0.006 0.98±0.005 0.97±0.007

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.98±0.005

Fr 0.80±0.013 0.66±0.004 0.8±0.012 0.8±0.013 0.66±0.004 0.8±0.013 0.76±0.008 0.73±0.022 0.8±0.013 0.0±0.0 0.74±0.0 0.32±0.006 0.8±0.013 0.24±0.02

Fc 0.98±0.005 0.96±0.005 0.97±0.008 0.98±0.002 0.96±0.007 0.98±0.002 0.98±0.001 0.97±0.006 0.97±0.005 0.96±0.006 0.97±0.005 0.97±0.003 0.98±0.001 0.96±0.005

TABLE 3.26: Impact of PAr+PAr on Zenodo

A F no-atk addLngTxt_delTtl delFtr_delTtl delFtr_addLngTxt delSpn_delTtl delSpn_delFtrer delSpn_addLngTxt delFrm_delFtr delFrm_delSpn

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.88±0.013 0.64±0.052 0.64±0.052 0.88±0.015 0.64±0.052 0.88±0.015 0.78±0.064 0.83±0.045

Fc 0.97±0.009 0.98±0.011 0.96±0.015 0.96±0.017 0.98±0.011 0.96±0.016 0.98±0.012 0.96±0.015 0.97±0.015

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.86±0.032 0.8±0.042 0.86±0.018 0.87±0.025 0.86±0.018 0.9±0.012 0.7±0.052 0.79±0.034

Fc 0.97±0.009 0.98±0.004 0.97±0.007 0.97±0.006 0.98±0.005 0.97±0.007 0.98±0.005 0.97±0.007 0.98±0.005

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

Fr 0.80±0.013 0.66±0.004 0.58±0.005 0.76±0.008 0.65±0.004 0.76±0.008 0.8±0.013 0.7±0.009 0.76±0.005

Fc 0.98±0.005 0.96±0.005 0.97±0.01 0.98±0.004 0.96±0.007 0.97±0.005 0.97±0.008 0.98±0.005 0.98±0.005
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TABLE 3.27: Impact of PAr+WAr on ML-PWD generated on Zenodo.
The cells report the average (and std. dev.) tpr over the 50 reiterations.
Lines correspond to the ML-PWD, while rows correspond to a specific

PsP+WsP perturbation.

(A) PAr+WAr

A F no-atk addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_ addLngTxt_
addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.61±0.034 0.88±0.012 0.88±0.013 0.88±0.013 0.28±0.008 0.74±0.05 0.91±0.016 0.76±0.045 0.88±0.013 0.82±0.019 0.5±0.043 0.72±0.058 0.88±0.013

Fc 0.97±0.009 0.97±0.021 0.97±0.016 0.98±0.013 0.98±0.013 0.92±0.024 0.95±0.015 0.96±0.012 0.98±0.013 0.98±0.013 0.96±0.013 0.97±0.02 0.96±0.013 0.98±0.013

RF
Fu 0.96±0.007 0.97±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.95±0.018 0.84±0.01 0.9±0.013 0.9±0.013 0.03±0.064 0.71±0.016 0.9±0.015 0.89±0.014 0.9±0.013 0.84±0.025 0.73±0.043 0.78±0.044 0.9±0.013

Fc 0.97±0.009 0.98±0.008 0.98±0.004 0.98±0.005 0.98±0.004 0.96±0.006 0.96±0.007 0.96±0.007 0.98±0.005 0.98±0.004 0.98±0.004 0.97±0.006 0.98±0.006 0.98±0.004

LR
Fu 0.97±0.005 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

Fr 0.80±0.013 0.96±0.005 0.79±0.014 0.8±0.013 0.8±0.013 0.24±0.019 0.46±0.013 0.74±0.017 0.8±0.013 0.79±0.013 0.88±0.013 0.78±0.0 0.88±0.021 0.8±0.013

Fc 0.98±0.005 0.99±0.004 0.98±0.002 0.98±0.002 0.98±0.001 0.96±0.008 0.95±0.007 0.95±0.005 0.98±0.005 0.98±0.005 0.98±0.001 0.97±0.0 0.97±0.005 0.98±0.005

(B) PAr+WAr

A F no-atk delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_ delFtr_
addInLnk delHidIt replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk modBgClr

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.94±0.03 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.33±0.053 0.64±0.052 0.64±0.052 0.54±0.049 0.54±0.049 0.64±0.052 0.85±0.057 0.63±0.05 0.64±0.052 0.55±0.055 0.28±0.02 0.64±0.052

Fc 0.97±0.009 0.96±0.028 0.96±0.016 0.96±0.017 0.83±0.035 0.91±0.025 0.94±0.012 0.96±0.011 0.96±0.017 0.96±0.017 0.95±0.015 0.96±0.027 0.96±0.017

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.96±0.007 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.95±0.016 0.8±0.024 0.86±0.018 0.15±0.075 0.15±0.075 0.63±0.054 0.82±0.024 0.86±0.019 0.86±0.018 0.82±0.031 0.59±0.07 0.86±0.018

Fc 0.97±0.009 0.98±0.008 0.97±0.006 0.97±0.007 0.94±0.018 0.94±0.018 0.96±0.006 0.96±0.007 0.98±0.006 0.97±0.006 0.97±0.007 0.96±0.006 0.97±0.006

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.96±0.0 0.96±0.0 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004

Fr 0.80±0.013 0.97±0.0 0.75±0.006 0.76±0.008 0.37±0.01 0.37±0.01 0.45±0.008 0.74±0.011 0.76±0.008 0.75±0.008 0.86±0.007 0.72±0.0 0.76±0.008

Fc 0.98±0.005 0.98±0.007 0.97±0.007 0.97±0.008 0.96±0.007 0.96±0.007 0.96±0.004 0.95±0.005 0.98±0.004 0.98±0.002 0.98±0.004 0.97±0.004 0.97±0.008

(C) PAr+WAr

A F no-atk delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_ delFrm_
addInLnk onclick delHidIt addHidP replJS delSusLnk addImgBot modFntSiz modBgimg modBgClr delCpy modTtl modCpy addIcn replRet

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.94±0.018 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.56±0.043 0.87±0.024 0.84±0.038 0.27±0.008 0.76±0.054 0.87±0.028 0.75±0.052 0.84±0.038 0.84±0.038 0.84±0.038 0.78±0.064 0.84±0.038 0.78±0.064 0.82±0.042 0.84±0.038

Fc 0.97±0.009 0.96±0.025 0.96±0.008 0.97±0.015 0.92±0.022 0.91±0.027 0.96±0.011 0.96±0.018 0.97±0.016 0.97±0.016 0.97±0.016 0.97±0.016 0.97±0.016 0.97±0.016 0.96±0.013 0.97±0.016

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.9±0.043 0.8±0.031 0.81±0.028 0.01±0.045 0.58±0.05 0.79±0.027 0.69±0.065 0.82±0.023 0.82±0.023 0.82±0.023 0.72±0.041 0.82±0.023 0.72±0.041 0.77±0.035 0.82±0.023

Fc 0.97±0.009 0.98±0.007 0.97±0.009 0.98±0.005 0.96±0.005 0.96±0.006 0.96±0.007 0.97±0.006 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.99±0.006 0.98±0.005 0.98±0.005

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.009 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

Fr 0.80±0.013 0.93±0.009 0.6±0.024 0.76±0.002 0.24±0.019 0.36±0.005 0.69±0.011 0.87±0.027 0.77±0.005 0.77±0.005 0.77±0.005 0.77±0.005 0.76±0.005 0.77±0.005 0.88±0.008 0.77±0.005

Fc 0.98±0.005 0.98±0.0 0.97±0.005 0.98±0.005 0.97±0.008 0.96±0.007 0.95±0.005 0.97±0.005 0.97±0.008 0.98±0.002 0.98±0.001 0.98±0.005 0.98±0.005 0.98±0.001 0.97±0.005 0.98±0.005

(D) PAr+WAr

A F no-atk delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_ delSpn_
addInLnk replOnfoc replPass addHidP replJS delSusLnk modCpy modTtl addIcn addSusLnk addImgBot modBgClr

CN
Fu 0.96±0.007 0.94±0.021 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.63±0.025 0.88±0.015 0.88±0.014 0.27±0.008 0.74±0.052 0.89±0.019 0.76±0.044 0.88±0.015 0.83±0.02 0.4±0.02 0.75±0.062 0.88±0.015

Fc 0.97±0.009 0.95±0.02 0.98±0.012 0.98±0.011 0.92±0.024 0.95±0.015 0.96±0.012 0.98±0.012 0.98±0.012 0.96±0.013 0.95±0.019 0.97±0.011 0.98±0.012

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.95±0.021 0.9±0.012 0.9±0.012 0.03±0.068 0.66±0.016 0.89±0.016 0.9±0.013 0.9±0.012 0.85±0.027 0.58±0.043 0.8±0.051 0.9±0.012

Fc 0.97±0.009 0.98±0.007 0.98±0.004 0.98±0.004 0.96±0.006 0.96±0.006 0.96±0.006 0.98±0.004 0.98±0.004 0.98±0.004 0.97±0.007 0.98±0.005 0.98±0.004

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004 0.97±0.004

Fr 0.80±0.013 0.96±0.005 0.8±0.013 0.8±0.013 0.23±0.017 0.41±0.013 0.74±0.017 0.8±0.013 0.79±0.013 0.88±0.013 0.62±0.0 0.9±0.021 0.8±0.013

Fc 0.98±0.005 0.98±0.003 0.98±0.005 0.98±0.005 0.97±0.009 0.96±0.004 0.96±0.002 0.98±0.0 0.98±0.001 0.98±0.001 0.97±0.0 0.98±0.003 0.98±0.0
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TABLE 3.28: Impact of PAr+MAr in Zenodo

A F no-atk addLngTxt_delBdy delFtr_delBdy delSpn_delBdy

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.88±0.013 0.64±0.052 0.88±0.015

Fc 0.97±0.009 0.98±0.013 0.96±0.017 0.98±0.012

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.9±0.013 0.86±0.018 0.9±0.012

Fc 0.97±0.009 0.98±0.005 0.97±0.006 0.98±0.005

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004

Fr 0.80±0.013 0.8±0.013 0.76±0.008 0.8±0.013

Fc 0.98±0.005 0.98±0.002 0.98±0.004 0.98±0.001

TABLE 3.29: Impact of WAr+WAr on Zenodo

A F no-atk replOnfoc_replRet htEsc_replRet htEncd_replRet

CN
Fu 0.96±0.007 0.96±0.013 0.96±0.013 0.96±0.013

Fr 0.86±0.013 0.88±0.013 0.87±0.025 0.0±0.0

Fc 0.97±0.009 0.98±0.013 0.96±0.007 0.91±0.032

RF
Fu 0.96±0.007 0.98±0.005 0.98±0.005 0.98±0.005

Fr 0.90±0.013 0.9±0.013 0.84±0.027 0.0±0.0

Fc 0.97±0.009 0.98±0.005 0.96±0.007 0.96±0.007

LR
Fu 0.97±0.005 0.97±0.004 0.97±0.004 0.97±0.004

Fr 0.80±0.013 0.8±0.013 0.55±0.009 0.0±0.0

Fc 0.98±0.005 0.97±0.005 0.97±0.001 0.97±0.004
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Part II

User perceptions on Phishing
webpages
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Chapter 4

Understanding User Perceptions of
Adversarial Phishing Websites

After nearly three decades of research [112], phishing attacks are still rampant. Ac-
cording to the FBI’s 2022 crime data [21], phishing is the topmost form of cybercrime,
with reported victim loss allegedly increasing by over 1000% since 2018. In this con-
text, phishing websites are a type of online scam used by attackers to steal sensitive
information such as login credentials, financial information, or personal data. To
increase their effectiveness, phishing websites aim to mimic legitimate ones [44],
thereby tricking unaware and distracted victims—who may not notice subtle differ-
ences in their appearance.

Recently, numerous automatic Phishing Website Detectors (PWD) have been pro-
posed, which can rely on blocklists [199], or be entirely data-driven [60]. The former
works by checking whether a given website is included in their (public or private)
blocklist, which consists of URLs (collected, e.g., from well-known repositories—
such as PhishTank [26]). However, blocklist-based anti-phishing methods, despite
their low false positive rates, cannot detect “novel” phishing websites [247]. These
shortcomings can be compensated via data-driven techniques. Among these, Ma-
chine Learning (ML) algorithms seek to autonomously learn (by “training” on a
given dataset) to identify patterns that may not be discernible to the human eye.
The remarkable performance of ML methods in computer vision [163] led to many
efforts to investigate their effectiveness in various fields—including that of phishing
website detection. In particular, ML-based phishing website detectors (ML-PWD)
can detect previously unseen phishing websites while maintaining low rates of false
positives [60], which can be achieved by analyzing either textual or visual features
from any given webpage (e.g., [77, 179]).

Motivation. Machine learning has now become mainstream even for the detec-
tion of phishing webpages [107]. However, ML is prone to evasion attacks, which
entail crafting an “adversarial phishing website” (APW) by introducing impercepti-
ble perturbations (located, e.g., in the HTML [60], or in some visual element [164] of
a webpage) that fool an ML-PWD. Unfortunately, security practitioners persist in not
addressing such a threat [54] (despite abundant alarms from academia [206, 221]). In
this context, we observe that recent interview studies [79, 126, 185] about adversarial
ML (AML) in practice are based on the participants’ (self-reported) understanding of
AML’s concepts, thereby focusing on the question “What is the practitioners’ aware-
ness of AML?”. We argue that to (i) establish whether AML is truly a threat and, if
so, (ii) convince practitioners to take AML into consideration while designing their
ML systems, the focus should be on the question “What is the impact of AML on the
end-users in practice? That is: does AML fool users as much as it fools ML models?”.
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This paper revolves around investigating this dilemma for phishing website detec-
tion. Compared to existing works that only focus on using AML to attack ML-PWD
(e.g., [60, 164]), our work advances existing knowledge by examining how human
users perceive adversarial phishing webpages that evade ML-PWD.

Problem Statement. To explore the users’ perception of APW, our paper revolves
around answering four research questions (RQ):

RQ1 Are adversarially perturbed phishing webpages more easily detectable by
users—w.r.t. unperturbed ones? (§4.4.2)

RQ2 Are some perturbations more likely to deceive users? (§4.4.2)

RQ3 How much do users’ background (e.g., age, gender, expertise) correlates with
their phishing detection skills? (§4.4.3)

RQ4 What cues do users typically look for (and potentially rely on) to judge the
legitimacy of any given website? (§4.5)

To answer our RQ, we conduct (§4.3) two user studies (n=470). The first focuses on
assessing how well users can distinguish legitimate webpages from “unperturbed”
phishing webpages. The second is to assess how well users can distinguish “ad-
versarial” phishing webpages from legitimate webpages. Overall, we obtained over
7k responses encompassing various classes of webpages including: legitimate and
‘unperturbed’ phishing webpages, four types of APW (crafted through well-known
AML techniques), as well as APW “from the wild Web” that bypassed production-
grade ML-PWD (§4.2).

Contributions. After analysing the results of our user studies both quantitatively
and qualitatively, we derive three key-findings.

1. Adversarial phishing is a threat to both users and ML. In particular, three out of
the four adversarial perturbations we considered have comparable effectiveness
in deceiving users when compared to unperturbed phishing webpages—but the
latter cannot bypass the ML-PWD. We argue that user studies are a necessary step
that is currently missing in most AML research on phishing detectors (see §4.1).
Specifically, it is crucial to compare adversarial phishing webpages with unperturbed
phishing webpages to make sure APW do not sacrifice effectiveness against users in
favor of an improved evasion rate.

2. Not all adversarial perturbations are equally effective. In particular, adversarial
webpages with added typos are more noticeable to users, as confirmed by statisti-
cal tests. The reasoning provided by participants also indicates that textual indica-
tors play a major role in their decision-making process. In addition, we verify that
adversarial phishing pages “from the wild Web” (which bypassed production-
grade ML-PWD) are more detectable by users than unperturbed phishing pages.

3. As a surprising and counter-intuitive observation, users’ self-reported frequency
of visiting a brand’s website has a statistically significant negative correlation
with their phishing detection accuracy. Users who claimed to frequently visit
websites of a given brand performed worse on the phishing webpages targeting
this brand. We suspect this is correlated to prior findings that familiarity leads to
overconfidence [210, 256]
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Finally, our work can serve as a benchmark for future research on evasion attacks
against ML-PWD, since it facilitates assessing the effectiveness on end users of the pro-
posed attacks. To this purpose, we release our user study questionnaires, codebook,
data, and code we developed [3]. We will also submit our tools for artifact evalua-
tion.

4.1 Background and Related Work

To set the stage for our contribution, we raise the attention on some simple se-
curity concepts, which we use as a scaffold to position our paper within existing
literature. We provide exhaustive background (covering ML-PWD and adversarial
ML) in Appendix 4.10.

Phishing in a Nutshell. From a security standpoint, the goal of a phisher (i.e.,
the attacker) is to trick a human user to, e.g., input their private (or sensitive) data, or
click on a malicious link.

REMARK: bypassing a given detector (despite being necessary) is not sufficient for
a phishing webpage to be successful.

Given the above, all those papers (e.g., [60, 64, 98, 164, 190]) showing that ML-PWD
can be evaded via “adversarial perturbations” – while useful for investigating some
robustness properties of ML – could hardly provide a compelling case that “adver-
sarial examples are a problem in reality”. Indeed, doing so would necessitate a dou-
ble form of assessment, entailing both machine and human: first, it is necessary to
craft an adversarial webpage and show that it bypasses a functional ML-PWD (i.e.,
a false negative); then, it is necessary to assess whether humans (i.e., the true target
of phishing) are still tricked by such a webpage. Perhaps surprisingly, however, such
systematic assessments are missing from current literature.

Research Gap. Scientific literature on phishing defense can be divided in two
categories: technical papers (e.g., [60, 164, 171, 175, 179]), which propose (or attack)
a given solution; and user studies (e.g., [53, 123, 263]), which seek to investigate the
response of humans to phishing (useful for phishing training and education). How-
ever, to the best of our knowledge, none of these categories have questioned how
humans respond to phishing webpages crafted to bypass ML-PWDs. Indeed, from
an “adversarial ML” perspective, technical papers typically stop after showing that
a given ML-PWD has been evaded (e.g., [64, 190]); whereas user studies either en-
tailed “phishing” webpages that have been crafted ad-hoc (e.g., [123, 192]) or, even
when real phishing webpages were considered (e.g., [53, 66]), the role of ML was
irrelevant. Hence, the question: “Are adversarial webpages a problem in reality?” is still
open. As a matter of fact, recent findings [54] revealed that the ML-PWD of a se-
curity company had over 9k false negatives in one month—some of which entailed
“perturbations” that most laymen would notice (see Fig. 4.5).

Related Work. We acknowledge, however, that the limitations of prior work are
well-justified. Indeed, technical papers can be complex, and carrying out user stud-
ies on top of devising a scientifically sound and relevant contribution is challenging;
whereas user studies require the availability of ML-powered PWD, which are be-
coming popular only in recent years. Nonetheless, we found two works which partially
overlap with ours. (1) Abdelnabi et al. [44], after proposing an ML-PWD, discuss a
user study (in the Appendix, with limited details) wherein participants were shown



70 Chapter 4. Understanding User Perceptions of Adversarial Phishing Websites

the webpages that bypassed the proposed ML-PWD and asked to rate “how trust-
worthy” such webpages were. The purpose of the user study, however, is to assess
user agreements with their proposed similarity metric, and thus it does not involve
the assessment of adversarial phishing pages or their comparison with benign/un-
perturbed phishing pages. (2) Lee et al. [164] attack an ML-PWD which exclusively
focuses on the logo of well-known brands, and then carry out a user study asking
participants how similar an adversarial logo was w.r.t. an original logo: the problem
is that the logo is only a single element in a webpage (i.e., the webpage could be still
detected by other automated mechanisms).

Our Goal. In this paper, we seek to overcome the shortcomings of prior work.
Specifically, we investigate the response of human users to “adversarial” phishing
webpages1 that evaded ML-PWD (both real ones and custom-made); then, we com-
pare such results with the ones from user assessments of “non-adversarial” phishing
webpages. The rationale is that attackers are less interested in crafting adversarial
webpages that, despite evading ML-PWD, can be easily spotted by end-users—i.e.,
their final target.

4.2 Data Collection & Generation

To answer our research questions, we design user studies wherein participants
are asked to examine a mixed set of phishing and legitimate webpages. A crucial
part of our research is that we want to investigate the response of users to adver-
sarial webpages that bypassed ML-based detectors (both synthetic ones, as well as
real products); indeed, this is necessary to determine whether adversarial webpages
represent a problem “in reality”. Therefore, before describing our user studies, we
explain how we obtained a set of adversarial webpages that we can use for our user
studies. Fig. 4.1 summarizes the workflow of our experimental methodology.

Overview. We seek to identify adversarial webpages that bypass either
production-grade ML-PWD, or state-of-the-art research proposals. To meet this
twofold requirement, we must first obtain a dataset including both benign and
phishing webpages—which will be used to develop a custom ML-PWD. Then, af-
ter ensuring that our ML-PWD obtains good detection performance (i.e., high true
positive rate with low false positive rate) in “non-adversarial” scenarios, we will use
the phishing webpages in our dataset as the basis to craft adversarial phishing web-
pages. Such adversarial examples will then be tested against our custom ML-PWD.
If they can evade the detection, we will consider them for our user study.

Dataset. To develop a state-of-the-art ML-PWD, we rely on the phishing dataset
by Chiew et al. [94]. This dataset (used also, e.g., in [223]) contains 30k webpages:
15k are benign (source: Alexa top) and 15k are phishing (source: Phishtank [26]). We
consider this dataset because, for each sample, it provides the HTML content as well
as supporting files (e.g., CSS) and all the image components. This allows us to craft
realizable perturbations on these webpages, thereby yielding adversarial webpages
with high realistic fidelity. Other existing datasets (e.g., [64, 179]) do not allow this,
since they lack CSS and/or image files. Finally, although our chosen dataset was
released in 2018, its webpages still resemble the ones of the “current” version (as of
Sept. 2023) of the corresponding websites.

1We focus on phishing “on the Web”. Other forms of phishing (such as via email [228] or phone
calls [69]) and their detection (with or without ML) are orthogonal research areas to this paper (albeit
some of our findings can be relevant also to these areas).
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Phishing
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Adversarial
Phish. Pages User Study Analysis

FIGURE 4.1: Workflow of our study.

(a) APW-Lab_img (b) APW-Lab_typo (c) APW-Lab_pswd (d) APW-Lab_bg

FIGURE 4.2: Example screenshot of lab-generated adversarial phish-
ing pages targeting Paypal. We include two types of perturbations:
(a) adding small images to the footer, (b) introducing typos, (c) mak-

ing the password visible, and (d) adding a background image.

Custom ML-PWD. We first use the dataset [94] of benign and phishing webpages
to train a ML-PWD. Then we add perturbations to a phishing webpage, aiming to
trigger a false negative by the ML-PWD. In more detail, our ML-PWD relies on the
random forest algorithm (thanks to its superior performance over other ML algo-
rithms, as reported by many prior works [60, 247]). In particular, we rely on the
code (and features) provided by [60] to develop our ML-PWD, for which we use
80% of the dataset for training and use the remaining 20% for testing. Our ML-PWD
obtains performance comparable with the state-of-the-art, having a true positive rate
of 0.98 and a false positive rate of 0.04 (results aligning with prior works [60, 223]).
These results confirm that our ML-PWD (which we release [3]) is a valid candidate for
our research.

Custom Adversarial Phishing Webpages. We use/adapt existing AML meth-
ods (borrowed from [60] and [269]) to generate 4 types of adversarial phishing web-
pages “in a lab” (APW-Lab). More specifically, we selected four types of perturbations
that help a phishing page evade our custom ML-PWD, each yielding an adversarial
phishing webpage having diverse visual cues:

1. APW-Lab_img: we insert a small array of images to the bottom of the web page
(footer), as shown in Fig. 4.2(a).

2. APW-Lab_typo: we randomly insert typos to the text content of the web page as
shown in Fig. 4.2(b).

3. APW-Lab_pswd: we make the password visible for the password input box, as
shown in Fig. 4.2(c).

4. APW-Lab_bg: we randomly add a background image to the web page, as shown
in Fig. 4.2(d).

The APW-Lab that bypass our ML-PWD will be used for the user study. We note that
related work from Lee et al. [164] did not evaluate webpages but focused on logos
only.

Real Adversarial Phishing Webpages. A prior work [54] identified 100 adversar-
ial phishing websites “from the wild Web” that bypassed a production-grade ML-
PWD (reliant on visual similarity) in July 2022. A close inspection shows that these
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adversarial pages adopt various evasion strategies such as using blurry logos and
adding background patterns (example in Fig. 4.6 in the Appendix). We will use this
set (denoted as APW-Wild) to examine the user perception on adversarial webpages
crafted by real phishers (we note that neither Lee et al. [164] nor Abdelnabi et al. [44]
considered real phishing webpages that bypassed a production-grade ML-PWD).

4.3 User Study: Set-up

We carry out two user studies. The first, serving as a baseline, examines how
well users can distinguish legitimate webpages from “unperturbed” phishing web-
pages. The second examines how well users can distinguish “adversarial” phishing
webpages (APW) from legitimate ones. Henceforth, we refer to the first user study
as baseline study, and to the second as adversarial study.

4.3.1 Candidate Webpages

Considered Brands. To conduct a meaningful research, we only consider web-
pages representing a limited set of well-known brands.2 Hence, we select the 15
well-known brands (typically targeted by phishing attacks [38]) shown in Table 4.1.

Webpage Classes For these selected brands, we construct a user study dataset
spanning the following classes of webpages:

• Legitimate. For each brand in Table 4.1, we retrieve the (legitimate) webpage
corresponding to the brand’s homepage.

• Unperturbed Phishing. For each brand, we randomly sample two phishing web-
pages from our chosen dataset (cf. §4.2).

• APW-Lab. For each brand and perturbation type, we select one adversarial
webpage that bypassed our ML-PWD.

• APW-Wild. From the 100 webpages collected by Apruzzese et al. [54], we find
28 of them matching 8 of our target brands (i.e., Apple, AT&T, DHL, Dropbox,
Google, Microsoft, Outlook, and Paypal), hence we randomly draw from these
28. We show some examples in Appendix 4.8.

Overall, our user studies entail 15 legitimate, 30 unperturbed phishing webpages, 60
APW-Lab webpages, and 28 APW-Wild webpages.

4.3.2 Questionnaire Design

Both of our user studies are designed as questionnaires following a similar struc-
ture, depicted in Table 4.2. In what follows, we describe this common user study
process from a participant’s perspective.

General Procedure. At a high-level, the questionnaires consist of three parts.
(1) A participant starts by reading a consent form stating their rights and the study’s
objectives. Afterwards, the participant reads a brief introduction about phishing at-
tacks and phishing websites. We explicitly inform the participants that the study
is about detecting phishing websites. This is considered a “highly-primed” setting,

2Indeed, some users may not be familiar with some less-popular brands, and their responses would
have limited value for the purpose of our RQ.
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Brands

Adobe, Amazon, Apple, AT&T, Bank of America, DHL, Dropbox,
eBay, Facebook, Google, Microsoft, Outlook, Paypal, Wells Fargo, Yahoo

TABLE 4.1: We selected 15 brands, popular in the U.S., for our user
study.

Study Pages Seen by Each Participant Participants

Baseline 7 Legitimate + 8 Unperturbed Phishing 235

Adversarial 7 Legitimate + 4 APW-Lab + 4 APW-Wild 235

TABLE 4.2: Summary of our user studies. We report the classes of
webpages that each participant views and the number of participants.

i.e., participants may be more prepared to detect phishing websites than they would
in the real world. We use this setting to estimate the upper-bound performance of
users. This effect has been shown in previous phishing studies (e.g., [138]) where
highly prompted participants have a better phishing detection performance than
unprompted participants. (2) Then, the participant will view a total of 15 webpages
(as screenshots, taken in high resolution and tailored for desktop browsers), cover-
ing all 15 brands in Table 4.1. The participant is asked to assess the legitimacy of
each shown webpage. For the baseline study, each participant will view 7 legitimate
pages and 8 unperturbed phishing pages. For the adversarial study, each partici-
pant will view 7 legitimate pages, 4 APW-Lab (one for each perturbation type), and
4 APW-Wild. The webpages to present to each user are randomly chosen, but we
ensure the benign-to-phishing ratio and also that any given user will not see two (or
more) screenshots of the same brand—thereby ensuring consistency, since all users
will see 15 screenshots of 15 different brands). Furthermore, the order of the pages is
randomized for each participant to avoid order bias [114] (this was not done by Lee
et al. [164] or Abdelnabi et al. [44]). (3) Finally, the participant will answer some exit
questions to report demographic information such as age, gender, education, and
knowledge of phishing and the considered brands. For attention check, at the end of
the main experiment we show a screenshot of a popular social network (Twitter/In-
stagram) and ask whether it represents a bank website.

Detailed Questions. Under each screenshot, we include two questions: “How do
you rate the legitimacy of this webpage?” [Q1], and “What specific components/indicators
on the webpage have influenced your choice?” [Q2]. For Q1, the participant is asked
to rate the legitimacy of the web page from 1 to 6: 1 (definitely phishing), 2 (very
probably phishing), 3 (probably phishing, but not sure), 4 (probably legitimate, but
not sure), 5 (very probably legitimate) and 6 (definitely legitimate). The six-point
Likert scale does not include a “neutral” option to encourage participants to draw a
conclusion. For Q2, the participant provides open-ended answers via a text box.

For the exit questions, we first inquire the participant’s familiarity with the con-
sidered brands—“Do you know these brands/companies/services?” and “Please rate how
often you visit the websites of these brands”. The participant provides a binary answer
for the first question and uses a 4-point Likert scale for the second question. Then,
we ask the participant about their gender, age, highest education level, and whether
they have a technical background in cybersecurity. More details about these ques-
tions are in Appendix 4.9.
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4.3.3 Recruitment, Ethics, and Demographics

Our study was reviewed and approved by our IRB; we also follow the Menlo
report [75] and do not deploy any phishing webpage on the Web (we only show
screenshots). We recruited participants from Prolific between July and August of
2023. We choose Prolific over other platforms such as MTurk for the high-quality
work from Prolific [204]. Participation in our study is anonymous and voluntary,
and participants have unlimited time to read the consent form. Participants can
withdraw their consent at any time without any risk. We did not collect any per-
sonally identifiable information [155], nor sensitive data [37]. Considering that our
target brands are mostly U.S.-based websites, we focus on participants from the U.S.
from Prolific. After filtering out low-quality answers (based on attention check), our
sample3 encompasses n=470 participants (235 for each study). The age distribution
ranges from 18 to 70+, with 240 males and 220 females (6 non-binary and 4 prefer
not to say). Each participant can only join once and receive $2.2 compensation. On
average, each participant spent 18.1 minutes on each questionnaire.

4.4 Detection Results (Quantitative)

We first focus on answering RQ1–RQ3. To this purpose, we perform a quantitative
analysis of the responses we collected for our two user studies. We begin by report-
ing the results at a high-level (§4.4.1), and then perform formal regression analyses
(§4.4.2 and §4.4.3) to assess the statistical significance of our observations.

4.4.1 Overview (how good are our respondents?)

We report the overall performance of both user studies in Fig. 4.3, showing how
well our participants correctly recognized each webpage.4 By comparing the results
of the two user studies (useful for RQ1), we observe that our participants exhibit a
similar performance in identifying legitimate webpages (86% for the baseline study,
and 88% for the adversarial study). In contrast, and perhaps worryingly, we found
that their ability to recognize phishing webpages is much worse; intriguingly, how-
ever, it appears that our respondents can more easily discern adversarial phishing
webpages (62%) than “unperturbed” ones (51%).

In Fig. 4.4, we focus on the detection rates for phishing webpages. Specifically, we
break down the results for the adversarial phishing webpages (APW-Lab and APW-
Wild) and compare them with the “unperturbed” ones of the baseline study (useful
for RQ2). This more detailed comparison reveals that our respondents are not easily
tricked adversarial perturbations entailing ‘typos’ (i.e., the detection rate for APW-
Lab_typo is 85%). However, they appear to be unable to spot other types of pertur-
bations (i.e., the detection rate for the other three types of APW-Lab ranges between
[50–56%]). Finally, the detection rate of APW-Wild aligns with the general trend (63%),
suggesting that adversarial webpages “from the wild Web” are less effective at fool-
ing real users.

3Our user studies have a population that is larger than most previous user studies on (non-
adversarial) phishing webpages [76]. Specifically, most works ([51, 53, 66, 67, 106, 133, 158, 159, 225,
228, 265]) have less than 100 participants, while five ([123, 145, 192, 251, 263]) have [100–400] partici-
pants. Only the work by Purkait et al. [216] has more participants (621) than ours, but it was carried
out in 2014.

4To do this, we take the responses to [Q1] for every screenshot and considering ratings [1–3] as a
“legitimate” classification, and ratings [4–6] as a “phishing” one (see §4.3.2).
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FIGURE 4.3: Overview of baseline and adversarial study (7, 050 re-
sponses)
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FIGURE 4.4: Detection rate for different types of phishing webpages.

Observations: (1) Our respondents can be deceived by phishing webpages. (2) Some
adversarial perturbations are easy to spot by humans. (3) Adversarial webpages from the
real world are less effective than “unperturbed” phishing webpages.

4.4.2 Statistical Analysis: Websites (RQ1 and RQ2)

To answer RQ1 and RQ2, we perform a rigorous analysis to ascertain the statis-
tical significance of our previous findings.

Method. We choose a mixed-effects logistic regression model (used in many similar
studies [76, 265]) to model the process of a user classifying a given webpage. The
dependent variable (y) is the correctness of the user’s classification result for this webpage.
The answer is coded as “1” if the classification is correct, and “0” otherwise. We
model webpage types and user familiarity with the brand as fixed effects (indepen-
dent variables). We treat each participant as a random effect because the same user
has viewed 15 webpages (i.e., repeated measures). In this model, we have 3 inde-
pendent variables (x) related to the webpage: (1) webpage type, (2) the user’s prior
knowledge of this webpage’s brand, and (3) the user’s frequency of visiting web-
pages of this brand. We include (2) and (3) for a simple intuition: if a user is familiar
with a brand and visits its webpages regularly, they would be well-acquainted with
its typical appearance, and thus are more likely to have a better detection accuracy.
For webpage type, we have 7 types, and we treat “unperturbed” phishing webpages
as the reference to compare with other 6 types. For knowledge of the website, we
code the answer into a binary format and use “No” as the reference. For the website
visit frequency, we also code the answer into a binary format and use “Rarely or
Never” as the reference.



76 Chapter 4. Understanding User Perceptions of Adversarial Phishing Websites

Variable Estimate (β) Std. Err. p-value

Intercept 0.161 0.146 0.271

Website type: Reference = Unperturbed Phishing
Legitimate 1.912 0.073 <0.001***
APW-Lab_img 0.049 0.144 0.734
APW-Lab_typo 1.723 0.193 <0.001***
APW-Lab_pswd 0.185 0.145 0.202
APW-Lab_bg -0.075 0.144 0.605
APW-Wild 0.484 0.089 <0.001***

Knowledge of Website: Reference = NO
YES -0.034 0.145 0.812

Frequency of Visiting: Reference = Rarely or Never
Sometimes or Frequently -0.169 0.059 0.004**

TABLE 4.3: Webpage Classification Analysis – Logistic mixed-effects
regression model: we predict whether a website is classified correctly
by a user, based on the type of website, the user’s knowledge of this
website/brand, and the user’s frequency of visiting the website. Sta-
tistical significance is denoted by *** (p < 0.001), ** (p < 0.01), and

* (p < 0.05) [100].

Results. The model is summarized in Table 4.3. We report standard metrics in-
cluding Estimate, Standard Error. and p-value for the hypothesis tests. Estimate (β)
describes the estimated effect of each predictor variable on the dependent variable
while holding all other predictor variables constant. The sign of Estimate indicates
the direction in which the dependent changes with the independent variables. A
positive sign means that as the independent variable increases, the dependent vari-
able also increases; otherwise, the dependent variable decreases. Std. Err. represents
the average distance that the observed values fall from the regression line. The p-
value in the regression model describes whether the relationships observed in the
samples by chance; usually, the influence was considered statically significant when
p<0.05.

Analysis. The results in Table 4.3 confirm our earlier observations from descrip-
tive statistics. First, w.r.t. “unperturbed” phishing webpages, we find that legitimate
webpages are statistically significantly easier to detect (β=1.912, p<0.001). Second,
among the adversarial webpages, we find two types that are statistically easier to de-
tect by users: APW-Lab_typo (β=1.723, p<0.001), indicating that even though the typo
is subtle, it has raised suspicion of users; and APW-Wild (β=0.484, p<0.001), revealing
that while some adversarial webpages from the wild Web can bypass production-
grade ML-PWD, they indeed make users more suspicious (w.r.t. “unperturbed”
phishing pages). Finally, we did not find statistically significant differences between
“unperturbed” phishing webpages and other types of APW. These include adver-
sarial phishing webpages with image footers (APW-Lab_img), or visible passwords
(APW-Lab_pswd), or with changed background images (APW-Lab_bg): all these APW
can bypass state-of-the-art ML-based detector and yet do not raise more suspicion
from users’ perspectives.

Table 4.3 also shows an intriguing phenomenon regarding how users’ familiarity
with the brand correlates with their detection performance. First, we did not find
statistically significant evidence that users’ prior knowledge of a brand influences their
detection. However, users’ frequency of visiting the brand’s webpages has a statistically
significant negative correlation with their detection correctness (β=−0.169, p=0.004).
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Variable Estimate (β) Std. Err. p-value

Intercept 0.693 0.018 <0.001***

Gender: Reference = Female
Male -0.001 0.013 0.964

Age: Reference = Younger (<= 39)
Older (>39) -0.004 0.012 0.751

Education: Reference = Lower (< Bachelor)
Higher (>= Bachelor) -0.004 0.013 0.783

Phish knowledge: Reference = NO
YES 0.036 0.013 0.008**

Computer knowledge: Reference = NO
YES 0.029 0.019 0.122

Security knowledge: Reference = NO
YES -0.003 0.029 0.931

Time Spent on Survey -0.001 0.001 0.293

TABLE 4.4: User Attribute Analysis – Linear regression model: we
predict a user’s detection accuracy based on the user’s attributes
such as demographic factors, technical background, and knowledge
of phishing. Statistical significance is denoted by *** (p < 0.001),

** (p < 0.01), and * (p < 0.05) [100].

In other words, users are more likely to make incorrect guesses about webpages of
brand that they visit “sometimes or frequently”, compared with another that they
“rarely or never” visit. This may suggest that familiarity with the brand could lead
to overconfidence, i.e., where one’s judgmental confidence exceeds one’s actual per-
formance in decision-making [210, 256].

TAKEAWAYS (RQ1-2): We make four statistically significant findings. From a
user perspective, compared to “unperturbed” phishing webpages: (1) adversarial
phishing webpages with typo-based perturbations are easier to detect; (2) adver-
sarial phishing webpages found in the wild Web are more recognizable; (3) adver-
sarial perturbations such as inserting images to the footer, making the password
visible, or adding a background image, do not make phishing webpages more sus-
picious. Finally, (4) users are more likely to misdetect webpages that they visit
more frequently.

4.4.3 Statistical Analysis: Users Attributes (RQ3)

We now turn our attention to RQ3, and rigorously examine how users’ attributes
influence their phishing detection performance.

Method. We construct a user model using a linear regression model (used in many
related studies [76, 216]). The dependent variable is a user’s correct answer rate (i.e.,
accuracy) among the 15 pages they viewed. The independent variables include vari-
ous user attributes such as demographic factors, technical backgrounds, knowledge
of phishing, and time spent on the survey. We code the independent variables in a
binary format, except for the time spent on the questionnaire (which is numerical).

Results and Analysis. We display the results in Table 4.4, showing the absence of
statistically significant evidence that users’ demographic factors affect their phishing
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detection performance. Instead, a user’s prior knowledge of phishing has a statisti-
cally significant influence. More specifically, users with prior knowledge of phish-
ing are more likely to achieve a higher detection accuracy (β=0.036, p=0.008). Even
though the estimate β is small, the difference is statistically significant. Our result
(in the context of adversarial webpages) is slightly different from prior user studies
on phishing [117, 138, 158, 216, 240] wherein researchers found that demographic
factors such as gender or age have influenced users’ detection performance. Finally,
the time a user spent on the survey does not seem to have a significant influence on
the user’s detection accuracy.

TAKEAWAYS (RQ3): We did not find statistically significant evidence that demo-
graphic factors affect users’ detection accuracy. A user’s prior knowledge of phish-
ing is a significant predictor.

4.5 Users’ reasoning (Qualitative)

We now address RQ4. Recall (see §4.3.2) that, for every webpage shown in the
questionnaire, we also asked (with [Q2]) participants (P) to point out the cues that
influenced their rating (of [Q1]). Here, we qualitatively analyze the open-form an-
swers through a thematic analysis [245] (which has been used also in [54]).

Codebook. Given that we focus on adversarial phishing webpages, our qualita-
tive coding is based on the data from the adversarial study. In total, we have 3, 525
responses from 235 participants from the adversarial study. Two authors (i.e., coders)
have worked together to code the answers. A primary coder first codes 27% of the
responses, which serves as the foundation for creating a comprehensive codebook.
Subsequently, both the primary and secondary coders independently code 10% of
the responses that have not yet been coded. We use Cohen’s Kappa (κ) statistic to
assess the agreement between coders. In cases where κ<0.7, both coders meet up
to discuss and resolve discrepancies and refine the codebook, potentially also re-
examining and re-coding responses that exhibit inconsistencies. This iterative pro-
cess continues until a satisfactory agreement is reached, i.e., κ>0.7 [186]. In our final-
ized codebook, we have κ=0.718, indicating good inter-coder reliability [116]. With this
codebook (which we release [3]), we thematically coded 1 307 valid responses (37%)
that mentioned any webpage elements [54] (e.g., logo, background) or their feeling
of the webpage. Specifically, 737 responses are from webpages rated as “phishing”
and 541 responses are from webpages rated as “legitimate”.

4.5.1 Why is the webpage legitimate/phishing?

We first investigate what led our participants to derive that a given webpage is
legitimate or phishing. For the sake of this analysis, we ignore the ground truth of
each webpage, since we are interested in the users reasoning of what they think is
phishing (or not).

“I think this is Phishing because...” Among the 737 responses on webpages
rated as phishing, the most prevalent factor is “text content” (282, 38%). Other top-3
factors are “layout” (170, 23%) and “functionality” (168, 23%) of the webpage. Fewer
responses (66, 9%) mentioned image content. (We omit factors whose prevalence is
below 9%.) We run pairwise Chi-squared tests to compare the number of responses
mentioning text content (the most prevalent) and those mentioning each of the other
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factors. We confirm that the differences are statistically significant (all comparisons
have p<0.001).

Among the 282 text-related responses, 119 of them (42%) mentioned the presence
of typos. For example, P404 stated “The spelling of the word Outlook is not right”. This
is consistent with prior studies [111, 181] reporting that typos hurt the perceived
credibility of a webpage. Other text-related responses encompassed factors such as
“grammar” (67, 24.5%) and “style” (44, 15.6%). E.g., P1013 mentioned “The font does
not look like the regular Google font that I usually see”.

Regarding other prevalent factors, layout (23%) refers to the organization of dif-
ferent components of the webpage, which is a known factor that influences the per-
ceived credibility of websites [78]. E.g., P496 stated “This does not look like the regular
Google login page at all; it looks really off so it seems super sketchy.” The functionality
(23%) denotes the specific tasks that the website can help users to accomplish. E.g.,
P520 mentioned “This does not appear to be a correct website for DHL since they would not
ask you to log in typically to track”. Nonetheless, participants expected that phishing
websites would have a way to collect user data. As such, such information-gathering
functionality can raise suspicion. E.g., P825, in response to the page shown in Fig. 4.7
(Appendix 4.8), stated “it asked for the credit card number and therefore looks like it phish-
ing”.

In comparison, fewer responses mentioned image content (66, 9%). E.g., P860
mentioned “The image seems off from what I am usually used to”. Among these, 25
responses mentioned the background, e.g., P1202 stated “The background isn’t moving
like on the real site”.

“I think this is Legitimate because...” Among the 541 responses for webpages
rated as legitimate, 249 (46%) did not mention any specific factor but describe how
the participant “feels” about the webpage. E.g., P154 stated: “(It) looks like PayPal
login page”. Only few responses mentioned specific factors. E.g., 26 (5%) mentioned
“no misspellings or poor grammar”, suggesting that correct writing is regarded as an
indicator of legitimacy (albeit this could be influenced by previously viewed web-
pages having typos). Finally, we report that some users may rely on misinformed
strategies. E.g., P54 stated: “Google is a very reputable and credible search engine”, sug-
gesting that a brand’s reputation is an indicator of trustworthiness (which is exactly
what phishers use to trick their victims).

TAKEAWAYS (RQ4): After determining the legitimacy of a webpage, users moti-
vate their decision by describing their “feelings” if they believe the webpage to be
legitimate. In contrast, when they think the webpage is phishing, they mention
more specific indicators—most of which entail textual content errors.

4.5.2 What do users write on adversarial samples?

In an attempt to exhaustively answer RQ4, we further enrich our analysis by
performing a break down of the participants’ reasoning on the specific type of APW
(cf. §4.2) included in our adversarial study. For this investigation (and contrarily to
what we did in §4.5.1), we must account for the ground truth of each webpage.

APW-Lab. We recall (cf. Fig. 4.4) that our participants performed very well on
APW-Lab_typo, for which we coded 93 responses. Among these, a large majority
(69, 74%) mentioned “typo” (after making a correct detection). Intriguingly, 15% (14)
provided reasons that have nothing to do with APW-Lab_typo (despite still rating
them as phishing). E.g., P668 stated: “figures do not look normal”. The remaining
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11% incorrectly labeled the webpage as legitimate (e.g., “Everrything looks normal”
[P621]).

Concerning APW-Lab_img, we have coded 61 responses. Notably, only 13% (8)
pointed out the ‘correct’ adversarial perturbation (i.e., images on footer). E.g., P544
stated: “low quality and strange icons at the bottom, which a legit site would not have”. In
contrast, 48% (29) mentioned other reasons. E.g., P210 stated: “Adobe doesn’t require
logging in to view something in it to my knowledge”. The remaining 39% incorrectly
labeled the webpage as legitimate (e.g., “norton certificate makes me think it’s more legit
than not.” [242]).

For APW-Lab_pswd, we coded 137 responses. The majority (70, 51%), despite stem-
ming from a correct detection, have nothing to do with our perturbation: only 8%
(11) pointed out the visible password as a potential phishing indicator (e.g., “pass-
word field is plain text” [P1306]; or “the password is not hidden” [P937]). The rest 41%
incorrectly labeled the webpage as legitimate (e.g., “As a Wells Fargo customer who
was literally just checking their account before starting this study I can assure you this is
legitimately legit” [P86]).

We coded 89 responses for APW-Lab_bg. Surprisingly, only 4% (3) of responses
mention our inserted perturbation. In contrast, 48% (43) justify their (correct) phish-
ing detection by mentioning unrelated factors. E.g., P971 stated: “too many big com-
peting brands at the top”. The rest 49% incorrectly labeled the page as legitimate (e.g.,
P321 stated: “good grammar, good syntax, appropriate colors, logo”).

For each type of APW above, we again run a Chi-squared test to compare the
number of correct phishing detections that mention the inserted perturbation w.r.t.
other factors (we do not include misclassifications). The results show that the num-
ber of mentions of inserted perturbations is statistically significantly lower than
other factors, with p<0.001 for all four perturbation types.

TAKEAWAY (RQ4): Even though participants can recognize an APW as “phishing”,
they rarely pinpoint the perturbation that makes the webpage “adversarial” (as
long as it is not text-based).

APW-Wild. We coded 594 for adversarial webpages “from the wild Web”. We re-
call (§4.4) that our participants are better at detecting APW-Wild (w.r.t. unperturbed
phishing webpages), so we attempt to find an explanation for this. Driven by our
previous findings (§4.5.1), we scrutinized whether the reason lies in text-related fac-
tors. Among the justifications for correct detections, we found that 22% (131) men-
tion text-related factors (e.g., P1246 wrote “‘Forgotten password’ doesn’t seem right”).
More specifically, the responses mention typo, grammar, and text-style issues 8%,
6%, and 6%, respectively. Some (18%, 107) mentioned layout (e.g., P362 wrote “bad
css”), whereas others (16%, 94) mentioned functionality (e.g., P795 wrote: “(It) should
be one form of 2FA”). Few 9% (56) mention the logo (e.g., P1007 wrote “The Google logo
is wrong.”); and even less (7%, 40) mentioned other visual elements such as back-
ground color (e.g., P108 wrote: “Google login prompt is not with a gray background”).
Finally, 205 (35%) incorrectly labeled ther webpage as legitimate (e.g., “Nothing mis-
leading” [P119]). We run a Chi-squared test, and confirm the number of mentions
of text indicators is higher than functionality, logo, and other visual elements, with
statistical significance (p<0.01 for all pairs). However, the difference between text
indicators and layout is not statistically significant (p=0.082).5

5We refrain from making claims pertaining the “correct identification” of the perturbation (as we
did for APW-Lab): this is because we cannot be sure of which perturbation was applied by the (real)
attackers who crafted the webpages in APW-Wild [54].
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4.6 Discussion

Comparing with Prior Phishing Research. Our work examines how users per-
ceive adversarial phishing webpages, which has never been studied in prior works. This
provides an interesting data point to contrast with prior studies on generic phishing
websites and emails [76]. We discuss four points. (1) Prior studies show that men
perform better on phishing detection tasks (website [140, 158], email [256, 260]) and
a few studies show that women perform better (website and email [202]). Our analy-
sis does not find statistically significant differences among genders (§4.4.3). (2) Prior
studies show that elders are more susceptible to phishing websites [158, 240]. We
again do not find statistically significant differences with respect to age groups
(§4.4.3). (3) Our study echoes prior results that phishing knowledge correlates posi-
tively with users’ phishing detection performance [108]. However, surprisingly, we
find that the frequency of a user visiting a target brand’s website negatively correlates
with the user’s ability to detect phishing webpages targeting this brand (§4.4.3). An
explanation is that “familiarity with a brand” leads to overconfidence [210, 256].
This may align with the prior observation that people feel more comfortable with
(i.e. trusting) websites that they are familiar with [246]. (4) Prior studies have in-
dependently shown that typos [117, 181], webpage layout [78], and webpage visual
appearance [53] would influence the perceived credibility of websites (and unper-
turbed phishing webpages). Under the context of adversarial phishing, our study
shows that participants are significantly more sensitive (§4.5.1) to adversarial per-
turbations related to typos and text in general (w.r.t. other visual perturbations).

Implications for ‘technical’ Web Security. For research focused on adversarial
phishing attacks (e.g., [60, 98, 164, 171, 229]), we argue that bypassing a given ML-
PWD is necessary but not sufficient for a phishing webpage to be successful. The
adversarial phishing webpages should be also assessed with users. More impor-
tantly, it is important to compare adversarial phishing webpages with unperturbed
phishing webpages to ensure the adversarial perturbations do not make the web-
pages significantly less effective on users (in favor of bypassing ML-PWD). E.g.,
in our study, we find that certain adversarial perturbations (e.g., typos) are more
easily noticed by users despite their high evasion success rate against ML-PWD.
This defect would be otherwise unknown without a user study. Another implica-
tion is that visual-based adversarial perturbations seem to be effective against both
ML-PWD and users, which should be considered in future work when robustifying
ML-based phishing detectors. Finally, we stress that some of our visual perturba-
tions were “large” (e.g., APW-Lab_bg entailed replacing the entire background—see
Fig. 4.2), but they still allowed the webpage to bypass the ML-PWD (both ours and
the production-grade one—see Fig. 4.5) and deceive the users. This is in stark contrast
with most AML research in computer vision, wherein the goal is to apply “imper-
ceptible” perturbations (e.g., [80, 238]). Hence, we endorse future research to explore
perturbations having higher magnitude.

Implications to User Education. Researchers have studied ways to im-
prove users’ ability to recognize phishing websites through training and educa-
tion [161, 192, 263]. Our results show that users overlook ‘visual’ adversarial per-
turbations (w.r.t. text-based ones). One possible future direction is to increase user
awareness of such adversarial phishing webpages. However, we believe there is
an inherent risk to train users to search for such visual artifacts. Indeed, adversar-
ial phishing webpages have certain visual artifacts that deviate them from authen-
tic phishing webpages—helping users recognize such artifacts may help users with
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phishing detection. However, the lack of such artifacts does not mean the website is
trustworthy. In our study, we have observed signs of over-trusting known/familiar
websites. For example, a user’s frequency of visiting a brand’s website negatively
predicts the user’s phishing detection accuracy on this brand.

Limitations. First, our study is limited to participants from the U.S. given we are
primarily assessing phishing sites targeting the US-based brands. Future work may
consider recruiting participants from different countries and expanding the set of
target brands. Second, our evaluation is intentionally set to be highly primed to ex-
amine the upper-bound performance of users. This can be different from real-world
scenarios wherein users are often “unprepared” when encountering phishing web-
sites. Third, to protect users, we only present phishing screenshots (to prevent users
from accidentally clicking on malicious links or leaking their information). However,
this also prevents interacting with the website which can be a part of the human’s de-
tection process. Furthermore, our screenshots are for desktop browsers, and hence
we do not claim that our results generalize to other platforms (e.g., smartphones).
Finally, to focus on adversarial phishing webpages, we excluded URLs from our
evaluation. Even though prior studies [106, 173, 263] showed that most users cannot
effectively utilize URLs as identity indicators of a website, the presence of URLs may
help users judge the overall legitimacy of a webpage together with other indicators.

4.7 Conclusion

We present two user studies (n=470) to assess how human users perceive ad-
versarial phishing webpages that bypass ML-based phishing website detectors. We
confirm the threat of adversarial phishing webpages to end-users and compare the
effectiveness of different types of adversarial perturbations. We argue that assess-
ing the users’ response to adversarial webpages should be a mandatory step to evaluate
evasion attacks in the context of phishing webpage detection. Our work can serve
as a benchmark for future research, and we release our questionnaires, codebook,
classifiers, and datasets [3].

4.8 SUPPLEMENTARY FIGURES AND TABLES

4.8.1 Number of Experimental Webpages

Our user study involves 15 well-known U.S. website brands. As illustrated in
Table 4.5, for each brand, we have 2 high-quality unperturbed phishing pages, 1
legitimate webpage, 4 types of APW-Lab pages, and a variable number of APW-Wild
pages ranging from 0 to 7.

4.8.2 Additional Example Screenshots

Fig. 4.5 presents four adversarial phishing webpages in [54] that evaded
production-grade ML-PWD. Fig. 4.6 shows two APW-Wild pages used in our study
with a weird background pattern and a blurry logo. Fig. 4.7 is an adversarial phish-
ing webpage (APW-Wild) that asks for credit card information.
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Brand APW-Lab APW-Wild Unperturbed Phish. Legitimate

Adobe 4 0 2 1

Amazon 4 0 2 1

Apple 4 2 2 1

AT&T 4 7 2 1

Bank of America 4 0 2 1

DHL 4 2 2 1

Dropbox 4 2 2 1

eBay 4 0 2 1

Facebook 4 0 2 1

Google 4 7 2 1

Microsoft 4 4 2 1

Outlook 4 3 2 1

Paypal 4 1 2 1

Wells Fargo 4 0 2 1

Yahoo 4 0 2 1

TABLE 4.5: Number of Experimental Webpages

FIGURE 4.5: Four phishing webpages deployed “in the wild” (taken
from [54]) which bypassed production-grade ML-PWD.
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(a) APW-Wild: weird background pattern (b) APW-Wild: blurry logo

FIGURE 4.6: Additional screenshot of APW-Wild pages used in our
user study, to illustrate different adversarial perturbations.

FIGURE 4.7: An adversarial phishing page asking for credit card in-
formation.

FIGURE 4.8: Attention check question.
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4.9 Study Questions

In this section, we show a complete list of our questions, which includes the main
task questions and other questions (website knowledge and demographic ques-
tions).

Each participant is instructed to review 15 webpage screenshots. Under each
webpage, the participant answers 2 questions (15×2=30 questions in total), as shown
in Fig. 4.10. Then, we randomly display the screenshot of Instagram or Twitter and
show an attention check question (Fig. 4.8). After that, each participant needs to
answer 2 questions about website knowledge (familiarity and frequency), as shown
in Fig. 4.9 and 6 demographic questions, as shown in Fig. 4.11.
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FIGURE 4.9: Other questions: website knowledge.

FIGURE 4.10: Main task questions.
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FIGURE 4.11: Other questions: demographics.
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4.10 Additional Background: Phishing Website Detection
and ML security

Phishing websites are a never-ending problem that continue to pollute the
Web, and rule-based countermeasures, such as blocklists, cannot cope with such a
threat [199]. To provide some form of protection against “novel” phishing websites,
modern anti-phishing schemes leverage data-driven techniques [247], such as ma-
chine learning (ML). Indeed, thanks to the capability of ML models to “automatically
learn from data”, it is possible to develop phishing website detectors (PWD) that can
identify (and, consequently, block) malicious webpages before they are displayed to
the end-user—the actual target of a phishing attack.

ML-PWD. A large body of scientific literature proposed ML-driven PWD (ML-
PWD), which can analyze various data-types to discriminate benign from phishing
webpages. For instance, some solutions analyze the underlying HTML of a given
webpage [141], or the characters that compose its URL [255], or a combination of
the two [60]. Finally, recent approaches rely on deep learning (DL) to compute the
visual similarity between two webpages [44], or some of its elements (such as the
logo [175]). Due to the promising results of these defenses, production-grade PWD
now integrate some form of ML to prevent their users from falling victim to a phishing
hook [54, 107, 242].

Security of ML. The increasing (and not yet fully understood) successes of ML
led to abundant papers to scrutinize its security [80] in adversarial environments. It
is now well-known that ML-powered detectors are prone to evasion attacks, wherein
(tiny) “adversarial perturbations” are added to a given input sample, so as to in-
duce the detector to misclassify it—thereby triggering a false negative. Such a vul-
nerability has been investigated by thousands of research efforts [54], all of which
showed that – no matter what – ML models can be easily bypassed (even “ad-
versarially robust” ones [90]). Unfortunately, this problem also affects ML-driven
PWD [60, 98, 164, 171]. For instance, some works (e.g. [229]) evidenced that the de-
tection rate of some ML-PWD dropped from 95% to 0 by manipulating just a few
features. Moreover, even production-grade ML-PWD exhibit the same weakness:
both Google’s [171] and BitDefender’s [236] anti-phishing schemes have been de-
feated.

Practitioners viewpoint. Interestingly, however, there is abundant evidence
showing that ML developers do not have the ML-specific weaknesses among their
priorities [54]. Kumar et al. [156] did the first investigation on AML from the per-
spective of industry practitioners, which indicated only 5 out of 28 organizations had
a working knowledge of AML. In the following year, [82] investigated the current
state of ML practitioners concerning ML security and privacy, and participants said
“I Never Thought About Securing My Machine Learning Models”. Even in the lat-
est survey [125], only 28.7% of ML practitioners reported AML knowledge. Simply
put, there is a clear gap between AML research and practice, which is not acceptable
given the widespread deployment of ML into operational systems. Our paper seeks
to rectify this mismatch—which, in the PWD context, presents intriguing properties
that are currently overlooked.
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Part III

Phishing website detection in
multi-language environment
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Chapter 5

ChinaPhish: Revealing, Assessing,
and Bridging the Gap between
Western and Chinese Phishing
Website Detection

According to the FBI’s 2022 report [20], phishing is the topmost form of cybercrime,
whose growth has allegedly increased by over 1000% since 2018. In the second quar-
ter of 2022, the Anti-Phishing Working Group reported over 1M phishing attacks—
the worst quarter ever observed [24]. In this context, phishing websites are one of
the most common vectors employed by attackers, who aim to reach their goals by
tricking their victims via apparently legitimate websites [28]. In the first half of 2022,
over 200k phishing websites were generated every month [213]—showing that a
universal solution to this threat has yet to be found.

The subject of Phishing Website Detection (PWD) is well-studied both in
academia and industry. Lots of anti-phishing schemes have been proposed, either
“human” centered, such as phishing education (e.g., [148, 157]); or “machine” cen-
tered, such as automated detectors (e.g., [134, 222]). This paper focuses on the latter,
which do not require any prior knowledge on phishing by potential victims.

Automated PWD can leverage two detection approaches (or a combination
thereof), based on either signatures (in the form of “blocklists” [215]), or on data-
driven heuristics (e.g., [50, 142, 144]). The former are widely used in browsers; for
instance, Google Safe Browsing [32] relies on a constantly updated blocklist which
is checked before opening any website, thereby raising an alert if the visited URL
is included in such a blocklist. Despite being very precise (i.e., low rates of false
positives), blocklist-based PWD cannot detect ‘novel’ phishing websites [198, 199].
To overcome this limitation, advanced PWD leverage data-driven methods within
the domain of Machine Learning (ML): the intuition is to analyze some “features”
of a website (extracted from, e.g., its URL or even the underlying HTML [276]) to
discriminate benign from malicious webpages. ML-based PWD (ML-PWD) are ca-
pable of detecting phishing webpages not included in any blocklist [247], but at the
expense of a superior (but still acceptable [55]) rate of false alarms (see §5.1.1 for
background).

A large body of literature has shown that – in the right settings – ML-PWD “can
work”. However, all such papers assumed that the websites (benign or phishing)
were in phonological languages (e.g., English). Such an assumption, despite being
the de-facto standard “in the West”, does not allow to determine if (and how much)
the proposed solution also works “in the East”, i.e., for countries having hieroglyphic
languages—such as China. In 2016, Li et al. [169] estimated that China suffers 30+B
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Western and Chinese Phishing Website Detection

Yuan in losses every year due to phishing. More recently, the largest Chinese security
company [9] reported the yearly trend of phishing attacks intercepted in China, which
number in the billions (shown in Fig. 5.1).
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FIGURE 5.1: Phishing attacks intercepted by Qihoo (largest Chinese
internet security company) in the first quarters of 2019–2022 [9].

Simply put (as we show in §5.1.2), there is a large side of the World that has
been “ignored” by prior research on PWD. Such lack of attention led us to question
whether PWD previously shown to be effective for “Western” websites also work for
“Eastern” websites—and, specifically, Chinese websites. Indeed, besides obvious
differences in languages, Chinese websites present unique characteristics (due to,
e.g., some regulations) that set them apart from the rest of the World—and that few
papers have considered.

The motivation (§5.2.3) of our study has its root in the fact that: (i) an increasing
number of Western people now reside in China [16]; and that (ii) an increasing num-
ber of Chinese people migrated to the West [11]. As such, it is important to scrutinize
whether PWD can “transfer” between different regions: For instance, an English
person can be protected if they live in the UK and only visit English websites—but
what if such a person goes to China and visits Western websites? And, vice-versa,
Chinese PWD may be effective as long as they are used by Chinese residents—but
what if a Chinese person goes abroad?

To answer these questions, we first dissect the anatomy of Chinese webpages,
thereby elucidating the major characteristics that differentiate Chinese from West-
ern websites (§5.2). Then, we carry out a large experimental campaign entailing
three datasets—each containing thousands of recent websites (benign and phishing),
taken from diverse areas of the World (§5.3). In particular, two are “Western” datasets:
one contains only English websites [65], while the other contains websites from vari-
ous Western languages (e.g., Italian, French, German, as well as English) [252]; the
last dataset contains only Chinese websites—which we manually collect and publicly
release, due to the lack of datasets for Chinese-based PWD available for research.
With these datasets, we assess the performance of state-of-the-art PWD (§5.4). We
consider (i) ML-PWD proposed in research, as well as (ii) operational anti-phishing
services, and even (iii) competition-grade ML-PWD that analyze the HTML of web-
pages.

Our results (§5.5) show that most ML-PWD work well (≥97% F1-score) on web-
sites of the respective “language-group”: notably, PWD designed for English web-
sites are effective also for more generic Western websites. However, the perfor-
mance significantly drops (e.g., ≥40% f pr) when a PWD for websites in phonologi-
cal languages is tested on Chinese websites—and vice-versa. Surprisingly, out of 61
production-grade PWD, the best one could detect only 3% of the Chinese phishing web-
pages in our dataset. These results highlight that existing PWD (especially commercial
ones!) respond poorly when processing websites of different languages. Based on
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these findings, we advocate the need for novel PWD that work under the assump-
tion that the user can visit either phonologic- or hieroglyphic-based websites. Fi-
nally, as a constructive step forward, we propose (and empirically evaluate) some
ways to address the problem we brought to light (§5.6).
CONTRIBUTION. Our efforts reveal the gap between Chinese and Western PWD. We
are the first to (ttbook):

• elucidate the differences between Chinese and Western websites (from a PWD
perspective);

• assess the “cross-language” effectiveness of state-of-the-art PWD (real systems
and research proposals);

• collect and publicly release a dataset for Chinese-based PWD, containing 1 620
websites (from 2022) and provided with their URL, HTML and screenshot.

As a technical contribution to help building a bridge to close this gap, we publicly
release of entire codebase—including those for our proposed countermeasures [2].
We also provide additional technical details, original experiments, and thorough
analyses in our Appendix.

5.1 Background and Related Work

We summarize the problem of PWD (§5.1.1). Then, we survey the phishing land-
scape in China (§5.1.2), highlighting the limitations of related research.

5.1.1 Phishing Website Detection

Phishing is a historical security problem, which has been tackled by abundant re-
search. Reliant on social engineering [84], used to “lure” a victim onto a malicious
webpage, phishing website attacks require the victim to (i) be shown the webpage;
and (ii) be “caught” by providing some sensitive data, or clicking on a harmful
link [230]. Clearly, the attack fails if the potential victim recognizes the webpage as
malicious. Therefore, anti-phishing training programs can reduce the risk of phish-
ing attacks [146], and some research has been carried out (e.g., [160, 224]). How-
ever, according to ProofPoint’s 2022 report [28], more than 40% of organizations do
not deliver adequate training, and nearly 15% almost do not educate workers at all.
Hence, there is still a need for “machine-based” mechanisms that provide a first line
of defense against phishing for uneducated (or distracted) users. These automated
detection schemes are based on the combination of signatures (i.e., blocklists) or data-
driven heuristics—among which, many rely on machine learning methods.

Signature-based PWD. Signature-based PWD still represents the preferred
countermeasure against phishing, and leverage blocklists of “suspicious” websites
(taken from, e.g., PhishTank [26], or Google Safe Browsing [211]). Before render-
ing any given website, the browser (or an organization-wide detector) checks if the
URL (or a subdomain) is included in the blocklist, thereby alerting the user upon
a correct match [276]. To avoid triggering annoying false alarms, the websites in
these lists must be verified: as a result, signature-based PWD have high precision—
which is appreciated in the context of PWD, given that web-users visit hundreds
of pages every day [46]. Unfortunately, signature-based detectors are useless [61]
against “novel” attacks. Despite huge efforts put in by the maintainers of blocklists
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to keep them as up-to-date as possible, some websites are bound to evade blocklist-
based PWD [247]. Such a shortcoming led to the proliferation of complementary
PWD that can cope with the ever-changing landscape of phishing websites—which
can be accomplished via machine learning (ML).

ML-based PWD. The underlying principle of machine learning is to have “ma-
chines that autonomously learn from data.” This process is done by training an
ML model over some training data by means of a given learning algorithm. The suc-
cesses of ML in various fields (most notably computer vision and natural language
processing [150, 163]) showed the remarkable performance of ML for classification
tasks, inspiring researchers to investigate their effectiveness also for cyberthreat de-
tection [61]—which also encompasses PWD [71, 95, 119, 141, 183, 233]. Existing ML-
PWD can fall into three categories, depending on the information used as basis to
perform the (binary) classification of a given website [59]. Specifically, an ML-PWD
can use either the URL of a website, its representation (e.g., the image or the HTML),
or their combination. Each of these can be elaborated in diverse ways: for instance,
some ML-PWD necessitate some preprocessing aimed at extracting some features
from a given piece of data (e.g., computing the length of the URL [188]); others (typi-
cally those relying on deep learning [44]) may analyze a given input in its raw form.
We stress that – despite the appreciable results shown in research – recent findings
showed that commercial PWD using deep learning can be easily evaded (by real
attackers!) via decade-old tricks [55]. (Additional details are in Appendix 5.12).

Narrow Scope. Despite dozens of papers proposing ML-based countermeasures
to phishing, prior efforts (e.g., [50, 65, 68, 142, 162, 189, 203, 247]) only focused1

on Western websites—overlooking that phishing is a long-standing problem also in
other areas of the world, such as China.

5.1.2 The Chinese phishing landscape (in research)

According to the largest Internet security provider in China, Qihoo 360 [9], over 25
billion phishing websites were intercepted in the first quarter of 2021—a rate of 280
million per day (cf. Fig. 5.1). Reports estimated over one billion Chinese netizers as
of June 2022 [14]: accordingly, 24% had been scammed by phishing websites in the
previous 6 months. The yearly cumulative losses of Chinese users due to phishing
exceed 20B Yuan (∼3B USD) [167].

Shortcomings of prior research

Phishing websites are clearly rampant also in China [177]. Yet, this threat is vastly
understudied from a research perspective. Almost 10 years ago, in 2014, Zhang et
al. [270] proposed 5 domain-specific features to detect phishing websites targeting
Chinese eCommerce: despite achieving 96% accuracy, [270] only focus on eCom-
merce websites, neglecting the plethora of other websites (e.g., forums, hospitals
and government) which can very well be targeted by phishers. Indeed, Chinese
websites tend to have different characteristics, as shown in Fig. 5.2: eCommerce web-
sites must report their business licence (red box in Fig. 5.2a), which is not necessary
for Chinese government websites—which, in turn, have a government identification
code (blue box in Fig. 5.2b). More recently, in 2020, Li et al. [167] proposed five space
transformations to generate new features that disentangle the linear and non-linear

1Some works (e.g., [121]) claim to propose “language independent” PWD. We argue that such a
term is misleading: such PWD are affected by the shortcomings of “target dependent” PWD (see Ap-
pendix 5.12).
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interactions between features in malicious URL data. The dataset used in the exper-
iments of [167] includes URL from generic Chinese websites, thereby allowing one
to assess the effectiveness of ML-PWD analyzing the URL of a website. Even though
such an approach may work when analysing Chinese websites, its effectiveness is
questionable when Western websites are taken into account. This is because the URL
is a combination of alphanumeric characters: hence, the URL for Western and Chinese
websites may appear similar despite their HTML being significantly different; plus,
PWD analysing the URL can be easily bypassed (e.g., [65]). We argue that HTML
may be a more valuable source of information for PWD; however, as we will show
(in §5.2.1), proper usage of the HTML for Chinese websites may require some tweaks
that are neglected by ML-PWD previously proposed for Western websites.

(A) Footer of a Chinese eCommerce website (https://global.jd.com/).

(B) Footer of a Chinese govt. website (https://banshi.beijing.gov.cn/).

FIGURE 5.2: Chinese eCommerce and government websites have dif-
ferent identifiers. Red boxes denote the “business license”, whereas

the blue box the “government identification code”.

Chinese PWDs (Related work)

We discuss the research endeavours on Chinese ML-PWD of the last decade, for
which we provide an overview in Table 5.1. For each paper,2 we report: whether
the experimental dataset is publicly available (✗ or ✓) and whether it also included
websites from different regions than China (✗ or ✓); the focus of the ML-PWD (either
‘generic’, or for specific types of websites); the date (i.e., year) on which the data was
collected; the types of features used for the analysis (Fu=URL only, Fh=HTML only,
Fc=URL+HTML) and whether these features entail Chinese-specific characteristics; and
if the conclusions are drawn after making statistically significant comparisons (✗ or
✓).

As we can see from Table 5.1, some work [96, 167, 271] only consider ML-PWD
analyzing the URL, thereby failing to capture the additional information provided
by the HTML (which, as we show in our paper, plays a crucial role). The au-
thors of [274] devise a ML-PWD analyzing HTML features that consider Chinese-
specific word embeddings—which are clearly language dependent and (as we show
in the next section) are inappropriate for analyzing Western websites. The ML-PWD

2We performed an extensive literature search through various search engines, and also looked at
cross-references and citations. To the best of our knowledge, Table 5.1 represents the state-of-the-art.

https://global.jd.com/
https://banshi.beijing.gov.cn/
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TABLE 5.1: Papers on Chinese PWD. None of these release the source-
code (the online tool in [167] is not functional anymore).

Paper
(1st Author)

Year
Dataset

Available
Other

Regions
Website
Focus

Collection
Date

Analyzed
Features (F)

Chinese
Specific

Stat.
Sign.

Chu [96] 2013 ✗ ✗ eCommerce 2012 Fu ✗ ✗

Zhang [270] 2014 ✗ ✗ eCommerce 2014 Fc ✓ ✓

Zhang [271] 2016 ✗ ✓ generic 2011 Fu ✗ ✗

Li [169] 2016 ✗ ✗ generic 2015 Fu,Fh ✗ ✗

Zhang [273] 2017 ✗ ✓ generic 2017 Fc ✗ ✗

Zhang [274] 2017 ✗ ✗ generic 2017 Fc ✓ ✗

Hu [262] 2017 ✗ ✗ finance 2017 Fu,Fh ✗ ✗

Zhang [113] 2017 ✗ ✗ finance 2016 Fc ✓ ✓

Li [167] 2020 ✗ ✓ generic 2020 Fu ✗ ✗

Liu [176] 2021 ✓ ✓ generic 2018 Fc ✗ ✗

proposed by [273] are assessed on both Chinese and English websites, achieving
over 95% accuracy, but the corresponding evaluation is (i) not reproducible, and
(ii) lacks statistical validation—both of which are shortcomings affecting most papers
(i.e., [96, 167, 169, 262, 271, 274]) in Table 5.1. As a matter of fact, our experiments
will reveal substantially different results than those reported by [273]. Notably, [270]
proposed five Chinese-specific features and construct ML-PWD analyzing both the
URL and HTML of a webpage, but they only focused on Chinese eCommerce web-
sites (similarly to [96]). Such a narrow focus also affects the research in [113] and
in [262], whose proposed ML-PWD are assessed only on financial websites. The
recent work by Li et al. [176] proposes a complex PWD, but their dataset includes
only 51 Chinese webpages, which cannot represent the landscape of phishing in China
(and, unfortunately, the source-code of [176] is not provided).

OUR GOAL. Prior research on Chinese PWD is scarce and presents limitations
(e.g., lack of statistical validation, reproducibility, or generality). We aim to over-
come all such shortcomings and provide reliable results to assess the state of Chi-
nese w.r.t. Western PWD.

We focus on phishing websites: papers on other forms of phishing (e.g., email [120,
132, 220]) are orthogonal to ours.

5.2 Western vs Chinese websites

As our first contribution, we elucidate the differences that set Chinese websites apart
from Western ones. These differences lie in: the language itself; and the structure
of the website. Both of these influence the representation of the website (and, in
particular, its HTML), thereby suggesting that ML-PWD analyzing such information3

are likely to respond differently on websites of different regions.

5.2.1 Chinese & Western texts

Context. English or Western languages (e.g., German) are phonetic languages.
Their smallest sememe words [197] are a combination of 26 alphabet letters. For
instance, a generic English word (e.g., “hello”) can be easily pronounced with the
help of its glyphs. However, Chinese texts (and other Eastern texts, e.g., Japanese)

3This section focuses on ML-based PWD because the effectiveness of blocklist-based PWD entirely
depends on the “entries” contained in the blocklist, and is hence agnostic to the languages of such
entries.
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are more complex: there can be little or no correlation between the pronunciation
and the glyph of a given word.

Example: The Chinese word ‘参’ has multiple pronunciations: ‘cān’, ‘cēn’, and ‘shēn’.
However, even native speakers cannot determine how to pronounce ‘参’ just by observing
its glyph.

Chinese is both a kind of hieroglyphics and phonetic language, which has three
unique linguistic characteristics: pinyin, glyph and tone [178]. Only the simultaneous
knowledge of these three can uniquely determine a Chinese character, all of which
are indispensable. As shown in Fig. 5.3, words in group (a) have the same pinyin
and tone, but their glyph and semantics are different, which means the Chinese texts
cannot be confirmed only by the pronunciation. The words in group (b), have the
same glyph, ‘长’, but they differ in the pinyin, tone and semantics. Finally, words
in group (c), ‘离’ and ‘里’ have the same pinyin, ‘li’, but different tones ‘´’, ‘ˇ’ and
different glyphs; furthermore, their semantics are different.

手势
shǒu shì

首饰
shǒu shì

gesture jewelry

长大 长发
zhăng dà cháng fà

grow up long hair

离开 里面
lí kāi lǐ miàn

leave inside

(a) same pinyin and tone,  
different glyph

(b) different pinyin and tone,  
same glyph

(c) same pinyin,  
different tone and glyph

FIGURE 5.3: The combination of Chinese texts: pinyin, glyph and tone.

In practice. The difference between Chinese and Western languages is likely to
affect the effectiveness of PWD “trained” on either of these languages. For example,
many ML-PWD (e.g., [130, 170]) analyze a feature that denotes whether the web-
site’s title includes the domain of its URL. Let ‘H_titBr’ denote such a feature: we
represent this extraction procedure for Western and Chinese websites in Fig. 5.4. For
a Western website, we (step 1) get the domain from the URL and (2) get the title from
the HTML, then (3) check if the title includes the domain. However. for Chinese
websites, the title is in Chinese hieroglyphs: hence, we (4) need to ‘convert’ the title
to its corresponding pronunciation, e.g., pinyin,4 a combination of letters; and then
(5) compare it with the URL’s domain5.

This difference also exists between Chinese and Western versions of the same
website. As an example, consider Amazon, for which we provide an illustration in
Figs. 5.5. The URL of the Western variant contains the string “amazon”, which also
appears in the title (as HTML) of the webpage (Fig. 5.5a). Therefore, the extraction of
the ‘H_titBr’ feature (i.e., steps 1, 2, 3 in Fig. 5.4) is straightforward—and this is done
also by open-source ML-PWD (e.g., [59]). However, this extraction procedure does
not work on the Chinese version of Amazon. As shown in Fig. 5.5b, the HTML’s title
tag is “亚马逊-网上购物商城：要网购, 就来z.cn!”, which clearly does not include
the string “amazon” (which is present in the URL). Therefore, to correctly extract this
feature, it is necessary to convert the title to its pronunciation. Not doing so (and ap-
plying the ‘straightforward’ Western procedure) leads to a mismatch that induces an
ML-PWD to believe that the Chinese version of Amazon to be a suspicious website.

4Among the top30 popular Chinese websites, 15 use pinyin (2023).
5A potential workaround would be to apply a different feature extraction process depending on

whether the website is in Chinese or not, but we are not aware of phishing detectors that do this. Plus,
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1website

H_titBr

HTML<title>Amazon.it:

elettronica ..

</title>

4

<title>爱淘宝PC

新版</title>

aitaobaoPCxinban

3https://www.amazon.it/

5https://ai.taobao.com/
0 1

Western URL 

Chinese URL

2
6

FIGURE 5.4: Extracting ‘H_titBr’ from Chinese and Western websites.

(A) Title tag (HTML) of Western Amazon. (https://www.amazon.com/).

(B) Title tag (HTML) of Chinese Amazon. (https://www.amazon.cn/).

FIGURE 5.5: Comparison between the URL and HTML title tags.

5.2.2 Chinese & Western websites structure

Context. According to China’s network security law and the Administration for
Industry and Commerce regulations [4], all Chinese websites need to be registered
with the Ministry of Industry and Information Technology of the Chinese govern-
ment (i.e., ICP records). Chinese websites engaged in different activities must apply
for qualification certificates from the corresponding government departments. E.g.,
“JD.com” is an eCommerce that mainly sells electronic merchandise and medicines,
thus it received a telecommunication business license from the Chinese Ministry of
Industry and Information Technology, and a qualification certificate for pharmaceu-
tical services approved by Beijing Municipal Medical Products Administration (an
example is shown in the red box in Fig. 5.2a). In addition, it is common for Chinese
websites to display trusted website certifications issued by third-party organizations
(or the police) to increase their credibility (see the yellow box in Fig. 5.2). However,
Western websites do not have (nor require) these certificates. Even world-renown
websites lack them (see Fig. 5.6).

In practice. Analyzing the ICP record is a well-known method to identify mali-
cious websites in China [270]. However, the absence of this form of “certification”
for Western websites creates an intrinsic incompatibility between Chinese and West-
ern ML-based PWD that analyze the HTML of a webpage. For instance, ML-PWD
for Chinese websites will search for the ICP record on Western websites, but will
never be able to find it—thereby inducing the ML-PWD to believe that any Western
webpage is “suspicious”. In contrast, ML-PWD for Western websites will also be ad-
versely impacted by the presence of the ICP record: it is well-known [142, 187, 266]
that phishing webpages have many objects that point to “external” items—and, of
course, the ICP embedded in a Chinese website points to an external resource. As a

such a verification step would increase the overhead to analyze the page: to prevent trivial spoofing,
its authenticity should rely on third-parties.

https://www.amazon.com/
https://www.amazon.cn/
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result, ML-PWD for Western websites will also be more likely to be “suspicious” of
any Chinese website.

(A) Footer of a Western eCommerce website (https://www.amazon.com/).

(B) Footer of the Califonia government website. (https://www.ca.gov/).

FIGURE 5.6: Exemplary eCommerce and Govt. ‘Western’ websites.

5.2.3 Motivation and Research Questions

Problem Statement. Prior research has shown that existing ML-PWD work well
on Western websites; and some papers also showed that ML-PWD can be tailored
for Chinese websites with some success (§5.1.1). However, as we discussed, Chinese
websites are different from Western websites. Such a difference led us to ask our-
selves: How do PWD that are effective on Western websites perform on Chinese websites
(and vice versa)? To the best of our knowledge, previous research (as we showed
in §5.1.2) cannot provide an answer to our question, since (i) Chinese and Western
websites have been mostly treated independently; and/or (ii) the few works that
consider both “regions” simultaneously have limitations.6

A real-world problem. Plenty of Chinese people live in the West, and many
Westerners live in China [11, 16]. People living abroad need to browse their home
country’s website. If Chinese PWD work poorly on western websites, then West-
erners who live in China will be more likely to fall victim to Western phishing web-
sites, and vice-versa. Even though it is well known that the Great Firewall pre-
vents [43, 135] Chinese residents from accessing popular Western websites (e.g.,
Facebook), hence implicitly providing some form of protection to Chinese users
against Western phishing websites, some can still be reached (e.g., GitHub). More-
over, usage of VPN services can bypass the Great Firewall, thereby allowing Chi-
nese residents to access any7 website—but this will expose them to Chinese phishing
websites. Indeed, as of Feb. 2023 [27], Google Chrome is the most popular browser
even in China (with a share of 56%); however, the anti-phishing filters of Chrome are
not tailored for Chinese phishing websites (as we show in §5.4.2). In turn, also users

6Actually, the results of [176, 273] may suggest that these two regions are “compatible” from a
phishing detection perspective!

7These users can even fall victim to phishing in the dark web [268].

https://www.amazon.com/
https://www.ca.gov/
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who live outside China (either Westerners or Chinese expats) and use Chrome (or
similar browsers) can fall victim to phishing Chinese websites. Simply put, if PWD
exhibit a poor compatibility between Chinese and Western websites (as our analysis
in §5.2 suggests), then many people can fall victim to phishing attacks that (perhaps
inadvertently) exploit such a vulnerability.

Research Methodology. Inspired by this dilemma, we want to verify if the gap
between Chinese and Western phishing website detection truly exists; and, if so,
potentially assess its impact on real systems. We tackle this problem by answering
three research questions (RQ):

RQ1: Do ML-PWD proposed in research for Western websites work equally well on
Chinese websites?

RQ2: Do ML-PWD tailored for Chinese-websites work well when analyzing Western
websites?

RQ3: Do closed-source and commercial PWD (either blocklist- or ML-based) typi-
cally used “in the West” work well when analysing Chinese websites?

Since Western websites is a broad term, we enrich our RQs by differentiating
(a) ‘English-only’ websites from (b) ‘generic’ Western websites (e.g., Italian, German,
and English). Before we do any of the above, however, we have to deal with a crucial
problem: the lack of publicly available data for Chinese-focused PWD.

5.3 Data Collection

Answering any of our RQ requires experiments which entail (i) assessing the effec-
tiveness of PWD on (ii) Chinese and Western websites. Unfortunately, we were not
able to find any existing resource that provided a representative dataset of the Chi-
nese phishing website landscape. The datasets used by prior research are not publicly
available,8 and the (few) existing repositories only contain lists of URL,9 which are out-
dated or no-longer active and hence do not allow to assess the effectiveness of PWD
that analyze information not derived from the URL. In contrast, publicly available
datasets having websites appropriate for Western PWD are more complete.

Hence, as a first step towards answering our RQ (and as an additional contribu-
tion), we manually collect a dataset that enables the assessment of PWD on Chinese
websites (§5.3.2). Then, we explain the procedures and tools adopted to collect the
non-Chinese datasets used in our evaluation (§5.3.3). We provide a summary below
(§5.3.1).

5.3.1 Overview and Design Choices

Our experiments focus on empirically studying the gap between Western and Chi-
nese PWD. However, recent surveys reveal that English is the global and most spo-
ken language [1], as well as being also the most commonly used website content
language (with a share of over 57% [40]). To account for the predominant usage of
English on the Web, we must consider it as a stand-alone ‘population’ w.r.t. other
Western languages. Besides allowing for a bias-free evaluation, such a design also

8Though Liu et al. [176] released their dataset, it only has 51 Chinese phishing samples which are
not enough for a comprehensive analysis.

9E.g., there are only 221 phishing websites and no screenshot in [17]; whereas the majority of the
entries in [6] are outdated.
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allows us to ascertain whether PWD perform similarly across websites using different
phonetic western languages.

Therefore, for our experiments, we collect (and publicly release) three datasets
for ML-PWD: a Chinese website dataset (ChiPhish), an English website dataset
(EngPhish), and a Western website dataset (WstPhish). We report an overview of our
datasets in Table 5.2, showing their distribution (in terms of benign and phishing
samples) and usage in prior research.

TABLE 5.2: Summary of datasets used in our evaluation.

Dataset #Benign #Phish Used in

WstPhish 4 269 6 935 [59, 252]
EngPhish 11 019 4 092 [65]
ChiPhish 1 055 565 (new)

5.3.2 Chinese phishing website dataset (NEW)

Among the contributions of this paper is the first dataset for Chinese-focused PWD,
ChiPhish. To understand why such a contribution is significant, let us describe the
difficulties we encountered during the creation of ChiPhish.

Challenges

Although finding legitimate Chinese websites is trivial, finding active Chinese
phishing websites is difficult. For instance, even popular phishing tracking services
(PhishTank and OpenPhish) hardly report websites from China—likely because
their userbase does not visit Chinese websites. Furthermore, [12] also mentioned
that their data under-represent the amount of phishing occurring in China, and they
did not collect any attacks against the four largest Chinese banks and major Chi-
nese eCommerce companies. Finally, [5] indicates that more than half of malicious
gTLD registrations worldwide were being made by Chinese phishers, and that six
of the top ten registrars of malicious phishing domains were located in China and
had primarily Chinese customers; this data was contributed by APAC which works
with phishing targets in China. However, because of the Chinese cybersecurity law
[4, 18], APAC or other public cybersecurity platforms in China that were used in
previous research no longer broadcast Chinese phishing data anymore. These dif-
ficulties may partly explain why the landscape of Chinese PWD has been mostly
unexplored in research.

Goals and Creation

We created ChiPhish with a twofold goal: (i) enable a meaningful analysis for this
paper; and (ii) provide a solid foundation for future work. Hence, ChiPhish is meant
to fulfill three requirements:

• Generality. It must include websites (benign and phishing) of various type (e.g.,
not only eCommerce).
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• Representativity. It must have a sufficient (≥1000) amount of recent (≥ 2020)
samples10 (i.e., websites).

• Completeness. Samples must be provided with three formats of raw data: URL,
HTML, and screenshot.11

Our ChiPhish dataset has 1 055 benign and 565 phishing samples. For the benign data,
we relied on Chinaz [31], a popular [168] trusted source which provides a ranking
of popular Chinese websites (similarly to Amazon’s Alexa rankings). Specifically,
our benign samples are taken by using the top-60 websites reported by Chinaz (at
the end of 2022) and scraping the links contained in these websites (which we man-
ually verified pointed to trusted websites). As for the phishing data, we had to draw
from various sources. We searched across the Threat Intelligence Centers of Chinese
IT companies (e.g., VenusEye [41], QiHoo 360 [9]), competition platforms and re-
pos [17] and security forums (e.g., kafan [33]) to retrieve hundreds of Chinese phish-
ing websites—which we manually checked to ensure that they were still online. All
phishing samples have been verified by the publishers of the respective source (and
by ourselves). To the best of our knowledge, ChiPhish is the only publicly available
dataset for Chinese PWD with these characteristics. A summary of ChiPhish is in
Table 5.9 (in Appendix 5.9).

5.3.3 Datasets for phonological languages

The research community can benefit from many datasets for “western” PWD, i.e.,
having phonological languages. However, most of such datasets do not enable an eval-
uation that can provide a satisfying answer to our three RQ. For example, the dataset
used by [193] only includes the URL of its websites, thereby preventing retrieval of
any data on the corresponding HTML (phishing webpages are taken down quickly)
at a later time. The same problem affects the dataset proposed by [44], which reports
the screenshot but neither the URL nor the HTML of its samples—and, as discussed
in §5.2, the HTML is of crucial importance for our study.12 Finally, the well-known
datasets proposed by [130] and [189] are only provided as pre-computed features,
thereby preventing to retrieve the original information on the corresponding web-
site.

After surveying the few existing datasets that provide complete information on
each sample contained therein, we observed that all such datasets contained web-
sites in multiple languages. Hence, we had to devise a way to identify the main
language of a given webpage. For this purpose, we develop an original Language
Selector Tool, LaSeTo (§5.3.3). Moreover, to remove bias, we create our two other
datasets by using LaSeTo to extract subsets of two different (and recent) datasets
which have been validated by the research community: the one in [252] for WstPhish

and the one in [65] for EngPhish.

LaSeTo description

Our Language Selector Tool fosters two elements of the HTML alongside
Google’s Compact Language Detector v3 (CLD3), i.e., an open-source system that

10Of course, we do not claim that our dataset will always be representative of the entire Chinese
phishing landscape!

11Screenshots facilitate research on visual PWD (e.g. [44, 239]).
12The PWD in [44] is based on image similarity, which despite showing good results in research, are

trivially evaded in practice [55].
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leverages state-of-the-art ML techniques for language identification, supporting
over 100 languages [122]. Specifically, LaSeTo considers: (i) the ‘lang’ HTML attribute
which is used to declare the language of a webpage; and (ii) the language used in the
HTML ‘title’ tag—which can also suggest the primary language of the userbase of a
given website. Practically, LaSeTo receives the raw HTML of a webpage as input: if it
can detect the ‘lang’ attribute, it will output the corresponding language; otherwise,
it will query CLD3 with the ‘title’ tag, and provide the corresponding language as
output. We release the source code of LaSeTo [2].

The EngPhish dataset

Since we want an English-only data corpus, we chose the latest suitable dataset
as a starting point. Specifically, we consider the dataset provided in the 2022 paper
from Apruzzese and Subrahmanian [65], which contains nearly 24k samples (16k
benign and 8k phishing). However, not all of these are English websites: we hence
submit all 24k samples of [65] to LaSeTo, finding that 15 111 are in English (specifi-
cally, 4 092 phishing and 11 019 benign). Overall, these samples represent EngPhish.
Furthermore, we use EngPhish to verify the accuracy of LaSeTo. We randomly sam-
pled 100 webpages from EngPhish and manually checked their language: only 8 of
them were not in English—which we consider as an acceptable margin of error.

The WstPhish dataset

Our last dataset should include webpages representing a broad coverage of
“western” languages. Hence, we use LaSeTo to extract a subset from the websites
provided in the 2021 paper by Van Dooremal et al. [252]. This data corpus entails
almost 4M websites, of which 100k are phishing (taken from various repositories);
some samples are ‘blank’ webpages, which we ignore. To create WstPhish, we begin
by considering 17 phonologic languages from the list of most common [34] European
languages (besides English), i.e.: German, Italian, French, Swedish, Polish, Spanish,
Norwegian, Hungarian, Czech, Danish, Dutch, Greek, Turkish, Slovenian, Croatian,
Romanian and Luxembourgish. Then, we run LaSeTo on the websites in [252], sav-
ing all webpages that match any of these 17 languages. We thus obtain 4 269 benign
and 6 935 phishing webpages, which represent our WstPhish dataset. Finally, recall
that our LaSeTo has some margin of error: we can expect that some websites in
WstPhish may be in other languages—and, likely, in English. Hence, we randomly
sample 100 webpages from WstPhish and manually check their language: we find
that 2 are in English. We conjecture that this small fraction of English samples will
improve the generality of the findings derived by analysing WstPhish.

5.4 Experimental Testbed

We present the experimental setup to answer our three RQs. We first explain the
state-of-the-art ML-PWD that we develop by following prior work (§5.4.1), then we
describe the closed-source PWD we considered (§5.4.2), and conclude by summariz-
ing the evaluation workflow (§5.4.3).

5.4.1 State-of-the-art ML systems for PWD

We recall that RQ1 and RQ2 entail assessing whether state-of-the-art ML-PWD ex-
hibit similar performance across both Chinese and Western websites. Hence, we
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replicate existing ML-PWD which analyze the feature representation of a given web-
site [188, 227]. For a meaningful assessment, we develop a total of 81 ML-PWD,
each trained over a different dataset (among the three we consider), using a differ-
ent learning algorithm (among 9 well-known classifiers), and analyzing a specific set
of features (based on either the URL, the HTML, or both). Let us explain all these pro-
cedures, most of which leverage the open-source implementation of SpacePhish [59]
(which received a reusable artifact at ACSAC’22, and replicated in [190]).

Feature sets. Considering the difference between Chinese and Western websites
(§5.2), we generate the feature representation of each website by extracting a total
of 65 features (i.e., F), shown in Table 5.3. Of these, 60 are computed by leverag-
ing the open-source feature extractor also released with SpacePhish [59] (we stress
that this tool is based on the well-known work by Mohammad et al. [188]—which
also overlaps with [184, 261]), which we enhance with some original ideas (inspired
by [130, 139, 218]); whereas 5 (in boldface) are specific to Chinese websites: to extract
them, we propose our own implementation of some recommendations by [270] (one of
the few papers on Chinese PWD). (More details are in Appendix 5.9.) Overall, our
65 features can be divided into three sets:

• Fu, i.e., 36 URL-based features used in existing PWD, which mainly relate to
domain and path.

• Fh, i.e., 29 features extracted from HTML contents (e.g., information of links,
iframe, form, button, etc.);

• Fc, i.e., the combination of all features in Table 5.3.

We consider these three perspectives for both a “research and practical” reason.
First, because it allows one to conduct an ablation study (we will do this in §5.6.1).
Second, because some ML-PWD may not analyse the URL, whereas others may not
analyse the HTML (this can be done to make the analysis faster, or to enable PWD
when some information is missing, or even to create “adversarially robust” ML-
PWD, according to [59]).

Learning algorithm. We consider 9 ML algorithms that support binary
classification—all of which have been used in previous ML-PWDs [59, 65, 97, 137,
147, 222, 227, 247]. Specifically, 7 are “shallow” ML algorithms: Random Forest (RF),
Logistic Regression (LR), Decision Tree (DT), Gradient Boosting (GB), AdaBoost
(AB), Support Vector Machines (SVM) and K-Nearest Neighbors (KNN); while 2 are
deep learning algorithms: Multi-Layer Perception (MLP) and Convolutional Neural
Network (CNN).

Datasets and Setup. The evaluation of our ML-PWD entails our three ‘lan-
guage’ datasets (§5.3): ChiPhish, EngPhish, WstPhish. For every sample (i.e., a
website) in each dataset, we generate three variants by extracting a given feature
representation—each corresponding to a specific feature set among the three de-
scribed earlier (Fu, Fh, Fc). This procedure yields 9 different sets of samples (i.e., 3
feature sets × 3 language datasets). Each of these sets is then divided into train:test
partitions with an 80:20 split (common in ML-PWD [48, 59, 72]). To account for
randomness in the split and reduce the chances of biased results, we repeat all our
experiments 10 times—thereby allowing one to derive statistically significant con-
clusions. These experiments are done on Ubuntu 20.04 system with CPU Intel Xeon
W-2223 @ 3.60GHz; we report the training and testing runtime in Table 5.10 (for
the CNN, we do not use GPU acceleration for a fair comparison). We release our
(documented) source code for reproducibility [2].
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TABLE 5.3: The features considered in our evaluation. Features in
boldface are specific of Chinese websites. Features whose name starts
with U_ denote Fu, and those starting with H_ denote Fh; finally, Fc

comprises all features in the table.

# Feature Name # Feature Name # Feature Name

1 U_dash 23 U_ip 45 H_rClick
2 U_tldinSub 24 U_at 46 H_brokenLin
3 U_pageRank 25 U_pt 47 H_loginForm
4 U_ssl 26 U_unicode 48 H_hidDiv
5 U_abn 27 U_age 49 H_statBarMod
6 U_numerical 28 U_rdr 50 H_css
7 U_tldinPath 29 U_dns 51 H_anchors
8 U_shortestWrdPath 30 U_tldNum 52 H_commRatioFt
9 U_lngHost 31 U_punycode 53 H_DominCopr
10 U_regLen 32 U_lngWrdPath 54 H_hidInp
11 U_senwrd 33 U_avgHost 55 H_iframe
12 U_totwrdUrl 34 U_avgWrdPath 56 H_favicon
13 U_shortestWrdUrl 35 U_SER 57 H_exItem
14 U_shortestWrdHost 36 U_GI 58 H_icpCode
15 U_lngWrdUrl 37 H_SFH 59 H_ecert
16 U_avgWrdUrl 38 H_popUp 60 H_freqDom
17 U_statsRep 39 H_nulItem 61 H_obj
18 U_len 40 H_metaScrpLin 62 H_commPage
19 U_shorter 41 H_icpReg 63 H_nulLin
20 U_sub 42 H_icpDom 64 H_nulLinFt
21 U_commItemNum 43 H_icpApp 65 H_hidBtn
22 U_pathExtend 44 H_titBr
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What about image-based PWD? We do not consider these PWD for our RQ because they
are demonstrably inappropriate. We provide factual evidence (theoretical and empirical) in
Appendix 5.12, where we also showcase a failed experiment.

5.4.2 Closed-source Phishing Website Detectors

For our last RQ we must assess the effectiveness of real PWD on Chinese and West-
ern websites. Such PWD are closed-source since they are developed by security
companies, and can leverage either signature- or ML-based detection techniques.
To provide a meaningful answer to RQ3, we consider both production-grade PWD
services (§5.4.2) as well as competition-grade PWD using machine learning (§5.4.2),
which are well-known in the “West”.

Production-grade PWD

There exist several commercial tools that can be used to determine whether a
website is malicious. These tools accept as input either the URL or the HTML of a
website, and then analyze such input in a black-box manner; these tools can rely
on up-to-date blocklists, but they may also query third-party services that perform a
deeper analysis. Notable examples of such services are: Virustotal [42], Netcraft [35],
or PhishDetector [36]. For our evaluation we rely on VirusTotal, since its output
accounts for the responses of dozens of scanners and URL/Domain blocklists (in
contrast, Netcraft and PhishDetector only consider the response of a single tool),
and is widely used by the research community [52, 83, 93, 102, 212]. Specifically,
we submit the HTML of our samples (benign and phishing) to VirusTotal: every
“query” to VirusTotal corresponds to having 6113 PWD (each leveraging proprietary
detection methods) to analyse the corresponding sample – allowing us to provide a
broad perspective on the detection capabilities of real systems. Furthermore, we will
also consider Google Safe’s Browsing (GSB), which allegedly also uses ML [30].

Competition-grade ML-PWDs

To provide a complementary perspective to our custom-developed ML-PWD
(§5.4.1) we find it instructive to also consider the analysis provided by a (closed
source) ML-PWD that is known to use ML techniques. Specifically, we consider
the anti-phishing detectors provided for the well-known Machine Learning Security
Evasion Competition (MLSEC) organized by CujoAI in 2022 [99]. These ML-PWD
(8 in total) analyze the raw HTML of a webpage as input, and provide a ‘phishing’
confidence (within the [0–1] range, with 0 denoting a benign sample and 1 a phish-
ing sample) as output. The organizers of MLSEC allowed the research community
to use their ML-PWD for three months after the challenge ended in September 2022.
We took this opportunity to test these detectors on the raw HTML of every webpage
in our three datasets—thereby ensuring a consistent setup as the one in §5.4.2 (for
VirusTotal).

5.4.3 Summary and Workflow

We summarize how we combined all the elements discussed insofar to answer our
three RQ (see Fig. 5.7).

13We perform our analysis in Dec. 2022, but this number can change [257]. At that point in time, the
detectors queried by VirusTotal are 78, but 17 of these returned an error so we will not consider them.
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i) We create three ‘language’ datasets. We collect a new dataset of Chinese-
only websites (ChiPhish); and we extract subsets of English-only (EngPhish)
and generic Western (WstPhish) websites by drawing samples from existing
datasets ([65, 252]) by means of our Language Selector Tool (LaSeTo).

ii) We develop a feature extractor and use it to compute 65 features for each sam-
ple in our three ‘language’ datasets; in such a way, every sample can be seen as
three different variants—depending on which features are used to represent it
(Fu, Fh, or Fc).

iii) Altogether, these 3 feature sets and 3 ‘language’ datasets yield the 9 datasets to
assess state-of-the-art ML-PWD, which leverage one among 9 ML algorithms.
We train classifiers on 80% of each of our 9 datasets, thereby leading to 81 ML-
PWD.

iv) Then, (for RQ1 and RQ2) we test each of our 81 ML-PWD on the remaining
20% of each dataset14 (of either the same or different ‘language’). Finally,
for RQ3, we submit the raw HTML of every sample in each of our ‘language’
datasets to the considered real (and closed-source) PWD (both the production-
and competition-grade PWD).

Websites LaSeTo
WstPhish

EngPhish

ChiPhish

Production-
grade PWD

Competition-
grade ML-PWD

   Feature extractor ML-PWDs

Benign

Phish

Training

Testing

Algorithm

Manual
collection

80% WstPhish
80% ChiPhish
80% EngPhish

20% WstPhish
20% ChiPhish
20% EngPhish

Testing

tpr
tnr

FIGURE 5.7: Overview of our evaluation workflow.

We measure the performance of each PWD by computing the true positive rate
(tpr), true negative rate (tnr) and F1-score (F1), which is customary in our con-
text [142]. It is desirable that a PWD exhibits high tpr and high tnr (i.e., high detection
rate with low false positive rate).

14Such testing is done by considering a ‘matching’ feature set: a classifier analysing Fu at training-
time will also analyse Fu at inference.
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(A) Test partition: EngPhish.
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(B) Test partition: WstPhish.
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(C) Test partition: ChiPhish.

FIGURE 5.8: Cross-language performance of state-of-the-art ML-
PWD. The graphs show the distribution of the F1-score (y-axis) of
our ML-PWD, trained on a specific dataset (x-axis) and analyzing
a given feature set (legend), on the test partition of each language
dataset (subfigure). The bins aggregate the results of all our consid-

ered learning algorithms across the 10 trials.



5.5. Main Results and Answers 109

5.5 Main Results and Answers

We focus our attention to answering our three research questions, which we tackle
by performing a large experimental campaign using our datasets (described in §5.3)
to assess the capabilities of various PWD (described in §5.4).

We first consider the experiments on the open-source ML-PWD for RQ1 and RQ2
(§5.5.1), and then consider those entailing the real PWD for RQ3 (§5.5.2). We also
extend our findings by assessing a production-grade PWD developed by Chinese
companies (§5.5.3).

5.5.1 Assessment of research ML-PWD (RQ1,2)

To simultaneously answer both RQ1 and RQ2, we perform a “cross-language” eval-
uation of our state-of-the-art ML-PWD. These experiments will also allow one to
assess whether ML-PWD trained on generic Western websites (i.e., using diverse
phonological languages) work well on English-only websites (see §5.3.1).

Procedure

We adhere to the workflow in §5.4.3. For each ‘language’ dataset (i.e., ChiPhish,
WstPhish, EngPhish) we create three different variants depending on a given feature
set (i.e., Fu, Fh, Fc), yielding 9 evaluation sets. Then, we use 80% of each of these sets
to train 9 different classifiers (by changing the learning algorithm), for a total of 81
ML-PWD. Finally, we use the remaining 20% of each set to measure the performance
of each ML-PWD that analyses the same features. We repeat all of these experiments
10 times.15 We report the complete results of this evaluation in Appendix 5.10.1,
showing the tpr and tnr of all our 81 ML-PWD. In what follows, we will provide a
high-level analysis and then focus on the performance of the best ML-PWD.

High-level analysis

We provide in Figs. 5.8 a comprehensive overview of our results. These fig-
ures report the F1-score (aggregated across the 10 trials and 9 learning algorithms)
achieved by our ML-PWD for each different test set. For example, Fig. 5.8c shows
the distribution of the F1-score for the ML-PWD (which vary either for their train-
ing dataset or feature set) when tested on ChiPhish (assuming a matching feature
set). From Figs. 5.8, we can see that our ML-PWD, when tested on websites having
the same language as their training data, work well—and this is especially the case
for ML-PWD using Fc, which always outperform those analysing fewer features. We
also appreciate that the ML-PWD trained on either EngPhish or WstPhish exhibit sim-
ilar performance when tested on (respectively) WstPhish or EngPhish. However, the
situation changes when our ML-PWD on phonological (resp. hieroglyphical) lan-
guages must analyse hieroglyphical (resp. phonological) languages. This is evident
when testing on samples from ChiPhish (Fig. 5.8c): despite the good performance of
the “Chinese” ML-PWD (the F1 is almost always>0.85), the “Western” and “English”
detectors have a significant drop (almost never above 0.70 F1), which is inappropri-
ate to analyse Chinese websites. Similarly, by observing Fig. 5.8a, we can see that the
“Chinese” ML-PWD work poorly on English websites; interestingly, however, they

15Note that, to follow best-practices [62, 70] and ensure consistency, we use the same test-set to each
ML-PWD for each trial. E.g., we use the same 20% of ChiPhish to test all the ML-PWD, and then start
a new trial by randomly sampling a new training and test partitions—which we use to develop and
assess new ML-PWD.
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still retain around 0.75 F1 on the generic Western websites in WstPhish. Even though
this result appears encouraging, the complete results in Appendix 5.10.1 reveal that
such “encouraging” F1 conceals an unacceptable rate of false positives. E.g., for the ML-
PWD analysing Fc (see Table 5.11), tnr ∈ [0.08, 0.27], making these ML-PWD clearly
unusable in practice.

Best ML-PWD

We now focus on the best ML-PWD of our evaluation, i.e., the one using a specific
learning algorithm (out of 9) to analyze a given feature set (out of 3) that achieved the
highest F1 as measured on the test partition of the corresponding training dataset.
This is because only the best ML-PWD would be (hypothetically) deployed in real-
ity, and hence its results are more appropriate to derive sensible conclusions. The
ML-PWD analyzing Fc and using RF consistently outperformed the others (a result
which aligns with prior work, e.g., [59]). Hence, we provide the results of these ML-
PWD in Table 5.4, showing the average F1 (and std.dev.) across the 10 trials. We
make the following observations.

• Same language. The F1 are highest on the diagonal (0.97 and 0.99), indicating that
our ML-PWD can correctly classify websites of the same language (results align-
ing with [59] for WstPhish, and with [65] for EngPhish); we also find it positive
that our ChiPhish yields effective ML-PWD for Chinese websites.

• Chinese vs Phonological languages. There is a remarkable performance drop when
the ML-PWD trained on either WstPhish or EngPhish is tested on ChiPhish, ex-
hibiting an F1 of only 0.52 and 0.55. Plus, the ML-PWD trained on ChiPhish is less
effective while predicting websites in phonological languages, with an F1 of 0.78
on WstPhish and of 0.58 on EngPhish.

• Generic vs English-only languages. Interestingly, the ML-PWD trained on WstPhish

can correctly predict the websites in EngPhish (F1=0.94), whereas the ML-PWD
trained on EngPhish is only slightly inferior when tested on WstPhish (F1=0.91).

TABLE 5.4: Cross-language performance of the best ML-PWD (RF
and Fc) on our three datasets. Cells report the avg F1 (and std) over

10 trials. See Table 5.11 for the complete tpr and tnr.

Train (80%)

F1-score Test (20%)
ChiPhish WstPhish EngPhish

ChiPhish 0.97±0.007 0.78±0.007 0.58±0.075

WstPhish 0.52±0.044 0.99±0.003 0.94±0.006

EngPhish 0.55±0.023 0.91±0.006 0.99±0.001

ANSWER TO RQ1 AND RQ2: State-of-the-art ML-PWD tailored for Chinese web-
sites work poorlya on “Western” websites, and vice-versa.

aThis finding goes against the one in [273].

We provide in Appendix 5.13 the results we obtained by considering the vanilla ML-
PWD of SpacePhish [59].
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5.5.2 Assessment of real PWD systems (RQ3)

We assess closed-source PWD developed by practitioners.

VirusTotal

We submit the raw HTML of every sample in each of our three datasets (ChiPhish,
EngPhish and WstPhish) to VirusTotal, which automatically forwards it to 61 cyber
detectors (provided by security companies) and then reports the output of each of
these. Such an output can come in various forms: we consider the responses {ma-
licious, malware, phishing, suspicious} as a “phishing” prediction; whereas {clean,
undetected} correspond to a “benign” prediction. Hence, we calculate the tpr and
f pr of each detector by comparing its prediction with the respective ground truth.
The results are reported in Table 5.5, from which two intriguing findings emerge.

• These detectors are fine-tuned to minimize false positives: all detectors achieve a
perfect tnr on our data.

• These detectors perform terribly in identifying the phishing samples in
ChiPhish: the best detector, AVG, has a tpr of 0.03; in contrast, it can detect
phishing webpages in WstPhish and EngPhish much better, with a tpr of 0.49
and 0.52 respectively.

While it is understandable that operational detectors minimize false alarms, it is
concerning that none of these real systems can detect Chinese phishing (the avg tpr across
61 detectors is 0.004). Notably, these detectors (aside from AVG and Avast) work
poorly also on WstPhish.

Google Safe Browsing

We assess the capabilities of GSB. We submit all the samples in our three datasets
to the GSB API [32] (which accepts URL as inputs) and we record how many web-
pages trigger a “suspicious” response. The results are as follows:

• EngPhish: tpr=0.043 (only 176 phishing samples are detected), with no false
positives (i.e., tnr=1.0).

• WstPhish: tpr=0.004 (only 26 phishing samples are detected), with only one false
negative (tnr=0.999).

• ChiPhish: tpr=0.002 (only 1 phishing sample is detected) with no false positives
(tnr=1.0).

From these results, it is apparent that even this very important anti-phishing tool,
deployed in popular web-browsers, is unable to identify Chinese phishing websites.

Competition-grade ML-PWD (MLSEC)

We submit the raw HTML of all samples in our three datasets to each of the 8
“black-box” ML-PWD of MLSEC. The output of each of these detectors is a confi-
dence score (from 0.0 to 1.0): for this experiment, we consider a score that is higher
than 0.5 to denote a “phishing” prediction (and “benign” otherwise). We then check
these predictions against the corresponding ground-truth, and derive the tpr and
tnr. The results are in Fig. 5.9, showing the distribution of the tpr and tnr across the 8
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TABLE 5.5: Performance in VirusTotal, reported as the tpr and tnr.

Anti-phishing
Service

WstPhish EngPhish ChiPhish Anti-phishing
Service

WstPhish EngPhish ChiPhish

tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr

Bkav 0.00 1.00 0.00 1.00 0.00 1.00 Lionic 0.01 1.00 0.08 1.00 0.00 1.00
MicroWorld 0.05 1.00 0.20 1.00 0.01 1.00 Panda 0.00 1.00 0.00 1.00 0.00 1.00

ClamAV 0.00 1.00 0.00 1.00 0.00 1.00 CMC 0.00 1.00 0.00 1.00 0.00 1.00
QuickHeal 0.09 1.00 0.12 1.00 0.01 1.00 McA f ee 0.02 1.00 0.04 1.00 0.00 1.00

Malwarebytes 0.00 1.00 0.00 1.00 0.00 1.00 Zillya 0.01 1.00 0.03 1.00 0.00 1.00
K7AntiVirus 0.00 1.00 0.00 1.00 0.00 1.00 AVG 0.49 1.00 0.52 1.00 0.03 1.00

K7GW 0.00 1.00 0.00 1.00 0.00 1.00 NOD32 0.14 1.00 0.20 1.00 0.00 1.00
Baidu 0.01 1.00 0.04 1.00 0.00 1.00 VirIT 0.00 1.00 0.01 1.00 0.01 0.99
Cyren 0.05 1.00 0.17 1.00 0.00 1.00 Fortinet 0.11 1.00 0.22 1.00 0.00 1.00

Symantec 0.01 1.00 0.11 1.00 0.00 1.00 AhnLab 0.01 1.00 0.04 1.00 0.00 1.00
HouseCall 0.00 1.00 0.04 1.00 0.00 1.00 Avast 0.49 1.00 0.52 1.00 0.03 1.00

Cynet 0.08 1.00 0.18 1.00 0.01 1.00 Kaspersky 0.01 1.00 0.04 1.00 0.00 1.00
BitDe f ender 0.05 1.00 0.19 1.00 0.01 1.00 NANO 0.02 1.00 0.20 1.00 0.01 1.00

SuperAntiSpyw. 0.00 1.00 0.00 1.00 0.00 1.00 Tencent 0.01 1.00 0.06 1.00 0.00 1.00
Ad-Aware 0.05 1.00 0.17 1.00 0.01 1.00 Sophos 0.00 1.00 0.06 1.00 0.00 1.00
Comodo 0.01 1.00 0.16 1.00 0.00 1.00 F-Secure 0.01 1.00 0.02 1.00 0.00 1.00
DrWeb 0.00 1.00 0.05 1.00 0.00 1.00 VIPRE 0.03 1.00 0.15 1.00 0.01 1.00

TrendMicro 0.00 1.00 0.04 1.00 0.00 1.00 McA f ee-GW 0.02 1.00 0.07 1.00 0.01 1.00
FireEye 0.05 1.00 0.20 1.00 0.01 1.00 Emsiso f t 0.05 1.00 0.17 1.00 0.01 1.00
Ikarus 0.09 1.00 0.23 1.00 0.03 1.00 GData 0.07 1.00 0.22 1.00 0.01 1.00

Jiangmin 0.00 1.00 0.00 0.99 0.00 1.00 ZoneAlarm 0.01 1.00 0.03 1.00 0.00 1.00
Avira 0.08 1.00 0.18 1.00 0.01 1.00 Antiy-AVL 0.02 1.00 0.12 1.00 0.00 1.00

Kingso f t 0.00 1.00 0.00 1.00 0.00 1.00 Gridinso f t 0.00 1.00 0.00 1.00 0.00 1.00
Arcabit 0.04 1.00 0.15 1.00 0.01 1.00 ViRobot 0.00 1.00 0.00 1.00 0.00 1.00

Microso f t 0.02 1.00 0.17 0.99 0.00 1.00 Google 0.11 1.00 0.28 1.00 0.02 1.00
Acronis 0.00 1.00 0.00 1.00 0.00 1.00 VBA32 0.00 1.00 0.00 1.00 0.00 1.00
ALYac 0.04 1.00 0.15 1.00 0.01 1.00 MAX 0.05 1.00 0.19 1.00 0.01 1.00
Zoner 0.00 1.00 0.01 1.00 0.01 1.00 BitDe f enderΘ 0.00 1.00 0.00 1.00 0.00 1.00
Rising 0.01 1.00 0.05 1.00 0.00 1.00 Yandex 0.00 1.00 0.00 1.00 0.00 1.00

Tachyon 0.00 1.00 0.00 1.00 0.00 1.00 MaxSecure 0.01 1.00 0.04 1.00 0.00 1.00
Sang f or 0.04 1.00 0.17 1.00 0.00 1.00 AVERAGE 0.04 1.00 0.11 1.00 0.004 1.00

MLSEC detectors for each of our three datasets (the detailed performance of each de-
tector is in Table 5.14). From Fig. 5.9 we see that these detectors perform much better
on WstPhish (avg tpr=0.60) and EngPhish (avg tpr=0.64) compared to ChiPhish (avg
tpr=0.27). Even though these detectors are for competitions16, these results further
show that Chinese websites are rarely accounted for when designing ML-PWD.

ANSWER TO RQ3: PWD developed by security practitioners can hardly identify
Chinese phishing webpages. In contrast, these PWD are more effective against
phishing webpages in phonological “Western” languages.

5.5.3 Production-grade Chinese PWD

Insofar, we only considered real PWD (allegedly) tailored for Western websites, i.e.,
we did not evaluate if PWD used by Chinese companies work well on websites in
phonological languages. This is because all such “production-grade Chinese PWD”
are not readily accessible by researchers. For instance, VirusTotal provides APIs that can
be used to automate the querying process, thereby enabling the analyses of thou-
sands of websites in a humanly feasible way. Unfortunately, we are not aware of
similar “Chinese-specific” services, since they all require each request to be manu-
ally submitted, thereby preventing the analysis of all samples in our datasets.

16The organizers of MLSEC admittedly tweaked the detectors so that they would be harder to evade
(explaining the underwhelming tnr).
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FIGURE 5.9: Performance of the ML-PWD provided by MLSEC on
WstPhish, EngPhish and ChiPhish, reported as tpr and tnr.

Nonetheless, to inspire future research and provide further evidence of the exis-
tence of a gap, we performed a proof-of-concept experiment in which we submit 200
“Western” phishing samples to a commercial Chinese PWD. Specifically, we con-
sider VenusEye [41], one of the most popular Chinese tools for threat intelligence.
VenusEye detects phishing by checking a given URL against closed-source blocklist.
We randomly sample 100 phishing samples from both WstPhish and EngPhish, and
submit the corresponding URL to VenusEye (in March 2023). Accordingly, 74 and 82
of the samples from WstPhish and EngPhish are flagged as phishing. To demonstrate
“the gap”, we tested these very same 200 samples on the URL version of VirusTotal,
which achieved a 97% tpr.

Takeaway. Chinese production-grade PWD (using blocklists) cannot detect 20% of our
submitted Western phishing samples.

5.6 Bridging the Gap (analysis and solutions)

We enrich our contribution by providing some critical analyses and additional ex-
periments. Specifically, we attempt to explain our results (§5.6.1); then, we propose
and practically evaluate two potential solutions (§5.6.2 and §5.6.3) to bridge the gap
between Chinese and Western PWD .

5.6.1 Explanations (ablation study)

Intuition. The reason why Chinese (resp. Western) PWD work poorly on West-
ern (resp. Chinese) websites can be traced back to the semantic difference between
Chinese and Western websites (which we presented in §5.2). Such a difference leads
to samples having a different feature distribution, thereby preventing a correct anal-
ysis by any ML-PWD that is trained and tested on websites from different “regions”.
To identify potential mitigations to the problem elucidated by our paper, we now
try to explain our results by focusing the attention on the features analysed by our17

ML-PWD.
17The “black-box” nature of the PWD considered by VirusTotal, GSB, and MLSEC prevent one to

perform sensible a-posteriori analyses.
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Feature Importance. Investigating the most relevant features for classification
is a well-known technique for studying the underlying logic learned by an ML
model [63]. To align such an analysis to §5.5.1, we report in Fig. 5.10 the rank-
ing (as given by scikit-learn) of the top10 features for the best ML-PWD, i.e., RF
analysing Fc. (We provide an analysis of the feature ranking for the RF analysing Fu
and Fh in Appendix 5.11.) From Fig. 5.10, we see that two Chinese-specific features,
‘H_icpApp’ and ‘H_icpCode’, appear in the top10 of ChiPhish, and that ‘H_icpApp’
is the second most important feature; in contrast, neither of these features are rele-
vant for the classifiers trained on WstPhish and EngPhish. This situation can explain
why classifiers trained in ChiPhish work poorly on Western websites (i.e., WstPhish
and EngPhish). At the same time, by observing the rankings for the classifiers trained
on WstPhish and EngPhish, we see that both have 8 features in the top-10: this sug-
gests why classifiers trained on WstPhish and EngPhish perform similarly. Moreover,
both ‘H_icpApp’ and ‘H_icpCode’ are the features extracted from the HTML, which
can verify our intuition that the gap between Western and Chinese PWD is more
manifested in HTML.
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FIGURE 5.10: Top 10 features of RF (Fc) trained on each dataset.

Mitigation. A possible way to reduce the performance gap between our Chinese
ML-PWD and the ML-PWD focusing on phonological languages is by considering
a feature set that is “less specific” to Chinese websites. This could be done by devel-
oping ML-PWD that analyse only the URL, i.e., Fu. In fact, by looking at the boxplots
in Figs. 5.8, we can see that the ML-PWD analysing Fu (purple bins) tend to have a
higher F1 than those using Fh and Fc trained on Chinese (resp. non-Chinese) and
tested on non-Chinese (resp. Chinese) websites. For instance, the ML-PWD trained
on ChiPhish using Fu obtain nearly 0.8 F1 (up from 0.6 of Fc) when analysing EngPhish

(see Fig. 5.8a); whereas the ML-PWD trained on WstPhish obtain 0.65 F1 (up from
0.60 of Fc) when tested on ChiPhish (see Fig. 5.8c). However, in both cases, such gain
comes at the expense of a reduced F1 when analysing websites of the same language:
classifiers trained on Fc are always statistically superior than those using Fu on the re-
spective language dataset (a student t-test reveals this hypothesis to be true: p<0.05).
Takeaway. Using ML-PWD that analyse only the URL can work, but presents tradeoffs on
websites of the same-language.

Finally, we refer the reader to Appendix 5.13, wherein we discuss the cross-
language results we achieved by using the nine vanilla ML-PWD of SpacePhish on
our datasets.
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5.6.2 Towards an Universal ML-PWD

The most straightforward way to “bridge the gap” between Western and Eastern
PWD is to create an universal dataset containing samples from various languages.
Insofar, we have considered ML-PWD trained on websites of a specific language
group. Hence, we now merge all our three datasets and scrutinize the effectiveness
of an ML-PWD trained (and tested) on the resulting “universal” dataset.

Method. We merge ChiPhish, WstPhish, EngPhish, and then split the resulting
dataset into train:test partitions (using the same 80:20 ratio as we did in §5.4.1). We
then extract the Fc feature representation of each sample, and use the correspond-
ing training partition to develop a ML-PWD using RF as classification algorithm
(because it outperformed all other algorithms, see Table 5.11). We use the test parti-
tion to measure its performance (tpr, tnr, F1); we repeat this 10 times to reduce bias.
We report the results in Table 5.6, where rows denote a given metric, and columns
denote a specific subset of the test partition.

TABLE 5.6: Universal ML-PWD: we train and test an RF (Fc) on all
our datasets (using an 80:20 split), and we measure the performance

(avg and std.dev) on each language dataset.

ChiPhish WstPhish EngPhish

tpr 0.89±0.023 0.99±0.002 0.97±0.004

tnr 0.99±0.004 0.95±0.006 0.99±0.001

F1 0.94±0.001 0.98±0.002 0.98±0.004

Considerations. In general, we can see that our universal ML-PWD works well:
the F1 is always above 0.94, and the worst false positive rate (i.e., 1-tnr) is of only
0.05. However, by comparing these results with those in Table 5.4, we can see that
our universal ML-PWD has a slightly inferior F1 (∼0.01) on a specific language group
w.r.t. the ML-PWD specifically trained on that very same group. Furthermore, by
comparing Table 5.6 with the detailed results in Table 5.11 (for RF), we see that the
drop is significant in two cases: the tpr on ChiPhish (which drops from 0.96 to 0.89),
and the false positive rate on WstPhish (which increases from 0.025 to 0.05).

Takeaway. Mixing datasets of Chinese and Western languages improves the tpr, but can
double the false positive rate. Such is the “price to pay” for deploying our universal
ML-PWD.

5.6.3 Exploiting our LaSeTo: a novel ML-PWD

As a final potential mitigation, we propose an intuitive solution rooted in our self-
developed LaSeTo (§5.3.3). We are inspired by the remarkable results achieved by
our “language-specific” ML-PWD (see §5.5.1): indeed, our ML-PWD work well if
they analyse websites in a language they “have seen”. We use this observation as a
scaffold and develop an original phishing website detection system18 which integrates
an “ensemble” of our custom ML-PWD which are put in a pipeline to our self-
developed LaSeTo. A schematic of this system is in Fig. 5.11.

Evaluation. We partition each of our three datasets in train:test by following the
usual 80:20 split. We train three “language-specific” ML-PWD (one per dataset) on

18We are not aware of existing anti-phishing schemes that entail a “language selector” before the
detection model (as we also stated in §5.2).
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80% of each language dataset (we use Fc and RF). Then, we merge the remaining
20% of each dataset into a single Test Dataset. Next, we use LaSeTo to analyse the
language of each sample in this Test Dataset: if the language is Chinese, the sample
is analysed by the ML-PWD trained on ChiPhish; if the language is English, it is
analysed by the ML-PWD trained on EngPhish; otherwise, it is analysed by the ML-
PWD trained on WstPhish. We repeat this process 10 times, and report the results in
Table 5.7.

"what language is

this website in?"

LaSeTo

WstPhish
Feature

extractor
Fc

80%

Feature
extractor

Fc
80%

Feature
extractor

Fc
80%

EngPhish

ChiPhish

Wst
ML-PWD

RF

RF

RF

Eng
ML-PWD

Chi
ML-PWD

1: Train

Wst Eng Chi

2: Inference

Test Dataset

20% 20% 20%

Wst
ML-PWD

Eng
ML-PWD

Chi
ML-PWD

ChineseEnglishotherwise

FIGURE 5.11: Proposed phishing website detection system. We train
language-specific ML-PWD (left), and then use our self-developed
LaSeTo to determine the language of any given webpage, which is

forwarded to the most suitable ML-PWD (right).

Analysis and Feasibility. At a high-level, this solution represents a viable alter-
native to the “universal” ML-PWD (§5.6.2). Indeed, by using LaSeTo it is possible to
develop a system that works much better on “Western” websites, while still achiev-
ing a satisfactory performance on Chinese websites—albeit slightly inferior (e.g., 0.88
F1 vs 0.94). We also stress that these results are slightly inferior than the “baseline”
ones (shown in Table 5.4 and Table 5.11) because LaSeTo presents a small margin
of error (as we measured in §5.3.3), which may, e.g., lead it to forward a Chinese
website to the incorrect model. However, by improving LaSeTo, it would be possi-
ble to approximate the near-perfect performance of the language-specific ML-PWD
on their respective datasets. Finally we note that operational PWD must be fast at
processing a webpage [107, 164]. Hence, to demonstrate the feasibility of our solu-
tion, we have measured the runtime for using LaSeTo: on average, it requires 0.04s to
output the language of a given webpage19. Such a low overhead makes our tool ap-
propriate for real-time analyses (we also measured the runtime for all our ML-PWD
in Table 5.10).
Takeaway. Using a custom tool to infer the language of a given webpage, and then use
its output to select the appropriate detection technique is helpful for “multi-language”
PWD.

19We measured this on commodity hardware and after recording the time required to process all
samples in our three datasets.
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TABLE 5.7: ML-PWD integrating LaSeTo: we report the performance
(avg and std.dev., computed over 10 trials). Overall (on a generic

webpage): tpr=0.98±0.0029, tnr=0.99±0.0022.

ChiPhish WstPhish EngPhish

tpr 0.85±0.025 0.99±0.003 0.99±0.003

tnr 0.95±0.012 0.98±0.006 1.00±0.000

F1 0.88±0.017 0.99±0.002 0.99±0.001

5.7 Discussion and Future Work

Our evaluation revealed that the gap between Chinese and Western PWD exists, and
it is significant since it affects both research and practice. Let us discuss some potential
limitations of our study and identify room for future work.

Focus of this study. Given the scarce literature on this subject (see §5.1.2), our
primary goal is to provide factual evidence (theoretical and empirical) that reveals the
gap between Chinese and Western PWD. To this purpose, we scrutinize existing tech-
niques (open source and proprietary) for PWD and highlight their limitations (fur-
ther expanded in Appendix 5.13). As a constructive step forward, we propose mit-
igations and we release our code, tools, and data (including our proposed ChiPhish

dataset, the first of its kind). We hope that our resources will spearhead the develop-
ment of novel techniques that can bridge the gap we brought to light. For instance,
future endeavours can use ChiPhish as a basis for an “universal” ML-PWD (which
improves our attempt in §5.6.2), or enhance LaSeTo.

Size of our datasets. As shown in Table 5.2, the amount of data in our three
language datasets varies considerably, with 15 111 samples for EngPhish; 11 204 for
WstPhish; and 1 620 for ChiPhish. We acknowledge that such differences may hinder
the generalizability of our findings. However, as shown in Table 5.4, the baseline
performance (i.e., same-language) of our ML-PWD measured on samples from ei-
ther WstPhish or EngPhish aligns with the one achieved by prior work (i.e., [59, 65]).
Furthermore, the performance on ChiPhish is also high, suggesting that (despite the
smaller size) detectors can generalize well on samples from the same population.
Nevertheless, we endorse future work to build upon our resources and expand our
findings by, e.g., using ChiPhish to create a larger (and up-to-date) dataset of Chinese
websites.

Considered ML-PWD. Prior literature proposed many ML-based methods
against phishing websites (§5.1). Analysing all such methods is clearly unfeasible for any
single publication—especially given that most such methods are not publicly avail-
able. In our evaluation, we rely on the open-source implementation of a state-of-
the-art ML-PWD (i.e., the one in [59]), which we enhance by integrating our own
implementation of features suggested by prior work on Chinese PWD (i.e., [270]),
and further extend by considering more ML algorithms. We acknowledge that there
exist ancillary ML-based methods for PWD, such as those entailing image similarity
(e.g., [44]). However, such techniques are affected by shortcomings: first, they can
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be trivially evaded [55, 92, 164]; second, they operate on the assumption that the vi-
sual representation of a website never changes [55]—and are hence prone to “out of
distribution” problems (of a greater magnitude than our considered ML-PWD, since
some features remain stable even among websites of different languages). For our
goal, a meaningful assessment would have required to collect diverse visual repre-
sentations of the same webpage—which are hard to find in the Chinese landscape.20

Regardless, our extensive experiments on real systems (§5.5.2 and §5.5.3) reveal that
the gap exists in practice.

Extension to other regions. The gap highlighted in this paper pertains to Chi-
nese w.r.t. Western languages—and respective regions. However, phishing websites
are also a problem in other areas besides China, each with its own language and reg-
ulations. Recent reports show an increasing trend of phishing websites in countries
such as India [29], Japan [25], and the Middle East [19]. Unfortunately, these regions
are vastly underrepresented in the PWD context (e.g., [47, 254]. Moreover, from a
generic phishing perspective, few researches (e.g., [234, 244]) attempt to analyse
the differences between such “minorities” and “Western” countries. Given the huge
migration waves that interest Western countries (e.g., from the Middle East [243],
China, India [182] or Africa [231]), we hope our findings can inspire future efforts to
scrutinize whether such issues also affect other geographical areas.

Motivational Experiment. We scrutinize the effectiveness of existing PWD on Japanese
(JP) and Korean (KR) websites. We collected a small sample of 200 webpages—of which
109 are benign (50 for JP and 59 for KR, taken from [38]) and 91 are phishing (50 for JP
and 41 for KR, gathered from [23, 26, 180]). We train our best ML-PWD (RF using Fc on
WstPhish) and test it on them; we repeat this ten times. For JP: F1=0.82±0.024 (tpr=0.74;
tnr=0.94); for KR: F1=0.93±0.01 (tpr=0.93; tnr=0.95). We also submit these to GSB (for which the
tnr=1.0, while the tpr is 0.04 for JP, and 0.0 for KR) and to VirusTotal (for which the average
tpr is 0.12 for both JP and KR, but the tnr is 0.67 for JP, and 0.84 for KR). These results suggest
that real PWD work very poorly also on websites of these languages—albeit research-
PWD are more promising. Our repository also includes these webpages [2].

5.8 Conclusion

This paper aims to reveal and assess (and mitigate) the performance gap between
Phishing Website Detectors (PWD) that analyse either Chinese or Western websites.
We explain the theoretical differences that exist between phishing websites in China
w.r.t. the Western side of the World, suggesting that PWD may behave differently if
such differences are not accounted for. Then, after collecting the first dataset for
Chinese-focused PWD, we practically demonstrate the existence of such a gap in
modern PWD. We assess the performance of state-of-the-art PWD, spanning across:
81 variants of machine learning (ML) detectors proposed in research; 62 operational
security services; and 8 competition-grade ML-PWD. Our large evaluation reveals
that real systems (tuned to minimize false positives) can detect at best 3% of phishing
Chinese websites—whereas they can detect around 50% for Western languages. Such
an imbalance also affects ML-PWD, which exhibit high rates of false positives (some-
times above 70%) when assessed in a cross-language setting. Finally, we propose and
investigate potential fixes (i.e., analysing diverse features, or mixing datasets), but all
these attempts have a practical tradeoff (e.g., higher f pr).

20In App. 5.12, we show (via a case-study and original experiments) the limitations of target-
dependent [97] PWD for Chinese websites.
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TAKEAWAY. Existing PWD “in the West” are poorly equipped to counter phishing
websites “in China” (and vice-versa). This is not acceptable given the constant
migratory waves from/to these two sides of the World.

Our paper casts light on a hidden problem that likely also exists for other languages
beyond Chinese. We encourage future efforts to build upon our work, potentially
by considering phishing websites targeting other “underrepresented” geographi-
cal areas in the PWD context. We release all of our resources [2].

5.9 Feature Extraction

An important part of our evaluation is the feature extraction procedure, which we
implement by using the open source artifact of SpacePhish [59] as basis. Such a
tool extracted 57 features, but we found that two of these (i.e., URL_fakeHTTPS
and URL_dataURI) are redundant since the value is the same for all samples in our
datasets, so we do not consider these for our evaluation. We then expand the re-
maining 55 features with ten new ones: five (i.e., H_icpReg, H_icpDom, H_icpApp,
H_icpCode and H_ecert) are Chinese-specific that follow the guidelines in [270]; while
the other five (i.e., U_unicode, H_nulItem, H_exItem, U_SER, U_tldNum) are new and
based on best practices of prior work [130, 139, 218]. Overall, our feature extractor
generates the 65 features in Table 5.3.

5.9.1 Original features

We provide a high-level description of the features in Table 5.3 that differ from those
in SpacePhish [59] due to our original insights. We stress that these features have
the same logic as [59] (i.e., the value of each feature ideally denotes whether the
corresponding sample is “more likely” benign or phishing).

• H_icpReg. If the domain is in the Ministry of Industry and Information Tech-
nology of the Chinese government, then H_icpReg=0; and 1 otherwise.

• H_icpCode. If the website includes an ICP code and it exists in its ICP recorder
(obtainable by checking the domain), then H_icpCode=0; and 1 otherwise.

• H_ecert. We capture all links in the website. If none of such links point to
Trustworthy website certification platforms, then H_ecert=1; and 0 otherwise.

• H_icpApp. If the domain applicant on the ICP record of Ministry of Industry
and Information Technology of the Chinese government is “enterprise”, then
we set H_icpApp=0; and to 1 otherwise.

• H_icpDom. If the domain is consistent with the ICP record, then H_icpDom=0,
and 1 otherwise.

• U_unicode. According to [270], phishing website is more likely to use UNI-
CODE in its URL. If true, then U_unicode=1, and 0 otherwise.

• H_nulItem. This feature extends the “HTML_nullLnkWeb” of [59]. Specifically,
we leverage the guidelines by Hannousse et al. [130] and factor in also other
“null” elements, such as Login forms with external actions, that are typical in-
dicators of suspiciousness (besides just blank links of “HTML_nullLnkWeb”).
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• H_exItem. We compute this feature by counting the elements in the HTML that
point to external websites. The value is an integer, which will be used to com-
pute the feature H_obj (which is the equivalent of the “HTML_objectRatio”
of [59]).

• U_SER. We follow the guidelines of [139, 218], suggesting that it is possible to
use search engine results to detect phishing websites. If the URL matches any
of the top-10 websites in a Google search results (by querying Google with the
sample’s URL), U_SER=0; and a 1 otherwise (likely phishing).

• U_tldNum. We follow the guidelines of [130], suggesting that phishing web-
sites may have more than one top-level domain (TLD) located in another po-
sition within the URL (e.g., the subdomain). This numerical feature repre-
sents the number of TLD in the URL of the sample (this information is not
captured by the “URL_TLDinPath” or “URL_TLDinSub” features included in
SpacePhish [59]).

To account for the nature of Chinese websites, the following two features have been
changed w.r.t. those in [59].

• H_titBr. This feature checks if the website’s title includes the domain of its
URL. We follow the workflow described in §5.2.1. We extract the title from
the corresponding HTML tag, and then we check if it includes any Chinese
words via regex and, if so, we convert the Chinese words to their pronuncia-
tion (i.e.,pinyin). Finally, if the domain of the URL is included in the title or in
the pinyin, H_titBr=0 (likely benign); and 1 otherwise (likely phishing).

• H_DominCopr. We search for Chinese words in the website’s copyright infor-
mation, convert them to their pronunciation, and finally, we check if the web-
site’s copyright information includes the website’s domain: H_DominCopr=0 if
so, and 1 otherwise.

We publicly release our feature extractor in our repo [2].

5.9.2 Validation

Let us justify why our implemented features are appropriate and also robust for our
analysis.

Robustness. We recall that many of our features rely on the ICP record: one
may think that phishers may try to “spoof” such ICP record in order to trick an ML-
PWD. We argue this is not simple: the ICP codes are released and verified by the
issuer, and they frequently change. To give an example, consider the link provided
in Fig. 5.2a (https://global.jd.com/). At the bottom of the page, there is a “business
licence” as a code which is linked to an image that shows the approved licence (in this case,
it can be viewed here and here). These licences change everytime they are renewed.
(Note that we do not claim our ML-PWD to be robust against “adaptive” attackers,
which is outside our scope). Moreover, we have reached out to the maintainers of
a Chinese ICP records’ search tool21, who confirmed (i) the validity of our feature
extraction approach, and (ii) that the records change frequently, making it hard for
phishers to keep up.

Diversity. We designed many additional features. For an appropriate analysis,
it is important to determine if the values of these features among the samples in our

21https://www.tianapi.com/

https://jdwp.jd.com/544-2927.html
https://h5.m.jd.com/pc/dev/tMGhqLCH7hf87LucBj2NPHuyKAb/index.html
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datasets is sparse enough to prevent the occurrence of “evaluation artifacts” that
bias the results [70]. To this purpose, we extract the feature representation of all
samples in our ChiPhish dataset (shown in Table 5.8) and we perform a quantitative
analysis. We find that the resulting distribution makes it “challenging” for an ML
model to classify a sample on the basis of a single feature. For instance, although
all benign webpages have H_icpDom=0, the same holds for 97% of phishing samples.
Furthermore, while 98% of phishing samples have H_ecert=1, the same holds for 83%
of benign samples. These results suggest that our testbed represents a reliable way
to test the proficiency of state-of-the-art ML-PWD proposed in research.

TABLE 5.8: Distribution of our Chinese-specific features values (0s
and 1s) among the samples (benign and phish) of ChiPhish.

Feature
Benign Phishing

# 0s # 1s # 0s # 1s

H_icpApp 1024 31 110 455
H_icpDom 1055 0 547 18
H_icpReg 1054 1 474 91
H_icpCode 533 522 518 47

H_ecert 183 872 7 558

Finally, we report in Table 5.9 a summary of the websites included in our
ChiPhish dataset.

TABLE 5.9: Summary of websites included in ChiPhish. We only
provide examples of benign websites (to protect readers).

Category #Benign #Phishing Example

eCommerce 174 150 1688.com
finance 59 63 boc.cn

education 121 27 eol.cn
government 2 15 cwl.gov.cn

health 23 26 99.com.cn
email 10 13 163.com

information 267 79 labs.zol.com.cn
news 96 6 thepaper.cn

search engine 22 4 360.cn
social 35 12 weixin.qq.com

entertainment 247 83 kuwo.cn
other 0 87 n/a
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5.10 Complete Evaluation Results

We report the complete results of our assessment (§5.5).

5.10.1 State-of-the-art ML-PWD

First, we report in Table 5.10 the runtime (in seconds) for training and testing our
ML-PWD (on Fc).

TABLE 5.10: Runtime (seconds) to train and train our ML-PWD (us-
ing Fc) on our datasets. Cells report the avg (std) across 10 trials.

Alg.
WstPhish EngPhish ChiPhish

train (80%) test (20%) train (80%) test (20%) train (80%) test (20%)

RF 1.2±0.093 0.06±0.003 1.37±0.146 0.06±0.004 0.19±0.026 0.01±0.003

LR 0.39±0.151 0.0006±0.0 0.768±0.2672 0.00084±0.00035 0.122±0.0619 0.0021±0.0014

DT 0.07±0.005 0.0006±0.0001 0.0656±0.01156 0.00069±0.00015 0.008±0.0011 0.0013±0.0001

KNN 0.0012±0.00013 0.2796±0.0055 0.0015±0.00019 0.47866±0.01578 0.001±0.0001 0.0174±0.0032

MLP 7.17±1.433 0.0018±0.0007 16.0134±11.42109 0.00287±0.00167 5.9±1.9532 0.0026±0.0015

CNN 695.23±3.74 0.36±0.0171 241.87±15.13 0.47±0.042 28.78±3.242 0.23±0.13

GB 4.58±0.28 0.01±0.0005 5.96±0.57 0.011±0.001 0.279±0.0384 0.002±0.0002

AB 1.73±0.13 0.08±0.0043 3.44±0.41 0.16±0.01 0.27±0.034 0.018±0.0023

SVM 2.57±0.196 0.056±0.0028 2.45±0.44 0.014±0.001 0.07±0.024 0.002±0.0002

Then, we report the detailed tpr and tnr of all the state-of-the-art ML-PWD in Ta-
bles 5.11, 5.12, 5.13 (for Fc, Fh, Fu, respectfully). Specifically, the rows of these tables
denote a specific ML-PWD, identified by its learning algorithm (Alg.) and training
dataset (Train 80%). The values report the average performance (and std. dev, av-
eraged over 10 trials) of the corresponding ML-PWD on the test partition of each
‘language’ dataset. We report at the bottom-right the average (and std) across all
algorithms.

TABLE 5.11: Performance of our custom-developed ML-PWD ana-
lyzing the Fc feature set (URL+HTML). RF is the best Alg.

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%

tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr

RF
WstPhish 0.99±0.003 0.97±0.006 0.9±0.011 1.0±0.001 0.37±0.038 0.97±0.006

CNN
WstPhish 0.98±0.003 0.97±0.008 0.88±0.014 0.99±0.003 0.45±0.05 0.84±0.064

EngPhish 0.99±0.002 0.7±0.014 0.98±0.001 1.0±0.001 0.71±0.02 0.55±0.025 EngPhish 0.99±0.005 0.68±0.053 0.98±0.005 1.0±0.002 0.61±0.174 0.49±0.05

ChiPhish 0.99±0.005 0.13±0.036 0.97±0.016 0.49±0.152 0.96±0.015 0.99±0.005 ChiPhish 0.97±0.011 0.27±0.054 0.9±0.022 0.65±0.113 0.95±0.021 0.99±0.005

LR
WstPhish 0.96±0.006 0.95±0.007 0.88±0.013 1.0±0.001 0.52±0.056 0.95±0.017

GB
WstPhish 0.99±0.003 0.98±0.006 0.9±0.014 0.99±0.004 0.59±0.034 0.94±0.017

EngPhish 0.99±0.002 0.65±0.021 0.98±0.004 1.0±0.001 0.73±0.04 0.52±0.019 EngPhish 0.99±0.002 0.37±0.032 0.99±0.003 1.0±0.001 0.85±0.03 0.52±0.029

ChiPhish 0.99±0.003 0.13±0.014 0.93±0.007 0.39±0.049 0.95±0.014 0.99±0.005 ChiPhish 0.99±0.006 0.15±0.064 0.96±0.025 0.57±0.155 0.96±0.014 0.98±0.009

DT
WstPhish 0.98±0.006 0.96±0.006 0.86±0.016 0.9±0.222 0.56±0.077 0.82±0.062

AB
WstPhish 0.98±0.004 0.96±0.007 0.89±0.011 0.99±0.002 0.62±0.058 0.84±0.03

EngPhish 0.98±0.007 0.41±0.075 0.99±0.003 0.99±0.002 0.76±0.067 0.42±0.046 EngPhish 0.99±0.003 0.51±0.024 0.99±0.002 1.0±0.001 0.72±0.059 0.51±0.049

ChiPhish 0.98±0.01 0.16±0.076 0.95±0.035 0.69±0.165 0.96±0.015 0.97±0.015 ChiPhish 0.99±0.007 0.13±0.053 0.93±0.024 0.41±0.127 0.96±0.018 0.99±0.005

KNN
WstPhish 0.95±0.005 0.94±0.008 0.79±0.017 0.97±0.005 0.31±0.045 0.98±0.011

SVM
WstPhish 0.96±0.006 0.95±0.008 0.88±0.011 1.0±0.0 0.55±0.071 0.92±0.022

EngPhish 0.84±0.009 0.9±0.008 0.92±0.011 0.99±0.002 0.55±0.055 0.94±0.018 EngPhish 0.99±0.003 0.59±0.031 0.99±0.004 1.0±0.001 0.81±0.04 0.49±0.018

ChiPhish 0.99±0.004 0.09±0.011 0.97±0.008 0.2±0.029 0.9±0.022 0.97±0.015 ChiPhish 0.97±0.014 0.21±0.044 0.89±0.02 0.6±0.126 0.94±0.019 0.98±0.007

MLP
WstPhish 0.98±0.005 0.95±0.01 0.87±0.013 0.98±0.005 0.45±0.057 0.6±0.182

Avg (std)
WstPhish 0.97±0.014 0.96±0.011 0.87±0.033 0.98±0.028 0.49±0.099 0.87±0.113

EngPhish 0.99±0.004 0.67±0.037 0.99±0.003 1.0±0.001 0.78±0.069 0.51±0.023 EngPhish 0.97±0.045 0.61±0.152 0.98±0.022 1.0±0.002 0.72±0.09 0.55±0.142

ChiPhish 1.0±0.003 0.08±0.017 0.94±0.009 0.19±0.066 0.96±0.016 0.99±0.009 ChiPhish 0.98±0.007 0.15±0.055 0.94±0.025 0.47±0.172 0.95±0.019 0.98±0.007

5.10.2 MLSEC’s ML-PWD

We report in Table 5.14 the exact tpr and tnr of each competition-grade ML-PWD of
MLSEC.
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TABLE 5.12: Performance of our custom-developed ML-PWD ana-
lyzing the Fh feature set (HTML only). RF is consistently the best Alg.

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%

tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr

RF
WstPhish 0.95±0.006 0.93±0.009 0.75±0.029 0.97±0.002 0.17±0.038 0.96±0.011

CNN
WstPhish 0.93±0.004 0.89±0.016 0.69±0.021 0.93±0.006 0.2±0.053 0.85±0.137

EngPhish 0.7±0.018 0.84±0.014 0.93±0.006 0.99±0.003 0.45±0.039 0.81±0.016 EngPhish 0.69±0.018 0.83±0.027 0.89±0.014 0.98±0.005 0.38±0.244 0.86±0.111

ChiPhish 1.0±0.0 0.0±0.001 1.0±0.0 0.0±0.0 0.84±0.028 0.97±0.007 ChiPhish 1.0±0.001 0.01±0.008 1.0±0.001 0.01±0.011 0.82±0.034 0.97±0.009

LR
WstPhish 0.86±0.011 0.67±0.022 0.83±0.012 0.82±0.007 0.44±0.052 0.86±0.024

GB
WstPhish 0.93±0.008 0.88±0.016 0.78±0.018 0.93±0.007 0.18±0.046 0.96±0.013

EngPhish 0.78±0.008 0.77±0.01 0.82±0.009 0.95±0.005 0.57±0.031 0.76±0.019 EngPhish 0.76±0.01 0.8±0.012 0.9±0.007 0.98±0.003 0.46±0.05 0.81±0.013

ChiPhish 1.0±0.001 0.0±0.002 1.0±0.0 0.0±0.001 0.83±0.03 0.96±0.012 ChiPhish 1.0±0.003 0.01±0.01 1.0±0.001 0.03±0.024 0.84±0.035 0.97±0.008

DT
WstPhish 0.95±0.006 0.85±0.011 0.7±0.031 0.88±0.011 0.27±0.047 0.85±0.039

AB
WstPhish 0.91±0.01 0.78±0.015 0.79±0.014 0.87±0.009 0.15±0.024 0.97±0.019

EngPhish 0.66±0.024 0.78±0.015 0.93±0.005 0.95±0.004 0.48±0.034 0.75±0.021 EngPhish 0.77±0.035 0.75±0.011 0.87±0.009 0.96±0.004 0.51±0.039 0.75±0.019

ChiPhish 0.97±0.016 0.07±0.042 0.99±0.011 0.12±0.091 0.84±0.036 0.93±0.02 ChiPhish 1.0±0.001 0.02±0.011 1.0±0.002 0.05±0.039 0.83±0.035 0.97±0.011

KNN
WstPhish 0.92±0.01 0.84±0.015 0.72±0.014 0.88±0.01 0.13±0.019 0.97±0.015

SVM
WstPhish 0.84±0.01 0.77±0.02 0.79±0.014 0.87±0.009 0.15±0.024 0.97±0.019

EngPhish 0.72±0.012 0.82±0.014 0.87±0.01 0.96±0.006 0.48±0.048 0.79±0.019 EngPhish 0.77±0.035 0.75±0.011 0.82±0.009 0.96±0.005 0.51±0.039 0.75±0.019

ChiPhish 1.0±0.001 0.01±0.003 1.0±0.006 0.01±0.003 0.81±0.042 0.95±0.011 ChiPhish 1.0±0.001 0.02±0.011 1.0±0.002 0.05±0.039 0.81±0.033 0.97±0.007

MLP
WstPhish 0.91±0.013 0.88±0.023 0.73±0.042 0.91±0.014 0.2±0.034 0.86±0.064

Avg (std)
WstPhish 0.91±0.033 0.83±0.075 0.76±0.046 0.9±0.043 0.21±0.089 0.92±0.054

EngPhish 0.7±0.025 0.83±0.015 0.86±0.013 0.98±0.005 0.46±0.036 0.81±0.015 EngPhish 0.73±0.042 0.8±0.032 0.88±0.037 0.97±0.012 0.48±0.049 0.79±0.034

ChiPhish 1.0±0.001 0.0±0.003 1.0±0.0 0.0±0.002 0.82±0.032 0.96±0.006 ChiPhish 1.0±0.008 0.02±0.02 1.0±0.003 0.03±0.037 0.83±0.01 0.96±0.014

TABLE 5.13: Performance of our custom-developed ML-PWD ana-
lyzing the Fu feature set (URL only). RF is consistently the best Alg.

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%

tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr tpr tnr

RF
WstPhish 0.99±0.003 0.96±0.006 0.89±0.011 0.99±0.002 0.53±0.039 0.95±0.012

CNN
WstPhish 0.98±0.005 0.96±0.006 0.89±0.014 0.98±0.014 0.68±0.06 0.71±0.077

EngPhish 0.99±0.003 0.6±0.036 0.98±0.003 1.0±0.001 0.73±0.038 0.55±0.022 EngPhish 0.99±0.007 0.68±0.031 0.97±0.006 1.0±0.001 0.7±0.128 0.45±0.021

ChiPhish 0.95±0.006 0.38±0.034 0.87±0.014 0.9±0.047 0.96±0.019 0.98±0.009 ChiPhish 0.92±0.011 0.39±0.041 0.84±0.013 0.86±0.037 0.94±0.013 0.98±0.008

LR
WstPhish 0.96±0.005 0.95±0.004 0.88±0.012 1.0±0.001 0.72±0.032 0.81±0.027

GB
WstPhish 0.98±0.002 0.97±0.005 0.89±0.012 0.97±0.019 0.68±0.054 0.84±0.026

EngPhish 0.99±0.001 0.65±0.024 0.98±0.004 1.0±0.0 0.7±0.041 0.51±0.018 EngPhish 0.99±0.002 0.26±0.025 0.99±0.004 1.0±0.001 0.84±0.022 0.43±0.026

ChiPhish 0.96±0.005 0.29±0.021 0.88±0.013 0.9±0.047 0.93±0.024 0.98±0.008 ChiPhish 0.95±0.007 0.36±0.025 0.88±0.012 0.91±0.033 0.95±0.013 0.98±0.007

DT
WstPhish 0.98±0.004 0.95±0.008 0.88±0.015 0.74±0.348 0.67±0.067 0.77±0.054

AB
WstPhish 0.97±0.005 0.95±0.005 0.88±0.012 0.99±0.002 0.75±0.039 0.72±0.033

EngPhish 0.98±0.006 0.35±0.065 0.99±0.004 0.99±0.001 0.76±0.079 0.41±0.038 EngPhish 0.99±0.003 0.29±0.044 0.99±0.003 1.0±0.001 0.79±0.045 0.38±0.046

ChiPhish 0.89±0.044 0.33±0.057 0.84±0.064 0.74±0.133 0.94±0.025 0.97±0.011 ChiPhish 0.94±0.007 0.39±0.032 0.86±0.015 0.89±0.111 0.95±0.016 0.97±0.015

KNN
WstPhish 0.95±0.005 0.93±0.008 0.83±0.019 0.97±0.006 0.6±0.032 0.83±0.034

SVM
WstPhish 0.96±0.005 0.95±0.005 0.88±0.012 1.0±0.001 0.71±0.03 0.86±0.025

EngPhish 0.95±0.006 0.81±0.019 0.95±0.006 0.99±0.002 0.69±0.049 0.89±0.018 EngPhish 0.99±0.002 0.48±0.048 0.98±0.004 1.0±0.001 0.77±0.05 0.44±0.035

ChiPhish 0.93±0.007 0.44±0.057 0.87±0.016 0.84±0.027 0.91±0.017 0.97±0.013 ChiPhish 0.92±0.013 0.54±0.042 0.85±0.018 0.92±0.029 0.91±0.02 0.96±0.015

MLP
WstPhish 0.98±0.004 0.96±0.009 0.88±0.016 1.0±0.002 0.55±0.039 0.84±0.04

Avg (std)
WstPhish 0.97±0.013 0.95±0.011 0.88±0.019 0.96±0.079 0.65±0.072 0.81±0.069

EngPhish 1.0±0.002 0.63±0.037 0.98±0.005 1.0±0.001 0.74±0.053 0.48±0.027 EngPhish 0.99±0.012 0.53±0.181 0.98±0.011 1.0±0.002 0.75±0.047 0.51±0.144

ChiPhish 0.95±0.013 0.27±0.025 0.88±0.014 0.8±0.037 0.94±0.018 0.98±0.01 ChiPhish 0.94±0.019 0.38±0.076 0.86±0.017 0.86±0.056 0.94±0.015 0.97±0.009

TABLE 5.14: Performance of each individual ML model (M) of the
competition-grade ML-PWD considered in MLSEC.

M WstPhish EngPhish ChiPhish

tpr tnr tpr tnr tpr tnr

m0 0.50 0.99 0.58 0.99 0.14 0.99
m1 0.69 0.72 0.76 0.66 0.35 0.62
m2 0.47 0.99 0.52 0.99 0.14 0.99
m3 0.63 0.77 0.66 0.73 0.38 0.63
m4 0.54 0.98 0.62 0.99 0.14 0.99
m5 0.77 0.54 0.81 0.35 0.49 0.53
m6 0.51 0.98 0.54 0.99 0.15 0.99
m7 0.70 0.65 0.70 0.52 0.43 0.57

Avg (std) 0.60±0.104 0.83±0.169 0.65±0.097 0.78±0.236 0.28±0.140 0.79±0.203
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5.11 Feature Importance for Fu and Fh

Let us extend our analysis in §5.6.1 by studying the feature ranking for the best
classifiers using Fu and Fh in our three datasets: ChiPhish, WstPhish, EngPhish.

Analysis of Fu. We report in Fig 5.12 the top-10 features of the ML-PWD using RF
(i.e., the best classifiers also for Fu, see Table 5.13). From Fig. 5.12, we see that there
are five common features between WstPhish and ChiPhish, and six common features
between EngPhish and ChiPhish. This is consistent with the results in Table 5.13, i.e.,
the classifier trained on ChiPhish has a higher performance when tested on EngPhish

than on WstPhish. Interestingly, ‘U_pageRank’ is the most important feature learned
by the RF trained on ChiPhish, being three times more important than the second
ranked feature (i.e., ‘U_ssl’). In contrast, for WstPhish, ‘U_pageRank’ is also the
first-ranked feature, but it is not as dominating as on ChiPhish, since it has a sim-
ilar importance than three other features (i.e., ‘U_shortestWrdPath, U_lngWrdPath,
U_avgWrdPath’): this can explain why the RF trained on ChiPhish has high f pr
when tested on WstPhish. Finally, the rankings between the RF trained on WstPhish

and EngPhish are strikingly similar, suggesting why they also exhibit a good per-
formance when tested on different datasets in phonological languages (refer to Ta-
ble 5.13).
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FIGURE 5.12: Feature rankings (top10) of RF (the best) using Fu.

Analysis of Fh. We report in Fig 5.13 the top-10 features of the ML-PWD using
RF (which, as shown in Table 5.12, are the best classifiers also for Fh). By focus-
ing on the ranking for ChiPhish, we observe that ‘H_icpApp’ and ‘H_icpCode’ are
the most important features—both of which are Chinese-specific features. Surpris-
ingly, the first feature (i.e., ‘H_icpApp’) is ten times more important than the second
(i.e., ‘H_icpCode’): this can explain why – despite all three classifiers sharing some
features in the respective top10 (six are common between ChiPhish and EngPhish,
whereas five for ChiPhish and WstPhish) – they exhibit different performance when
tested on websites of a different language group. Finally (and similarly to the RF
analysing Fu), there are nine common features among the RF trained on WstPhish

and those trained on EngPhish: this can explain why these classifiers perform simi-
larly even on samples of a different dataset.



5.12. The case of image-based PWD 125

H_a
nc

ho
rs

H_d
om

inC
op

r
H_ic

pR
eg

H_n
ulI

tem
H_ti

tBr

H_co
mmPa

ge
H_ex

Ite
m

H_n
ulL

in
H_ic

pC
od

e
H_ic

pA
pp

0.0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
RF

 Fe
at

ur
e 

Im
po

rta
nc

e
ChiPhish, Fh

H_o
bj

H_h
idI

np

H_co
mmRa

tio
Ft

H_fa
vic

on
H_a

nc
ho

rs
H_ti

tBr
H_n

ulI
tem

H_ex
Ite

m
H_co

mmPa
ge

H_n
ulL

in

WstPhish, Fh

H_o
bj

H_fa
vic

on
H_b

rok
en

Lin
H_n

ulI
tem

H_a
nc

ho
rs

H_co
mmRa

tio
Ft

H_co
mmPa

ge
H_ex

Ite
m

H_n
ulL

in
H_ti

tBr

EngPhish, Fh

FIGURE 5.13: Feature rankings (top10) of RF (the best) using Fh.

5.12 The case of image-based PWD

We provide more details on image-based PWD. Our goal is presenting theoretical
and empirical evidence that these detection approaches are inappropriate to explore
the gap between Chinese and Western PWD. We begin by providing an overview
of image-based PWD (App. 5.12.1). Next, we elucidate the shortcomings of well-
known image-based PWD (App. 5.12.2), and then practically demonstrate their lim-
itations (App. 5.12.3). Finally, we perform an original experiment showcasing a neg-
ative result (§5.12.4).

5.12.1 How do image-based PWD work?

Background. According to Corona et al. [97], PWD approaches can be divided
in two categories: target dependent, and target independent. The former aim to detect
phishing samples that focus on a specific target, whereas the latter seek to detect
phishing without making any assumption whatsoever. For instance, the ML-PWD
considered in our evaluation are all target independent: after training on a broad
set of benign and phishing samples, they aim to infer whether any ‘test’ sample is
benign or phishing. In contrast, state-of-the-art image-based PWD mostly follow
a target dependent22 approach (even in practice, e.g., [55, 109]). We are not aware
of target independent PWD that use images: interestingly, Marcha et al. [184] pro-
pose ML-PWD that relies on various features (most of which overlap with ours in
Table 5.3), and despite stating that screenshots are an “information source”, the pro-
posed features do not use the screenshot.

Target dependent PWD. These approaches focus on catching phishing websites
that “target a specific brand”. The intuition is that most phishing attacks try to lure
their victims on (malicious) websites that resemble a reputable brand. In particular,
instead of trying to infer whether a website is benign or phishing, these approaches
seek to identify whether a website (or a part of it) is “similar” to another website (or
a part of it) that is known to be benign. If this is true, then this finding is used to
verify whether other elements of the website (e.g., its domain) match with those of
the known brand.

22Some target-dependent PWD do not use images (e.g., [241]).
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Example. The authors of PhishPedia [174] focus on the logo: after extracting the logo of
a given webpage, [174] checks if the extracted logo matches one among the brands most
targeted by phishing (e.g., PayPal). If there is no match, then the page is considered as
legitimate (to avoid raising false positives). Otherwise, if a match is found (i.e., if the
webpage has a logo similar to the real PayPal’s), then [174] checks if the website’s domain
is the same as the one of the legitimate website (i.e., PayPal’s): if the domain matches,
then the page is legitimate (i.e., it is a page by PayPal); otherwise, the page is phishing
(i.e., it is a fake page that is trying to mimic PayPal).

The reason of this two-step approach is due to efficiency. Indeed, querying third-
party websites for domain is expensive, so it is only done if there is risk that the
page is actively trying to mimic a well-known website [164]. Abundant works have
proposed target dependent approaches reliant on visual similarity. Notable exam-
ples include the seminal work by Fu et al. [118], and the one by Geng et al. [121]
focusing on favicons. More recently, we mention [44, 97, 180]. Unfortunately, the
main limitation of these approaches is that they only work if the phishing webpage
tries to resemble one of the targeted brands—which is typically referred to as “pro-
tected set” (PS).

5.12.2 Shortcomings of visual PWD: a case study

Problem. Image-based PWD are trendy in research, and are now being deployed
also in practice [55, 109]. However, it is almost paradoxical that their biggest strength
is also their main weakness. Indeed, to meet “operational” requirements, PWD must
be fast: a user is not willing to wait seconds before their browser renders a given
webpage just because there is a risk of such a webpage being phishing. Consequently,
in a very short time-frame, a given PWD that employs (target dependent) image-
based techniques must: (i) capture the screenshot of a website; (ii) extract the relevant
information (e.g., the logo); (iii) make a pairwise comparison of such information
with each element in the PS23; (iv) if a match is found,24 check the domain; (v) after
receiving the response, decide whether to block the webpage or not. This long set
of operations is computationally expensive, and – to make such an analysis feasible
– the PS typically includes around 200 brands [174]. Although we acknowledge that
phishers tend to target well-known brands, these methods will fail by design to
detect any phishing webpage that targets a brand not included in the PS.

Case Study. Let us link the information provided insofar to the problem tackled
by our paper: the gap between Chinese and Western PWD. To provide evidence that
existing (target dependent) PWD reliant on visual similarity are inappropriate for
Chinese websites, we perform an in-depth look at the brands included in the PS of
some well-known works. We do so by asking ourselves the two ancillary questions
(AQ):

AQ1: how many of these brands are Chinese?

AQ2: how many of these Chinese brands are in the top30 Chinese websites?25

The rationale is that if these methods entail many (top-visited) Chinese websites
in their PS, then these methods would be (somewhat) effective to counter Chinese

23Note that for each “protected website” there may be multiple elements associated to it (e.g., mul-
tiple logos are associated to PayPal).

24According to the co-authors of [55], the DNS query is done only after determining which brand is
the one most likely associated to the given webpage, i.e., the PS must always be checked in its entirety.

25We take the top30 Chinese websites from [31] (in June 2023).
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phishing websites. Unfortunately, the results of this case study, shown in Table 5.15,
reveal that this is not the case.

TABLE 5.15: We scrutinize how many brands included in the datasets
of visual PWD are from China. (N/A=data not public)

Work
PS

size
# Chinese

in PS (AQ1)
# top30 Chinese

in PS (AQ3)

Fu [118] 8 1 0
Geng [121] 81 N/A N/A
Corona [97] 1012 2 0
Dalgic [101] 14 1 0

Dooremaal [252] 8 N/A N/A
Abdelnabi [44] 155 3 0

Lin [174] 181 5 1
Liu [180] 277 5 1

Apruzzese [55] 40 1 0

Results. We can see that most existing approaches have a PS with variable
size, spanning between less than 10 to few hundreds brands (the exception is
DeltaPhish [97], which focuses on “compromised websites” and has a slightly differ-
ent focus). However, the corresponding PS have at most five Chinese brands in them,
and none of these are included in the top30 Chinese websites. To provide further ev-
idence, let us focus on VisualPhishNet [44] and PhishPedia [174] (and also PhishIn-
tention [180]): the former has only 3 Chinese brands (Alibaba, Aliexpress, made-in-
china), whereas the latter has 5 (Alibaba, SFexpress, Netease, made-in-china, global
sources HK). This means that, at best, the corresponding PWD models can detect
only Chinese phishing websites mimicing those of these six brands. However, we
make two interesting observations (which we explain through Figs. 5.14):

• Five out of these six brands are not the top30 Chinese websites.26 This is because
Chinese websites that are also visited in the West have a different domain:
for instance, “alibaba.com” (included in [174]) is less popular than “1688.com”
(not included in [174]) in China—despite referring to the exact same brand.

• The visual content in these datasets has a mismatch between the Chinese and
Western versions of a brand. For instance, [174] includes the logo for “chi-
nese.alibaba.com” (Fig. 5.14a) but not the one for the Western version of Al-
ibaba (i.e., “alibaba.com”, Fig. 5.14b) nor the one for 1688 (Fig. 5.14c).

This means that these approaches are very unlikely to work in a “cross-language”
setting (even if the corresponding PS includes some Chinese brands—since they are
tailored for the Western version of such websites).

TAKEAWAY: Image-based PWD only work against phishing websites that try to
mimic a shortlist of well-known brands. Unfortunately, most existing methods do
not include Chinese brands in such a shortlist.

26The exception is NetEase, which is included in [174, 180].
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(A) chinese.alibaba.com (B) alibaba.com (C) 1688.com

FIGURE 5.14: Logos of three versions of the same brand (in 2023).

5.12.3 Practical Demonstration

To further demonstrate that existing target dependent PWD reliant on visual simi-
larity are “useless” to tackle our RQ, we perform a hard experiment with the state-
of-the-art work by Liu et al., PhishIntention [180].

We take the exact implementation of PhishIntention (the code is publicly avail-
able), and we use it to analyse the visual representation of the phishing websites
contained in our ChiPhish (recall that we store the screenshot of all samples in our
datasets; see §5.3.2). Out of the 565 phishing samples, 561 (99, 3%) trigger a “no tar-
get” response by PhishIntention: they are too different from any sample included in
the PS and are hence flagged as benign (i.e., they evade detection). The remaining
4 trigger some similarity: 3 are (phishing) webpages that mimic the Chinese ver-
sion of Apple, whereas 1 is mimicking Netease (all of which are brands included in
PhishIntention’s PS). However, the similarity of these is: 0.69, 0.84, 0.84, 0.72: all such
values are below the threshold (θ=0.87) that would induce PhishIntention to proceed
with the domain checking (and which would lead to a “phishing” output). Hence,
these webpages are also classified as benign.27

Takeaway. None of the 565 phishing samples in ChiPhish are detected by PhishInten-
tion [180].

Intriguingly, [180] was published in28 2022, and our Chinese samples in ChiPhish

were also collected in 2022.

5.12.4 Negative result: a target INdependent image-based PWD (original
experiment)

Motivation. Insofar, we have covered image-based PWD reliant on target de-
pendent approaches. A question arises: “what about target INdependent PWD that
use visual similarity?”. To the best of our knowledge, there is no paper that man-
aged to do so effectively. The reason is that, even by leveraging the capabilities of
deep learning, it is difficult to design a PWD that can capture the nuances of be-
nign/phishing websites just by, e.g., looking at its screenshot—given the immense
variability that modern websites tend to have. Nonetheless, to provide an additional
proof that image-based ML-PWD are still immature for “target independent” PWD
– and hence inappropriate to investigate our main RQ (§5.5) – we perform an original
proof-of-concept experiment.

Setup. We seek to develop an image-based PWD that leverages deep learning
(DL) to discriminate benign from malicious webpages—i.e., a binary classification
problem. For this purpose, we rely on our three datasets (§5.3)) and, specifically, on
the screenshots of each webpage included therein. We chose two well-known DL
algorithms as decision component: VGG16 [232] (we add dropout layers to improve

27We had 20 more phishing samples that mimic the Chinese Apple, but they also yielded “no target”
(i.e., they also evaded [180]).

28We can technically re-train [180] on a different set of brands; however, according to Liu et al. [180],
it takes 24h of computing on a Tesla V100 GPU to train these models.

https://chinese.alibaba.com
https://alibaba.com/
https://1688.com
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generalization) and a CNN; we provide the exact implementation in our repository.
We partition our datasets in train:test with the usual 80:20 split, and train and test
each model on the same “language”. We measure the performance with the tpr and
tnr. We repeat this assessment 5 times. We report the detection results in Table 5.16,
and the runtime in Table 5.17.

TABLE 5.16: Performance of VGG and CNN when used as binary
classifiers to analyze the screenshot of a webpage in our datasets.

M WstPhish EngPhish ChiPhish

tpr tnr tpr tnr tpr tnr

CNN 0.60±0.021 0.40±0.037 0.28±0.020 0.74±0.028 0.33±0.054 0.68±0.022

VGG 1.00±0.000 0.00±0.000 0.00±0.000 1.00±0.000 0.00±0.000 1.00±0.000

TABLE 5.17: Runtime (s) to train/test VGG and CNN on our datasets.
We train each model for 20 epochs (on a Tesla V100).

M WstPhish EngPhish ChiPhish

train test train test train test

CNN 4213.8 55.1 23048.5 298.2 2507.4 105.5
VGG 7228.9 849.9 22583.9 286.8 2185.3 26.2

Results. From these (negative) results, we can see that these DL models are ter-
rible at discriminating benign from malicious webpages. Indeed, the performance is
always skewed, showing either a perfect tpr but null tnr (and vice-versa) for VGG16;
or just an unacceptably low tpr or tnr for the CNN. Furthermore, both the train and
test runtime is much higher compared than our “feature-based” models (cf. Ta-
ble 5.10 with Table 5.17): for instance, on WstPhish, the CNN analyzing the screen-
shot requires 70m to train (on GPU), whereas the CNN analyzing Fc requires 11m
(on CPU). Put simply, image-based PWD that are not target-dependent are not yet
ready for practical deployment—which is why we did not include similar methods
in the main evaluation (§5.5).

TAKEAWAY: Image-based PWD that perform binary classification (via the screen-
shot) are still immature. This can be an avenue for future research.

5.13 Comparison with SpacePhish

We find it instructive to assess the performance of the vanilla version of the ML-PWD
developed in SpacePhish [59]. Recall that the ML-PWD we considered in our eval-
uation analyse (i) 55 features from [59] and (ii) 10 additional features suggested by
reputable prior work [130, 139, 218, 270]. Hence, we question whether these 10 ‘ex-
tra’ features provide any substantial advantage w.r.t. those employed in [59]. Given
that our ML-PWD use additional features (including Chinese-specific ones by [270]),
we expect some form of improvement when a ML-PWD is tested on websites from
the same dataset; however, the additional information may lead to overfitting.

Setup. We take the exact feature extractor of SpacePhish (from their reposi-
tory [39]), and we use it to generate the feature representation of every sample in
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our three language datasets, i.e., ChiPhish, EngPhish, WstPhish. Then, we consider
the exact same learning algorithms (i.e., RF, CNN, LR.) used in SpacePhish. Finally,
we adopt the exact procedure described in our workflow for answering RQ1 and
RQ2 (refer to §5.5.1). We report the results of this “cross-language” assessment in
Table 5.18 (for Fc), Table 5.20 (for Fu), and Table 5.19 (for Fh).

TABLE 5.18: Performance of the vanilla PWD of SpacePhish [59],
analysing the corresponding Fc (trained and tested on our datasets).

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%
tpr tnr tpr tnr tpr tnr

RF
WstPhish 0.99±0.004 0.97±0.007 0.90±0.007 1.00±0.001 0.37±0.052 0.97±0.010

EngPhish 0.98±0.004 0.70±0.020 0.98±0.004 1.00±0.000 0.71±0.034 0.53±0.034

ChiPhish 0.94±0.007 0.43±0.016 0.86±0.011 0.93±0.02 0.95±0.019 0.99±0.006

LR
WstPhish 0.96±0.005 0.95±0.004 0.88±0.017 1.00±0.001 0.66±0.046 0.86±0.047

EngPhish 0.99±0.002 0.68±0.021 0.98±0.003 1.00±0.001 0.72±0.042 0.51±0.029

ChiPhish 0.94±0.005 0.50±0.020 0.84±0.011 0.86±0.019 0.94±0.016 0.98±0.010

CNN
WstPhish 1.00±0.002 0.99±0.002 0.88±0.013 0.98±0.007 0.50±0.045 0.90±0.022

EngPhish 0.98±0.006 0.54±0.072 1.00±0.002 1.00±0.000 0.79±0.048 0.49±0.042

ChiPhish 0.93±0.007 0.45±0.026 0.85±0.013 0.90±0.031 0.93±0.020 0.98±0.006

TABLE 5.19: Performance of the vanilla PWD of SpacePhish [59],
analysing the corresponding Fh (trained and tested on our datasets).

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%
tpr tnr tpr tnr tpr tnr

RF
WstPhish 0.94±0.006 0.90±0.008 0.69±0.023 0.93±0.004 0.32±0.058 0.87±0.019

EngPhish 0.59±0.023 0.84±0.020 0.90±0.011 0.98±0.004 0.26±0.055 0.87±0.017

ChiPhish 0.42±0.042 0.75±0.029 0.38±0.034 0.62±0.038 0.54±0.045 0.87±0.022

LR
WstPhish 0.86±0.007 0.63±0.015 0.82±0.014 0.74±0.007 0.61±0.036 0.61±0.030

EngPhish 0.61±0.010 0.79±0.009 0.68±0.013 0.94±0.003 0.44±0.044 0.79±0.017

ChiPhish 0.44±0.025 0.79±0.017 0.40±0.019 0.59±0.031 0.45±0.028 0.88±0.020

CNN
WstPhish 0.94±0.005 0.91±0.008 0.65±0.017 0.88±0.012 0.35±0.066 0.85±0.025

EngPhish 0.62±0.046 0.86±0.027 0.90±0.011 0.98±0.003 0.28±0.051 0.87±0.025

ChiPhish 0.50±0.071 0.70±0.051 0.44±0.061 0.61±0.043 0.48±0.042 0.87±0.027Results. Many insightful observations can be drawn by comparing these results
with those of our main evaluation (shown in Tables 5.11, 5.12, 5.13). Let us focus on
the most significant ones, i.e., those entailing Fc. First, as expected, each classifier of
“our” ML-PWD tends to have a slightly superior performance (w.r.t. the vanilla ones
in SpacePhish)29 when tested on samples coming from the same language dataset;
the best improvement is on the ML-PWD using LR (which is the learning algorithm
allegedly used by Google [171]). However, we also note an intriguing phenomenon:
the classifiers in SpacePhish, when trained on ChiPhish have a remarkably better
performance when tested on EngPhish (w.r.t. the “enhanced” variant we used in our
main evaluation—see Table 5.11). As an example, the vanilla RF of SpacePhish has
a 0.93 tnr, whereas ours has 0.49 (even though ours has a 0.97 tpr against the 0.86 of

29Such improvement is statistically significant, e.g., a Welch t-test entailing both the tpr and tnr
achieved by RF, LR, CNN trained and tested on ChiPhish and analysing Fc reveals that p < 0.001,
therefore our variants are different (i.e., better) than SpacePhish’s.
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TABLE 5.20: Performance of the vanilla PWD of SpacePhish [59],
analysing the corresponding Fu (trained and tested on our datasets).

Alg. Train 80%
WstPhish 20% EngPhish 20% ChiPhish 20%
tpr tnr tpr tnr tpr tnr

RF
WstPhish 0.98±0.004 0.96±0.006 0.90±0.007 0.99±0.001 0.50±0.035 0.95±0.011

EngPhish 0.99±0.003 0.63±0.027 0.98±0.004 1.00±0.001 0.73±0.046 0.54±0.034

ChiPhish 0.95±0.006 0.38±0.025 0.88±0.009 0.88±0.044 0.96±0.018 0.99±0.005

LR
WstPhish 0.96±0.006 0.94±0.008 0.88±0.021 1.00±0.001 0.72±0.019 0.80±0.073

EngPhish 0.99±0.002 0.68±0.019 0.98±0.004 1.00±0.001 0.75±0.048 0.49±0.031

ChiPhish 0.95±0.007 0.43±0.020 0.88±0.008 0.93±0.013 0.93±0.022 0.98±0.008

CNN
WstPhish 0.99±0.002 0.97±0.007 0.89±0.012 0.98±0.014 0.65±0.073 0.73±0.046

EngPhish 0.99±0.007 0.47±0.107 0.99±0.004 1.00±0.001 0.78±0.071 0.42±0.046

ChiPhish 0.94±0.008 0.38±0.048 0.86±0.011 0.85±0.046 0.94±0.014 0.98±0.008

SpacePhish). Finally, our RF and LR classifiers using Fc tend to be better than those
in SpacePhish when tested on ChiPhish.

We can hence make the following considerations:

• Our “improved” feature sets (i) employ strategies proposed by reputable prior
work, and (ii) lead to a superior baseline performance...

• ...however, in some cases, such a higher performance comes at the expense of
reduced performance (especially in terms of false positives) when analysing
websites coming from a different language dataset.

In summary, this experiment confirm the “no free lunch”. By sacrificing some per-
formance, it may be possible to improve the generalizability of the PWD. Our deci-
sion to develop an ensemble ML models (jointly with our LaSeTo) for PWD (§5.6.3) is
inspired also by this result.
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Chapter 6

Conclusion and Future Work

The widespread adoption of Machine Learning in Cybersecurity has contributed
to advancements in state-of-the-art techniques across various domains, including
phishing website detection. Machine learning-based approaches can extract features
ignored by humans to get a more accurate detector. This dissertation primarily stud-
ies the security aspects of ML-based phishing website detection and evaluates the
performance of ML-based phishing detectors in a multi-language environment (i.e.,
China and Western).

SpacePhish (in Chapter 2) and Multi-SpacePhish (in Chapter 3) formalized
‘where’ attackers could insert perturbations to ML-based phishing website detec-
tors and carried out a large evaluation of evasion attacks exploiting diverse ‘spaces’.
Specifically, our experiments indicate that adversarial attacks that appear in web-
site space (i.e., WSP) are more likely to be exploited by attackers because of their
cheap cost. Furthermore, our result states that an attacker introduces perturbations
in multiple evasion-spaces simultaneously, which caused a sharp drop in the detec-
tion rate from 0.95 to 0. Indeed, even a 3% decrease in the detection rate of ML-PWD
can be problematic when dealing with thousands of samples. Our evaluation serves
as a ‘benchmark’ for assessing the actual harm of adversarial attacks. However, our
work focuses on the evaluation of evasion attacks considered text-based (i.e., HTML
and URL) phishing website detectors, and future work can extend to visual-based
phishing website detectors [175, 179].

At the same time, our work in Chapter 4 described adversarial phishing web-
pages deceived machine learning-based phishing website detectors is also a threat
to the real target-end users, since most adversarial phishing webpages have compa-
rable effectiveness on users w.r.t. unperturbed ones. This result suggested that re-
searchers should consider users’ awareness while evaluating the influence of adver-
sarial phishing websites, and exploring potential strategies for anti-phishing train-
ing to aid users in identifying phishing webpages should be considered in the future.

Phishing website detection is a common challenge worldwide, both in Western
and China. Our work shows that the gap between Chinese and Western websites
does not allow existing PWD to work well in both types. In the future, researchers
should consider the effectiveness of ML-PWD in multi-language environments or
design phishing website detectors specific to a certain language to improve phishing
detection rates.
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