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Simple Summary: Treatment of pancreas ductal adenocarcinoma (PDAC) remains challenging due
to the late stage of presentation, limited efficacy of cytotoxic chemotherapies, and aggressive tumor
biology. Novel therapeutic targets are desperately needed. The voltage-gated potassium channel,
Kv1.3, is one such unique target. It has been extensively studied in many cancers but less is known
in pancreas cancer. In this study, we evaluated the tissue expression of Kv1.3 in resected PDAC
and tumor inhibition using novel Kv1.3 inhibitors developed by our group (PCARBTP and PAPTP)
with cytotoxic chemotherapies. We found that Kv1.3 is expressed in early stage, non-metastatic,
resectable pancreas cancer specimens. Treatment with novel mitochondrial Kv1.3 inhibitors resulted
in 95% reduced tumor growth when combined with cytotoxic chemotherapies. This near complete
eradication of tumors using this treatment strategy shows that Kv1.3 represents an innovative
therapeutic target for pancreas cancer therapy.

Abstract: Pancreas ductal adenocarcinoma (PDAC) is one the most aggressive cancers and associ-
ated with very high mortality, requiring the development of novel treatments. The mitochondrial
voltage-gated potassium channel, Kv1.3 is emerging as an attractive oncologic target but its func-
tion in PDAC is unknown. Here, we evaluated the tissue expression of Kv1.3 in resected PDAC
from 55 patients using immunohistochemistry (IHC) and show that all tumors expressed Kv1.3
with 60% of tumor specimens having high Kv1.3 expression. In Pan02 cells, the recently devel-
oped mitochondria-targeted Kv1.3 inhibitors PCARBTP and PAPTP strongly reduced cell survival
in vitro. In an orthotopic pancreas tumor model (Pan02 cells injected into C57BL/6 mice) in immune-
competent mice, injection of PAPTP or PCARBTP resulted in tumor reductions of 87% and 70%,
respectively. When combined with clinically used Gemcitabine plus Abraxane (albumin-bound
paclitaxel), reduction reached 95% and 80% without resultant organ toxicity. Drug-mediated tumor
cell death occurred through the p38-MAPK pathway, loss of mitochondrial membrane potential, and
oxidative stress. Resistant Pan02 clones to PCARBTP escaped cell death through upregulation of the
antioxidant system. In contrast, tumor cells did not develop resistance to PAPTP. Our data show
that Kv1.3 is highly expressed in resected human PDAC and the use of novel mitochondrial Kv1.3
inhibitors combined with cytotoxic chemotherapies might be a novel, effective treatment for PDAC.
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1. Introduction

Despite the utilization of more aggressive systemic chemotherapy regimens, pancreas
ductal adenocarcinoma (PDAC) remains a devastating disease and is the third leading cause
of cancer related mortality [1]. In 2022, pancreas cancer is expected to affect approximately
62,210 patients in the US and the incidence will continue to rise. Surgery remains the only
option for cure but, unfortunately, only 15–20% of patients are candidates for resection
and five-year overall survival remains less than 20% with surgery alone. Apart from
surgery and chemotherapy, few effective treatment options exist. Antimetabolites, such
as Gemcitabine (GEM) and 5-fluorouracil (5-FU) as well as microtubule depolymerizing
agents, such as Nab-paclitaxel (Abraxane), which is a nanoparticle form of albumin-bound
paclitaxel are among the most commonly used chemotherapeutic agents [2]. Abraxane
depletes tumor stroma, through interaction between albumin and secreted proteins that are
acidic and rich in cysteine [3]. However, the survival of patients with PDAC barely reaches
one year. Immunotherapy, which has shown dramatic results in many gastrointestinal and
cutaneous malignancies, thus far has shown minimal benefit in PDAC. Given these hurdles,
novel treatment strategies are desperately needed.

Ion channels are emerging oncological targets, as altered expression and/or func-
tion of these druggable proteins [1] is strictly linked to classical cancer hallmarks [4].
Voltage-dependent K+ channels (Kv) are a superfamily of ubiquitously expressed mem-
brane proteins that are involved in maintaining membrane resting/action potentials, cell
proliferation, immune activation, and cell death [5]. Kv1.3 is a specific voltage-dependent
K+ channel located mainly in the plasma and inner mitochondrial membranes (mitoKv1.3).
First discovered in the plasma membrane of human T lymphocytes, Kv1.3 is also found
in tumor and immune cells where it regulates proliferation as well as apoptosis and is
aberrantly expressed in malignancies [6–8]. Our group has recently developed two specific
mitoKv1.3 inhibitors that prevalently and specifically target the mitochondrial channel by
virtue of a positively charged triphenylphosphonium group. These inhibitors (PCARBTP
and PAPTP) were shown to selectively kill cancer cells but not normal healthy cells through
a reactive oxygen species (ROS)-mediated cell death involving the respiratory chain com-
plex I [9–11].

Data in examining Kv1.3 in pancreas cancer are limited and the expression of Kv1.3
in PDAC specimens from cancer patients is unknown. Therefore, in this study we evalu-
ated tissue expression of Kv1.3 in resected human PDAC and found that Kv1.3 is highly
expressed. We assessed tumor growth inhibition using the novel inhibitors of mitoKv1.3
alone or in conjunction with cytotoxic chemotherapy in an immune-competent preclinical
orthotopic mouse model and provide evidence that the combination therapy drastically
reduces tumor size without significant side effects.

2. Materials and Methods
2.1. Cell Viability Assays

For the cell viability (MTT) assay, Pan02 cells (National Cancer Institute- Frederick
Cancer Research and Development Center, Frederick, MD, USA) were seeded in 96-well
plates at 0.005–0.01 × 106 cells/well and grown in DMEM + 10% FBS (100 µL/well) for
24 h. In the dark, the growth medium was replaced with a medium containing the desired
compound (from a mother solution in DMSO) to the final concentration as shown in the
figures. The final DMSO concentration was 0.1% or lower in all cases (including controls).
After incubation for 48 h or 24 h for ALDH3A1 knockdown, a CyQUANT™ MTT Cell
Viability Assay kit (Fisher, Hampton, NH, USA) was used to detect formazan formation.
Formazan formation is a redox-dependent process and can be a confounding factor with
ROS build up. MTT reagent was diluted at 1:10 with a culture medium and a 100 µL-well
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was added into the 96-well plate and cultured for 4 h. 100 µL/well DMSO was added to
solve the formazan. Absorbance was measured at 570 nm to detect formazan formation
using a Cytation5 plate reader (BioTek, Winooski, VT, USA).

2.2. Measurement of Mitochondrial Membrane Potential and ROS Release

To measure mitochondrial membrane potential and ROS levels, Pan02 cells were
incubated with 1 µM MitoSOX or 20 nM TMRM in HBSS (Thermo Fisher Scientific, Waltham,
MA, USA) at 37 ◦C for 20 min. After incubation, the compounds were added and the
increase in MitoSOX fluorescence or the decrease in TMRM fluorescence was measured by
flow cytometry. Median values of the fluorescence intensity distributions (5000 cells were
counted) are presented in the data.

2.3. In Vitro Development of PCARBTP Resistant Clones

Pan02 cells were detached from tissue culture flasks before reaching confluence by
removing the culture medium, adding trypsin-EDTA and incubating for 3 min at 37 ◦C
and 5% CO2. After this incubation period, fresh medium was added, and the cells were
spun at 200 g for 5 min. Supernatant was removed and fresh medium added. A cell
count was carried out with the standard Trypan blue exclusion method. Pan02 cells were
seeded at 1 cell per well in 200 µL of fresh medium in 96 flat-bottomed well plates. Clones
were inspected regularly so those wells with more than 1 clone could be discarded. The
addition of PCARBTP was carried out by replacing the medium containing PCARBTP at
the different doses. If the cells survived at that dose for more than 3 days, we increased the
dose, and obtained the 4 clones of Pan02 cells that survived under 10 µM PCARBTP in the
medium. Resistant cells were amplified under 10 µM of PCARBTP, and then the proteins
were collected for proteomic analysis.

2.4. Proteomic Analysis of Resistant Clones

The Pierce 660 nm Protein assay was performed on a 1:10 dilution of the samples to
determine the protein concentration using BSA as a standard. Sufficient protein was present
such that 50 µg was taken out to run on a short 1D gel for digestion. A total of 50 µg of each
sample (non-resistant and resistant clones) in 40 µL of Laemmli buffer were run 1.5 cm
into a 1D 1.5 mm 4–12% BT gel using MOPS running buffer. Pre-stained protein markers
were used in surrounding lanes. The regions between the markers and the dye front were
excised for trypsin digestion following the standard in gel protocol. The resulting peptides
were extracted, dried, and prepared for mass spectrometry. A total of 2.5 µg of each sample
was run on the nanoLC-MS/MS in DDA mode and the combined DDA runs were searched
using Protein Pilot (SCIEX, AB Sciex Pte. Ltd., Framingham, MA, USA) to create the protein
spectral library. A total of 720 proteins were identified with 99% confidence with an FDR
of less than 1% at the peptide and protein levels. A matched SWATH-MS method in DIA
mode of the samples was used to collect quantitative data for each of the samples for the
comparative profiling. Three clones of PCARBTP resistant cells and three replicates of
normal Pan02 were processed. SWATH-D data analysis workflow was used to validate the
data set and detected significant quantitative changes.

2.5. Stable Downregulation of ALDH by Lentiviral Transduction

Pan02 cells were grown in a 12-well plate 24 h prior to viral infection. Cells were
infected at approximately 50% confluency. To this end, the medium was replaced with
medium containing 5 µg/mL of Polybrene® (sc-134220, Santa Cruz, CA, USA) and the cells
were infected with 10 µL of ALDH3A1 shRNA (m) lentiviral particles (sc-72033-V, Santa
Cruz, CA, USA) in the culture. The plate was swirled gently to mix and incubated overnight.
The medium was replaced by a complete medium and cultured for an additional 48 h.
Selection of the cells was started at day 5 with 10 µg/mL of puromycin dihydrochloride.
The culture medium was replaced by fresh puromycin-containing medium every 3–4 days,
until resistant colonies can be identified. Clones were identified, expanded and assayed.
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Three colonies were chosen, and Western blot analysis was performed to evaluate for
ALDH3A1 knockdown (sc-376089, Santa Cruz, CA, USA).

2.6. Western Blot

Cells were lysed in whole-cell lysis buffer consisting of 50 mM of HEPES, 150 mM
of NaCl, 1 mM of EGTA, 10 mM of sodium pyrophosphatate, 1.5 mM of MgCl2, 100 mM
of NaF, 10% glycerol and 1% Triton X-100, and pH 7.2, containing an inhibitor cocktail
(1 mM of phenylmethylsulfonyl fluoride, 10 mg/mL of aprotinin and 1 mM of sodium
orthovanadate) to extract total protein. Protein concentrations were determined using a
standard bicinchoninic acid (BCA) assay (23225, Thermo Fisher Scientific, Waltham, MA,
USA), and 50 µg of the total protein was subjected to 10% SDS-PAGE followed by electro-
transfer onto nitrocellulose membranes. The membranes were blocked in 5% skimmed
milk, and then incubated overnight at 4 ◦C with primary antibodies against human Kv1.3
(1:1000, P4497, Sigma, St. Louis, MO, USA), P-p38 MAPK (1:1000; CST, Framingham, MA,
USA), ALDH3A1 (1:1000, sc-376089, Santa Cruz, CA, USA), and β-actin (1:2000; Abcam,
Waltham, MA, USA). Membranes were then washed with TBST for 3 × 10 min. This was
followed by incubation with horseradish peroxidase-conjugated secondary antibodies for
1 h at room temperature in 5% skimmed milk and washed with TBST for 3 × 10 min.
Immunoreactive signals were detected using enhanced chemiluminescence (Pierce, Rock-
ford, IL, USA). Three independent experiments were performed. Original western blots
provided in Supplementary Section.

2.7. Orthotopic Mouse Pancreatic Tumor Injection Model

All animal experiments were approved by the University of Cincinnati Ethic Commit-
tee and Institutional Animal Care and Use Committee. Eight-week-old, wild-type male,
C57BL/6J mice were purchased from Jackson Labs (000664, Jackson Labs, Bar Harbor, ME,
USA). Mice were anesthetized using 120 mg/kg of ketamine plus 20 mg/kg of xylazine.
Orthotopic injection was performed as described by Tepal et al. [12]. In detail, a left sub-
costal incision was made just below the rib cage and the pancreas was identified. The
tumor cell suspension was created by mixing 25 µL of Matrigel with 25 µL of Pan02 cells
containing 1 × 106 cells. Pan02 cells were cultured in DMEM + 10% FBS medium, under
37 ◦C and 5% CO2, with no antibiotic added. The tumor suspension was slowly injected
into the pancreas and the needle was left in place for 60 s to allow the Matrigel to set. After
ensuring hemostasis, the abdomen was closed in 2 layers using 3-0 silk sutures.

2.8. In Vivo Kv1.3 Inhibitor and Cytotoxic Chemotherapy Administration

PCARBTP was suspended in 50% DMSO and injected into the peritoneal cavity at a
dose of 15 nmol/gbw on day 6 after tumor injection. Similarly, PAPTP was administrated
at a dose of 5 nmol/gbw. Gemcitabine was dissolved in ddH2O and injected into the
intraperitoneal cavity at dose of 190 nmol/gbw 6 days after tumor injection. Abraxane
was dissolved in DMSO and intraperitoneally injected at a dose of 23.4 nmol/gbw. Tumor
volume was calculated using the formula: volume = length × width × depth.

2.9. Immunohistochemistry

Immunohistochemistry (IHC) staining was performed using a biotin-streptavidin-
peroxidase (SP) kit (AB64269, Abcam, Waltham, MA, USA) and a diaminobenzidine kit
(DAB) as previously described [13]. Institutional Review Board approval was obtained
to obtain human resected pancreas ductal adenocarcinoma specimens and associated
clinicopathologic data (IRB 2019-0324). Tumor specimens were obtained from the University
of Cincinnati Department of Pathology. Five-micrometer sections were deparaffinized and
rehydrated in xylene and gradients of ethanol. Slides were boiled in citrate buffer (10 mM
of sodium citrate, 10 mM of citric acid, pH 6.0) at 92–98 ◦C for 10 min to retrieve the
antigen. The sections were then incubated with 3% H2O2 in methanol for 10 min to quench
endogenous peroxidase and blocked with normal goat serum for 20 min. Sections were
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incubated with specific primary antibodies against Kv1.3 (1:200; P4497, Sigma, MO, USA)
at 4 ◦C overnight. The sections were then incubated with biotinylated goat-anti-rabbit
IgG secondary antibody and stained with DAB working reagent (per manufacturer’s
instructions) for 30–60 s. They were then counterstained with hematoxylin. Finally, sections
were mounted with Permount (SP15-500, Thermo Fisher Scientific, Waltham, MA, USA)
onto slides. Negative control was performed using unconjugated rabbit IgG (011-000-003,
Jackson ImmunoResearch Laboratories, West Grove, PA, USA). Images were acquired
with a ZEISS AXIO microscope (Carl ZEISS, Jena, Germany). Slides were scored by a
gastrointestinal pathologist who specializes in evaluating pancreas cancer. He was blinded
to all clinicopathologic data and determined the percent and intensity of staining (scored
0–3). A final score of high versus low expression was determined if patients had >70% of
tumor cells staining with a score of 3 for intensity. The remaining group was classified
as low.

2.10. Hematoxylin & Eosin Staining

Slides containing paraffin sections were passed using the following steps: 3 × 5 min in
Xylene (blot excess xylene before going into ethanol), 2 × 5 min in 100% ethanol, 1 × 5 min
in 95% ethanol, 1 × 5 min in 70% ethanol, 1 × 5 min deionized H2O, and 1 × 3 min
Hematoxylin. They were then rinsed with deionized water 1 × 5 min, tap water and
ethanol to destain. After subsequent rinse, they were treated for 1 × 30 sec with Eosin, for
3 × 5 min with 95% ethanol, for 3 × 5 min with 100% ethanol, for 3 × 5 min with Xylene,
and a coverslip was placed using Permount mounting medium (SP15-500, Thermo Fisher
Scientific, Waltham, MA, USA).

2.11. TUNEL Assay

Animals were sacrificed and immediately perfused via the right heart with 0.9% NaCl
for 2 min followed by 10% formalin for 10 min. Organs, including the heart, lung, liver and
kidney, were then removed and further fixed in 10% formalin for 48 h. TUNEL staining
was performed with an In Situ Cell Death Detection Kit as instruction by the supplier.
Briefly, the tissues were dehydrated, embedded in paraffin, and sectioned at a thickness of
5 µm. Sections were then dewaxed, rehydrated and incubated for 5 min in 0.1 M citrate
buffer (pH 6.0) at 350 W in a microwave. After this, samples were immediately cooled in
PBS and incubated with TMR coupled dUTP in the presence of terminal deoxynucleotidyl-
transferase (Roche, Basel, Switzerland) at 37 ◦C for 60 min. Samples were embedded with
mounting medium with DAPI prior to analysis. An excitation wavelength of 488 nm was
used and evaluated using a ZEISS AXIO microscope (Carl ZEISS, Jena, Germany).

2.12. Statistical Analysis

The tumor volume and mass and mouse body weight were analyzed by t-test and
one-way ANOVA using GraphPad Prism 9.0, each experiment has more than 6 mice in
1 group, indicated in Results and Figure legends. p < 0.05 was considered as statistically
significant. * p < 0.05; ** p < 0.01, *** p < 0.0005, **** p < 0.0001.

2.13. Immunofluoresence

Immunofluorescence staining was performed using Pan02 cells. These were seeded on
a coverslip at 50% confluency 12 h before staining. Cells were washed with cold PBS × 3
then fixed by 4% paraformaldehyde for 30 min. Cells were again rinsed with cold PBS × 3,
followed by 1% Triton-100 for 30 min. Cells were blocked with 5% donkey serum for 1 h at
room temperature and washed with cold PBS for 10 min × 3. Primary antibodies Kv1.3
(1:100, APC-101, Alomone labs, Jerusalem, Israel) and TOM20 (1:100, MABT166, Sigma,
Burlington, MA, USA) were incubated overnight at 4 ◦C. Cells were washed with cold PBS
for 10 min × 3, secondary antibodies goat anti-mouse antibody Alexa 488 (1:2000, A11001,
Thermo Fisher Scientific, Waltham, MA, USA) and goat anti-rabbit antibody Alexa Fluor™
594 (1:2000, A11012, Thermo Fisher Scientific, Waltham, MA, USA) were incubated for
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1 h at room temperature. Cells were washed with cold PBS for 10 min × 3 and mounting
medium with DAPI was added. Carl Zeiss LSM 710 confocal laser-scanning microscope
(Carl Zeiss, Jena, Germany) was used to capture the images.

3. Results
3.1. Kv1.3 Is Highly Expressed in Resected Human Specimens

As Kv1.3 is emerging as a promising oncological target [14], limited information is
available about expression of this channel in human PDAC tissues. First, we assessed Kv1.3
expression by immunohistochemistry (IHC) evaluation on tissues from 55 patients who
were diagnosed at a relatively early stage and underwent resection for PDAC (Figure 1).
Median patient age was 68 years old with 42% of patients being female, 86% white, and 9%
black. A pancreaticoduodenectomy was performed in 69.1% of patients, distal pancreatec-
tomy in 29.1%, and total pancreatectomy in 1.8%. On final pathology, 29.1% of specimens
had poorly differentiated tumors, 90.9% had perineural invasion (PNI), and 56.4% lympho-
vascular invasion (LVI). Positive lymph nodes were found in 83.6% of patients. American
Joint Committee on Cancer (8th edition) staging showed 52.7% were stage 2, 34.5% stage 3,
and 12.7% stage 1.

Figure 1. Expression of Kv1.3 in human pancreatic cancer tissue. Expression of Kv1.3 in human
pancreatic tissue. Panel (a), high expression level of Kv1.3 in human pancreatic cancer tissue. (n = 33
out of 55, scale bar = 50 µm). Panel (b), magnification of panel (a), scale bar = 20 µm. Panel (c), low
expression level of Kv1.3 in human pancreatic cancer tissue. (n = 22 out of 55, scale bar = 50 µm).
Panel (d), magnification of panel c, scale bar = 20 µm. Panel (e), Immunoglobulin G (IgG) control with
magnification (Panel (f)). Panel (g) shows a pancreas adenocarcinoma ductule with high expression
of Kv1.3 (brown color) and adjacent normal pancreas parenchyma without Kv1.3 expression (black
arrow), scale bar = 50 µm. Panel (h), magnification of panel (g), scale bar = 20 µm.



Cancers 2022, 14, 2618 7 of 23

Kv1.3 IHC staining showed that all pancreas tumor specimens exhibited expression of
Kv1.3. Based on percentage and intensity of stain, we found that 60.0% of tumor specimens
had high expression (n = 33). Only 8.3% of normal pancreas specimens from the same
surgical specimens had expression of Kv1.3. Over a median follow up of 28.0 months, 67.9%
of patients developed a recurrence and 65.5% of patients died. When stratified by Kv1.3
expression, median recurrence free survival was 16 months with high Kv1.3 expression
versus 17 months with low expression (p = 0.36) (Figure S1).

Median overall survival was 27 months with high Kv1.3 expression and did not reach
30 months for low Kv1.3 expression (p = 0.53) (Figure S1).

High expression of Kv1.3 in tumor specimens was not associated with having a
positive lymph node, poor differentiation, perineural invasion, or lymphovascular invasion
(p > 0.05). These data suggest that Kv1.3-expression neither determines prognosis of the
tumor per se nor tumor metastasis. We thus investigated whether Kv1.3 might serve as a
novel target to treat PDAC.

3.2. PAPTP and PCARBTP Trigger Apoptosis in Pan02 Cells by Enhancing Mitochondrial ROS
Production and Inducing Loss of Membrane Potential

To test the significance of Kv1.3 expression in pancreas cancer cells, we treated the
widely used Pan02 mouse PDAC line with PAPTP and PCARBTP, two inhibitors of mito-
chondrial Kv1.3. Pan02 tumor cells harbor no mutations in KRAS, Cdkn2a, or Tp53 and
have a high resistance to a wide range of chemotherapeutic agents [15]. Supplementary
Figure S2 shows expression of Kv1.3 in wild type Pan02 cells and localization to the mi-
tochondria (Figure S3). MTT assay was performed on Pan02 cells treated with different
concentrations of PCARBTP and PAPTP for 48 h, revealing PCARBTP killed Pan02 cells by
a dose-dependent way (Figure 2A).

Figure 2. Cont.
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Figure 2. PCARBTP and PAPTP trigger apoptosis in Pan02 cells by enhancing mitochondrial ROS
product and combination with Gemcitabine and Abraxane enhances tumor cell death. (A) MTT
assay performed on Pan02 cells treated with PCARBTP/PAPTP or (B) combined with Gemcitabine
and Abraxane as indicated (n = 3, mean ± SD). (C) EC50 of PCARBTP and PAPTP alone and in
combination Gemcitabine and Abraxane.

3.3. Combination with Gemcitabine and Abraxane Enhances Tumor Cell Death Obtained by
PAPTP or PCARBTP Treatment

Gemcitabine and Abraxane have recently been used together in the MPACT clinical
trial which showed benefit in terms of overall survival. As the EC50 of cell survival is
around 0.3 µM for GEM in Pan02 cells [16], we used a combination of 0.25 µM GEM with
20 nM Abraxane and various concentrations of PAPTP/PCARBTP. 8 µM PCARBTP and
10 µM of PAPTP with 0.25 µM of Gemcitabine and 20 nM of Abraxane resulted in the
highest rate of tumor cell death of 85.8% and 99.2%, respectively (Figure 2B). Interestingly,
while the combination treatment with PCARBTP reduced survival of Pan02 cells by more
than 80% at the higher concentrations, at 10 µM concentration PAPTP + GEM + Abraxane
reduced cell survival to zero when continuous treatments lasted for 48 h. EC50 values were
obtained for the different combination treatments above (Figure 2C). The combination index
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was <1 according to Compusyn, indicating a synergistic effect between PAPTP/PCARBTP
and Abraxane plus gemcitabine.

3.4. PCARBTP and PAPTP Reduced Pancreatic Ductal Adenocarcinoma Tumor Size in a
Syngeneic Orthotopic Mouse Model

Following the above in vitro experiments, we tested the effects of PAPTP/PCARBTP
either alone or in combination with GEM + Abraxane in orthotopic models using Pan02 cells,
which are known to give rise to well-differentiated tumors with high mutational burden [15].
Since no studies have been performed on PDAC in immune-competent mice with mitoKv1.3
inhibitors up to now, tumor growth was examined in a syngeneic model using Pan02 cells.

Intraperitoneal injection of PCARBTP and PAPTP was performed 6 days after tumor
injection, and tumors were collected 12 days after. Non-toxic [9] doses of 15 nmol/g and
20 nmol/g body weight of PCARBTP were injected every other day for 3 doses. Likewise,
5 nmol/g body weight PAPTP was injected every other day for 3 doses. The tumor volume
and mass treated with 15 nmol/gbw PCARBTP were reduced by 87% and 87% (n = 8), while
reduction of the tumor volume and mass treated with 20 nmol/gbw PCARBTP reached
88% and 90%, respectively (n = 8) (Figure 3A,B). Although bodyweight slightly decreased
with respect to pre-orthotopic weight after PCARBTP treatment, no mice had greater than a
20% decrease (Figure 3C). Representative images are shown in Figure 3D.

Figure 3. PCARBTP reduced pancreatic tumor size in an orthotopic mouse model. (A,B) PCARBTP
reduced mouse pancreatic tumor volume (A) and weight (B) orthotopically significantly upon intraperi-
toneal administration, n = 8. (C) Body weights change in the mice during PCARBTP treatment were less
than 20% (p < 0.05). (D) Representative pictures of the mouse orthotopically injected tumors.
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PAPTP was less effective in this model: the tumor volume and mass treated with
5 nmol/gbw of PAPTP were reduced by 70% (n = 6) and 64% (n = 6), respectively (Figure 4A,B).
There were no significant changes in the body weights of the mice with PAPTP treatment,
Figure 4C (p = 0.17). Representative tumors are shown in Figure 4D.

Figure 4. PAPTP reduced pancreatic tumor size in an orthotopic mouse model. (A,B) PAPTP reduced
mouse pancreatic tumor volume (A) and weight (B) orthotopically significantly by intraperitoneal
administration, n = 6. (C) Body weights change of the mice during PAPTP treatment were not signifi-
cantly changed (p = 0.17). (D) Representative pictures of the mouse orthotopically injected tumors.

3.5. Gemcitabine-Abraxane Treatment with PCARBTP/PAPTP Drastically Reduced Tumor Growth

We then examined if there was a synergistic effect of using mitoKv1.3 inhibitors with
cytotoxic chemotherapies already used in the clinical practice, given our in vitro results
shown in Figure 2. Compared to untreated controls, 190 nmol/gbw Gemcitabine plus
23.4 nmol/gbw Abraxane reduced the tumor volume and mass by only 64% and 60% (n = 8),
respectively. The concentration of GEM was chosen on the basis of the literature where
Pan02 cells were used (e.g., [16–18]). In contrast, the combination of Gemcitabine with
Abraxane plus 15 nmol/gbw PCARBTP massively reduced the tumor volume and mass by
95% and 92%, respectively (n = 8). Similarly, we found a substantial tumor volume and mass
reduction after treatment with Gemcitabine, Abraxane, and 5 nmol/gbw PAPTP of 80% and
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75% (Figure 5A–C). H&E staining and TUNEL assay were performed to detect the apoptotic
level of tumor cells, by sectioning through the tumor (Figure 5D). Most of the tumor cells
were dying through apoptosis with the Gemcitabine, Abraxane plus PCARBTP treatment.

Figure 5. Cont.
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Figure 5. PCARBTP or PAPTP combined with Gemcitabine and Abraxane drastically reduced
pancreatic tumor size and weight an orthotopic mouse model. (A,B) PCARBTP and PAPTP combined
with Gemcitabine and Abraxane reduced up to 95% the pancreas tumor volume (A) and weight
(B) compared to the control group. n = 8. (C) Representative pictures of the mouse orthotopically
injected tumors. (D) H&E staining and TUNEL assay of indicated organs. DNase treatment was used
as a positive control. Treatment groups shown in in the figure resulted in greater tumor cell death
compared to the vehicle control. Scale bars for H&E = 100 µm, scale bars for TUNEL = 20 µm.



Cancers 2022, 14, 2618 13 of 23

3.6. Combined Treatment with Mitochondrial Kv1.3 Inhibitors and Cytotoxic Chemotherapies Had
No End Organ Toxicities

These data indicate a marked effect of the combination of PCARBTP/PAPTP with
Gemcitabine/Abraxane on pancreas carcinoma in vivo. Importantly, we observed that
mice did not show signs of distress and H&E staining at the time of sacrifice after treatment
with the combination of PCARBTP/PAPTP with Gemcitabine/Abraxane (see concentrations
above) showed there was no significant toxicity to the heart, lung, liver, and kidney
(Figure 6A). TUNEL assay showed the lack of inhibitor-induced apoptosis in healthy tissues
(Figure 6B). These results indicate a specific effect of the treatment on the malignant tumor.

Figure 6. Cont.



Cancers 2022, 14, 2618 14 of 23

Figure 6. Lack of PCARBTP/PAPTP toxicity on other organs in a mouse model. (A) H&E staining
showed either PCARBTP or PAPTP intraperitoneal administration alone or combined with Gem-
citabine and Abraxane had no toxic effect on the heart, lung, kidney, or liver. Scale bar = 20 µm.
(B) TUNEL assay performed on the respective organs. DNase treatment was used as a positive
control. There was lack of toxicity in the lung, heart, kidney and liver when treated with PCARBTP or
PAPTP alone or when combined with cytotoxic chemotherapies. Scale bars, 20 µm.
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3.7. Mitochondrial Kv1.3 Inhibitor PCARBTP Treatment Activated Phosphorylation of p38 MAPK
In Vitro and In Vivo

We have previously shown that the action of sub-lethal concentrations of PCARBTP
was exacerbated when the stress response kinase JNK was inhibited in Jurkat lympho-
cytes [19]. Here, we evaluated the effect of various concentrations of PCARBTP on acti-
vation of the other major stress-activated signaling kinase, namely p38 mitogen-activated
protein kinase (MAPK), given that this kinase regulates apoptosis also in PDAC lines
(e.g., [13]). In vitro, Pan02 cells were treated with PCARBTP (up to 10 µM) for 30 min.
Western blot analysis highlighted an increase in phosphorylation level of this p38MAPK
when treating the cells with relatively high concentration of the drugs that were able to
induce mitochondria ROS production within the same timeframe (Figure 7A). GEM was
also reported to activate c-JUN N-terminal kinase (JNK) and p38 mitogen activated protein
kinase (p38 MAPK) in PDAC lines and GEM-induced JNK and p38 MAPK activation
mediated increased apoptosis [13].

Figure 7. PCARBTP mediated cell apoptosis through the p38 MAPK pathway. (A) Phosphorylation
levels of p38 MAPK (Thr180/Tyr182) increased with PCARBTP treatment for 30 min in a dose-
dependent manner, n = 3. (B) p38 MAPK inhibitor (SB203580) attenuated the function of PCARBTP
or PCARBTP combined with Gemcitabine and Abraxane, n = 6.

Thus, to test the significance of p38 MAPK for mitoKv1.3 inhibitor- (and triple treat-
ment) mediated cell death, we examined the effects of treatment with the p38 MAPK
inhibitor, SB203580. A total of 13 nmol/gbw of SB203580 (a dosage used in other in vivo
studies, e.g., [20]) was found to attenuate the effects of PCARBTP in an orthotopic mouse
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model (Figure 7B). Compared to the control, tumor volume from all drug-treated groups
were significantly decreased (p < 0.05). Compared to PCARBTP only, addition of SB203580
to PCARBTP attenuated growth inhibition by mitoKv1.3 inhibitor treatment (tumor volume
87% vs. 51%, p < 0.01). Similarly, the addition of SB203580 to Gemcitabine–Abraxane–
PCARBTP attenuated the tumor-reducing effect of the drugs, as tumor volume was reduced
only by 80% (versus 95%) in the presence of p38 MAPK inhibitor (p < 0.05), suggesting
that PCARBTP mediated cell death occurs at least in part through the p38 MAPK pathway
in vivo. Supplementary Figure S4 shows antibody specificity of P-p38 MAPK in Pan02 cells.

To identify further signaling pathways that mediate the effects of PCARBTP and
PAPTP on pancreas cancer cells, mitochondrial ROS production was tested using the
fluorogenic dye MitoSOX, which correlates with mitochondrial superoxide production.
Mitochondrial membrane potential changes were followed by the membrane potential-
sensitive dye tetramethylrhodamine methyl ester (TMRM). PCARBTP or PAPTP both
induced an increase in the MitoSOX fluorescence signal (Figure 8A) and mitochondrial
depolarization (Figure 8B), consistent with previous data [9]. Figure S5 shows histograms
of flow cytometry from mitoSOX and TMRM analyses.

Figure 8. Direct effects of PCARBTP/PAPTP alone or when combined with Gemcitabine (GEM)
and Abraxane on Mitochondria. (A) Mitochondrial ROS production was tested using MitoSOX on
Pan02 cells treated with PCARBTP/PAPTP. The compounds increased ROS level. Mean normalized
values ± SD from four biological replicates are shown. (B) Mitochondrial membrane potential
was followed using 5 nM TMRM on Pan02 cells treated with PCARBTP/PAPTP for the indicated
time. In these experiments, the probe was not washed off so as to allow further uptake following
hyperpolarization. Results are shown as mean ± SD from four biological replicates. (C) Mitochondrial
ROS production on Pan02 cells treated with GEM. (D) Mitochondrial membrane potential on Pan02
cells treated with GEM.
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Gemcitabine might synergistically act with mitoKv1.3 inhibitors by further enhancing
cellular ROS level, as GEM has been shown to trigger ROS production in PDAC cells
via indirect activation of NAD(P)H oxidase (NOX) [21] (through activation of NF-κB).
However, GEM when applied alone, did not cause changes in mitochondrial ROS pro-
duction (Figure 8C) and of membrane potential (Figure 8D). The same observation is true
for Abraxane. A combination of the three drugs did not enhance further the effect of
PAPTP/PCARBTP on mitochondrial parameters.

3.8. Resistance to PCARBTP Treatment

Given the very promising in vivo effects observed with the mitoKv1.3 inhibitors, we
aimed at understanding whether, similarly to GEM [21], resistance to PCARBTP and PAPTP
may occur on a longer timescale. To this end, we generated a clone of Pan02 that was
largely resistant to 10 µM of PCARBTP), while PAPTP-resistant clones could not be obtained,
presumably due to the very rapid action of the non-hydrolysable PAPTP at the level of
mitochondria [9]. We thus compared the protein expression of 3 independent PCARBTP-
resistant clones to 3 normal parental Pan02 cells by Sequential Window Acquisition of
all Theoretical Mass Spectra (SWATH) nanoLC-MS/MS. Supplementary Figure S2 shows
Kv1.3 expression in PCARBTP resistant clones. The analysis showed that 50 proteins were
consistently upregulated in all three clones and 8 proteins were downregulated (Figure 9A).
STRING and pathway enrichment analysis grouped these proteins into several functional
classes: a metabolism of xenobiotics by cytochrome P450, an antioxidant defense system,
and metabolic pathways of carbohydrates, amino acids and carboxylic acid (Figure 9B).
The eight downregulated proteins identified by proteomics (Anxa2, Anxa1, Vcl, Cand1,
Cyb5r3, Dpy30, Slc7a5, Dnajc4) were not linked to any enriched pathway. Volcano plot
analysis to analyze significant up/down regulated proteins (PCARBTP/Pan02 control)
found aldehyde dehydrogenase 3 family member A1 (ALDH3A1), previously shown
to confer oxidative stress resistance [22], was the most upregulated protein (Figure 9C).
Supplementary Figure S4 shows the antibody specificity of ALDH3A1.

Figure 9. Cont.
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Figure 9. Drug resistance to PCARBTP in cultured Pan02 cells. (A) Proteomic analysis of protein
changes in PCARBTP resistant clones. Heatmap of unbiased clustering of only the significant proteins,
135 proteins with ANOVA p < 0.05 (color in Log2-scale), n = 3. (B) STRING analysis showing the
following enriched KEGG pathway-linked proteins. Number of nodes: 45; number of edges: 89;
average node degree: 3.96; avg. local clustering coefficient: 0.521; expected number of edges: 23;
PPI enrichment p-value < 1.0 × 10−16. KEGG pathways: light green: Glycolysis/Gluconeogenesis
(hsa00010) (p value 3.45 × 10−8); yellow: metabolic pathways (hsa01100) (p value 4.26 × 10−7);
light blue: carbon metabolism (hsa01200) (p value 1.08 × 10−5); dark green biosynthesis of amino
acids (hsa01230) (p value 2.10 × 10−5); magenta: HIF-1 signaling pathway (hsa04066) (p value
7.12 × 10−5); red: metabolism of xenobiotics by cytochrome P450 (hsa00980) (p value 0.00039); dark
blue: glutathione metabolism (hsa00480) (p value 0.0029). (C) Volcano plot analysis for significant
up/down regulated proteins (PCARBTP/Pan02_control), ALDH3A1 in red circle is the most upreg-
ulated protein. (D) Western blot showed ALDH3A1 was knocked down by ALDH3A1 lentiviral
shRNA. (E,F) MTT assay performed on Pan02 cells transfected with control shRNA and ALDH3A1
shRNA then treated with PCARBTP/PAPTP or combined with 0.25 µM of Gemcitabine and 20 nM of
Abraxane as indicated (n = 3, mean ± SD), * p < 0.05; ** p < 0.01, *** p < 0.0005, **** p < 0.0001.
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To test the validity of our approach, an ALDH3A1 stable knockdown was created
using shRNA via lentiviral transduction (Figure 9D). MTT assay was then performed to
determine the sensitivity of ALDH3A1 shRNA and control sHRNA transfected Pan02
cells to PCARBTP or to the other drugs used in our study (GEM + Abraxane) (Figure 9E).
ALDH3A1 knockdown restored sensitivity in the normal Pan02 cells to the triple treat-
ment with PCARBTP + GEM + Abraxane and also to GEM alone, to GEM+ Abraxane
and (Figure 9F), indicating that ALDH3A1 stays at the crossroad of the action of these
three drugs.

4. Discussion

In the present study, we show that treatment with mitochondrial Kv1.3 inhibitors
PAPTP and PCARBTP in a syngeneic orthotopic mouse model using mouse Pan02 cells
resulted in a reduction in tumor size by almost 90% (please check results. The single
treatment is not given there). When combined with cytotoxic chemotherapy Gemcitabine
and Abraxane, tumor size reduction reached 95%, which is a reduction that has not been
observed so far to our knowledge. Most importantly, this treatment strategy did not result
in visible organ toxicity. We chose to use Gemcitabine and Abraxane as it is one of the
common cytotoxic chemotherapy regimens used in the treatment of PDAC, has been used in
the MPACT trial and is a two-drug regimen in comparison to FOLFIRINOX (5-fluorouracil,
oxaliplatin, irinotecan), which involves three drugs and associated with different toxicity
profile [23,24]. Although we employed Abraxane along with the other inhibitors, in our
Pan02 model, the relevance of Abraxane may be lower than in human PDAC, given that in
the present animal model stroma is less dense than in the human pathology [15].

We found that Kv1.3 was highly expressed in a large number of resectable human
pancreatic cancer specimens (55). This is consistent with previous data from us showing by
Affymetrix as well as by Western blots that Kv1.3 is highly expressed in various, largely
chemoresistant human PDAC cell lines harboring p53 mutations (PANC-1, AsPC-1, BxPC-3,
Capan-1, Colo-357, MiaPaCa2) [9]. The channel is present also in the mitochondrial fraction
of these cells [25]. A previous investigation by Bielanska et al. showed that Kv1.3 was
under-expressed in human PDAC specimens, but these immunohistochemical studies
were performed in a very limited sample (n = 2) of patients [26]. Another study examined
18 patients and found a correlation between Kv1.3 expression decrease and metastasis [27].
Importantly, both studies were performed on tumor samples from patients with metastatic
PDAC, which is biologically different from those with resectable, non-metastatic disease.
Given that our study found that Kv1.3 is highly expressed in resected PDAC, it is possible
that during the transition to a metastatic phenotype, pancreas cancer cells are able to down
regulate Kv1.3, possibly due to methylation of the promoter region of the Kcna3 gene
encoding for Kv1.3, or another unexplained mechanism [27]. The findings reported here are
consistent with previous studies showing that K+ channels can promote proliferation [1],
while downregulation of Kv1.3 renders cells resistant to apoptotic stimuli [28]. In addition,
overexpression of the channel in our patient samples suggests Kv1.3 is a novel therapeutic
target to treat pancreas cancer, although the specific role of mitochondrial Kv1.3 in patients
with PDAC has not been addressed here. All tumor specimens showed Kv1.3 expression,
at least at a low level. Even in patient samples with low Kv1.3 expression, there are some
cells that express Kv1.3 and are likely to respond to Kv1.3 inhibitors, although whether
these specific cells correspond to cancer cells with specific characteristics or eventually to
cancer stem cells remains to be determined.

When examining if Kv1.3 expression holds prognostic value, we found no association
with overall or recurrence free survival. It is plausible that in this patient population with
resectable PDAC, compared to metastatic PDAC, alterations at the DNA and/or protein
level have not occurred to Kv1.3 to render the channel a prognostic biomarker. We also
examined if there was an association of Kv1.3 expression with presence of nodal metastases,
LVI, and PNI and found there was none. This is likely due to the high rates of PNI (91%),
LVI (56%), and positive lymph nodes (84%) in these patients even with localized disease.
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The predictive value of mitochondrial Kv1.3 expression to PAPTP and PCARBTP treatment
in mice was not tested in this study but we have previously shown a positive correlation
between Kv1.3 expression and PCARBTP/PAPTP-induced death in human PDAC lines
and between the expression of the channel in mitochondria and the plasma membrane [9].

Mechanistically, the signaling pathway of PCARBTP or PAPTP-induced tumor cell
death was associated with ROS production and the ability of these drugs to drive the cells
above a critical ROS level, as indicated by the finding that N-acetyl-cysteine, a molecule
able to boost the antioxidant system, prevented the in vivo tumor reducing effect of both
drugs [9]. Here, we show that additional mechanisms also come into play, namely an in-
crease in the phosphorylation of p38/MAPK. When treated with the p38 inhibitor, SB203580,
there was a reduction in PCARBTP-mediated in vivo effect, suggesting that mitoKv1.3 in-
hibition triggers, at least in part, the p38-mediated death pathway. These findings are
consistent with existing data that show activation of the p38/MAPK pathway to be a
favorable prognostic marker and associated with improved overall survival in patients
with PDAC [29–31]. Interestingly, apoptosis induced by a ROS-producing agent (MC3 a
Thioredoxin Reductase inhibitor), was also associated with mitochondrial dysfunction and
activation of p38-MAPK in a PDAC line. ROS scavengers or inhibition of p38 signaling with
SB203580 attenuated MC3-induced apoptosis [32], indicating a relationship between redox
balance, p38MAPK activation and cell death in PDAC cells. This connection is further indi-
cated by the finding that p38-MAPK is activated also by GEM [13]. In our case, ROS release
is triggered at mitochondria by mitoKv1.3 inhibitors. Given that ROS production due to
NOX activation upon GEM treatment [21] has previously been reported, it is reasonable
to propose that the synergistic effect of PAPTP/PCARBTP and gemcitabine on cell death
can be ascribed to an enhanced p38-MAPK activation and downstream signalling and high
oxidative stress upon combined treatment.

Despite an unprecedented 95% tumor growth inhibition using a combination of mi-
toKv1.3 inhibitors and cytotoxic chemotherapies, there were still viable tumor cells. After
developing a PCARBTP treatment resistant cell line, proteomic analysis revealed there was
an almost a four-fold increase in the antioxidant system. Compared to normal human
cells, cancer cells have increased ROS generation due to reduced ability to produce scav-
engers [14,33]. On the other hand, adaptive mechanisms enable cancer cells to escape from
oxidative damage by means of overexpressing ROS scavengers. Inhibition of mitoKv1.3
can initiate a cascade of events that leads to transient hyperpolarization of the inner mito-
chondrial membrane, formation of ROS, stimulation of permeability transition pore, release
of cytochrome c, and resulting apoptosis [14,28]. In addition, our recent findings indicate
that PAP-1 derivatives bound to mitoKv1.3 are positioned in a way that their psoralenic
moieties can directly accept electrons from complex I of the respiratory chain and donate
these electrons to molecular oxygen, further boosting ROS [11]. Given the importance of
ROS generation to the mechanism of mitoKv1.3 inhibitor mediated cell death, it is not
surprising to see that cancer cells resistant to PCARBTP upregulated the antioxidant system
(GSR, GSTO1, GSTA2, ALDH3A1). An intrinsic resistance to GEM has been linked to
upregulation of antioxidant defense system also in AsPc-1 human pancreatic tumor cells
and in related orthotopic xenograft mouse model [21]. Indeed, GEM in combination with
β-phenylethyl isothiocyanate (PEITC) is able to deplete the cells of glutathione and thus
enhance oxidative stress, and it caused the tumor size to reduce to a higher extent than
GEM alone. Nonetheless, a reduction of up to 60% occurred in vivo. Thus, even though
the principle underlying the effect of GEM along with agents that induce oxidative stress is
similar in the two studies (the one by Ju et al. and us), the present paper demonstrates that
combination is more efficient when using a drug that is able to release ROS rapidly and
to great extent by modulating mitochondrial function. Proteins linked to the cytochrome
P450-mediated detoxification system are upregulated (EPHX1, GSTO1, GSTA2), as this
system is mainly responsible for xenobiotic metabolism in the cells [34]. In addition, an
upregulation of proteins linked to metabolic processes such as glycolysis, carboxylic acid
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biosynthesis and amino acid synthesis can be observed. This result can be interpreted in
light of the inhibition of the mitochondrial respiration and ATP production [9].

In summary, our study indicates that a combination treatment using GEM and mi-
toKv1.3 inhibitors along with Abraxane represents a promising way to defeat PDAC and
opens the possibility to identify further drug combinations that allow complete eradication
of the tumor. Importantly, the fact that the pro-oxidant activity of mitoKv1.3 inhibitors is
linked to the expression of Kv1.3, offers an important layer of selectivity towards killing
of PDAC cells, given that only 8% of normal PDAC specimens showed expression of the
channel to a detectable level. Future studies should focus on using mitoKv1.3 inhibitors
to selectively kill cells with higher Kv1.3 expression, which may result in not only the
direct killing of cancer cells but also enhance the activity of cytotoxic chemotherapies and
potential immunotherapies.

5. Conclusions

We demonstrated that the potassium channel Kv1.3 is highly expressed in human
pancreas adenocarcinoma. MitoKv1.3 inhibitors combined with cytotoxic chemotherapies
can result in greater than 95% tumor growth reduction without organ toxicity in a preclinical
orthotopic model. SWATH-MS and STRING and pathway enrichment analysis found that
the proteins linked to the antioxidant defense system, and the metabolic pathways of
carbohydrates, amino acids and carboxylic acid are different in PCARBTP resistant clones.
These data suggest utilizing Kv1.3 should be considered a novel therapeutic target for
pancreatic cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112618/s1, Figure S1: Recurrence free and overall
survival based on Kv1.3 expression in resected human pancreatic cancer tissues; Figure S2: Western
blot analysis showing expression of Kv1.3 in Pan02 wild type and PCARBTP resistant cells. β-actin
provided as loading control; Figure S3: Immunofluorescence in wild type Pan02 cells showing co-
localization of TOM20 and Kv1.3 to the mitochondria; Figure S4: Western blot analysis showing
expression and specificity of phospho-p38 and ALDH3A1 antibodies in Pan02 cells; Figure S5: Flow
cytometry histograms of the mitoSOX and TMRM analyses.
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