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Chapter I

Introduction

Galileo Galilei said that things are connected by invisible links, so that a flower cannot be
picked without perturbing a star. Albert Einstein advised to look at the stars, each one
following its orbit without making a sound, in eternal memory of Newton’s reason, and
learn from them. Stephen Hawking stated that his purpose was a complete knowledge of
the universe, its being as it is and its very existence.
These are the founding concepts of Newtonian theory of gravity and of stellar dynamics:
stars must be regarded not as mere isolated objects walking along their own evolutionary
path, but as active participants to their parental systems’ life journey across space and
time via their mutual gravitational interactions. Enviable would be the external observer
watching the spectacular scene of a universe progressively shaped and changed by such
an interplay, holding all the answers in his hands, a ªmaster of everythingº who would
hence exhort to pay attention and analyze carefully, because the way for understanding
the universe is paved by stars.
According to Plato, astronomy urges the soul to see past the human world and reach the
other: thus it is not surprising that the interest in the study of stars originated with the
man in response to his natural need to make sense of the physical phenomena he was
surrounded by. However, it took a long time before the discovery of stellar duplicity, the
detection of the first binary stars dating back to the latter part of the 17th century; even so,
the effort in the physical characterization of binaries has grown stronger from that point
onward due to the recognition of their impact on both stellar evolution and dynamics.
This has led to the present-day ascertainment that the vast majority of stars is actually
part of binary systems.

5



CHAPTER I. INTRODUCTION 6

The first, straightforward manner of binary classification rests upon observational features
(Podsiadlowski, 2014 [75]). Such a differentiation consists in:

• visual binaries, where the periodic motion of both the components is visible (binaries
are called astrometric if only one component’s motion is);

• spectroscopic binaries, where the Doppler shift owing to the components’ orbital
motion appears evident in spectral lines. In particular, a further distinction is made
between single-lined and double-lined systems, depending on whether the Doppler
shift is measured for one or both the components;

• photometric binaries, where a periodic variation of the photometric properties is
noticed;

• eclipsing binaries, where one star eclipses the other during part of its orbit.

Binaries can be also labeled on the basis of their interaction with the companion, though,
by accounting for the occurrence of Roche lobe overflow (RLOF) phenomenon. In fact,
within the context of the restricted three-body problem, which follows a mass-less test
particle’s motion inside the gravitational field of two orbiting masses, the definition of
an effective potential in a corotating frame allows to introduce the concept of Roche
lobe. The effective potential, composed by the gravitational potential of the two massive
objects and the centrifugal force acting on the test particle, possesses five critical points,
i.e., the Lagrangian points, wherein its gradient becomes null: amid the three most
important ones, which lie along the line joining the two stars, the inner one (L1) sets the
bordering equipotential surface between their respective spheres of influence. Now, this
equipotential surface is commonly referred to as the critical Roche lobe potential, and its
part engulfing the star as the Roche lobe: simply put, the Roche lobe is the equipotential
surface, connected to the inner Lagrangian point L1, which determines the maximum size
of a star in a close binary.
If one star starts to fill its Roche lobe, then matter can flow into the Roche lobe of the
companion through the Lagrangian point L1, initiating a mass transfer process going
exactly under the name of RLOF. This implies the division of binary systems in three
broad categories:

• detached binaries, where both stars underfill their Roche lobe, so that RLOF cannot
take place;

• semi-detached binaries, where only one star fills its Roche lobe, making mass transfer
via RLOF possible;
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• contact binaries, where both stars either fill or overfill their Roche lobes. In this
case, RLOF mass transfer leads to the formation of a common envelope surrounding
the two stars and, eventually, of a circumbinary disk if it reaches the other two
above-mentioned Lagrangian points (L2 and L3), which are located outside the orbit.

Finally, binaries can be considered soft when their binding energy is lower than their
mean kinetic energy, and hard when it is higher (Heggie, 1975 [32]). This notion, tightly
related to the topic of stellar dynamics, will be deepen in the next chapter.



Chapter II

Stellar dynamics

2.1 Fundamentals

As highlighted by King (1974) [46], an effective description of stellar dynamics comes
naturally from the comparison to other fundamental physical theories, i.e., celestial and
statistical mechanics, and plasma theory.
Firstly, a loose link exists between stellar dynamics and celestial mechanics, since dealing
with individual orbits and motions is not profitable in the case of large star numbers. On
the contrary, the similarity to statistical mechanics is more solid, given the use of distribu-
tion functions to make theoretical models and predictions, even though the requirement of
equilibrium conditions is not always satisfied when talking about stellar systems. Finally,
stellar dynamics presents some analogies with plasma theory, where forces between parti-
cles are electrostatic, and hence inverse squared as well as in the gravitational instance.
But if, on the one hand, electrostatic forces are both attractive and repulsive, on the other
hand gravitational ones are not: as a consequence, in a plasma excesses of either charge
tend to be leveled out by particles of the opposite charge (polarization or Debye shielding),
whereas, in a stellar system, particle over-densities grow by collecting more density (Jeans
gravitational instability).
So, stellar dynamics can be defined as a N-body problem, i.e., the study of a number
of bodies interacting with each other only via their mutual gravitational forces, whose
complexity is reduced by recognizing that not all such interactions are actually important.
In fact, to a large extent, each body is assumed to move in the smoothed-out field of all
the others because strong forces between neighboring objects rarely arise.

8



2.2. DYNAMICAL RELAXATION 9

Since gravity is the sole meaningful force in this context, the Newtonian approximation is
typically adopted: a stellar system is thus treated like a self-gravitating gas of stars, these
ones represented by mass points flowing in an incompressible way according to Liouville’s
theorem. From the mathematical perspective, this corresponds to a six-dimensional phase
space obtained by conjoining the position and velocity space, and fully described by a
quasi-stationary, evolving density distribution function f (⃗r, v⃗, t) through the Boltzmann
equation, generally approximated by either the Vlasov or the Fokker-Planck equation.
However, most often three out of six variables, i.e., two position components and the
radial velocity component, of f (⃗r, v⃗, t) are observed: unfortunately, just on occasion the
other two velocity components from proper motions and hardly ever the third position
component can be measured, indeed. Also, a further limitation derives from the allowance
of only phase space regions where the integrals of motion, namely the energy and the
angular momentum, are conserved. According to Jeans’ theorem, f (⃗r, v⃗, t) and the velocity
distribution f (⃗v, t), assumed to be Maxwellian, must be mutually consistent; in particular,
a stellar system with such a velocity distribution is space-limited, its boundary being set
by the Milky Way (MW) tidal force. To properly address this issue, though, the concept of
relaxation (theory of stellar encounters) must be introduced.

2.2 Dynamical relaxation

2.2.1 Stellar encounters

When two stars pass so close to each other that the gravitational force between them
becomes temporarily greater than the one exerted on them, individually, by the rest of the
system, they form a two-body problem characterized by a hyperbolic motion around the
center of mass of the pair: since, in a fixed coordinate system, there is no energy exchange,
this phenomenon goes under name of stellar encounter (King, 1974 [46]).
Stellar encounters can be either strong or weak. The former cause stellar orbits to be
modified by changing the involved stars’ velocity of a quantity ∆v⃗ ∼ v⃗ and are more
relevant for low velocities, being the characteristic timescale for strong encounters directly
proportional to the mean stellar velocity

ts =
⟨v⟩3

4πG⟨m⟩2n
, (2.1)
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where G is the gravitational constant, m the mean stellar mass and n the typical number
density of stars. The latter, instead, produce only a small angular deflection of stars from
their original orbit, but their cumulative effect may be actually non-negligible. Therefore,
stars are accelerated (i.e., deflected) by the encounters with other stars or the collective
gravitational field of the system they belong to, and experience either large or small
velocity fluctuations, respectively. Nonetheless, since gravity is a long-range force, the
influence of distant bodies proves relevant in changing the dynamical state of a stellar
system towards equilibrium: this is the most general definition of relaxation process.
Specifically, two-body relaxation is deemed as a ªthermalizationº process due to its
modifying the stellar velocity distribution to a Maxwellian shape, the one expected from
an equilibrium condition.
If two-body encounters are relevant in driving the dynamical evolution of a stellar
system, then this is called collisional, whereas collisionless if they are not: in other
words, collisionless systems, such as galaxies and open clusters (OCs), present a smooth
dynamics, while collisional systems, such as globular clusters (GCs), a turbulent one.
Such a difference is formally encoded in the definition of two-body relaxation timescale
(Spitzer, 1987 [98]), i.e., the timescale over which stars lose memory of their initial
kinematics owing to the repeated, long-distance two-body interactions that make them
slowly exchange energy or, equivalently, the time needed to significantly alter the velocity
of a star through these very interactions:

trelax =
⟨v2⟩ 3

2

4πG2⟨m⟩ρ ln (Λ)
, (2.2)

with ln (Λ) ≃ 0.11. A more general formulation of the relaxation timescale results from
the crossing time, i.e. the time it takes for a star to cross its parental system (Heggie, 1988
[33]):

trelax = ncrosstcross =
N

6 ln (N)

R

⟨v⟩ , (2.3)

where ncross provides the number of crossings for the cumulative gravitational perturba-
tion from all members to change the star’s energy by roughly its orbital energy and R
represents the characteristic radius of the system. This expression points out that a star
may be dramatically perturbed in a time dependent only on the number of stars N. Ergo,
in collisionless systems, which host a small number of stars and have lifetime shorter than
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trelax, contrary to collisional ones, two-body relaxation is not efficient in redistributing
energy between particles.

2.2.2 Energy equipartition: evaporation, mass segregation and gravother-

mal instability

The direct consequences of two-body relation are evaporation, mass segregation and core
collapse, intrinsically linked to the concept of energy equipartition.
Since, according to the virial theorem in the assumption of equilibrium

2Ek + U = 0 , (2.4)

where Ek is the kinetic energy and U the gravitational potential energy (Dolcetta, 2019
[17]), the rms velocity of stars is about a half the rms escape velocity, i.e.,

⟨v2
esc⟩ ≃ 4⟨v2⟩ , (2.5)

and since the stellar energy exchange tends to establish a Maxwellian velocity distribution
in order to maintain such a condition, it follows that any particle in the Maxwellian tail,
having a velocity more than twice the rms value, will escape from the system.
The escaping rate is determined by the time required for the energy exchange to be
comparable with Ek: this is exactly the relaxation time. In practice, consisting two-body
relaxation in the stellar energy re-distribution through gravitational encounters, with the
subsequent onset of a Maxwellian velocity distribution at each system’s point on a trelax,
every trelax a constant fraction of stars acquires energy above vesc and is inevitably lost.
So, if the fraction of escaping stars is fesc, replenished by the very same relaxation process
every trelax, then the time over which a system dissolves by evaporation is

tev =
trelax

fesc
, (2.6)

where trelax is independent of the number of stars as expressed in Eq. 2.2; from Eq. 2.5,
Spitzer (1971) [97] estimated that, in the case of dense, spherical stellar systems, ∼ 1% of
stars escape during a relaxation time, which yields tdis ∼ 100 trelax.
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However, it must be noted that stars are likely to gain appreciable energy only if their
orbit passes through the dense core of the system, where the rate of encounters and energy
interchange is greatest: as a consequence, they will move in more and more elongated
orbits rarely crossing the central regions, which implies that, when a star approaches the
zero total energy needed for escape, its relaxation time increases steadily, and so does the
system’s dissolution time. More precisely, in ∼ 100 trelax a substantial number of core
stars gain sufficient energy to make their orbits markedly elongated and accumulate in
the outskirts, thus forming an extended halo of ejected objects.
Therefore, evaporation causes a stellar system to expand and transfer energy from the
inner to the outer regions: this produces a contraction of the core and gives rise to a
gravothermal instability possibly culminating in core collapse, whose reason resides in
the negative heat capacity of every gravitational system. Assuming Eq. 2.4 and expressing
Ek as for a gas, namely

Ek =
3
2

NkBT , (2.7)

with kB = 1.380649 × 10−23 JK−1 Boltzmann constant and T thermodynamic temperature,
it follows that

E = −Ek = −3
2

NkBT =⇒ C =
dE

dT
= −3

2
NkB . (2.8)

So, if the total energy is negative, the heat capacity C is too, which simply means that a
gas reacts by getting hotter in response to a energy loss: transposed into a gravitational
system, where T is represented by the velocity dispersion, ªgetting hotterº is equivalent
to ªincreasing its velocity dispersionº, a condition attainable only through the contraction
of the core. Thereby, a circular process in which the subsequent escape of more particles,
carrying energy away and contributing to the system’s cooling, are counteracted by a
further core contraction, is established.
This overall behavior can be understood in terms of tendency to energy equipartition.
The equipartition theorem, which traces its roots back to statistical mechanics, states that
particles in a system act for always having the same kinetic energy.
Consider a system formed by two populations of stars with mass m1 and m2, respectively,
such that m2 ≫ m1: then, energy equipartition leads to
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Ek,1 = Ek,2 ⇐⇒ m1⟨v2
1⟩ = m2⟨v2

2⟩ , (2.9)

which implies that

⟨v2
1⟩ > ⟨v2

2⟩ , (2.10)

i.e., that heavier stars will have, on average, lower velocity than lighter ones. While losing
energy, heavier stars slow down and sink towards the system’s center, hence creating
a concentration better known as mass segregation. The process is driven by dynamical
friction, a drag force transferring energy and momentum from more massive bodies to
the field of lighter particles they are moving in: the motion of a massive objects induces
an acceleration on the surrounding particles towards it and determines a local density
enhancement, which translates into a stronger gravitational attraction slowing the object
down.
The timescale for mass segregation is, once more, the relaxation time, also related to the
dynamical friction timescale by the formula

td f =
⟨m⟩

mmax
trelax , (2.11)

where ⟨m⟩ is the average mass of light stars and mmax the mass of the moving heavy star,
so that td f configures as the timescale over which a system segregates up to a mass mmax.
Clearly, the more massive the heavy star, the shorter the time it needs to reach the center.
And yet, is equipartition always allowed? If, as said, m2 ≫ m1 and heavier stars are
segregated at the center of the system, then their total mass M2 cannot exceed the critical
value

M2,crit = 0.16
(

m1

m2

)
3
2

M1 (2.12)

for energy equipartition with lighter stars to be possible, because the required value of
⟨v2⟩ would be too large. This can happen either when M2 > M1 due to the overly high
number of heavier stars, or when M2 < M1, but the density of such objects outweights that
of the less massive population: in both cases, the concentration of heavy stars continues to
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contract, originating, within the system’s core, a dense nucleus which keeps transferring
kinetic energy to the light stars, so that equipartition is never achieved.
In particular, this phenomenon, called Spitzer’s (or gravothermal) instability (Spitzer, 1969
[95]), suggests that equipartition is initially impossible for all young systems, given their
leaning to develop a contracting nucleus of heavy stars at their center. Still, the outcome
of this process depends on stellar evolution, since such stars have a limited life and are
likely to lose mass either by a gradual mass ejection or by a supernova (SN) explosion.
For instance, as far as GCs are concerned, the ejected stellar mass will presumably escape
entirely, with the resulting transformation of the nucleus in a collection of dead, compact
stars; contrariwise, in OCs the relatively small number of heavy stars involved facilitates
the contraction to terminate with the formation of a stable central binary.

2.2.3 Core collapse and binary heating

Core collapse, triggered by the combined effect of evaporation and mass segregation,
is a runaway process that can be halted only by the addition of an extra energy source,
typically provided by binary stars which formed in the high-density environment of the
collapsing core.
In fact, binaries are central in governing the long-term dynamical evolution of stellar
systems, for they can strongly affect both the final stages of core collapse and the post-
collapse phase (McMillan, 1991 [64]). Such objects can form either via conservative
three-body encounters, as long as a third star transports enough kinetic energy to leave
the other two bound, or via dissipative two-body encounters, if two stars pass close to
each other. In order of importance, dynamical binaries can be divided in a number of
categories:

• three-body binaries, generated in three-body encounters occurring when the number
of stars in the collapsing core becomes significantly low (N ∼ 30), are likely to
contain heavier-than-average cluster stars due to the fact that the binary formation
probability is an increasing function of mass, and that lighter stars tend to be ejected
during a triple interaction;

• tidal capture binaries, originated in consequence to the kinetic energy dissipation
of two strongly, tidally interacting stars, are generally close and tight, owing to the
induced circularization of their orbit;

• runaway mergers, namely a merger product of two colliding stars sinking to the
cluster’s center. In particular, this mechanism is expected to be efficient in dense



2.2. DYNAMICAL RELAXATION 15

stellar cores, being the collision cross section small.

That said, binary heating is strictly connected to the energetics of stellar encounters.
Given the expression for binary binding energy

Eb = −G
m1m2

2a
, (2.13)

where a is the orbital semi-major axis, during a triple interaction Eb can either increase
when the third stars transfers kinetic energy to the binary, making it less bound, or
decrease when the opposite is true, so that the binary becomes more bound. Therefore, in
the former case the kinetic energy of the cluster diminishes because the binary absorbs it,
whereas in the latter it is enhanced due to the energy loss from the binary. By implication,
then, hard binaries possess the right features to be responsible for the halting of core
collapse.
As explained by Kroupa (2001) [52], such an energy transfer may be easily comprehended
with the equipartition argument, remembering the distinction between soft and hard
binaries introduced in Sect. I: during stellar encounters, soft binaries tend to loosen up
whenever receiving a further energy input, since their orbital velocity grows as well as
their orbital separation, while hard binaries tend to tighten after releasing energy, which
determines the shrink of their semi-major axes. This is the so called Heggie-Hills law
for stimulated evolution: in a cluster, soft binaries becomes softer, whereas hard binaries
harder (Heggie, 1975 [32]).
Fregeau, Ivanova, and Rasio (2009) [24] studied the change of the overall binary fraction
in GCs, disentangling the contribution of hard from that of soft binaries, and found
that it remains almost constant in time because the preferential stripping of single stars
roughly compensates the destruction of core binaries owing to mass segregation and
stellar encounters. Into specifics, they accounted for the importance of soft binaries,
which, as an energy sink, boost core contraction: this speeds up binary disruption by
producing a much earlier onset of the related burning phase, potentially affecting the
system’s evolution in a dramatic fashion. The core hard binary fraction, instead, tends to
increase with time over a range of initial central densities for similar high values of fb.
Interestingly, according to McMillan (1991) [64], the way a binary heats its parent cluster
depends on the degree of consideration of its components as point masses. In this sense,
two main mechanisms are worth mentioning:

• three-body binary heating, in which the point-mass approximation holds, being
the separation between three-body binaries’ components sufficiently wide. Dur-
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ing interactions with other cluster members, the Heggie-Hills law can be applied:
hard binaries liberate kinetic energy, thus heating the cluster, and soft binaries are
commonly destroyed. Most notably, N-body simulations show that a hard binary
formed near core collapse may rapidly dominate the dynamics of the system by
coming to contain the bulk of its binding energy. Even so, this process appears to be
self-limiting: since binary encounters get more violent at increasing binding energy,
they would ultimately lead to the ejection of all the involved stars from the clusters;

• tidal binary heating happens through mass loss, because tidal binaries are extremely
hard: as such, their treatment at a level with point masses in stellar encounters,
although not fully correct, would produce their immediate ejection, followed by a
net heating effect, just like in the case of mass loss. Despite the much lower efficiency
compared to the three-body mechanism, the heating process is considerably faster,
so that tidal binaries might reverse core collapse well before the three-body binary
stage is reached.

Besides, another impactful phenomenon on close binary evolution may be magnetic
braking (Verbunt and Hut, 1983 [103]). Magnetic braking, i.e., the loss of a star’s angular
momentum due to its magnetic field, can be ideally described as operating in two stages:

• the rotation of the secondary is slowed down by effect of stellar wind, which carries
away angular momentum. Indeed, the moderate mass loss would imply a relatively
high angular momentum one, provided that the wind is forced to corotate with the
star out of large distances by the magnetic field lines;

• the primary tries to spin the secondary up to corotation using orbital revolution, to
which the angular momentum loss is transferred from the secondary’s rotation.

Both stages may lead to a large energy dissipation, comparable to the nuclear energy
production of the secondary, and give rise to tidal interactions that get the components
closer in the attempt of restoring corotation.
A special space deserve primordial binaries, originated along with the cluster they are
hosted by. From the dynamical point of view, such objects are wide enough to behave
like three-body binaries, but close enough to have a non-negligible influence on cluster
evolution: in fact, if a cluster is rich in primordial binaries, then these ones might be
able to terminate core collapse even in the absence of both tidal and three-body binaries,
hence serving as an active energy source. Their subsequent fate would be quite miserable,
though, since they are expected to be slowly disrupted amidst cluster evolution; actually,
a few real star clusters may have come to the end of this fossil burning phase.
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2.2.4 A battle: evaporation versus hard binaries

Hills (1975) [36] realized an analytic model for computing the evolution of a cluster core
due to the simultaneous presence of stellar evaporation, which causes the core to contract,
and hard binaries, which fuel its expansion by progressively enhancing its kinetic energy
or, equivalently, by reducing its binding energy.
Starting from the fact that a well-defined central core can be treated as an independent
stellar system having its own radius R = Rc, velocity v = vc, number density n = nc

and number of stars N = Nc, each one characterized by a binding energy Eb = Eb,c (here
binaries are regarded as single objects with mass equal to the sum of the components’
masses, so that Eb,c does not include the components’ binding energies), the following
equations can be derived.
Core stars evaporate into the halo at a rate

1
Nc

dNc

dt
=

1
88trelax

, (2.14)

and have E ≃ 0, so that Eb,c remains almost constant; on the other hand, when binaries
feed kinetic energy into the core, they entail the decrease of Eb,c at a rate

1
Eb,c

dEb,c

dt
= −

(

fb

A0 ln (Nc/2)

)

1
trelax

, (2.15)

where A0 = 1.3 and fb is the system’s binary fraction.
Dividing Eq. 2.15 by Eq. 2.14 returns

Nc

Eb,c

dEb,c

dNc
=

88 fb

A0 ln (Nc/2)
, (2.16)

which can be integrated, after variable separation, to obtain some meaningful relations:

• Eb,c in units of E0:

E f

E0
=

(

ln(N f /2)
ln(N0/2)

)

88 fb
A0

; (2.17)
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• Rc in units of R0:
R f

R0
=

E f

E0

(

N f

N0

)2

; (2.18)

• nc in units of n0:
n f

n0
=

(

E f

E0

)3(
N0

N f

)5

; (2.19)

• vc in units of v0:
v f

v0
=

√

E f

E0

N0

N f
. (2.20)

where the suffixes 0 and f refer, respectively, to the initial and final values of the examined
quantities.
These equations have been used by Hills (1975) [32] to assess changes in the main
properties of the system as a function of Nc, finding that at large values of Nc its dynamical
evolution is ruled by evaporation, while at small values of Nc by binaries. But if, on the
one hand, evaporation triggers a net contraction of the core, on the other hand binaries
make it expand monotonically: contrary to evaporation, driven by distant encounters,
binaries give rise to a relevant energy exchange only in close encounters with field stars.
Thereby, the predominance of evaporation when Nc is sufficiently large is due to the
fact that, for a fixed value of fb, the frequency of distant encounters increments their
effectiveness by a factor ln (Nc/2) at increasing Nc. As the decline of Nc proceeds along
with core contraction, then, binaries begin to supersede evaporation, slowing its rate down
until they prevail.
An application to real star clusters pointed out that dense central cores cannot develop by
evaporation in systems where fb is high (i.e., old OCs), since binaries dominate from the
beginning, but that they are normally observed when fb is low and evaporation is able to
overcome the action of binaries (i.e., GCs).

2.2.5 Post-collapse evolution

Baumgardt, Hut, and Heggie (2002) [5] report results of N-body simulations of isolated
star clusters, performed up to the point of their nearly complete dissolution, since they
are an ideal environment to test many, actually present dynamical aspects.
As already discussed, in the absence of a external energy source such as binary hardening,
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star clusters undergo core contraction in consequence to heat transfer from this region
to the halo, until they centrally collapse after a significant number of relaxation times.
When this happens, their structure becomes almost independent of both the initial density
and particle number. Encounters between single stars inside the system half-mass radius
constitute the dominant escape mechanism and are responsible for the build-up of a radial
anisotropic velocity distribution in the halo: specifically, the anisotropy extends from the
outer parts down into the core at the onset of core collapse, to finally increase towards
the halo during the post-collapse phase. Moreover, it seems conceivable that isolated star
clusters become vulnerable to radial orbit instabilities for large enough particle number,
which anisotropy is directly proportional to; however, no indication for the onset of such
instabilities was seen in the runs.
By contrast, encounters with binaries take place near the cluster center, being such objects
strongly concentrated towards the core, and account for ∼ 15% of the ejected stars. Most
notably, Baumgardt, Hut, and Heggie (2002) [5] estimated that only a few binaries are
necessary to drive the post-collapse expansion, for their number drops with particle
number according to the law Nb ∼ N0.3, but that in models experiencing core oscillations
they are effective merely when the center is in a contracted condition.



Chapter III

The fate of star clusters: violent
relaxation, stellar evolution and effects of
the Galactic tidal field

3.1 Dissolution processes in star clusters

Two-body relaxation is not the only form of relaxation that can take place in a stellar
system: when stars move in a non-stationary potential, a process called violent relaxation
can be started due to the change of the potential with time. But, while being exclusively
possible in collisionless systems, it precedes two-body relaxation in collisional ones and
plays a crucial role in the very early dynamical stages of clusters’ lifetime, when virial
equilibrium does not subsist (is violated). Intuitively, then, violent relaxation possesses a
direct link to the efficiency of star formation (SF) process (Shukirgaliyev et al., 2017 [88]).
SF takes place in collapsed, cold, dense gas clumps inside molecular clouds and, once
thermonuclear reactions start in newborn stellar cores, they heat, ionize and drive the
residual gas out of star forming regions: in particular, the most massive objects are able to
blow it up in a few Myr via their strong winds, radiation pressure and eventual explosion
as SNe Ib,c or II. The collective stellar feedback from all stars can terminate SF and totally
remove the residual gas from the newly formed star cluster.
Now, as stated by Gieles (2010) [28], the life of star clusters can be broadly divided into
three time-spans, according to the dominant, ongoing disruption mechanism affecting the
system long-term survival chances.

20
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The first few Myr are exactly characterized by the residual gas expulsion from the SF
process, which determines the cluster expansion or even complete dissolution. The
importance of such a phase depends on a number of factors: the initial cluster density and
virial state, the timescale for gas expulsion and the star formation efficiency (SFE), defined
as the mass fraction of gas effectively converted into stars. For instance, in case of subvirial
initial conditions, a SFE of ∼ 0.125 is sufficient to expel all the residual gas, contrary to the
analytic estimate of 0.5 for virialized, embedded star clusters under the assumption that
the timescale for gas expulsion is much lower than the crossing time. In this approximation,
the slow gas removal may result in a bound system for a SFE of ∼ 0.1 (Baumgardt and
Kroupa, 2007 [4]). Yet, since the percentage of gas gone into stars is usually < 30% in star
forming regions of the solar vicinity, it follows that > 70% escapes, thus weakening the
cluster’s gravitational potential: such a phenomenon, caused by residual gas expulsion,
drives the system out of virial equilibrium. The subsequent evolution through a new
equilibrium state is called violent relaxation, and may be interrupted by the star clusters
ªinfant mortalityº, i.e., their eventual dissolution due to the loss of stars before achieving
a new equilibrium condition. When the most massive stars explode as SNe, then, the
resulting shocks eject much of the gas and clearly part of the cluster mass, making the
system unbound.
By following Hills (1980) [37], the simpler problem of sudden mass loss from a cluster in
equilibrium, where the mass is ejected in less than the dynamical timescale

tdyn = (Gρ)−
1
2 , (3.1)

is taken as a starting point for analyzing the early unbinding of newborn stellar systems.
As an example, mass expulsion that arises precisely at the formation of a star cluster
from an interstellar cloud is referenced: if the conversion of gas into stars is not complete,
the remaining embryonic gas may be driven out of the system as an expanding H II
region produced by the UV flux from young, massive upper-main-sequence stars. Indeed,
since the typical sound speed of 12 kms−1in an H II region is an order of magnitude
greater than the escape velocity from an OC, such gas can easily leave the cluster within a
dynamical timescale. Given that impulsive mass loss does not affect stellar velocities, the
virial theorem applies and the initial velocity dispersion takes the expression of

v2
0 =

GM0

2R0
, (3.2)
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where M0 and R0 are, respectively, the initial mass and radius of the cluster. Immediately
after the gas is sent off the system, then, the stars preserve their velocities, but the total
mass of the cluster is reduced to M. The cluster will be out of equilibrium, and have
energy

E =
1
2

(

Mv2
0 −

GM2

R0

)

. (3.3)

Once virial equilibrium is restored, the cluster energy will remain the same despite a
change of its radius, i.e.,

E = −GM

4R
. (3.4)

This translates into the initial-final radius relationship for the cluster

R

R0
=

M0 − ∆M

M0 − 2∆M
, (3.5)

which diverges if half the cluster mass is removed: thus, in a virialized system half the
mass needs to be lost in order to unbind it.
Hills (1980) [37] next briefly discussed the case of adiabatic mass loss, occurring whenever
the mass loss rate is small on the dynamical timescale: by implication, virial equilibrium
is preserved, as demonstrated by the modified initial-final radius relationship

R

R0
=

M0

M0 − ∆M
, (3.6)

divergent only if ∆M = M0. In other terms, the cluster is destined to stay bound
independently of the strength of mass removal.
Still, a real OC is unlikely virialized by the time SNe from massive stars go off and drive
gas out: in fact, it would collapse from an initial radius R0 to a new radius R1, and
possibly come into virial equilibrium again with some final radius R, such that the total
energy is half the potential energy
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E = −3GM2

10R
, (3.7)

and that the initial-final radius relationship results

R

R0
=

1
2

(

M0 − ∆M

M0 − ∆M(R0/R1)

)

. (3.8)

In order for the system to become unbound, then, the condition R → ∞ must be satisfied
by setting the denominator of Eq. 3.8 equal to zero, i.e.,

∆M

M0
=

R1

R0
. (3.9)

In particular, since calculations based on the SF process in molecular clouds show that a
typical proto-cluster would probably have R1/R0 ∼ 10 or more, it follows that unbinding
a cluster would require only 10% of its mass.
The reason for the need of so little mass loss can be retrieved in the virialization process.
Consider a cluster of stars, all stationary and at a large distance: due to their mutual
gravitational attraction, they begin to fall to the center of the cluster, picking up speed
and experiencing strong interactions with each other. In this way, energy is transferred
among them, and their trajectories are redirected and randomized, so that, over a long
enough time, the system will enter a virial state.
Now, an eventual mass loss at the very beginning of the cluster lifetime will not affect the
virialization process, because of its taking also gravitational potential energy away: stars
will approach each other and reach the cluster center with lower speed, but qualitatively
nothing else will change. On the contrary, if a fraction of mass is lost when stars are
passing through the central regions, the associated gravitational potential energy will be
transferred to the remaining mass in form of kinetic energy, with a consequent speed gain,
such that the closer the stars are to the center of the cluster when this happens, the more
remaining mass necessitates to keep the system bound. Thereby, given that the cluster
collapses by quite a bit after the explosion of the first SNe, it would be easily disrupted
even in the event of a modest mass loss.
As a closing note, Hills (1980) [37] highlighted that, when the proto-cluster gas contains
an appreciable magnetic field, its compression in the collapsing cloud is such to drain off
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some of the gravitational energy that otherwise would go into the kinetic energy: this
drives up the minimum mass loss required for the system dissociation, which remains
still very small, though.
Studies on the effects of instantaneous residual gas expulsion on model star clusters
pointed out that the minimum SFE for a system to overcome such a critical process is
15%, and that the violent relaxation phase lasts no longer than 20 Myr, regardless of
the SFE and the initial stellar mass. On the contrary, the dissolution timescale seems
to be related to the cluster bound mass at the end of violent relaxation, with systems
characterized by high SFE following a much tighter mass-dependent relation with respect
to low-SFE ones, which constitute the vast majority and disappear within 1 Gyr. Also,
the combination of high-SFE and low-SFE clusters, with domination of the latter, yields a
dissolution timescale for the solar neighborhood in agreement with that inferred from
observations, without the need of additional disrupting processes such as encounters with
giant molecular clouds.
Notably, according to the star cluster age distribution in the solar neighborhood, infant
mortality is high: by implication, the presently observed MW star clusters must be those
who survived both the gas expulsion and the violent relaxation phase, and hence became
gravitationally bound systems.
Clusters able to avoid infant mortality continue to lose mass through the evolution of
their stars during the subsequent 500 Myr. Given that the timescale for stellar evolution is
considerably longer than the crossing time, the global reaction will be an adiabatic expan-
sion, particularly severe in the event of a primordially mass segregated cluster (Vesperini,
McMillan, and Portegies Zwart, 2009 [105]): indeed, a preferential mass stripping from
the central regions, where massive stars tend to concentrate, implies a major expansion.
Moreover, since the early generation of mass segregation is disfavored in initially clumpy
stellar systems (Lynden-Bell, 1967 [56]), which are likely to undergo a rapid phase of
violent relaxation such to erase any substructures, and the clump-merging timescale is
typically shorter than that for gas expulsion, the cluster survivability may be enhanced
(Fellhauer, Wilkinson, and Kroupa, 2009 [21]).
Nevertheless, bound star clusters are deemed to dissolve with time as well, especially in
consequence of the tidal stripping process they are subject to while orbiting inside the
Galaxy. As a result, the star cluster lifetime depends not only on its mass density and
hosted number of stars, but also on the strength of the external tidal field.
In fact, up to about 1 Gyr, external disruptive factors like encounters with giant molecular
clouds (GMCs) and two-body relaxation in the tidal field of the host galaxy become
relevant. The impact of the tidal field on a cluster is typically quantified by the ratio
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between the half-mass radius and the Jacobi radius Rhm/RJ , so that the lower its value,
the longer the system’s lifetime (Shukirgaliyev et al., 2019 [87]). Specifically, Rhm/RJ

diminishes in two different cases: the former at increasing Galactocentric distance, for
fixed cluster mass and size (i.e., with constant Rhm), and the latter at decreasing cluster
size, for fixed cluster mass and Galactocentric distance (i.e., with constant RJ). Therefore,
to boost the survival chances of a star cluster after the end of violent relaxation, one
should either place it at larger distances from the Galactic center, where the tidal field is
weaker, or make it more compact by reducing its size.

3.2 Dynamical evolution of globular clusters

The dynamical evolution of GCs is dominated by two-body relaxation and gravitational
shocks, which can be broadly divided into tidal and compressive (Ostriker, Spitzer, and
Chevalier, 1972 [71]): the former occur in OCs in consequence of the interactions with
interstellar clouds and can be defined as such because the duration of the perturbing
tidal force is much shorter than the star cluster period, while the latter affect GCs
whenever they pass through the Galactic plane by compressing them along the z direction
due to the variation with height of the perpendicular component of the gravitational
acceleration g(z), with a resulting increase of the cluster’s kinetic energy. On this matter,
Ostriker, Spitzer, and Chevalier (1972) [71] underlined that the cluster lifetime due to
GMC heating is inversely proportional to the volume density of the molecular gas, but
directly proportional to the density of the cluster itself: this incidentally explains why
this dissolution mechanism is most effective in spiral galaxies, characterized by high gas
density, indeed.
According to observational data, these two combined processes are responsible for the
escape of the bulk of low-mass stars, typically located in the GCs’ outskirts. Also,
gravitational shocks tend to reduce the time for core collapse in such systems, thus
suggesting that both the number of faintest stars and the mass-to-light ratio should
be enhanced at a major distance from the Galactic center, especially when the cluster
relaxation timescale is large.
In connection with this, Spitzer and Schwarzschild (1951) [96] noted that understanding
whether stars in the MW continue to follow their original orbits or perturbing processes
have been effective in changing them is fundamental to interpret the observed stellar
motions: in the former case, the current σobs would be completely determined by events
at the time the MW settled to its present state, whereas in the latter some of the velocity
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features might come from perturbation processes continuously happening during the stars’
life. Beyond stellar encounters, such perturbations are typically encounters of different
nature, namely between stars and GMCs, because the uneven distribution of interstellar
matter, concentrated into clouds, tends to deviate stellar orbits. Since clouds possess much
larger masses than stars, encounters involving these types of objects are characterized
by considerably shorter relaxation times. Even if they result always comparable to
the age of the Galaxy, so that energy equipartition has not been established yet, star-
clouds encounters may have already produced noticeable effects on stellar velocities:
stars are generally speeded up in order for relaxation time to be diminished and energy
equipartition to be reached. Clearly, this phenomenon is much more prominent at
increasing age of the involved stars: hence, red giant branch (RGB) and main sequence
(MS) stars would suffer more from a velocity enhancement with respect to OB stars.
However, gravitational shocks and encounters with interstellar clouds are not the sole
type of perturbation affecting the pre-collapse phases of Galactic GCs.
Heggie (1975) [32] designed N-body calculations to investigate the survival of star clusters
with large membership against two important disruptive processes, i.e., the mass loss
resulting from stellar evolution and the tidal stripping due to the gravitational field of the
parent galaxy, provided that relaxation effects are negligible over time-scales equivalent
to the duration of the simulations and that the galactic tide does not show any time
dependence.
Since each star loses a certain mass fraction near the end of its own evolution, the total
mass of the cluster is decreased: therefore, the cluster potential weakens and the system
expands with the consequent outflow of part of its stars across the tidal radius, so that
further mass is removed. Such an outcome is far more severe if the cluster initially
contains a considerable number of massive stars. On the contrary, the additional input
of evaporation caused by two-body encounters produces a minor effect compared to the
aforementioned processes. Although their simultaneous occurrence, as the cluster loses
mass the action of the steady tidal field starts to prevail, until the system’s virial state is
irreversibly perturbed.
By expressing virial equilibrium as

Rt(4E + Vs)

2GM2 = − µ

(Rhm/Rt)
− 4ν

3

(

Rhm

Rt

)2

, (3.10)

where Vs is a rotational term, while Rhm and Rt are the half-mass and the tidal radius, and
µ and ν dimensionless constants, the following points can be put forward. When Rhm/Rt
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is small, the right-hand side of equation 3.10 is dominated by the first term, which comes
from the self- potential of the cluster, whereas when Rhm/Rt is large it is dominated by
the second term, which is due to the potential of the galaxy and the centrifugal force:
hereby, if regarded as a function of Rhm/Rt, the right-hand side of equation 3.10 must
have a maximum value at a particular point. Initially, Rhm/Rt is below the maximum,
and so is the value of the function on the left-hand side of equation 3.10, but afterwards
both these quantities rapidly rise as a result of stellar evolution mass loss, so that, once
the function on the left-hand side of equation 3.10 exceeds the maximum, the cluster gets
out of equilibrium and disrupts. In fact, the cluster expansion causes Rhm to increase and
Rt to decrease in proportion to M

1
3 at the same time, given that stars moving beyond

the tidal radius cease to be members. This means that the mass loss rate from stellar
evolution must be low in order for the cluster to avoid early dissolution and eventually
head towards core collapse.
In addition to this, Spitzer (1958) [94] claimed that the presence of a tidal field introduces
a new timescale for star cluster evolution: this is the dissolution timescale tdis, i.e., the
time for the system to lose ∼ 98% of the initial mass due to the escape of stars across
the tidal boundary, which is worth comparing to the binary burning timescale tbb, i.e.,
the time needed to deplete ∼ 80% of the initial binary fraction. Since the mass loss rate
associated to the action of the tidal field is almost independent of the central cluster
regions’ properties, where binaries tend to accumulate and act as an energy source against
core collapse, by implication tdis < tbb: tidal dissolution can happen so fast to be unable to
fully suppress the primordial binary population. In the presence of a tidal field, then, star
clusters evolve towards similar conditions to those they would have if they were isolated,
because, after a few relaxation times, the ratio Rc/Rhm, where Rc is the cluster core radius,
gets to attain almost the same value as isolated Plummer models with comparable initial
binary fraction at the end of the core collapse phase.
It follows naturally that binaries play a non-negligible role in the dynamics of star clusters
embedded in an external field. To this regard, Trenti, Heggie, and Hut (2007) [101]
took into consideration the evolution of King models with different number of stars and
primordial binary fraction immersed in the Galactic tidal field, and compared the results
of their N-body simulations to those of both Fregeau et al. (2003) [22] and Fregeau (2004)
[23], who performed Monte Carlo simulations of both isolated and tidally truncated
star clusters having particle number N = 3 × 105 and primordial binaries in fraction
fb = 2 − 20%. Indeed, they discovered not only that the core radius of tidally limited
clusters may undergo an initial expansion when a significant primordial binary population
is present, but also that this one may be able to delay the core collapse phase, leading to
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an eventual dissolution before its onset.
Also McMillan (1991) [64] addressed the topic of primordial binaries in GCs surrounded
by the Galactic tidal field, and highlighted that they may come to rapidly dominate the
overall system evolution and remain in control until complete ejection or unbinding.
Interestingly, because of the competition between tidal stripping and binary destruction,
the initial binary fraction may either be depleted prior to the cluster evaporation, or fall to
a minimum value and grow back again at late times: the critical value for any of the two
scenarios to take place is fb,crit ∼ 10% for the parameters of a typical MW GC.

3.3 Old open clusters, a family in between

Owing to their characteristic physical properties, old OCs may be viewed in the manner
of a bridge between common OCs and GCs.
As reported by von Hippel (2005) [106], the total number of OCs in the MW is ∼ 105,
i.e., three order of magnitude larger than the predicted number of GCs, and, while these
ones are distributed in a mostly spherical configuration in both the MW halo and disk,
OCs occupy only the disk, with the older ones populating mainly its thick part and the
younger ones its thin part at a scale height of 50 − 300 pc. The age distribution of OCs
spans from few hundreds Myr to few Gyr, with an average of ∼ 300 Myr: this significant
age spread indicates that OCs are continuously forming in the MW. From early statistics
(Oort, 1958) [70], old OCs (age ≥ 1 Gyr) resulted very scarce compared to the expected
number, obtained by extrapolating the population of young OCs and assuming a uniform
SFR over the Galactic disk’s lifetime: such an under-abundance is reasonably explained
as the result of the concurrent infant mortality phenomenon and disruptive effects of
encounters with GMCs in the thin disk (Spitzer, 1958 [94]), which could easily destroy a
typical open-cluster-like system, depending on its mass and core radius. Therefore, the
currently observed old OCs have likely survived thanks to their larger masses, higher
central concentrations and orbits that allow them not to come into contact with GMCs
in the thin disk, a scenario validated by their preferential location at a distance from the
Galactic plane. On the subject, Janes and Phelps (1994) [43] demonstrated that old OCs
are completely absent inside a radius of ∼ 7.5 kpc from the Galactic center, where their
spatial distribution drops off rapidly, and that they can reach a scale height of ∼ 375 pc
throughout the thick disk.
Due to their major richness and compactness with respect to young OCs, which appear
sparsely distributed, loosely concentrated and composed by a few tens or hundreds of
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stars, old OCs must have undergone significant dynamical evolution on a par with GCs
(Friel, 1993 [25]). Not by accident, indeed, King (1962) [45] pointed out that M67, NGC 188
and NGC 7789 followed the same surface density profiles as isothermal spheres modified
by tidal forces, and successfully described them through models with small Rt/Rc ratios
(i.e., Rt ∼ 10 − 25 pc, Rc ∼ 1 − 2 pc). Being dynamically relaxed, then, old OCs show
signatures of both mass segregation, such as the concentration of massive stars and the
flattening of the luminosity function (LF) in the central regions, and evaporation, such
as the presence of a considerable amount of low-mass stars well outside the tidal radius.
Thus, OCs look particularly vulnerable to the Galactic tidal field action.
In addition to this, Janes and Phelps (1994) [43] investigated the cumulative age distribu-
tion of Galactic OCs, claiming that it could be fit by a combination of two exponentials in
cluster age, with a corresponding lifetime of ∼ 200 Myr and ∼ 4 Gyr. They hence argued
that the former component should represent the bulk of OCs, whereas the latter only a
tiny part.
Always in this sense, Spitzer (1958) [94] evaluated the magnitude of the interaction with
GMCs based on the impulsive approximation, namely on the assumption, adequate if the
cluster gravitational potential is taken to vary as the squared distance from the Galactic
center, that member stars do not move appreciably from their original position during
the cloud passage. Such an approximation has been used to determine the disruption
timescale tdis of different density MW OCs: the Hyades (ρ ≃ 0.3 M⊙/pc3), the Pleiades
(ρ ≃ 6 M⊙/pc3) and M67 (ρ ≃ 70 M⊙/pc3). Given that tdis = 1.9 × 108ρ yr, only relatively
dense clusters, such as M67, are able to survive dissolution for a long time: in fact,
tdis = 5 ≃ 109 yr for M67, but tdis =≃ 107 yr and tdis ≃ 109 yr for the Hyades and the
Pleiades, respectively. Thereby, this analysis has led to the conclusion that all Galactic
OCs having mean density Åρ ∈ [0.5, 5] M⊙/pc3 will probably dissolve after repeated tidal
disturbances in ∼ 108 − 109 yr, which may account for the scarcity of observed clusters
with age > 109 yr.
As a closing note, OCs lose members steadily, and most eventually dissolve into the
Galactic field star population, despite the very low dispersions (i.e., σint ∼ 1 − 3 kms−1),
which translates into a wide stellar mass range, i.e., 102 − 103 M⊙, with a present-day
average of ∼ 700 M⊙ instead of the initially estimated value of ∼ 4500 M⊙ (von Hippel,
2005 [106]): this mass gap seems to represent a further confirmation of the dissolution
process such systems experienced in the past or are still undergoing. Not by chance, then,
almost all stars form in clusters with mass function of the form N(m) ∝ m−2 (Goodwin
and Bastian, 2006 [31]).
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3.3.1 The most famous: M67 and NGC 188

The interest in old OC like M67 lies in their offering the chance to investigate the effects
of stellar interactions and cluster evolution, being them dynamically well evolved. Hurley
et al. (2005) [40] discussed the results from a direct N-body model of M67 in comparison
with the related observational data, looking at the overall structural properties of the
cluster and at the nature of its stellar population.
The initial conditions for the model comprehend a total mass M ≃ 14400 M⊙, with single
stellar masses extracted from a Kroupa initial mass function (IMF) in the interval [0.1,50]
M⊙, and a binary population in fraction fb = 0.5, characterized by a logarithmic semi-
major axis distribution (a ∈ [0, 50] AU) and a thermal eccentricity distribution (e ∈ [0, 1]).
Besides this, the cluster has been described by a Plummer model with radius R = 3 pc
and solar metallicity, embedded in the MW tidal field, and assigned an age of 4 Gyr.
The simulations’ outcomes provides a good match with observations and can be summa-
rized as follows:

• fb remains almost constant due to the balance between the destruction of soft binaries
in two-body interactions and of hard binaries through dynamical hardening and
binary evolution, and to the preferential escape of low-mass single stars via tidal
stripping, which makes encounters with binaries less probable;

• the large fb contributes to maintain the cluster evolution relatively regular;

• since M reduces to ∼ 2000 M⊙ at 4 Gyr and 13 relaxation times have elapsed in
reaching such an age, M67 may clearly be considered a dynamically relaxed system
with no information about its original IMF left.

Instead, observations of the 7-Gyr-old OC NGC 188 revealed the existence of a rich
binary population and a wide variety of its dynamical interactions products, such as blue
stragglers (BSs) and X-ray binaries (Geller and Mathieu, 2012 [27]). In this respect, field
binaries represent a fundamental benchmark for OC binaries, since they are unlikely to
endure dynamical encounters, given the low stellar density of the Galactic field.
In studying NGC 188, 85 binaries out of a complete sample of 129 detected binary
members have been used to determine both the associated fraction and the orbital
parameter distributions, which have been compared first to the tabulated data of R10,
i.e., the most important catalog of field stars by Raghavan et al. (2010) [79], and then to
N-body simulations of the 3-Gyr-old OC M67 by Hurley et al. (2005) [40] in order to assess
the impact of stellar dynamics on shaping the cluster binary population and creating
exotic stars. Specifically, accepted binaries are almost all hard, as characterized by orbital
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periods ranging from a few days to 104 days, and, among them, MS ones show period
and eccentricity distributions compatible with those of field binaries in R10 (i.e., ∼ 29%
contrary to ∼ 19%), even if present in a higher percentage (i.e., ∼ 29% contrary to ∼ 19%):
such signatures, expected from dynamical relaxation processes, are in full agreement with
the results of Hurley et al. (2005) [40].

3.4 Evolution of the binary fraction in star clusters

Li and Mao (2018) [55] stressed that the binary fraction is a key parameter in stellar
population studies. Even so, unfortunately, its value remains unclear for most star clusters
and galaxies, the MW included: indeed, for the Galaxy only a lower limit of about 50%
has been set. Moreover, its sensitivity not only to some observational features, such as the
spectral type, but also to several determination techniques reduces the accuracy of related
physical analyses.
Notably, contradictory outputs arise from different attempts to constrain the binary frac-
tion of star clusters. For example, Ivanova et al. (2005) [42] addressed the evolution of the
binary fraction in GCs via the Monte Carlo approach, combining a population synthesis
code and a simple treatment of dynamical interactions, and Sollima (2008) [91] revisited
their research through a full analytical computation: in both cases, a rapid depletion of
binaries in the cluster core was found.
In particular, as highlighted by Ivanova et al. (2005) [42], any strong interaction with
another passing star can easily destroy soft binaries, whose orbital speeds are lower than
the cluster velocity dispersion, while resonant binary±binary encounters, which typically
eject two single stars, leaving only one binary (Mikkola, 1983 [65]), or produce physical
stellar collisions and mergers, affect hard binaries. Additionally, many binary stellar
evolution processes lead to disruptions (e.g., in consequence of the SN explosion of one
component) or mergers (e.g., following a common envelope phase). These evolutionary
destruction processes can also be enhanced by dynamics: for instance, more common
envelope systems form in response to exchange interactions (Rappaport et al., 2001 [80]),
whereas the orbital shrinkage and the development of high eccentricities through harden-
ing encounters may cause the coalescence of binary components (Hills, 1984 [35]; Hurley
et al., 2003 [38]). It is therefore natural to ask whether the small binary fractions currently
detected in GCs’ cores, compared to the solar neighborhood, result from these many dis-
ruptive processes, and what the initial binary fraction must have been in order to explain
the present numbers. Although, of course, direct measurements of the primordial binary
fraction are unfeasible, neither observational nor theoretical arguments seem to suggest
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that the formation of binaries and hierarchical multiples in dense stellar systems should
be quite dissimilar from other environments like OCs, the Galactic field, or star-forming
regions. In fact, for the range of separations between 120 and 1800 AU, their binary
fraction is akin to that of MS stars in the solar neighborhood, while at shorter periods it is
higher.
By performing calculations in line with the ªbinary population synthesis with dynamicsº
approach, then, Ivanova et al. (2005) [42] found confirmation that the initial period distri-
bution, assumed to be uniform in logP over the range P = 0.1 − 107 d, is devoid above
the boundary between hard and soft binaries through dynamical interactions. Indeed, in
loose models the distribution remains much flatter, with more and more hard binaries
disappearing at increasing density because stellar evolution is expected to suppress a frac-
tion of them, especially at very short periods, and dynamical encounters should further
phase out some of the wider remaining ones. Therefore, the binary period distribution
evolves with the density from flat in logP toward a sharply peaked functional form, even
when adopting identical hard-soft binary boundaries.
But, most importantly, the authors estimated an actual binary fraction of 5 − 10% in
cluster cores owing not only to close encounters, but also to stellar evolution, which is the
dominant disruption mechanism for hard binaries, and concluded that extremely high
(i.e., near 100%) primordial binary fractions are likely.
On the other hand, Hurley, Aarseth, and Shara (2007) [39] realized N-body models re-
producing both an old OC like M67 and GCs with different stellar densities in order to
investigate the evolution of the core binary fraction, and in so doing they paid special at-
tention to primordial binaries’ orbital parameters due to their major influence. Specifically,
the M67 model was tailored in accordance with the previous work by Hurley et al. (2005)
[40], hence having 24000 stars at birth and an initial binary frequency of 50%. Considering
that the cluster is subject to a standard Galactic tidal field (i.e., it describes a circular orbit
in the solar neighborhood) and that stars are removed from the simulation when their
distance from the density center exceeds twice that of the cluster tidal radius, a half-life of
∼ 2 Gyr is obtained and, after 4 Gyr, only 2000 members are counted.
The effect of a substantial primordial binary population on evolving OCs is twofold:
firstly, it renders the core-collapse phase less dramatic, and secondly it lowers the cluster
lifetime. However, at late times the M67 model seems to have lost more than 90% of
its original mass and to approach dissolution because, from 2 Gyr onward, evolution
processes such to destroy binaries (i.e., dynamical encounters and mass transfer-induced
mergers, enhanced by mass segregation) only partially offset the dominant escape rate of
single stars from the cluster core: as a result, the number of binaries in the core decreases



3.4. EVOLUTION OF THE BINARY FRACTION IN STAR CLUSTERS 33

with time, even though the binary fraction increases. In particular, mass loss from stellar
evolution is significantly reduced at this stage compared to earlier ones (especially during
the first 100 Myr), when more massive stars are present. Also, the characteristics of
the binary content change markedly in time, with hard binaries obviously favored as
the system ages. So Hurley, Aarseth, and Shara (2007) [39] inferred that, except for the
advanced evolutionary phases, the overall binary fraction remains almost always close
to the initial value outside the cluster central regions, irrespective of the simulation type.
Finally, they suggested that, being the primordial binary frequency well preserved beyond
the cluster half-mass radius, the currently observed binary fraction in these regions may
constitute a good indicator of the primordial value, unlike the core binary fraction, which
provides an upper limit. However, contrary to Hurley, Aarseth, and Shara (2007) [39],
Fregeau, Ivanova, and Rasio (2009) [24] derived an increasing trend for the core binary
fraction from an improved Monte Carlo evolution code.
Given this ªcolorfulº scenario, Li and Mao (2018) [55] explored how the binary fraction
changes with time owing to stellar evolution, and made clear the correlations between
previous estimates. To this aim, they considered only optical binaries, which can always be
observed and plotted onto the Hertzsprung Russel (HRD) or the Color Magnitude (CMD)
Diagram, hence ruling out components such as neutron stars (NSs) and black holes (BHs).
In this way, they witnessed a decrease of the optical binary fraction from 1 to about 0.81
or 0.85 in stellar populations described by the Salpeter and Kroupa IMF, respectively, on a
timescale of 15 Gyr, this outcome depending on their age and metallicity. Such a behavior
looks compatible with the predictions by Ivanova et al. (2005) [42] and Sollima (2008)
[91] for the core binary fraction in GCs, whose reduction rate is inversely proportional to
the central number density, but not entirely, since the optical binary fraction exhibits a
slower decline due to both the larger orbital separations of binary pairs and the lack of
dynamical processes. By contrast, the results of Hurley, Aarseth, and Shara (2007) [39] and
Fregeau, Ivanova, and Rasio (2009) [24], who claimed the binary fraction to up in dense
cluster cores, cannot be reproduced: this means that a reliable picture for the change of
the binary fraction over time, such to take into account the effects of stellar evolution and
dynamics, is not available yet. Nonetheless, the work of Li and Mao (2018) [55] may still
be helpful for estimating the global optical binary fraction of star clusters or galaxies from
a specific sample, recovering the primordial binary fraction of sparse stellar systems from
the present observations, and supplying a certain answer for its future characteristics in
response to stellar evolution.
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3.5 Binaries and star clusters’ dynamical mass estimates

Even though observations have shown that the majority of field stars are part of binary
systems (Duquennoy and Mayor, 1991 [19]), binaries are not often properly taken into
account when analyzing spectral line data of young stellar systems.
The dynamical mass of a star cluster

Mdyn = η
Rhmσ2

los

G
, (3.11)

where Rhm is the projected half-mass radius, σlos the observed velocity dispersion and
η = 9.75, is determined by using its integrated light and assuming virial equilibrium
(Spitzer, 1987 [98]). The validity of this condition can be verified through a comparison
between Mdyn and the photometric mass Mphot, derived from the cluster’s total luminosity
and age. Now, the fact that Mdyn ∼ Mphot for systems older than 50 − 100 Myr, but
Mdyn >> Mphot for many younger ones, has been interpreted by Goodwin and Bastian
(2006) [31] as a signature of gas expulsion and, consequently, of the infant mortality
scenario, which would indicate the superviriality of such clusters. Still, according to
theoretical predictions, after instantaneous gas removal about ten crossing times would
be necessary to either completely disrupt or expand the system to a new equilibrium
state: hence, only if the crossing time amounted to a few Myr, corresponding to an initial
density ρ ∼ 100 M⊙/pc3, a cluster already broken apart at 10 Myr would be caught. So,
given that the sample of Goodwin and Bastian (2006) [31] was characterized by tcr = 2.5
Myr and ρ ∼ 10 M⊙/pc3, and that the mean measured velocity was ∼ 20 kms−1, the
hypothesis of superviriality does not stand: in fact, with such a velocity, an unbound
cluster would dissolve in a few Myr, instead of evolving for at least 10− 100tcr. Otherwise,
the possibility for stellar velocities to be dominated by the orbital motion of unresolved
binaries may account for the too large values of the observed velocity dispersion, which
would explain the discrepancy between Mdyn and Mphot. Since the inflation of Mdyn due
to binaries results more severe in systems hosting a substantial number of massive stars
(∼ 15 M⊙), for which stellar multiplicity is high, and both short periods and close-to-one
mass ratios are common, the analyzed clusters may have survived gas expulsion and
entered the stellar evolution phase.
By means of available velocity dispersion measurements, de Grijs et al. (2008) [16] derived
the dynamical masses and mass-to-light ratios in the V band (M/LV) for a sample of
Galactic OCs older than 40 Myr (hence such to have re-virialized after gas expulsion) and
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exploited a diagnostic age versus mass-to-light ratio diagram to identify any deviation
from the trend of M/LV expected for single stellar populations (SSPs) governed by either
the Salpeter or the Kroupa IMF. Into specifics, clusters way below the SSP lines in the
diagram are regarded as dynamically hot and fated to a rapid dissolution, while those
above the SSP lines as dynamically cold and thus required to re-virialize over a few
crossing times for nearing them.
Since most targets were found to be supervirial, de Grijs et al. (2008) [16] suggested that
the presence of binaries may inflate their velocity dispersion and cause them to move
under the SSP lines, outweighing the effect of equipartition, which tends to lower the
cluster velocity dispersion through the preferential loss of low-mass stars: this would
result in a ªtop-heavyº mass function (MF) and, therefore, in an underestimation of M/LV

with respect to the predicted photometric evolutionary sequences for standard SSP models.
Nevertheless, the authors also emphasized that, for an OC to survive for any significant
length of time and in the absence of significant external perturbations, it is necessary but
not sufficient to lie close to or (in the event of a conspicuous binary population) somewhat
below the SSP lines, although such a location may adequately reflect the overall cluster
dynamics.
Kouwenhoven and de Grijs (2008) [49] argued that the importance of binaries in the
dynamical mass determination depends not only on star cluster and binary population
properties, but also on selection effects. In fact, systems with larger stellar density
(M ≤ 105 M⊙, as reported by Kouwenhoven and de Grijs, 2008) [49] are least affected by
unresolved binary orbital motion, and both the eccentricity and the mass ratio distribution
have a smaller impact on the observed velocity dispersion, compared to the semi-major
axis distribution and the binary fraction (i.e., the tighter a binary, the higher its orbital
velocity). Moreover, σlos is typically measured from spectral lines of red giants, which
may not be representative of the cluster as a whole, and if observations are concentrated
in its central regions, where massive stars sink, then the inflation of the dynamical mass
may reach the 40%.

3.6 Simulations of Galactic open clusters with PeTar

To briefly recap the foremost arguments thus far covered, OCs, found primarily in the
Galactic disk, appear as short-lived stellar systems, given their sparseness and young age
(Bergond, Leon, and Guibert, 2001 [9]); although interactions with GMCs were at first
regarded as the most plausible cause for the scarcity of old Galactic OCs (Gieles, 2010
[28]), several are, actually, the mechanisms favoring their early dissolution. In particular,
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beyond residual gas expulsion from the SF process and mass loss due to stellar evolution,
which act during the first few hundred Myr of a cluster’s life (Spitzer, 1958 [94]), two-body
relaxation in the tidal field of the host galaxy is of major importance on longer timescales.
By letting stars exchange energy and momentum in an effort to reach energy equipartition,
two-body encounters are responsible for the onset of dynamical friction, i.e., a drag force
accelerating low-mass particles to the escape velocity in about a half-mass relaxation
time, which they need to establish a Maxwellian velocity distribution (Spitzer, 1987 [98]).
Therefore, stars in the outskirts of collisionless systems embedded in an external potential
are more likely to be stripped from tidal forces, since they may easily exceed the local
escape velocity, while massive stars tend to sink towards the central regions.
Mass segregation, together with energy equipartition and a high binary fraction, are fun-
damental both in driving the long-term evolution and in shaping the current properties of
star clusters (Vesperini, 2010 [104]). Specifically, as highlighted by Kouwenhoven and de
Grijs (2008) [49], their effect mostly concerns the system observed velocity dispersion and
reflects upon the related dynamical mass estimate through the formula 3.11. Derived from
the virial theorem under the implicit assumption of all stars being single, this expression
is typically adopted to evaluate the total mass of unresolved clusters by neglecting the
presence of binaries in line-of-sight velocity dispersion measurements, so that a systematic
error is inevitably introduced. In fact, the non-removal of binary orbital motion from σlos,
which represents the individual stars’ velocity dispersion, would result in a significant
over-estimation of the dynamical mass. According to Kouwenhoven and de Grijs (2009)
[48], the contribution of binaries is especially relevant when σlos ≤ 1 kms−1, i.e., in the
case of low-density stellar systems, such as OCs: this is indeed confirmed by the strong
observational evidence of their hosting a sizable, primordial binary fraction (Portegies
Zwart et al., 2001 [76]). Hence, contrary to mass segregation and energy equipartition,
which tend to lower the dynamical mass of OCs (de Grijs et al., 2008 [16]), binary stars
play a pivotal role in its inflation.
However, up to now models addressing this issue, despite providing a thorough treat-
ment of the aforementioned phenomena, have not fully accounted for the existence of
the Galactic tidal field, which is expected to have non-negligible importance, given the
flattening of OCs haloes (Wielen, 1975 [108]), with the purpose of mitigating compu-
tational difficulties. Furthermore, the Galactic tidal field can be either static or time
dependent, this one being originated by the periodic passage of OCs through the Galactic
disk (Bergond, Leon, and Guibert, 2001 [9]): if the former moderately assists cluster disso-
lution, the latter, instead, notably speeds the process up owing to the repeated disk shocks.
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In order to assess to which extent binary stars inflate the dynamical mass of OCs sur-
rounded by the Galactic tidal field taken only in its static component, so that the effects
of disk shocking can be ignored, an upgraded version of the work by Rastello, Carraro,
and Capuzzo-Dolcetta (2020) [81] may arouse interest. The impact of a model binary
population on the velocity dispersion and, therefore, the related dynamical mass of
open-cluster-like stellar systems can be evaluated by using the state-of-the-art N-body
code PeTar by Wang et al. (2020) [107], which can accurately handle an arbitrary fraction
of multiple systems while keeping a high performance thanks to hybrid parallelization
methods. Yet, most importantly, PeTar allows not only to follow in detail the long-term
evolution of perturbed binaries by the implementation of sophisticated tools for handling
mass loss, mass transfer and close encounters, but also to select an external tidal field
from Galpy, a Python library for Galactic dynamics (Bovy, 2015 [12]). As a note, both the
generation of initial conditions and the simulations’ output data analysis are intended to
be performed by means of a Python program expressly developed to be compatible with
PeTar, which constitutes a novelty with respect to previous N-body codes.
Rastello, Carraro, and Capuzzo-Dolcetta (2020) [81] realized three open-cluster-like mod-
els (A, B, C) with the same physical features, except for the primordial binary fraction.
The star density distribution is that of a Plummer sphere (Plummer, 1911 [74]) of scale
radius R = 1 pc and total mass M = 630 M⊙, and stellar masses are sampled from a
Kroupa IMF (Kroupa, 2001 [52]) in the interval [0.1,100] M⊙, such to yield the average
stellar mass ⟨m⟩ = 0.63 M⊙. All clusters initially contain N = 1000 stars, a fraction
fb = Nb/N of which is assumed to be in binary pairs; thereby, Nb is the number of
binaries and Ns = N − 2Nb that of single stars. In the specific, fb = 0.05, 0.15, 0.30 for
model A, B and C, respectively. Binary stars are coupled using the mass ratio distribution
f (q) ∝ (m1/m2)

−0.4, where m1 represents the primary and m2 the secondary component
(Kouwenhoven et al., 2008 [50]), and the relative orbital parameters, i.e., the semi-major
axis and the eccentricity, extracted accordingly from a logarithmic distribution f (a) = 1/a
(Kroupa, 1995 [53]) and a thermal distribution f (e) = 2e in the range [0,1] (Jeans, 1919
[44]). Lastly, the metallicity is chosen to be solar (Z⊙ = 0.2), and stellar evolution is
included in the calculations.
The so configured model clusters are virialized, located in the solar position and simu-
lated up to ∼ 1.5 Gyr: now, the addition of the MW potential, consisting of a power-law,
exponentially cut-off spherical potential for the bulge, a Miyamoto-Nagai potential for the
disk and a NFW potential for the halo (Bovy, 2015 [12]), is expected to alter their lifetime
duration by accelerating their disruption. To avoid such a catastrophic outcome, the mock
systems must be either made more compact and densely populated, or displaced far away
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from the Galactic disk: wherefore, considering an old OC like M67, as reproduced by
Hurley, Aarseth, and Shara (2007) [39], might offer a solution to the problem, without the
need of moving the cluster barycenter.
Irrespective of the application of an external potential, the M67-like-cluster should present
specific evolutionary features, such as a sharp drop of its total mass and binary fraction
during the first 50 Myr due to both residual gas expulsion and the explosion of massive
stars as SNe Ib,c or II, which rapidly reach their final life stages. The two processes
combined together should trigger a sudden, global expansion causing a rise of the system
kinetic energy and, in turn, of its velocity dispersion. Even so, this momentary departure
from virial equilibrium should be effortlessly overcome by a natural physical readjustment,
owing to the still large bound mass.
After this short time frame, the effects of dynamics should prevail over stellar evolution,
with the progressive appearance of evaporation and mass segregation. In particular, the
mass loss rate is expected to slow down and, given the preferential escape of low-mass
stars and the hardening of close binaries already sunk toward the cluster core, the overall
binary fraction to remain almost constant at a slightly lower value than the primordial one.
Clearly, embedding the system in the Galactic field should bolster evaporation through
the further stripping of stars outside the tidal radius, but the subsequent enhancement of
the mass loss rate should not suffice for cluster dissolution.
On the other hand, the role of binaries in inflating the system dynamical mass is supposed
to be important both in the absence and in the presence of the external potential due
to the nearly total conservation of the binary fraction: thus, when passing from the
particle-dominated to the binary-dominated case (Kouwenhoven and de Grijs, 2008 [49]),
the boost of the measured velocity dispersion should become more evident at increasing
binary fraction, no matter of the higher density of the M67 model compared to younger
OCs like those examined by Rastello, Carraro, and Capuzzo-Dolcetta (2020) [81].



Chapter IV

Dwarf galaxies, relics of the early
universe

4.1 Cosmological scenario

The ΛCDM model, also known as the Standard Model, is the current prevailing cosmolog-
ical paradigm to explain the formation and evolution of the universe. According to this
scenario, the universe is dominated at 70% by dark energy and at 25% by cold dark matter
(CDM), with the adjective ªcoldº referring to the typical velocity of dark matter (DM)
particles, which would have been non-relativistic when they decoupled from baryons in
its early phases: this feature is most important, since it implies that structure formation
is not suppressed on any relevant galactic scale. Also, the slower a particle, the higher
its mass, so that to the estimated thermal velocity of CDM particles vz=0

th , where z = 0
indicates the actual value of the cosmological redshift, corresponds the mass m ∼ 102 GeV.
Baryons, instead, contribute to the remaining 5% of the universe composition.
Finally, besides CDM, the Standard Model assumes the cosmological constant Λ, which
accounts for the accelerated expansion rate of the universe without affecting the dynamics
of the individual galaxies.
Uncovering the nature of DM is one of the most challenging open questions in astro-
physics, for it could bring fundamental insights on the evolution of the universe as a
whole: in this sense, dwarf galaxies are believed to contain the key answer. As suggested
by Bullock and Boylan-Kolchin (Bullock and Boylan-Kolchin) [14], dwarf galaxies are
identified as objects having stellar mass Mstar ≤ 109 M⊙ and can be divided into three

39
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main categories: bright dwarfs (Mstar ≈ 107−9 M⊙), classical dwarfs (Mstar ≈ 105−7 M⊙)
and ultra-faint dwarfs (UFDs, Mstar ≈ 105−2 M⊙). Yet, dwarf galaxies are more commonly
classified as dwarf spheroidals (dSphs) compared to dwarf irregulars (dIrrs) due to their
lack of gas, ongoing SF and satellite character of larger systems. But, before addressing
the properties of dwarf galaxies in detail, it is of major importance to retrieve their origin
inside the ΛCDM context, where the cosmic structure is seeded by primordial adiabatic
fluctuations and grows by gravitational instability in an expanding background. Soon
after overdense regions of the universe become non-linear, they stop expanding and
collapse, converting potential energy into kinetic energy in the process: the result are
gravitationally bound concentrations of DM called virialized halos, with masses

Mvir =
4π

3
r3

vir∆ρm , (4.1)

where Rvir is the virial radius and ∆ ∼ 300 the overdensity parameter; from Mvir, the
virial velocity is derived:

vvir =

√

GMvir

Rvir
. (4.2)

To first approximation, DM halo density profile is generally described by the Navarro
Frank and White (NFW) functional form, nearly universal over all masses and charac-
terized by a steep fall-off at large radii shifting to a mildly divergent cusp towards the
center:

ρ(r) =
4ρ−2

(

r
r−2

)(

1 + r
r−2

) , (4.3)

where r−2 represents the radius where the log-slope of the profile is −2, i.e., the transition
value from the inner 1/r cusp to the outer 1/r3 curve, and ρ−2 = ρ(r−2). Although only
two parameters, namely r−2 and ρ−2, are required to determine a NFW halo, for a fixed
halo mass Mvir, r−2 is often expressed in terms of the concentration parameter

c =
Rvir

r−2
, (4.4)
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so that the combination Mvir − c completely specifies the profile. Given the steady density
increase at small radii, it follows that, under the aforementioned condition, early-forming
halos tend to be denser than later-forming ones.
Since the ΛCDM model states that low-mass halos collapse first in a hierarchical clustering
fashion, their centers are expected to survive the assembling process and to become filled
with substructures.
However, contrary to pure DM simulations, which have provided confirmation of this
hypothesis, hydrodynamical simulations have shown that baryonic feedback can alter
model predictions to various degrees.
The properties of DM halos control when dwarf galaxies form, their gas content and their
resilience to heating by stellar feedback and reionization. The correspondence between
galaxy stellar masses and DM halos is named stellar mass-halo mass (SMHM) relation
(Simon, 2019 [89]), and consists in a power-law Mstar ∝ Mα

halo for Mstar above the UFD
regime, while its behavior is still a matter of debate for lower values of Mstar.
Most galactic halos born before reionization had Mhalo < 1.2 × 108 M⊙, and those able
to survive the modern epoch and form stars would constitute a subpopulation of dwarf
satellites orbiting larger halos. N-body simulations of CDM forecast a number of DM
halos around the MW much greater than the number of observed luminous satellites,
which points out that feedback processes must have been very efficient in suppressing
SF in the first, small halos, hence remained mostly dark. In the pre-reionization era, the
formation of the first dwarf galaxies is regulated by feedback effects acting on cosmological
scales and having a non-negligible influence on both the number and the luminosity of
these objects. Another obstacle to SF in the high-redshift universe is the lack of coolants
such as carbon (C) and oxygen (O), essential for a gas of primordial composition (i.e.,
made of hydrogen) to cool down and initiate SF at T ∼ 104 K, unless a sufficient amount
of molecular hydrogen (H2) is produced. In DM halos with mass Mhalo < 1.2 × 108 M⊙,
whose gas has circular velocity vc < 20 kms−1, though, H2 is almost completely destroyed
by the far-ultra-violet (FUV) radiation, otherwise called negative feedback, emitted by the
first few Population III stars and such to prevent SF to start.
On the other hand, DM halos with mass Mhalo ≥ 1.2× 108 M⊙ may experience a quenching
of SF because of the action of ionizing radiation from massive stars, which can blow out
most of the primordial gas even before the onset of SN-driven winds and reduce SF rates
through the reionization of neutral atomic hydrogen (HI): this determines a temperature
enhancement to T ∼ 2 × 104 K, with a subsequent clamping of gas condensation. As a
result, Bovill and Ricotti (2009) [11], by setting the critical value of the circular velocity
to vcrit

c = 20 kms−1, equivalent to the critical halo mass Mcrit
halo = 1.2 × 108 M⊙, for the
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quenching of SF at the reionization epoch (z = 6), defined dwarfs galaxies conceived
in DM halos with vc < vcrit

c prior to reionization as pre-reionization fossils, and with
vc > vcrit

c prior and following reionization as non-fossils. Along the same line, Ricotti and
Gnedin (2005) [83] reviewed this distinction in terms of star formation history (SFH) by
claiming its diversity to be a relic feature of reionization: dwarfs whose SFH was sharply
truncated in earlier epochs are true fossils, whereas those that continued to form stars are
either polluted fossils or survivors.
Nonetheless, it must be noted that fossil galaxies might undergo a late phase of gas
accretion and related SF well after reionization (i.e., at z = 1 − 2), hence not being real
fossils anymore: for this reason, the definition of ªfossil galaxyº should be carefully used.
In this regard, Benıtez-Llambay et al. (2015) [8] argued that protracted SF and enrichment
are not inconsistent with reionization, actually. In fact, reionization is likely to evaporate
mainly low-density gas from dwarf galaxies’ halos, but to have little effect on the gas
that has already cooled to higher densities as immune to UV radiation, so that SF would
proceed until either the gas is totally depleted, or the newborn stars have expelled it via
feedback: as a consequence, reionization would cause a slow tapering, rather than an
abrupt cessation, of the SF activity in dwarf galaxies.
The imprint of reionization on galaxy formation can be located not only in the number
of predicted halos massive enough to harbor luminous galaxies exceeding by orders of
magnitude that of observed dwarfs, but also in the type of hosted stars. Halos above the
critical threshold, whose SFH is interrupted due to the loss of baryons induced by the
combined effect of cosmic reionization and stellar feedback, end up to be emptied of gas
once having successfully formed dwarf galaxies characterized by a single population of
old stars; conversely, halos below the critical threshold suffer more from the impact of
reionization, as they are subject either to a SF delay, which leads to systems with prominent
young stellar components, or to its truncation, which results in systems doomed to stay
dark.
Also Mashchenko, Wadsley, and Couchman (2008) [59] proposed energy feedback from
SN explosions and stellar winds as a major mechanism shaping the evolution of dwarf
galaxies, and included these phenomena, together with SF, in cosmological simulations
run between z = 150 and z = 5 with the parallel tree code Gasoline, which portrays
dark and stellar matter as a collection of particles and employs the smooth particle
hydrodynamics formalism for the gas treatment. They found that the DM distribution
develops the classic filamentary structure on large scales and that the most massive
galaxies, originated around z = 10, are able to keep their SF activity during reionization,
in spite of this one being responsible for the quick dispersion of many star clusters where
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SF took place. Only past z = 6, when the galactic stellar mass reaches the value of ∼ 107

M⊙, surviving star clusters start to be seen: interestingly, these long-lived clusters have
broadly the same size (∼ 10 pc), mass (∼ 105 M⊙) and heavy element abundance (∼ 3%
of the solar one) as GCs detected in the local universe. Therefore, this agreement with
observations suggests that Local Group dwarf galaxies with mass below 107 M⊙ could
not produce GCs, while more massive ones did.
Another validation of this theory comes from Simon (2019) [89], who focused his attention
on UFDs due to their reputation of being the most DM-dominated systems known and
of residing in the smallest DM halos yet found. In fact, he estimated that the vast
majority of UFD stars had originated by the end of reionization, consistently with the
idea of its associated gas heating to have contributed to the quenching of SF. So, since
they underwent little to no further evolution after that time and have survived up to
now as pristine relics of the early universe, UFDs are deemed to represent not only the
extreme limit of the galaxy formation process, but also valuable laboratories to try and
constrain the nature of DM. What is more, Simon (2019) [89] highlighted the importance
of studying UFD chemical evolution and nucleosynthesis in this context; specifically,
at low metallicities ([Fe/H]) UFDs show enhanced α-element ratios ([α/Fe]), while the
opposite happens at high metallicities, a behavior resulting from the different chemical
yields of SNe. Given that UFD small stellar masses imply that they hosted relatively
few SN events, core-collapse SNe should have exploded quickly after the onset of SF,
thus producing considerable amounts of α-elements, but been counterbalanced by the
subsequent occurrence of type Ia SNe, which tend to release iron-peak elements and
hence lower the α-element ratio.
Now, the transition between the two regimes is placed at the metallicity value [Fe/H]
= −2.3: SF must have continued for more than ∼ 100 Myr, in such a way that the most
metal-poor (i.e., with [Fe/H] = −3) UFD stars were enriched by Pop III SNe, while those
having [Fe/H] ≥ −3 by Pop II SNe.
Finally, one of the key properties of UFDs is their luminosity function (LF), since it
provides the connection between the low-luminosity galaxy observed today and their
progenitor systems at high z, which may have played a significant role in the universe
reionization. Boylan-Kolchin et al. (2015) [13] quantified the correspondence between
Local Group dwarf galaxies and faint galaxies at high z by using their SFHs to calculate
their UV luminosities as a function of time. They found first that reionizing the universe
requires a major contribution of UV photons from galaxies at least as faint as Fornax,
and then that, if the currently measured faint-end slope of the UV LF (i.e., α ∼ −2) is
extrapolated to the absolute magnitude MUV = −3, UFDs would dominate the ionizing
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photon production of the universe. This α value overpredicts the observed number of
Local Group dwarf galaxies, though: indeed, when considering a shallower faint-end
slope (i.e., α ∼ −1.25), as emerged from the Sloan Digital Sky Survey (SDSS) data, only
bright dwarfs appear to contribute to reionization.

4.2 Problems within the ΛCDM model

Reionization and stellar feedback have been proved useful to find solutions of the three
main problems within the ΛCDM model, which, in spite of guessing right the large-scale
structure of the universe, still presents a few critical issues on smaller scales. These
problems are known with the names of ªcore-cuspº, ªmissing satellitesº and ªtoo-big-to-
failº.

4.2.1 The core-cusp problem

The core-cusp problem can be labeled as the tendency of the central regions of DM-
dominated galaxies to be less dense and cuspy than expected for standard ΛCDM halos:
in fact, despite the DM density profile should diverge at small radii, observations of low-
mass dwarf galaxies, such as UFDs, indicate near-constant density cores (Mashchenko,
Wadsley, and Couchman, 2008 [13]).
Massive stars inject large amounts of energy into the surrounding medium via stellar
winds and SN explosions: this originates a dramatic, large-scale perturbation of the
interstellar gas, which is accelerated close to the sonic speed. Since this phenomenon
is more severe in dwarf galaxies owing to their lower gas pressure and their observed
irregular gas distribution, stellar feedback has been suggested as a possible explanation
for the removal of the predicted central DM cusps and the consequent creation of kpc-size
cores in all systems having stellar mass Mstar > 106 M⊙ (Madau, Shen, and Governato,
2014 [57]).
Notably, cosmological simulations of dwarf galaxy formation and evolution by Mashchenko,
Wadsley, and Couchman (2008) [59] have shown that stellar feedback does not expel gas
at high z; instead, SN explosions compress gas into large filaments confined to the galactic
central regions and moving with speeds of ∼ 10 − 20 kms−1, which is exactly the gas
motion resulting in the gravitational local DM heating to obtain the cusp flattening. Thus,
stellar feedback is expected to play a pivotal role there because the baryon fraction may
reach the 50%, and the gas mass dominates that of DM. Interestingly, resonant heating
due to feedback-powered bulk gas motion, applied to the most massive dwarf generated



4.2. PROBLEMS WITHIN THE ΛCDM MODEL 45

in the simulations, turns the cusp into a flat core with radius r ≃ 400 pc and average
density Åρ ≃ 0.2 M⊙pc−3, close to the parameters inferred for the dwarf galaxy Fornax,
which presents the same core radius and very similar average density ( Åρ ≃ 0.1 M⊙pc−3).
Also, the same mechanism leads to a reduction of the dynamical friction efficiency in such
regions, hence aiding to push potentially newborn GCs to orbits distant from the galaxy
center until stars stop forming, as witnessed in the case of Fornax.
Additionally, Madau, Shen, and Governato (2014) [57] demonstrated that both the offset
between the DM mass in the cored and cuspy models ∆MDM, and the DM mass removal
efficiency increases at decreasing halo mass, which implies that the smaller the host
halo, the more rapid the flattening of the dwarf galaxy density profile. In particular, DM
particles stripped from the central cusp are not lost, but end up to be part of the halo, in
such a way that the near-constant density core can be constructed.
This phenomenon, called feedback induced core formation, actually depends on the
galactic stellar mass and the number of generated stars:

• if enough stars formed, the released SN energy would be sufficient to redistribute
DM and create significant cores;

• if too many stars formed, the excess central mass would compensate stellar feedback
by dragging DM back in;

• if too few stars formed, there would not be enough SN energy to alter the halo
density profile, which would consequently remain cuspy.

Fainter galaxies, such as UFDs, enters this last case. On top of that, according to Bullock
and Boylan-Kolchin (2017) [14], feedback induced core formation peaks in efficiency at
Mstar/Mvir ≈ 5 × 10−2, in the regime of the brightest dwarfs, while it becomes ineffective
when Mstar/Mvir ≤ 10−4, which corresponds to the regime of classical dwarfs and UFDs.
Since these values are obtained by assuming the current virial mass Mvir(z = 0) ≃ 1010

M⊙, meaning that the peak core formation ratio involves a stellar mass Mstar,peak ≃ 108

M⊙.

4.2.2 The missing satellites problem

The missing satellites problem consists in a discrepancy between the number of observed
galaxies and the number of predicted subhalos. In this respect, Simon and Geha (2007) [90]
pointed out that, as foreseen by the ΛCDM model, large DM halos should be surrounded
by a number of smaller halos able to support molecular cooling and initiate SF following
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the mass function (MF)

dN

dMstar
∝ M−1.9

star , (4.5)

contrary to observations, which revealed a number of MW satellites about an order of
magnitude lower compared to theoretical expectations, in agreement with a flatter MF

dN

dMstar
∝ M−1.5

star . (4.6)

Now, whilst one may argue that the solution to this problem lays with the observational
search for dwarf galaxies, the most natural explanation is found in galaxy formation
physics: by positing that galaxy formation becomes increasingly inefficient as the halo
mass declines, the tiniest DM halos would have simply failed to form stars altogether.
Thereby, if the known MW satellites are assigned to the largest DM halos and the missing
ones to such subhalos, there would no longer be a number mismatch.

4.2.3 The too-big-to-fail problem

From the solution of the missing satellites problem comes the prediction that the inferred
central masses of the MW satellites should be consistent with those of the largest subhalos
in ΛCDM simulations. And yet, these very simulations suggest that such halos are
actually too centrally concentrated to form galaxies, when they should be too big to fail at
this, given that even lower-mass halos can host luminous stars.
Based on this evidence, Bullock and Boylan-Kolchin (2017) [14] argued that the too-big-
to-fail problem might be partially solved by accounting for the action of stellar feedback
in the generation of baryon-induced DM cores. Considering that the typical mass range
of the problem is Mstar,crit ≃ 106 M⊙, associated to the critical ratio Mstar/Mvir ≤ 10−4 at
which stellar feedback becomes negligible, the existence of DM cores if Mstar > Mstar,crit

would explain why part of bright dwarfs are characterized by low observed densities, but
not the fact that others not satisfying this condition have low densities too.
To reconcile ΛCDM hypotheses with the internal structure of low mass halos, tidal effects
such as shocks and stripping have been hold to constitute an additional form of feedback
able to reduce MW satellites’ central densities due to their being embedded in the Galaxy
potential. Still, the lack of a systematical difference between possibly interacting dwarf
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and field galaxies has led to conclude that such mechanisms would not be crucial in
modifying the DM density distribution.

4.3 Dynamical mass inflation in dwarf galaxies

Associating DM halos to galaxies is a difficult task because their mass do not scale linearly
with galaxy mass: for this reason, a common approach consists in measuring this quantity
directly and inferring the DM halo properties through stellar kinematics. Since bright
dwarfs typically possess gas disks with ordered kinematics, rotation curves, which report
the velocities of stars orbiting about the Galactic center as a function of the distance from
this point, can be extracted even up the flat part of the profile. On the contrary, such a
procedure is not feasible for both dSphs and UFDs as they appear as dispersion-supported,
rather than rotationally-supported systems: thus, their masses must be probed via velocity
dispersion measurements obtained either from integral field spectroscopy (dSph case) or
star-by-star (UFD case). In fact, being almost completely deprived of gas from reionization
and extremely faint, UFDs do not allow the use of integral field spectroscopy along the
line-of-sight (los), so that any attempt to measure their observed velocity dispersion must
involve individual stars.
The dwarf galaxy mass derived through the formula

Mdyn = η
Rhmσ2

obs

G
(4.7)

by using the observed velocity dispersion σobs is hence called dynamical mass and always
estimated within a specific radial extent, i.e., the projected half-mass radius Rhm, under a
number of specific assumptions: virial equilibrium, absence of unresolved binaries and
utter stellar membership.
According to Simon (2019) [89], the virial equilibrium condition is quite delicate when
it comes to dwarf galaxies, given that may have experienced recent disk shocks, which
can modify the presently observed velocity dispersion; however, even if proper motion
measurements show that many such systems are close to their orbital pericenters, the
impact of pericentric passages is lessened by their typical occurrence at a distance of
≃ 40 kpc away from the Galactic disk. Also, tidally disturbed galaxies have been proven
not to have a meaningfully altered observed velocity dispersion, thus implying that a
temporary departure from virial equilibrium would not dramatically affect the estimate
of the dynamical mass. More concerning is, instead, the hypothesis of all binaries to be
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resolved in order for them not to inflate the observed velocity dispersion above its intrinsic
value, since their fraction is expected to be high in low-metallicity environments such as
UFDs. Notably, here the influence of binaries might be magnified by the limited available
stellar sample, for which only single-epoch velocity measurements are most often possible.
Finally, ruling out the contamination by foreground MW stars is critical too, because their
velocities are very close to the systemic velocity of dwarf galaxies. A common approach to
deal with this issue is based on the use of membership probabilities for each sampled star,
which ordinarily works in the case of dSphs, where large memberships may be achieved,
but not always in that of UFDs.
The interest in Local Group dwarf galaxies has been growing over the last decades due to
their huge mass-to-light ratios, as obtained by analyzing their stellar kinematics (Amorisco
and Evans, 2011 [2]).
Several studies conducted on dSphs in the MW halo (i.e., Fornax, Sculptor, Ursa Minor I,
Draco, Leo I, Leo II, Sagittarius, Sextans and LGS 3) pointed out that the observed velocity
dispersion is significantly inflated with respect to the intrinsic value, which would be
of the order of 1 − 3 kms−1, if GCs’ kinematic properties were scaled by the structural
parameters of dSphs (Mateo, 1997 [61]). Additional research on eight dwarfs, including
both dSphs and UFDs (i.e., Canes Venatici I and II, Ursa Minor I and II, Leo IV and T,
Hercules, and Coma Berenices), corroborates this result through the detection of values
between 3.3 − 7.6 kms−1for σobs (Simon and Geha, 2007 [90]), thus challenging the claim
about the existence of systems having σobs < 7 kms−1(Wyse and Gilmore, 2008 [111]).
In fact, Simon and Geha (2007) [90] discovered an interesting correlation between the
absolute magnitude in the V band and the velocity dispersion of their sampled galaxies:
if MV ≤ −6, σobs ≃ 7 − 8 kms−1, whereas if MV > −6, σobs ≃ 4 − 5 kms−1, meaning that
more luminous objects, such as dSphs, have larger velocity dispersion compared to fainter
ones, such as UFDs. Also McConnachie and Côté (2010) [63] found that the expected
velocity dispersion of MW satellites with MV ≥ −7 should be ≃ 0.2 kms−1, but values
≥ 3 kms−1are actually measured.
Also, the application of the Mdyn relation to UFDs shows that Mdyn ≥ 105 M⊙ within
Rhm, but that the luminosities are a factor of ∼ 100 smaller: given the expected value of
the mass ratio in the V band (M/L)V ≃ 2 M⊙,V/L⊙,V , Simon (2019) [89] concluded that
nearly all UFDs have masses dominated by something other than stars (Fig. 5.9).

Different scenarios to account for the notably large velocity dispersion of dwarf galaxies
and, consequently, for the inflation of their dynamical mass have been proposed: the most
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accredited one asserts the presence of a considerable amount of DM in such systems,
while others suggest that they are either out of virial equilibrium because actually ongoing
tidal disruption, or affected by the presence of a non-negligible number of unresolved
binaries.

4.3.1 The dark matter and tidal stripping hypotheses

The high velocity dispersions detected among MW satellites have been frequently inter-
preted in terms of them being embedded in massive DM halos: to this end, theoretical
models trying to link present-day dwarf galaxies to their alleged parental DM halo and to
determine their mass in the absence of detailed photometric and kinematic data have been
developed. For instance, Amorisco and Evans (2011) [2], instead of using Jeans equations
to infer the observed velocity dispersion of dSphs once a parametric light profile (e.g.,
a King or a Plummer profile) for the stellar component and a NFW density law for the
DM halo are assumed, proposed a phase space modeling approach to better describe the
flat trend of σobs, which hints that the dSphs’ inner parts may be nearly isothermal. Such
a condition, due to tidal stirring rather than physical collisions, can be represented by
means of lowered isothermal distribution functions nestled in DM halos; since they cause
the stellar component to relax in the DM gravity field, a dependence of the half-light
radius Rhl on the line-of-sight central velocity dispersion σ0 can be predicted: provided
that the DM halo potential is a power-law function of the radius, the relationship between
Rhl and σ0 takes the form Rhl ∝ σ

β
0 , with β = 1, 2 for a cored or a NFW halo, respectively.

However this theoretical correlation is suitable only for central regions, as it dramatically
steepens at larger half-light radii.
Moreover, the authors showed that different DM halo profiles, whether cored or cusped,
lead to very similar mass estimates within one particular radius, i.e., ≈ 1.7 Rhl. The
enclosed mass, given by the formula

M(< 1.7 Rhl) = 5.8
σ0Rhl

G
, (4.8)

has been calculated for a sample of MW satellites characterized by a flat velocity dispersion
profile, finding that the two most massive ones are also the most luminous, namely
Sagittarius (M(< 1.7 Rhl) ∼ 2.8 × 108 M⊙) and Fornax (M(< 1.7 Rhl) ∼ 1.3 × 108 M⊙),
while the least massive ones are Willman I (M(< 1.7 Rhl) ∼ 4 × 105 M⊙) and Segue 1
(M(< 1.7 Rhl) ∼ 6 × 105 M⊙).
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Albeit several constraints in favor of DM coming from observations (Draco, UMi, Carina,
Segue 1 and 2, and wide binaries), the possibility of Galactic tides to determine the
progressive dissolution of dwarf satellites has been put forward.
An ideal target for indirect DM detection experiments, owing to its proximity and high
mass-to-light ratio, is surely Segue 1. Discovered by Belokurov et al. (2007) [6] as an
overdensity of resolved stars in imaging data from the SDSS, with absolute magnitude
and half-light radius intermediate between dSphs and GCs, i.e., MV ≈ −3 and Rhl ≈ 30
pc, Segue 1 was formerly identified as an extended GC associated with the Sagittarius
stream. Such an interpretation of Segue 1 was afterwards contested by Geha et al. (2009)
[26], who noted that this object was unusually faint for its size. Therefore, they measured
the radial velocities of 24 stars in Segue 1 through Keck/DEIMOS spectroscopy, and
derived a velocity dispersion of ∼ 4.3 kms−1: this led to claim that Segue 1 was an UFD
rather than a GC. By allowing these stars to be gravitationally bound to Segue 1 and
in dynamical equilibrium, the implied mass-to-light ratio resulted M/L ∼ 1200, which
would make Segue 1 the most DM-dominated galaxy ever detected. Yet, both assumptions
might be questionable: in fact, if Segue 1 was a GC undergoing tidal disruption as stated
by Belokurov et al. (2007) [6], then unbound stars would not be so easy to distinguish
from actual members, and the hypothesis of dynamical equilibrium would be naturally
refuted; more seriously, if Segue 1 was really immersed in the Sagittarius stream, then
contamination by stream stars would be hard to avoid, thus inducing the artificial inflation
of the observed velocity dispersion and casting doubt on the existence of a predominant
DM content in the galaxy. The analysis performed by Geha et al. (2009) [26] seems not to
support this scenario for a number of reasons, though: first the missing evidence of both
kinematic outliers in the observed stellar sample and tidal tails, and second the central
concentration of the luminosity profile.
A similar case is represented by Segue 2, classified as a likely DM-dominated UFD by
Belokurov et al. (2009) [7] because of its observed velocity dispersion inflated value,
σobs ≃ 3.4 kms−1, compared to the expected one, σint ≃ 0.5 kms−1. The successive
detection of a group of stars sharing the same radial velocities as Segue 2 members, but
presenting higher metallicities, was regarded as the signature of a larger galaxy being
tidally disrupted: hereby, according to Belokurov et al. (2009) [7], Segue 2, together with
the above-mentioned, anomalous stellar stream, would constitute its remnant. To test this
theory, Kirby et al. (2013) [47] enlarged the initial spectroscopic sample, consisting of only
5 RGB stars, to 26 such objects, and used their radial velocities to recompute the observed
velocity dispersion of the galaxy; by means of the Monte Carlo Markov Chain (MCMC)
method, they estimated an upper limit of σobs ≤ 2.2 kms−1at 90% confidence level, well
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below the value obtained by Belokurov et al. (2009) [7] through a maximum likelihood
procedure based on the assumption that the stellar velocity distribution is approximately
Gaussian, a feature expected in the event of virial equilibrium. The inferred limit on the
mass within the half-light radius is M < 1.5 × 105 M⊙, clearly lower than M < 5.5 × 105

M⊙ coming from σobs ≃ 3.4 kms−1. In addition to this, Kirby et al. (2013) [47] not only
detected a dispersion in [Fe/H] and a decline of [α/Fe] as a function of [Fe/H], chemical
properties establishing that Segue 2 probably retained SN ejecta and that SF lasted for
several generations of SNe Ia (i.e., at least 100 Myr), but also derived an average metallicity
⟨[Fe/H]⟩ = −2.22 ± 0.13 (about the same as Ursa Minor, 330 times more luminous than
Segue 2), placing the galaxy more metal-rich than the luminosity-metallicity relation
defined by the brightest MW satellites.
Taken together, such dynamical and chemical properties hence point to two possible
formation scenarios: Segue 2 may either be the barest remnant of a tidally stripped, Ursa
Minor-sized galaxy, once hosted by a substantial dark matter halo, or have formed with
its present stellar mass and metallicity. Overall, the tidal stripping hypothesis seems more
plausible, especially for the fact that MW’s tides would have whittled Segue 2 down to
the least massive galaxy known.
So, it is hardly surprising that the role of Galactic tides has been investigated in Ursa
Minor (UMi), one of the closest MW satellites to present tidal tales, lumpiness and an
asymmetric stellar distribution along its major axis. Since the amount of stripped material
correlates with the strength of the MW tidal force, Gómez-Flechoso and Martınez-Delgado
(2003) [30] remarked that the mass density at the tidal radius, as well as that of tidal tails
on its very edge, is proportional to the MW potential: by implication, determining the
MW halo potential means being able to evaluate the mass density of both the galaxy at
the tidal radius position and of its associated tidal tails, which allows the computation
of the mass-to-light ratio. Once having fixed the parameters of the MW potential using
the observational data of the Sagittarius dwarf galaxy in order to probe the MW halo
and, consequently, the UMi tidal tails mass density, and having accounted for both the
luminosity profiles and brightness variations of these ones, the authors concluded that
M/L ∼ 12. This estimate, compatible with the observed value M/L ∼ 16, differs much
from M/L ∼ 60 expected in the assumption of virial equilibrium, which seems to validate
the idea of UMi being a tidally dissolving MW satellite, and thus to explain the measured
inflation of its velocity dispersion.
On the other hand, whilst mindful that postulating the ongoing tidal disruption of MW
dSphs feels natural given the well-recognized effects of Galactic tides on the Sagittarius
dwarf, Wu (2007) [110] brought out some critical points:
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• Sagittarius is much closer to the MW center than other dSphs, which makes it more
vulnerable to tidal stripping;

• tides should introduce a strong velocity shear, but in dSphs almost no rotation
signature is actually detected;

• an universal mechanism to raise the observed velocity dispersion of dSphs by tides
appears not to exist.

By combining a parametric model for the MW potential, assumed to be spherical and DM
dominated, with non-parametric two-integral models for the stellar distribution function,
taken to be axisymmetric, they derived the mass of three target dSphs, i.e., UMi, Draco
and Fornax, finding that it was sufficiently high to reject the conjecture of MW tidal
forces to affect the observed kinematics in any meaningful way. Thereby, they interpreted
the ªextra-tidal extensionsº in UMi and Draco as an extended, axisymmetric, virialized
envelope, rather than as the outcome of a tidal stripping process. Still, a possible limitation
of this analysis lies in that calculations have been performed within r < 3 kpc, where tidal
forces are unlikely to be most effective.

In summary, given that σobs is a good estimator of the mass of a galaxy only when this is
in virial equilibrium, speculations about the tidal disruption of the closest MW satellites,
in order to account for their dynamical mass inflation, have been made. However, by
enlarging the sample of observed dwarfs, it became apparent that most of them, regardless
of their proximity to the MW, exhibited large velocity dispersions without evidence for
streaming motions. In addition to this, some simulations predicted that a perigalactic
passage would leave behind a velocity gradient larger than the velocity dispersion (Piatek
and Pryor, 1995 [73]; Pryor, 1996 [77]), a feature that is not seen in any of the above-
mentioned targets. The lack of a general theory to fully expound the action of tides in
boosting the observed velocity dispersion of dwarf galaxies, then, favors a scenario in
which tidal stripping, even if affecting their past history, cannot be pinpointed as the
primary cause of the process. Therefore, the DM hypothesis ultimately prevails.

4.3.2 Unresolved binaries as an alternative to the dark matter hypothesis

Alternatively to the DM hypothesis, a theory involving radial velocity components from
binary stars as participating to the enhancement of the dynamical mass of dwarf galaxies
has been developed and applied to MW satellites.
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Draco and UMi are characterized by high observed velocity dispersions (σobs ∼ 10 kms−1)
and mass-to-light ratios ((M/L)V ∼ 50 − 90): the artificial inflation by the orbital motion
of undetected binaries has been suggested as a viable explanation for this phenomenon,
which has been investigated through Monte Carlo simulations of velocities measured at
random times for a stellar sample with given binary fraction and period, eccentricity and
mass ratio distributions. The outcomes of this analysis are the following:

• σobs calculated using the standard deviation is much more affected by unresolved
binaries than that obtained from the biweight;

• the large values of σobs of dSphs with small intrinsic velocity dispersion (i.e., σint ∼ 6
kms−1) may be partially covered either by high binary fractions or by short-period
binaries;

• multi-epoch velocity measurements are desirable to identify and remove binaries
with large velocity amplitudes;

• even though the choice of the period, eccentricity and mass ratio distributions are
guided by the results pertaining to field binaries, the binary fraction remains a free
parameter of non-negligible influence.

On such premises, Pryor, Olszewski, and Armandroff (1995) [78] exploited the reduction
of unresolved binaries’ effects on velocity dispersion estimates, thanks to precise radial
velocity measurements from multi-epoch observations of stars in Draco and UMi, for
deriving their binary content. They found a binary fraction fb ranging from 0.17 to 0.68,
and combined these values with a model binary population to simulate the impact of
binaries in other dSphs, deducing that, in both cases, it was minimal: this led the authors
to assert that binaries were not responsible for the huge mass-to-light ratios of Draco and
UMi, based on the available stellar sample.
A Monte Carlo experiment was performed to reproduce also the binary content of Carina
(Mateo et al., 1993 [62]); here binaries would significantly affect the observed velocity
dispersion only if a rather large binary frequency among giant stars was present, and
if they were restricted to a small period range skewed towards short periods. Since the
velocity distribution of Carina members argues against the existence of a great amount
of high-amplitude binaries, the DM hypothesis was conclusively endorsed, despite the
binary contribution in inflating σobs could not be safely ruled out.
Minor et al. (2010) [67] gave serious consideration to the contamination from binary orbital
motion, and outlined a procedure to correct the velocity dispersion of dwarf galaxies
to within a few percent accuracy by using a parameter called the threshold fraction,
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independent of the underlying binary fraction and distribution of orbital parameters. In
particular, contrary to both the mass ratio and the eccentricity distribution, the choice of
the period distribution is quite relevant for estimating σobs: in this respect, the authors
adopted a log-normal period distribution f (P) with µlog(P) = 2.23 and σlog(P) = 2.3,
as reported by Duquennoy and Mayor (1990) [18] relative to G-dwarf stars in the solar
neighborhood. Such a similarity is motivated by the little modification binary orbital
parameters undergo during simulations of the SF process, which always involves the
turbulent fragmentation of a rotating gas cloud. That said, the threshold fraction is an
observable quantity defined as the fraction F of stars in a sample exhibiting a change in
radial velocity greater than a certain threshold ∆v after a time ∆t between measurements.
The response of F at varying binary fraction fb, time interval ∆t and period distribution’s
parameters has been explored, revealing that:

• changing fb has approximately the same effect as changing f (P);

• multi-epoch observations of more than 103 stars would be required to break this
degeneracy and constrain f (P) independently of fb;

• ∆t = 1 − 2 yr is the optimal time interval to appraise F with a velocity error of
the order of 1 kms−1, since the fraction of stars with measurable ∆v does not rise
significantly when ∆t is extended beyond 2 yr;

• σobs going from 4 to 10 kms−1are unlikely to be inflated by more than 20% due to
binary orbital motion in dSphs.

Despite the straightforward formulation, there are two main difficulties in extracting F
from actual data sets: first, the non-existence of a common time interval ∆t, typically
replaced by several time intervals for various subsets of stars, and then the fact that
different velocity estimates have their own associated errors.
All in all, the addition of more and better velocity measures from multi-epoch observations
has mitigated the skepticism surrounding the large velocity dispersions of dSphs. As
such, it is now widely accepted that these galaxies are some of the most DM-dominated
objects in the universe. However, the question of unresolved binary contamination is still
open ended for UFDs: subsequently, several efforts in this direction have been made.
Aware that the fraction of solar-type close binaries tends to be higher in low-metallicity
environments (Badenes et al., 2018 [3]), Minor et al. (2019) [68] modeled the binary popu-
lation of the UFD Reticulum II (Ret II) in order to evaluate the eventual inflation of its
observed velocity dispersion owing to binary orbital motion. To this purpose, they applied
a Bayesian method to inspect multi-epoch radial velocities of 26 stars and, assuming a
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mean orbital period of ∼ 27 yrs in accordance with Badenes et al. (2018) [3], estimated a
binary fraction larger than 0.5 at the 90% confidence level albeit the small sample size. The
best-fit intrinsic velocity dispersion, i.e., σint ≃ 2.8 kms−1, results higher than the expected
value σint ≃ 0.21 kms−1if no DM were present, determined from the typical mass-to-light
ratio M/L ≃ 2 M⊙/L⊙ of GCs. So, defining σint ≤ 0.21 kms−1as the ªno DM regimeº,
nearly all of Ret II’s dispersion would be due to binaries. And yet, Badenes et al. (2018)
[3]’s statistical analysis indicates that this is not the case, notwithstanding the apparently
conspicuous binary content: indeed, the preference for a substantial number of short
mean period binaries in Ret II, consistent with a similar outcome for the Segue 1 dSph
(Martinez et al., 2011 [58]), is attributed to the aforementioned anti-correlation between
close binary fraction and metallicity, which may be suitable for UFDs in that metal-poor
stellar systems. By implication, Ret II was finally categorized as DM-dominated.
Other studies tried to leverage binary stars to probe the existence of DM, instead of
refuting it, but obtained uncertain results.
By way of example, according to Peñarrubia et al. (2016) [72] wide binaries may offer a
window onto DM on the smallest scales, and measuring their relative separation may
constitute an alternative route to tie up the DM potential. The survival of wide binaries in
the DM halo of UFDs has been explored through N-body simulations: in the subsequent
mock data processing, the two-point correlation function (2PCF) of stellar pairs in these
galaxies was denoted as a useful statistical tool to detect and characterize the semi-major
distribution of wide binaries, and hence define the inner slope of the DM halo profile. This
type of analysis requires deep photometric data with sub-arcsecond resolution, though,
which makes it presently impracticable.
Besides this, some research addressed the relation between wide binaries and DM dynam-
ical friction. If a massive body orbits within a DM halo, it will experience a net frictional
drag which opposes to its motion: even if the timescales for dynamical friction in galactic
systems are typically of Gyrs and there is no direct observation of orbital decay, this
phenomenon has been studied to constrain the density profile of DM halos in dSphs. In
particular, Hernandez and Lee (2008) [34] pointed out that dynamical friction will induce
the progressive tightening of binary systems embedded in DM halos, leading to their
components eventual merger in the absence of other concomitant effects, and estimated
that the binary orbital decay should scale linearly with the DM density and the square
root of the binary total mass (ȧ ∝ ρDMm1/2

cm ). Hence, going to higher DM halo densities,
such as those of dSphs, dynamical friction on binary stars might become relevant: in this
context, wide binaries are doomed to decay in shorter timescales (τ < 10 Gyr) compared
to harder ones. Specifically, the initial binary orbital separation below which τ < 10
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Gyr turns out to be ã0 = 0.067 pc: since such a time corresponds approximately to the
age of dSphs’ stars, it follows that binaries born with a0 < ã0 would suffer from the
dynamical friction of DM halos because their decay time may grow shorter than their own
lifetime. It is worth noting that an appreciable alteration of the initial distribution of binary
separations in dSphs is very unlikely, for the collisional mechanism operating in GCs,
liable to continuously replenish the wide binary population through the disruption of
close binaries, is in this case not available. In fact, although the number of stars in a typical
dSph is about 10 times larger than in a GC, the volume occupied by its stellar population
is of the order of (2 kpc)3 instead of (20 pc)3, which makes collisions completely inefficient.
So, if binaries with semi-major axis a = a0 < ã0 were observed in dSphs, the existence of
DM halos would be verified via the action of dynamical friction, but if, conversely, plenty
of wide binaries were detected, then the DM hypothesis, which predicts their evolution
into tighter systems, would be seriously challenged. However, since the presence of such
binaries is currently unknown due to the impossibility of direct studies of MW satellites’
binary semi-major axis distribution, no conclusion can be drawn.
Yet, above all, one major pitfall of measuring the velocity dispersion in UFDs is the need
for multi-epoch observations, which are actually not possible for most of these galaxies,
contrary to dSphs. To make matters worse, given the already small intrinsic velocity
dispersions, also velocity errors of ≤ 1 kms−1are needed.
So, in interim, Spencer et al. (2017) [92] proposed a different approach to provide a range
of plausible σint values for UFDs based on the binary fractions in dSphs, with the aim of
predicting how big of an effect binaries could have on UFDs. Taking as a target the Leo II
dSph, they first generated a series of radial velocity Monte Carlo simulations characterized
by the same velocity uncertainties and temporal observations as the real data, then used
Bayesian analysis to compare these ones to simulations, and finally determined which
binary fraction could best reproduce the observed velocities in Leo II.
To model the binary population of Leo II, a specific sample of stars was selected: all
primary masses have been fixed to the typical RGB value m1 = 0.8 M⊙, and secondary
ones are such that m2 ≤ m1 in order for the mass ratio q = m2/m1 to satisfy the condition
0.1 ≤ q ≤ 1. This implies that secondaries must be neither remnants nor giants.
As far as the intrinsic binary orbital parameters P, q and e are concerned, the period
distribution takes the log-normal form

dN

d log P
∝ exp

(

−
(log P − µlogP)

2

2σ2
logP

)

, (4.9)
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where µlogP = 4.8 and σlogP = 2.3 for periods measured in days, while q and e have
been extracted from two distributions each, in particular q from either a normal or a flat
distribution, i.e.,

dN

dq
∝ exp

(

− (q − µq)2

2σ2
q

)

and
dN

dq
∝ const , (4.10)

with µq = 0.23 and σq = 0.42, and e from either a piece-wise distribution having a normal
and a thermal component, i.e.,

dN

de
∝







exp
(

− (e−µe)2

2σ2
e

)

if 1.08 < log P < 3

2e if log P > 3
(4.11)

with µe = 0.31 and σe = 0.17, or a flat distribution:

dN

de
∝ const if log P > 1.08 . (4.12)

Notably, considerations on these parameters yielded a minimum value amin = 0.21 AU
and a maximum value amax = 412 AU for the semi-major axis.
Hence, four parameter combinations were obtained, the lowest binary fraction for Leo
II fb = 0.30 deriving from a flat f (q) and flat f (e), and the highest one fb = 0.34 from a
normal f (q) and piece-wise f (e).
Although the estimated binary fraction is larger than that assumed in previous kinematic
studies of Leo II, the authors excluded a major impact of binaries on the intrinsic velocity
dispersion owing to its already high value. Nevertheless, the very same binary fraction
may have an effect in systems with smaller intrinsic velocity dispersion: to illustrate
the severity of this issue, the observed velocity dispersion of six mock galaxies, having
σint = 0.5, 1, 2, 4, 8, 12 kms−1and containing 100 stars with single-epoch observations and
velocity measurement errors of 1 kms−1each, was computed through another set of Monte
Carlo simulations. Following this exploration, dwarfs with σint = 0.5 − 2 kms−1may show
observed velocity dispersions 1.5 − 4 times larger than in actuality, given a binary fraction
of 0.3. This effect further magnifies due to the extreme faintness of UFDs and to the
predominance in these galaxies of subgiants or MS stars, which allow tighter binary orbits
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with shorter periods, rather than RGBs. Consequently, Spencer et al. (2017) [92] inferred
that if the binary fraction of Leo II was present in UFDs, it would artificially inflate their
velocity dispersion and make them appear more DM-rich.
To strengthen this conclusion, Spencer et al. (2018) [93] applied the very same procedure
to Draco and UMi, finding a binary fraction fb ≃ 0.5 for the former and fb ≃ 0.78 for the
latter if a log-normal period distribution (Eq. 4.9) and a normal mass ratio distribution
(Eq. 4.10) are adopted. Interestingly, by testing other functional forms of f (P) and f (q), it
turned out that the choice of the mass ratio distribution does not affect the evaluation of
the binary fraction to a greater extent, in that it causes a change of ∼ 5 − 10%: as a result,
more attention should be paid to the period distribution, being it most influential on the
determination of fb.
Secondly, the authors reanalyzed the binary fraction in Leo II ( fb ≃ 0.36), Carina ( fb ≃ 0.2),
Fornax ( fb ≃ 0.87), Sculptor ( fb ≃ 0.58), and Sextans ( fb ≃ 0.71), and deduced that the
probability for this quantity to be constant across all seven dwarfs is < 1%, unless the
period distribution varies greatly: this indicates that the binary populations in MW dSphs
are not identical in regard to their binary fractions, period distributions, or both.
Now, properties of the binary populations in dSphs are intriguing in their own right,
but they are also useful to establish how adversely binaries are impacting the velocity
dispersions in UFDs: for this reason, the range of possible orbital parameters and binary
fractions can be narrowed down by looking at the values occupied by dSphs. Thus,
bearing in mind that, according to simulations, binaries are unlikely to boost the observed
velocity dispersion of dwarfs with measured σobs > 4 kms−1(i.e., dSphs) by more than
30% (Minor et al., 2010 [67]), but have up to a 40% chance of doing so in dwarfs with
σint ≤ 4.5 kms−1(i.e., UFDs; Minor et al., 2010 [67]), the authors figured that providing
better constraints over the binary fraction of dSphs may prove helpful to advance the
research on UFDs.

As a conclusion, unresolved binary stars, independently of their fraction, are deemed
not to play a pivotal role in inflating the observed velocity dispersion of dSphs, which
are hereby regarded as DM-dominated systems, but to be important in the case of UFDs,
i.e., the low-luminosity counterparts of dSphs. Notwithstanding that the sample of the
examined UFDs has been moderately enlarged lately (Massari and Helmi, 2018 [60]), the
small number statistics and the lack of appropriate multi-epoch observations remain a
major problem in giving a safe estimate of their binary fraction and period distribution.
So, unfortunately, only in quite a few instances the available spectroscopic data allow
to constrain such quantities. Up to now, most models have been trying to reproduce



4.3. DYNAMICAL MASS INFLATION IN DWARF GALAXIES 59

the observed velocity dispersion of dSphs by varying both the binary fraction and the
binary orbital parameters, and have then compared the results to spectroscopic data
in order to assess the significance of the binary contribution to σobs in UFDs (Spencer
et al., 2017 [92]; Spencer et al., 2018 [93]). Still, the assumptions on the orbital parameter
distributions, especially related to periods and semi-major axes, are an actual limitation
in this context: hence the desire of a theoretical model to make as reliable and general
as possible inferences about the binary population of these galaxies, with the ultimate
purpose of challenging the DM hypothesis.



Chapter V

A parametric study of dwarf galaxies

In this chapter, a parametric study to explore the effects of the orbital parameters choice
at varying binary fraction on the observed velocity dispersion of dSphs and UFDs will
be presented. Such an investigation will, therefore, assess the impact of binary stars on
the dynamical mass determination in the faintest MW satellites, in order to ascertain
its being either complementary or alternative to the hypothesis of these galaxies to be
DM-dominated.
Hence, a detailed description of the theoretical modelization, marking the differences
with respect to past methods, will be given, followed first by a critical exposure, and then
by a thorough discussion of this analysis’ results. Finally, conclusions will be extracted
and inserted in a more general cosmological context.

5.1 Methodology

5.1.1 Model settings

The parametric model has been built up by assuming as star density distribution that of a
Plummer sphere of scale radius R and total mass M, according to the law

ρ(r) =
3M

4πR3

[

1 +
(

r

R

)2
]− 5

2

, (5.1)

60
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and used to reproduce both a dSph galaxy with a scale radius R = 3 kpc, a total stellar
mass M = 107 M⊙ (Strigari et al., 2008 [99]) and an age of 13 Gyr, and an UFD of the same
age, with a scale radius R = 50 pc and a total stellar mass M = 5 × 104 M⊙. Positions and
velocities of both single stars and binary centers of mass are randomly sampled from this
profile according to the algorithm proposed by Aarseth, Henon, and Wielen (1974) [1].
Radial positions are given by

r =
R

√

X
− 2

3
1 − 1

, (5.2)

and the corresponding position vector components are

x =
√

r2 − z2 cos (2πX3) ,

y =
√

r2 − z2 sin (2πX3) ,
z = (1 − 2X2) r ,

(5.3)

where X1, X2, X3 are three random numbers in the interval [0,1]. The first Ns radial
position vectors have been attributed to single stars (rs, with components xs, ys, zs), and
the remaining Nb ones to binary centers of mass (rb, with components xb, yb, zb).
To obtain the components of the velocity vectors an accept-reject procedure has been
employed, respecting the cut to the escape velocity at each position r, i.e.,

vesc =
√

2U(r) , (5.4)

where U(r) is the Plummer’s potential at a distance r from the center. The velocity
components are

vx = (1 − 2X4) v ,

vy =
√

v2 − v2
x sin (2πX5) ,

vz =
√

v2 − v2
x cos (2πX5) ,

(5.5)

where X4, X5 are two random numbers in the interval [0,1]. Their units are, of course,
those picked for the absolute value of the velocity v. Therefore, as in the case of positions,
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the first Ns radial velocity vectors have been assigned to single stars (vs, with components
vx,s, vy,s, vz,s), and the other Nb ones to binary centers of mass (vb, with components
vx,b, vy,b, vz,b).
By definition, the Plummer model represents a system in virial equilibrium, as indicated
by the virial ratio

Q =
2T

|U| =
2
(

Ns

∑
i=1

ms,iv
2
s,i

2 +
Nb

∑
i=1

mb,iv
2
b,i

2

)

∣

∣

∣

∣

∣

−G
Ns+Nb

∑
i,j=0, i ̸=j

mimj

|ri−rj|

∣

∣

∣

∣

∣

= 1 . (5.6)

The discrete stellar mass population is generated by sampling the Kroupa IMF (Kroupa,
2001 [52]) in the interval [0.1, 50] M⊙, i.e.,

f (m) ∝ m−α, with

{

α = 1.3, for 0.1 ≤ m/M⊙ < 0.5,
α = 2.3, for 0.5 ≤ m/M⊙ ≤ 50,

(5.7)

where the normalization constants are such to give a matching of the two power laws
passing from a mass interval to the adjacent. The average star mass results ⟨m⟩ = 0.61
M⊙.
In the total number of stars in the system, N, the binary fraction is defined as fb = Nb/N,
where Nb is the number of stellar pairs (i.e., binaries). Consequently, N = Ns + 2Nb,
where Ns is the number of single stars.
The overall star content has been set through a selection of Ns values from a given sample,
and a random pairing of the other 2Nb ones, with the most massive member designated
as the primary star (m1) and the lightest as the secondary (m2). Of course, mb = m1 + m2
yields the mass of the binary. As an alternative to this method, a power-law mass ratio
distribution f (q) ∝ q−0.4 (Kouwenhoven and de Grijs, 2008 [49]), where q = m2/m1, with
extremes qmin = 0.1 and qmax = 1 (Rastello, Carraro, and Capuzzo-Dolcetta, 2020 [81]),
has been adopted to couple binary components in the case of the UFD model.
Upon the assumptions made for the age of the system and its chemical composition
(X = 0.747, X = 0.252, Z = 0.001), an evolutionary stage has been attached to each star
for characterizing it as main sequence (MS), subgiant, red giant (RGB), asymptotic giant
(AGB), horizontal branch (HB), all luminous objects, or as white dwarf (WD), neutron
star (NS) or black hole (BH) dark remnant. Note that the baryonic dark stellar component
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(WDs+NSs+BHs) comprises a fraction of about 54% of the total stellar mass.

The binary orbital parameters (Tab. 5.1), i.e., the semi-major axis a and the eccentricity e,
have been determined in the following way.
The generic value of a has been extracted from a logarithmic semi-major axis distribution
g(a) ∝ 1/a in the interval amin ≤ a ≤ amax (Kroupa and Burkert, 2001 [51]), and thus
obtained as

a = exp (naXa) + ln (amin) , (5.8)

where Xa is random number in the interval [0,1] and

na = ln
(

amax

amin

)

(5.9)

the normalization factor. In particular, g(a) corresponds (at fixed m1 + m2) to the period
distribution

h(P) =
g(a)

dP
da

, (5.10)

which, once a is expressed in terms of P through Kepler’s third law, and in full respect of
Öpik’s law, gives

h(P) ∝
1
P

, (5.11)

with 7 × 10−2 ≤ P (days) ≤ 6 × 106, values in good agreement with Duquennoy and
Mayor (1991) [19] and Kroupa and Burkert (2001) [54]. The eccentricity, instead, is taken
from a thermal distribution k(e) = 2e (Jeans, 1919 [44]), so that

e =
√

neXe + e2
min , (5.12)

where, as above, Xe is a random number in the interval [0,1] and
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ne = e2
max − e2

min (5.13)

the normalization factor.

Finally, both the positions and the velocities of the 2Nb binary components have been
evaluated in the center of mass reference frame and by opting for a configuration in which
the secondaries are at the apocenter of the orbit of the binary system they belong to,
whereas the primaries are integral with their associated center of mass.
Thereby, given the apocenter radius and the orbital velocity moduli

rapo = a(1 + e) ,

vorb =

√

Gmb

a
,

(5.14)

the components of the corresponding vectors have been calculated by means of a linear
transformation to map random numbers from the interval [0,1] to the interval [-1,1]. In
this way, the position and velocity vectors of primaries result

r1 = rb +
m2

mb
rapo ,

v1 = vb +
m2

mb
vorb ,

(5.15)

whereas those of secondaries are

r2 = rb −
m1

mb
rapo ,

v2 = vb −
m1

mb
vorb .

(5.16)

As a closing note, the structural parameters R and M allowed the computation of the
half-mass relaxation time
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trh =
γN

ln Λ

√

R3
hm

GM
≃ γN

ln(λN)

√

(1.3 R)3

GM
, (5.17)

with γ = 0.138, λ ≈ 0.11, G gravitational constant, N total number of stars and Rhm = 1.3 R
half-mass radius of the system.

Object R M trh Age Lbol LV LB

(pc) (M⊙) (Gyr) (Gyr) (L⊙) (LV,⊙) (LB,⊙)
dSph 3 × 103 107 1.79 × 105 13 1.35 × 108 1.38 × 107 1.67 × 107

UFD 50 5 × 104 43.07 13 6.72 × 105 6.88 × 104 8.37 × 104

Table 5.1: Structural parameters of the simulated galaxies.

Binary orbital parameters have been varied in order to test how much binary orbital
motion affects the observed velocity dispersion: unsurprisingly, the semi-major axis distri-
bution turns out to be the most relevant within this framework, since the shrinking of the
distance between binary components has a major effect on the estimate of the velocity
dispersion. Hence, first the upper boundary amax has been selected in the range of values
[50, 100, 200, 300, 400] AU while keeping fixed the lower one, amin, at 0.2 AU, to do
then the opposite, i.e., choosing the lower boundary in the interval [0.01, 0.02, 0.03, 0.05,
0.08, 0.1, 0.2, 0.4, 0.6, 1] AU and settling the upper one to 100 AU. Such a procedure has
been repeated for different binary fractions, going from 0.05 to 0.4 in steps of 0.05, and a
hundred simulations have been run for each one after the arrangement of the semi-major
axis distribution’s extremes; in the end, data from each set have been averaged in view of
a more robust statistical significance of the output.

fb amin amax e
(AU) (AU)

0.05±0.4 0.01±1 50±400 0±1

Table 5.2: Ranges of variation of parameters characterizing the binary populations.
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5.1.2 Velocity dispersion

Following a scheme similar to that outlined in Rastello, Carraro, and Capuzzo-Dolcetta
(2020) [81], various possible ways to evaluate the system velocity dispersion have been
examined:

• by considering all the stars as if they were single, so that each binary component
counts as one star:

σtot =

√

√

√

√

√

N

∑
i=1

(vi − ⟨v⟩)2

N
, (5.18)

where

⟨v⟩ =

N

∑
i=1

vi

N
; (5.19)

• by distinguishing the contribution of single stars from that of binaries, which are
represented by their own center of mass:

σsb =

√

√

√

√

√

Ns+Nb

∑
i=1

(vi − ⟨v⟩)2

Ns + Nb
, (5.20)

with

⟨v⟩ =

Ns+Nb

∑
i=1

vi

Ns + Nb
; (5.21)

• by neglecting the presence of binary stars, thus accounting for the contribution of
single stars only:

σs =

√

√

√

√

√

Ns

∑
i=1

(vi − ⟨v⟩)2

Ns
; (5.22)

• By weighting the velocity of both single and binary components by their luminosity,
according to the evolutionary type. Therefore, this way of estimating the velocity
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dispersion differs from the first one only in the average of stellar velocities

⟨v⟩ =

N

∑
i=1

Livi

N

∑
i=1

Li

, (5.23)

so that

σtot,lum =

√

√

√

√

√

√

√

√

N

∑
i=1

Li(vi − ⟨v⟩)2

N

∑
i=1

Li

. (5.24)

Specifically, the luminosity of both MS and RGB stars has been determined by fitting
an isochrone of 13 Gyr from the Padua stellar and evolutionary tracks and isochrones
database (Girardi et al., 2002 [29]);

• by weighting the velocity of single stars, only, by their luminosity according to the
evolutionary type, i.e.,

⟨v⟩ =

Ns

∑
i=1

Livi

Ns

∑
i=1

Li

, (5.25)

which implies that

σs,lum =

√

√

√

√

√

√

√

√

Ns

∑
i=1

Li(vi − ⟨v⟩)2

Ns

∑
i=1

Li

. (5.26)

In sum, the observed velocity dispersion has been computed by considering binaries as
unresolved (Eq. 5.18, Eq. 5.24), while σs,b (Eq. 5.20), σs (Eq. 5.22), and σs,lum (Eq. 5.26) are
not affected by binary orbital motion: as such, they do not depend on the variation of the
binary semi-major axis and eccentricity, nor on the binary fraction. For this reason, σs ≡ σ0
is let as identification of the intrinsic velocity dispersion, i.e., the velocity dispersion
deriving from the structural parameters of the galaxy, defined in the assumption of global
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virial equilibrium by the equation

σint =

√

|U|
M

. (5.27)

From this point forward, σint will be referred to as σ0.

Notably, the model for the binary population corresponding to a random pairing of
components’ masses, a logarithmic semi-major axis distribution in the interval [0.2, 100]
AU and a thermal eccentricity distribution has been chosen as a reference to compare the
results of the parametric study, and σtot (Eq. 5.18) as the observed velocity dispersion to
determine the virial mass of the mock galaxies.

5.1.3 Roche lobe overflow and luminosity cut-off

Besides the standard modelization, another set of simulations has been run for both
galaxies to account for the possible occurrence of the RLOF phenomenon between close
binary components.
As introduced in Chap. I, RLOF is a mass transfer process taking place when one of
the stars in a binary (normally the primary, due to its higher mass and shorter nuclear
timescale) fills its Roche lobe, for it encounters a ªholeº in its equipotential surface near
the Lagrangian point L1: being hydrostatic equilibrium no longer attainable, matter flows
into the Roche lobe of the companion. In particular, the mass-losing star is denoted as the
donor, whereas the mass-receiving one as the accretor.
The mass transfer rate depends very sensitively on the fractional radius excess of the
donor

∆R

R
=

RD − RL

RL
, (5.28)

so that

ṁ = −A
mD

P

(

∆R

R

)3

, (5.29)
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where mD and RD represent, respectively, the mass and the radius of the donor, while RL

its Roche lobe radius, P the orbital period and A ∼ 10 a constant. Note that the Roche
lobe radius can be estimated by using the famous expression by Eggleton (1983) [20]

RL =
0.49q

2
3

0.6q
2
3 + ln

(

1 + q
1
3
)

a , (5.30)

where q = m1/m2 as for the primary, and q = m2/m1 as for the secondary, and that it is
approximated by a sphere of equivalent volume for a simplified computational treatment
of binary stellar evolution in one dimension.
Hence, a modest radius excess leads to an enormous mass transfer rate, meaning that, in
practice, for a relatively slow and steady mass transfer, the donor overfills its Roche lobe
only by a small amount.
Given the binary orbital momentum

J =

√

G
m2

Dm2
A

mD + mA
a(1 − e2) , (5.31)

the mass transfer is conservative if J̇ = 0 and ṁA = −ṁD (with mA mass of the accretor),
i.e., if both the orbital momentum and the total mass of the binary are conserved, and its
stability is tied down to the response of the donor to the imposed mass loss and of the
accretor to mass gain: indeed, whenever a star suddenly loses mass, it will depart from
equilibrium and react by readjusting its structure in order to recover it. More precisely,
the mass transfer results stable when most of the transferred material is accreted by the
companion star, unstable otherwise.
In the model, all pairs whose components’ stellar radii exceed the respective Roche lobe
radii have been deemed as undergoing RLOF merger. Into specifics, the former have been
calculated as the photospheric radii

Rphot =

√

L

4πσT4
e f f

, (5.32)

where L represents the stellar luminosity, Te f f the effective temperature and
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σ =
π2k4

B

60Åh3c2
(5.33)

the Stefan-Boltzmann constant, and the latter through the Eggleton’s formula (Eq. 5.30)
scaled by the pericenter distance rp = a(1 − e) instead of the semi-major axis a, according
to the prescription of Sepinsky, Willems, and Kalogera (2007) [86]. As a matter of fact,
applications of the Roche model are built by surmising that the system’s orbit is circular
and that its components are rotating synchronously with the orbital motion; however,
such assumptions cannot always be justified, neither on theoretical nor on observational
grounds: both synchronization and circularization are driven by tidal interactions between
binary components, but, since the former typically happens faster than the latter, they tend
to become synchronized with the orbital motion near periastron before circularization is
actually completed. A simple and accurate fitting formula for the Roche lobe radius of a
star in a circular binary with synchronously rotating components is provided, as already
mentioned, by Eq. 5.30, where the semi-major axis a corresponds to the radius of the
circular orbit, and the shape and volume of the Roche lobe depend solely on the mass ratio
of the system, although, for eccentric binaries with non-synchronous component stars,
they also depend upon the eccentricity, the true anomaly, and the degree of asynchronism.
For lack of a better treatment, Eq. 5.30 is therefore often extrapolated to eccentric binaries
by introducing exactly the pericenter distance of their respective orbit.
Now, when including RLOF, a distinction between accepted and rejected binaries in
computing the velocity dispersion must be made, since the former participate with their
components’ orbital motion, whereas the latter only with their center of mass velocity.
Consequently, formula 5.18 becomes

σtot =

√

√

√

√

√

√

Ns

∑
i=1

(vi − ⟨v⟩)2 +
2Nb,acc

∑
i=1

(vi − ⟨v⟩)2 +
Nb,rej

∑
i=1

(vi − ⟨v⟩)2

Ns + 2Nb,acc + Nb,rej
, (5.34)

where

⟨v⟩ =

Ns

∑
i=1

vi +
2Nb,acc

∑
i=1

vi +
Nb,rej

∑
i=1

vi

N
, (5.35)
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and formula 5.24 takes the form

σtot,lum =

√

√

√

√

√

√

√

√

Ns

∑
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Li(vi − ⟨v⟩)2 +
2Nb,acc

∑
i=1

Li(vi − ⟨v⟩)2 +
Nb,rej

∑
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(L1,i + L2,i)(vi − ⟨v⟩)2
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∑
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Li +
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∑
i=1

Li +
Nb,rej

∑
i=1

(L1,i + L2,i)

, (5.36)

with

⟨v⟩ =
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∑
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∑
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Nb,rej

∑
i=1

(L1,i + L2,i)vi

Ns

∑
i=1

Li +
2Nb,acc

∑
i=1

Li +
Nb,rej

∑
i=1

(L1,i + L2,i)

, (5.37)

where the velocity of rejected binaries is weighted by the sum of their respective compo-
nents’ luminosities.
So, binaries experiencing RLOF in both their components are considered as single (merged)
objects and contribute to the observed velocity dispersion with their center of mass ve-
locity, whereas binaries characterized by only one component overfilling its Roche Lobe
cannot be regarded as such because the outcome of the mass transfer is actually uncertain.
Yet, a primary overflowing its Roche lobe triggers a sudden mass loss, which would elicit
a rapid modification of the host binary structure, concerning mainly its luminosity and
effective temperature: into specifics, the luminosity decline may be such prominent to
make the binary slip out of a magnitude-limited stellar sample. Ergo, the assumption that
a quick merger between binary components happens when their Roche lobes touch is not
fully correct. On the basis of this knowledge, assigning to each merged binary a velocity
equal to its previous center of mass one constitutes a conservative approach: indeed, the
velocity dispersion in a state where only primaries undergo RLOF is a few kms−1greater
than in the event of RLOF of both the components, with such an enhancement becoming
more evident at increasing binary fraction for both the simulated galaxies. This is due,
intuitively, to the fact that a smaller number of binaries is rejected if one binary component
is subject to RLOF instead of two.
Either way, this choice sounded appropriate because following the time evolution of the
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simulated binary population, rather than examining its present configuration, would have
not only introduced further complications and approximations in the analysis, but also
rendered the results less accurate.
On top of that, a luminosity cut-off consisting in the removal of all stars with luminosity
below the turn-off (TO) level, condition given by L1 + L2 < LTO as for binaries, has been
performed with the aim of mimicking a realistic observational situation. Note that this
operation is actually meaningful only for dSphs, whose velocity dispersion is typically
derived from the fiber-fed multi-object spectroscopy of individual sources: therefore,
only stars brighter than a certain threshold, to second of the instrumental set-up, can be
fruitfully used. By contrast, in the case of an UFD the velocity dispersion is routinely
obtained from integrated single slit spectroscopy, which collects all the underlying light.
More trivially, the realization of a CMD to which applying a luminosity cut-off is possible
only if a sufficient number of stars is detected, as it happens for dSphs, but not for UFDs.

5.2 Results and discussion

In this section a detailed look at the results of simulations will be provided, highlighting
how the assumptions made on the binary population reflect upon the model galaxies’
dynamical mass estimate.

5.2.1 Variation of binary orbital parameters

As a general, preliminary, consideration, it must be stressed that the observed velocity
dispersion in a star system hosting a given set of binaries in fraction fb can be represented
as a linear combination of two (i.e., single star and unresolved binary) contributions:

σ2
obs = (1 − fb)σ

2
s + fbσ2

b . (5.38)

Being σ2
s ∝ |U|/M ∝ M (Eq. 5.27), and σ2

b independent of M, it is clear that, once a
specific binary population is generated, the action of binaries is as more relevant as lighter
the system is, even in the case of small binary fractions. So it is natural to expect a major
enhancement of the output velocity dispersion in UFDs rather than in dSphs. This is
indeed confirmed by a number of past studies on the binary content of dwarf galaxies
(e.g., Simon and Geha, 2007 [90]; McConnachie and Côté, 2010 [63]; Spencer et al., 2018
[93]).
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In the hypothesis of virialized (i.e., stationary) systems, the relative variation of the
predicted virial mass with respect to the real one can be inferred from the relation

∆M

M
=

σ2
obs − σ2

0

σ2
0

. (5.39)

Obviously, an overestimate of the observed velocity dispersion immediately translates
into an inflation of the dynamical mass of the system.
Given this, the main quantities to focus the attention on are the two expressions for the
velocity dispersion σtot (Eq. 5.18) and the luminosity averaged σtot,lum (Eq. 5.24), for they
include the binary orbital motion, which becomes more and more important at increasing
binary fraction and with the shrinking of the binary semi-major axis.
Fig. 5.1 shows, for the simulated UFD, the role of the variation of amax in calculating σtot

(Fig. 5.1, top-left panel) and σtot,lum (Fig. 5.1, top-right panel), and the related effect on the
∆M/M evaluation (Fig. 5.1, bottom-left panel, and Fig. 5.1, bottom-right panel).
Note that σtot,lum is systematically smaller than σtot, thus yielding a corresponding lower
estimate for the virial mass. Since the difference between σtot and σtot,lum reaches at most
the 13% for a binary fraction fb = 0.4 in the reference model case (amax = 100 AU), it is
deduced that the overall dependence of the observed velocity dispersion on amax is not
very relevant.
On the contrary, Fig. 5.2 clearly demonstrates that the lessening of amin is much more
important in inflating the velocity dispersion. In fact, when amin = 0.01 AU, σtot results
larger than 20 kms−1even for fb = 0.05, and then increases approximately as

√

fb. This
implies a huge enhancement of the predicted virial mass as opposed to the real mass of
the system, which is evident from the bottom panels of Fig. 5.2.
Fig. 5.1 and Fig. 5.2 must be compared, respectively, to Fig. 5.3 and Fig. 5.4, which display
the trend of σtot and σtot,lum, as well as that of the associated ∆M/M, when adding RLOF.
As expected, a modest, although global, decrease of the observed velocity dispersion
can be immediately noticed; this is quite manifest especially in the luminosity averaged
case, where the velocity of merging binaries is weighted by the sum of their components’
luminosities (Eq. 5.36). Still, if binaries are assumed to drop out of the sample when RLOF
befalls the primary star only, regardless of whether an actual merger occurs (Olszewski,
Pryor, and Armandroff, 1996 [69]; Minor et al., 2010 [67]), the observed velocity dispersion
increases again to almost recover its original value, owing to the smaller number of
rejected pairs (Fig. 5.7).
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With regards to the model dSph, the most meaningful results are reported in Fig. 5.5
and Fig. 5.6, which show, respectively, the dependence of σ and the related ∆M/M on
the variation of amin before and after imposing the aforementioned cuts. A straightfor-
ward comparison of Fig. 5.5 with Fig. 5.2, and of Fig. 5.6 with Fig. 5.4 corroborates
the expectation that the boost of the global velocity dispersion caused by binaries is
more prominent in lighter systems, like UFDs, than in dSphs. Note, inter alia, that
the binary fraction slightly increases due to the luminosity cut-off, since it affects sin-
gle stars more than binaries. In reference to Fig. 5.6, the new binary fraction, i.e.,
fb ∈ [0.09, 0.16, 0.23, 0.29, 0.33, 0.37, 0.41, 0.44], is indeed higher with respect to the original
case.
Besides this, it is worth mentioning that, in line with the predictions by Rastello, Carraro,
and Capuzzo-Dolcetta (2020) [81], although in the different context of open star clusters
(OCs), the luminosity cut-off is not much impactful on the velocity dispersion estimate. In
fact, the observed velocity dispersion is found to experience the most dramatic decline
as a consequence of the RLOF rejection, not the luminosity cut-off, which provokes a
further reduction of ∼ 1 − 5 kms−1with increased binary fraction. In particular, as for
the reference model (amin = 0.2 AU), the lessening of σtot goes from ∼ 25% ( fb = 0.4) to
∼ 40% ( fb = 0.1), whereas that of σtot,lum from ∼ 20% to ∼ 35% for the same values of fb.

5.2.2 Comparison between binary mass coupling methods

The role of mass coupling in binaries has been examined through a comparison between
the outcomes relative to the random pairing procedure and those coming from the
assumption of a power-law mass ratio distribution f (q) ∝ q−0.4.
Yet, throughout any discussion of f (q) it is important to assess whether the distribution
is effectively consistent with the two masses being chosen independently from the same
MF, in such a way that the mass of neither component is influenced by its companion. To
this end, Tout (1991) [100] studied the relation between the q-distribution in binary stars
and the MF for single stars, founding that, if this is the case, the q-distribution is most
sensitive to the low-mass behavior of the MF: since the true nature of the MF is uncertain
at low masses, the analysis of the mass-ratio data is equally doubtful. He also argued that
observations of spectroscopic binaries can easily adhere to the aforementioned hypothesis,
provided that very simple selection effects are taken into account. Indeed, from the
complete distance-limited investigation of G-dwarf stars, including both spectroscopic
and visual binaries, in the solar neighborhood conducted by Duquennoy and Mayor
(1991) [19] emerged that the derived q-distribution complies with a Kroupa IMF because it
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shows no maximum toward values close to unity, but a continuous increase toward small
secondary masses. Thereby the authors conjectured that binaries can form by random
associations of stars from the same IMF, although this scenario, actually acceptable for
long-period binaries, may seem surprising for tight ones. Such a result clearly disagrees
with the bimodal distribution, presenting a peak near q = 1 and another near q = 0.3,
detected by Trimble (1974) [102] for single-lined (SB1) and double-lined (SB2) spectroscopic
binaries. On the other hand, by using a similar sample, Boffin (2015) [10] discovered the
q-distribution to be not only a function of the spectral type of the primary, and thus of
its mass, but also relatively flat, with K-stars lacking smaller companions and F-stars
displaying an excess of twins.
While in low-mass binaries a flat q-distribution is generally the product of a bias, in
massive ones it reflects their tendency to prefer stars of equal mass: as suggested by Sana
et al. (2013) [84], effectively, the majority of massive stars have their evolution strongly
affected by the interaction with a nearby companion, the nature of which is largely
determined by the initial orbital period and mass ratio of the binary system they belong to.
The fact that the q-distribution of O+OB binaries appears uniform in the range 0.2 < q < 1
supports the formation of these binaries in early dynamical exchanges favoring the capture
of more and more massive secondaries, rather than by random pairing from a Salpeter or
Kroupa IMF (Sana and Evans, 2011 [85]).
However, such a dependence of the q-distribution on the mass range is not attested by
Reggiani and Meyer (2013) [82], who claimed the companion mass ratio distribution
(CMRD) to be universal over a wide range of q values and primary masses, and to
follow a single-slope power-law dN/dq ∝ qβ, with β = −0.25 ± 0.29, over the separation
range 1 − 2400 AU and primary mass range 0.25 − 6.5 M⊙. Reggiani and Meyer (2013)
[82] justified their conclusion by invoking different binary formation mechanisms: if
tidal capture models predict that for each primary the mass of the secondary is chosen
randomly from the single-star MF, so that the CMRD matches the IMF, in fragmentation
scenarios the subsequent, continued accretion onto both objects from a common reservoir
acts to equalize the masses, hence making the q-distribution peak toward unity. They
also noted that, even though not most relevant in binary formation, tidal capture may
still occur during the dissolution phase of star clusters: as a consequence, the shape of
the CMRD should change as a function of orbital separation, but no such evidence was
uncovered in their modelization.
Along this line, being a complete compatibility of a given MF with a given binary mass
ratio distribution impossible, f (q) ∝ q−0.4 has been deliberately implemented for the
mock dwarf galaxies by normalizing the (m1, m2) mass pairs to yield the same binary
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total mass m1 + m2 of the random pairing case. At fixed amax of the reference model
and varying amin in the usual range, the values of σ2 computed in the case of power-law
q-distribution differ from the ones of random pairing for ∼ ±20%. A similar variation
range is obtained if amin is kept fixed and amax is varied. As a net result, the choice of a
power-law functional form leads to an average underestimate of σ2 of the order of 15%:
so, despite all the measured q-distributions for field stars and clusters look fundamentally
at odds with random draws of secondaries from the IMF (Milone et al., 2012 [66]), this
has little effect on the conclusions of this study, which are in the direction of pointing out
the importance of binaries in the dynamical mass estimate of a dwarf-galaxy-like stellar
system.

5.2.3 Dependence of the results on the system mass and scale radius

In order to perform a more comprehensive investigation of the impact of the binary
content in small size, low dense stellar systems, binary stars have been placed in ever-
decreasing density dwarf galaxies by extending the scale radius from 25 to 250 pc, with
steps of 25 pc, for the fixed total mass M = 5 × 104 M⊙ assumed to represent an UFD in
the simulations.
Fig. 5.8 (upper panel) displays the decreasing trend of σtot/σ0 as a function of the mean
mass density of the system without taking account of RLOF. Interestingly, with regards to
the reference model (ρ ≃ 0.1 M⊙ pc−3) a binary fraction of just 5% suffices to produce
a significant enhancement of the dynamical mass (of a factor of ∼ 25.8 for the above-
mentioned instance).
Furthermore, the results of Minor et al. (2010) [67], who predicted that, in dSphs with
σobs > 4 kms−1, the inflation due to binary orbital motion would unlikely exceed the
30%, are essentially recovered. Now, σobs = 4 kms−1is derived for a binary fraction
fb = 0.03 and, since the intrinsic velocity dispersion σ0 goes from ∼ 1.6 to ∼ 0.5 kms−1at
increasing scale radius of the system, it follows that the overestimate of the observed
velocity dispersion reaches at most the 8%. Inversely, in the case of higher binary fractions,
for which σobs is larger than 4 kms−1, such an inflation grows exactly up to ∼ 30%. These
considerations hold if RLOF is accounted for (Fig. 5.8, lower panel), because σtot decreases
of less than ∼ 1% with respect to the corresponding values in the absence of RLOF.
Note that, being fb ≤ 0.4 in the present analysis, it can obviously be argued that the
threshold suggested by Minor et al. (2010) [67] for the boost of the observed velocity
dispersion may be overtaken if a more numerous binary population with the simulated
characteristics is considered. Yet, particular caution must be exercised in this respect,
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given the differences in the modeling approach, especially as far as the choice of the
binary velocity and period distributions is concerned.
Moreover, the dependence of σtot/σ0 on the mean mass density explains why in systems
like GCs, which are small sized but also dense, there is no expectation for a relevant
velocity dispersion inflation due to binaries. Incidentally, GCs are deemed to be totally
deprived of DM.
Note in addition that, contrary to dwarf galaxies, where the intrinsic non-collisionality
would lead to an almost constant in time fb, GCs are presently supposed to contain only
a limited fraction of binaries owing to their collisional nature (Milone et al., 2012 [66]).
Thereby, being the destruction rate of binary stars through dynamical interactions higher
than the formation one (Hut et al., 1992 [41]), detecting a significant enhancement of the
observed velocity dispersion in these environments is certainly unlikely.
This conclusion is enforced by the calculation of the half-mass relaxation time according
to Eq. 5.17 (Tab. 5.1).

5.2.4 Mass-to-light ratio

As said in Sect. 5.2.1, for a given set of binary characteristics the dynamical mass
estimation, Mdyn, is a linear function of fb:

Mdyn = A + B fb . (5.40)

In particular, for the simulated UFD, the values of the coefficients are A = 5.55 × 104

M⊙ and B = 2.50 × 107 M⊙ in the original set-up, whereas A = −7.41 × 105 M⊙ and
B = 2.53 × 107 M⊙ when considering RLOF. For the simulated dSph, these coefficients
are A = 9.90 × 106 M⊙ and B = 1.50 × 109 M⊙ when RLOF and the luminosity cut-off
are not taken into account, while A = −3.89 × 107 M⊙ and B = 9 × 108 M⊙ when both of
them are considered.
Then, both the mass-to-bolometric light ratio, and the mass-to-light ratio in the V and B
bands have been computed for selected binary fractions relative to the reference model
(Tab. 5.3 and Tab. 5.4). Most notably, with regards to the B and V bands, it emerges
(Tab. 5.3) that, for small sized systems such as UFDs, high values of M/L arise even in
the presence of a modest binary population, overpassing 100 for fb > 0.3. Of course,
performing the RLOF rejection causes M/L to diminish, being the total luminosity fixed.
These findings are validated by a comparison with Fig. 5.9 (right panel) of Simon (2019)
[89], which reports the trend of the mass-to-light ratio within the half-light radius for a
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sample of UFDs as a function of the luminosity in the V band. Here it must be noted
that, for a luminosity L ∼ 104 LV,⊙, relative to the simulated UFD, (M/L)V ranges from
∼ 102 to ∼ 104 M⊙/LV,⊙, in accordance with the predictions of the reference model for
fb ≥ 0.3; this is true also in the event of RLOF, since the mass-to-light ratio is slightly
reduced. Nevertheless, it is worth stressing, for the sake of clarity, that the mass-to-light
ratio estimates associated to the UFDs for which velocity dispersion measurements are
available, are affected by large uncertainties in the aforementioned luminosity regime,
and that the dynamical mass has been calculated by following the prescription of Wolf
et al. (2010) [109], which may be a possible source of discrepancy with the present results.
In closing, the fact that, after the application of the cut procedure, the value of σtot for
the actual binary fraction fb = 0.37 in the reference model dSph is magnified by a factor
of ∼ 5.5 with respect to the intrinsic value σ0 ≃ 2 kms−1must be put into evidence; this
is consistent with the observations made by Spencer et al. (2018) [93], who expected a
non-negligible effect of Leo II-like binary fractions in galaxies having σ0 ≃ 0.5 − 2 kms−1.
Even so, as highlighted by Dabringhausen et al. (2016) [15], such an influence is tightly
related to the total luminosity of the system, provided that virial equilibrium is assumed,
and becomes much more pronounced when L ≤ 106 LV,⊙. This is a natural outcome of
a velocity dispersion inflation as due to a given binary population, which is, of course,
fractionally more important in lighter systems than in larger. Therefore, according to
Dabringhausen et al. (2016) [15], for the considered dSph’s total luminosity L ≃ 107 LV,⊙,
binaries alone would not be able to boost the observed velocity dispersion to the extent
that the presence of DM may be totally ruled out. Indeed, (M/L)V corresponding to
fb = 0.33 for the simulated dSph (Tab. 5.4) undergoes a minor enhancement owing to the
sole action of binaries, if compared to the UFD case, where the total luminosity is set at
L ≃ 104 LV,⊙. Consequently, confirmation is found that binary stars affect the internal
dynamics of UFDs to a greater degree than dSphs, which may be unlikely regarded as
utterly composed of baryonic matter.
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Object fb (Mdyn/L)bol (Mdyn/L)V (Mdyn/L)B

(M⊙/L⊙) (M⊙/LV,⊙) (M⊙/LB,⊙)
dSph 0 0.07 0.73 0.60

0.05 0.63 6.15 5.06
0.15 1.75 17.07 14.03
0.30 3.41 33.38 27.44
0.40 4.53 44.29 36.40

UFD 0 0.07 0.73 0.60
0.05 1.95 19.04 15.65
0.15 5.64 55.16 45.34
0.30 11.26 110.13 90.53
0.40 14.92 145.88 119.95

Table 5.3: Values of the mass-to-light ratio in the bolometric and V and B photometric
bands for various binary fractions, in the case of our reference model.

Object fb (Mdyn/L)bol (Mdyn/L)V (Mdyn/L)B

(M⊙/L⊙) (M⊙/LV,⊙) (M⊙/LB,⊙)
dSph 0 0.07 0.73 0.60

0.09 0.44 4.33 3.56
0.23 1.13 11.07 9.10
0.37 2.19 21.46 17.64
0.44 2.68 27.27 22.41

UFD 0 0.07 0.73 0.60
0.05 1.36 13.34 10.96
0.15 4.31 42.12 34.63
0.30 9.88 96.65 79.45
0.40 14.69 142.63 117.27

Table 5.4: As Tab. 5.3, but accounting for both RLOF and the luminosity cut-off (dSph
case) and RLOF only for the UFD case. For the dSph, fb refers to the actual binary fraction
obtained after the luminosity cut procedure.
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5.3 Summary and conclusions

The role of unresolved binary stars in inflating the observed velocity dispersion of dwarf
galaxies has been examined by realizing a set of non-dynamical simulations in dependence
on various binary system parameters.
At odds with previous investigations where sophisticated statistical analyses were per-
formed (Minor et al., 2010 [67]; Spencer et al., 2018 [93]), in this first application of the
model the explicit influence of each orbital element has been taken into account, and
conservative regions of the parameter space have been carefully explored. Two distinct
spherical systems, aiming at representing a typical dSph and UFD galaxy, have been
considered, and attention has been paid to the effects of the variation of binary orbital
parameters, obtaining, as principal result, that the dominant impact on the estimate of the
system velocity dispersion, in the hypothesis of an unresolved binary population, is given
by the semi-major axis (and so by the orbital period) distribution.

The main outcomes of this study can be summarized as follows:

• the presence of an abundant quantity of unresolved binaries with relatively low
periods (Tab. 5.2) leads to a significant enhancement of the observed velocity
dispersion, and, consequently, of the dynamical mass evaluated through the virial
theorem upon assumption of stationary systems. This result differs from the findings
of Minor et al. (2019) [68], who assert, referring to the galaxy Ret II, that a high
fraction of close binaries in low-metallicity environments, such as UFDs, is unable
to give an appreciable input to the observed velocity dispersion;

• the observed squared velocity dispersion is a linear function of the binary fraction,
as outlined, e.g., by Minor et al. (2010) [67];

• the corresponding mass estimate is inflated with respect to the real mass of the
system, and increases with both the binary fraction and the shrinking of the binary
semi-major axis (i.e., by diminishing the binary orbital period);

• low-mass systems (UFDs) suffer more from the contribution of a given binary
population due to their smaller intrinsic velocity dispersion (σ ∝

√
M);

• the action of RLOF translates into a moderate reduction of the observed velocity
dispersion in both the simulated galaxies. However, its decline is more prominent in
the model dSph, given the additional luminosity cut-off, which involves single and
binary stars differently;
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• the introduction of a power-law mass ratio distribution f (q) ∝ q−0.4 for the binary
mass coupling causes σ2 to be underestimated of ∼ 15% with respect to the random
pairing case, hence affecting in a modest way the evaluation of the dynamical mass;

• the boost of the observed velocity dispersion by binary stars is a steeply decreasing
function of the mean mass density of the system. In particular, for low-density
galactic hosts, even a small fraction (5%) of binaries with the selected standard
characteristics produces a non-negligible inflation of the dynamical mass (i.e., by a
factor of ∼ 25.8 in the reference model instance, without accounting for RLOF);

• the obtained values of the mass-to-light ratio are large and look compatible with
those estimated observationally for UFDs and dSphs, offering, in the case of UFDs, an
interpretation based on unresolved binaries as alternative or, at least, complementary
to that of an overabundance of non-baryonic dark matter in such low density systems.

In conclusion, this model provides a realistic and physically consistent explanation of the
role of binary stars in the dynamical mass estimate of stellar systems, with the ultimate
purpose of challenging the claim that only the presence of vast amounts of DM is of
primary importance in this context.
However, more robust and precise results would require several improvements in both
theoretical modelization and spectroscopic data availability, especially related to UFDs:
thus, while waiting for future observational facilities, the model might be upgraded by
accounting for the effects not only of stellar evolution (i.e., mass loss) and dynamics, but
also of close interactions between binary components, in order to give a full-time picture
of the mock galaxies.
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Figure 5.1: For the simulated UFD: upper panels illustrate the dependence of the velocity
dispersion σtot (top-left panel) and of the luminosity averaged velocity dispersion σtot,lum

(top-right panel) on the variation of the upper boundary amax of the binary semi-major axis
distribution at fixed lower boundary amin = 0.2 AU. Lower panels show the corresponding
relative mass difference ∆M/M. Each curve refers to a different value of fb going bottom-
up from 0.05 to 0.4 in steps of 0.05.



5.3. SUMMARY AND CONCLUSIONS 83

Figure 5.2: As in Fig. 5.1, but for the variation of amin at fixed value of amax = 100 AU.
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Figure 5.3: As in Fig. 5.1, but accounting for RLOF.
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Figure 5.4: As in Fig. 5.2, but accounting for RLOF.
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Figure 5.5: For the simulated dSph: upper panels illustrate the dependence of the velocity
dispersion σtot (top-left panel) and of the luminosity averaged velocity dispersion σtot,lum

(top-right panel) on the variation of the lower boundary amin of the binary semi-major
axis distribution at fixed upper boundary amax = 100 AU. Lower panels show the
corresponding relative mass difference ∆M/M. Each curve refers to a different value of
fb going bottom-up from 0.05 to 0.4 in steps of 0.05.
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Figure 5.6: As Fig. 5.5, but accounting for both RLOF and the luminosity cut-off.
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Figure 5.7: Ratio between the velocity dispersion for RLOF of only primaries to that for
RLOF of both binary components in the case of the reference model UFD (left panel) and
dSph (right panel). In particular, the solid line refers to σtot, whereas the dotted line to
σtot,lum.



5.3. SUMMARY AND CONCLUSIONS 89

Figure 5.8: Dependence of the ratio σtot/σ0 on the mean mass density of the system
obtained by varying the scale radius R from 25 to 250 pc with steps of 25 at fixed total
mass M = 5 × 104 M⊙. The values of fb label each curve going bottom-up, according to
the legend, and differ depending on whether RLOF is taken into account (right panel) or
not (left panel) in the calculation of σtot.
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Figure 5.9: Dynamical masses (left panel) associated mass-to-light ratios within the
half-light radius (right panel) for a sample of ultra-faint MW satellites as a function of
luminosity in the V band. Measurements and uncertainties are shown as the blue points
with error bars, and mass limits determined from the 90% confidence upper limits on the
dispersion are displayed as red arrows for systems without resolved velocity dispersions.



Chapter VI

Conclusions

The role of binaries in the structural evolution of star clusters and dwarf galaxies has been
deeply analyzed by both referencing previous astrophysical works on the subject and
performing computational simulations to provide new perspectives and issues to discuss.
After a detailed description of the various processes connected to energy equipartition
(i.e., evaporation, mass segregation and core collapse) in Chap. II, the differences not only
between primordial and dynamically formed, but also between soft and hard binaries
have been introduced with the aim of understanding to which extent they may affect
stellar dynamics. In particular, it turned out that the harder a binary, the more unlikely
for it to be destroyed in encounters with other stars: thereby, under specific conditions
depending on the environment they are part of, close binary systems act as an internal
energy source able to halt, or at least delay, the core collapse phase in star clusters.
By implication, Chap. III has been mainly devoted to sort through the mechanisms leading
to cluster dissolution. Starting from early life stages, mass loss due first to residual gas
expulsion and then to stellar evolution has been taken into consideration to explain violent
relaxation and the eventual infant mortality of star clusters in the MW. If, however, a novel
equilibrium state is reached, subsequent encounters with GMCs, periodic disk shocks
and, ultimately, the presence of an external tidal field may alter such a condition in a
dramatic fashion: stellar systems must be either very dense and compact, such a GCs, or
located far from the Galactic plane, such as old OCs, in order to survive longer and avoid
rapid disruption, which clearly accounts for the scarcity of young OCs close to the Galaxy
center. Nevertheless, given the shorter timescale for tidal dissolution compared to that
for utter suppression of a primordial binary population, the overall system dynamical
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configuration should change similarly to the isolated case exactly thanks to the presence
of binaries. As a result, the evolution of the binary fraction in star clusters is a crucial
study matter, even though a general consensus on this topic has not yet been achieved,
so that a definite, reliable picture still lacks. Contrariwise, the impact of binary stars on
inflating the cluster velocity dispersion has been recognized as a valuable explanation for
the discrepancy between the dynamical and photometric mass of OCs, which are able to
retain a high binary fraction throughout their whole life.
To this regard, simulating an old OC like M67 via the state-of-the-art N-body code PeTar
might be worthwhile not only to fully investigate both the stellar and the dynamical
evolution of a typical OC binary population, but also to determine its effects on the
system velocity dispersion, without neglecting the existence of the Galactic tidal field and
compromising cluster survivability as well. In particular, the possible development of a
Python program for initial conditions generation and simulations’ output data analysis
may serve as a flexible tool to interact with PeTar and test the validity of the theories,
involving binaries in star clusters, so far presented.
Chap. IV is instead concerned with a comprehensive treatise of dwarf galaxy formation
inside the cosmological ΛCDM model, whose predictions are actually altered by the
inclusion of baryonic feedback in pure DM simulations. In fact, feedback processes
must have been considerably efficient in suppressing SF during the pre-reionization era,
given the lower number of observed luminous MW satellites with respect to the forecast
number of DM halos. Hereby the classification of dwarf galaxies based on their mass
and gas content: bright dwarfs, classical dwarfs and UFDs. Among them, UFDs are
notoriously deemed as pristine relics of the early universe since they ceased to evolve after
reionization, when SF had already been quenched: for this reason, they should represent
the most DM-dominated systems to date known. Consequently, dwarf galaxies, UFDs
in the specific, result valuable laboratories to try and constrain the nature of DM. The
possible over-abundance of DM in dwarf galaxies is typically inferred from their notably
large velocity dispersion, responsible for the huge enhancement of their dynamical mass
and mass-to-light ratio, but alternative scenarios to interpret this phenomenon have been
put forward: if, on the one hand, the tidal stripping hypothesis has been ruled out in
favor of DM, on the other hand the presence of a non-negligible number of unresolved
binaries is still a matter of debate.
To this end, in Chap. V a parametric study has been proposed as a new method to
gauge the relevance of binary stars in the dynamical mass determination of the faintest
MW satellites. Such a theoretical model consists in an exploration of the effects that
selecting binary orbital parameters may have on the observed velocity dispersion of two
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mock dwarf galaxies, namely a dSph and an UFD, at varying binary fraction. Assuming
an unresolved binary population, then, the major inflation of the dynamical mass with
respect to its true value is obtained by either shrinking the binary semi-major axis or
increasing the binary fraction, and is evident especially in the simulated UFD due to its
smaller intrinsic velocity dispersion. Coherently, the mass-to-light ratio derived from this
mass estimate, being it compatible with observations, seems to confirm that only in the
case of UFDs unresolved binaries may constitute an alternative or, at least, complementary
scenario to the most accredited predominance of dark matter.
A possible limitation of this analysis may reside in the absence of both stellar and dynami-
cal evolution in the simulations, since the realized parametric study is intended to portray
the systems at a particular life stage, without following their temporal development;
nonetheless, the inclusion of a conservative treatment for RLOF may offer preliminary
considerations about the importance of binary interactions in the modelization.
In conclusion, further work certainly needs to be done in order to give a full picture of
the role of binaries in the structural evolution of star clusters and dwarf galaxies, but, as
Stephen Hawking said, to confine our attention to terrestrial matters would be to limit
the human spirit, so that we should try to find meaning to what we see and always ask
ourselves why everything exists. Being curious is the prime mover of any discovery.
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