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Abstract

In recent years, the incidence and prevalence of type 1 diabetes (T1D) are in-

creasing worldwide. In addition to the economic burden related to T1D, the

management and treatment of such a disease require lots of effort from those

people who are affected, as their body is no longer able to produce insulin,

one of the key hormones in blood glucose (BG) regulation. The lack of en-

dogenous insulin production results in elevated BG levels and, in particular,

in hyperglycemia, a condition that can lead to several long-term cardiovas-

cular complications, such as retinopathy and nephropathy. Therefore, people

affected by T1D need lifelong therapy, which relies on exogenous insulin ad-

ministrations. However, daily management of T1D significantly impacts on

patient’s quality of life, due to the number of tasks required to achieve proper

glucose level regulation. As a matter of fact, one of the major obstacles to

optimal glycemic control is represented by the estimation of a correct pran-

dial insulin dose, which is injected to counteract the BG excursion following a

meal. Indeed, an accurate mealtime insulin dosing in T1D therapy is crucial

to avoid postprandial hypo- or hyperglycemic events, caused by an over- or

under-dosage respectively. According to the recommended guidelines for T1D

management, the mealtime insulin amount should be calculated following an

empirical standard formula (SF), which could lead to a suboptimal dosage due

to several reasons, including, above all, the inability of accounting for relevant

information related to the glucose dynamics and a lack of individualization.

iii



Prandial insulin estimation is a highly patient-dependent task which should

be specifically tailored to the individuals’ mealtime condition, not only by inte-

grating relevant personalized parameters but also by adjusting the dose based

on the current BG trend. Such information on BG dynamics and, in particular,

its rate of change is provided, in real-time, by continuous glucose monitoring

(CGM) sensors, minimally invasive devices that are becoming a key element

in T1D therapy. The real-time availability of information on glucose dynam-

ics provided by CGM systems, along with the possibility of leveraging smart

insulin delivery devices, which could potentially integrate a novel dosing tech-

nique, fostered the development of new approaches to adjust the SF amount

according to the glucose information provided by these sensors. However, the

derivation of the proposed state-of-art approaches aimed at correcting the SF

has mainly been empirical, suggesting that there would be room for improve-

ment should a systematic modelling methodology be adopted.

Therefore, the work presented in this thesis aims at proposing effective

and personalized mealtime insulin dosing techniques, which take into account

both the CGM-derived information and the specific mealtime status of the in-

dividual, to optimize such a dosage, by leveraging machine learning and re-

inforcement learning algorithms. As a starting point, an assessment of the

current state-of-art methods for insulin dose adjustment, which take into ac-

count the CGM rate-of-change information, was performed through an ISCT,

together with the design of a novel, yet empirical, method based on the lit-

erature. This analysis pointed out that there is no literature method which

outperforms the others in terms of postprandial glycemic control, highlighting

the need for insulin dosing strategies specifically tailored to the subject.

To address this issue, we proposed different population machine learning

models to target the optimal insulin dose. The models were developed by

leveraging a simulated dataset, which includes patient-specific parameters de-
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scribing the mealtime condition in a noise-free environment. Both linear and

nonlinear approaches were proposed, to improve the SF traditionally used for

such a task and, hence, improve the quality of glycemic control while increas-

ing model complexity. We evaluated the models’ performance through an

ISCT, which showed the ability of the proposed models to better approach the

optimal dosage compared to the standard guidelines. Among the proposed

models, we selected a final candidate model, showing the more appropriate

trade-off in terms of model interpretability and performance, and we evalu-

ated the efficacy of the selected model within a scenario which included error

sources, such as the CGM measurement error or the carbohydrates counting

error. The positive results obtained through the ISCT were confirmed by the

aforementioned retrospective analysis on real data. Therefore, preliminary re-

sults suggested that the combination of both personalized features and ma-

chine learning-based models is key to improving the calculation of the meal-

time insulin dose and further reducing the risk of hypo- and hyperglycemia.

However, the design of a supervised learning framework is far from being triv-

ial in such a context, due to the difficulty in retrieving the optimal target of the

learning task in real data. Moreover, the insulin amount estimation is highly

patient-dependent, making it difficult to train a population model which is

tailored to different subjects.

To overcome the previous limitations, in the following study we proposed

an individualized and adaptive insulin dosing technique, based on a double

deep Q learning algorithm, which is tailored to the patient thanks to a per-

sonalization procedure relying on a two-step learning framework. The pro-

posed dosing strategy was developed and tested using the UVA/Padova T1D

Simulator, showing a beneficial impact on glycemic control compared to the

standard guidelines.
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Chapter 1

Insulin dosing in type 1 diabetes:

standard open-loop therapy

guidelines and new perspectives

1.1 Type 1 diabetes (T1D) and the standard open-

loop insulin therapy

Type 1 diabetes (T1D) is a chronic disease caused by a pancreatic dysfunction,

that involves progressive autoimmune destruction of the insulin-producing

beta cells[1, 2]. The lack of endogenous insulin production results in exces-

sively elevated blood glucose (BG) levels. Indeed, normal blood glucose con-

centrations should remain within a narrow range (70–180 mg/dl) throughout

the day despite fluctuations due to nutritional intake, physical exercise, and

other physiological or psychological conditions; when this concentration goes

above or below the normoglycemic range, the type 1 diabetic subject experi-

ences hyperglycemia (BG > 180 mg/dL) or hypoglycemia (BG < 70 mg/dL)

respectively [3, 4].
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In healthy individuals, optimal glycemic control is achieved by an appro-

priate response of insulin production from the beta cells of the pancreas, while

in people living with T1D the insulin response does not occur.

An improper glycemic control may affect many different organ systems in

the body, leading to serious complications over time, which can be classified

as microvascular or macrovascular, and account for the major morbidity and

mortality associated with T1D. Microvascular complications include retinopa-

thy, nephropathy, and neuropathy, while macrovascular complications refer to

cardiovascular, cerebrovascular, and peripheral vascular diseases [5]. Hence,

to avoid such complications, patients with T1D require lifelong insulin ther-

apy, aimed at providing for the lack of insulin in the body, to maintain their

BG concentration within the normoglycemic range.

Insulin replacements include basal insulin coverage, to control the BG lev-

els in fasting conditions, and prandial insulin boluses, to counteract the post-

prandial glycemic excursion. The standard guidelines for insulin therapy rec-

ommend multiple daily injections (MDIs) of basal and prandial insulin or con-

tinuous subcutaneous insulin infusion (CSII) [6, 7]. In particular, MDI therapy

requires a bolus injection of long-acting insulin once or twice daily for basal

insulin coverage together with short- or rapid-acting insulin at each meal, or

each time a correction of high BG is required, by employing insulin syringes

or pens [8].

On the other hand, CSII relies on the continuous delivery of short-acting

insulin via an insulin pump, i.e. an infusion set inserted subcutaneously. All

the injected boluses are composed of short-acting insulin: small amounts of

insulin that are released continuously throughout the day to cover the basal

insulin, while additional insulin boluses can be delivered on demand to match

meal intake or to correct high BG.

Both the MDI and CSII insulin therapies are crucial to regulating BG levels
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to keep subjects from getting below or above the normoglycemic range.

In particular, to counteract the glycemic excursion which follows a meal,

the American Diabetes Association (ADA) provided clear guidelines regarding

the meal bolus dose estimation [9], which should be computed following the

formula in 1.1, hereafter defined as standard formula (SF) [10]

SF =
CHO
CR

+
Gc − Gt

CF
− IOB (1.1)

where CHO (g) is the meal carbohydrate intake, CR (g/U) and CF (mg/dL/U)

are the insulin-to-carbohydrates ratio and the correction factor, i.e., two ther-

apy parameters [11], Gc (mg/dL) is the mealtime BG level, Gt (mg/dL) is the

target BG level, and IOB (U) is the insulin on board [12].

The SF can be divided into three different terms. The first one, i.e., CHO/CR

regards the meal insulin, which is composed of the amount of CHO consumed

during the meal and the CR, which represents how many grams of CHO are

covered by each unit of insulin [11]. It allows the patient to inject the insulin

amount needed to compensate for the carbohydrate content planned to be

eaten, e.g., a CR of 1:10 means 1 unit of insulin will cover 10 grams of car-

bohydrates.

The second term, i.e. (Gc - Gt)/CF, concerns the correction of insulin, it

contains the difference between the current BG value and the target BG, di-

vided by the CF, which represents how much BG is lowered by each unit of

insulin [13]. Both CR and CF are patient-specific empirically estimated param-

eters and may vary for the same patient during the day. Furthermore, it can

be noted that the meal insulin part is eliminated if there is no meal consumed

by the patient and similarly the correction insulin part is deleted if the BG is

already on target.

The third term consists of the IOB, indeed if insulin from previously admin-
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Figure 1.1: Example of the Dexcom G6 systems, including the CGM sensor, and the
auto-applicator, together with devices which allow the real-time monitoring of CGM
values and trend.

istered boluses is still active, this insulin amount should be subtracted from the

rest of the formula. The purpose of IOB estimations is to prevent the accumu-

lation of multiple insulin boluses which may result in hypoglycemia.

Despite the standard guidelines provided for T1D treatment, achieving

tight glycemic control could be challenging, due to the multiple factors which

influence glucose regulation, e.g., hormonal changes, physical activity, and in-

flammatory diseases. Recent advances in T1D technologies provide the pos-

sibility of supporting the patient during the decision-making process which

characterizes such a disease, thanks to the technological advances in glucose

monitoring and insulin delivery, which have contributed to easing the burden

related to the management of T1D [14]. Indeed, insulin delivery devices such

as insulin pens and pumps, have rapidly advanced in the past two decades, to

accomplish insulin delivery in a most precise manner with minimal invasive-

ness. On the other hand, glucose monitoring has been transformed and greatly

improved by continuous glucose monitoring (CGM) devices, which automat-

ically track BG levels throughout the day, typically with a frequency of 5-15
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Figure 1.2: Representative scenarios showing the glycemic condition of the subject
through the Dexcom platform, which shows in real-time the glucose levels and its
ROC.

minutes [15, 16, 17], for several consecutive days. Moreover, many of the com-

mercially available CGM systems show glucose trend arrows, i.e. CGM rate-

of-change (ROC), which predict the glucose direction of travel at any given

time, while providing information on the direction and magnitude of glucose

change, as depicted in Figure 1.2. Having information on glucose dynamics,

i.e., knowing if the BG is stable, increasing or decreasing, can help to identify

and prevent unwanted periods of hypo- and hyperglycemia, which probably

could not be detected with a standard self-monitoring of BG (SMBG) [18, 19].

Thus, CGM provides maximal information about shifting BG levels through-

out the day and facilitates the fulfilment of optimal treatment decisions for

diabetic patients. In addition, thanks to the significant refinement obtained

by CGM technology [20], many devices can now be used non-adjunctively,

i.e., without the need for a confirmatory SMBG for treatment decisions [21].

For this reason, exploiting the information which CGM technology provides is

fundamental to optimising T1D therapy.

In particular, knowledge about glucose trends can be used to adjust the in-
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sulin dose accordingly. Thus, leveraging such data could be beneficial for a

more effective insulin bolus calculation and, consequently, might lead to im-

proved postprandial glycemic control. However, the SF does not include any

information on glucose dynamics at mealtime, being Gc the only term reflect-

ing the BG status, which is a static measurement of BG concentration.

1.2 Limits and open issues of the standard guide-

lines for insulin therapy

Despite the technological advances in T1D management, the standard guide-

lines for insulin dosing present several limitations which could potentially pre-

vent achieving optimal glucose control. First, as previously mentioned, the SF

does not take into account relevant information on the glucose dynamics, pro-

vided in real-time by the CGM devices. Moreover, this formula shares the same

structure among different subjects, hence not allowing for personalized insulin

dosing. In addition to this lack of individualization, the standard insulin ther-

apy greatly affects the quality of life of people living with T1D, due to the

multiple tasks that are required, e.g., the meal carbohydrates counting, which

may result in a patient’s estimation error, leading to an improper glycemic

control. Beyond this, the work of Marden et al [22] reported that a significant

number of people living with T1D are unable to perform rudimental math due

to limited numeracy skills.

To complicate bolus calculation even further, CR and CF parameters com-

posing the SF may vary during the day according to intra- and interday insulin

sensitivity variability, physical activity, alcohol consumption and other factors

that could affect the patient metabolism, such as hormone cycles, illness, and

stress [23, 24].

6



Figure 1.3: Examples of commercially available insulin delivery devices, starting
from the standard insulin syringe, to more sophisticated systems such as the insulin
pen, the jet injector and the insulin pump.

As an additional barrier to optimizing insulin therapy, the vast majority of

people affected by T1D are treated with MDI therapy, which relies on injection

therapy, inhaled insulin, or basic patch pumps, entailing a higher sensitivity

to omitted and miscalculated doses [25]. Indeed, MDI therapy is the most

common insulin therapy regimen compared to CSII and, worldwide, the usage

of MDI ranges from 70% to 99% of all patients with T1D [26]. However, data

collected from individuals treated under MDI therapy showed that one in four

meals is associated with either a late or missed insulin bolus [27].

All the aforementioned aspects greatly impact the achievement of optimal

glycemic control. Therefore, the complexity in estimating the correct amount

of prandial insulin together with the multiple factors which affect such a dosage

justify the use of algorithms and devices that facilitates insulin dosing, by eas-

ing the burden of this task while incorporating a more personalized and reli-

able calculation, which does not require any effort from the patient.

1.3 Advances in technology for T1D management

As mentioned in the previous Section, the vast majority of people living with

T1D follow the MDI therapy, leaving a large population who could benefit

7



from the availability of tools to support daily insulin dosing but who do not

want the inconvenience, cost, complexity, or commitment required with in-

sulin pump systems. The increasing use of insulin pen technology, which sup-

ports the patient in insulin administration, fostered the investigation of smart

bolus calculators to be integrated within such a device. With the populariza-

tion of smartphones, Bluetooth and near-field connectivity, a new category of

smart insulin pens was released, which offer this dosing support by connect-

ing wirelessly with a smartphone and a diabetes management app, addressing

challenges in optimizing insulin injection therapy such as omitted and miscal-

culated doses[25] [28]. One such insulin pen is the InPen, the first Food and

Drug Administration (FDA)-cleared insulin pen with a bolus calculator in the

form of a smartphone app, which includes several features such as data in-

tegration with CGM devices and a detailed insulin dosing record [29, 25, 30].

The benefits associated with automated bolus calculators have been already

demonstrated in multiple studies [31, 32]. Hence, developing new insulin dos-

ing adjustment methods to overcome the limitations which characterize the

standard insulin therapy is becoming a key point in T1D research.

1.4 Simulation software for the development and

testing of insulin treatments

The recent development of simulation tools which mimic the glucose-insulin

interaction in people affected by T1D has been of great help in advancing T1D

research.

Several mathematical models have been proposed to describe the physiol-

ogy of patients with T1D, including those of Hovorka et al. [33], Willinska et

al. [34], Kanderian et al. [35], Haidar et al. [36], and Visentin et al. [37]. The
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primary application of this simulation software consists in simulating and test-

ing treatment protocols identical to proposed clinical studies and measuring

the impact on T1D management and treatment. Indeed, such tools have pro-

moted the investigation of new strategies aimed at improving the therapy of

this disease, by allowing the simulation of realistic scenarios. For this reason,

in recent years T1D research community focused on the design of novel algo-

rithms aimed at preventing the occurrence of adverse events thanks to glucose

prediction models and mitigating the entity of such events through the deliv-

ery of rescue carbohydrate intakes, corrective insulin boluses or through the

optimization of mealtime insulin dose.

1.4.1 The UVA/Padova T1D Simulator

In particular, the proposed insulin dosing strategies included in this thesis

were developed thanks to the use of the UVA/Padova T1D simulator [38],

which relies on a comprehensive mathematical model of glucose metabolism

in T1D subjects. In the following the principal components of the simulation

environment that enabled the realization of the presented algorithms will be

explained.

This simulator consists of 13 nonlinear differential equations, that accu-

rately describe the metabolism of a T1D subject. These equations contain more

than 30 parameters to capture the large variability in glucose dynamics among

individuals with T1D (inter-patient variability). The simulator included a pop-

ulation of 300 in silico subjects (100 adults, 100 adolescents, and 100 children),

and each virtual subject was represented by a model parameter vector, which

was randomly extracted from an appropriate joint parameter distribution. Fig-

ure 1.4 depicts a scheme of the model included within the simulation software.

The first version of this computer simulator is the UVA/Padova T1D Simula-
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tor S2008 [39]. The updated version, the UVa/Padova T1D simulator S2013

[38], presents several additional improvements concerning S2008, both on the

model on which the simulator is based, but also on the joint parameter distri-

bution, the definition of clinically relevant parameters, and the strategy for a

virtual patient generation. Its latest version, the UVa/Padova T1D simulator

S2018 [37], introduces important time-varying phenomena in the simulation:

a model of the so-called ’dawn phenomenon, i.e., an increase of endogenous

glucose production in the early morning, and a model of intra-day variations

of insulin sensitivity, which mimic the daily patterns observed in vivo. The

pattern of insulin sensitivity is also subjected to random inter-day variations.

In this thesis, S2013 was employed for the work presented in Chapters 3 and

4, while S2018 was for Chapter 5. Notably, in 2008 and then in its revised

version in 2013, the UVA/Padova T1D model was accepted by the FDA as an

alternative to pre-clinical trials.

1.4.2 Evaluating new insulin dosing strategies through in-silico

clinical trials

As mentioned in the previous section, such simulation tools can be leveraged

not only to develop new therapeutic strategies but also to preliminary assess

their effectiveness. Indeed, testing new therapies for T1D treatment on hu-

man subjects is a time-consuming, costly and risky process. According to the

Tufts Center for the Study of Drug Development, the commercialization of

new pharmaceutical products has been increasing exponentially mainly be-

cause of clinical assessment [40]. Clinical assessment requires the enrollment

of a sufficient number of subjects to provide proof of a new product/treatment

superiority. More importantly, clinical studies have to guarantee patient safety,

but this is not easy as it strongly depends on which strategy one has to test.
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Figure 1.4: Scheme of the model included in the FDA-accepted T1DM simulator.
White blocks are the unit processes of S2008 (gastro-intestinal tract, glucose kinetics
and insulin kinetics); grey blocks are those that were updated in the S2013 to account
for counter-regulation (liver, muscle, and adipose tissue); black blocks were added in
the latest update (alpha cell, glucagon kinetics, and delivery).
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To overcome these issues, in-silico clinical trials (ISCTs) can be performed.

A lot of time was spent in discussing a definition of in silico clinical trials that

were broad enough to cover all relevant use cases, but specific enough to be

informative and useful. The consensus was reached on the following: "The

use of individualized computer simulation in the development or regulatory

evaluation of a medicinal product, medical device, or medical intervention.

It is a subdomain of in silico medicine, the discipline that encompasses the

use of individualised computer simulations in all aspects of the prevention,

diagnosis, prognostic assessment, and treatment of disease" [41]. Hence, the

main advantage of ISCTs is that they allow the testing of new treatments in a

large number of virtual subjects, at low costs, in short times, and maintaining

the same surrounding conditions.

Specifically, ISCTs could be a powerful tool to preliminary evaluate the

safety and effectiveness of new insulin dosing strategies, by exploring the im-

pact of new insulin treatments both in a low-risk situation and in numerous

high-risk scenarios, which are impossible, dangerous, and unethical to repli-

cate in a real-life setting, without any risk for real patients. For this reason,

ISCTs are increasingly used to assess the performance of new therapies, medi-

cal guidelines, or algorithms for the treatment of T1D in pre-clinical trials.

1.5 Towards a personalized insulin bolus calculator

Over the last few years, the development of simulation tools has encouraged

the investigation of new strategies to optimize insulin dosing. In addition,

the increased amount of available data collected thanks to new technologies

such as CGM sensors, insulin pens and pumps, fostered the development of

smart bolus calculators integrating powerful data-driven strategies aimed at

improving the standard bolus calculator based on different optimization tech-
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niques. For instance, in Herrero et al. [42], run-to-run control and case-based

reasoning were used to provide insulin dose recommendations based on the

retrospective optimization of the therapy parameters of (1.1) (i.e., CR and CF)

performed daily, while in Fabris et al. [43] the use of two methods to inform

insulin dosing with biosignals from wearable sensors, i.e. insulin sensitivity

estimated through CGM signal and the step count was proposed. In addition,

in Cappon et al. [44], a simple neural network was preliminarily investigated

for such a scope. All these studies produced positive results, encouraging fur-

ther efforts on this specific topic.

As a matter of fact, these strategies have the potential to greatly improve the

outcome of current standard therapy guidelines and at the same time allow to

reduce the burden which characterizes the treatment of T1D, by integrating

the algorithm into a smart insulin pen. Following this rationale, the design of

smart bolus calculators is key to optimising glycemic control, by personalizing

such a dosage both at an individual and population level. Indeed, CGM data

can be used to discover patterns that can be exploited to modulate meal-insulin

bolus accordingly. Furthermore, individualized parameters can be leveraged

to tailor the computation of this amount to the patient’s condition. Given the

complexity of the problem, the nonlinear nature of glucose-insulin dynamics

and the availability of a huge amount of information collected from different

domains, suitable strategies, which can implement data-driven techniques to

deliver personalized medical treatment, must be devised. To this end, the ap-

plication of machine learning methods in T1D is presently crucial to transform

the huge amount of available information into valuable knowledge.

In particular, supervised learning models, such as linear regression or deci-

sion trees, could be leveraged to target the optimal mealtime insulin dose, by

using input features extracted from the CGM data, such as the ROC informa-

tion, but also other easily accessible therapy parameters, such as CR, CF, or the
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body weight, that describe the individual patient’s physiology and character-

ize the glycemic response to a given amount of insulin [45].

However, the design of a supervised learning framework is far from being

trivial in such a context, due to the difficulty in retrieving the optimal target of

the learning task. Indeed, when considering data collected from people living

with T1D, the administered mealtime insulin bolus is in most cases subop-

timal, leading to poor postprandial glycemic control. Moreover, the insulin

amount estimation is highly patient-dependent, making it difficult to train a

general model which is valid for different subjects. Hence, the difficulty in hav-

ing reliable data, which includes an optimal mealtime insulin bolus, together

with the need for a model which is tailored to the patient’s needs, promotes the

application of reinforcement learning for such a task. Indeed, the application

of reinforcement learning is particularly suitable, since it aims at automating

the decision-making process characterized by T1D management, by learning

through interaction with a specific environment to achieve a goal, without the

need for labelled data. The previous considerations set the stage for this thesis

work, which focuses on the design of smart mealtime insulin bolus calculators,

by exploring both supervised learning and reinforcement learning techniques,

to overcome the intrinsic limitations which characterize the standard guide-

lines for mealtime insulin dosing.

1.6 Aim and structure of the thesis

In this thesis, the open issues related to the standard guidelines for insulin dos-

ing will be addressed. Particularly, this work aims to propose new strategies

which tailor the insulin dosing to the patient, by applying linear and nonlinear

supervised learning algorithms, as well as reinforcement learning, while inte-

grating both information on glucose dynamics and patient-specific features.

14



The thesis is structured as follows: in Chapter 1, an introduction to T1D

management and the related technologies is given, with a specific focus on

insulin therapy. Moreover, we pointed out the key role of simulation tools in

designing and testing novel insulin dosing strategies, through in silico clinical

trials (ISCTs).

Then, in Chapter 2, a review of the current state-of-art methods for insulin

dose adjustment was performed. Such approaches take into account the in-

formation related to the glucose dynamics, are easily accessible in real-time

thanks to the use of continuous glucose monitoring (CGM) sensors and are

based on empirical strategies. In addition, we proposed a novel method in

collaboration with the Unit of Metabolic Diseases (Department of Medicine,

Padova), which is based on the literature. The evaluation of the effectiveness

of both the state-of-art methods and the proposed technique was conducted

within an ISCT, employing the UVA/Padova T1D Simulator. This preliminary

analysis pointed out that there is no literature method which outperforms the

others in terms of postprandial glycemic control, highlighting the need for in-

sulin dosing strategies specifically tailored to the subject and that adopt a rig-

orous modelling approach. The work proposed in this Chapter was previously

published in [46] and [47].

Hence, in Chapters 3 and 4 we discussed the development of supervised

models to improve mealtime insulin dosing, starting from the generation of

the simulated dataset employed for the modelling procedure (Chapter 3) and

the design and assessment of the models (Chapter 4). The dataset was created

by means of the UVA/Padova T1D simulator and included patient-specific pa-

rameters describing the mealtime condition in a noise-free environment. We

pointed out the importance of using a simulated dataset for such a purpose,

due to the difficulty in retrieving the optimal insulin dose, i.e. the insulin

amount leading to an optimal postprandial glycemic control, within records

15



belonging to real-world clinical data. We leveraged the generated dataset for

the design of the population supervised learning models to target the opti-

mal insulin dose. Both linear and nonlinear approaches were proposed, to

improve the SF traditionally used for such a task and, hence, improve the qual-

ity of glycemic control while increasing model complexity. We evaluated the

models’ performance through an ISCT, which showed the ability of the pro-

posed models to better approach the optimal dosage compared to the standard

guidelines. Among the proposed models, we selected a final candidate model,

showing the more appropriate trade-off in terms of model interpretability and

performance, and we evaluated the efficacy of the selected model within a

scenario which included error sources, such as the CGM measurement error

or the carbohydrates counting error. The positive results obtained through

the ISCT were confirmed by the aforementioned retrospective analysis on real

data. Therefore, preliminary results suggested that the combination of both

personalized features and machine learning-based models is key to improv-

ing the calculation of the mealtime insulin dose and further reducing the risk

of hypo- and hyperglycemia. However, the design of a supervised learning

framework is far from being trivial in such a context, due to the difficulty in re-

trieving the optimal target of the learning task. Moreover, the insulin amount

estimation is highly patient-dependent, making it difficult to train a popula-

tion model tailored to different subjects. This Chapter is based on the work

published in [48, 49, 50].

To overcome the previous limitations, in Chapter 5, we proposed an indi-

vidualized and adaptive insulin dosing technique, based on a double deep Q

learning algorithm, which is tailored to the patient thanks to a personaliza-

tion procedure relying on a two-step learning framework. The proposed dos-

ing strategy was developed and tested using the UVA/Padova T1D Simulator,

showing a beneficial impact on glycemic control compared to the standard
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guidelines.

Finally, the major contributions and findings of this thesis were summa-

rized within Chapter 6, pointing out the possible applications and future de-

velopments of the presented work.
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Chapter 2

Literature approaches to adjust the

standard formula (SF) for insulin

dosage: review and in-silico

evaluation

The advantages offered by the adoption of CGM devices in T1D therapy are

remarkable since they provide not only quasi-continuous readings of glucose,

but also display a trend arrow indicating its magnitude and direction, i.e., the

glucose ROC. Trend arrows grant a rough short-term forecast of future glucose

concentration to the user, for this reason, knowledge of trend arrows opened

up the possibility of their integration within the mealtime insulin bolus (IB)

calculation. As highlighted in Chapter 1, the SF does not take into account

the information on glucose ROC provided by trend arrows, thus potentially

leading to a suboptimal dosage. In general, a positive ROC may suggest that

the IB dose should be increased, while, on the other hand, a negative ROC

indicates that the dose should be reduced. Even if intuitive, providing clear

and effective recommendations on how to adjust the IB based on ROC is far
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from trivial, since under/over dosages could potentially lead to suboptimal

glycemic control and, in some cases, to critical glycemic levels [51]. Hence,

the need for precise guidelines together with the availability of trend arrows

fostered the development of several methodologies aimed at adjusting the SF

by considering the ROC. However, a comprehensive comparison of the perfor-

mance and safety of such methods is still missing. Designing a trial to answer

this question could not be easy, since comparing several methods for IB cal-

culation under the same mealtime conditions could be practically impossible.

This problem can be circumvented by resorting to ISCTs, to draw preliminary

indications. An ISCT for such a purpose was designed by Cappon et al. [52],

where the UVA/Padova T1D Simulator [38] was used to test mealtime insulin

dosing strategies accounting for ROC in the same scenario. However, [52] the

evaluation was limited to three literature methodologies available at that time,

while in the last year several other methods were published [53, 54, 55, 56, 57].

Hence, the study proposed in this Chapter aims to perform a more extensive

comparison, including, in addition to the three methods originally considered,

other four recently published methods, reviewed in the following Section 2.1.

Moreover, a novel adjustment method will be proposed in Section 2.2 devel-

oped in collaboration with the Unit of Metabolic Diseases at the Department

of Medicine (University of Padova). The literature methods, together with the

proposed one, will be evaluated in Section 2.3 thanks to an ISCT, using the

UVa/Padova T1D simulator in a single-meal scenario. Lastly, results in terms

of safety obtained from the analysis of real data, where our method was em-

ployed from the patients, will be reported in Section 2.4.

The work presented in this Chapter was published in the papers of Noaro

et al. [46] and Bruttomesso et al. [47].
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2.1 Review of the current literature methods for in-

sulin dose adjustment

We considered the three methods by Buckingham et al. (BU) [57], Scheiner

(SC) [53], Pettus/Edelmann et al. (PE) [56], already considered in [52], and

the three recent contributions by Klonoff/Kerr (KL) [58], Aleppo/Laffel et al.

(AL) [55], and Ziegler et al. (ZI) [54]. The analysed literature methods correct

the insulin dose based on the glucose ROC, sharing the same division into five

separate intervals, which are based on the direction and magnitude of glucose

change. Particularly, if the ROC takes values between -1 and +1 mg/dL, it is

considered stable, and no correction is needed, while adjustments are applied

for positive (i.e., [+1, +2] mg/dL/min and [+2, +3] mg/dL/min) and negative

(i.e., [-1, -2] mg/dL/min and [-2, -3] mg/dL/min) ROC values. To summa-

rize the methodologies, we classified them into three categories based on the

different approaches adopted to adjust SF according to ROC.

2.1.1 Method based on a percentage modulation of SF

This category contains only BU, which is the first published guideline for meal-

time IB adjustment using ROC. The authors suggested adjusting the SF of Eq.

1.1 by applying a percent modulation proportional to the ROC value. Of note,

it has been shown that such modulation is perceived as too modest from the

patient perspective, who usually prefers larger adjustments [59].

2.1.2 Methods based on the adjustment of current glucose in

SF

This category, which includes SC and PE methods, exploits the notion of an-

ticipated glucose, i.e., the predicted glucose value in 30-60 minutes given Gc,
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and ROC. This interval approximately corresponds to the time required by

rapid-acting insulin analogue to affect the glucose concentration, in addition,

the 30-60 minutes timeframe is short enough to assume that the glucose trend

will be stable within that interval. Thus, SC and PE methods followed this

rationale to adjust the Gc used within the SF 1.1according to ROC magnitude

and direction by increasing/decreasing its value. Particularly, the SC approach

is more conservative compared to PE, since the former proposes adjustments

lower in module compared to the latter.

2.1.3 Methods that correct SF by a fixed amount

The three previous methods could be burdensome for T1D individuals, espe-

cially for those who lack numeracy skills and may experience difficulties in

estimating the right dose due to the required calculations [22]. For this rea-

son, KL, AL, and ZI work proposed a simplified approach, which consists in

modifying the SF by a fixed insulin amount, both without considering person-

alized information of the T1D individual, as in KL, or adjusting also based on

a personalized therapy parameter, i.e., CF, as in AL, and ZI.

We refer the reader to Tables 2.1 and 2.2 for more details on these method-

ologies.

2.2 Design of a novel empirical method (Bruttomesso

et al.)

The insulin adjustment method proposed in the work of Bruttomesso et al. [47]

(BR) is based on the literature correction previously proposed by Ziegler et al.

[54], but narrower intervals for starting BG values and CF were considered. In

particular, the proposed method relies on the same division in ROC intervals,
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while modifying the CF subdomains, by considering five distinct classes of

insulin sensitivity factors: less than 30, between [30 - 40], between [40 - 60], be-

tween [60 - 90] and higher than 90 mg/dL/U. In addition, compared to Ziegler

et al., the prandial glucose value was divided into three possible classes, i.e.,

[70 - 120], [120 - 180], [180 - 250] mg/dL. Narrower intervals were considered

for both CF and Gc to better tailor the insulin correction to the patient’s condi-

tions. Further details on the proposed method are reported in Table 2.3, which

shows the correction value for each interval.

23



T
ab

le
2.

1:
G

ui
de

lin
es

fo
r

IB
ad

ju
st

m
en

t
re

la
te

d
to

th
e

w
or

ks
of

BU
,S

C
,P

E,
K

L,
an

d
A

L.
Th

e
re

po
rt

ed
va

lu
es

ar
e

lim
it

ed
to

th
e

ca
se

s
of

in
te

re
st

(R
O

C
>

3
m

g/
dL

/m
in

or
<

-3
m

g/
dL

/m
in

ar
e

ex
cl

ud
ed

A
dj

us
tm

en
tm

et
ho

d

BU
SC

PE
K

L
A

L

C
F

<2
5

25
-5

0
50

-7
5

>7
5

Po
si

ti
ve

R
O

C

[m
g/

dL
/m

in
]

2-
3

+2
0%

of
IB

SF
+5

0
m

g/
dL

to
G

C
+7

5
m

g/
dL

to
G

C
+1

.5
U

+3
.5

U
+2

.5
U

+1
.5

U
+1

U

1-
2

+1
0%

of
IB

SF
+2

5
m

g/
dL

to
G

C
+5

0
m

g/
dL

to
G

C
+

1
U

+2
.5

U
+1

.5
U

+1
U

+0
.5

U

St
ab

le
R

O
C

[m
g/

dL
/m

in
]

<1
0

0
0

0
0

N
eg

at
iv

e
R

O
C

[m
g/

dL
/m

in
]

1-
2

-1
0%

of
IB

SF
-2

5
m

g/
dL

to
G

C
-5

0
m

g/
dL

to
G

C
-1

U
-2

.5
U

-1
.5

U
-1

U
-0

.5
U

2-
3

-2
0%

of
IB

SF
-5

0
m

g/
dL

to
G

C
-7

5
m

g/
dL

to
G

C
-1

.5
U

-3
.5

U
-2

.5
U

-1
.5

U
-1

U

24



T
ab

le
2.

2:
G

ui
de

lin
es

fo
r

IB
ad

ju
st

m
en

t
re

la
te

d
to

th
e

w
or

k
of

Z
I.

Th
e

re
po

rt
ed

va
lu

es
ar

e
lim

it
ed

to
th

e
ca

se
s

of
in

te
re

st
(R

O
C

>
3

m
g/

dL
/m

in
or

<
-3

m
g/

dL
/m

in
ar

e
ex

cl
ud

ed
,a

s
w

el
la

s
pr

an
di

al
BG

>
25

0
m

g/
dL

).

G
lu

co
se

le
ve

l

70
-1

80
m

g/
dl

18
0-

25
0

m
g/

dl

C
F

<2
5

25
-5

0
50

-7
5

>7
5

<2
5

25
-5

0
50

-7
5

>7
5

Po
si

ti
ve

R
O

C

[m
g/

dL
/m

in
]

2-
3

+2
.5

+
2

+
1

+
0.

5
+3

.5
+

2.
5

+
1.

5
+

1

1-
2

+1
.5

+
1

+
0.

5
+

0.
5

+2
.5

+
1.

5
+

1
+

0.
5

St
ab

le
R

O
C

[m
g/

dL
/m

in
]

<1
0

0
0

0
0

0
0

0

N
eg

at
iv

e
R

O
C

[m
g/

dL
/m

in
]

1-
2

–2
.5

–1
.5

–1
–0

.5
–2

–1
–0

.5
–0

.5

2-
3

–3
.5

–2
.5

–1
.5

–1
–3

–2
–1

–1

25



T
ab

le
2.

3:
G

ui
de

lin
es

fo
r

IB
ad

ju
st

m
en

t
re

la
te

d
to

th
e

w
or

k
of

BR
.T

he
re

po
rt

ed
va

lu
es

ar
e

lim
it

ed
to

th
e

ca
se

s
of

in
te

re
st

(R
O

C
>

3
m

g/
dL

/m
in

or
<

-3
m

g/
dL

/m
in

ar
e

ex
cl

ud
ed

,a
s

w
el

la
s

C
F

>
90

an
d

pr
an

di
al

BG
>

25
0

m
g/

dL
).

G
lu

co
se

le
ve

l

70
-1

19
m

g/
dl

12
0-

18
0

m
g/

dl
18

1-
25

0
m

g/
dl

C
F

<3
0

30
-4

0
40

-6
0

60
-9

0
<3

0
30

-4
0

40
-6

0
60

-9
0

<3
0

30
-4

0
40

-6
0

60
-9

0

Po
si

ti
ve

R
O

C

[m
g/

dL
/m

in
]

2-
3

+2
+

1.
5

+
1

+
0.

5
+2

.5
+

2
+

1.
5

+
1

+
3

+
2.

5
+

2
+

1.
5

1-
2

+1
+

1
+

0.
5

+
0.

5
+1

.5
+

1.
5

+
1

+
1

+
2

+
2

+1
.5

+
1.

5

St
ab

le
R

O
C

[m
g/

dL
/m

in
]

<1
0

0
0

0
0

0
0

0
0

0
0

0

N
eg

at
iv

e
R

O
C

[m
g/

dL
/m

in
]

1-
2

–2
–2

–1
.5

–1
.5

–1
.5

–1
.5

–1
–1

–1
–1

–0
.5

–0
.5

2-
3

–3
–2

.5
–2

–1
.5

–2
.5

–2
–1

.5
–1

–2
–1

.5
–1

–0
.5

26



2.3 Evaluation of methods’ effectiveness through an

in-silico clinical trial

2.3.1 Simulation environment

Each methodology was assessed through ISCTs in a simulated environment,

being such a framework suitable for this type of analysis, where a virtual co-

hort of T1D individuals underwent different IB adjustments maintaining the

same scenario. The UVA/Padova T1D Simulator (T1DS) [38] was used, and the

virtual cohort included 100 adult subjects, which assumed a range of CF values

from 26 to 67 mg/dL/U. Briefly, T1DS [60], consists of a mathematical model

describing the glucose-insulin dynamics in people with T1D using 13 differen-

tial equations and more than 30 parameters to represent the large inter-subject

variability. T1DS is equipped with 100 virtual subjects, each associated with a

different realization of the parameter set, which can be used to assess the per-

formance of new strategies for T1D management by designing ad-hoc ISCTs.

The software has been accepted in 2008 by the Food and Drug Administra-

tion as an alternative to preclinical trials and it is widely used by the diabetes

technology research community [48, 52, 43, 61, 62]. Within this framework,

each subject underwent multiple single-meal ISCTs, lasting 12 hours, from 7

am to 7 pm. The first timeframe (from 7 am to 1 pm) was exploited to bring

the subject to specific prandial conditions. Particularly, we simulated differ-

ent scenarios in terms of ROC, ranging between -2 and +2 mg/dL/min with

a step of 0.5 mg/dL, and BG, taking values of 80, 120, 160, and 200 mg/dL.

We did not cover ROC values higher than 2 mg/dL and lower than -2 mg/dL,

since those values were not easily obtainable through realistic actions (e.g.,

small CHO intakes or insulin boluses) assumed in the preprandial window.

Then, a meal was set at 1 pm, when each virtual subject had a carbohydrate
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Figure 2.1: Representative examples of BG curves during postprandial time window
for different methods of insulin bolus computation and different mealtime conditions.
Mealtime ROC is negative (-1.5 mg/dL/min), starting BG=160 mg/dL and meal CHO
is 60 g. The calculated IB doses are IBSF=3.62 U, IBBU=3.26 U , IBSC=3.02 U, IBZI=2.12
U.

intake composed of different amounts (from 10 to 150 g, with a step of 10 g)

and the corresponding IB, computed using the methodologies under assess-

ment (SF, BU, SC, PE, KL, AL, ZI, BR), was tested for each prandial condition.

The simulation lasted for a postprandial interval of 6 hours (from 1 pm to 7

pm), in which glucose fluctuations were not affected by any corrective action.

Moreover, within the experimental set-up, we did not consider any source of

error, i.e., BG measurement error, ROC estimation error, CHO counting error,

nor variability, i.e., insulin sensitivity, to evaluate only the contribution given

by the literature methods. Thus, for each prandial status, which is defined

by a specific combination of ROC and BG at mealtime, 1500 glycemic traces

were generated, resulting from 15 different CHO amounts for every virtual

subject. A representative example of the simulated mealtime scenario is re-

ported in Figure 2.1, where, for better visualization, only SF, SC, BU and ZI

insulin dosages were applied.
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2.3.2 Evaluation metrics and statistical analysis

For the sake of simplicity, results were grouped into two different main sce-

narios based on prandial ROC values, i.e., negative (-2, -1.5, -1 mg/dL) and

positive (1, 1.5, 2 mg/dL), to assess the benefit of a decreased and increased IB

dose separately. Moreover, we evaluated the literature methods performances

within the 6-hour postprandial interval of each simulation, by computing stan-

dard metrics that quantify glucose control, such as the BG risk index (BGRI)

[63], the percentage of time spent within the target glycemic range (TIR), i.e.,

BG between 70-180 mg/dl, above the range (TAR), i.e., BG > 180 mg/dl and

below the range (TBR), i.e., BG < 70 mg/dl [64, 65]. To better highlight the

possible improvement concerning SF, we calculated the point differences be-

tween each metric obtained with the literature methods and SF (∆BGRI, ∆TIR,

∆TAR, ∆TBR). In addition, summary results of every single metric distribution

will be presented in the median and interquartile range. The statistical sig-

nificance was evaluated on the single metric distributions, by applying Fried-

man’s test with a 5% significance level. We used this nonparametric test, due to

the non-Gaussian metric distributions and the repetition of the subjects within

the dataset. Moreover, the p-values resulting from the statistical test were ad-

justed using the Bonferroni correction to account for multiple comparisons.

2.3.3 Results

Differences between the metric distributions (∆BGRI, ∆TIR, ∆TAR, ∆TBR) are

shown in Figures 2.2, 2.3, 2.4, and 2.5, for the two scenarios, i.e., positive and

negative ROC, and for each prandial BG value considered in the study, i.e., 80

mg/dL, 120 mg/dL/ 160 mg/dL, 200 mg/dL. In the figures, we highlighted

with green/red backgrounds the regions in which the literature method led to

an improvement/worsening of glucose control versus SF respectively. More-
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over, in Tables 2.4 and 2.5 the resulting median and interquartile ranges of the

single metric distributions for each method are reported. For each scenario, the

method leading to the best glucose control was selected and highlighted with

bold text within Tables 2.4 and 2.5. The selection was performed by looking

first at those minimizing BGRI, which is a global metric considering both the

risk of hyperglycemia and hypoglycemia, in presence of similar BGRI values,

also TAR, TIR and TBR were taken into account in the selection process.

Negative ROC scenario

As shown on the left side of Figures 2.2, 2.3, 2.4, and 2.5, similar glycemic con-

trol was obtained when the ROC is negative for all considered metrics and all

BG values. In particular, it was generally found that ∆TAR < 0 (red area), indi-

cating an increased TAR compared to SF. On the other hand, ∆TBR was mostly

above 0 (green area), showing an improvement in TBR for all methods versus

SF. This result was expected, since a negative ROC drives to a lower IB amount

compared to SF, promoting the shortcoming of hyperglycemic episodes. More-

over, ∆TIR and ∆BGRI improved for all the BG values compared to SF. The

overall improvement of the latter metric can be explained by the greater risk

associated with hypoglycemia concerning hyperglycemia within the BGRI. Fi-

nally, it can be noticed that the more the starting BG is higher, the more the

improvement in terms of ∆BGRI, ∆TBR, and ∆TIR is evident. Analyzing the

results of the single metrics reported in Table 2.4, the following considerations

can be made: BG = 80 mg/dL: All the methods produced lower TBR, and an

improved TIR compared to SF. However, despite the such improvement, no

statistical difference was detected between the metric distributions obtained

with the literature methodologies and SF. The method of KL achieved the high-

est median TIR (60.66% compared to 55.40% of SF) and the lowest BGRI (from

9.62 to 8.94). BG = 120 mg/dL: Methods of PE, KL, AL, ZI, and BR obtained
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higher TIR compared to SC and BU, while all the approaches reached a me-

dian value of TBR equal to 0%, with AL and ZI having a significant reduction

compared to SF. The methods leading to the lowest BGRI values were BR and

PE, with BR reaching the highest median TIR (65.93%). BG = 160 mg/dL: Also,

in this case, the most moderate improvement was given by BU and SC, while

the outcomes obtained by PE, KL, AL, ZI, and BR are more pronounced, es-

pecially in terms of median TBR, reporting median values of 0%, which are

significantly lower compared to SF. The worsening in TAR showed a signif-

icant difference from SF for KL and ZI. The method providing the best per-

formance in terms of TIR and BGRI, without significantly increasing the TAR,

resulted in PE. BG = 200 mg/dL: The benefits provided by the correction of

SF are more evident, indeed the BGRI values obtained by PE, KL, AL, and ZI

are significantly lower than those of SF, as well as the improvement of TIR and

TBR. Methods of AL and PE achieved a median TBR equal to 0%, reaching

the lowest BGRI values and the highest TIR (53.19% and 50.97% respectively).

We observed, however, a moderate increase of TAR, which became significant

only for AL, suggesting an under-correction by such a method. For this reason,

PE led to the best performance, since it did not significantly increase the TAR.

Table 2.4: Quantitative assessment of glycemic control when prandial ROC is neg-
ative. Median and interquartile ranges of BGRI, TAR, TIR, and TBR are reported for
each state-of-art method and SF, according to the prandial value of BG (80, 120, 160,
200 mg/dL). Bold text indicates the best performing methods within the prandial ROC
and BG subdomain.
*statistically significant compared to SF.

Negative ROC

BG [mg/dL] BGRI TAR TIR TBR

80

BU
8.99

[4.64-16.47]

13.57

[0-30.33]

59.83

[38.23-81.99]

7.76

[2.77-39.89]
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SC
8.97

[4.64-16.66]

15.79

[0-30.75]

59.83

[37.67-81.44]

6.93

[2.49-40.44]

PE
9.06

[4.82-15.99]

19.39

[0-34.63]

60.39

[39.89-78.95]

4.99

[1.94-35.18]

KL
8.94

[4.79-16.18]

18.56

[0-33.52]

60.66

[39.06-79.22]

5.26

[1.94-37.53]

AL
9.24

[4.93-16.34]

20.22

[0-36.01]

59.56

[39.06-78.12]

4.99

[1.66-34.9]

ZI
9.24

[4.93-16.34]

20.22

[0-36.01]

59.56

[39.06-78.12]

4.99

[1.66-34.9]

BR
9.47

[5.12-16.38]

22.16

[0-37.12]

58.73

[39.61-76.45]

4.71

[1.39-32.55]

SF
9.62

[4.75-18.14]

12.19

[0-28.25]

55.4

[34.9-81.44]

18.56

[3.6-44.04]

120

BU
8.35

[3.81-15.18]

20.78

[0-31.86]

63.16

[42.11-86.43]

0

[0-32.41]

SC
8.09

[3.63-15.54]

21.61

[0-31.58]

63.99

[41-87.53]

0

[0-32.69]

PE
7.79

[3.83-13.93]

25.48

[0-35.18]

65.65

[47.37-85.32]

0

[0-21.33]

KL
7.86

[3.81-14.23]

24.65

[0-34.35]

65.65

[45.71-85.87]

0

[0-24.93]

AL
8.03

[3.88-13.95]

26.59

[0-36.57]

65.1

[47.37-83.93]

0*

[0-17.59]

ZI
8.03

[3.88-13.95]

26.59

[0-36.57]

65.1

[47.37-83.93]

0*

[0-17.59]
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BR
7.85

[3.85-14.01]

25.21

[0-34.9]

65.93

[47.09-85.32]

0

[0-22.16]

SF
9.34

[3.97-18.28]

18.84

[0-29.64]

57.06

[36.84-86.15]

19.53

[0-38.78]

160

BU
9.28

[4.31-16.59]

25.21

[0-34.07]

59.97

[37.95-84.49]

5.26

[0-32.41]

SC
9.09

[3.92-17.79]

25.21

[0-32.96]

59.28

[35.73-87.26]

6.65

[0-34.07]

PE
8

[3.9-14.79]

28.53

[1.94-36.01]

66.07

[43.07-84.76]

0*

[0-22.99]

KL
8.18

[3.87-15.25]

27.7

[0-35.46]

64.82

[41-86.01]

0*

[0-26.32]

AL
8.15

[4.06-14.42]

29.64*

[6.65-37.67]

65.37

[45.71-83.38]

0*

[0-18.01]

ZI
8.15

[4.06-14.42]

29.64*

[6.65-37.67]

65.37

[45.71-83.38]

0*

[0-18.01]

BR
8.03

[3.89-14.82]

28.25

[0-36.01]

65.93

[42.94-85.04]

0*

[0-23.55]

SF
11.58

[4.91-21.91]

22.99

[0-31.02]

46.54

[32.13-81.72]

28.95

[0-40.72]

200

BU
13.19

[6.89-21.92]

34.07

[22.44-41.27]

37.67

[25.76-65.37]

26.32

[0-37.67]

SC
13.71

[6.44-24.75]

33.24

[22.71-39.89]

34.9

[23.55-67.87]

28.81

[0-39.89]

PE
10.69*

[5.31-19.34]

36.01

[26.59-42.66]

50.97*

[28.12-70.91]

0*

[0-31.58]
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KL
11.17*

[5.51-20.38]

35.46

[25.48-42.11]

46.81*

[26.87-70.64]

8.73*

[0-34.07]

AL
10.38*

[5.46-18.35]

37.12*

[27.98-44.04]

53.19*

[29.92-69.53]

0*

[0-28.67]

ZI
11.6*

[5.57-20.98]

35.18

[25.21-41.83]

44.88*

[26.04-70.64]

12.47*

[0-34.9]

BR
12.56

[5.88-22.85]

34.07

[23.82-40.72]

38.23

[24.65-70.36]

23.27

[0-37.67]

SF
17.73

[8.79-30.3]

31.58

[20.5-38.23]

29.36

[21.05-52.35]

37.4

[18.28-45.71]

Positive ROC scenario

By observing the right side of Figures 2.2, 2.3, 2.4, and 2.5, similar, specular,

considerations to the previous scenario can be made for all BG values while

considering positive ROC values. As expected, since in such a scenario all

methods led to a higher IB dosage, the ∆TAR improved (green area), while

the ∆TBR generally showed positive distributions (red area), indicating an in-

creased number of hypoglycemic episodes induced by the considered methods

concerning SF. The medians ∆BGRI and ∆TIR resulted mostly above and be-

low zero (red areas), respectively, suggesting a general worsening of the over-

all glycemic control, especially when high mealtime BG values were consid-

ered. By analyzing Table 2.5, the following considerations can be made: BG =

80 mg/dL: The TIR of all the literature methods did not differ significantly

from SF, as well as the BGRI distributions. The 75th percentile of TBR in-

creased, maintaining the median to 0%, on the contrary, the TAR decreased

for all the methods. The increase in TBR was found significant only for PE and

AL, likewise the reduction in TAR. The method having the best performance
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in terms of TIR and BGRI proved to be BR, despite the moderate improvement

(TIR from 61.22% of SF to 63.16%, BGRI from 9.61 of SF to 8.86). BG = 120

mg/dL: Methods of PE, KL, AL, ZI, and BR were shown to be overly aggres-

sive, by significantly increasing the median TBR. Despite the TAR improve-

ment for each method, all the TIR distributions led to a lower median value

than the one of SF. The two methods that maintained a median value compa-

rable to the one of SF (59%) are the most conservative ones, i.e., BU and SC,

with the latter reaching the highest value (57.62%). BG = 160 mg/dL. Methods

of PE, KL, Al, ZI, and BR induced a significant worsening of TBR compared

to SF. Moreover, AL resulted particularly aggressive, by significantly decreas-

ing the TIR (from 51.25% of SF to 31.3%). The most conservative methods,

i.e., BU and SC, provided a small improvement in TAR (from 38.23% of SF to

35.46 and 35.73%, respectively). On the other hand, being more conservative,

allowed BU and SC not to significantly increase the TBR. BG = 200 mg/dL: The

BGRI, TIR and TBR distributions considerably worsened compared to SF for

PE, KL, AL, ZI, and BR, suggesting an overcorrection of the IB amount. Only

the TAR improved for all the methods, taking values between 29.09-31.58%

from 33.24% of SF. Also, in this case, BU and SC proved to be the safest meth-

ods, with the latter reaching the best trade-off when considering all the metrics.

Table 2.5: Quantitative assessment of glycemic control when prandial ROC is pos-
itive. Median and interquartile ranges of BGRI, TAR, TIR, and TBR are reported for
each state-of-art method and SF, according to the prandial value of BG (80, 120, 160,
200 mg/dL). Bold text indicates the best performing methods within the prandial ROC
and BG subdomain.
*statistically significant compared to SF.

Positive ROC

BG [mg/dL] BGRI TAR TIR TBR

80

BU
9.33

[5.22-15.79]

32.41

[24.1-40.17]

60.94

[41.83-75.35]

0

[0-13.85]
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SC
9.02

[4.74-15.26]

31.86

[21.61-40.44]

62.88

[45.71-77.56]

0

[0-4.71]

PE
9.17

[4.27-17.32]

28.53*

[16.34-36.29]

61.22

[37.67-81.72]

0*

[0-28.25]

KL
9.21

[4.46-16.96]

29.09

[17.31-36.84]

61.5

[38.78-79.92]

0

[0-26.59]

AL
10.08

[4.57-18.85]

27.42*

[14.4-34.9]

55.4

[34.9-80.33]

0*

[0-33.24]

ZI
9.05

[4.37-16.58]

29.36

[17.73-37.12]

62.05

[39.61-80.06]

0

[0-24.65]

BR
8.86

[4.49-15.48]

30.75

[19.94-38.78]

63.16

[43.49-78.95]

0

[0-16.9]

SF
9.61

[5.46-14.93]

35.18

[26.04-44.04]

61.22

[48.48-73.68]

0

[0-0]

120

BU
10.83

[5.94-19.9]

32.41

[26.04-39.34]

55.96

[33.24-72.58]

0

[0-29.09]

SC
10.62

[5.6-18.37]

32.41

[24.65-40.17]

57.62

[36.01-73.68]

0

[0-25.21]

PE
12.5

[5.91-22.43]

29.64*

[21.05-36.84]

44.6

[30.47-73.68]

19.67*

[0-36.29]

KL
11.92

[5.72-21.35]

30.19

[21.88-37.4]

47.92

[31.58-74.24]

11.63*

[0-34.63]

AL
13.73

[6.54-24.36]

28.81*

[19.94-36.01]

41

[29.09-70.36]

26.32*

[0-39.61]

ZI
11.69

[5.68-20.91]

30.47

[22.16-37.67]

49.72

[31.86-74.24]

7.48

[0-33.52]
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BR
12.27

[5.79-22.11]

29.64*

[21.05-36.84]

45.71

[31.02-73.96]

18.01*

[0-35.73]

SF
10.49

[6.2-17.04]

35.46

[28.25-43.21]

59

[42.11-70.91]

0

[0-8.17]

160

BU
14.53

[8-25.89]

35.46

[29.92-41.83]

40.44

[26.04-64.54]

14.54

[0-36.57]

SC
14.13

[8.02-23.25]

35.73

[29.92-42.94]

43.77

[28.25-64.82]

8.03

[0-33.24]

PE
17.46

[9.28-28.58]

33.24

[27.15-39.89]

33.24

[24.38-57.34]

30.19*

[0-41.55]

KL
16.56

[8.97-27.29]

33.8

[27.7-40.44]

34.63

[25.21-60.39]

27.42*

[0-40.17]

AL
19.01*

[10.26-30.81]

32.69*

[26.18-39.34]

31.3*

[23.55-51.52]

34.07*

[0-43.21]

ZI
16.04

[8.68-26.83]

34.07

[27.98-41]

35.46

[25.48-61.22]

26.04*

[0-39.06]

BR
17.12

[9.23-28.27]

33.52

[27.15-40.17]

33.8

[24.65-58.45]

29.36*

[0-41.55]

SF
13.18

[8.03-20.82]

38.23

[32.41-45.43]

51.25

[32.41-64.82]

0

[0-24.38]

200

BU
22.54

[11.23-39.39]

30.75

[22.71-36.84]

24.93

[18.01-39.61]

42.38

[29.92-49.86]

SC
21.12

[11.61-35.43]

31.58

[22.71-37.95]

25.76

[19.39-39.34]

41.27

[29.92-48.48]

PE
27.24*

[16.4-44.39]

29.92

[20.5-36.29]

22.71*

[17.45-31.86]

46.81*

[39.34-53.46]
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Table 2.6: Summary of the obtained results. For each BG and ROC scenario, the
adjustment method which led to the best outcome within the ISCTs is reported

BG = 80 BG = 120 BG = 160 BG = 200
Negative ROC KL BR PE PE
Positive ROC BR SC SC SC

KL
26.03*

[15.21-42.17]

30.33

[21.05-36.57]

23.27*

[17.73-32.96]

45.71*

[37.67-52.63]

AL
29.65*

[18.17-46.44]

29.36

[19.94-35.73]

22.16*

[17.17-30.47]

48.48*

[40.72-54.85]

ZI
29.65*

[18.17-46.44]

29.36

[19.94-35.73]

22.16*

[17.17-30.47]

48.48*

[40.72-54.85]

BR
31.01*

[19.44-48.5]

29.09*

[19.39-35.18]

21.61*

[16.62-29.36]

49.31*

[42.11-55.96]

SF
16.96

[8.43-28.92]

33.24

[24.65-39.61]

29.36

[21.05-54.29]

35.18

[8.86-44.32]

In conclusion, Table 2.6 reports a summary of the results obtained with the

simulations, which allows better identify the most effective correction method

for each prandial BG and ROC scenario we tested.

2.4 Safety assessment of Bruttomesso et al. method

using real data

Following the ISCT conducted within the UVA/Padova T1D Simulator, a pre-

liminary assessment to evaluate the safety of the Bruttomsso et al. method

was performed. In particular, data collected from 27 adult subjects, that un-

derwent periodic medical examinations in the medical centres involved in the

study, were analyzed retrospectively. The subjects followed the insulin therapy
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Figure 2.2: Distribution of ∆BGRI, ∆TAR, ∆TIR, ∆TBR (difference between the liter-
ature methods and SF) for negative (left) and positive (right) ROC with a prandial BG
of 80 mg/dL. The green background corresponds to an improvement of the method
concerning SF, while the red background corresponds to a worsening.
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Figure 2.3: Distribution of ∆BGRI, ∆TAR, ∆TIR, ∆TBR (difference between the liter-
ature methods and SF) for negative (left) and positive (right) ROC with a prandial BG
of 120 mg/dL. The green background corresponds to an improvement of the method
concerning SF, while the red background corresponds to a worsening.
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Figure 2.4: Distribution of ∆BGRI, ∆TAR, ∆TIR, ∆TBR (difference between the liter-
ature methods and SF) for negative (left) and positive (right) ROC with a prandial BG
of 160 mg/dL. The green background corresponds to an improvement of the method
concerning SF, while the red background corresponds to a worsening.
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Figure 2.5: Distribution of ∆BGRI, ∆TAR, ∆TIR, ∆TBR (difference between the liter-
ature methods and SF) for negative (left) and positive (right) ROC with a prandial BG
of 200 mg/dL. The green background corresponds to an improvement of the method
concerning SF, while the red background corresponds to a worsening.
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suggested by the proposed method for at least 2 weeks and kept track of infor-

mation regarding the CHO amount of the meal, prandial CGM, SMBG, trend

arrow and insulin doses. Among the 27 patients, 16 were male, mean (± SD)

age was 49.3 ± 13.3 years, mean duration of diabetes was 27.7 ± 13.3 years, and

mean glycated haemoglobin (HbA1c) was 55.7 ± 6.9 mmol/mol (7.2 ± 2.8%).

Nine and eighteen patients were on MDI and CSII therapy, respectively. The

proposed insulin therapy was followed for a mean (± SD) of 13.4 ± 6.4 days.

We evaluated only the meals in which the standard insulin bolus was esti-

mated correctly, the ROC was above 1 mg/dl/min or below - 1 mg/dl/min,

and no corrective actions were present during the 4-hour postprandial time

window.

For each extracted CGM profile, TAR, TBR, and TIR were computed in the

4-hour postprandial time window. We reported the results in two scenarios: (1)

increasing ROC only and (2) decreasing ROC only. Finally, for each scenario,

we computed TAR, TBR, and TIR considering three different time intervals: (1)

from mealtime to 4 h after the meal; (2) from mealtime to 2 h after the meal;

and (3) from 2 to 4 h after the meal, hereafter referred to as T0–4, T0–2, and

T2–4 , respectively. Analysis of T0–4 helps understand if the meal bolus was

accurate. To evaluate the bolus effect early or late after the meal, we considered

the 0–2 h and 2–4 h postprandial intervals, respectively. Data are reported as

the median and corresponding interquartile ranges.

2.4.1 Results

Among all the extracted meals, only 172 were preceded by an increasing or

decreasing arrow. Of these, 64 were not considered in the analysis because the

standard insulin bolus had been calculated erroneously or meal composition

had not been recorded. Consequently, the final dataset comprised data from
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108 meals, 52 with increasing and 56 with decreasing ROC. In 85% of cases, the

increasing ROC ranged between 1 and 2 mg/dl/min, 13% ranged between 2

and 3 mg/dl/min, and the remaining 2 % had values less than 3 mg/dl/min.

Regarding the decreasing ROC, 93 % of the values ranged between 1 and 2

mg/dl/min, while 7 % ranged from 2 to 3 mg/dl/min. For the 5 % of meals

initiated with sensor glucose readings of 70 mg/dl, 66 % of the patients started

with CGM in the euglycemic range, and 27 % started with CGM between 180

and 262 mg/dl. When the preprandial CGM was 70 mg/dl, the patients per-

formed an SMBG. In all of these cases, the glucose levels turned out to be 70

mg/dl, and the patients calculated the insulin bolus according to the slide rule,

based on the SMBG readings. The median values, together with the interquar-

tile ranges of TAR, TIR, and TBR are reported in Table 2.7. In the increasing

ROC scenario, TAR was 45.8 (0–77.0) during T0–2, decreasing to 0.0 (0.0–56.3)

during T2–4. We obtained a TIR of 54.1 (22.9–100.0) during T0–2 that reached

83.3 (43.7–100.0) during T2–4. The median TBR and its interquartile ranges

were zero for all the time intervals analyzed. Regarding the decreasing ROC

scenario, TIR was 97.9 (72.9–100) during T0–2 while the median values of TBR

and TAR were both 0. During T2-4, the median TBR and TAR were also both

equal to 0, reaching a median TIR of 100. In general, considering the T0–4 in-

terval in both the increasing and decreasing ROC scenarios, the median TIR

was 70.8 and 91.6, respectively.

2.5 Summary of the obtained results and limitations

The analysis performed in this Chapter pointed out that there is no literature

method that is globally the most effective. However, by investigating the re-

sults grouped by BG and ROC subdomains, we noticed that some methods

are more effective and safer than others. In general, when negative ROCs are
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Table 2.7: Results obtained from the real life use of slide rule in the two scenarios: (i)
increasing ROC only, and (ii) decreasing ROC only. Median [interquartile ranges] are
shown for TAR, TBR, and TIR evaluated in T0-4, T0-2, T2-4.

Metric T0-4 T0-2 T2-4

TAR % 27.08
[8.33-61.46]

45.83
[0-77.08]

0
[0-56.25]

TIR % 70.83
[38.54-88.54]

54.17
[22.92-100]

83.33
[43.75-100]Increasing ROC

TBR % 0
[0-0]

0
[0-0]

0
[0-0]

TAR % 1.04
[0-26.04]

0
[0-20.83]

0
[0-43.75]

TIR % 91.67
[69.79-100]

97.92
[72.92-100]

100
[56.25-100]Decreasing ROC

TBR % 0
[0-0]

0
[0-0]

0
[0-0]

considered, the resulting reduction of IB dosage suggested by all the method-

ologies proved to be beneficial in terms of glucose control, increasing BGRI and

TIR, and decreasing TBR, with a modest increase in TAR. In this scenario, BU

and SC were found to be systematically too conservative, leading to a minor

improvement compared to the other methods. In contrast, the benefits pro-

vided by PE, KL, AL, ZI, and BR are more evident. We selected KL as the best

performing method for a low starting BG value (80 mg/dL), BR for a BG value

of 120 mg/dL, and PE for both BG approaching the hyperglycemic range (160

mg/dL) and BG in hyperglycemia (200 mg/dL). On the other hand, when the

prandial ROC is positive, our results showed the potential risk introduced by

the increase of the IB dose. In general, TIR, BGRI, and TBR worsened concern-

ing SF. For a low prandial BG (80 mg/dL) BR resulted in the best performing

recommendation, while for higher starting BG values, the most conservative

methods SC and BU proved to be safer.

In our opinion, the results presented in this Chapter should be used more

qualitatively than quantitatively, knowing that ad-hoc clinical trials to further

validate the effectiveness of the methods are required. However, the indica-
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tions are clear and solid, suggesting that, in general, decreasing IB for negative

trend arrows is safe, while increasing IB when the trend arrow is positive could

not be. The analysis showed that there is no method that is the best perform-

ing in all scenarios, and allowed identifying, each prandial glucose and trend

arrow, which are the methods that could provide more benefits in terms of glu-

cose control. Therefore, being the ROC adjustment a function of prandial glu-

cose and trend arrow, a hybrid solution such that proposed in Table 3, which

combines the best-performing methods for each prandial condition, is the one

that in our opinion should be suggested. From a practical perspective, asking

the T1D individual to apply different rules based on prandial conditions can be

not straightforward. However, the adoption of a hybrid method can be made

easy e.g., using mobile apps able to get real-time data from CGM sensors and

automatically provide to the user the correct adjusted dose, without requir-

ing any user intervention. In conclusion, the analysis conducted represents a

step forward to close the gap present in the literature, by providing more in-

formation about the practical use of methods to adjust IB accounting for trend

arrows, thus helping to define clear and safe guidelines for people with T1D

for insulin dosing adjustments.

However, the derivation of all previous rules for SF correction has mainly

been empirical, suggesting that there would be room for improvement should

a systematic modelling methodology be adopted. Moreover, the results pre-

sented in this Chapter, pointed out the need for more effective, and possibly

personalized, IB calculation strategies. Some recent proof-of-concept studies

have also shown that machine learning techniques can be used to tailor the

SF correction to meet patient-specific parameters [44]. Further improvement

could be achieved by designing strategies which do not merely correct the SF,

but define completely new rules or models for insulin dosing. Such novel ap-

proaches could leverage the information available on glucose dynamics, pro-
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vided by CGM devices, but also other easily accessible patient-dependent vari-

ables, such as body weight (BW) and insulin basal rate (Ib).
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Chapter 3

Leveraging a simulated dataset to

target the optimal insulin dose

In this Chapter, the generation of the simulated dataset employed for the model’s

training will be presented. In particular, we discuss the procedure that allowed

us both to simulate different mealtime scenarios, from which features describ-

ing the prandial status are extracted and derive the optimal mealtime insulin

dose. Then, a correlation analysis is performed to investigate the association

among the feature variables and with the optimal insulin amount. The result-

ing dataset will be used within the following Chapter for the training of the

linear and nonlinear supervised learning models to target the optimal pran-

dial insulin amount.

3.1 Rationale

Despite many efforts that have been made in the literature to design an empir-

ical approach for standard insulin dose correction, the use of supervised learn-

ing techniques for such a task remains poorly investigated. The main reason

lies in the impossibility of retrieving the optimal insulin bolus, i.e. the insulin
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amount leading to an optimal postprandial glycemic control, within records

belonging to real datasets. Indeed, although the availability of data collected

from people affected by T1D, such as insulin data and CGM samples, has been

recently increasing, the mealtime insulin dose is mainly suboptimal, making it

unreliable to be leveraged as the target of the learning task. Hence, the advent

of simulation tools which mimic the glucose-insulin interaction enabled us to

generate virtual scenarios in which the optimal prandial insulin dose associ-

ated with a specific mealtime condition can be computed retrospectively, by

optimizing the postprandial glucose control. Indeed, developing new meal-

time insulin amount models within a simulation environment is particularly

advantageous for two main reasons. Firstly, a simulation environment makes

it possible to generate a unique dataset where patients undergo multiple meal

tests while maintaining the same surrounding conditions. This would be im-

possible to replicate with clinical trials since a patient’s behaviour and physio-

logical state do not remain the same. Secondly, extreme conditions, which are

difficult and dangerous to obtain in clinical trials, can be simulated without

any risk to the patient. In the following, we discuss the generation of the sim-

ulated dataset, composed of features representing the mealtime status and the

corresponding optimal insulin bolus associated with the specific condition.

3.2 Generation of the simulated dataset

The UVA/Padova T1D Simulator has been used to generate data from 100

adult virtual subjects. This virtual population underwent multiple single-meal

scenarios in a noise-free setting [60], which consisted of: using optimal therapy

parameters; not permitting either postprandial correction boluses or rescue

carbohydrate intakes; and, having no errors in either CHO counting, BG mea-

surements or ROC estimation. Moreover, we did not consider the intra-patient
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variability of insulin sensitivity during the meal. All these choices were made

to eliminate any confounding factors that could have influenced the outcomes

of the study. Considering all these factors, we generated for each virtual sub-

ject a simulated scenario lasting 12 hours, i.e. from 7 am to 7 pm.

3.2.1 Generation of the meal conditions

The goal of this simulation is to obtain a static dataset of different conditions

of the subjects, about the values of ROC and BG at a given time (1 pm). We

fixed the values of BG and ROC that each subject should reach at 1 pm:

• BG = [70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180] mg/dL

• ROC = [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] mg/dL/min

The BG values cover all the euglycemic ranges with steps equal to 10 mg/dL,

while the ROC arrows range from -2 to +2 with a step of 0.5 mg/dL/min.

Given the BG and ROC conditions that each subject should have at 1 pm,

we needed to manipulate the meals (and the respective boluses) and snacks

(that are intended as small meals with no subsequent boluses) within the pre-

vious 6-hour long time window (from 7 am to 1 pm). The number of possible

meals consumed during that time window was fixed to 1 and equally was per-

formed for the number of snacks. We defined two variables characterizing the

possible preprandial meal and snack: the time when the meal and the snack

are eaten from the virtual subject and the amount of CHO of which the meal

and the snack are composed. Then, we determined other two variables de-

scribing the mealtime insulin bolus, i.e., the time when the bolus is injected

and the quantity of injected insulin.

At this point, the values to be found to reach the aforementioned conditions

are 6: time of the meal and grams of meal’s CHO (tCHO1 , CHO1 respectively);
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time of the meal-bolus and quantity of injected insulin (tB, B); time of the snack

and grams of snack’s CHO (tCHO2 , CHO2). To derive these values, we formu-

lated the problem as a minimization procedure, thus minimizing the following

function:

p̂ = argmin
p

f (tCHO1 , tCHO2 , tB, CHO1, CHO2, B) (3.1)

with

f (tCHO1 , tCHO2 , tB, CHO1, CHO2, B) = (BGc − BG(p))2 + (ROCc − ROC(p))2

where p is the vector of the 6 variables, BGc and ROCc are the reference values

of BG and ROC set before. 3.1 is a function of the 6 variables that provide as

output the exact values which allow the single subject to reach the specific BG

and ROC condition.

Hence, by adopting this strategy, we simulated for each adult several meal-

time scenarios, in which at 1 pm the subject experienced the ROC and BG

values defined before, by acting on the meal, the bolus and the snack.

3.2.2 Generation of the optimal bolus dose

In the following, the strategy implemented to obtain the targets (optimal bo-

luses) for each mealtime condition is explained. After the procedure performed

in the previous section, we fixed the values of CHO that compose the meal con-

sumed by each subject at 1 pm:

• CHO = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150] g

Then, given the amount of CHO eaten at lunch, we computed the optimal

insulin bolus that should be administered to the subject after the meal. The

insulin bolus is considered optimal because it is calculated in a way that mini-

mizes the Blood Glucose Risk Index (BGRI).
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The BGRI, first introduced by Kovatchev et al. [66], is composed of the

sum of two terms: the Low Blood Glucose Index (LBGI) and the High Blood

Glucose Index (HBGI). The definition of LBGI and HBGI derives from a log-

arithmic transformation of the BG scale that balances the amplitude of hypo-

and hyperglycemic ranges (enlarging the former and shrinking the latter) and

makes the transformed data symmetric around zero and fitting a normal dis-

tribution [67]. This symmetrization is performed because in the standard BG

scale, hypoglycemia (BG < 3.9 mmol/l) and hyperglycemia (BG > 10 mmol/l)

have very different ranges, and euglycemia is not central in the entire blood

glucose range (1.1-33.3 mmol/l). Consequently, the scale is not symmetric and

its clinical centre (6-7 mmol/l) is far from its numerical centre (17 mmol/l). As

a result, a logarithmic data transformation that matches the clinical and nu-

merical centre of the BG scale has been applied, thus making the transformed

data symmetric [66]. If BG measurements are expressed in mg/dl, the trans-

formed data ( f (BG)) are given by:

f (BG) = 1.509 · ([log(BG)]1.084 − 5.381) (3.2)

and are used to define a BG risk function:

r(BG) = 10 · f (BG)2 (3.3)

that associates to each BG reading a measure of its risk, as expressed with a

number in the 0 to 100 range. For the definition of this metric, the risk index

of the equation 3.3 is used and thus the LBGI and HBGI are computed and

added to generate the overall BGRI:

LBGI =
1
n

n

∑
i=1

[r(BG(i))][ f (BG(i)) < 0] (3.4)
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HBGI =
1
n

n

∑
i=1

[r(BG(i))][ f (BG(i)) > 0] (3.5)

BGRI = LBGI + HBGI (3.6)

The BGRI has been chosen as a function to be minimized since it balances

hypo- and hyperglycemic events, despite their original scale are not symmet-

ric. Through the minimization of the BGRI function, we derived the target

needed to reach the goal of this thesis, each variable of this dataset will be

explained in detail in the following section.

3.3 Features description and dataset structure

In the previous section, the method to obtain the simulated scenarios describ-

ing the mealtime condition was discussed, while in this section all the vari-

ables extracted, that were selected as part of the dataset, will be described. The

employed dataset is composed of 11 variables, the first five parameters are

patient-specific, hence being constant for each virtual patient, while the last

six features describe the mealtime status:

• CR: patient-specific therapy parameter, representing how many grams of

CHO are covered by each unit of insulin.

• CF: patient-specific therapy parameter, representing how much the BG is

lowered by each unit of insulin.

• BW: easily accessible variable indicating the patient’s body weight.

• Ib: feature describing the basal insulin rate of the subject.

• Gt: feature representing the basal glucose value of the subject.

• BG: feature representing the BG level at mealtime, which can take 12 val-

ues ranging between 70 and 180 mg/dL.
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• ROC: feature describing the glucose trend at mealtime, which can take 9

values ranging between -2 and +2 mg/dL/min.

• CHO: feature representing the amount of consumed CHO at mealtime,

which can take 16 values ranging between 0 and 150 grams.

• SF: variable describing the amount of mealtime insulin suggested by the

standard therapy, computed as in 1.1.

• COB: variable indicating the carbohydrates-on-board (COB) at mealtime.

• IOB: variable indicating the amount of insulin still acting in the organism

at mealtime.

Thus, each record composing the resulting dataset was associated with the cor-

responding optimal insulin bolus that should be administered to the subject

following the fixed lunch amount. By considering the different combinations

among the possible CHO, ROC and BG variables, there are 1728 possible con-

ditions for each patient. Hence, the total number of records which compose the

dataset is 172800, i.e. 1728 possible mealtime statuses for each subject. In the

following section, the relationship between the main features and the target

will be visualized.

3.4 Dataset visualization

To investigate and better understand the dataset structure, we visualized dif-

ferent mealtime conditions which are included within the resulting database.

In Figure 3.1 the BG trace of subject 64, having prandial BG and ROC equal to

100 mg/dl and 1 mg/dl/min is shown. In this specific case, the meal amount

corresponds to 50 g of CHO, and the optimal bolus dose (3.1157 U), previously

extracted from the optimization procedure, is injected at mealtime (1 pm). In
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Figure 3.1: Representative BG curve of subject 64, having the following mealtime
conditions at 1 pm: BG=100 mg/dl, ROC=1 mg/dl/min, CHO=50 g, B=3.1157 U/min.

Figure 3.1, the aforementioned prandial conditions are depicted. In particular,

it can be seen that the BG curve reached the specified value at 1 pm, having

an increasing trend. Thanks to the optimal injected bolus, no hypo- or hy-

perglycemia events occurred to the subject. A different scenario is shown in

Figure 3.2, where the prandial BG is equal to 120 mg/dl and the ROC is falling

with a value of -1 mg/dl/min. A meal composed of 50 g of CHO is consumed

by the subject and the optimal injected bolus allows to maintain the BG trace

within the normoglycemic range. In Figure 3.3 and 3.4 the relationship be-

tween optimal bolus, CHO values and BG is investigated. The visualization of

the optimal bolus distribution was done by fixing the ROC value, to analyze

different conditions of the BG trend separately. This analysis has been carried

out to investigate the role of the current BG level in the amount of optimal

injected insulin.

Figure 3.3 shows the data corresponding to a negative ROC value equal to

-2 mg/dL/min. When the glucose trend is falling with this slope, the optimal

bolus distribution has a median equal to 0 until 40 grams of CHO, while from

56



Figure 3.2: Representative BG curve of subject 64, having the following mealtime con-
ditions at 1 pm: BG=120 mg/dl, ROC=-1 mg/dl/min, CHO=50 g, B=1.4734 U/min.

Figure 3.3: Distribution of the optimal bolus depending on carbohydrate values with
ROC fixed to -2 mg/dl/min. The optimal boluses are reported for all the subjects,
overlapped to the boxplot, and coloured according to the current BG value.
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Figure 3.4: Distribution of the optimal bolus depending on carbohydrate values with
ROC fixed to +2 mg/dl/min. The optimal boluses are reported for all the subjects,
overlapped to the boxplot, and coloured according to the current BG value.

50 to 150 grams the median has increasing values with a linear trend, reaching

4.8 U/min for 150 gr. When the subject has such a glucose trend and there is

no consumed meal, the optimal bolus is equal to 0, independently of the BG

value. For small amounts of carbohydrates (from 10 to 40 g), an insulin bolus

should be administered only to the subjects who have a high BG level (150-180

mg/dl). It can be noted a clear distinction between boluses with a high BG

level and low BG level, especially for a significant amount of consumed CHO

(100-150 g).

When a positive ROC occurs (in particular, ROC = 2 mg/dl/min), the me-

dian values of the optimal bolus distribution are shifted upwards, showing

also in this condition a linear trend (Figure 3.4). Consequently, the subject

needs an insulin dose even though the amount of CHO is very small (or null).

Compared to the previous case (ROC = -2 mg/dL/min), the clear distinction

between boluses with low BG and high BG starts with lower CHO values. It

can be stated that the amount of CHO and BG values highly affect the meal-
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Figure 3.5: The absolute value of the correlation coefficient between the target and
the single features.

insulin bolus dose.

3.5 Correlation analysis

In this section, a correlation analysis to assess the relationship between the

extracted features and the target was performed. In particular, before starting

the creation of the regression models, we checked the entity of the correlation

both between the selected features and the optimal bolus and between each

feature, to state if multicollinearity exists within the covariates.

3.5.1 Correlation among features

In machine learning, multicollinearity occurs when two or more explanatory

variables, which are assumed to be independent of each other, are revealed to

be closely related, resulting in redundant features. Hence, in this section, we

investigated the entity of multicollinearity within the generated dataset. Fig-

ure 3.6, depicts the Pearson correlation coefficients (ρ) computed between each

feature. In particular, the features highly correlated each other are CF and Ib
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Figure 3.6: Map reporting the correlation between the features.

(ρ = -0.73), CR and CF (ρ = 0.65), ROC and IOB (ρ = -0.58), ROC and COB (ρ

= 0.74) BW and Ib (ρ = -0.55). As expected, SF had nonzero correlation with

the majority of the variables, especially with CHO (ρ = 0.74), CR (ρ = -0.41)

and CF (ρ = -0.28). All the other correlation coefficients are lower compared

to the mentioned ones, despite, as expected, all the variables having a nonzero

correlation, although low, with another variable. Hence, strong multicollinear-

ity is present within the dataset, leading to a possible loss in reliability when

determining the effects of the individual features on the dependent variable

within the machine learning model. Indeed, multicollinearity could lead to

interpretability issues when analysing the regression coefficients of a linear

model. Hence, the effect of multicollinearity should be taken into account dur-

ing model development, justifying the use of the LASSO methodology in the

following Chapter [68].
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3.5.2 Correlation between the features and the optimal bolus

dosage

In this section, we checked the correlation of the extracted features and the

optimal bolus, to assess whether the features were suitable for predicting the

target variable. As expected, the results showed that the most correlated fea-

ture was SF, with a Pearson correlation coefficient of ρ = 0.91, followed by CHO

(ρ = 0.69). Also CR and ROC resulted correlated with the target, with ρ = -0.41

and ρ = 0.39 respectively. Figure 3.5 depicts the absolute values of correlation

coefficients through a bar plot.

In conclusion, significant information can be extracted from this correlation

analysis, i.e. the target is highly correlated with several variables, suggesting

that these variables (CHO, SF, CR and ROC) are relevant regressors for the

models.

3.6 Comparison between the optimal bolus and the

SF bolus dosage

To perform a comparison between the optimal bolus and SF performances, dif-

ferent representative BG curves related to the application of both the optimal

insulin bolus and SF are reported. Figure 3.7 shows a representative scenario

in which the amount of injected insulin suggested by the SF (1.6610 U) leads to

a poorer glycemic control compared to the optimal bolus (3.1157 U), in partic-

ular, a hyperglycemic event occurs when injecting SF after the meal, while the

application of the optimal bolus allows a tight glycemic control. In Figure 3.8 a

hypoglycemic event following the SF dose injection (4.7028 U) is depicted, in-

deed the mealtime insulin dosage suggested by SF is higher than the optimal

one (3.7069 U) leading to glucose levels below the hypoglycemic threshold.

61



Figure 3.7: Representative BG curve of subject 64, having the following mealtime
conditions at 1 pm: BG=100 mg/dl, ROC=1 mg/dl/min, CHO=50 g, Bopt=3.1157
U/min, SF=1.6610 U/min

Figure 3.8: Representative BG curve of subject 64, having the following mealtime
conditions at 1 pm: BG=180 mg/dl, ROC=-2 mg/dl/min, CHO=120 g, Bopt=3.7069
U/min, SF=4.7028 U/min.
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Figure 3.9: Optimal bolus vs Standard bolus distribution depending on CHO values
with fixed ROC = -2 mg/dL/min

Figure 3.10: Optimal bolus vs Standard bolus distribution depending on CHO values
with fixed ROC = 0 mg/dL/min

Figure 3.11: Optimal bolus vs Standard bolus distribution depending on CHO values
with fixed ROC = 0 mg/dL/min
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In Figures 3.9, 3.10, 3.11, three distributions of the difference between op-

timal and standard insulin bolus based on the CHO amount of the meal are

depicted. By analysing the median of the distribution in Figure 3.9, we found

out that for higher amounts of CHO, the standard bolus size systematically

overestimates the optimal reference. On the other hand, in Figure 3.10, it may

be noted that when the ROC is stable, the bolus dosage is underestimated for

small quantities of CHO, while when the ROC is rising (Figure 3.11) the insulin

dose is moderately underestimated for low CHO values and overestimated for

high values.

In conclusion, this analysis highlighted the limitations which characterize

the standard bolus dosage, especially for specific mealtime conditions of the

subject. An improper bolus amount could lead the patient to hyper- or hypo-

glycemia, hence the need to improve this calculation. In the following Chap-

ter will be proposed new mealtime insulin bolus models, based on machine

learning techniques, to achieve better glycemic control and to overcome the

aforementioned limitations.
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Chapter 4

Linear and nonlinear supervised

learning models for insulin dosing

The real-time availability of information on glucose dynamics provided by

CGM systems, along with the possibility of using the BG measurements they

provide for insulin dosing, has encouraged the development of new rules to

adjust the SF according to data provided by such devices.

The derivation of the literature methods aimed at adjusting the SF dis-

cussed in Chapter 2 has mainly been empirical, suggesting that there would be

room for improvement should a systematic modelling methodology be adopted.

Moreover, in our recent in silico assessment of the state-of-art adjustments we

showed that all methods performed similarly for all BG and ROC conditions at

mealtime [46], encouraging the research for more effective, and possibly per-

sonalized, insulin bolus calculation strategies. Some recent proof-of-concept

studies showed that supervised learning techniques can be used to tailor the SF

correction to meet patient-specific parameters [44]. However, such methodolo-

gies could even be employed to design new models for IB estimation, that is,

by abandoning the idea of using the SF as an initial estimate to be adjusted ac-

cording to ROC, as performed in the previous works, and developing a novel
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approach which integrates personalized parameters and CGM dynamics in-

formation.

Thus, the study presented in this Chapter aims at developing new ap-

proaches to mealtime insulin dose calculation which are based not only on the

parameters already included in equation (1.1), but also on the glucose ROC

that is provided by CGM and other easily accessible patient-dependent vari-

ables, by applying different supervised learning techniques while increasing

model complexity.

The work presented in this Chapter was published in the papers of Noaro

et al. [48, 49, 50].

4.1 Supervised learning framework

Dataset: The proposed models were developed by employing the simulated

dataset generated in the previous Chapter, which is composed of different

mealtime conditions related to 100 adult virtual subjects. Starting from the

aforementioned database, we excluded all the records corresponding to an

amount of CHO equal to zero grams, being this work focused on the inves-

tigation of a model to target the mealtime insulin bolus, thus requiring the

occurrence of a meal within the scenario. Moreover, we discarded the feature

related to the COB, which, compared to the other variables, resulted not easily

accessible during a real-life application of the proposed model, since it requires

the log of all the meals and snacks within the preprandial 6-hour time window,

increasing the burden of the therapy.

In addition, during the first phase of this work, i.e., during the develop-

ment of linear models, we employed dataset records having prandial BG levels

within the normoglycemic range, i.e. from 70 to 180 mg/dL, as described in

Chapter 3; while, at a later stage, i.e., during the development of nonlinear ap-

66



proaches, we decided to extend the dataset, by integrating mealtime scenarios

having prandial BG measurements also above this range, that is, mealtime BG

ranging from 70 to 250 mg/dL. This choice was made to design a model having

a wider validity domain since the consumption of meals in hyperglycemia is a

frequent occurrence in T1D and being the nonlinear approaches more suitable

to handle a wider domain of the input features.

Thus, for each model, the resulting simulated dataset was divided into

training and testing sets. The data on 80 subjects were assigned to the training

set, while the remaining data, on 20 subjects, were assigned to the test set. The

assignment of each virtual subject either to the training or to the test set was

performed randomly. Note, also, that each subject was included either in the

training or in the testing set, to provide an unbiased evaluation of model per-

formance within the testing set, composed of distinct subjects. Then, variables

composing the dataset were standardized and scaled to unit variance due to

the different measurement scales among the features.

Hyperparameters tuning: Both the linear and the nonlinear approaches

were developed within the same machine learning framework. In particular,

when the model structure included any hyperparameter to be tuned, we re-

sorted to a 5-fold cross-validation in the training set. This implies that the orig-

inal training set is partitioned into five equally sized subsets. Then 5 iterations

are performed, where one of 5 subsets is retained as the validation set, while

the others are used to train the model with the selected hyper-parameters con-

figuration. This procedure is repeated for each fold, and the returned scores

are averaged. To tune the hyper-parameters, the 5-fold cross-validation is ap-

plied over a fixed parameter grid. In the end, the set of tuning parameters for

which the 5-fold cross-validation reports the lowest error is chosen to train the

final model.
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Figure 4.1: Cross-validation framework employed for the hyperparameters tuning of
the proposed models.

4.2 Linear regression approaches

During the first phase of this study, we selected multiple linear regression

(MLR) and least absolute shrinkage and selector operator (LASSO) [69] among

the possible approaches to target the optimal mealtime insulin bolus (IBOPT)

being these methodologies simple and able to provide an adequate and inter-

pretable description of how the inputs affect the output. Indeed, each MLR

coefficient represents the slope of the linear relationship between the output

and that portion of input which is independent of all the others. Moreover,

model interpretability represents a desirable feature for clinicians, which could

encourage them to use it in clinical practice.

4.2.1 Multiple linear regression (MLR)

The MLR model has the following form:

ŷ = α̂0 +
p

∑
j=1

xj · α̂j (4.1)
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where y is the target variable, i.e. IBOPT, xj is the j-th feature, αj the coeffi-

cient related to the j-th feature, α0 is the model intercept and p represents the

number of features. Parameters α̂j are estimated through the least squares es-

timation method [69], which chooses a vector α̂ of coefficients that minimizes

the residual sum of squares (RSS):

α̂ = argmin
α

RSS(α) (4.2)

where

RSS(α) =
N

∑
i=1

(yi − ŷi)
2 (4.3)

and yi is the i-th observation of IBOPT, ŷi the corresponding model prediction.

the resulting MLR equation, identified on the training set, is reported in

eq. (4.5). As expected CHO, SF, and ROC contribute positively to the final in-

sulin amount. Moreover, their coefficients are generally bigger than the others

(absolute value), thus highlighting the importance of these features for IB com-

putation. CR makes a negative contribution since the lower the CR the higher

the amount of insulin required to compensate for a specific CHO intake. Sim-

ilar reasoning, but in terms of insulin sensitivity, can be applied to CF, which

has a negative sign. On the other hand, IOB and BW coefficients present posi-

tive and negative signs, respectively, which are the opposite of those expected

from a physiological interpretation of these variables. This result is probably

due to the presence of multicollinearity among features (as reported in Section

3.5.2).

69



4.2.2 Least absolute shrinkage and selector operator (LASSO)

To deal with multicollinearity, we employed a shrinkage method. In particu-

lar, we resorted to the LASSO regression technique, which is well known to

be robust to multicollinearity [68]. The LASSO coefficients are estimated by

minimizing eq. (4.3) ) with the addition of the absolute value of the magnitude

of the coefficient as a penalty term:

α̂ = argmin
α

{RSS(α) + λ
p

∑
j=1

|αj|} (4.4)

where λ ≥ 0 is a parameter controlling the amount of shrinkage set, through

an exhaustive grid search, with cross-validation in the training set. In this

work, we trained three LASSO models on three different feature sets:

• LASSO: trained on the feature set described in Chapter 3 defined as {xj :

j = 1, ...p}.

• LASSOQ: trained on an expanded feature set which includes variables

reported in Chapter 3 plus their quadratic values, defined as {xj, x2
j : j =

1, ...p}.

• LASSOQI : trained on a extended feature set which also includes terms

of between-features interaction, defined as {xj, x2
j , xij : j = 1, ...p, i =

1, ...p, i ̸= j}.

Note that, due to the intrinsic nonlinearity of the glucose-insulin system, we

also added polynomial transformations of the input variables as features, thus

capturing nonlinear relationships between variables while still maintaining

model interpretability.

One of the key features of the LASSO model is that it performs both auto-

matic variable selection simultaneously, setting the coefficients associated with
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unnecessary features to zero, and, also regularization. In practice, this means

that the LASSO model slightly increases the bias to reduce the variance of the

predicted values: this leads to an overall improvement in the accuracy of pre-

dictions [69]. In this application here, this “natural” feature selection capability

made it possible to considerably reduce the number of features, and to avoid

overfitting, especially when quadratic (LASSOQ) and quadratic plus interac-

tion (LASSOQI) terms were included in the dataset.

LASSO

The LASSO equation identified is reported in eq. (4.6). Note that variables CF,

Ib and IOB were discarded during the LASSO training procedure, by adopting

the automatic selection feature offered by this methodology. This result was

expected, since correlation analysis had revealed a high correlation between

these features and CR, BW, and ROC, respectively. Note also that the CR, BW

and ROC coefficients had changed in (absolute) magnitude when compared

to those of the MLR model. The CR coefficient, in particular, has increased,

whereas the BW and ROC coefficients have decreased, as well as the Gc coeffi-

cient.

LASSOQ

The final LASSOQ equation is reported in eq. (4.7). Note that, by adding the

quadratic terms, only the most relevant first-order features (CR, ROC, CHO,

SF) were selected in the training procedure, while BW, Gt and Gc appear within

the model only with a quadratic contribution.
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LASSOQI

The LASSOQI equation identified on the training set is reported in eq. (4.8).

More specifically, augmenting the inputs with both quadratic and interaction

terms leads to the elimination of all the first-order terms, thus lending more

importance to the interaction and quadratic terms. In particular, the highest

coefficient is related to (Gt,SF) interaction, followed by (Gt,ROC), while the

other coefficients are very close to zero.

Remark: Note that the three LASSO models were trained on three different

feature sets. The value of the hyperparameter λ was chosen, for all the models,

by using cross-validation, as highlighted in Section 4.1, and particularly by

searching, exhaustively, among 200 equally-spaced values ranging between

0.001 and 10 and by selecting the value that maximized the R2 in a 5-fold cross-

validation (λ = 0.05).
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4.2.3 Models evaluation and results

Error in estimating the optimal amount of insulin

The aim of this first evaluation, carried out on the simulated test set, was to

assess and quantify whether the models developed would be able to estimate

IBOPT more accurately than SF, BU, SC, and ZI. This was carried out by com-

puting both the root mean square error (RMSE) and the coefficient of deter-

mination (R2), between the optimal and the estimated IB for each model. Ta-

ble 4.1 reports the results obtained in terms of RMSE and R2. Models MLR,

LASSO, LASSOQ and LASSOQI estimate the optimal insulin bolus more accu-

rately when compared with the other methods. Specifically, RMSE is 1.45 U for

SF, 1.36-1.44 U for the literature models, and 0.84-0.87 U for the new models,

with the best result achieved by LASSOQI (RMSE = 0.84 U).

The R2 metric also improved with the new models (R2 = 0.91-0.92), achiev-

ing the highest value with LASSOQI (R2 = 0.92) when compared with SF (R2

= 0.82) and with the methods described in the literature (R2 = 0.84-0.85). Note

too, that BU, SC and ZI also slightly improved their performances when com-

pared with SF, but both lower RMSE and higher R2 values were obtained with

the proposed new models.

Table 4.1: Comparison of metrics for prediction accuracy and goodness of fit evalua-
tion. Values related to SF, state-of-art methods and the models proposed are reported.

Metric SF BU SC ZI MLR LASSO LASSOQ LASSOQI
RMSE [U] 1.45 1.44 1.36 1.44 0.87 0.87 0.86 0.84

R2 0.82 0.84 0.85 0.85 0.91 0.91 0.91 0.92
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Figure 4.2: Distribution of the difference between BGRI of SF, MLR, LASSO, LASSOQ,
LASSOQI , BU, SC, ZI methods versus IBOPT.

Assessment of glycemic control

The MLR and LASSO models were also compared against SF, BU, SC and ZI

in terms of glycemic outcome. In particular, the percentage of TIR, TBR, TAR,

and the BGRI, explained in Chapter 2 were computed. The results obtained

are reported in Table 4.2. When considering the BGRI, SF revealed the highest

median risk (9.93) among all the other methods, followed by BU, SC and ZI

which showed a median BGRI of 9.53, 9.72 and 9.68 respectively. The lowest

median BGRI values were obtained by LASSOQ (9.08) and LASSOQI (8.97),

both of which were close to the BGRI value that was obtained using MIBOPT

(8.23). Fig. 4.2 shows the distribution of the difference in BGRI (∆BGRI) be-

tween each of the IB calculation methods and IBOPT. Since the optimal insulin

bolus minimizes the BGRI function, the ∆BGRI distributions are in the positive

half-plane. Note that the BGRI distribution of our models is closer to that of

IBOPT (lower ∆BGRI values) compared to the other methodologies.

In terms of TIR, all the proposed methods outperformed both the SF and
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Figure 4.3: Representative examples of BG curves during postprandial time win-
dow for different methods of insulin bolus computation and different mealtime condi-
tions. For better visualization, only LASSOQ among the models proposed is reported.
In the upper panel, mealtime ROC is negative (-1.5 mg/dL/min), starting BG=160
mg/dL and meal CHO is 60 g. The calculated IB doses are IBOPT=1.89 U,IBSF=3.62 U,
IBLASSOQ =1.94 U, IBBU=3.26 U , IBSC=3.02 U, IBZI=2.12 U. In the lower panel, mealtime
ROC is positive (1.5 mg/dL/min), starting BG=100 mg/dL and meal CHO is 30 g. The
MIB doses are IBOPT=2.80 U, IBSF=0.72 U, IBLASSOQ =2.74 U, IBBU=0.79 U, IBSC=1.34 U,
IBZI=1.71 U. Dashed lines indicate the euglycemic range.
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the literature methods, while, as regards the TBR metric, the median values

proved not to be informative as they were equal to 0 for all methods. On the

other hand, when considering the 75th percentile of TBR, it could be stated

that the magnitude of hypoglycemic events is considerably reduced for the

proposed models compared to SF, BU, SC and ZI. The 75th percentile of TBR

in particular, decreases from about 28% with SF, BU, SC and ZI to a value be-

tween 10.25% and 14.68% obtained with the new models. The best outcome

was achieved by LASSOQI , with a 75th percentile of TBR equal to 10.25%. In

addition, the improvement in terms of BGRI and TBR given by MLR, LASSO,

LASSOQ and LASSOQI is statistically significant (p-value < 0.0071) when com-

pared to SF. Regarding hyperglycemia, the median TAR values slightly in-

creased for all new models when compared with the literature methods. This

result was expected since the BGRI, which is the cost function minimized to

compute IBOPT, assigns a higher risk to hypoglycemia than it does to hyper-

glycemia, thus resulting in higher TAR values for IBOPT (and, consequently,

also for the models proposed, which target IBOPT) when compared to the method-

ologies proposed in the literature. However, the TAR increase is moderate and

is not statistically significant when compared with SF. Moreover, it does not

negatively affect overall glycemic control in terms of BGRI. Figure 4.3 shows

two representative postprandial BG curves, after the administration of IB, com-

puted through one of the candidate models, i.e., LASSOQ, IBOPT and the liter-

ature methods. Note that, only LASSOQ has been considered as a representa-

tive model, for reasons of better visualization. As shown in the upper panel,

SF, BU and SC all induce hypoglycemia, while LASSOQ and ZI allow a proper

glycemic control, approaching that of IBOPT, despite the initial hyperglycemia

that was mainly due to the meal, and to high pre-prandial BG. The lower panel

shows the occurrence of hyperglycemic events after the application of SF, BU,

ZI and SC methodologies, while LASSOQ led to optimal glycemic control.
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4.3 Nonlinear approaches

To extend the work presented within the previous section, we tested three can-

didate nonlinear models targeting the IBOPT, trying to capture the nonlinear

connections between the features, being the nature of the glucose-insulin sys-

tem nonlinear. Specifically, we tested models based on an ensemble of mul-

tiple regressors, which is a machine learning approach aimed at combining

multiple models within the learning procedure. Such a model could be im-

plemented leveraging diverse methodologies, such as bootstrap aggregating,

gradient boosting, or in the form of a voting procedure. In this work, we first

tested two different ensemble learning models for regression, which take ad-

vantage of the bootstrap aggregating and the boosting strategies, that are ran-

dom forest (RF) and gradient boosted tree (GBT) algorithms respectively [69].

In the second stage, to take advantage of the distinct predictive abilities which

characterize both a linear and a nonlinear approach, we designed a dynamic

voting ensemble algorithm, by combining a linear, i.e. LASSO, and a nonlin-

ear, i.e. RF, model. Lastly, the models were evaluated in-silico, as performed

for the linear regression models.

4.3.1 Random forest (RF) and gradient boosted tree (GBT) mod-

els

In this section, we discuss two tree-based models used to predict the optimal

insulin dose at mealtime. Particularly, the two methods, i.e. RF and GBT, take

advantage of two common strategies in ensemble learning, which are boot-

strap aggregating and boosting algorithms. In the following, the two methods

will be outlined.
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Random forest model

The RF model leverages the general technique of bootstrap aggregating, i.e.

bagging, which is an ensemble-based algorithm. In particular, given a training

dataset D of cardinality N, the bagging algorithm trains T independent classi-

fiers, each trained by sampling, with replacement, N instances (or some per-

centage of N) from D. Bagging has been proven to outperform especially for

high variance and low bias procedures, such as trees. Indeed, the RF model is

a modification of bagging, where an ensemble of decision trees is generated by

training the models following the bootstrap aggregated strategy. In addition

to choosing instances, RF uses a modified tree learning algorithm that incorpo-

rates a randomized feature selection. Hence, the final prediction is given by the

aggregation of the trained weak learners by averaging their outputs [70, 71]. In

this work, we tuned through the cross-validation procedure described in sec-

tion 4.1 the following hyperparameters of the RF model: the number of trees,

the number of features considered at each splitting node and the number of

levels in each decision tree.

Gradient boosted tree model

On the other hand, the GBT learning algorithm leverages the gradient boosting

technique. The boosting technique, just like bagging, is an iterative approach

for generating a strong classifier, capable of building a strong model by ex-

ploiting an ensemble of weak learners. However, it differs from bagging in

one crucial way, since it relies on an ensemble of individual learners, which

are not trained independently, as in the bagging technique, though sequen-

tially. Thus, in boosting, the training dataset for each subsequent classifier

increasingly focuses on instances misclassified by previously generated classi-

fiers. In gradient boosting, which is a modification of boosting, the main idea
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is to construct the new individual learner to be maximally correlated with the

negative gradient of the loss function, associated with the whole ensemble.

Hence, this method fit the new learner to the residual errors, which can be

interpreted as negative gradients, made by the previous learner. Also in this

case, when the weak learner is selected as a decision tree model, the resulting

algorithm is called gradient boosted tree [72]. In this work, we tuned through

the cross-validation procedure described in section 4.1 the following hyperpa-

rameters of the GBT model: the maximum depth of a tree, the minimum sum

of weights of all observations required in a child, the minimum loss reduction

required to make a split, and the L2 regularization term on weights.

4.3.2 Models evaluation and results

The evaluation of the models was performed on the testing set. First, we as-

sessed the accuracy in targeting the IBOPT by computing the RMSE between

IBOPT and the IB estimated by the methods proposed.

Then, the two models were compared in terms of postprandial glycemic

control, using the UVA/Padova T1D Simulator. In particular, the IB estimates

were tested with regard to the glycemic outcome, by computing the TIR, TAR

and TBR, and BGRI metrics. The two proposed models proposed were com-

pared to the best performing linear model in terms of overall glycemic risk

metrics, i.e. BGRI, presented in the previous Section, that is the LASSOQI

model, and the statistical significance of the differences of the metrics distribu-

tions was evaluated by applying Friedman test, and correcting the significance

level for multiple comparisons.

The LASSOQI , RF and GBT RMSE in estimating IBOPT are 0.92 U, 1.00 U,

0.91 U, respectively. These first results may suggest that the difference between

LASSOQI , RF and GBT models seems almost negligible. However, when com-
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Figure 4.4: Representative example of BG curves during postprandial time window
for different methods of insulin bolus computation. The prandial ROC is negative (-2
mg/dL/min), starting BG=190 mg/dL and meal CHO is 20 g. The calculated IB doses
are IBOPT=0.72 U, IBLASSOQI = 2 U, IBRF=0.69 U , IBGBT=0.98 U.

paring the two nonlinear models and analysing the absolute error of each es-

timate, GBT proved to be better than RF in targeting the IBOPT for meals with

CHO content higher than 40 g. For those meals, the RMSE achieved by RF is

equal to 1.11 U, while that of GBT is 0.98 U. On the other hand, the RF model

shows better accuracy in the estimation of IBOPT for meals with CHO content

lower than 40 g (RMSE achieved by RF and GBT are 0.49 U and 0.53 U, respec-

tively).

From the glycemic control point of view, results reported in Table 4.3 show

that, when both GBT and RF are used for insulin dosing, median BGRI im-

proves. Specifically, the BGRI values obtained by LASSOQI , GBT and RF are

10.38, 9.86, and 10.03, respectively, and only the reduction achieved with GBT

is statistically significant. Moreover, it is possible to appreciate the reduction

of the 75th percentile of TBR from 13.02 % of LASSOQI to 0.28 and 3.88 % for

GBT and RF, respectively. Finally, it is worth underlining that the TBR distri-

bution of both the nonlinear models is significantly different from the one of
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Table 4.3: Quantitative assessment of glycemic control for LASSOQI , RF and GBT:
the median and interquartile range is reported for TIR, TBR, TAR and BGRI. Values in
the IBOPT column are those obtained with the optimal insulin bolus, which should be
assumed as a reference.

Metric IBOPT LASSOQI RF GBT

TIR % 65.10
(55.67-76.73)

60.38
(44.32-74.50)

61.77
(47.92-76.45)

62.05
(49.30-75.62)

TBR % 0.00
(0.00-0.00)

0.00
(0.00-13.02)

0.00*
(0.00-3.88)

0.00*
(0.00-0.28)

TAR % 33.79
(21.05-42.66)

33.51
(20.22-42.94)

33.52
(19.94-43.49)

34.07
(20.50-43.49)

BGRI 9.23
(4.85-15.15)

10.38
(5.74-16.85)

10.03
(5.24-16.73)

9.86*
(5.21-16.20)

2*Statistically significant compared to LASSOQI

LASSOQI . Fig. 4.4 shows four postprandial BG curves obtained as a response

to administering IBOPT, LASSOQI , RF and GBT insulin boluses in correspon-

dence to the same meal of the same virtual subject. Note that, the IB related

to LASSOQI overestimates the optimal dose, leading to a hypoglycemic event.

On the other hand, both the nonlinear methods can better estimate IBOPT, en-

suring a safer glycemic control. In particular, the RF model estimates more

accurately IBOPT than GBT (IBOPT = 0.72 U, IBRF = 0.69 U , and IBGBT = 0.98

U.). This result is not surprising considering that the CHO amount compos-

ing the meal is 20 g. Indeed, we have previously highlighted that the RF model

showed better accuracy in the estimation of IBOPT for meals with CHO content

lower than 40 g, compared to GBT.

4.3.3 Ensemble model based on dynamic voting (DV)

In the previous Sections, both linear and nonlinear models were proposed to

target the optimal insulin dosage. However, a further margin of improvement

may come from the possibility of combining these two techniques in a single

one, thus developing an ensemble model. Indeed, the different outputs can be

merged by assigning a higher weight to the model (base learner) which outper-

83



forms the other within a specific “local region”, i.e. within the subspace where

the regression error associated with that base learner is the lowest, thus tak-

ing advantage that each model produces better results inside certain subareas

of the application domain. Following this rationale, in this section, we pro-

posed an ensemble model based on a dynamic voting procedure (DV), thus

combining both a linear and a nonlinear model, i.e. LASSO and RF respec-

tively. Therefore, the final prediction is derived by weighting the two outputs

according to the local performance, to develop a more effective model for the

estimation of the optimal IB dose.

Models composing the ensemble

We selected as base regressors, i.e., as models that composed the ensemble,

the LASSO model and the RF model, previously explained. We selected both

a linear and a nonlinear model to take advantage of the different predictive

abilities of the two models. Indeed, the LASSO model describes the linear re-

lationship between the features and the output, by allowing also for both vari-

able selection and regularization, through the addition of a penalty term to the

loss function. On the other hand, the RF model, which is a nonlinear learn-

ing method based on an ensemble of decision trees, is focused on capturing

nonlinear connections between the features.

Ensemble method implementation

The ensemble method is mainly based on the DV algorithm described in [73],

where multiple regressors are combined using local performance estimates to

generate the final prediction. In particular, the algorithm is divided into two

different phases, described below.

Learning phase: First, the hyperparameters of LASSO and RF were opti-

mized in a cross-validation setup by performing an exhaustive search over a
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fixed grid of parameter values. Then, we computed the estimation error for

each data record (EER) and each base learner in the training set, in another

cross-validation setup, as:

EER = | ÎBlr − IBOPTr | (4.9)

where ÎBlr is the output obtained from the l-th learner (fitted on the k-1 train-

ing folds of the cross-validation setup) applied to the r-the record of the k-th

validation fold, and IBOPTr is the IBOPT related to the r-the record. Finally,

the two base learners, having the optimal hyperparameters previously deter-

mined, were trained using the whole training set.

Application phase: The model trained in the previous phase is applied as

follows. For each input record of the test set, similar data through the training

records were searched using the k-nearest neighbours (k-NN) method, to de-

fine its local region [74]. The similarity measure is based on the weighted Eu-

clidean distance, in which weights are derived from the application of the RRe-

liefF (RRF) algorithm to the dataset [75, 76]. This procedure was performed to

differently weigh the variables, being some features more relevant than others

for the definition of the local subspace, i.e., more related to the target vari-

able. Hence, after having defined the local subarea, for each base learner we

predicted the ÊER of the test record by averaging the EER of the nearest neigh-

bours. Once the ÊER of both LASSO and RF was derived, the final output was

computed by weighting more the prediction of the best performing model than

the other, according to ÊER. In particular, the prediction related to the model

with the best outcome within the local region was weighted three times more

than the one having the lowest performance.
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4.3.4 Model evaluation and results

We evaluated the efficacy of the ensemble on the test set, both in terms of

regression error, i.e., RMSE, and glycemic outcome within the simulated en-

vironment, where the estimated IB was applied as mealtime insulin amount

and the TIR, TBR, TAR, and BGRI extracted. In addition, the assessment was

performed for the single base learners (LASSO and RF), to verify the benefit

resulting from the usage of the ensemble compared to the single models. Fi-

nally, as a reference, we included the IBOPT within the in silico evaluation. The

ensemble method led to an improvement compared to the single models in

terms of regression error. In particular, the RMSE resulted in 0.93 U, and 1 U

for the base regressors LASSO and RF, respectively, while the DV method pro-

duced an RMSE of 0.88 U. Moreover, we found out that the most important

subdomain that allows differentiating the performance of the base learners is

given by SF. Indeed, within the local subdomain defined from medium SF val-

ues (from 8 to 15 U), the LASSO model produced better results compared to

RF, while the latter model outperformed LASSO at the extremities of the SF do-

main. The DV approach allowed the combination of the positive contributions

of LASSO and RF, hence improving the outcome.

Table 4.4 reports the median and interquartile ranges of the distributions

of TIR, TAR, TBR and BGRI for each considered method. When comparing

LASSO with RF, the former resulted in a lower median TAR, while, conversely,

the latter outperformed LASSO in terms of TBR, reaching a 75th of 3.88%

against 14.66%. Focusing on the results obtained using DV, allowed us to main-

tain a high postprandial TIR of 62.55% while reaching a trade-off in terms of

TAR and TBR. This result was achieved thanks to the ability of the ensemble

approach to select as a major contributor to the outcome the base learner hav-

ing better performance within specific local domains.

86



Table 4.4: Quantitative assessment of glycemic control for LASSOQI , RF and GBT:
the median and interquartile range is reported for TIR, TBR, TAR and BGRI. Values in
the IBOPT column are those obtained with the optimal insulin bolus, which should be
assumed as a reference.

Metric IBOPT LASSO RF DV

TIR % 65.10
(55.67-76.73)

60.03
(45.42-73.40)

61.77
(47.92-76.45)

62.55
(49.60-76.00)

TBR % 0.00
(0.00-0.00)

0.00
(0.00-14.66)

0.00
(0.00-3.88)

0.00
(0.00-1.03)

TAR % 33.79
(21.05-42.66)

34.07
(21.02-42.65)

33.52
(19.94-43.49)

33.45
(20.50-42.90)

BGRI 9.23
(4.85-15.15)

10.52
(5.71-16.95)

10.03
(5.24-16.73)

9.76
(5.12-16.00)

4.4 Choice of the final model for the design of an

insulin bolus calculator

4.4.1 Motivation

In the following, we will discuss the selection of the final model for the design

of an automated mealtime insulin bolus calculator. In this Chapter, we pro-

posed multiple machine-learning-based models to improve the performances

in terms of postprandial glucose control, while increasing model complexity.

We obtained positive results in silico, and each model, starting from the lin-

ear to the nonlinear ones, improved the overall glycemic control compared

to SF. However, the increase in model complexity was not corresponding to

a remarkable improvement in terms of performance, probably indicating the

limitations of a population model for such a task. Beyond that, to select the

final model to be potentially integrated within an automated bolus calculator,

we considered another relevant aspect that will be explained in the following.

Indeed, we also focused on the clinical acceptability of the proposed model,

which could potentially substitute the SF in clinical practice. Hence, the main

feature for such a model should be interpretability, that is the understanding
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of how the input affects the output variable, i.e. the suggested mealtime in-

sulin dose. Indeed, the more interpretable the model is, the easiest would be

to trust this model within a clinical setting. For this reason, we selected as the

final model a linear one, as linearity leads to interpretable models, being the

output of a linear equation representing the relationship between the features

and the outcome. This choice was also supported by the slight improvement

in terms of glycemic control obtained by the nonlinear and ensemble models

compared to the linear ones. Thus, among the candidate linear models, we

selected LASSOQ as the final model, since it allowed the greatest reduction of

BGRI and TBR, while not increasing the median TAR when compared with

IBOPT, as in LASSOQI . Moreover, LASSOQ was chosen over LASSOQI because

of the lower number of regressors. Indeed, a high number of features could

lead to a model having a higher variance, where a small change in the feature

values is reflected in a significant change in the output variable. This aspect

was considered as the models were developed within a noise-free scenario,

hence a potential real-life application could lead to features having different

distributions, being affected by errors. Thus, a model having lower variance is

key to preventing an incorrect estimation due to error sources.

Therefore, as all the models were tested within a noise-free scenario, thus

providing only a preliminary evaluation of their effectiveness, we employed a

simulation tool, i.e. ReplayBG, to evaluate the selected model retrospectively

on data collected from real patients affected by T1D.

4.4.2 In-silico clinical trial using ReplayBG

In this Section, we will discuss the assessment of the impact of LASSOQ on

already acquired glucose traces thanks to the ReplayBG simulation tool [77].

Indeed, to conduct this evaluation, we decided to resort to a model-based strat-
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egy. The approach which characterizes the ReplayBG simulation tool consists

of two main steps: first, a state-of-the-art composite physiological model of

glucose-insulin dynamics is identified on each selected glucose trace which

follows the meal event; second, the model is used to simulate glucose concen-

tration during the meal by replacing the real injected insulin bolus with the

insulin dose provided by LASSOQ. Hence, in the following, the extraction of

the glycemic intervals related to the meal and the application of ReplayBG to

the selected glucose data will be outlined.

Extraction of the glycemic intervals: Data collected during a randomised

crossover trial in patients with T1D [78] were used for the retrospective anal-

ysis to assess the effectiveness of the LASSOQ when applied to real data. In

this study, patients were randomized either to 2 months of closed-loop ther-

apy from dinner to waking up, plus open-loop therapy during the day, or, to 2

months of all-day open-loop therapy. Here, we selected only the data collected

during the all-day open-loop phase, since we are working on this specific

type of therapy setting. Only meals and postprandial intervals lasting 4 hours

were considered in the analysis. Intervals containing rescue carbohydrate in-

takes or correction boluses were excluded, to fairly evaluate the effectiveness

of the mealtime IB. Moreover, only intervals with a combination of positive

preprandial ROC and postprandial hyperglycemic event occurrence (scenario

A) and of negative preprandial ROC and postprandial hypoglycemic event

occurrence (scenario B) were taken into account because, in these cases, the

expected result of an effective ROC-based mealtime IB calculation is already

known: an increased IB amount, in scenario A, and a decreased IB amount, in

scenario B, when compared to the original dose injected by the patient. More-

over, we selected intervals with a magnitude of hypo- and hyper event greater

than 10 % of the total time window, to avoid irrelevant episodes. The result-

ing dataset is composed of 218 glycemic traces, 169 for scenario A, and 49 for
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scenario B.

Application of ReplayBG: Briefly, the physiological model of choice uses

the glucose-insulin minimal model proposed by Bergman et al. [79] as the

core to describe both the effect of the insulin action and the glucose rate of

appearance on plasma glucose dynamics through time. However, since neither

the insulin action nor the glucose rate of appearance is usually available (as in

our case), the model has been expanded with the models of Schiavon et al. [80]

and Dalla Man et al. [81], which allows the final, composite model to take, as

inputs, (available) exogenous insulin infusion and meal carbohydrate intakes.

Further details on the model are reported in Appendix A.

Since the objective was to describe the effect of carbohydrate intakes and

insulin bolus on glucose concentration, the physiological model was identi-

fied separately for each of the 218 traces by adopting the Bayesian framework,

described in [77], which makes it possible to, effectively, circumvent any unde-

sired non-identifiability issues and, also, provides point estimates of unknown

model parameters by exploiting a Markov-Chain Monte Carlo strategy. Other

details regarding both the physiological model and its identification procedure

can be found in Appendix A. Consequently, we obtained 218 different param-

eter sets (PS), one for each trace. We then analyzed, trace-by-trace, the results

obtained from this identification procedure. In particular, we decided to dis-

card those traces whose pre-prandial BG value was outside the euglycemic

range from the final evaluation for two main reasons: (i) they do not belong

to our bolus calculator domain of validity, since it was trained only on glucose

traces with this initial condition; (ii) we observed that glucose traces with pre-

prandial BG concentrations outside the euglycemic range resulted in model

parameters which were not physiologically plausible. Therefore, the resulting

dataset is composed of 129 glycemic traces, 110 in scenario A and 19 in scenario

B.
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Then, to quantify, for each of the 129 traces, the glycemic outcomes result-

ing from the use of LASSOQ, we set up a 4-hour long scenario where we sim-

ulated the corresponding trace five times using the real insulin dose input and

the doses computed with LASSOQ, BU, SC, ZI and SF respectively. For each

simulation, we quantified glycemic control in terms of TIR, TBR, and TAR.

4.4.3 Results

The performance of the LASSOQ model was assessed separately in scenario

A and scenario B, as previously outlined. The times in each glycemic range

are reported either as mean (± standard deviation) for Gaussian distributed

metrics and median [interquartile range] or otherwise. For this purpose, the

non-Gaussian nature of each distribution was checked using the Lilliefors test

with a 1% confidence level. The resulting metrics are reported in Table 4.5 for

scenario A, and Table 4.6 for scenario B.

To compare the results obtained through the adoption of LASSOQ in sce-

nario A versus the other methods considered, we reduced TAR while main-

taining comparable results in terms of TIR and without inducing hypoglycemia.

However, in scenario B, LASSOQ considerably increased the TIR and reduced

the TBR. Indeed, while the LASSOQ median value of 20.83% was equal to

the value obtained with the administered bolus, both the 25th and the 75th

percentiles were about 5% lower. This same result was also observed when

LASSOQ was compared with the other methods considered. In conclusion,

the application of the proposed LASSOQ model to the real data supports the

positive results obtained in silico.
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Figure 4.5: Representative example reporting the original CGM data (in blue), to-
gether with the simulated glucose trace obtained using IBOriginal (in red) and the glu-
cose trace obtained using IBLASSO (in green). The proposed model could have pre-
vented the hyperglycemic event by increasing the dose.

4.5 Summary of the main findings and ideas for new

insulin dosing strategies

By adopting supervised learning techniques, we developed multiple mod-

els, both linear and nonlinear, for mealtime IB calculation, to improve the

SF traditionally used for insulin dosage and, hence, improve the quality of

glycemic control while increasing model complexity. We assessed the perfor-

mance of these models by evaluating the goodness-of-fit (RMSE), quantifying

each model’s ability to approximate the optimal insulin dose (IBOPT), and then

compared them with commonly adopted glycemic control indices (TIR, TAR,

TBR, and BGRI). We found out that all the proposed models outperformed the
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Figure 4.6: Representative example reporting the original CGM data (in blue), to-
gether with the simulated glucose trace obtained using IBOriginal (in red) and the glu-
cose trace obtained using IBLASSO (in green).The proposed model could have pre-
vented the hypoglycemic event by decreasing the dose.

standard guidelines for insulin dosing, particularly, among the linear mod-

els proposed in Section 4.2, the in silico evaluation showed that LASSOQ and

LASSOQI performed better than MLR and LASSO models, being able to better

approach the IBOPT thanks to the addition of quadratic and interaction terms

between the features as input variables. At a later stage, we applied nonlinear

methodologies, i.e. RF and GBT, to describe the nonlinear connection among

the input variables and the output, that is the mealtime IB, to improve the lin-

ear regression model developed in 4.2. Specifically, results obtained within the

simulated framework lead to statistically significant improvement in glycemic

control, in terms of TBR, over the linear technique. Finally, to combine the

different predictive abilities of both linear and nonlinear models, we designed
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Table 4.5: Comparison of metrics obtained from scenario A, for SF, state-of-the-art
methodologies and LASSOQ. Median and interquartile ranges are reported for TBR,
TAR, and mean and standard deviation for TIR.

Metric Original bolus LASSOQ SF BU SC ZI

TBR % 0.00
(0.00-0.00)

0.00
(0.00-0.00)

0.00
(0.00-0.00)

0.00
(0.00-0.00)

0.00
(0.00-0.00)

0.00
(0.00-0.00)

TAR % 41.67
(20.83-62.50)

38.54
(20.83-70.83)

41.67
(22.92-70.83)

39.58
(20.83-13)

40.63
(20.83-66.67)

39.58
(18.75-62.50)

TIR % 54.72
(± 27.11)

54.45
(± 27.88)

53.05
(± 27.87)

54.47
(± 28.08)

54.15
(± 27.73)

54.47
(± 28.07)

Table 4.6: Comparison of metrics obtained from scenario B, for SF, state-of-the-art
methodologies and LASSOQ. Median and interquartile ranges are reported for TBR,
and TAR, and mean and standard deviation for TIR.

Metric Original bolus LASSOQ SF BU SC ZI

TBR % 28.83
(15.10-39.98)

20.83
(10.94-29.17)

27.08
(12.50-44.27)

25.00
(12.50-44.27)

22.92
(12.50-44.27)

22.92
(9.38-44.27)

TAR % 0.00
(0.00-0.00)

0.00
(0.00-0.00)

0.00
(0.00-9.38)

0.00
(0.00-9.38)

0.00
(0.00-9.38)

0.00
(0.00-9.38)

TIR % 69.74
(± 19.19)

72.26
(± 20.55)

67.76
(± 22.10)

67.65
(± 22.15)

67.76
(± 22.10)

67.21
(± 22.47)

an ensemble technique based on dynamic voting. Preliminary results showed

the ability of the proposed model to combine the linear and nonlinear model,

i.e. LASSO and RF respectively, based on each regressor’s local performance

within a specific subdomain. Indeed, by testing the proposed method in sil-

ico, we found positive results in terms of the trade-off between TAR and TBR,

while keeping a high median TIR. Despite the positive results obtained, the

improvement in terms of glycemic control provided by an increased model

complexity was not remarkable. This aspect was taken into account, together

with interpretability issues, when selecting as the final model a linear one, i.e.

LASSOQ. A retrospective evaluation of this model on real data was performed

by leveraging the ReplayBG tool, to evaluate the efficacy of the selected model

within a scenario which includes error sources, such as CGM measurement

error or carbohydrate counting error. Positive results, obtained through simu-

lations, were confirmed by the aforementioned retrospective analysis of real

data. Indeed, the application of LASSOQ provided a reduced TAR within

94



scenarios including meals with postprandial hyperglycemia and a lower TIR

within scenarios including meals with postprandial hypoglycemia.

Therefore, preliminary results suggest that the combination of both features

on BG dynamics at mealtime and supervised learning-based models are key to

improving the calculation of IB and further reducing the risk of hypo- and hy-

perglycemia, during and after the meal. However, the design of a supervised

learning framework is far from being trivial in such a context, due to the dif-

ficulty in retrieving the optimal target of the learning task. Indeed, when con-

sidering data collected from people living with T1D, the administered meal-

time insulin bolus is in most cases sub-optimal, leading to poor postprandial

glycemic control. Moreover, the insulin amount estimation is highly patient-

dependent, making it difficult to train a general model which is valid for differ-

ent subjects. Hence, the impossibility of having reliable data, which includes

an optimal insulin bolus, together with the need for a model which is tailored

to the patient’s needs, supports the application of reinforcement learning (RL)

for such a task.
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Chapter 5

Development of a reinforcement

learning-based insulin bolus

calculator

In this Chapter, we discuss the implementation of a double deep Q-learning

(DDQ) algorithm aimed at optimizing the prandial insulin dosage. First, we

will describe in detail the core algorithm adopted in our strategy, i.e., DDQ-

learning, which is a variant of Q-learning, a popular reinforcement learning

(RL) technique that learns the value of an action in a particular state and aims

at finding an optimal policy in the sense of maximizing the expected value

of the total reward over any successive step, starting from the current state,

by training a rational agent [82]. Specifically, in DDQ-learning, the agent is

controlled by a neural network, called deep Q network (DQN). Then, we will

outline the two-step learning framework which allowed us to train the models

together with the performances of the algorithm resulting from the in-silico

testing.
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5.1 Rationale: beyond supervised learning

As mentioned in the previous Chapter, a supervised learning framework presents

several limitations in such a context. Despite many publicly available databases,

which include information collected from T1D subjects, can be found, these

data most often lack reliability. Indeed, patient error within T1D therapy is

frequent, due to the numerous amount of tasks which should be performed by

the subject and the difficulty in correctly reporting the information related to

the therapy, such as the precise amount of CHO intake of the meal. Even more,

a proper estimation of the insulin dose related to a meal is a challenging task,

which often leads to incorrect insulin dosing and thus, suboptimal glycemic

control. All these aspects lead to unreliable data, that could worsen the quality

of the proposed supervised model. For this reason, we decided to abandon the

idea of creating a supervised learning framework, to overcome the aforemen-

tioned issues, by employing RL, which does not need labelled data to train the

model, since it relies on a trial-and-error process.

The work of Zhu et al. [61] proposed a preliminary study in this direction,

by applying a deep RL algorithm (deep deterministic policy gradient) for the

design of an insulin bolus advisor. The use of this methodology to develop a

bolus calculator showed encouraging results, suggesting that RL is suitable for

such a task. However, the simulated environment used in [61] did not consider

relevant variability sources which could impact glycemic control, e.g., CGM

measurement error, and the size of virtual cohort is relatively small (n = 20).

In this study, we extended the work proposed in [61] by applying a person-

alized and adaptive DDQ-learning algorithm within a highly realistic simula-

tion scenario, which includes multiple error and variability sources, as high-

lighted in the following sections.
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5.2 Double deep Q-learning

Hereafter, we will formulate the insulin dosing task as an RL problem. First,

in Section 5.2.1 we will describe in detail the core algorithm adopted in our

strategy, i.e., DDQ-learning, which is a variant of Q-learning, a popular RL

technique that learns the value of an action in a particular state and aims at

finding an optimal policy in the sense of maximizing the expected value of

the total reward over any successive step, starting from the current state [82].

Then, in Section 5.2.2, we will present how we integrated DDQ-learning for

the specific purpose of developing a new mealtime insulin bolus calculator.

5.2.1 Background on double-deep Q-learning

In general, the goal of RL is training an agent to perform a task thanks to the

interaction with a defined environment, by assigning a specific reward to each

agent’s action [83]. In particular, for each discrete time step t the environ-

ment can be represented by the state vector (st), which better describes the

current status of the environment among all possible vectors of the state space

S. Hence, the state at time t, is used by the agent to choose an action (at) from

all the possible sets of actions (A), according to its policy (π : S → A). The

action, which is selected based on the policy π, is applied to the environment,

that evolves into the subsequent state (st+1). Finally, the action related to the

specific state is evaluated through a reward (rt), that is assigned to the corre-

sponding state-action pair (st, at).

In this context, the goal of the algorithm is learning an optimal policy π

which maximizes the cumulative discounted future reward (i.e., the return Gt):

Gt =
∞

∑
τ=t

γτ−trτ+1 (5.1)
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where γ is the discount factor, which takes values between [0,1], and deter-

mines how much the rewards in the distant future should be considered within

the calculation.

In Q-learning, in order to learn the optimal policy and maximize the reward

defined in Equation (5.1), the so-called action-value function is used [82]:

Qπ(st, at) = E[Gt|st, at, π] (5.2)

which is the expected return given the state st and action at under a specific

policy π, representing the goodness of the action for the given state. The opti-

mal action-value function Q∗(s, a) can be defined as the one maximizing Equa-

tion (5.2), and satisfying the Bellman optimality equation [82]:

Q∗(st, at) = E[rt+1 + γ max
at+1

Q∗(st+1, at+1)|st, at] (5.3)

When the number of possible state-action pairs is high, the amount of time re-

quired to explore each state and apply a specific action is impracticable. Thus,

generating the so-called Q-table, which stores Q∗(st, at) for each state-action

pair, becomes an excessively time-consuming process. To overcome this issue,

in deep Q learning, the exact action-value function is replaced by a function

approximator based on deep learning, i.e., a deep Q network (DQN). A DQN

is a deep multi-layered neural network parametrized by its weight vector θ,

which for a given state s provides as output the approximation of Q∗(s, a), i.e.,

Qθ(s, a) for all the possible actions in A.

Improving learning stability of DQN

In this work, we took advantage of two important factors related to the DQN

algorithm, which increase learning stability: the experience replay and the tar-
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get network [84]. By leveraging experience replay, we stored the agent’s ex-

periences in the form (st, at, rt+1, st+1) in a cyclic buffer called replay memory,

from which a minibatch was randomly drawn to update the DQN, instead of

performing such a task at each time step and thus leading to poor stability.

The use of experience replay also helps in breaking the correlation between

two consecutive samples while training the network. The second stabilizing

method was obtained by means of a target network, which is a separate net-

work having weights θ−, that is initially equal to the ones of the network en-

acting the policy. During training, the weights of the target network θ− were

updated to match the policy network θ after a fixed number of steps [84].

In this study, we applied Double Deep Q-learning (DDQ), a variant of deep

Q-learning, which leverages the target network θ− to tackle the maximization

bias issue, i.e., the systematic overestimation of the action-value function due

to the maximization step in Equation (5.3), which characterized such an algo-

rithm. The max operator in DQN, in Equation (5.3), uses the same values both

to select and evaluate action. This makes it more likely to select overestimated

values, resulting in over-optimistic value estimates. To prevent this, DDQ-

learning decouples the action selected from the action evaluation by leverag-

ing the target network parametrized by θ− [85]. Hence, in DDQ-learning the

target Q-value is computed as follows:

Q(st, at) = rt+1 + γQθ(st+1, argmax
at+1

Qθ−(st+1, at+1)) (5.4)

Note that, the selection of the action is due to the policy network θ, while the

second network θ− is used to fairly evaluate the value of this policy [85].

Fig. 5.1 visually summarizes the different steps and elements which com-

pose the DDQ-learning algorithm.
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Figure 5.1: Representative scheme of the DDQ-learning framework applied to the
T1D simulation environment. Within the Agent block, the state st feeds both the policy
and the target network, which will be used to approximate the Q(st, at). Then, the
action at associated with the maximum estimated Q-value will be an input of the T1D
Simulator block, and in particular to the virtual subject, which will receive the insulin
dose corresponding to the chosen action. At time step t + 1 the environment evolves
into the subsequent state st+1, hence the reward rt+1 is computed and the transitions
(st, at, rt+1, st+1) are stored within the replay memory and will be used every N steps
to update the policy network.

5.2.2 Development of the insulin bolus calculator based on

double deep Q-learning

In this section, we present how we used the DDQ-learning algorithm to de-

velop a mealtime insulin bolus calculator. In particular, at mealtime t, the pa-

tient needs to estimate and inject the insulin dose to counteract the glycemic

excursion due to the meal. Within this framework, the mealtime condition is

represented by a specific state st, composed of easily accessible physiological

parameters of the T1D individual as described in 5.2.2. Based on the current

mealtime status, the best action at selected by the policy was applied to the pa-

tient, i.e., the best insulin amount to be injected, as defined in 5.2.2. Lastly, after

the insulin amount delivery, the postprandial glycemic outcome was evaluated

through the reward function specified in 5.2.2.
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State vector choice

In this work, we used easily accessible variables together with patient-specific

therapy parameters to describe the mealtime condition, which provides a com-

prehensive view of the prandial status.

We defined the state vector at time t (st) by extracting, for each meal, the

following variables: the current CGM measurement G [mg/dL]; the carbohy-

drate content of the meal (CHO) [g]; the CGM rate of change (ROC) [mg/dL/min],

which gives insight into the glucose dynamics, by indicating whether glucose

level is falling or rising and to what extent; the prandial insulin-to-carbohydrates

ratio (CR) [g/U], a therapy parameters indicating how many grams of CHO

will be covered by one unit of insulin and which could vary from meal to

meal; together with the prandial insulin dose computed through the standard

therapy (BCS) [U] as in Equation 1.1. In this process of feature selection, we

followed our previous work’s rationale [46], which involved the exclusion of

variables that, in this specific application, assumed a constant value for each

meal, e.g., the body weight (BW), the correction factor (CF), the target glucose

(Gt). As a result, we defined st as:

st = {Gt, CHOt, ROCt, CRt, BCSt}.

Set of possible actions

In our scenario, there are multiple types of actions which could potentially be

adopted, such as the estimation of the insulin dose itself, or the correction of

the dose suggested by BCs. Since the number of possible insulin amounts as-

sociated with a state is considerably high, we decided not to directly estimate

the mealtime bolus, but to correct the dose suggested by BCs, which thus will

be considered as a starting value. This choice was made to avoid an exces-
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sive number of possible actions, which could lower the performance of our

algorithm. Hence, we defined an action at as a percentage modulation of the

mealtime insulin dose suggested by the standard therapy. In particular, the

BCs dose can be decreased or increased by a percentage α, which ranges from

these possible values α = {±25,±20,±10, 0}%. The motivation behind this

choice lies in the results obtained in our previous work [46] where multiple

state-of-art insulin adjustment methods were preliminarily assessed in silico.

The literature approach which was correcting the dose based on a percentage

modulation resulted in the safest method under specific mealtime conditions,

potentially indicating that the insulin correction should also depend on the

entity of the meal and not be fixed to constant values.

Following this rationale, at each time step t, the chosen action at = αt was

applied to the bolus calculator as follows:

BCddqn(t) = BCs(t) + αtBCs(t) (5.5)

where BCddqn(t) represents the insulin amount suggested by the DDQN algo-

rithm at time step t.

Reward function

Among all the possible reward functions which could be employed to evaluate

postprandial glycemic control, we followed the structure of the one presented

in the preliminary work of [61], which showed promising results for such a

purpose. The aim being evaluating the glycemic control following the current

meal at time instant t, we assigned a weight to each postprandial CGM sample

between the current time instant t and t∗, which corresponds either to the fol-

lowing meal or a postprandial 6 hours interval if the next meal occurred at a

longer time distance. In particular, the reward equation is reported in Equation
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(5.6):

rt =
1

t∗ − t

t∗

∑
k=t

fR(Gk) (5.6)

where t∗ = min(t + 6h, t + 1). Note that weights were assigned differently

based on the glycemic range. Particularly, hypoglycemia was penalized more

compared to hyperglycemia, since a hypoglycemic excursion is riskier than a

hyperglycemic excursion having the same amplitude. The selected rewards

were tuned by trial-and-error and associated with each glycemic interval as

follows:

fR(Gk) =



+0.5 if 70 ≤ Gk ≤ 180

−0.9 if 180 < Gk ≤ 200

−1.2 if 200 < Gk ≤ 250

−1.5 if 250 < Gk ≤ 350

−1.8 if 30 < Gk < 70

−2 else

(5.7)

As reported in Equation (5.7), a glucose level within the target range was asso-

ciated with a positive reward. The highest penalty was assigned to values in

hypoglycemia, while hyperglycemic values were not penalised equally, hav-

ing different weights based on the severity of the interval. Fig. 5.2 depicts the

different weights assigned to each glycemic interval.

Implementation details on the DDQN algorithm

In this Section, implementation details are reported to further clarify the train-

ing process. During the learning phase, all the hyperparameters highlighted in

Section 5.2.1 have been set, following a trial-and-error procedure, as reported

in Table 5.2, while the weights of the DQNs were initially initialized as ran-

dom.

105



Figure 5.2: Reward function employed for the proposed DDQN algorithm. Each
CGM interval is associated with a constant value used within the reward function.
Green line represents the euglycemic range, while the red lines indicate intervals as-
sociated with adverse events.
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Before starting DDQN training, the replay memory introduced in Section

5.2.1 was first filled by applying random actions chosen from the set of possi-

ble actions of Section 5.2.2. After this phase, characterized by actions chosen

completely random, we started the learning procedure by selecting either a

random action with probability ϵ or an action based on the agent with prob-

ability 1 − ϵ. In particular, the agent makes use of a DQN, having two hid-

den layers composed of 32 and 16 nodes respectively, which maps state-space

(R5) to action-space (R7). The weights of the policy network were updated at

the end of one episode, according to minibatch gradient descent, by randomly

sampling from the replay memory, while the target network was updated after

a fixed number of episodes.

5.3 Simulation framework

The proposed algorithm is trained and tested by means of the UVA/Padova

T1D Simulator.

Indeed, due to the nature of RL techniques, the use of a simulation en-

vironment is particularly suitable, being the learning of the model achieved

through the interaction with the environment and thus, following a trial and

error procedure. Performing such a process on a virtual subject is key to avoid-

ing dangerous situations within a real clinical setting.

In this work, we used an updated version of the FDA-accepted UVA/Padova

T1D Simulator [60], which includes several elements that enhance the realism

of the simulated scenarios. These improvements include a dedicated model to

describe the dawn phenomenon and time-varying therapy parameters mod-

elled as in [37], a model of CGM sensor measurement error [86, 87], and a

behavioural model of people with T1D [88].

The virtual cohort was composed of 100 adult subjects, and the total pop-
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ulation was divided into two different subgroups, hereafter labelled as Set A

and Set B. We obtained the two subsets by randomly selecting 50 subjects for

each group while performing a stratified split, in which distribution of the av-

erage CR pattern, the CF, and the body weight (BW) variables between the two

groups remained the same. The stratification was performed to ensure homo-

geneity between the two sets, being the aforementioned parameters used to

identify the subjects used to train the population models within the first step

of the learning framework. Hence, Set A was employed for the development

of the first learning step, while Set B was retained to fine-tune the general-

ized models and, lastly, test the performances. The first stage, applied on Set

A, consisted of a long-term training of K population models on 1200 simulated

days, while the personalization of the resulting DDQN models was carried out

on Set B, on a 180-day simulation as performed in [61]. Such a long simulation

time was needed since meals are infrequent events within a day (three meals

per day).

One day of simulation included three meals per day: breakfast, lunch and

dinner. Both meal timing and CHO content of the meals were extracted from

uniform distributions to match the data reported in [89]. Table 5.1 reports the

minimum and maximum values of the distributions from which the meal tim-

ing and CHO amount are drawn.

Moreover, to further improve the realism of the simulated scenarios, meal

carbohydrate counting error has been modelled and added to the original meal

amount as described in [90]. Of note, no corrective actions (rescue carbohy-

drates intakes or corrective insulin boluses) were included during the simula-

tions to fairly compute the reward corresponding to the action chosen by the

algorithm. Indeed, a corrective action could add confounding factors within

the rewarding process, since it would bring glycemic levels back into the nor-

moglycemic range, not letting us assess the efficacy of the chosen action alone.
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Table 5.1: Minimum and maximum values of the possible CHO amount and time of
consumption for the different meals.

Meal type CHO amount [g] Meal timing
breakfast [19-97] [6.30 am - 8.00 am]
lunch [31-124] [11.30 am - 1.00 pm]
dinner [28-140] [6.00 pm - 8.30 pm]

As a result, the only control action at allowed between mealtime at time t and

the following meal at time t + 1 was represented by the meal insulin bolus

suggested by the policy.

5.4 Learning of the deep Q-network (DQN)

Learning of our model was performed on the first set of 50 subjects extracted

in Section 5.3, following the same two-step learning rationale used in Zhu et

al. [61] In particular, in the first step we used a long-term simulation to train

a set of K population models able to represent the inter-subject physiological

variability observed in people with T1D, as described below in Section 5.4.1

(Step 1). Secondly, for a given subject, a specific model is selected between

the K population models and then personalized to better fit his/her peculiar

physiology, as reported in Section 5.4.2 (Step 2) .

5.4.1 Step 1: Sub-population model training

To obtain K sub-population models which can describe the variability in T1D

subjects’ physiology, we performed a sub-population model training by divid-

ing Set A of subjects into K different groups that share similar characteristics.

To achieve this goal, each subject was described with three patient-specific pa-

rameters, i.e., the average CR value of the daily pattern, the CF variable, and

the BW. Then, we applied the K-medoids clustering algorithm [91], to divide

the 50 subjects composing the used population into K clusters. In particular, K
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Figure 5.3: Scatter plot of the 8 different clusters resulting from the application of the
K-medoids algorithm. Each of the 50 subjects is represented by a specific BW, CF and
average CR value. The sub-population subjects, i.e., the medoids of each cluster, are
outlined in black.
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Figure 5.4: CGM mean and standard deviation intervals resulting from the virtual
subjects belonging to the test set are reported for a representative one-week-long sim-
ulation. CGM values related to the standard insulin dosing and DDQN bolus calcula-
tor are shown in red and blue respectively. Dashed lines indicate the normoglycemic
range.

= 8 was identified as the optimal number of clusters by employing the elbow

method. Finally, we selected the K = 8 representative subjects as the medoids

of each cluster. Fig. 5.3 depicts, with different colours, the 8 identified clusters

and the respective representative subjects, highlighted with a black circle.

5.4.2 Step 2: Personalization of DQN-learning models on patient-

specific data

In the second step, the sub-population DDQNs were fine-tuned and thus, fur-

ther personalized on each subject of Set B. Indeed, after having defined the

cluster to which each virtual patient of Set B belongs, the DDQN weights

were initialized with the one resulting from the previous phase, i.e., θk and

θ−k , where k indicates the k-th sub-population subject.

By setting specific safety constraints, which limits the meal insulin correc-
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Table 5.2: Hyperparameters used for both the sub-population model training and
personalized model tuning.The hyperparameters do not differ among the virtual sub-
jects.

Hyperparameter Value
Number of random episodes before learning starts 30
Sub-population ϵ-greedy exploration 0.9 → 0.1
Number of episodes after which the target DQN is updated 50
Replay memory maximum size 800
Discount factor γ 0.95
Minibatch size 32
Learning rate 0.001
Hidden nodes of the DQNs [32, 16]

tion, this phase of individualization could also be safely carried out on the

real subject within a clinical trial setting. In addition to the possibility of in-

troducing security constraints, this phase may be performed using simulation

tools which leverage real data, such as [77], thus enabling the fine-tuning of

the generalized model on simulations derived from patients’ real data.

5.5 Results

The assessment of the RL algorithm was performed on 60 simulated days,

where the experimental set-up was the one described in Section 5.3, and the

population cohort was composed of 50 subjects (Set B). Moreover, to evaluate

the efficacy of the proposed methodology, results were compared to 60 days

of simulation in which the standard bolus calculator reported in Equation (1.1)

was used for the insulin dosing task. It should be pointed out that, the daily

scenarios in terms of mealtimes and CHO amounts composing the meal within

the 60-day testing period differ from those within the 180-day personalization

period of Section 5.4.2. Lastly, to ensure a fair comparison between the two in-

sulin dosing methods and to allow replicable analysis, the seed of the random

number generator was fixed for each virtual subject.
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Table 5.3: Values related to median and interquartile ranges of TBR [%], TIR [%], TAR
[%], Nhypo and Nhyper are reported for both the standard and DDQN bolus calculators.

TBR [%] TIR [%] TAR[%] Nhypo Nhyper

BCs
8.78

(2.90, 12.44)
68.35

(64.87, 72.65)
22.24

(15.89, 30.89)
1

(0, 1)
2

(2, 3)

BCddqn
4.17*

(2.70, 8.17)
70.08

(66.49, 76.55)
23.47

(18.25, 28.64)
0

(0, 1)
2

(2, 3)
*Statistically significant compared to BCs with p < 5%

From the 60-day glucose profile, we extracted several metrics evaluating

glycemic control, which are widely adopted by the diabetes research commu-

nity [92, 93] and reported in Section 2.3.2 within Chapter 2. In particular, we

derived three metrics related to the the percentage of time spent within the dif-

ferent glycemic ranges, that is TIR, TAR and TBR. Moreover, we computed two

popular indices used to quantify the risk of hypo- and hyperglycemia, namely

the low blood glucose index (LBGI) and high blood glucose index (HBGI) re-

spectively, together with the overall BGRI, which sums the two contributions

in one risk index, indicating the goodness of the overall glycemic control [66].

In addition to these metrics, the median number of hypo- and hyperglycemic

events per day was extracted to assess the benefit introduced by the proposed

algorithm. Lastly, to evaluate the statistical significance of the resulting metric

distributions we applied a paired t-test with significance level equal to 5% to

those metrics having a Gaussian distribution based on the Lilliefors test (i.e.,

TIR, TAR) [94], while the Wilcoxon test with significance level equal to 5% was

used for the TBR metric, which showed a non-Gaussian distribution.

In Fig. 5.4, the mean and the corresponding standard deviation extracted

from all the glucose profiles of the virtual subjects belonging to the testing

set are shown for both the DDQN algorithm and the standard therapy. It is

noted that, considering the negative shift of the standard deviation, in most

hypoglycemic events, the nadir is considerably reduced when BCddqn is used,

while the increase in terms of maximum hyperglycemic value introduced by
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Figure 5.5: Distributions of LBGI, HBGI, and BGRI resulting from the testing phase
are reported in blue for the DDQN bolus calculator, while in red for the standard bolus
calculator.
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the DDQN algorithm is almost negligible.

The aforementioned remarks are consistent with the results obtained by an-

alyzing the metrics related to the time in different glycemic ranges, as reported

in Table 5.3. Indeed, the advantage brought in terms of hypoglycemia reduc-

tion is reflected in a significantly lower distribution of TBR for BCddqn com-

pared to BCs, with a median value of 4.17% and 8.78% respectively. This was

achieved without negatively impacting on hyperglycemia, as can be seen from

the TAR distributions in Table 5.3, which reports a median value of 23.47%

and 22.24% for the DDQN and standard therapy respectively, not showing a

statistical significance between the two distributions. In general, the benefit

introduced by the proposed algorithm is positive, since both the interquartile

and the median value related to the TIR are improved.

The positive impact given by the DDQN method was also confirmed when

observing the median number of adverse events per day, shown in Table 5.3.

Indeed, median Nhypo is reduced from 1 event per day to zero, while Nhyper

remains unchanged for both methods.

To ensure that the moderate increase in TAR is not influencing negatively

the overall glycemic control, the risk metrics described previously were anal-

ysed and reported in Fig. 5.5. As expected, the LBGI is significantly reduced,

while HBGI showed a slight increase in the median value. However, the BGRI,

which summarizes the two aforementioned metrics, showed an improvement,

by decreasing the median value from 8.2 of the benchmark to 7.3 of the BCddqn.

Also, the total amount of insulin injected for each subject remained stable for

both methods, suggesting that the significant improvement in terms of metrics

related to hypoglycemia is not simply due to a decrease in insulin dosage, but

to a more effective redistribution of such hormone.

The reported results pointed out that, in general, the use of BCddqn could

provide a beneficial impact on glycemic control, by considerably reducing not
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only the occurrence but also the duration of hypoglycemia, without signifi-

cantly affecting hyperglycemia.

5.6 Summary of the main findings and possible fu-

ture developments

In this work, we proposed a mealtime insulin bolus calculator based on a

DDQN algorithm, which leverages a high level of personalization and adapta-

tion through a two-step learning framework combined with a clustering pro-

cedure. This method allowed us to fine-tune the generalized model related to

the sub-population subject which shows more similarity to the patient. Such

individualization of the insulin dosing was implemented to deal with the mul-

tiple variability sources introduced by the updated and highly realistic version

of the UVA/Padova T1D Simulator used in this work, as described in Section

5.3.

The presented bolus calculator was tested within the simulated environ-

ment for a 60 days simulation, and compared to the state-of-art method for

insulin dose calculation, i.e., the standard bolus calculator in Equation (1.1),

by extracting different metrics widely used by the diabetes research commu-

nity to assess the quality of glycemic control. Despite the challenging scenario

provided by the employed simulated environment, results in terms of time

spent within the different glycemic ranges, the number of adverse events and

glycemic risk metrics was encouraging, showing the ability of the proposed

method to completely avoid or mitigate the magnitude of postprandial hypo-

glycemic events, while moderately improving the time in range and maintain-

ing stable the time in hyperglycemia compared to the benchmark.

The obtained performances indicated the efficacy of the algorithm in ad-
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justing the standard dosage based on the mealtime state of the subject. More-

over, the total amount of daily insulin delivered to the subject remained equal

both for the standard and the proposed method, pointing out that the reduc-

tion of hypoglycemia is not due to a simple decrease of the mealtime insulin

amount, but rather the algorithm is redistributing the daily amount of insulin

more effectively.

Limitations of the work include the need for a relatively long period to

personalize the population model, being the meal an infrequent event within a

day. A possible solution to overcome this limitation may come from the use of

simulation tools, such as [77], which allows to identify a model on a patient’s

glucose trace and to replay the scenario by changing the inputs of the model

(e.g, insulin bolus), thus evaluating the effectiveness of a specific therapy.

Hence, future works will involve an assessment in a clinical setting to-

gether with the exploration of the aforementioned methodology to speed up

the personalization phase. Moreover, further developments of the method

may include the exploration of a simulated scenario which also takes into ac-

count the insulin sensitivity variability, a challenging factor impacting T1D

management. In conclusion, the application of a DDQ-learning algorithm

combined with an effective model personalization procedure allowed us to

achieve promising results within the updated version of the FDA-accepted

UVA/Padova simulated environment when applied for prandial insulin dose

adjustment.
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Chapter 6

Conclusion and future

developments

6.1 Summary of thesis contributions

In general, the objective of this thesis is rising awareness of the importance

of an accurate and precise prandial insulin dosage within T1D management,

which is the major obstacle to optimal glucose control. As previously high-

lighted, we proposed different possible solutions, to demonstrate that there

could be a margin for improvement over the standard guidelines and that this

topic needs to be extensively addressed by the diabetes research community.

Particularly, we presented different approaches based on machine learning,

i.e., supervised and reinforcement learning, to improve the mealtime insulin

dose estimation, thanks to the use of information on CGM trend and person-

alized parameters related to the patient’s prandial status. In each phase of this

work, we pointed out the limitations which characterize the standard guide-

lines for insulin dosing, highlighting the possibility of achieving an improved

glycemic outcome when adopting our proposed strategies. The study reported

in Chapter 2 allowed us to find out the open issues related not only to the stan-
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dard guidelines, but also to the empirical methods proposed in the literature

to adjust such a dosage. Indeed, by performing an ISCT within single-meal

and noise-free scenarios, we compared and assessed the current approaches

and verified their limitations in terms of effectiveness on glucose regulations.

This work set the basis for the investigation of different data-driven strate-

gies aimed at optimizing the prandial insulin bolus. Therefore, the following

phase, reported in Chapters 3 and 4, consisted in designing novel techniques

for insulin dosing based on a supervised learning framework and leveraging

a simulated dataset, consisting of 100 virtual subjects, where each of them un-

derwent different mealtime scenarios. The proposed population models, i.e.,

linear, nonlinear and ensemble models, led to encouraging results when tested

within the simulated environment. However, the increase in model complex-

ity was not matched with significantly higher performance, indicating that

population models are not sufficiently tailored to the single patient, despite

the inclusion of personalized features within the dataset. Moreover, as previ-

ously stressed within this thesis, designing a supervised learning framework

for such a purpose is a challenging task, due to the possible unreliability of

real data and the need of leveraging a simulated dataset. Hence, to overcome

the aforementioned limitations, we extended the previous work by applying

an RL algorithm, i.e. double deep Q-learning. Training the model through the

interaction with the simulated environment resulted particularly suitable for

such a purpose, avoiding the need for labelled data. Results obtained during

the testing of the proposed algorithm were promising, showing the beneficial

impact of an insulin dosing strategy which is highly personalized and promot-

ing the investigation of future developments on this topic.
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6.2 Future challenges and perspectives

Future challenges related to this work include further assessment of the pro-

posed supervised models using a simulated environment that takes into ac-

count additional error sources. Indeed, while the models were developed

within an error-free environment to eliminate any confounding factors that

could have influenced the outcome of the study, the integration of the new

model within a multi-meal scenario [95], including additional error sources,

such as errors in patient behaviour [96], carbohydrates miscalculations [90]

and sensor readings [97] [98] could be beneficial to compare the outcome of the

supervised models with the results obtained through the RL-based algorithm,

that was developed in such challenging framework. However, a preliminary

investigation of the performance related to the supervised models using real

data, which includes multiple error sources, was already performed, confirm-

ing the positive results obtained in silico.

In addition, a relevant step for the extension of this study, will involve an

assessment of the presented models within a real-life setting, to evaluate the

effectiveness of the machine-learning-based techniques in presence of different

endogenous and exogenous factors, e.g., hormonal changes or physical activ-

ity, which are not modelled within the simulated environment.

6.2.1 Application of the presented work: integration within a

decision support system

In the past decade, diabetes management has been transformed by the advent

of CGM sensors. However, even though this technology provides an increased

amount of information, current standard treatments are unable to leverage the

information generated. The increased application of data-driven methodolo-

gies, which are capable of handling and processing this information, has led
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to the development of decision-making tools and applications which can en-

hance the management of diabetes. In particular, decision support systems

(DSSs) give the possibility to support patients with proactive and personal-

ized decisions in any scenario of their daily living and allow them to react at

a shorter time scale. Over the past few years, DSSs for chronic diseases such

as diabetes have been an emerging concept in healthcare. One of the main

advantages of DSS is that data can be automatically collected, transmitted, ag-

gregated with other physiological signals, analyzed, stored and presented to

the patient [99, 100, 101]. In addition, by integrating e-health and telemonitor-

ing systems, DSSs for T1D have the potential to improve glycemic outcomes

thanks to the prevention of hypo- or hyperglycemic events, reducing uncer-

tainty when making critical self-management decisions [102]. A DSS for dia-

betes treatment can provide an alternative to much more complicated closed-

loop systems, such as the artificial pancreas. Indeed, a wide range of users does

not feel confident with the use of this device, being concerned about errors oc-

curring in the insulin pump, and prefers an open-loop therapy, which can be

greatly facilitated by the DSS. For this reason, many DSS aimed at support-

ing the T1D individual were proposed in the literature recently [103, 104, 105].

Most of the DSSs already available in the literature are composed of a predic-

tive glucose module (which alerts the user whenever its BG is predicted to fall

outside the safe range in the next future), an insulin suspension module (which

temporarily suspends basal insulin delivery to avoid hypoglycemia when BG

is critically low in a patient using insulin pumps), and a bolus calculator mod-

ule to compute insulin dose at mealtime. Therefore, a straightforward appli-

cation of the work presented in this thesis consists in designing a new bolus

calculator module that implements the proposed methodologies to develop a

new, more sophisticated, DSS that can achieve better glycemic control when

compared to other state-of-the-art algorithms.
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In such a context, the integration of the algorithms proposed in this thesis

would support individuals affected by T1D in computing an effective insulin

dosage. Following this rationale, in our recent work, we presented a prelim-

inary DSS which integrates different modules, among which an insulin bolus

advisor, to assist the patient during the daily decision-making process [106].

However, despite the increased investigation of DSSs for T1D management,

many of the insulin-dosing DSS algorithms and glucose prediction DSS algo-

rithms published in the literature included only an in silico evaluation, making

it challenging to assess how well the systems will perform in a real-life setting

[105]. While the simulated environments have been crucial and groundbreak-

ing in the design and preliminary evaluation of novel treatment strategies,

real-life testing should be taken into consideration to bridge the gap which

is present in the literature.
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Appendix A

ReplayBG

Here we discuss the nonlinear physiological model of glucose-insulin used by

the ReplayBG tool. As previously done by Cappon et al. [107], the model

was built starting from the physiological model available in the UVA/Padova

T1D Simulator (T1DS) [37]. Moreover, as in [107], in order to permit model

identification at the individual level using carbohydrate intake CHO(t), exoge-

nous insulin I(t), and CGM data, the original T1DS model has been simplified

reducing the number of parameters to be identified, but paying attention in

maintaining its ability to effectively describe glucose-insulin dynamics. Note

that CGM, CHO, and insulin data should be collected in parallel. As docu-

mented in the following, the model is composed of three main subsystems:

subcutaneous insulin absorption; oral glucose absorption; glucose-insulin ki-

netics.

A.1 Model structure

A.1.1 Subcutaneous insulin absorption subsystem

The model of the subcutaneous insulin absorption system is a simplified ver-

sion of the model incorporated in T1DS [108]. The model is composed of three
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compartments and describes the absorption dynamics of exogenous insulin

infusion to the plasma. Exogenous insulin I(t) is infused to the first com-

partment, which represents insulin in a non-monomeric state. Then, "non-

monomeric" insulin diffuses to the second compartment, representing insulin

in a monomeric state, and eventually reaches plasma. Model equations are:


İsc1(t) = −kd · Isc1(t) + I(t − β)/VI

İsc2(t) = kd · Isc1(t)− ka2 · Isc2(t)

İp(t) = ka2 · Isc2 − ke · Ip(t)

(A.1)

where Isc1 (mU/kg) and Isc2 (mU/kg) represent the insulin in a non-monomeric

and monomeric state, respectively; Ip (mU/l) is the plasma insulin concentra-

tion; kd (min−1) is the rate constant of diffusion from the first to the second

compartment; ka2 (min−1) is the rate constant of subcutaneous insulin absorp-

tion from the second compartment to the plasma; ke (min−1) is the fractional

clearance rate; VI (l/kg) is the volume of insulin distribution; β (min) is the

delay in the appearance of insulin in the first compartment.

A.1.2 Oral glucose absorption subsystem

The model of the oral glucose absorption system, taken from [109], describes

the gastro-intestinal tract as a three-compartment system: the first two com-

partments quantify the glucose in the stomach, while the third compartment

models the upper small intestine where CHO is absorbed. Model equations

are: 
Q̇sto1(t) = −kempt · Qsto1(t) + CHO(t)

Q̇sto2(t) = kempt · Qsto1(t)− kempt · Qsto2(t)

Q̇gut(t) = kempt · Qsto2(t)− kabs · Qgut(t)

(A.2)
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where Qsto1 (mg / kg) and Qsto2 (mg / kg) are the amounts of glucose in

the stomach in solid and liquid state, respectively; Qgut (mg/kg) is the glu-

cose concentration in the intestine; kempt (min−1) is the rate constant of gas-

tric emptying; kabs (min−1) is the rate constant of intestinal absorption; CHO

(mg/kg/min) is the ingested carbohydrate rate. Model (A.2) allows to esti-

mate the rate of glucose appearance in plasma Ra (mg/kg/min) as:

Ra(t) = f · kabs · Qgut(t) (A.3)

where f (dimensionless) is the fraction of the intestinal content absorbed in the

plasma.

A.1.3 Glucose-insulin kinetics subsystem

The core model is based on a modified version of the glucose-insulin kinet-

ics minimal model introduced in [110][111]. The model is composed of three

compartments, the first describing the effect of insulin action and oral glucose

rate of appearance on plasma glucose concentration, the second quantifies the

impact of plasma insulin concentration on insulin action, and the last one rep-

resents the transport of glucose from plasma to the interstitium. Model equa-

tions are:
Ġ(t) = −[SG + ρ(G)X(t)] · G(t) + SG · Gb + Ra(t)/VG

Ẋ(t) = −p2 · [X(t)− SI · (Ip(t)− Ipb)]

˙IG(t) = − 1
α (IG(t)− G(t))

(A.4)

where G (mg/dl) is the plasma glucose concentration, X (min−1) is the insulin

action on glucose disposal and production; IG (mg/dl) is the interstitial glu-

cose concentration; SG (min−1) is the glucose effectiveness that describes the

127



glucose ability to promote glucose disposal and inhibit glucose production; Gb

(mg/dl) is the basal glucose concentration in the plasma; VG (dl/kg) is the vol-

ume of glucose distribution; p2 (min−1) is the rate constant of insulin action

dynamics; SI (ml/µU·min) is the insulin sensitivity; Ipb (mU/l) is the basal in-

sulin concentration in the plasma; α (min) is the delay between plasmatic and

IG compartments; and ρ(G), is a deterministic function, introduced by Dalla

Man et al. [112], that allows to better represent glucose dynamics in the hypo-

glycemic range by increasing insulin action when glucose decreases below a

certain threshold:

ρ(G) =



1 if G ≥ Gb

1+10r1{[ln(G)]r2 − [ln(Gb)]
r2}2

if Gth < G < Gb

1+10r1{[ln(Gth)]
r2 − [ln(Gb)]

r2}2 if G ≤ Gth

(A.5)

where Gth is the hypoglycemic threshold (set to 60 mg/dl) and r1 (dimension-

less) and r2 (dimensionless) are two model parameters, without direct physio-

logical interpretation, set to 1.44 and 0.81, respectively.

Note that in the model of Eq. (A.4) it is assumed, without any loss of gen-

erality, the gain between G(t) and IG(t) to be equal to one [113] [114]. With

this assumption, in practice, IG(t) represents a noise-free version of the CGM

data, allowing us to fit it versus CGM(t) in the identification step described in

the following section.

A.2 Model identification

For each model subsystem, the number of parameters to be identified was re-

duced as much as possible, i.e., retaining only the parameters that have the
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greatest impact on model output, while setting the other parameters to popula-

tion values. This selection step facilitates the identifiability of the model main-

taining capability of describing the glucose dynamics observed in the data. In

particular, 6 parameters were fixed to population values, i.e., VI = 0.126 l/kg,

ke = 0.127 min−1, β = 8 min, f = 0.9, VG = 1.45 dl/kg, and α = 7 min [108] [109]

[110]. The remaining parameters in eqs.(A.1-A.4) must be derived, at the indi-

vidual level, from the data. Therefore, the vector θ of the unknown parameters

is composed by a total of eight variables, two related to the subcutaneous in-

sulin subsystem, i.e., ka2 and kd, two associated to the oral glucose absorption

subsystem, i.e., kempt and kabs, and four related to the glucose-insulin kinetics

subsystem, i.e, SG, SI , p2, and Gb. Formally, the parameter estimation problem

can be stated as the problem of determining θ from the equations:
ẋxx(t) = f (xxx, uuu, t, θ)

y(t) = IG(t)
(A.6)

where xxx(t) is the state vector defined as

xxx(t) := [Isc1, Isc2, Ip, Qsto1, Qsto2, Qgut, G, X, IG]T;

uuu(t) := [I(t), CHO(t)] is the input vector; f (·) is the state update function com-

bining (A.1) (A.2), and (A.4). f depends on the set of unknown parameters

θ.

As documented in the literature, (A.1), (A.2), and (A.4) are a priori non iden-

tifiable [108][109][111]. As such, the identification of the vector θ at the indi-

vidual level from insulin and carbohydrate intake and CGM is not trivial, since

the resulting model (A.6) is not a priori identifiable as well.

To mitigate a priori non-identifiability, the Bayesian approach of Pillonetto

et al. [115], i.e., Markov Chain Monte Carlo (MCMC) was adopted. In fact,
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MCMC allows overcoming improper model parameters estimates that are usu-

ally achieved with maximum-likelihood-based approaches. In details MCMC,

allows to obtain a point estimate of θ, θ̂, by performing Monte Carlo integra-

tion over a set of N samples θi, i = 1, . . . , N generated from the posterior dis-

tribution

pθ|Y,U(θ|Y, U) =
pY|θ,U(Y|θ, U)pθ(θ)∫
pY|θ,U(Y|θ, U)pθ(θ)dθ

(A.7)

where pY|θ,U(Y|θ, U) is the likelihood function, that is, the probability of ob-

serving a certain sequence of CGM measurements Y := {y(tk), tk = k · Ts, k =

1, . . . , D} given the parameter vector θ and the input U := {u(tk), tk = k ·

Ts, k = 1, . . . , D} with D the number of available data points and Ts the sam-

pling period, while pθ(θ) is the a priori information on the distributions of un-

known parameters, which was obtained from previous studies [108][109][116].

The successful application of MCMC to address the a priori non-identifiability

of the ReplayBG model was already discussed in [107].

In this work, an improved variant of the identification approach proposed

in [107] was implemented, in which the Monte Carlo integration step is re-

placed by a new step where the a posteriori distribution pθ|Y,U(θ|Y, U) is fit and

represented in sampled form.

From the practical point-of-view, θi samples are generated from a Markov

Chain whose stationary distribution is exactly the posterior in (A.7) (target

distribution). Such a chain is built in MATLAB (Mathworks Inc., Natick, MA,

USA) using an Adaptive Single Component Metropolis-Hastings scheme [117].

The obtained samples θi are then used to fit a multivariate t copula distribu-

tion able to represent pθ|Y,U(θ|Y, U) and capture the underneath dependence

between unknown parameters [118]. Finally, such a copula distribution is used

to generate 1000 realizations of θ, i.e., θ̂r, r = 1, . . . , 1000, representing in sam-

pled form the target distribution pθ|Y,U(θ|Y, U). These samples are stored for
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their later use in the second step of ReplayBG.

A.3 Use of the model for simulation

The second step of ReplayBG uses the model identified in Step 1 to predict the

hypothetical glucose concentration profile (which corresponds, in the model,

to the variable IG, i.e., a noise-free version of CGM) that would have been ob-

tained, in the same individual and in the same time window, from the adoption

of an alternative therapy. Specifically, for each r-th realization of the model pa-

rameters, θ̂r, a corresponding IG(t) profile, ˆIGr(t), is obtained by simulating

the model (A.6) using as input the carbohydrate intakes and insulin adminis-

trations provided by the alternative therapy to be evaluated. As results, a total

of 1000 predicted IG profile realizations are obtained. These realizations are

ultimately used to infer the median IG profile, ˆIG(t)50, and the boundaries of

the corresponding 25th − 75th percentile confidence interval, ˆIG(t)25, ˆIG(t)75,

of the therapy under assessment.
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